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Pendahuluan

1.1 Latar Belakang

Malaria merupakan penyakit mematikan di berbagai negara, yang
disebabkan oleh parasit darah Plasmodium. Plasmodium ada berbagai jenis seperti
Plasmodium vivax, Plasmodium ovale, dan Plasmodium falciparum. Plasmodium
disebarkan oleh gigitan nyamuk Anopheles betina dan dapat menular melalui
transfusi darah atau penggunaan jarum suntik secara bersamaan (Poostchi, 2018).
Gejala yang sering terjadi seperti demam, sakit kepala, dan pucat karena kekurangan
darah. Komplikasi yang terjadi dapat mengakibatkan gangguan pernafasan sampai
mengalami kematian. Di dunia terdapat lebih dari 200 juta kasus Malaria di tahun
2019 dan menjadi endemi di 89 negara (WHO, 2020). Malaria menyumbang lebih
400 ribu kematian dengan 67% di antaranya masih berusia balita. Pada tahun yang
sama Indonesia memiliki lebih 250 ribu kasus Malaria dan 80% di antaranya berada
di Papua. Data selama satu dekade terakhir menunjukkan penurunan penderita
Malaria baik di Indonesia maupun di dunia. Akan tetapi, kewaspadaan akan Malaria
harus tetap dijaga dengan melakukan deteksi dini untuk mengurangi kasus penderita
Malaria dan mencegah risiko kematian.

Berdasarkan protokol WHO, dalam mendeteksi Malaria dapat dilakukan
dengan menggunakan pemeriksaan Peripheral Blood Morphology atau Blood
Smear. Blood Smear mengevaluasi sel darah merah, sel darah putih, dan trombosit
(Bian, 2005). Sampel darah pasien akan diwarnai dengan flourscense dan kemudian
dilihat menggunakan mikroskop untuk melihat adanya parasit Plasmodium dalam
darah. Para teknisi yang melakukan pemeriksaan mikroskop dinamakan
Phlebotomist. Dengan jumlah Phlebotomist yang sedikit sehingga para teknisi
mengalami kelelahan fisik yang mengakibatkan kesalahan analisis dan interpretasi
saat melakukan pemeriksaan Blood Smear. Untuk mengatasi kesalahan interpretasi,
para peneliti berlomba-lomba mencari alat bantu yang memudahkan tenaga medis
melakukan deteksi dini malaria menggunakan perkembangan teknologi. Salah satu



perkembangannya, dengan menggunakan Teknologi Deep Learning untuk
mendiagnosis Malaria berbasis citra tekstur warna pada sampel darah menggunakan
protokol Blood Smear.

Convolutional Neural Network (CNN) merupakan model Deep Learning
yang digunakan dalam mendeteksi Malaria. Kemampuan CNN dalam mengelola
data yang besar dapat mendeteksi malaria pada citra Blood Smear dengan baik
(Rajaraman, et al., 2019). Model dari CNN akan mengklasifikasikan citra Blood
Smear ke dalam 2 kelas, Uninfected dan Paracitized. Dalam penelitian sebelumnya,
sudah ada berbagai macam arsitektur CNN yang digunakan dalam memprediksi
Malaria. Seperti Arsitektur LeNet5 yang menghasilkan akurasi sebesar 95%
(Harahab, et al., 2021) dan Arsitektur MM-RestNet yang memiliki akurasi 98% pada
gambar bercitra rendah (Pattanaik, et al., 2020). Sedangkan Arsitektur GoogleNet
memiliki performa akurasi sebesar 98,13% (Yuhang, et al., 2017) akan tetapi nilai
error rate yang tinggi sebesar 25.86%. Sehingga dibutuhkan studi untuk
meningkatkan performa model tanpa memperbesar nilai error.

Studi tentang peningkatan performa model CNN sudah banyak dilakukan
sebelumnya. Peningkatan performa dapat dilakukan dengan melakukan tuning pada
preprocessing (Swastika, et al., 2021). Dengan menggunakan preprocessing, model
menjadi lebih akurat 0,5% dibandingkan tanpa preprocessing. Selain itu,
penggunaan Transfer Learning juga dapat mempengaruhi performa model. Dengan
melakukan tuning pada hyperparameter dapat meningkatkan performa dari model,
cara ini dinamakan Hyperparameter Tuning. Dalam studi Jaiswal melakukan
Hyperparameter Tuning pada nilai filter dengan menggunakan Genetic Algorithm
menghasilkan akurasi terbaik sebesar 95,17% pada data testing (Jaiswal, et al.,
2020). Pada studi (Suriya, et al., 2019) melakukan tuning pada hyperparameter
epochs, dan optimizers pada Deep CNN menghasilkan performa akurasi sebesar
98%. Pencarian hyperparameter pada studi Zhao dengan menggunakan citra
beresolusi rendah menghasilkan hyperparameter terbaik dengan optimizer SGD,
learning-rate 10, dan batch-size 64 (Zhao, et al., 2020). Pada studi ini, mencoba
melakukan pencarian hyperparameter menggunakan Grid Search untuk
mendapatkan hyperparameter terbaik pada arsitektur costum Rajaraman, dan

BaselineNet.



1.2 Identifikasi Masalah

Berdasarkan latar belakang yang sudah dijelaskan di atas, dapat di
identifikasikan masalah yaitu akurasi pada deteksi Malaria kurang optimal yang
disebabkan oleh hyperparameter yang digunakan bukan yang terbaik pada arsitektur

CNN yang digunakan.

1.3 Batasan Masalah
Batasan masalah dari pengerjaan penelitian ini, ialah sebagai berikut.
1. Penelitian dilakukan dengan menggunakan data citra Blood Smear dari Lister
Hill National Center for Biomedical Communications.
2. Aursitektur yang digunakan merupakan Arsitektur Rajaraman dan BaselineNet.
3. Penelitian ini menggunakan GPU- High Ram pada Google Colab Pro.
4. Parameter yang diujicobakan adalah batch-size, optimizer, epoch, dan learning-
rate.
5. Pencarian hyperparameter menggunakan Grid Search tanpa Cross Validation
6. Pencarian hyperparameter tidak mempertimbangkan model mengalami

overfitting atau undefitting di semua area pencarian yang dilakukan.

1.4 Rumusan Masalah

Sesuai dengan latar belakang yang sudah dijelaskan di atas, rumusan
masalah yang digunakan pada penelitian ini, ialah apakah hyperparameter tuning
mempengaruhi hasil akurasi pada deteksi Malaria dengan menggunakan CNN.

1.5 Tujuan
Tujuan dari pengerjaan penelitian ini  ialah menguji pengaruh
hyperparameter tuning pada deteksi Malaria dan menemukan hyperparameter

terbaik pada setiap Arsitektur yang digunakan pada CNN.



1.6 Manfaat
Manfaat dari pengerjaan penelitian ini ialah sebagai berikut.

1. Bagi Universitas Ma Chung khususnya Program Studi Teknik Informatika
dapat mempersiapkan lulusan yang berkompeten dan siap kerja dengan
memberikan bekal kepada mahasiswa selama proses kegiatan Praktik Kerja
Lapangan.

2. Bagi Mahasiswa dapat menerapkan ilmu yang telah diperoleh selama belajar di
Universitas Ma Chung dan memberikan pengalaman dunia kerja.

3. Bagi Dunia Akademik dan Praktisi dapat memberikan informasi baru mengenai
pengaruh Hyperparameter Tuning pada Model Deteksi CNN Citra Malaria

menggunakan Grid Search.
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Gambaran Umum Perusahaan

2.1 Universitas Ma Chung

Universitas Ma Chung merupakan salah satu universitas swasta di kota
Malang yang berdiri pada tanggal 7 Juli 2007. Universitas ini dinaungi oleh Yayasan
Harapan Bangsa Sejahtera yang dibentuk oleh Alumni Sekolah Menengah Ma
Chung pada Reuni Akbar ke 60. Minum Air Tidak Lupa Sumbernya merupakan
salah satu filosofi yang membentuk Universitas Ma Chung sebagai Institusi yang
menyesuaikan diri terhadap tuntutan zaman dan menjadi sumber ilmu pengetahuan
berbasis sumber daya yang unggul. Universitas Ma Chung memiliki 10 prodi, yaitu
Sastra Inggris, PPBM, Farmasi, Manajemen, Akuntansi, Desain Komunikasi Visual,
Teknik Industri, Teknik Informatika, Kimia, dan Sistem Informasi yang terbagi
kedalam 3 Fakultas, Fakultas Sains dan Teknologi, Fakultas Bahasa dan Seni, dan
Fakultas Ekonomi dan Bisnis. Universitas Ma Chung beralamat di Villa Puncak
Tidar N-01, Kota Malang, Jawa Timur.

2.2 Teknik Informatika

Program Studi Teknik Informatika (TIF) merupakan program studi
Universitas Ma Chung yang mempelajari berbagai prinsip yang berkaitan dengan
ilmu komputer mulai dari desain sampai evaluasi sistem perangkat lunak. Program
Studi Teknik Informatika Universitas Ma Chung telah mendapatkan nilai akreditasi
B oleh Badan Akreditasi Nasional Perguruan Tinggi (BANPT). TIF mempunyai 2
bidang konsentrasi keilmuan atau penjurusan, yaitu Sistem Cerdas dan Sistem
Komputer. Sistem Cerdas mempelajari tentang simulasi kecerdasan manusia dalam
sebuah mesin, sedangkan Sistem Komputer mempelajari tentang Networking dan
implementasi Internet of Things (IoT). Selain penjurusan, TIF mempunyai Pusat
Studi Human Machine Interaction (HMI), Pusat Studi Artificial Intellegence in
Digital Images and Technoprenuership (AiDiTec), Kelompok Studi Pression
Agriculture, dan Google Developer Student Club Universitas Ma Chung (GDSC Ma
Chung)



2.3 Pusat Studi AiDiTech

Pusat Studi AiDiTech merupakan kepanjangan dari Artificial Intellegence in
Digital Images and Technoprenuership. AiDiTech berada di bawah naungan Teknik
Informatika Universitas Ma Chung yang dibentuk pada bulan September 2021.
AiDiTech memiliki ruangan operasi di Lantai 6 Gedung RND Universitas Ma
Chung. Pusat Studi ini dibentuk dengan tujuan mendukung studi keilmuan di bidang
kecerdasan buatan pada citra digital dan technoprenuership. AiDiTech berfokus
pada bidang Deep Learning, Adversarial Attack, dan pengoptimalan akurasi dengan

metode optimasi, regularisasi, dan hyperparameter tuning pada Deep Learning.
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Tinjauan Pustaka

3.1 Malaria

Malaria merupakan penyakit mematikan di berbagai negara, yang
disebabkan oleh parasit darah Plasmodium. Plasmodium disebarkan oleh gigitan
nyamuk Anopheles betina dan dapat menular melalui transfusi darah atau
penggunaan jarum suntik secara bersamaan (Poostchi, 2018). Gejala yang terjadi
seperti deman, sakit kepala, dan pucat karena kekurangan darah. Komplikasi yang
terjadi dapat mengakibatkan gangguan pernafasan sampai mengalami kematian. Di
dunia terdapat lebih dari 200 juta kasus Malaria di tahun 2019 dan menjadi endemi
di 89 negara (WHO, 2020). Malaria menyumbang lebih 400 ribu kematian dengan
67% di antaranya masih berusia balita. Pada tahun yang sama Indonesia memiliki
lebih 250 ribu kasus Malaria dan 80% di antaranya berada di Papua. Data selama
satu dekade terakhir menunjukkan penurunan penderita Malaria baik di Indonesia

maupun di dunia.
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Gambar 3.1 Peripheral Blood Smear pewarnaan Giemsa
Gambar dari (Ziaee & Abedi, 2014)

Berdasarkan protokol WHO, dalam mendeteksi Malaria dapat dilakukan
dengan pemeriksaan Peripheral Blood Morphology atau Blood Smear, pemeriksaan
ini mengevaluasi sel darah merah, sel darah putih, dan trombosit (Bian, 2005). Darah
dari pasien akan diwarnai dengan giemsa (blue purple) atau fluorescence (ardiane
orange) ke dalam preparat. Selanjutnya, preparat akan dilihat di bawah mikroskop

dengan lensa objektif 10x fokus dan pembesaran 100x. Pemeriksaan dilakukan



dengan metode zig-zag dan melihat adanya bintik Schuffner dan bintik Mauer pada
sel darah merah. Bintik Schuffner hanya terlihat pada sel darah merah yang
mengandung plasmodium vivax atau plasmodium ovale, Sedangkan bintik Mauer
muncul pada sel darah merah yang mengandung plasmodium falciparum.
Pemeriksaan Blood Smear dilakukan sebanyak 3 kali dengan rentang waktu minimal
6 jam (ALOMEDIKA, 2020). Pemeriksaan Blood Smear dapat digantikan oleh
komputer dengan mengambil citra sampel darah pada preparat dalam bentuk kanal
Red-Green-Blue (RGB).

