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Abstrak 

Kakao merupakan salah satu komoditas perkebunan strategis dalam 
perekonomian Indonesia. Dengan adanya metode remote sensing, monitoring 
perkebunan menjadi jauh lebih mudah. Pada citra orthophoto, tanaman kakao akan 
tertutupi oleh kanopi tanaman penaung, sehingga tidak ada informasi mengenai 
tanaman kakao yang dapat dianalis. Sehingga pada penelitian ini akan 
dikembangkan sistem geotagging yang dapat memprediksi titik koordinat dan 
jumlah buah pada citra tanaman kakao. Untuk melakukan prediksi titik koordinat 
tanaman diperlukan titik koordinat citra, heading serta jarak tanaman terhadap 
kamera. Hal ini dapat dilakukan dengan menggunakan model Convolutional Neural 
Network monocular depth estimation. Model tersebut akan menghasilkan citra 
heatmap yang setiap pikselnya merepresentasikan nilai prediksi kedalaman. Lalu 
akan dikembangkan Artificial Neural Network untuk memprediksi nilai jarak 
dengan input nilai rgb. Akan diambil nilai rgb objek pada citra heatmap tersebut 
yang kemudian digunakan untuk memprediksi jarak kamera terhadap tanaman. 
Kemudian digunakan Vincenty Formula untuk mengkalkulasi titik koordinat 
tanaman berdasarkan titik koordinat kamera, heading, serta jarak kamera terhadap 
tanaman. Untuk melakukan deteksi buah kakao akan digunakan model CNN 
YOLOV8. Pengujian performa model dilakukan dengan mengevaluasi nilai loss 
setiap model. Untuk melakukan prediksi jarak, model ANN yang memiliki akurasi 
terbaik adalah model ANN yang dilatih menggunakan optimizer adamax dengan 
batch size 7 pada epoch 1000. Model ANN tersebut memiliki akurasi loss MAE 
sebesar 0.333776. Sedangkan model YOLO yang memiliki performa terbaik adalah 
model YOLOV8 nano dengan epoch 100. Model tersebut memiliki nilai precision 
0.907 dan recall 0.958. Sistem yang dikembangkan pada penelitian ini merupakan 
prototipe sistem monitoring perkebunan yang praktis. 

 
Kata Kunci: Artificial Neural Network, Citra orthophoto, Convolutional Neural 

Network, Kakao, Remote sensing, YOLOV8 
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Abstract 

Cocoa is a crucial plantation commodity in Indonesia's economy. Remote 
sensing methods offer an easier way to monitor plantations. However, the presence 
of shade trees obstructs cocoa plant analysis in orthophoto images. To address this, 
a geotagging system was developed in this research to predict cocoa plant 
coordinates and fruit quantity. The system utilizes a Convolutional Neural Network 
(CNN) for monocular depth estimation, generating a heatmap representing depth 
predictions. An Artificial Neural Network (ANN) predicts the distance using input 
RGB values extracted from the heatmap image, which helps determine the camera-
to-plant distance and heading. The Vincenty Formula is then applied to calculate 
plant coordinates based on the camera coordinates. For cocoa fruit detection, a 
YOLOV8 CNN model is employed. Model performance is evaluated by assessing 
loss values, with the ANN model achieving a best MAE loss accuracy of 0.333776 
when trained with the adamax optimizer, a batch size of 7, and 1000 epochs. The 
top-performing YOLO model is YOLOV8 nano with 100 epochs, demonstrating a 
precision of 0.907 and recall of 0.958. This research presents a practical prototype 
of a plantation monitoring system. 

 
Keywords: Artificial Neural Network, Cocoa, Convolutional Neural Network, 

Orthophoto images, Remote sensing, YOLOV8 
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BAB I 

PENDAHULUAN 

 

1.1. Latar Belakang Masalah 

Kakao merupakan salah satu komoditas perkebunan strategis dalam 

perekonomian Indonesia. Berdasarkan laporan yang dirilis oleh Direktorat Jenderal 

Perkebunan, pada tahun 2020 nilai ekspor kakao mencapai 1,24 milyar US dolar. 

Luasan area perkebunan kakao terus menurun sejak tahun 2016. Pada tahun 2016, 

perkebunan kakao di Indonesia seluas 1,7 juta Ha. Sedangkan pada 2020, 

perkebunan kakao di Indonesia seluas 1,5 juta Ha. Namun hal ini tidak menghambat 

produksi kakao. Meskipun produktivitas kakao mengalami penurunan hingga titik 

terendahnya yakni pada tahun 2019 menyentuh 721 kg/ha, produktivitas kakao 

kembali meningkat pada tahun 2020. Produktivitas kakao pada tahun 2020 

menyentuh angka 723 kg/ha. (Ditjenbun, 2020) Tidak hanya sebagai pendukung 

ekonomi nasional, kakao juga menjadi sumber pendapatan utama 1,7 juta kepala 

keluarga petani kakao di Indonesia (Puslitkoka, 2021). 

Untuk menghasilkan produksi kakao yang optimal, diperlukan 

pemeliharaan perkebunan kakao yang baik. Pemelliharaan perkebunan kakao 

meliputi pemangkasan daun, pengelolaan tanaman penaung, pemupukan, 

pengendalian hama, pengendalian penyakit dan pengendalian gulma. Pemangkasan 

dilakukan untuk mengatur jumlah dan sebaran daun. Pemangkasan juga bertujuan 

untuk mengatur iklim mikro yang tepat untuk pertumbuhan bunga dan buah. 

Keberadaan tanaman penaung diperlukan untuk mengatur penyinaran matahari, 

suhu, udara, kelembapan serta laju kehilangan lengas melalui transpirasi maupun 

evaporasi. Pemupukan dilakukan untuk menambah unsur-unsur hara yang tidak 

tersedia di dalam tanah. Pengendalian hama juga perlu dilakukan karena tanaman 

kakao merupakan tanaman yang cukup disukai oleh hama. Tepatnya ada 130 

spesies dalam kelompok serangga yang merupakan hama dari tanaman kakao. Hal 

ini dilakukan dengan tujuan mengurangi kerusakan yang dapat mengurangi 

produksi kakao dan kerusakan lingkungan. Pengendalian penyakit dilakukan untuk 

mengurangi kegagalan dan menjaga kelestarian lingkungan. Sedangkan 

pengendalian gulma perlu dilakukan karena apabila dihiraukan dapat menyebabkan 
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terhambatnya pertumbuhan tanaman muda dan menunda masa tanaman 

menghasilkan, serta berpotensi untuk menjadi inang hama dan penyakit (Prawoto, 

2009). 

Sebelum adanya bantuan teknologi, monitoring perkebunan dilakukan 

secara manual / tradisional. Dengan adanya metode remote sensing, monitoring 

perkebunan menjadi jauh lebih mudah. Chatterjee (2018) menyatakan, monitoring 

perkebunan berbasis remote sensing terbukti menjadi metode yang paling efisien 

untuk melakukan estimasi dan prediksi hasil produksi dari waktu ke waktu. Remote 

sensing dapat memonitor pertumbuhan tanaman berdasarkan periode waktu tertentu 

dengan cepat. Hal ini dapat membantu pengelola perkebunan untuk melakukan 

mitigasi pada tanaman dengan cepat apabila terdapat tanaman yang terkena 

serangan hama dan penyakit. Monitoring tanaman dilakukan untuk menganalisis 

dan mempelajari kondisi tanaman saat ini, serta membantu pengamatan 

pertumbuhan tanaman. 

Ditjenbun menjelaskan, tanaman kakao memerlukan tanaman penaung 

untuk meredam suhu maksimum dari paparan sinar matahari yang dapat merusak 

tanaman kakao. Tanaman penaung juga berfungsi sebagai pemecah angin karena 

daun tanaman kakao mudah rontok. Namun, keberadaan tanaman penaung menjadi 

faktor penghambat remote sensing pada perkebunan kakao. Metode remote sensing 

pada umumnya menggunakan citra orthophoto yang merupakan hasil dari satelit / 

penerbangan UAV sebagai sumber pengamatan. Pada citra orthophoto, tanaman 

kakao akan tertutupi oleh kanopi tanaman penaung, sehingga tidak ada informasi 

mengenai tanaman kakao yang dapat dianalisa (Ditjenbun, 2021). 