Gambar 3.2 Peripheral Blood Smear pewarnaan fluorescence

Gambar dari (Calderaro, et al., 2021)

3.2 Convolutional Neural Network

Perkembangan Teknologi memunculkan kecerdasan buatan atau Artificial
Intelligence (Al). Al merupakan simulasi atau tiruan kecerdasan manusia dalam
berpikir dan belajar yang diterapkan ke dalam mesin. Al belajar sendiri dengan
menggunakan Machine Learning (ML) dan Deep Learning (DL) yang
menggunakan data untuk memperkaya pengetahuannya. Machine Learning

merupakan pembelajaran yang berfokus untuk mengembangkan algoritma dalam



melakukan pengambilan keputusan. Secara umum Machine Learning belajar dengan
metode Supervised Learning, Unsupervised Learning dan Reinforcement Learning
(Dahwan, 2021). Supervised Learning merupakan cara belajar mesin dengan
memberikan label solusi pada proses pembelajarannya, Unsupervised Learning
merupakan cara belajar mesin dengan melakukan pengelompokan data secara
mandiri, Reinforcement Learning merupakan proses belajar dengan sistem reward
dan penalti. Sedangkan Deep Learning merupakan cara belajar mesin yang meniru
konsep otak manusia dalam mengambil keputusan melalui jaringan neuron atau
Neural Network. Deep Learning menyelesaikan masalah kompleks seperti
Computer Vision menggunakan Convolutional Neural Network dan Natural
Language Processing menggunakan Artificial Neural Network. Convolutional
Neural Network yang biasa disingkat CNN atau ConvNet merupakan bagian dari
Deep Neural Network yang terinspirasi dari Visual Cortex, yaitu bagian otak yang

bertugas untuk memproses informasi dalam bentuk visual (Algorit.ma, 2019).
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Gambar 3.3 Convolutional Neural Network by MatLab

CNN didesain untuk menangani data dua dimensi dan diaplikasikan ke
dalam data citra. Data citra dibuat dari array yang berisi nilai dari pixel dalam
resolusi tinggi*panjang*dimensi yang disebut dengan lapisan channel. Channel
mempresentasikan Red-Green-Blue yang terbagi ke dalam 3 lapisan channel atau
grayscale yang memiliki 1 lapisan channel. Dalam arsitektur CNN terdiri dari 2

bagian besar, yaitu Feature Extraction Layer dan Fully-Connecter Layer.

3.2.1 Feature Extraction Layer dan Fully-Connecter Layer.
Feature Extraction Layer terdiri dari dua bagian yaitu Convolutional

Layer dan Pooling Layer. Dalam beberapa paper dan riset yang dilakukan



terkadang tidak menggunakan pooling layer. Convolutional layer terdiri dari
neuron yang tersusun sedemikian rupa sehingga membentuk sebuah filter
dengan panjang dan tinggi bersatuan pixels. Hasil konvolusi dinamakan
dengan feature map, dengan fungsi aktivasi ReLu atau Retified Linear Unit
menggubah nilai negatif pada feature map menjadi positif. Sedangkan
Pooling layer merupakan tahapan pengurangan dimensi dari feature map

ketika ukuran citra terlalu besar.

Max Pool

—_

Filter - (2 x 2)
Stride - (2, 2)

Gambar 3.4 llustrasi Max Pooling pada Pooling Layer

Gambar dari (https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/)
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Gambar 3.5 llustrasi Max Flatten pada Fully-Connected Layer

Gambar dari (https://www.superdatascience.com/blogs/convolutional-neural-
networks-cnn-step-3-flattening)

Setelah dilakukan pooling, model dalam menghasilkan array
multidimensi yang diubah ke dalam vektor pada fully-connected layer yang
berbentuk seperti Neural Network, proses ini dinamakan Flatten. Kemudian
dengan fungsi aktivasi softmax atau sigmoid digunakan untuk
mengklasifikasikan output ke dalam multiclass atau biner (Sena, 2017).

Model dari Arsitektur CNN akan di compile dengan hyperparameter untuk
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mengoptimalkan nilai akurasi dan meminimalkan nilai loss. Hyperparameter
yang digunakan optimasi seperti Batch-Size, Epochs, Learning-Rate, dan

Optimizers.

3.2.2 Batch dan Epoch

Nilai dari batch merupakan jumlah sampel yang akan digunakan
sebelum memperbaharui nilai parameter internal dalam satu epoch. Epoch
merupakan jumlah putaran yang harus dilalui oleh dataset ketika melakukan
pelatihan. Nilai batch dibatasi oleh jumlah data yang digunakan sedangkan
nilai epoch tidak terbatas, akan tetapi semakin besar nilai epoch semakin

lama model melakukan pelatihan.

3.2.3 Learning-rate dan Optimizer

Learning-rate merupakan parameter yang menghitung koreksi dari
bobot saat melakukan proses pelatihan. Nilai learning-rate berkisar pada
angka nol sampai satu. Semakin besar nilai learning-rate maka proses
pelatihan akan semakin cepat akan tetapi bisa mengalami kegagalan dalam
memperoleh nilai global optimum. Semakin kecil nilai learning-rate model
akan mendapatkan loss yang kecil akan tetapi waktu dalam proses pelatihan
akan semakin lambat. Nilai learning-rate akan mempengaruhi optimizer
dalam mencari model yang optimal. Optimizer merupakan algoritma yang
memilih parameter terbaik berdasarkan kategori dalam hal ini adalah
accuracy. Optimizers miliki banyak algoritma yang bisa digunakan seperti
SGD, ADAM, dan ADAMAX.

3.2.4 Optimizer SGD
Dimana :

- 6;=bobot

-« = learning-rate

11



Fundamental dari SGD dan ADAM yaitu GD kependekan dari
Gradient Descent atau penurunan gradient. Persamaan GD secara lengkap
dapat dilihat pada rumus 3.1. Dalam data training berisi pasangan (x dan y),
kemudian diberikan fungsi h untuk prediksi x. Dimana 6 merupakan
parameter bobot dari fungsi yang akan dicari dan di update. Langkah
diulangi menggunakan cost funcition yang menghitung perbedaan h dengan
y yang hasilnya dikalikan dengan oc sebagai learning-rate. Pada saat
menghitung cost funcition perlu melakukan penjumlahan semua perbedaan
h dengan y yang dimana jika memiliki data yang besar maka proses ini
memakan waktu yang lama (Kurniawan, 2018). Sehingga masalah ini diatasi
oleh SGD.

# Initial weighte

Jl |{ UJ] ‘\4 _,:.ﬁ‘j;

Global minirmum

W

Gambar 3.6 Gradient Descent
Gambar dari (https://www.quora.com/ls-gradient-descent-always-3-dimensional)

SGD merupakan kependekan dari Stochastic Gradient Descent
merupakan algoritma optimasi yang memperbaharui weight setiap batch-nya
atau setiap nilai m. SGD merupakan perkembangan dari Gradient Descent
(GD) yang melakukan update setiap epoch-nya. SGD mengorbankan nilai
akurasi untuk mendapatkan kecepatan pelatihan dan penggunaan hardware
yang optimal. Tujuan optimasi SGD adalah mencari global minimum dari
loss function. SGD dipengaruhi oleh hyperparameter momentum, dan
learning-rate. Momentum merupakan parameter yang digunakan untuk
menghindari local minimum. Dengan menganalogikan bola, semakin besar

nilai momentum semakin cepat bola tersebut berputar (SKILLPLUS, 2019).

12



3.2.5 Optimizer ADAM

ADAM merupakan algoritma optimasi yang digunakan untuk
memperbaharui weight secara iteratif berdasarkan data training. ADAM
merupakan kependekan dari ‘“adaptive moment estimation” yang
mengestimasi nilai gradien untuk mengadaptasi nilai learning-rate untuk
setiap weight Neural Network. Dengan kemampuan ADAM dalam
mendapatkan global optimum membuat ADAM menjadi optimizer default di
semua arsitektur CNN (Tilawah, 2020).

Secara sederhana ADAM merupakan gabungan dari dua Optimizer
yaitu GD+ momentum dan RMSP. Momentum menurunkan gradien
menggunakan rata-rata-rata bobot. Dengan begitu algoritma dapat bekerja
dengan cepat. Sehingga Adam memiliki 2 perhitungan bobot yang satu untuk
bobot momentum yang satunya untuk RMSprop. Sehingga perhitungan
ADAM secara sederhana dapat dijelaskan pada rumus 3.2. rumus ini

digunakan untuk melakukan pembaruan nilai bobot pada setiap epochnya.

(04

Wiyp =Wy — My | —— 3.2)
1/77+e
Dimana :
o w = bobot

o o = learning-rate
o m =momentum
o V =jumlah gradien kuadrat sebelumnya

o € = kontanta positif (10

ADAMAX merupakan salah satu variasi dari ADAM. ADAMAX
didesain dengan dasar ADAM yang lebih cepat dalam menemukan global
optimum dengan pendekatan norma tak terbatas (Machine Learning Mastery,
2021). Secara sederhana perhitungan ADAMAX dapat dilihat pada rumus
3.3
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w; = max (B, - wi_q, [Vi]) 3.3)
Dimana :

- w = bobot

- B =eksponensial decay rate (0,1)

- m =momentum

-V =jumlah gradien kuadrat sebelumnya

3.2.6 Arsitektur Model

Model dari CNN memiliki berbagai arsitektur yang berbeda seperti
VGG-16, RestNet, dan BaselineNet. Arsitektur CNN dapat dibuat secara
custom untuk tujuan khusus seperti arsitektur Rajaraman (Rajaraman, et al.,
2018) yang memiliki performa paling baik saat mendeteksi Malaria. Dalam
arsitektur yang dapat dilihat di gambar 3.7, citra RGB akan dikonversi ke
100 x 100 ukuran input. Kemudian citra dimasukkan ke dalam hidden layer
dengan konvolusi 3x3, fungsi aktivasi ReLU dan dilakukan max pooling.
Kemudian citra dimasukkan ke dalam fully-connected layer, dengan fungsi
aktivasi ReLU yang akan menghasilkan 2 kelas, Paracitized dan Uninfected.

3  C—— ) )
100°100°3 98°98"32 98°98°32
input image o  convolution 1 % ReLU 1 max-pooling 1
100°100°3 ] 3'3'3@32 5 2°212
~—
49°49°32
—_— - Y
23°23'32 47°47°32 47°47°32
convolution 3 " max-pooling 2 RelU 2 L convolution 2
3'3'32@64 B 2°212 i 3'3'32@32
21°21°64
Y
21°21°64 10°10°64 10°10"64
max-pooling 3 | fully connected 1 &
RelLU 3 2% » 1*1°64 @64 » RelLU 4
-~ J | - J
10°10°64
v
) —_——
10*10°2
s fully connected 2
N i 1'1°64@2

S — A S

Gambar 3.7 Arsitektur Rajaraman
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input image
B4x64x3

64x64x3 64x64x32 64x64x32
convolution 1 activation 1 max-pooling 1

— NS — R S —

32x32x32

A

16x16x64 32x32x64 32x32x64

convolution 3 max-pooling 2 activation 2 < convolution 2

16x16x128
o - Yy

16x16x128 Bx8x128 Bx8x128
activation 3 > max-pooling 3 convolution 4 > activation 4
none, - none,

Bx8x128
1000 2048 4xaxi28

activation 5 fully-connected 1 flatten max-pooling 4

e N —

none,
1000

fully-connected 2
(none, 2)

| S —

Gambar 3.8 Arsitektur Baseline Network

Avrsitektur BaselineNet diperkenalkan oleh (Yi, et al., 2016) yang
diperlihatkan pada gambar 3.8. Citra RGB akan di ke 64x64 ukuran input.
Kemudian dimasukkan ke dalam empat hidden layer dan empat max-
pooling, dengan fungsi aktivasi ReLU. Setelah itu feature-map akan dibawa
ke fully-connected dan menghasilkan 2 kelas, Paracitized dan Uninfected.

3.3 Hyperparameter Tuning

Hyperparameter Tuning merupakan serangkaian percobaan yang mencari
hyperparameter untuk mendapatkan model yang berperforma paling baik.
Hyperparameter sendiri merupakan sebuah parameter yang dapat mempengaruhi
output dari sebuah arsitektur. Perlakuan percobaan dalam hyperparameter seperti
epoch, batch-size, optimizer, dan lainya untuk mendapatkan akurasi model yang
paling baik. Pencarian ini dilakukan secara trail dan error dan berulang-ulang. Tiga
algoritma dasar yang sering digunakan dalam mencari nilai hyperparameter terbaik
yaitu Grid Search, Random Search, dan Bayesian Optimization (Google Cloud Al
Platform, 2021).

3.3.1 Grid Search
Grid Search merupakan pencarian hyperparameter terbaik dengan

mengombinasikan semua parameter yang dibutuhkan. Metode ini berhasil
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mendapatkan accuracy terbaik dengan mengorbankan waktu yang
dibutuhkan dalam pencarian (Malik, 2020). Evaluasi dari setiap pencarian
menggunakan nilai rata-rata dari accuracy model yang dikemudian
dibandingkan dengan pencarian nilai hyperparameter lain. Nilai rata-rata
accuracy tertinggi akan menjadi best hyperparameter. Penggunaan Grid
Search, bisa dengan menggunakan library yang ada di keras yaitu dengan
menggunakan Grid Search Cross Validation dan Halving Grid Search Cross

Validation.

3.3.2 Random Search

Algoritma Random Search memiliki kemiripan dengan algoritma
grid search, akan tetapi random search hanya mengambil beberapa
hyperparameter secara random sebanyak yang ditentukan. Dengan
pengambilan nilai hyperparameter secara acak, random search dapat
mengurangi waktu pelatihan yang dibutuhkan akan tetapi random search
dapat gagal dalam mencari hyperparameter yang optimal. Library yang
sering digunakan saat melakukan pencarian random seperti Randomized

Search Cross Validation dan Halving Randomized Cross Validation.

3.3.3 Bayesian Optimization

Algoritma Bayesian Optimization merupakan algoritma pencarian
yang berfokus untuk memilih hyperparameter yang tampak menjanjikan.
Konsep dari bayesian optimization adalah pencarian hyperparameter
berdasarkan nilai evaluasi berdasarkan uji coba sebelumnya (Koehrsen,
2018).

3.4 Confusion Matrix

Salah satu teknik yang digunakan untuk mengevaluasi kinerja dari suatu

model adalah Confusion matrix. Confusion matrix melakukan perbandingan antara

hasil prediksi dengan kondisi sebenarnya. Seperti terlihat pada tabel 3.1, Confusion

Matrix memiliki 4 metrik, True Positive (FP), False Positive (FP), False Negative,

dan True Negative(TN). True Positive merupakan metrik yang menyatakan bahwa
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hasil prediksi positif sesuai dengan hasil positif. False Negative merupakan metrik
yang menyatakan bahwa hasil prediksi negatif tetapi hasil sebenarnya positif. True
Negative merupakan metrik yang menyatakan hasil prediksi negatif dan hasil
sebenarnya juga negatif. False Negative merupakan metrik yang menyatakan hasil
prediksi positif, akan tetapi hasil sebenarnya negatif.

Tabel 3.1. Confusion matrix

Hasil Prediksi
Kondisi Sesungguhnya . .
Paracitized Uninfected
Paracitized TP FN
Uninfected FP TN

Confusion matrix menjelaskan kesalahan dari model dalam melakukan
prediksi. Dari nilai confusion matrix dapat mengevaluasi model menggunakan
accuracy, f1-score, precision, recall, dan matthew correlation coefficient. Accuracy
menggambarkan seberapa akurat model dapat mengklasifikasikan dengan benar.
Precision menggambarkan rasio prediksi benar positif dibandingkan dengan
keseluruhan hasil prediksi positif. Recall menggambarkan rasio prediksi benar
positif dengan keseluruhan hasil sebenarnya positif. Matthew Correlation
Coefficient (MCC) menggambarkan kesalahan klasifikasi terutama pada sampel
negatif. F1-score menggambarkan perbandingan rata-rata precision dan recall yang
dibobotkan.

(TP+TN)

ACCUTG.C:V = m (3 4)
F1—score = ——22 (3.5)
2+TP+FN+FP
. . (TP)
Precision = TPLFP) (3.6)
. (TP)
Recall = TPeFm) (3.7)

TN+*TP—FP*FN
McC = (TP+FN)(FP+TP)(TN+FP)(FNTP) (3.8)

Di mana:
- TP :True Positive
- FP : False Positive
- TN : True Negative
- FN : False Negative
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3.5 Google Colab

Colab merupakan website yang dibuat oleh Google dengan yang
menjalankan code Python melalui browser dengan mudah, dapat dibagikan ke orang
lain. Colab memiliki fungsi yang sama dengan Notebook, sebuah dokumen yang
dapat mengeksekusi code di satu tempat yang sama tanpa perlu berpindah-pindah.
Dalam penggunaan nya colab mengenalkan GPU, CPU, dan TPU sebagai eksekutor.
Dalam versi berbayar memiliki runtime high-ram dari TPU dan GPU, dengan
runtime yang lebih panjang.

3.6 Python

Python merupakan bahasa program tingkat tinggi yang dirilis pada 1991 oleh
Guido van Rossum. Python didesain untuk kegiatan analitik dan komputasi bagi user
yang tidak terlalu mendalami coding. Python memiliki struktur sederhana dengan

lebih dari 140 ribu libray dan dikembangkan secara open source.

3.7 Penelitian Terkait
Penelitian ini melanjutkan beberapa penelitian sebelumnya, berikut adalah
gambaran penelitian yang diambil menjadi rujukan sekaligus keterkaitan dengan
penelitian yang akan dilakukan. Penelitian dan Rujukan utama sudah dirangkum
pada tabel 3.2.
Tabel 3.2. Penelitian Terkait

No | Referensi Keterkaitan dengan Penelitian

yang akan dilakukan

1 Rajaraman S, at all. 2018. | CNN merupakan Deep Learning
Understanding the learned behavior of | yang  ditujukan  untuk citra.
customized  convolutional neural | Penelitian ini melakukan evaluasi
network toward malaria parasite | dari arsitektur Rajaraman, VVgg-16,
detection in thin blood smear images. | ResNet-50, Xception, Inception-
Journal of Medical Imaging. Volume | V3 dan DenseNet 121. Yang
5(3), pp. 034501 hasilnya kemudian dievaluasi
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No

Referensi

Keterkaitan dengan Penelitian

yang akan dilakukan

menggunakan Uji Kruskal Walliss.

Penelitian ini berhasil
membuktikan adanya perbedaan
signifikan antara arsitektur yang
berbeda dengan menggunakan data

yang besar.

Keterkaitan dengan
yang dilakukan,

menggunakan Arsitektur Custum

penelitian
akan adalah
simple CNN sebagai salah satu
arsitektur yang akan diujicobakan.
Arsitektur  ini menghasilkan
accuracy 0,94, F1-score 0,941, dan

MCC 0,880 pada optimizer SGD

Suriya M., atall. 2019. Enhanced deep

convolutional neural network for

malaria  parasite  classification.
International Journal of Computers
Appications. DOl

10.1080/1206212X.2019.1672277

and

Studi ini membuat satu arsitektur

baru yang dinamakan Deep

Convolutional Neural Network
(DCNN) untuk melakukan deteksi
Dengan

malaria. melakukan

hyperparameter
optimizer ADAM dan Adagrad

tuning  pada
dengan beberapa variasi epoch.

Evaluasi model menggunakan
Kappa Coeficient dan Mattew’s
correlation  coefficient.  Secara
keseluruhan DCNN menghasilkan

akurasi sebesar 98,9%
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No

Referensi

Keterkaitan dengan Penelitian
yang akan dilakukan

Pada penelitian yang akan
dilakukan, pencarian
hyperparameter dilakukan dengan
cara yang sama pada pencarian
DCNN. Pencarian ini sama dengan
Grid Search.

Swastika W., at all. 2020. Effective
preprocessed thin blood smear images
to improve malaria parasite detection
using deep learning. Journal of
Physics: Conference Series. 1869 pp.
012092

Penelitian ini membahas mengenai
pengaruh  preprocessing pada
pendeteksian malaria
menggunakan  deep  learning.
Aursitektur yang digunakan adalah
VGG-16, RestNet, dan Rajaraman.
Preprocessing dilakukan dengan
gray-world  normalization dan
comprehensize normalization.
Hasil yang didapatkan dapat
meningkatkan akurasi  sebesar
0,525% dan 0,035% pada RestNet-

50 dan Rajaraman.