Untuk mengatasi kendala tersebut, diperlukan teknologi geotagging 

otomatis dengan memprediksi titik koordinat tanaman kakao. Dengan 

menggunakan monocular depth estimation serta triangulation dapat dilakukan 

pemetaan otomatis. Pemetaan otomatis ini dilakukan untuk mengidentifikasi 

kemunculan beberapa objek yang mirip secara otomatis serta mendapatkan titik 

koordinat dari objek tersebut. (Vladimir A. Krylov, 2018). 

Dikarenakan terbatasnya informasi yang didapatkan pada metode 

monitoring dari atas kanopi, maka penulis menggunakan metode monitoring di 

bawah kanopi pada penelitian ini. Penulis menawarkan alternatif yang murah, 
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cepat, serta praktis untuk melakukan monitoring tanaman kakao dibawah kanopi. 

Pada penelitian ini akan digunakan smartphone untuk melakukan pengambilan 

gambar. Monitoring dilakukan dengan mengambil gambar tanaman kakao 

menggunakan smartphone dari depan tanaman. Metode ini diharapkan dapat 

memberikan informasi yang lebih lengkap dan akurat mengenai tanaman kakao. 

Monitoring akan dilakukan dengan melakukan akuisisi citra setiap tanaman kakao. 

Teknologi ini akan melakukan prediksi titik koordinat tanaman kakao berdasarkan 

titik koordinat kamera pada saat pengambilan gambar dilakukan serta estimasi jarak 

tanaman kakao dari kamera. 

 

1.2.  Identifikasi Masalah 

Analisa kondisi tanaman kakao menggunakan orthophoto memiliki 

beberapa keterbatasan. Data orthophoto hanya dapat menangkap informasi yang 

nampak dari atas tanaman kakao. Sedangkan, di Indonesia, kebanyakan tanaman 

kakao ditanam bersama dengan tanaman-tanaman lainnya sebagai tanaman 

penaung. Hal ini dilakukan untuk mengurangi cahaya yang mengenai tanaman 

kakao. Tanaman penaung menyebabkan teknik remote sensing menggunakan 

orthophoto menjadi solusi yang kurang sesuai. Apabila dilihat dari atas, tanaman 

kakao seringkali tertutup oleh tanaman penaungnya. Sehingga tidak dapat 

dilakukan analisa lebih lanjut terkait tanaman kakao. 

 

1.3. Batasan Masalah 

Berikut beberapa batasan masalah dalam penelitian ini: 

a. Posisi kamera lurus terhadap tanaman kakao untuk membatasi variasi sudut 

pengambilan gambar 

b. Tingkat akurasi model geotagging berdasarkan gps pada smartphone 

c. Buah yang terhitung hanya buah yang terlihat jelas pada citra 

d. Objek yang diamati : Tanaman Kakao 

e. Akuisisi Citra dilakukan menggunakaan telepon genggam 

f. Tanaman kakao yang diamati berada di perkebunan kakao di pasuruan. 
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g. Data Tanaman Kakao yang dihasilkan adalah jumlah buah pada tanaman 

kakao 

 

1.4. Perumusan Masalah 

Berdasarkan identifikasi masalah di atas, berikut rumusan masalah dalam 

penelitian ini. 

a. Bagaimana pengembangan metode geotagging yang dapat memprediksi 

titik koordinat tanaman? 

b. Bagaimana pengembangan metode untuk melakukan kuantifikasi otomatis 

yang dapat digunakan untuk menghitung jumlah buah kakao pada citra? 

 

1.5. Tujuan Penelitian 

a. Mengembangkan metode geotagging yang dapat memprediksi titik 

koordinat tanaman. 

b. Mengembangkan metode untuk melakukan kuantifikasi otomatis yang 

dapat digunakan untuk menghitung jumlah buah kakao pada citra. 

 

1.6. Luaran 

Metode remote sensing baru yang dapat mengakuisisi lebih banyak 

informasi mendetail pada kakao serta publikasi ilmiah terkait metode tersebut. 

 

1.7. Manfaat 

• Bagi Peneliti  : melakukan penerapan ilmu. 

• Bagi Masyarakat : mempermudah monitoring tanaman kakao pada 

perkebunan kakao. 

• Bagi Universitas : menambah kepustakaan. 

 

1.8. Sistematika Penulisan 

Sistematika dalam penulisan proposal Tugas Akhir ini akan dibagi menjadi lima 

bab seperti berikut. 
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Bab I: Pendahuluan 

Pada bab pendahuluan, akan dijelaskan latar belakang, identifikasi masalah, batasan 

masalah, tujuan penelitian, manfaat penelitian, luaran tugas akhir, dan sistematika 

penulisan. 

 

Bab II: Tinjauan Pustaka 

Pada bab tinjauan pustaka, akan diuraikan secara sistematis literatur yang 

digunakan dalam penyusunan Tugas Akhir. Hal ini bertujuan untuk memperoleh 

landasan teori terkait dengan CNN, Geotagging dan Kakao. 

 

Bab III: Metodologi Penelitian 

Bab ini akan menjelaskan tahapan pengerjaan dan analisis perancangan awal sistem 

yang akan dibuat. Tahapan tersebut mencakup identifikasi masalah, studi pustaka, 

pengumpulan data, profiling, desain sistem, dan pengujian. 

 

Bab IV: Hasil dan Pembahasan 

Bab ini akan menjelaskan tahapan pengerjaan dan analisis perancangan awal sistem 

yang akan dibuat. Tahapan tersebut mencakup identifikasi masalah, studi pustaka, 

pengumpulan data, desain sistem, dan pengujian. 

 

Bab V: Kesimpulan dan Saran 

Bab ini akan berisi simpulan dari hasil penelitian Tugas Akhir yang telah dilakukan, 

serta saran yang mungkin dapat dilakukan untuk memperbaiki sistem aplikasi 

dalam penelitian selanjutnya. 
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BAB II 

TINJAUAN PUSTAKA 

 

2.1. Komoditas Kakao dan Permasalahannya 

Komoditas kakao merupakan tanaman tropis yang menghasilkan biji kakao 

yang digunakan sebagai bahan baku dalam produksi cokelat. Kakao tumbuh 

terutama di daerah tropis, terutama di Afrika Barat, Asia Tenggara, dan Amerika 

Selatan. Kakao memiliki peran penting dalam perekonomian banyak negara 

produsen, memberikan mata pencaharian bagi petani dan pendapatan ekspor yang 

signifikan. 

 

2.1.1. Komoditas Kakao 

Kakao berasal dari hutan tropis di Amerika Tengah. Awalnya  biji kakao 

diolah oleh suku Indian dengan cara dikeringkan di bawah sinar matahari, lalu 

disangrai dan dijadikan adonan. Suku Indian membuat minuman dari kakao, dengan 

cara mencampur adonan tersebut dengan vanili. Pada masa tersebut, kakao tidak 

hanya berfungsi sebagai minuman tetapi juga digunakan sebagai mata uang atau 

alat tukar-menukar antar individu. Bangsa spanyol juga mencoba untuk mengolah 

kakao dengan cara mereka sendiri yaitu dengan mengsangrai biji kakao, menumbuk 

lalu ditambahkan gula tebu. Metode tersebut lebih disukai oleh Bangsa Spanyol. 

Pada tahun 1560, Spanyol memperkenalkan kakao di Indonesia tepatnya di 

Sulawesi. Kemudian pada tahun 1825-1838, Indonesia melakukan ekspor kakao ke 

Manila sebanyak 92 ton. Namun, pada periode setelah itu ekspor kakao cenderung 

menerun karena banyak tanaman kakao yang terserang penyakit. Kakao juga 

ditanam di Ambon, pada 1859 terdapat 10.000-12.000 tanaman tanaman kakao dan 

telah menghasilkan 11,6 ton. Di pulau Jawa, kakao baru ditanam pada tahun 1880. 

(Wahyudi, 2008) 

Dikutip dari Statistik Perkebunan Ditjenbun, produksi kakao di Indonesia 

mencapai puncak dengan nilai 837.918 ton pada tahun 2010. Sedangkan luasan 

lahan kakao di Indonesia sempat mencapai nilai maksimum pada tahun 2012 seluas 

1.774.464 Ha. Luasan lahan perkebunan kakao terus menurun hingga tahun 2022, 

Indonesia hanya memiliki lahan kakao seluas 1.476.776 Ha. Namun terdapat 
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peningkatan jumlah produksi kakao dari tahun 2021 ke tahun 2022. Pada tahun 

2021, Indonesia memproduksi 706.636 ton kakao. Sedangkan pada tahun 2022 

Indonesia memproduksi 732.256 ton kakao. Dengan berkurangnya luasan lahan 

perkebunan kakao, namun Indonesia berhasil meningkatkan produksi kakao. 