Pada penelitian yang akan
dilakukan kami mengambil konsep

evaluasi yang telah dilakukan.
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Bab IV

Perancangan Sistem

4.1 Dataset Malaria

Dataset yang digunakan adalah dataset citra Malaria yang terdiri dari dua
jenis gambar, yaitu normal dan yang parasit Malaria. Dataset ini disediakan oleh
Lister Hill National Center for Biomedical Communications (LHNCBC) yang
bergabung ke dalam United States National Library of Medicine (NLM). Dataset ini
terdiri dari 27.558 citra blood smear yang terbagi ke dalam 2 kelas, Paracitized dan
Uninfected dengan jumlah yang sama. Sampel citra yang akan digunakan dapat
dilihat pada gambar 4.1. Kemudian setiap citra akan di reshape ke 1/255.0 dan
diubah menyesuaikan kebutuhan input dari arsitektur yang digunakan. Kemudian,
dataset akan bagi ke dalam data training, testing, dan validation dengan rasio
80:10:10. Data training dan validation akan digunakan untuk melakukan pencarian

hyperparameter pada model dan data testing sebagai data evaluasi di luar sampel.
0 0

2 20
40

60

80
100
120 100
140 120
160 140

0 50 100 0 25 5 75 100 125

Gambar 4.1. Sampel Citra Paracitized (kanan) dan Uninfected (kiri) pada Dataset Malaria
LHNCBC

4.2 Kebutuhan Sistem

Sistem yang digunakan untuk melakukan penelitian menggunakan Google
colab pro dengan runtime GPU (High-Ram). GPU yang digunakan merupakan GPU
dari NVIDIA-SMI secara detail dapat dilihat pada gambar 4.2.
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Gambar 4.2. GPU NVIDIA-SMI pada Google Colab Pro

4.3 Arsitektur Model

Penelitian ini dilakukan dengan menggunakan 4 model yang terdiri dari 2
jenis arsitektur, custom CNN Rajaraman dan BaselineNet dengan 2 perlakuan,
Hyperparameter Tuning menggunakan Grid Search dan tanpa Hyperparameter
Tuning. Setiap arsitektur yang ditambahkan Hyperparameter Tuning, dilakukan
pencarian Grid secara manual dengan menggunakan fungsi looping pada python.
Model tanpa Hyperparameter Tuning atau disebut juga model acuan dilakukan
percobaan selama 5 kali dengan hyperparameter yang digunakan pada tabel 3.1.
Model tanpa Hyperparameter didapatkan dengan mengambil nilai random yang
memiliki akurasi pada diatas 0,93%. Ketika model Hyperparameter Tuning ketika
sudah mendapatkan Best Hyperparameter kemudian dievaluasi sebanyak 5 kali dan
dibandingkan dengan model tanpa Hyperparameter Tuning. Penelitian ini dilakukan
hingga mendapatkan model terbaik pada setiap arsitekturnya.

Tabel 4.1. 2 Arsitektur Model dengan Grid Search dan Tanpa Grid Search

) Input Learning o Batch-
No | Arsitektur | Perlakuan ) Optimizer ) Epochs
Resolution Rate Size
1 Rajaraman None 100 x 100 0,01 SGD 32 60
. Grid o
2 | Rajaraman 100 x 100 Best Hyperparameter dari Grid Search
Search
3 | BaselineNet None 64 x 64 0,001 ADAM 64 20
) Grid o
4 | BaselineNet Search 64 x 64 Best Hyperparameter dari Grid Search
earc
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4.4 Hyperparameter Tuning

Jenis Hyperparameter sekaligus area pencarian yang digunakan pada

penelitian ini adalah sebagai berikut.

a.
b.
C.
d.

Jumlah Batch Size : 16, 24 dan 32

Jumlah Epochs: 10, 20, 30, dan 40
Learning Rate : 0.1, 0.01, dan 0.001
Optimizer : ADAM, ADAMAX, dan SGD

4.5 Desain Sistem

dilakukan preprocessing dengan mengubah ukuran ke 64x64x3 untuk BaselineNet
dan 100x100x3 untuk Rajaraman yang kemudian disimpan dalam bentuk Array.

Citra diberikan label Paracitized untuk yang terkena Malaria dan Uninfected untuk

Input Citra
/ Blood Smear \\
100%100 E4xb4
Fajaraman Bazelmaliat
Split Split
E0:10:10 EO-10:10
8% T 10% Testing 80% T 10% Testing
10%: Validation - 10%: Validation
Modal Training Meodal Training
Model Pradict hiodel Pradict — |
— |
— H\M‘M—‘A
Evaluasi Evaluasi
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Gambar 4.3 Deteksi Malaria tanpa Hyperparameter Tuning pada model CNN

Sistem dimulai dengan input berupa citra dari dataset Malaria. Kemudian




yang sehat. Dataset dibagi ke dalam data training, testing, dan validation dengan
rasio 80:10:10. Kemudian intensitas citra dijadikan antara 0 dan 1 dengan membagi
citra 1/255.0 dan menjadikan data siap digunakan. Langkah ini dilakukan baik saat
tidak melakukan hyperparameter tuning seperti pada gambar 4.3 dan melakukan

hyperparameter tuning menggunakan grid search seperti pada gambar 4.4.

Input Citra
/ Elocd Smear \\1
100100 B4x4
Fajaraman Bazelmalat
Split Split
BO:-10:10 BO:10:10
S0% T 10% Testing B0% T 10% Testing
10%% Validation - 10% Validation
Model Trainmg Modsa] Trainmg
2 Grd Search C Grid Bearch
hiodel Pradict Model Pradict —
—
H‘"""-; H’““;

Evaluasi Evaluaszi

Gambar 4.4. Deteksi Malaria Hyperparameter Tuning menggunakan Grid Search pada
model CNN

Pada gambar 4.3, sistem melakukan prediksi secara langsung kepada model
CNN dan dilakukan evaluasi menggunakan data test. Sedangkan pada gambar 4.4
sistem melakukan pencarian hyperparameter menggunakan grid search untuk
menemukan model akurasi tertinggi yang menjadi best model kemudian dievaluasi
menggunakan data test. Pencarian grid search dapat dilihat pada potongan kode di

bawah ini.
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metriks = []
for valuelearningRate in learnRate:
for valueOptimizer in optimizers:
for valueBatch in batchSize:
for valueEpoch in epochs:
metriks.append (valuelLearningRate)

0 J o U W N

e

10 metriks.append (valueOptimizer)
11 metriks.append (valueBatch)

12 metriks.append (valueEpoch)

13

14 for i in range(0,len(metriks,4):

15 compilemodel (metriks[i], metriks[i+1],
16 metriks[i+2], metriks (i+3))

17

18

Kode diatas digunakan untuk melakukan penyetelan hyperparameter tuning
dengan menggunakan value yang kemudian dilakukan looping untuk melakukan
pergantian hyperparameter kemudian menjalankan perulangan model setiap
pergantian hyperparameter dan dievaluasi menggunakan akurasi dari model. Nilai
akurasi akan dibandingkan dengan nilai akurasi parameter yang lain dan diambil
best hyperparameter untuk nilai akurasi tertinggi.

Pencarian hyperparameter tidak mempertimbangkan apakah model
mengalami underviting, overfitting, ataupun tidak. Sehingga disarankan untuk
melakukan uji coba terlebih dahulu sebelum mempertimbangkan penggunaan best
hyperparameter secara masal di semua kasus deteksi Malaria menggunakan

Avrsitektur Rajaraman dan BaselineNet.

4.6 Evaluasi

Pada saat pencarian Grid, model akan dievaluasi berdasarkan akurasi pada
data validation, dan diambil model akurasi tertinggi sebagai hyperparameter terbaik.
Kemudian model dievaluasi pada data test menggunakan confusion matrix. Dari
confusion matrix diambil nilai f1-score, accuracy, recall, precision, dan MCC dan
dibandingkan dengan non tuning, untuk mengetahui seberapa banyak pengaruh dari

hyperparameter non tuning dengan best hyperparameter.
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4.7 Uji Signifikansi

Uji Signifikansi terdiri dari 2 metode yaitu Parametrik Test dan
Nonparametrik Test. Syarat untuk melakukan uji Parametrik yaitu data yang
digunakan harus berdistribusi normal sedangkan Nonparametrik distribusi data
diluar normal. Kemudian setelah diketahui distribusi sebuah data, untuk Uji
Parametrik dilakukan uji homogenitas atau uji kesamaan. Pada Uji Parametrik dan
Nonparametrik dilakukan Uji Signifikansi atau uji asumsi pengaruh yang digunakan.

Pada penelitian ini, uji Normalitas menggunakan Shapiro-Wilk, dan uji
Homogenitas menggunakan Lavene Test. Ketika data berdistribusi normal, Uji
Signifikansi Parametrik menggunakan Independent Samples T-test, sedangkan
ketika data tidak berdistribusi normal, Uji Signifikansi Nonparamertik
menggunakan Two Sample Kolmogorov Smirnov Test. Asumsi dan hipotesis yang
akan digunakan terangkum pada tabel 4.2 yang berisi uji Normalitas, Homogenitas,
dan Signifikansi.

Tabel 4.2. Asumsi dan hipotesis uji normalitas, homogenitas, dan signifikansi

Pengujian Asumsi Hipotesis

p > 0,05 maka HO gagal ditolak | HO : Data berdistribusi normal
p < 0,05 maka HO ditolak H1 : Data tidak berdistribusi normal

Normalitas

p > 0,05 maka HO gagal ditolak | HO : Data homogen

Homogenitas _ _
p < 0,05 maka HO ditolak H1 : Data tidak homogen

o ~ | p> 0,05 maka HO gagal ditolak | HO : Data tidak memiliki perbedaan signifikan
Signifikansi

p < 0,05 maka HO ditolak H1 : Data memiliki perbedaan signifikan
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Bab V

Hasil dan Pembahasan

5.1 Arsitektur Rajaraman

Rajaraman dengan input 100x100, di reshape 1/255.0, dengan
hyperparameter learning-rate 0.01, optimizer SGD, batch-size 32, dan epochs 60.
Model menghasilkan confusion matrix yang dapat dilihat pada gambar 5.1 dengan
nilai TP 1274, FP 30, TN 1346, dan FN 106. Dari nilai confusion matrix, didapatkan
nilai metrix accuracy 0,9506, precision 0,9269, recall 0,9781, f1-score 0,9519, dan
MCC 0,9026.

Confusion Matnx

Paracitized 1000

Tue label

Uninfeceted

Predicted label

Gambar 5.1 Confusion matrix pada Rajaraman

5.2 Arsitektur BaselineNet

BaselineNet dengan input 64x64, di reshape 1/255.0, dengan hyperparameter
learning-rate 0.001, optimizer ADAM, batch-size 64, dan epochs 20 menghasilkan
TP 1294, FP 48, TN 1328, dan FN 86. Dari nilai confusion matrix didapatkan nilai
evaluasi dengan accuracy 0,9513, precision 0,9391, recall 0,9651, f1-score 0,9519,
dan MCC 0,9031.

27
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Gambar 5.2 Confusion matrix pada BaselineNet

5.3 Hyperparameter Tuning Rajaraman menggunakan Grid Search

Rajaraman dengan input 100x100, di reshape 1/255.0, dan dilakukan

pencarian dengan menggunakan Grid Search. Hasil accuracy Grid Search dapat

dilihat pada Gambar 5.3 dan hasil pencarian dapat dilihat di Lampiran A.
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Gambar 5.3 Grafik Accuracy pada Hyperparameter Tuning Rajaraman menggunakan Grid
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Dari Gambar 5.3 dapat dilihat pada saat Learning-rate 0,1 model gagal
mencari global optimum dan berhenti di local optimum dan ketika Learning-rate
diubah ke dalam 0,01 model mulai keluar dari local optimum dan bergerak ke global
optimum. Dengan menggunakan Optimizer ADAM dan ADAMAX model memiliki
akurasi yang stabil dan berdekatan sedangkan menggunakan optimizer SGD, model
mengalami kenaikan dan penurunan akurasi secara tiba-tiba. Pada optimizer SGD
mengalami anomali pada learning-rate 0,01 dan 0,001 yang dimana tingkat akurasi
pada learning-rate 0,001 lebih buruk dari 0,01. Hal ini, berbeda dengan hasil akurasi
pada Optimizer ADAM dan ADAMAX pada learning-rate yang sama.

Hasil Hyperparameter terbaik dari Grid Search pada Rajaraman adalah
0,9695 sebagai akurasi tertinggi dengan Optimizer ADAMAX, learning-rate 0,001,
batch-size 32, dan epoch 30. Hyperparameter menghasilkan confusion matrix pada
gambar 5.4 dengan nilai TP 1324, FP 38, TN 1338, dan FN 56. Dari nilai confusion
matrix didapatkan nilai evaluasi dengan accuracy 0,9658, precision 0,9598, recall
0,9723, fl-score 0,9660, dan MCC 0,9318.
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800
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600

Uninfeceted 400

200

Predicted label

Gambar 5.4 Confusion matrix pada Best Hyperparameter pada Rajaraman

5.4 Hyperparameter Tuning BaselineNet menggunakan Grid Search
BaselineNet dengan input 64x64, di reshape 1/255.0, dan dilakukan
pencarian dengan menggunakan Grid Search. Hasil Grid Search dapat dilihat pada
gambar 5.5 dan hasil pencarian dapat dilihat di Lampiran B. Dari gambar 5.5 dapat
dilihat saat model menggunakan Learning-rate 0,1 pada optimizer ADAM dan

ADAMAX model gagal mencari global optimum dan berhenti di local optimum.
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Model yang menggunakan optimizer ADAM dan ADAMAX memiliki tingkat
akurasi yang stabil. Sedangkan model yang menggunakan optimizer SGD tingkat
akurasi tidak stabil. Berbeda dengan optimizer ADAM dan ADAMAX yang nilai
learning-rate berbanding terbalik dengan nilai akurasi, SGD memiliki nilai akurasi

yang berbanding lurus dengan nilai learning-rate.
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Gambar 5.5 Grafik Accuracy pada Hyperparameter Tuning BaselineNet menggunakan
Grid Search

Hasil Hyperparameter terbaik dari Grid Search pada BaselineNet adalah
0,9612 sebagai akurasi tertinggi dengan Optimizer SGD, learning-rate 0,1, batch-
size 32, dan epoch 20. Hyperparameter menghasilkan confusion matrix pada gambar
5.6 dengan nilai TP 1304, FP 40, TN 1336, dan FN 76. Dari nilai confusion matrix
didapatkan nilai evaluasi dengan accuracy 0,9578, precision 0,9461, recall 0,97009,
f1-score 0,9583, dan MCC 0,9161.
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Gambar 5.6 Confusion matrix pada Best Hyperparameter pada BaselineNet

5.5 Perbandingan Evaluasi Rajaraman dengan Rajaraman Hyperparameter
Tuning

Rajaraman dengan input 100x100, dan di-reshape 1/255.0, dan
hyperparameter model yang digunakan adalah 60 untuk epoch, optimizer SGD,
batch-size 32, dan learning-rate 0,01. Model dievaluasi menggunakan confusion
matrix yang menghasilkan nilai accuracy, precision, recall, f1-score, MCC dan
percobaan diulangi sebanyak 5 kali. Kemudian dibandingkan dengan model dari
Best Hyperparameter yang telah didapatkan melalui hyperparameter tuning pada
Rajaraman menggunakan Grid Search yaitu optimizer ADAMAX, learning-rate
0,001, batch-size 32, dan epoch 30. Kemudian model best hyperparameter akan
dievaluasi menggunakan confusion matrix yang menghasilkan nilai accuracy,
precision, recall, f1-score, MCC dan perhitungan model diulangi sebanyak 5 kali.
Hasil percobaan dapat dilihat pada tabel 5.1.
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Tabel 5.1. Hasil Accuracy, Precision , Recall, F1-score, dan MCC pada arsitektur
Rajaraman dan Best Hyperparameter Rajaraman

Percobaan Accuracy Precision Recall F1-score MCC
1 0,9597 0,9391 0,9842 0,9611 0,9204
] 2 0,9600 0,9416 0,9820 0,9614 0,9209
Rajaraman
3 0,9560 0,9333 0,9835 0,9577 0,9134
4 0,9535 0,9278 0,9849 0,9555 0,9087
5 0,9589 0,9433 09777 0,9602 0,9185
Rata-rata 0,9576 0,9370 0,9825 0,9592 0,9164
1 0,9651 0,9495 0,9835 0,9662 0,9309
) 2 0,9677 0,9611 0,9756 0,9683 0,9354
Rajaraman Best
3 0,9673 0,9631 0,9727 0,9679 0,9347
Hyperparameter
4 0,9680 0,9547 0,9835 0,9689 0,9365
5 0,9669 0,9534 0,9828 0,9679 0,9343
Rata-rata 0,9670 0,9564 0,9796 0,9678 0,9344

Pada arsitektur Rajaraman perlakuan tuning pada hyperparameter
menggunakan Grid Search memberikan performa accuracy sebesar 96,70% yang
meningkat 0,94% dibandingkan tanpa hyperparameter tuning. Performa precision
pada perlakuan hyperparameter tuning menggunakan Grid Search meningkat
sebesar 1,93% dibandingkan tanpa hyperparameter tuning. Performa recall pada
perlakuan hyperparameter tuning menggunakan Grid Search menurun sebesar
0,28% dibandingkan tanpa hyperparameter tuning. Performa fl-score pada
perlakuan hyperparameter tuning menggunakan Grid Search meningkat sebesar
0,87% dibandingkan tanpa hyperparameter tuning. Kemampuan model mengenali
prediksi negatif yang terdapat pada MCC di perlakuan hyperparameter tuning
menggunakan Grid Search meningkat sebesar 1,80% dibandingkan tanpa

hyperparameter tuning.

5.6 Perbandingan Evaluasi BaselineNet dengan BaselineNet Hyperparameter
Tuning

BaselineNet dengan input 64x64, dan di-reshape 1/255.0, dan
hyperparameter model yang digunakan adalah 20 untuk epoch, optimizer ADAM,

batch-size 64, dan learning-rate 0,001. Model dihitung menggunakan accuracy,
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precision , recall, f1-score, MCC dan percobaan diulangi sebanyak 5 kali. Kemudian
dibandingkan dengan model dari Best Hyperparameter yang telah didapatkan
melalui hyperparameter tuning pada BaselineNet menggunakan Grid Search yaitu
optimizer SGD, learning-rate 0,1, batch-size 32, dan epoch 20. Kemudian model
dari best hyperparameter akan dievaluasi menggunakan confusion matrix yang
menghasilkan nilai accuracy, precision , recall, f1-score, MCC dan perhitungan
model diulangi sebanyak 5 kali. Hasil percobaan dapat dilihat pada tabel 5.2.

Tabel 5.2. Hasil Accuracy, Precision , Recall, F1-score, dan MCC pada arsitektur

BaselineNet dan Best Hyperparameter BaselineNet

Percobaan Accuracy Precision Recall F1-score MCC
1 0,9495 0,958 0,9407 0,9492 0,899
2 0,9495 0,9416 0,9598 0,9506 0,8992
BaselineNet 3 0,955 0,9378 0,9641 0,9559 0,9101
4 0,9574 0,9475 0,9699 0,9585 0,9153
5 0,9513 0,9431 0,962 0,9524 0,9029
Rata-rata 0,9525 0,9456 0,9593 0,9533 0,9053
1 0,9539 0,9561 0,9527 0,9544 0,9078
2 0,9575 0,945 0,9727 0,9587 0,9154
BaselineNet Best
3 0,9524 0,962 0,9434 0,9526 0,9051
Hyperparameter
4 0,96 0,9445 0,9785 0,9612 0,9207
5 0,9568 0,9388 0,9785 0,9582 0,9144
Rata-rata 0,9561 0,9493 0,9652 0,9570 0,9127

Pada arsitektur BaselineNet perlakuan tuning pada hyperparameter
menggunakan Grid Search memberikan performa accuracy sebesar 95,61% yang
meningkat 0,36% dibandingkan tanpa hyperparameter tuning. Performa precision
pada perlakuan hyperparameter tuning menggunakan Grid Search meningkat
sebesar 0,37% dibandingkan tanpa hyperparameter tuning. Performa recall pada
perlakuan hyperparameter tuning menggunakan Grid Search meningkat sebesar
0,59% dibandingkan tanpa hyperparameter tuning. Performa fl-score pada
perlakuan hyperparameter tuning menggunakan Grid Search meningkat sebesar
0,37% dibandingkan tanpa hyperparameter tuning. Kemampuan model mengenali
prediksi negatif yang terdapat pada MCC di perlakuan hyperparameter tuning
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menggunakan Grid Search meningkat sebesar 0,74% dibandingkan tanpa
hyperparameter tuning.

5.7 Perbandingan Keseluruhan Model CNN
Hasil hyperparameter terbaik dari Grid Search arsitektur Rajaraman dan
BaselineNet kemudian dibandingkan dengan Rajaraman dan BaselineNet tanpa
hyperparameter tuning atau tanpa Grid Search. Hasil perbandingan best
hyperparameter dengan tanpa pencarian Grid Search dapat dilihat pada tabel 5.3.
Tabel 5.3. Hasil Accuracy, Precision , Recall, F1-score, dan MCC pada model tanpa Grid
Search dan Best Hyperparameter dari Grid Search

Perlakuan Avrsitektur Accuracy Precision Recall F1-score MCC
Tanpa Grid BaselineNet 0,9513 0,9391 0,9651 0,9519 0,9031
Search Rajaraman 0,9506 0,9269 0,9781 0,9519 0,9026
Rata-rata 0,9509 0,9330 0,9716 0,9519 0,9028

Dengan Grid BaselineNet 0,9578 0,9461 0,9709 0,9538 0,9161
Search Rajaraman 0,9658 0,9598 0,9723 0,9660 0,9318
Rata-rata 0,9618 0,9529 0,9716 0,9599 | 0,9239

Berdasarkan tabel 5.3 diatas, dapat diketahui bahwa hyperparameter tuning
meningkatkan accuracy sebesar 1,08% dibandingkan tanpa menggunakan
Hyperparameter Tuning. Performa precision pada perlakuan hyperparameter tuning
menggunakan Grid Search meningkat sebesar 1,99% dibandingkan tanpa
hyperparameter tuning. Performa recall pada perlakuan hyperparameter tuning
menggunakan Grid Search tidak mengalami peningkatan akan tetapi range error
lebih sedikit dibandingkan tanpa hyperparameter tuning. Performa fl-score pada
perlakuan hyperparameter tuning menggunakan Grid Search meningkat sebesar
0,08% dibandingkan tanpa hyperparameter tuning. Kemampuan model mengenali
prediksi negatif yang terdapat pada MCC di perlakuan hyperparameter tuning
menggunakan Grid Search meningkat sebesar 2,11% dibandingkan tanpa

hyperparameter tuning.
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5.8 Uji Signifikansi

Penelitian ini menggunakan uji signifikansi untuk mengetahui pengaruh
perlakuan tuning pada model CNN. Pengujian dilakukan menggunakan Uji
Normalitas Shapiro-Wilk untuk menentukan data berdistribusi normal atau tidak.
Untuk data berdistribusi normal dilakukan Uji Homogenitas Lavene untuk
menentukan data homogen atau tidak dan Uji Signifikansi Parametrik Independent
Samples T-test. Sedangkan untuk data berdistribusi tidak normal menggunakan Uji
Signifikansi  Nonparametrik Mann-Whitney. Uji Signifikansi dilakukan untuk
mengetahui pengaruh hyperparameter tuning menggunakan Grid Search pada
model CNN. Hasil pengujian Uji Nomalitas, Uji Parametrik, dan Uji Nonparamterik
dapat dilihat pada gambar 5.7, 4.8, dan 4.9.