Artinya Indonesia berhasil meningkatkan produktivitas kakao (Ditjenbun 2021). 

 

2.1.2. Penyakit Vascular Streak Dieback 

Tanaman kakao yang terkena serangan vascular streak dieback akan 

menunjukkan gejala adanya daun yang menguning dengan bercak-bercak berwarna 

hijau. Daun-daun tersebut akan gugur sehingga tampak gejala ranting ompong. 

Apabila bekas duduk daun disayat akan terlihat tiga buah noktah berwarna cokelat 

kehitam-hitaman. Pada bekas potongan daun, bekas duduk daun, bekas potongan 

ranting akan muncul benang-benang berwarna putih. Penyakit ini disebabkan oleh 

jamur O. theobromae (Wahyudi, 2008). 

 

2.2. Geographic Coordinate System (GCS) 

Geographic Coordinate System (GCS) adalah sistem berbasis koordinat 

yang digunakan untuk merepresentasikan posisi suatu lokasi di permukaan bumi. 

GCS menggunakan permukaan 3 dimensi berbentuk bola untuk mendefinisikan 

posisi. Terdapat 3 komponen GCS yakni latitude, longitude dan altitude. Latitude 

dan longitude mendifinisikan lokasi di permukaan sedangkan altitude 

mendefinisikan elevasi atatu ketinggian diatas atau kedalaman dibawah permukaan 

laut. GCS yang paling umum digunakan adalah WGS 84 (World Geodetic System), 

yang digunakan untuk navigasi, pemetaan dan sistem penentuan posisi satelit 

(Longley, 2015). 

 

2.3. Global Positioning System (GPS) 

GPS adalah sistem navigasi berbasis satelit yang menyediakan informasi 

lokasi dan waktu pada berbagai kondisi cuaca, di semua area di bumi. Sistem GPS 

awalnya dikembangkan untuk kegunaan militer dan sekarang digunakan untuk 

berbagai navigasi dan layanan berbasis lokasi seperti pemetaan, geotagging, 
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pelacakan lokasi. GPS receiver mengkalkulasi posisi dengan catatan waktu presisi 

ketika sinyal dikirim oleh satelit GPS. Sinyal ini mengandung informasi mengenai 

lokasi satelit, waktu ketika sinyal dikirim, kondisi ionosferik dan atmosferik yang 

mempengaruhi pengiriman sinyal. Receiver menggunakan informasi ini untuk 

menentukan lokasi dan menyediakan koordinat latitude, longitude dan altitude 

(Zarchan, 1996). 

 

2.4. Geotagging 

Geotagging merupakan proses menambahkan informasi geografi seperti 

koordinat, serta nama lokasi ke media digital seperti foto, video dan lainnya. 

Geotagging mempermudah untuk melakukan pemetaan dan pencarian berbasis 

lokasi. Informasi geografi dapat ditambahkan secara manual ataupun otomatis 

dengan menggunakan perangkat GPS atau aplikasi kamera ponsel. Geotagging 

digunakan dalam berbagai bidang termausk pariwisata, jurnalistik, perencanaan tata 

kota, manajemen lingkungan, dan lainnya. Hal ini menyediakan informasi yang 

berharga untuk melakukan visualisasi, analisa pola atau tren, relasi ruang fisik dan 

virtual (Atunggal, 2018). 

 

2.5. Remote Sensing 

Remote Sensing adalah proses akuisisi data mengenai sebuah objek atau 

fenomena tanpa melakukan kontak fisik dengan objek. Biasanya dilakukan 

menggunakan perangkat berbasis satelit atau aerial, yang dapat menangkap 

informasi mengenai objek. Beberapa sensor digunakan untuk menangkap informasi 

mengenai objek, seperti sensor spectrometer, radiometer, hyperspectral radiometer, 

sounder, accelerometer. Data-data yang dihasilkan sensor-sensor tersebut dapat 

digunakan untuk melakukan monitoring informasi spasial berdasarkan waktu. 

Selama 5 dekade terakhir, teknologi remote sensing telah digunakan dalam berbagai 

riset area lahan basah seperti perubahan penggunaan lahan / pemetaan daerah lahan 

basah. Siklus karbon dan peringatan perubahan iklim, pelepasan karbon pada 

kebakaran lahan gambut, serta proses hidrologi pada lahan basah (Guo, 2017). 
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2.6. Remote Sensing pada kakao 

Neswati (2019) menggunakan metode remote sensing untuk mendapatkan 

informasi penggunaan lahan dan kesesuaian lahan untuk digunakan sebagai 

perkebunan kakao. Hasil penelitian tersebut menyatakan bahwa hasil analisa area 

yang berpotensi untuk dijadikan lahan perkebunan kakao menyatakan 90% dari 

area yang di analisa sesuai untuk digunakan dengan index kesesuaian berkisar 

antara 35 hingga 60. Sedangkan 10% dari area yang ada dinyatakan tidak sesuai 

untuk ditanami kakao dengan Land Suitability Index kurang dari 25. Berdasarkan 

hasil estimasi, produktivitas perkebunan hanya berkisar antara 0,3 hingga 1 ton/ha. 

Angka ini dikategorikan sebagai produktivitas rendah hingga sedang (R Neswati, 

2019).  

 

2.7. Roboflow 

Roboflow merupakan platform untuk melakukan pekerjaan dalam lingkup 

computer vision. Platform ini digunakan oleh lebih dari 250.000 engineer untuk 

membuat dataset, melatih model, dan melakukan deploy model pada server. 

Beberapa fitur dari Roboflow meliputi bounding boxes poligon, label assist, dan 

infrastruktur pelatihan model. Bagi para pengembang aplikasi yang ingin 

menggunakan Roboflow dalam bahasa Python, tersedia library Python untuk 

menggunakan Roboflow di PyPI. Library Python Roboflow adalah wrapper python 

yang menghubungkan aplikasi web Roboflow inti dan REST API. Selain itu, 

terdapat juga utilitas visi komputer sumber terbuka dan tutorial notebook dalam 

bahasa Python yang tersedia di GitHub. Untuk informasi lebih lanjut tentang cara 

menggunakan Roboflow, terdapat situs dokumentasi yang tersedia. Situs web 

tersebut memberikan pengantar tentang Roboflow dan bagaimana 

menggunakannya untuk membangun model visi komputer yang kuat. Roboflow 

mempermudah manajemen dataset dan penggunaan dataset (Roboflow, 2023). 

 

2.8. Sistem Estimasi Titik Koordinat 

Dalam penelitian ini, akan dibuat sistem untuk mengkalkulasi estimasi titik 

koordinat suatu objek berdasarkan data yang tersedia. Sistem ini bertujuan untuk 
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memberikan perkiraan titik koordinat yang mungkin dari objek yang diamati, 

berdasarkan informasi yang ada. Metode yang digunakan dalam sistem ini 

mencakup analisis data spasial, pengolahan citra, dan teknik pemodelan matematis. 

Tujuan dari penelitian ini adalah meningkatkan akurasi dan ketepatan dalam 

menentukan estimasi titik koordinat, sehingga dapat digunakan dalam berbagai 

aplikasi seperti pemetaan, navigasi, dan pemantauan objek di lingkungan. Dalam 

pengembangan sistem, akan dilakukan pengujian dan evaluasi untuk memastikan 

kinerja dan keandalan sistem dalam memberikan estimasi titik koordinat yang 

akurat. 

 

2.8.1. Metode estimasi kedalaman monokular 

Estimasi kedalaman monocular merupakan sebuah teknik untuk 

memperkirakan kedalaman secara 3 dimensi dari citra 2 dimensi. Kedalaman 3 

dimensi diprediksi dengan mengambil informasi dari gambar yang dihasilkan oleh 

satu kamera. Salah satu Teknik estimasi kedalaman monocular yang paling populer 

adalah menggunakan Convolutional Neural Network (CNN). Model CNN dapat 

dilatih untuk mempelajari pola-pola dalam data gambar yang menunjukkan 

kedalaman secara 3 dimensi. CNN mengambil gambar sebagai input dan 

mengeluarkan prediksi kedalaman 3 dimensi sebagai output (Khan, 2020). Godard 

(2019) mengembangkan metode estimasi kedalaman monokular berbasis arsitektur 

U-Net. Pada penelitian tersebut, beberapa model diintegrasikan untuk 

menghasilkan nilai estimasi kedalaman objek. Arsitektur CNN U-Net dapat dilihat 

pada gambar 2.1. 
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Gambar 2. 1 Arsitektur CNN U-Net 

Arsitektur jaringan ini digambarkan dalam Gambar 2.1. Jaringan ini terdiri 

dari jalur kontraksi (sisi kiri) dan jalur ekspansi (sisi kanan). Jalur kontraksi 

mengikuti arsitektur jaringan konvolusi yang khas. Jalur ini terdiri dari pengulangan 

dua kali konvolusi 3x3 (konvolusi tanpa padding), masing-masing diikuti oleh unit 

linear ReLU dan operasi max pooling 2x2 dengan langkah 2 untuk melakukan 

downsampling. Pada setiap tahap downsampling, jumlah saluran fitur digandakan. 