Tests of Normality

Kolmuogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df S0
Accuracy 140 20 200 H28 20 42
Precission 133 20 200 64 20 620
Recall 181 20 085 851 20 005
Fiscore 120 20 200 44 20 2490
Mce 128 20 200 833 20 78

* This is alower bound ofthe true significance.
a. Lilliefors Significance Correction

Gambar 5.7 Hasil Uji Normalitas menggunakan Shapiro-Wilk (dikotak merah)

Dari hasil pengujian Uji Normalitas menggunakan Shapiro-Wilk dapat
diambil kesimpulan bahwa Data Accuracy, Precission, F1-Score, dan MCC
memiliki nilai Sig > 0.05 sehingga gagal menolak HO yang berarti data berdistribusi
normal. Sedangkan Data pada Recall memiliki nilai Sig < 0.05 sehingga menolak
HO yang berarti data tidak berdistribusi normal. Kemudian pada data Accuracy,
Precission, F1-Score, dan MCC dilakukan Uji Parametrik yang hasilnya terdapat
pada gambar 5.8 dan data Recall dilakukan Uji Nonparametrik yang hasilnya

terdapat pada gambar 5.9.

35



Independent Samples Test
Levene's Testfor Equality of
Variances test for Equality of Means
95% Confidence Interval of the

Mean Std. Erar Difference
F Sig t df One-Sided p | Two-Sided p ifference Difference Lower Upper

Accuracy Equal variances assumed 5281 034 -2.798 18 .006 012 -.0064800 0023160 -.0113458 -0016142
Equal variances not -2.798 15.544 .0o7 013 -.0064200 0023160 -0114015 -.0015585
assumed

Precission Equal variances assumed 309 585 -3.1583 18 .003 005 -.0115100 0036502 -.0191789 -.0038411
Equal variances not -3.183 17.993 .003 006 -.0115100 0036502 -0191791 -.0038408
assumed

Fiscore Equal variances assumed 3264 088 -2.584 18 009 019 -.0061800 0023915 -.0112044 -0011556
Equal variances not -2.584 16138 010 020 -.0061800 0023915 -0112463 -0011137
assumed

Mee Equal variances assumed 4391 051 -2.710 18 007 014 -.0126800 0046788 -.0225101 -.0028489
Equal variances not -2.710 15842 008 016 -.0126800 0046788 - 0226069 -0027531
assumed

Gambar 5.8 Hasil Uji Homogenitas dan Uji Signifinaksi Parametrik menggunakan Lavene

dan Independent Samples T-test

Test Statistics”

Fecall
Mann-Whitney LI 49.000
Wilcoxon W 104.000
Z -076
Asymp. Sig. (2-tailed) 840
Exact Sig. [2*(1-tailed Sig.)] g71°®

a. Grouping Variable: Perlakuan
b. Mot corrected for ties.

Gambar 5.9 Hasil Uji Signifinaksi Nonparametrik Mann-Whitney

Dari hasil pengujian Uji Parametrik pada gambar 5.8 dapat dilihat saat
melakukan uji Homogenitas menggunakan Lavene pada data Accuracy memiliki
nilai Sig < 0.05 sehingga menolak HO yang berarti variansi data tidak homogen
sehingga Uji Signifikansi Independent Samples T-test menggunakan nilai kedua
yaitu 0.013 yang kurang dari 0.05 sehingga menolak HO yang berarti
Hyperparameter Tuning menggunakan Grid Search memiliki pengaruh signifikan.
Pada data Precission, F1-score, dan MCC dilakukan uji Homogenitas menggunakan
Lavene memiliki nilai sig 0.585, 0.088, dan 0.051 yang berarti nilai Sig > 0.05
sehingga menerima HO atau variansi data homogen. Kemudian data Precission, F1-
score, dan MCC dilakukan uji Signifikansi Independent Samples T-test
menghasilkan nilai sig 0.005, 0.019, dan 0.14 atau nilai sig < 0.05 sehingga menolak
HO yang artinya Hyperparameter Tuning menggunakan Grid Search memiliki
pengaruh signifikan. Dari hasil pengujian Nonparametrik pada gambar 5.9 dapat
dilihat dari Uji Signifikansi Mann-Whitney menghasilkan nilai sig 0.759 > 0.05 yang
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berarti Hyperparameter Tuning menggunakan Grid Search tidak berpengaruh secara
signifikan pada metrik recall.

5.9 Penelitian Tambahan

Berdasarkan tinjauan pustaka yang telah dilakukan dan analisa hasil yang
didapatkan saat melakukan pencarian hyperparameter maka peneliti melakukan
penelitian tambahan untuk memvalidasi hasil yang telah dilakukan sesuai dengan
teori yang ada pada tinjauan pustaka. Penelitian ini menggunakan BaselineNet tanpa
hyperparameter tuning sebagai model validasi percobaan yang akan dilakukan.
Model BaselineNet tanpa hyperparameter tuning menggunakan hyperparameter

epoch 20, optimizer ADAM, batch-size 64, dan learning-rate 0,001.

5.9.1 Pengaruh learning-rate pada model CNN arsitektur BaselineNet

Percobaan learning-rate pada model BaselineNet dengan menguiji
pengaruh learning-rate menggunakan nilai dengan range (0,1 - 0,00001).
Percobaan yang akan dilakukan dapat dilihat pada tabel 5.4.

Tabel 5.4. Hyperparameter percobaan learning-rate menggunakan BaselineNet

No | Arsitektur Input Resolution | Learning Rate | Optimizer | Batch-Size | Epochs
1 BaselineNet 64 x 64 0,1 ADAM 64 20

2 BaselineNet 64 x 64 0,01 ADAM 64 20

3 BaselineNet 64 x 64 0,001 ADAM 64 20

4 BaselineNet 64 x 64 0,0001 ADAM 64 20

5 BaselineNet 64 x 64 0,00001 ADAM 64 20

6 BaselineNet 64 x 64 0,000001 ADAM 64 20

Kemudian percobaan dievaluasi dengan confusion matrix yang
kemudian menghasilkan nilai accuracy, precision , recall, f1-score, dan
MCC. Hasil percobaan dapat dilihat pada tabel 5.5.
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Tabel 5.5. Hasil accuracy, precision, recall, f1-score, dan MCC dari confusion matrix
pada percobaan learning-rate

Learning-Rate Accuracy Precision Recall F1-score MCC
0,1 0,4934 0,0000 0,0000 0,0000 0,0000

0,01 0,5065 0,5065 1 0,6724 0,0000
0,001 0,9531 0,9554 0,952 0,9537 0,9063
0,0001 0,9531 0,9408 0,9684 0,9544 0,9067
0,00001 0,8998 0,8603 0,9577 0,9064 0,8046
0,000001 0,6563 0,6513 0,6919 0,671 0,3127

Semakin rendah nilai learning-rate tidak selalu meningkatkan
akurasi, hal ini dibuktikan dengan learning-rate 0,00001 yang memiliki
akurasi 65,63% lebih rendah dari learning-rate 0,001. Pada metrix precision
memiliki nilai paling tinggi 95,54 pada learning-rate 0,001. Metrix recall
memiliki nilai paling tinggi 96,84 pada learning-rate 0,0001. Metrix f1-score
memiliki nilai paling tinggi 95,54 pada learning-rate 0,0001. Metrix MCC
memiliki nilai paling tinggi 90,67% pada learning-rate 0,0001. Berdasarkan
nilai tertinggi maka model BaselineNet memiliki model berperforma paling
optimal pada learning-rate 0,0001. Grafik history accuracy dan loss dapat
dilihat pada gambar 5.10.
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Gambar 5.10 Grafik history accuracy, val accuracy, loss, dan val loss model pada

percobaan learning-rate
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Pada grafik history val loss dapat dilihat bahwa model mengalami
overfitting pada learning-rate 0.1 , 0.01, 0.001, 0.00001, dan 0.000001.
Sedangkan pada learning-rate 0,0001 model sudah optimal. Ketika model

kurang dari nilai learning-rate yang optimal model berhenti di local optimum

sedangkan ketika model lebih tinggi dari nilai learning-rate yang optimal

model mengalami overfitting.

5.9.2 Pengaruh epoch pada model CNN arsitektur BaselineNet
Percobaan epochs pada model

BaselineNet dengan menguji

pengaruh epochs menggunakan nilai dengan range (10 — 320). Percobaan

yang akan dilakukan dapat dilihat pada tabel 5.6.

Tabel 5.6. Hyperparameter percobaan epochs menggunakan BaselineNet

No | Arsitektur Input Resolution | Learning Rate | Optimizer | Batch-Size | Epochs
1 | BaselineNet 64 x 64 0,001 ADAM 64 10
2 | BaselineNet 64 x 64 0,001 ADAM 64 20
3 | BaselineNet 64 x 64 0,001 ADAM 64 40
4 | BaselineNet 64 x 64 0,001 ADAM 64 80
5 BaselineNet 64 x 64 0,001 ADAM 64 160
6 BaselineNet 64 x 64 0,001 ADAM 64 320

Kemudian percobaan dievaluasi dengan confusion matrix yang

kemudian menghasilkan nilai accuracy, precision , recall, f1-score, dan
MCC. Hasil percobaan dapat dilihat pada tabel 5.7.