Setiap tahap pada jalur ekspansi terdiri dari upsampling dari peta fitur, diikuti oleh 

konvolusi 2x2 ("up-convolution") yang mengurangi separuh jumlah saluran fitur, 

penyatuan dengan peta fitur yang sesuai dari jalur kontraksi, dan dua konvolusi 3x3, 

masing-masing diikuti oleh ReLU. Pemangkasan diperlukan karena adanya 

kehilangan piksel batas pada setiap konvolusi. Pada lapisan akhir, konvolusi 1x1 

digunakan untuk memetakan setiap vektor fitur 64-komponen menjadi jumlah kelas 

yang diinginkan. Secara total, jaringan ini memiliki 23 lapisan konvolusi 

(Ronneberger, 2015). 

 

2.8.2. Model CNN Segment Anything 

Segment Anything Model (SAM) adalah model CNN yang dikembangkan 

oleh Meta AI Research yang mampu melakukan segmentasi terhadap objek apa pun 
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pada citra. SAM telah dilatih menggunakan dataset segmentasi yang sangat besar 

dengan lebih dari 1 miliar mask dan telah menunjukkan potensi luar biasa dalam 

berbagai aplikasi, termasuk segmentasi gambar, deteksi objek, dan ekstraksi otak. 

SAM juga telah dikombinasikan dengan model-model lain, seperti Grounding 

DINO, Stable Diffusion, dan ChatGPT, untuk menunjukkan keberagaman sebagai 

model dasar. Namun, SAM memiliki keterbatasan dalam mendeteksi objek 

transparan dan skenario yang menantang terkait kaca. Sebuah survei komprehensif 

tentang SAM telah dilakukan untuk memberikan wawasan mengenai aplikasi 

praktis, manfaat, dan keterbatasannya. 

"Segment Anything" merupakan sebuah proyek dan model yang 

dikembangkan oleh Meta AI untuk segmentasi gambar. Tujuan dari proyek ini 

adalah menciptakan model yang dapat dengan akurat "memotong" atau melakukan 

segmentasi pada objek apa pun dalam sebuah gambar hanya dengan satu klik. 

Model Segment Anything (SAM) menggunakan berbagai input prompt, seperti titik 

atau kotak, untuk menghasilkan masker objek berkualitas tinggi untuk semua objek 

dalam gambar. Model ini telah dilatih menggunakan dataset berisi jutaan gambar 

dan miliaran masker, dan telah menunjukkan performa yang kuat pada berbagai 

tugas segmentasi. Model ini dapat digunakan untuk menghasilkan masker untuk 

objek tertentu atau untuk seluruh gambar. Proyek Segment Anything bertujuan 

untuk mendemokrasikan segmentasi gambar dan membuatnya lebih mudah diakses 

(Zhang, 2023). Model ini dikembangkan menggunakan arsitektur transformer. 
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Gambar 2. 2 Arsitektur Transformer pada model Segment Anything 

 

2.8.3. Vincenty Formula 

Rumus Vincenty adalah dua metode iteratif terkait yang digunakan dalam 

geodesi untuk menghitung jarak antara dua titik pada permukaan sebuah sferoid. 

Rumus ini dikembangkan oleh Thaddeus Vincenty pada tahun 1975 dan didasarkan 

pada asumsi bahwa bentuk Bumi adalah sebuah sferoid datar, sehingga 

membuatnya lebih akurat dibandingkan dengan metode yang menganggap Bumi 

sebagai bola, seperti jarak lingkaran besar. Rumus Vincenty digunakan untuk 

menghitung jarak antara dua titik pada permukaan sebuah sferoid, seperti Bumi. 

Rumus ini lebih akurat daripada metode yang menganggap Bumi sebagai bola. 

Rumus Vincenty adalah metode iteratif, yang berarti mereka menggunakan 

serangkaian pendekatan untuk mencapai jawaban akhir. Rumus ini dikembangkan 
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oleh Thaddeus Vincenty pada tahun 1975. Rumus Vincenty mengasumsikan bahwa 

Bumi adalah sferoid datar, yang merupakan representasi yang lebih akurat tentang 

bentuk Bumi daripada bola. Rumus ini sangat berguna untuk menghitung jarak 

dalam jarak yang panjang atau pada permukaan sferoid datar, seperti Bumi. Namun, 

perlu dicatat bahwa solusi inversi Vincenty dapat gagal pada titik yang hampir 

antipodal. 

Menggunakan rumus Vincenty memungkinkan kita untuk menghitung 

latitude dan longitude tujuan dari suatu titik awal. Hal ini dimungkinkan karena 

rumus Vincenty didasarkan pada model matematika ellipsoid, yang merupakan 

representasi yang lebih akurat tentang bentuk Bumi daripada bola. Rumus ini 

memperhitungkan perataan Bumi di kutub dan pembengkokan di khatulistiwa, yang 

memengaruhi jarak antara dua titik di permukaan Bumi. Dengan menggunakan 

metode iteratif, rumus Vincenty dapat menghitung jarak antara dua titik di 

permukaan ellipsoid dengan akurasi tinggi. Ini memungkinkan penggunaan rumus 

Vincenty untuk menghitung latitude dan longitude tujuan dari suatu titik awal, 

dengan memberikan jarak yang ingin ditempuh (Kettle, 2017). 

Dengan menggunakan titik awal (Φ1, L1) dan azimut awal, α1, serta jarak, 

s, sepanjang garis lintang, masalahnya adalah untuk mencari titik tujuan (Φ2, L2) 

dan azimut, α2. Mulai dengan melakukan perhitungan berikut. 

!! = arctan	[(1 − -)/01ϕ! 

3! = arctan2(/01!!, cos 8 − -)/01 

9:1	8 = ;<9!!9:1	8! 

=" = ;<9"	8 >
0" − ?"

?"
@ = (1 − 9:1"8) >

0" − ?"

?"
@ 

A = 1 +
="

16384
(4096 + ="[−768 + ="(320 − 175=")]) 

L =
="

1024
(256 + ="[−128 + ="(74 − 47=")]) 

 

Kemudian, dengan menggunakan nilai awal , lakukan iterasi pada 

persamaan-persamaan berikut hingga tidak ada perubahan signifikan pada σ: 

23# = 23! + 3 

(2-1) 
(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 

(2-7) 
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Setelah σ diperoleh dengan akurasi yang memadai, evaluasilah: 

ϕ" = 0R;/012 S9:1!!;<93

+ ;<9	!! sin 	 3	;<9	8!, (1

− -)U9:1"8 + (sin 	!! 9:1	3 − cos!! cos 3 ;<9	8!)"	V 

 

W = 0R;/012(sin 3 	9:1	8!, cos!! cos 3 − sin!! sin 3 	;<9	8!) 

X =
-
16
;<9"8[4 + -(4 − 3	;<9"8)] 

Y = W − (1 − X)-9:1	8{3

+ X	9:1	3(;<9[23#] + X cos 3 [= 1 + 2	;<9"(23#)])} 

Y" = Y + Y! 

8 = 0R;/012(sin 8, − 9:1	!! sin 3 + ;<9	!! cos 3 cos 8!) 

 

Jika titik awal berada di Kutub Utara atau Kutub Selatan, maka persamaan pertama 

tidak dapat ditentukan. Jika azimut awal adalah Timur atau Barat, maka persamaan 

kedua tidak dapat ditentukan. 

 

2.9. Sistem Deteksi Objek Buah Kakao menggunakan CNN YOLO 

Pada penelitian ini akan dikembangkan model CNN untuk melakukan deteksi buah 

kakao pada tanaman kakao. Arsitektur model CNN yang digunakan pada penelitian 

ini adalah arsitektur YOLOV8. Arsitektur ini digunakan karena model yang 

dihasilkan memiliki akurasi deteksi yang baik dan dapat melakukan deteksi secara 

cepat. 

 

(2-9) 

(2-10) 

(2-11) 

(2-8) 

(2-12) 

(2-13) 

(2-14) 
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3.9.1. Arsitektur YOLOV8 

YOLOv8, yang dikembangkan oleh Ultralytics pada bulan Januari 2023 

sebagai pengembangan dari YOLOv5, memperkenalkan beberapa versi dengan 

skala yang berbeda, mulai dari YOLOv8n (nano) hingga YOLOv8x (extra large). 

Model yang diperbarui ini mendukung beberapa tugas visi komputer seperti deteksi 

objek, segmentasi, estimasi pose, pelacakan, dan klasifikasi. Arsitektur YOLOv8 

didasarkan pada YOLOv5 namun dengan beberapa modifikasi, terutama pada 

CSPLayer yang sekarang disebut sebagai modul C2f. Modul C2f menggabungkan 

fitur tingkat tinggi dengan informasi kontekstual untuk meningkatkan akurasi 

deteksi YOLOv8 menggunakan model tanpa anchor dengan kepala yang terpisah, 

memungkinkan pemrosesan independen untuk tugas objek, klasifikasi, dan regresi. 

Desain ini memungkinkan setiap cabang fokus pada tugasnya masing-masing dan 

meningkatkan akurasi keseluruhan model. Pada lapisan output, YOLOv8 

menggunakan fungsi sigmoid untuk skor objek, yang mewakili probabilitas 

terdapatnya objek dalam sebuah bounding box. Fungsi softmax digunakan untuk 

probabilitas kelas, menunjukkan kemungkinan objek termasuk dalam kelas-kelas 

yang berbeda (Terven, 2023). 

Fungsi loss pada YOLOv8 menggabungkan VFL Loss untuk klasifikasi dan 

DFL Loss+CIOU Loss untuk regresi. VFL Loss merupakan varian dari fungsi Focal 

Loss yang memberikan bobot lebih kepada contoh-contoh sulit dan mengurangi 

pengaruh contoh-contoh mudah. DFL Loss merupakan fungsi loss berbasis 

distribusi yang memodelkan distribusi koordinat bounding box dan memprediksi 

rata-rata dan variansinya. CIOU Loss merupakan varian dari fungsi Intersection 

over Union (IOU) yang memperhitungkan rasio aspek dan ukuran bounding box. 

Untuk bounding box dan area segmentasi, fungsi loss mempertimbangkan nilai 

confidence bounding box yang diprediksi dan IOU. Perhitungan loss digunakan 

untuk mengestimasi jumlah kesalahan, yang kemudian digunakan oleh optimizer 

untuk menyesuaikan bobot model. YOLOv8 menggunakan fungsi loss CIoU dan 

DFL untuk loss bounding box dan binary cross-entropy untuk loss klasifikasi. 

Fungsi-fungsi ini telah meningkatkan kinerja deteksi objek, terutama dalam 

menghadapi objek-objek kecil (Terven, 2023). Arsitektur model CNN YOLOv8 

dapat dilihat pada gambar 2.3.
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Gambar 2.3 Arsitektur YOLOV8 
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3.9.2. Arstitektur YOLOV8n 

YOLOv8 nano adalah model deteksi objek yang ringan dan efisien yang 

dikembangkan oleh Ultralytics. Model ini didasarkan pada arsitektur You Only 

Look Once (YOLO) dan secara khusus dirancang untuk lingkungan dengan sumber 

daya terbatas dan daya komputasi terbatas, seperti perangkat edge dan sistem 

embedded. YOLOv8 nano mencapai keseimbangan yang baik antara akurasi dan 

kecepatan dengan menggunakan ukuran model yang lebih kecil dan 

mengoptimalkan arsitektur jaringan, sehingga mampu mendeteksi objek secara 

real-time. Meskipun ukurannya kompak, YOLOv8 nano tetap mempertahankan 

akurasi tinggi dengan memanfaatkan teknik canggih seperti deteksi bebas anchor 

dan feature pyramid networks. Hal ini menjadikannya cocok untuk berbagai 

aplikasi, termasuk robotika, sistem pengawasan, dan perangkat IoT. Arsitektur 

YOLOv8 nano dapat dilihat pada tabel 2.1. 

 

Tabel 2. 1 Arsitektur YOLOV8n (nano) 

layer 

num 
from n params modules arguments 

0 -1 1 464 ultralytics.nn.modules.Conv [3, 16, 3, 2] 

1 -1 1 4672 ultralytics.nn.modules.Conv [16, 32, 3, 2] 

2 -1 1 7360 ultralytics.nn.modules.C2f [32, 32, 1, True] 

3 -1 1 18560 ultralytics.nn.modules.Conv [32, 64, 3, 2] 

4 -1 2 49664 ultralytics.nn.modules.C2f [64, 64, 2, True] 

5 -1 1 73984 ultralytics.nn.modules.Conv [64, 128, 3, 2] 

6 -1 2 197632 ultralytics.nn.modules.C2f [128, 128, 2, 

True] 

7 -1 1 295424 ultralytics.nn.modules.Conv [128, 256, 3, 2] 

8 -1 1 460288 ultralytics.nn.modules.C2f [256, 256, 1, 

True] 

9 -1 1 164608 ultralytics.nn.modules.SPPF [256, 256, 5] 
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Tabel 2. 2 Arsitektur YOLOV8n (nano) (lanjutan) 

layer 

num 
from n params modules arguments 

10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 

'nearest'] 

11 [-1, 6] 1 0 ultralytics.nn.modules.Concat [1] 

12 -1 1 148224 ultralytics.nn.modules.C2f [384, 128, 1] 

13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 

'nearest'] 

14 [-1, 4] 1 0 ultralytics.nn.modules.Concat [1] 

15 -1 1 37248 ultralytics.nn.modules.C2f [192, 64, 1] 

16 -1 1 36992 ultralytics.nn.modules.Conv [64, 64, 3, 2] 

17 [-1, 

12] 

1 0 ultralytics.nn.modules.Concat [1] 

18 -1 1 123648 ultralytics.nn.modules.C2f [192, 128, 1] 

19 -1 1 147712 ultralytics.nn.modules.Conv [128, 128, 3, 2] 

20 [-1, 9] 1 0 ultralytics.nn.modules.Concat [1] 

21 -1 1 493056 ultralytics.nn.modules.C2f [384, 256, 1] 

22 [15, 

18,  

21] 

1 751702 ultralytics.nn.modules.Detect [2, [64, 128, 

256]] 

 

3.9.3. Arstitektur YOLOV8m 

YOLOv8 Medium adalah model deteksi objek yang dikembangkan oleh Ultralytics, 

sebuah organisasi yang fokus pada visi komputer dan deep learning. Ini merupakan 

perluasan dari keluarga model populer You Only Look Once (YOLO). YOLOv8 

Medium dirancang untuk mendeteksi dan lokaliser objek dengan efisien dan akurat 

dalam gambar atau frame video, sehingga cocok untuk aplikasi waktu nyata. Hal 

ini dicapai dengan membagi gambar masukan menjadi sebuah grid dan 
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memprediksi bounding box serta probabilitas kelas untuk objek dalam setiap sel 

grid. YOLOv8 Medium menggunakan arsitektur berukuran medium, menemukan 

keseimbangan antara kompleksitas model dan kecepatan, sehingga cocok untuk 

berbagai tugas visi komputer. Arsitektur model CNN YOLOv8 medium dapat 

dilihat pada tabel berikut. 