Tabel 5.7. Hasil accuracy, precision, recall, f1-score, dan MCC dari confusion matrix

pada percobaan epoch

Epoch Accuracy Precision Recall F1-score MCC
10 0,9589 0,9578 0,9613 0,9595 0,9179
20 0,9528 0,9414 0,9670 0,9540 0,9059
40 0,9557 0,9479 0,9656 0,9567 0,9115
80 0,9535 0,9446 0,9648 0,9546 0,9072

160 0,9542 0,9446 0,9663 0,9553 0,9087
320 0,9499 0,9498 0,9627 0,9511 0,9

Berdasarkan percobaan yang telah dilakukan nilai accuracy tertinggi

sebesar 95,89% pada yang epoch 10. Metrix precision memiliki nilai paling
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tinggi 0,9578 pada epoch 10. Metrix recall memiliki nilai paling tinggi
0,9670 pada epoch 20. Metrix f1-score memiliki nilai paling tinggi 0,9595
pada epoch 10. Metrix MCC memiliki nilai paling tinggi 0,9179 pada epoch
10. Berdasarkan nilai tertinggi maka arsitektur BaselineNet memiliki model
berperforma paling optimal pada epoch 10. Grafik history accuracy dan loss
pada epoch 10, 20, 40, 80, 160, dan 320 dapat dilihat pada gambar 5.11,
gambar 5.12, gambar 5.13, gambar 5.14, gambar 5.15 dan gambar 5.16.
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Gambar 5.11 Grafik history accuracy, val accuracy, loss, dan val loss model pada

percobaan epoch 10
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Gambar 5.12 Grafik history accuracy, val accuracy, loss, dan val loss model pada

percobaan epoch 20
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Gambar 5.13 Grafik history accuracy, val accuracy, loss, dan val loss model pada

percobaan epoch 40
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Gambar 5.14 Grafik history accuracy, val accuracy, loss, dan val loss model pada

model accuracy epoch 160
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Gambar 5.15 Grafik history accuracy, val accuracy, loss, dan val loss model pada

model accuracy epoch 320
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Gambar 5.16 Grafik history accuracy, val accuracy, loss, dan val loss model pada

Berdasarkan grafik history accuracy dan loss, dapat disimpulkan
ketika model mengalami overfitting dengan menambahkan nilai epoch akan
membuat model terus mengalami overfitting. Oleh karena itu, pengurangan
nilai epoch akan membuat model dari overfitting menuju optimal, akan tetapi

dalam beberapa kasus mengurangi epoch tidak cukup untuk membebaskan

percobaan epoch 320
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model dari overfitting sehingga harus dilakukan proses lain seperti
melakukan regularisasi atau melakukan tuning pada hyperparameter lain

seperti bacth-size.

5.9.3 Pengaruh batch-size pada model CNN arsitektur BaselineNet

Percobaan batch-size pada model BaselineNet dengan menguji
pengaruh batch-size menggunakan nilai dengan range (16 —512). Percobaan
yang akan dilakukan dapat dilihat pada tabel 5.8.

Tabel 5.8. Hyperparameter percobaan batch-size menggunakan BaselineNet

No | Arsitektur Input Resolution | Learning Rate | Optimizer | Batch-Size | Epochs
1 | BaselineNet 64 x 64 0,001 ADAM 16 20

2 | BaselineNet 64 x 64 0,001 ADAM 32 20

3 | BaselineNet 64 x 64 0,001 ADAM 64 20

4 | BaselineNet 64 x 64 0,001 ADAM 128 20

5 | BaselineNet 64 x 64 0,001 ADAM 256 20

6 | BaselineNet 64 x 64 0,001 ADAM 512 20

Kemudian percobaan dievaluasi dengan confusion matrix yang
kemudian menghasilkan nilai accuracy, precision , recall, f1-score, dan
MCC. Hasil percobaan dapat dilihat pada tabel 5.9.

Tabel 5.9. Hasil accuracy, precision, recall, f1-score, dan MCC dari confusion matrix

pada percobaan batch-size

Batch-size Accuracy Precision Recall F1-score MCC
16 0,9582 0,9558 0,9606 0,9582 0,9165
32 0,9597 0,9592 0,9699 0,9596 0,9194
64 0,9597 0,9592 0,9699 0,9596 0,9194
128 0,9531 0,9600 0,9454 0,9526 0,9064
256 0,9539 0,9541 0,9534 0,9537 0,9078
512 0,9546 0,9636 0,9446 0,954 0,9094

Berdasarkan percobaan yang telah dilakukan nilai accuracy tertinggi
sebesar 95,97% pada batch-size 32 dan 64. Metrix precision memiliki nilai
paling tinggi 0,9636 pada batch-size 512. Metrix recall memiliki nilai paling
tinggi 0,9699 pada batch-size 32 dan 64. Metrix fl-score memiliki nilai
paling tinggi 0,9596 pada batch-size 32 dan 64. Metrix MCC memiliki nilai
paling tinggi 0,9194 pada batch-size 32 dan 64. Berdasarkan nilai tertinggi
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Accuracy

Loss

maka arsitektur BaselineNet memiliki model berperforma paling optimal
pada batch-size 32 dan 64. Grafik history accuracy dan loss dapat dilihat
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Gambar 5.17 Grafik history accuracy, val accuracy, loss, dan val loss model pada
percobaan batch-size

Berdasarkan history loss model bergerak dari overfitting ke model
optimal, sehingga dapat disimpulkan apabila model mengalami overfitting
maka nilai batch-size dapat ditingkatkan sehingga mendapatkan model
optimal.

5.9.4 Pengaruh optimizer pada model CNN arsitektur BaselineNet

Percobaan optimizer pada model BaselineNet dengan menguji
pengaruh optimizer menggunakan ADAM, SGD, NADAM, ADAMAX,
RMSProp, dan ADAGRAD. Percobaan yang akan dilakukan dapat dilihat
pada tabel 5.10.
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Tabel 5.10. Hyperparameter percobaan optimizer menggunakan BaselineNet

No | Arsitektur Input Resolution | Learning Rate | Optimizer | Batch-Size | Epochs
1 | BaselineNet 64 x 64 0,001 ADAM 64 20

2 | BaselineNet 64 x 64 0,001 SGD 64 20

3 | BaselineNet 64 x 64 0,001 NADAM 64 20

4 | BaselineNet 64 x 64 0,001 ADAMAX 64 20

5 | BaselineNet 64 x 64 0,001 RMSProp 64 20

6 | BaselineNet 64 x 64 0,001 ADAGRAD 64 20

Kemudian percobaan dievaluasi dengan confusion matrix yang
kemudian menghasilkan nilai accuracy, precision , recall, f1-score, dan
MCC. Hasil percobaan dapat dilihat pada tabel 5.11.

Tabel 5.11. Hasil accuracy, precision, recall, f1-score, dan MCC dari confusion matrix
pada percobaan optimizer

Optimizer Accuracy Precision Recall F1-score MCC
ADAM 0,96 0,964 0,9556 0,9597 0,9202
SGD 0,6955 0,7087 0,6746 0,6912 0,3944
NADAM 0,9682 0,9558 0,9606 0,9582 0,9165
ADAMAX 0,955 0,9426 0,9687 0,9554 0,9103
RMSProp 0,9542 0,9581 0,9497 0,9539 0,9085
ADAGRAD 0,7206 0,695 0,7831 0,7364 0,444

Berdasarkan percobaan yang telah dilakukan nilai accuracy tertinggi
sebesar 96,82% pada optimizer NADAM. Metrix precision memiliki nilai
paling tinggi 0,9640 pada optimizer ADAM. Metrix recall memiliki nilai
paling tinggi 0,9687 pada optimizer ADAMAX.. Metrix f1-score memiliki
nilai paling tinggi 0,9597 pada optimizer ADAM.. Metrix MCC memiliki
nilai paling tinggi 0,9202 pada optimizer ADAM.. Berdasarkan jumlah nilai
tertinggi maka arsitektur BaselineNet memiliki model berperforma paling
optimal pada optimizer ADAM. Grafik history accuracy dan loss dapat
dilihat pada gambar 5.18.
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Gambar 5.18 Grafik history accuracy, val accuracy, loss, dan val loss model pada

percobaan optimizer

Berdasarkan history accuracy dan loss, optimizer SGD dan
ADAGRAD mengalami underfitting dan terjebak pada local optimum.
Sedangkan optimizer ADAM, NADAM, ADAMAX dan RMSProp
memiliki pergerakan accuracy yang stabil.
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Bab VI
Penutup

6.1 Kesimpulan

Berdasarkan penelitian yang dilakukan, penelitian ini telah berhasil
mendapatkan best hyperparameter pada setiap akurasi dan penggunaan
hyperparameter tuning menggunakan Grid Search memiliki pengaruh pada
peningkatan akurasi. Pencarian hyperparameter tidak mempertimbangkan
mengalami overfitting, atau underfitting. Sehingga harus dilakukan evaluasi pada
best hyperparameter sebelum digunakan di semua model Deep Learning CNN pada
arsitektur BaselineNet dan Rajaraman. Hasil penelitian ini, mengemukakan bahwa
hyperparameter tuning dapat meningkatkan akurasi 0,36% dan 0,94% pada
arsitektur BaselineNet dan Rajaraman. Berdasarkan uji Signifikansi menghasilkan
nilai Sig 0.013 < 0.05 sehingga Hyperparamater Tuning memiliki pengaruh
signifikan pada accuracy model CNN. Nilai hyperparameter terbaik yang
didapatkan dari Grid Search pada Arsitektur BaselineNet optimizer SGD, learning-
rate 0,1, batch-size 32, dan epoch 20 dan Rajaraman optimizer ADAMAX, learning-
rate 0,001, batch-size 32, dan epoch 30 menghasilkan accuracy 0,9578 dan 0,9658.

Berdasarkan percobaan tambahan yang telah dilakukan dapat disimpulkan
bahwa ketika model mengalami overfitting maka epoch harus diturunkan dan batch-
size harus dinaikkan. Akan tetapi, pengurangan epoch dan peningkatan batch-size
tidak selalu memperbaiki model yang mengalami overfitting sehingga perbaikan
mode bisa menggunakan metode lain seperti regularisasi. Learning-rate membantu
model keluar dari local optimum akan tetapi ketika nilai learning-rate melewati
global optimum maka model akan terjebak kedalam local optimum dan mengalami

overfitting.

6.2 Saran

Saran untuk Penelitian selanjutnya dapat melakukan pengujian pada
hyperparameter yang berbeda seperti filter, stride, dan momentum. Pencarian
dengan rentang area pencarian yang berbeda dapat membantu memvalidasi
penelitian ini, sekaligus menambahkan pengetahuan tambahan yang dapat

memperkuat hipotesis mengenai pengaruh hyperparamater tuning menggunakan
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Grid Search. Selain itu, pengoptimalan model bisa menggunakan metode pencarian
yang lain seperti Bayesian Optimization, atau menambahkan algoritma lain pada
arsitektur CNN. Peningkatan akurasi pada Deep Learning untuk peneliti selanjutnya
dapat menggunakan metode lain seperti Data Augmentation, Transfer Learning, dan
Regularisasi.