 

Tabel 2. 3 Arsitektur YOLOV8m (medium) 

layer from n params module arguments 

0 
 

-1 1 1392 ultralytics.nn.modules.Conv [3, 48, 3, 2] 

1 
 

-1 1 41664 ultralytics.nn.modules.Conv [48, 96, 3, 2] 

2 
 

-1 2 111360 ultralytics.nn.modules.C2f 

[96, 96, 2, 

True] 

3 
 

-1 1 166272 ultralytics.nn.modules.Conv [96, 192, 3, 2] 

4 
 

-1 4 813312 ultralytics.nn.modules.C2f 

[192, 192, 4, 

True] 

5 
 

-1 1 664320 ultralytics.nn.modules.Conv 

[192, 384, 3, 

2] 

6 
 

-1 4 3248640 ultralytics.nn.modules.C2f 

[384, 384, 4, 

True] 

7 
 

-1 1 1991808 ultralytics.nn.modules.Conv 

[384, 576, 3, 

2] 

8 
 

-1 2 3985920 ultralytics.nn.modules.C2f 

[576, 576, 2, 

True] 

9 
 

-1 1 831168 ultralytics.nn.modules.SPPF [576, 576, 5] 

10 
 

-1 1 0 torch.nn.modules.upsampling.Upsample 

[None, 2, 

'nearest'] 

11 [-1, 6] 1 0 ultralytics.nn.modules.Concat [1] 

12  -1 2 1993728 ultralytics.nn.modules.C2f [960, 384, 2] 
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Tabel 2. 4 Arsitektur YOLOV8m (medium) (lanjutan) 

layer from n params module arguments layer 

13 
 

-1 1 0 torch.nn.modules.upsampling.Upsample [None, 

2, 

'nearest'] 

14 [-1, 4] 1 0 ultralytics.nn.modules.Concat [1] 

15 
 

-1 2 517632 ultralytics.nn.modules.C2f [576, 

192, 2] 

16 
 

-1 1 332160 ultralytics.nn.modules.Conv [192, 

192, 3, 

2] 

17 [-1, 

1 

2] 1 0 ultralytics.nn.modules.Concat [1] 

18 
 

-1 2 1846272 ultralytics.nn.modules.C2f [576, 

384, 2] 

19 
 

-1 1 1327872 ultralytics.nn.modules.Conv [384, 

384, 3, 

2] 

20 [-1, 9] 1 0 ultralytics.nn.modules.Concat [1] 

21 
 

-1 2 4207104 ultralytics.nn.modules.C2f [960, 

576, 2] 

22 [15, 

18, 

2 

1] 1 3776854 ultralytics.nn.modules.Detect [2, [192, 

384, 

576]] 

 

3.9.4. Metode Deteksi Objek Buah menggunakan YOLO 

Fu (2022) mememperkenalkan metode baru untuk mendeteksi dan 

menghitung jumlah polong kedelai secara otomatis dan akurat di lapangan. Metode 

ini dapat mengatasi masalah efisiensi rendah, ketidakakuratan, dan ukuran sampel 

yang kecil pada pengumpulan fenotipe kedelai secara manual di lapangan. Metode 



27 
 

ini menggunakan kendaraan pemindaian tiga dimensi yang dikembangkan sendiri 

untuk memperoleh gambar warna RGB dan kedalaman polong kedelai di lapangan. 

Kemudian, gambar RGB dan kedalaman disesuaikan menggunakan metrik titik 

fitur tepi untuk mengidentifikasi dengan akurat polong kedelai di latar belakang 

lingkungan yang kompleks. 

Model jaringan yang dilatih menggunakan dataset gabungan RGB dan 

kedalaman memberikan hasil yang lebih baik dibandingkan dengan model yang 

hanya dilatih dengan dataset RGB. Tingkat ketepatan (precision) model jaringan 

yang ditingkatkan YOLO-v5 juga meningkat sekitar 6%, dengan tingkat ketepatan 

mencapai 88.14% dalam mendeteksi jumlah polong di populasi kedelai dengan 200 

tanaman. Setelah dilakukan kompensasi model, kesalahan relatif antara jumlah 

polong yang diprediksi dan yang sebenarnya hanya berkisar antara 2% hingga 3% 

untuk dua varietas kedelai yang diuji. Meskipun masih terdapat beberapa faktor 

lingkungan yang mempengaruhi deteksi dan kuantifikasi polong kedelai, metode 

ini merupakan langkah awal yang signifikan untuk memperoleh data fenotipe 

kedelai secara otomatis dan akurat di lapangan (Fu, 2022). 

 

2.10. Red, Green, Blue (RGB) 

Kusumanto et al. (2011) menjelaskan, RGB (Red, Green, Blue) adalah citra 

warna yang masing-masing memiliki warna tertentu yaitu merah, hijau dan biru. 

Masing-masing warna memiliki rentang intensitas 0 sampai dengan 255. Sehingga 

dari kombinasi 3 warna tersebut menghasilkan 2563 kombinasi warna (16.777.216). 

Gupta et al. (2014) menyatakan citra RGB dapat digunakan untuk melakukan 

analisa pada tanaman. Dengan menggunakan citra RGB, dapat dilakukan metode 

yang bersifat non-destruktif untuk menganalisa/mengevaluasi kondisi tanaman. 

Weinstein et al. (2019) menjelaskan, dengan menggunakan citra lanskap alam 

berbasis RGB membuka banyak peluang baru dalam ekologi, perhutanan, serta 

pengelolaan lahan. Model CNN deteksi tanaman saat ini masih dapat diperluas 

kegunaannya. Tidak hanya untuk mendeteksi titik tanaman, apabila dikembangkan 

maka model CNN juga dapat mendeteksi kondisi kesehatan tanaman. Maraknya 

penggunaan UAV/drone dalam lingkungan remote sensing, juga membuka peluang 

untuk mengkombinasikan data-data yang diambil secara mandiri / data lokal 
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dengan data pada skala informasi yang lebih luas. Pada umumnya, drone 

konvensional hanya dapat menangkap reflektansi cahaya dalam format RGB. Data 

tersebut dapat dikombinasikan dengan data-data dari satelit yang menangkap 

informasi menggunakan sensor-sensor tertentu. Sensor-sensor tersebut dapat 

menghasilkan citra multi spektral. Selain spektrum cahaya warna RGB, sensor 

tersebut menangkap gelombang Nir-Infrared, penguapan air, serta gelombang 

infrared pendek. 

 
Gambar 2. 4 Ruang Warna RGB 

 

2.11. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) merupakan parameter yang digunakan untuk 

mengevaluasi akurasi nilai yang di prediksi oleh sebuah model prediksi. MAE 

menunjukkan rata-rata kesalahan nilai aktual dengan nilai prediksi. 

\A] =	^
|`$ − `|

1
 

 Keterangan : 

 `$ : Nilai Prediksi 

 ` : Nilai Sebenarnya 

 n : Jumlah Data 

 

(Nixsensor, 2022) 

(2-15) 
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2.12. Mean Squared Error (MSE) 

Mean Square Error (MSE) adalah sebuah parameter yang mengukur 

kesalahan pada sebuah prediksi dengan menghitung rata-rata kesalahan kuadrat 

antara nilai sebenarnya dan nilai yang diprediksi. Dengan menggunakan metode ini, 

kita dapat memperkirakan seberapa besar kesalahan pada prediksi tersebut. 

 

 Keterangan : 

 `$ : Nilai Prediksi 

 ` : Nilai Sebenarnya 

 n : Jumlah Data 

 

2.13. Intersection over Union (IoU) 

Intersection over Union (IoU) adalah metrik yang umum digunakan untuk 

mengevaluasi performa deteksi objek, segmentasi, dan tugas-tugas computer vision 

lainnya. IoU mengukur seberapa banyak area yang tumpang tindih antara bounding 

box atau masker prediksi dengan bounding box atau masker acuan. Untuk 

menghitung IoU, pertama-tama kita menghitung luas area yang tumpang tindih 

antara bounding box atau masker prediksi dan bounding box atau masker acuan. 

Kemudian, kita menghitung luas keseluruhan dari kedua bounding box atau masker 

tersebut. Akhirnya, kita membagi luas area yang tumpang tindih dengan luas area 

keseluruhan untuk mendapatkan skor IoU. 

Skor IoU berkisar dari 0 hingga 1, dengan skor 1 menunjukkan tumpang 

tindih yang sempurna antara bounding box atau masker prediksi dan bounding box 

atau masker acuan, dan skor 0 menunjukkan tidak ada tumpang tindih. IoU sering 

digunakan sebagai metrik evaluasi dalam deteksi objek dan segmentasi karena 

memberikan ukuran kuantitatif seberapa baik model dapat melokalisasi dan 

mengsegmentasi objek dalam gambar. Skor IoU yang lebih tinggi menunjukkan 

bahwa model lebih baik dalam memprediksi lokasi dan ukuran yang benar dari 

objek pada gambar. 

(2-16) 
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Gambar 2. 5 Penjelasan Intersection of Union 

 

2.14. Perangkat Lunak 

Perangkat lunak digunakan dalam pengembangan sistem atau model untuk 

memberikan alat yang diperlukan dalam proses desain, pengkodean, dan pengujian. 

Perangkat lunak seperti lingkungan pengembangan terintegrasi (IDE), framework, 

dan library menyediakan alat dan sumber daya yang diperlukan untuk 

mengimplementasikan sistem atau model secara efisien. Mereka juga membantu 

dalam mengelola data, mengoptimalkan kinerja, dan mempermudah proses 

pengembangan secara keseluruhan. 

 

2.15.1 Python 

Bahasa pemrograman python menggunakan perintah dalam bahasa inggris 

dan sintaks yang mudah dimengerti. Python menawarkan alternatif open-source 

untuk teknik-teknik tradisional dan aplikasi (Sahoo et al, 2019). Python memiliki 

pilihan library standard yang besar. Library-library tersebut berfokus pada general 

programming, serta memuat modul-modul untuk berinteraksi dengan sistem 

operasi, jaringan, basis data, pengolahan citra digital serta keperluan spesifik 

lainnya (Ozgur et al, 2017). Python menyediakan banyak pilihan struktur data 

tingkat tinggi. Beberapa contohnya yaitu list untuk melakukan numerasi pada 

sebuah koleksi objek, dictionary untuk membangun hash tables dan lainnya. 

Bagaimanapun, struktur data diatas tidak sepenuhnya ideal untuk melakukan 

komputasi numerikal dengan performa tinggi (Walt et al, 2011). 
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Gambar 2. 6 Logo Bahasa Pemrograman Python 

(Python, 2022) 

 

2.15.2 Google Colaboratory 

Google Colaboratory atau yang dikenal secara umum Google Colab 

merupakan layanan open source yang disediakan oleh google kepada semua 

pengguna layanan akun gmail. Google Colab menyediakan GPU (Unit Pemrosesan 

Grafis) untuk melakukan riset. Layanan ini ditujukan bagi orang-orang yang tidak 

memiliki sumber daya GPU untuk melakukan komputasi tingkat tinggi. Layanan 

Google Colab menyediakan RAM sebesar 12,72 GB dan ruang penyimpanan  hard 

disk sebesar 358,27 GB dalam 1 runtime. Setiap runtime berlangsung selama 12 

jam, setelah itu runtime akan ter-reset dan pengguna perlu melakukan koneksi 

ulang. Hal ini diberlakukan untuk memastikan bahwa layanan GPU tidak digunakan 

untuk melakukan penambangan mata uang kripto dan tujuan illegal lainnya. Setelah 

pengguna membuka Google Colab, pengguna perlu memilih jenis runtime. 

Terdapat 3 pilihan runtime, yaitu none, GPU, TPU. None artinya runtime hanya 

akan menggunakan CPU pada komputer pengguna. GPU artinya runtime akan 

menggunakan GPU di dalam server Google. TPU, digunakan untuk melakukan 

proses tensor (Kanani et al, 2019). 

 
Gambar 2. 7 Logo Google Colaboratory 

(Google Colab, 2017) 

 

2.15.3 Numpy 

Numpy adalah sebuah library numerikal Python yang secara efisien 

memanipulasi array besar (Drude et al, 2018). Pada pertengahan 90an, sebuah tim 
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internasional yang terdiri dari relawan-relawan memulai pengembangan sebuah 

struktur data untuk melakukan komputasi array dengan efisien. Struktur ini 

berkembang menjadi apa yang saat ini kita kenali sebagai N-dimensional Numpy 

array. Library Numpy yang terdiri dari berbagai gabungan fungsi matematis. 

Library tersebut telah dimanfaatkan pada berbagai bidang seperti akademis, 

laboratorium nasional, serta berbagai implementasi di industri yang tersebar mulai 

dari industri gaming hingga eksplorasi antariksa (Walt, 2011). Array NumPy 

merupakan sebuah koleksi elemen serupa dalam multi dimensi. Sebuah Array 

digambarkan oleh tipe elemen didalamnya serta oleh bentuknya. Sebagai contoh, 

sebuah matriks dapat direpresentasikan sebagai sebuah array yang berbentuk (M x 

N) yang mengandung angka-angka, nilai desimal atau bilangan kompleks. Namun, 

tidak seperti matriks, array Numpy dapat memiliki berbagai dimensi. Lebih jauh 

lagi, array tersebut dapat memuat berbagai jenis elemen lainnya (bahkan kombinasi 

beberapa elemen) seperti boolean atau tanggal. Array NumPy merupakan metode 

yang cukup mudah untuk mendekripsikan satu atau lebih blok memori komputer 

sehingga angka-angka yang direpresentasikan dapat dengan mudah dimanipulasi. 

 
Gambar 2. 8 Logo Library Numpy 

(Numpy, 2022) 

 

2.15.4 OpenCV 

OpenCV merupakan sebuah library penglihatan komputer. Pengembangan 

OpenCV dimulai sebagai sebuah projek riset di Intel pada 1998. OpenCV sudah 

dapat digunakan pada tahun 2000 dibawah lisensi open source BSD. OpenCV 

bertujuan untuk menyediakan perangkat lunak yang diperlukan untuk 

menyelesaikan permasalahan penglihatan computer. Didalam library OpenCV 

terdapat gabungan dari fungsi pemrosesan gambar tingkat rendah dan algoritma 

tingkat tinggi seperti deteksi wajah, deteksi pejalan kaki, pencocokan fitur dan 



33 
 

pelacakan. Library tersebut telah diunduh sebanyak lebih dari 3 juta kali. Pada 2010 

sebuah modul baru yang menyediakan akselerasi GPU ditambahkan ke OpenCV. 

Modul GPU tersebut mencakup bagian signifikan dari fungsionalitas library dan 

masih aktif dalam pengembangan. Modul tersebut mengimplementasikan 

penggunaan CUDA (Pulli et al, 2012). 

 
Gambar 2. 9 Logo Library OpenCV 

(OpenCV, 2022) 

 

2.15.5 Pandas 

Library Pandas, telah dikembangkan semenjak 2008. Library Pandas 

bertujuan untuk menjembatani banyaknya perangkat lunak analisis data dalam 

Python. Pandas tidak hanya bertujuan untuk menyediakan fungsionalitas sebagai 

pembaca data, namun juga menyediakan banyak fitur seperti penyelarasan data 

otomatis dan pengindeksan hierarkis. Dimana fitur-fitur tersebut tidak terintegrasi 

dalam library lainnya ataupun lingkungan komputasi lainnya. Selagi 

dikembangkan untuk analisis data finansial, pengembang berharap Pandas dapat 

akan memungkinkan Python saintifik menjadi lebih atraktif serta menjadi 

lingkungan komputasi statistik yang praktis bagi praktisi akademis dan industri. 

Nama Pandas berasal dari panel data, sebuah istilah umum untuk dataset 

multidimensi dalam statistic dan ekonometriks (Walt, 2011). 

 
Gambar 2. 10 Logo Library Pandas 

Pandas, 2022 
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2.15.6 Matplotlib & Seaborn 

Matplotlib merupakan salah satu library Python untuk melakukan 

visualisasi data yang cukup popular. Library ini dibangun oleh John Hunter 

bersama beberapa kontributor. Matplotlib merupakan library grafis untuk 

melakukan visualisasi data dalam Python. Matplotlib dapat digunakan dengan 

beberapa library yang umum digunakan dalam pengolahan data pada Python seperti 

Numpy, Pandas dan library lainnya (Sial et al, 2021). Stančin et al, (2019) 

mendefinisikan Matplotlib sebagai library Python yang mengimplementasikan 

grafik-grafik yang ada didalam MATLAB. Matplotlib menawarkan banyak variasi 

dan penyesuaian sesuai kebutuhan pengguna. Sintaks Matplotlib cukup 

membingungkan bagi pemula, namun setelah memahami konsep utamanya akan 

jadi mudah untuk membuat berbagai jenis grafik. 

Seaborn merupakan library yang dikembangkan di atas library Matplotlib 

dan lebih mudah untuk digunakan dan dipelajari bagi pemula ketimbang Matplotlib. 

Meskipun lebih mudah untuk digunakan, pada kasus yang memerlukan 

penyesuaian dan keperluan yang lebih kompleks Seaborn akan menjadi pilihan 

yang kurang tepat (Stančin et al, 2019). 