Untuk yang ingin menduplikasi hasil penelitian ini, ataupun untuk yang
mencoba percobaan yang sama disarankan menggunakan akses TPU pada Google
Colab Pro+ atau yang alternatif lain dengan batasan runtime diatas 12 Jam.
Penggunaan Grid Search Cross Validation pada model keras tidak disarankan
dikarenakan batasan runtime pada Google Colab menggunakan TPU dan kegagalan
runtime pada Google Colab menggunakan GPU. Dengan data lebih dari 20.000
membuat pencarian hyperparameter menggunakan Grid Search Cross Validation
membutuhkan waktu lebih dari 10 jam. Sehingga apabila memiliki sumber daya
yang mampu menjalankan Grid Search Cross Validation tanpa mengalami
kegagalan runtime disarankan untuk menggunakan library Halving Grid Search

Cross Validation yang mampu mengurangi waktu pencarian diatas 30%.
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LAMPIRAN

A. Hasil Percobaan Grid Search Rajaraman

learning-rate | optimizer batch-size epoch Accuracy
0,1 ADAM 16 10 0,5022
0,1 ADAM 16 20 0,5022
0,1 ADAM 16 30 0,4978
0,1 ADAM 16 40 0,4978
0,1 ADAM 24 10 0,5022
0,1 ADAM 24 20 0,4978
0,1 ADAM 24 30 0,5022
0,1 ADAM 24 40 0,4978
0,1 ADAM 32 10 0,4978
0,1 ADAM 32 20 0,5022
0,1 ADAM 32 30 0,4978
0,1 ADAM 32 40 0,5022
0,1 SGD 16 10 0,5062
01 SGD 16 20 0,5450
0,1 SGD 16 30 0,4978
0,1 SGD 16 40 0,4978
0,1 SGD 24 10 0,5022
0,1 SGD 24 20 0,5000
0,1 SGD 24 30 0,5134
0,1 SGD 24 40 0,5022
0,1 SGD 32 10 0,5978
0,1 SGD 32 20 0,5359
0,1 SGD 32 30 0,4982
0,1 SGD 32 40 0,4978
0,1 ADAMAX 16 10 0,4978
0,1 ADAMAX 16 20 0,4978




0,1 ADAMAX 16 30 0,5022
0,1 ADAMAX 16 40 0,5022
0,1 ADAMAX 24 10 0,4978
0,1 ADAMAX 24 20 0,5022
0,1 ADAMAX 24 30 0,4978
0,1 ADAMAX 24 40 0,4978
0,1 ADAMAX 32 10 0,4978
0,1 ADAMAX 32 20 0,4978
0,1 ADAMAX 32 30 0,4978
0,1 ADAMAX 32 40 0,5022
0,01 ADAM 16 10 0,5044
0,01 ADAM 16 20 0,5044
0,01 ADAM 16 30 0,4956
0,01 ADAM 16 40 0,4956
0,01 ADAM 24 10 0,4956
0,01 ADAM 24 20 0,4956
0,01 ADAM 24 30 0,5044
0,01 ADAM 24 40 0,4956
0,01 ADAM 32 10 0,4956
0,01 ADAM 32 20 0,5044
0,01 ADAM 32 30 0,4956
0,01 ADAM 32 40 0,5044
0,01 SGD 16 10 0,9305
0,01 SGD 16 20 0,9256
0,01 SGD 16 30 0,9481
0,01 SGD 16 40 0,9612
0,01 SGD 24 10 0,9205
0,01 SGD 24 20 0,9434
0,01 SGD 24 30 0,9517
0,01 SGD 24 40 0,9575
0,01 SGD 32 10 0,9046




0,01 SGD 32 20 0,9470
0,01 SGD 32 30 0,9481
0,01 SGD 32 40 0,9554
0,01 ADAMAX 16 10 0,9583
0,01 ADAMAX 16 20 0,9623
0,01 ADAMAX 16 30 0,9630
0,01 ADAMAX 16 40 0,9670
0,01 ADAMAX 24 10 0,604
0,01 ADAMAX 24 20 0,9583
0,01 ADAMAX 24 30 0,9613
0,01 ADAMAX 24 40 0,9644
0,01 ADAMAX 32 10 0,9670
0,01 ADAMAX 32 20 0,9688
0,01 ADAMAX 32 30 0,9681
0,01 ADAMAX 32 40 0,9677
0,001 ADAM 16 10 0,9619
0,001 ADAM 16 20 0,9688
0,001 ADAM 16 30 0,9684
0,001 ADAM 16 40 0,9666
0,001 ADAM 24 10 0,9619
0,001 ADAM 24 20 0,9688
0,001 ADAM 24 30 0,9684
0,001 ADAM 24 40 0,9666
0,001 ADAM 32 10 0,9652
0,001 ADAM 32 20 0,9641
0,001 ADAM 32 30 0,8685
0,001 ADAM 32 40 0,9623
0,001 SGD 16 10 0,5352
0,001 SGD 16 20 0,6658
0,001 SGD 16 30 0,7050
0,001 SGD 16 40 0,7293




0,001 SGD 24 10 0,5394
0,001 SGD 24 20 0,6633
0,001 SGD 24 30 0,7507
0,001 SGD 24 40 0,7950
0,001 SGD 32 10 0,5388
0,001 SGD 32 20 0,6604
0,001 SGD 32 30 0,7921
0,001 SGD 32 40 0,8687
0,001 ADAMAX 16 10 0,9637
0,001 ADAMAX 16 20 0,9626
0,001 ADAMAX 16 30 0,9684
0,001 ADAMAX 16 40 0,9695
0,001 ADAMAX 24 10 0,9623
0,001 ADAMAX 24 20 0,9670
0,001 ADAMAX 24 30 0,9688
0,001 ADAMAX 24 40 0,9692
0,001 ADAMAX 32 10 0,9644
0,001 ADAMAX 32 20 0,9653
0,001 ADAMAX 32 30 0,9659
0,001 ADAMAX 32 40 0,9684
B. Hasil Percobaan Grid Search BaselineNet
learning-rate | optimizer batch-size epoch Accuracy

0,1 ADAM 16 10 0,5083

0,1 ADAM 16 20 0,4917

0,1 ADAM 16 30 0,4917

0,1 ADAM 16 40 0,5083

0,1 ADAM 24 10 0,5083

0,1 ADAM 24 20 0,5083

0,1 ADAM 24 30 0,5083

0,1 ADAM 24 40 0,5083




0,1 ADAM 32 10 0,4917
0,1 ADAM 32 20 0,4917
0,1 ADAM 32 30 0,5083
0,1 ADAM 32 40 0,5083
0,1 SGD 16 10 0,9604
0,1 SGD 16 20 0,9568
0,1 SGD 16 30 0,9543
0,1 SGD 16 40 0,5084
0,1 SGD 24 10 0,9586
0,1 SGD 24 20 0,9557
0,1 SGD 24 30 0,9575
0,1 SGD 24 40 0,9597
0,1 SGD 32 10 0,9561
0,1 SGD 32 20 0,9612
0,1 SGD 32 30 0,3083
0,1 SGD 32 40 0,9597
0,1 ADAMAX 16 10 0,4917
0,1 ADAMAX 16 20 0,4917
0,1 ADAMAX 16 30 0,6629
0,1 ADAMAX 16 40 0,5083
0,1 ADAMAX 24 10 0,4917
0,1 ADAMAX 24 20 0,4917
0,1 ADAMAX 24 30 0,5083
0,1 ADAMAX 24 40 0,6332
0,1 ADAMAX 32 10 0,4917
0,1 ADAMAX 32 20 0,4917
0,1 ADAMAX 32 30 0,4917
0,1 ADAMAX 32 40 0,6480
0,01 ADAM 16 10 0,4917
0,01 ADAM 16 20 0,5083
0,01 ADAM 16 30 0,4917




0,01 ADAM 16 40 0,4917
0,01 ADAM 24 10 0,5083
0,01 ADAM 24 20 0,5083
0,01 ADAM 24 30 0,5083
0,01 ADAM 24 40 0,4917
0,01 ADAM 32 10 0,5083
0,01 ADAM 32 20 0,4917
0,01 ADAM 32 30 0,4917
0,01 ADAM 32 40 0,4917
0,01 SGD 16 10 0,9532
0,01 SGD 16 20 0,9575
0,01 SGD 16 30 0,9583
0,01 SGD 16 40 0,9604
0,01 SGD 24 10 0,9492
0,01 SGD 24 20 0,9568
0,01 SGD 24 30 0,9568
0,01 SGD 24 40 0,9583
0,01 SGD 32 10 0,9481
0,01 SGD 32 20 0,9597
0,01 SGD 32 30 0,9608
0,01 SGD 32 40 0,9590
0,01 ADAMAX 16 10 0,4917
0,01 ADAMAX 16 20 0,9481
0,01 ADAMAX 16 30 0,9528
0,01 ADAMAX 16 40 0,9601
0,01 ADAMAX 24 10 0,9594
0,01 ADAMAX 24 20 0,9503
0,01 ADAMAX 24 30 0,9586
0,01 ADAMAX 24 40 0,9550
0,01 ADAMAX 32 10 0,9608
0,01 ADAMAX 32 20 0,4917




0,01 ADAMAX 32 30 0,9499
0,01 ADAMAX 32 40 0,9496
0,001 ADAM 16 10 0,9543
0,001 ADAM 16 20 0,9554
0,001 ADAM 16 30 0,9565
0,001 ADAM 16 40 0,9568
0,001 ADAM 24 10 0,9561
0,001 ADAM 24 20 0,9536
0,001 ADAM 24 30 0,9554
0,001 ADAM 24 40 0,9525
0,001 ADAM 32 10 0,9561
0,001 ADAM 32 20 0,9586
0,001 ADAM 32 30 0,9565
0,001 ADAM 32 40 0,9550
0,001 SGD 16 10 0,6266
0,001 SGD 16 20 0,6419
0,001 SGD 16 30 0,6821
0,001 SGD 16 40 0,7997
0,001 SGD 24 10 0,5130
0,001 SGD 24 20 0,6803
0,001 SGD 24 30 0,7039
0,001 SGD 24 40 0,7671
0,001 SGD 32 10 0,6190
0,001 SGD 32 20 0,6110
0,001 SGD 32 30 0,7449
0,001 SGD 32 40 0,7518
0,001 ADAMAX 16 10 0,9554
0,001 ADAMAX 16 20 0,9561
0,001 ADAMAX 16 30 0,9528
0,001 ADAMAX 16 40 0,9561
0,001 ADAMAX 24 10 0,9543




0,001 ADAMAX 24 20 0,9554
0,001 ADAMAX 24 30 0,9510
0,001 ADAMAX 24 40 0,9532
0,001 ADAMAX 32 10 0,9554
0,001 ADAMAX 32 20 0,9543
0,001 ADAMAX 32 30 0,9517
0,001 ADAMAX 32 40 0,9536
C. Confusion Matrix
Percobaan TP FP TN FN
1 1316 82 1301 57
2 1217 56 1340 83
BaselineNet Tanpa
) 3 1286 50 1346 74
Hyperparameter Tuning
4 1285 42 1354 75
5 1279 53 1343 81
1 1299 66 1330 61
2 1281 38 1358 79
BaselineNet Best
3 1308 78 1317 52
Hyperparameter
4 1280 30 1366 80
5 1271 30 1366 89
1 1271 22 1374 89
) 2 1275 25 1371 85
Rajaraman Tanpa
] 3 1262 23 1373 98
Hyperparameter Tuning
4 1253 21 1375 107
5 1278 31 1365 82
1 1287 23 1373 73
2 1305 34 1362 55
Rajaraman Best
3 1308 38 1358 52
Hyperparameter
4 1295 23 1373 65
5 1293 24 1372 67




D. Percobaan Tambahan

Percobaan

TP

FP

TN

FN

] 0,001 1298 67 1329 62
Learning Rate
0,0001 1275 44 1352 85
0,00001 1143 59 1337 217
0,000001 843 430 966 517
16 1321 54 1320 61
32 1326 55 1319 56
64 1326 55 1319 56
Batch Size
128 1328 75 1299 54
256 1319 64 1310 63
512 1333 76 1298 49
10 1301 54 1342 59
20 1276 46 1350 84
40 1286 48 1348 74
Epochs
80 1281 49 1347 79
160 1281 47 1349 79
320 1274 52 1344 86
ADAM 1333 51 1313 49
SGD 1001 447 927 381
o NADAM 1321 54 1320 61
Optimizers
ADAMAX 1301 43 1331 81
RMSProp 1325 69 1305 57
ADAGRAD 910 298 1076 472
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