 

 
Gambar 2. 11 Logo Library Matplotlib 

(matplotlib, 2022) 

 
Gambar 2. 12 Logo Library Seaborn 

(Seaborn, 2022) 
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2.15.7 Visual Studio Code 

Visual Studio Code (VS Code) adalah sebuah teks editor ringan dan handal 

yang dibuat oleh Microsoft yang bersifat multiplatform. Artinya VS Code dapat 

berjalan pada sistem operasi Linux, Mac dan Windows. Teks editor ini secara 

langsung mendukung Bahasa pemrograman JavaScript, Typescript, dan Node.js, 

serta Bahasa lainnya (seperti C++, C#, Python, Go, Java) dengan bantuan plugin 

yang dapat dipasang via marketplace Visual Studio Code. Terdapat banyak fitur-

fitur yang disediakan oleh Visual Studio Code, diantaranya Intellisense, Git 

Integration, Debugging, dan fitur ekstensi yang menambah kemampuan teks editor. 

Fitur-fitur tersebut akan terus bertambah seiring dengan bertambahnya versi Visual 

Studio Code. VS Code bersifat open source, artinya sumber kodenya dapat dilihat 

dan dikembangkan oleh semua orang. Hal ini merupakan daya tarik tersendiri bagi 

pengembang aplikasi karena dapat ikut serta dalam pengembangan VS Code 

(Salamah 2021). 

 
Gambar 2. 13 Logo dan Tampilan Perangkat Lunak VS Code 

(Microsoft, 2022) 

 

2.15.8 Open Camera 

Open Camera adalah aplikasi kamera open source untuk ponsel dan tablet 

android yang memiliki berbagai fitur. Dalam aplikasi ini, terdapat opsi untuk 

menjaga foto tetap seimbang dan tidak miring, serta menambahkan berbagai mode 

pengambilan gambar, efek warna, keseimbangan warna, ISO, kunci eksposur, selfie 

dengan "flash layar", dan video HD. Selain timer dengan suara penghitung mundur, 

pengulangan otomatis dengan penundaan yang dapat dikonfigurasi, dan opsi untuk 

mengambil foto dari jauh dengan suara. Open Camera juga menyediakan fitur untuk 
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menambahkan bingkai grid dan panduan potong, serta opsi penandaan lokasi GPS 

(geotagging) pada foto dan video. Aplikasi ini juga memiliki dukungan untuk HDR. 

Selain itu, terdapat opsi untuk menghapus metadata exif perangkat dari foto, 

panorama, reduksi kebisingan, dan mode optimasi rentang dinamis. Open Camera 

adalah aplikasi yang gratis dan tanpa iklan di dalamnya serta sumber terbuka 

(OpenCamera, 2021). 

 
Gambar 2. 14 Halaman Aplikasi Open Camera di Google Play 

(OpenCamera, 2021) 

 

2.15.9 Pytorch 

PyTorch adalah sebuah library machine learning yang dirancang untuk mendukung 

gaya pemrograman yang imperatif. PyTorch memudahkan pemodelan kode, 

memudahkan proses debugging, dan konsisten dengan library komputasi ilmiah 

populer lainnya. Selain itu, PyTorch tetap efisien dan mendukung akselerator 

perangkat keras seperti GPU. PyTorch merupakan framework deep learning yang 

menyediakan operasi kustom, lapisan, model, dan alat untuk penelitian, 

pengembangan, dan evaluasi codec kompresi gambar dan video end-to-end. 

PyTorch dibangun di atas beberapa proyek, terutama Lua Torch, Chainer, dan HIPS 

Autograd. PyTorch menyediakan lingkungan berkinerja tinggi dengan akses mudah 

ke diferensiasi otomatis pada model yang dieksekusi di perangkat yang berbeda, 

seperti CPU dan GPU. Selain itu, PyTorch juga digunakan dalam bidang-bidang 
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lain seperti serangan dan pertahanan adversarial, rekonstruksi jejak partikel 

menggunakan pembelajaran mendalam, dan mempercepat penelitian pembelajaran 

mendalam 3D (Paszke, 2019).  

 

2.15.10 Torchvision 

Torchvision adalah sebuah libray PyTorch yang menyediakan berbagai alat dan 

model terkait visi komputer untuk para peneliti dan praktisi di bidang tersebut. 

Library ini mencakup dataset, data loader, transformasi, model, dan utilitas untuk 

tugas-tugas umum dalam visi komputer seperti klasifikasi gambar, deteksi objek, 

segmentasi semantik, dan lainnya. Torchvision menyediakan model-model yang 

telah dilatih sebelumnya untuk tugas klasifikasi gambar dan deteksi objek, seperti 

AlexNet, VGG, ResNet, dan Faster R-CNN, di antara lainnya. Selain itu, 

Torchvision juga menyediakan berbagai teknik augmentasi data, seperti 

pemotongan acak, pembalikan, dan variasi warna, untuk membantu meningkatkan 

generalisasi model (Jatavallabhula, 2019). 

 

2.15.11 Glob 

Modul glob dalam Python digunakan untuk mencari semua nama alamat direktori 

yang cocok dengan pola yang ditentukan sesuai dengan aturan yang digunakan oleh 

shell Unix. Modul ini mengembalikan daftar nama alamat direktori yang cocok 

dengan pola yang ditentukan, yang kemudian dapat digunakan untuk melakukan 

berbagai operasi pada file-file tersebut. Modul glob mendukung berbagai pola yang 

dapat digunakan untuk mencocokkan nama file, seperti * untuk mencocokkan string 

karakter apa pun, ? untuk mencocokkan satu karakter saja, dan [] untuk 

mencocokkan karakter apa pun dalam set yang ditentukan. Perlu diperhatikan 

bahwa glob hanya mengembalikan nama jalur file yang ada dan dapat dibaca 

(Virtanen, 2019). 

 

2.15.12 PIL 

Python Imaging Library (PIL) adalah sebuah library untuk bekerja dengan gambar 

dalam bahasa Python. Library ini menyediakan berbagai fungsi pemrosesan 

gambar, seperti pengubah ukuran, pemotongan, rotasi, dan penyaringan, serta 
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dukungan untuk berbagai format file gambar. PIL adalah library populer untuk 

pemrosesan gambar dalam Python dan telah digunakan dalam berbagai aplikasi, 

termasuk visi komputer, citra ilmiah, dan pengembangan web. Namun, PIL tidak 

lagi aktif dipelihara dan telah digantikan oleh library Pillow, yang merupakan 

cabang dari PIL yang menyediakan fitur tambahan dan perbaikan bug. Pillow 

dirancang sebagai pengganti PIL yang kompatibel dan menyediakan API yang 

serupa, sehingga mudah beralih dari PIL ke Pillow (Guan, 2019). 

 

2.15.13 Onnxruntime 

ONNX Runtime adalah mesin inferensi sumber terbuka yang dirancang untuk 

menjalankan model pembelajaran mesin yang sesuai dengan format Open Neural 

Network Exchange (ONNX). ONNX Runtime dirancang untuk memberikan 

eksekusi yang efisien dan portabel dari model pembelajaran mesin pada berbagai 

platform perangkat keras, termasuk CPU, GPU, dan akselerator khusus. ONNX 

Runtime mendukung berbagai bahasa pemrograman, termasuk Python, C++, dan 

C#, dan dapat diintegrasikan dengan framework pembelajaran mesin populer 

seperti PyTorch dan TensorFlow. ONNX Runtime menyediakan serangkaian API 

yang memungkinkan pengembang untuk memuat, menjalankan, dan mengelola 

model pembelajaran mesin, serta alat-alat untuk mengoptimalkan dan memproses 

kinerja model. ONNX Runtime dioptimalkan secara khusus untuk inferensi dengan 

latensi rendah dan mendukung berbagai backend dan metode optimasi (Ashfaq, 

2022). 

 

2.15.14 Ipython.display 

Modul IPython.display dalam IPython menyediakan sejumlah fungsi yang sangat 

berguna untuk menampilkan berbagai jenis konten di Jupyter Notebook. Fungsi 

"display" digunakan untuk menampilkan objek dengan representasi terbaik yang 

tersedia di Jupyter Notebook. Misalnya, jika kita ingin menampilkan gambar, kita 

dapat menggunakan fungsi "Image" untuk menampilkan gambar di dalam 

notebook. Fungsi "Video" memungkinkan kita untuk menampilkan video di dalam 

notebook, sementara fungsi "Audio" digunakan untuk menampilkan pemutar audio 

yang memungkinkan kita untuk memainkan file audio langsung di dalam notebook. 
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Selain itu, modul IPython.display juga menyediakan fungsi "HTML" yang 

memungkinkan kita untuk menampilkan kode HTML di dalam notebook, dan 

fungsi "Markdown" yang memungkinkan kita untuk menampilkan kode Markdown 

yang akan ditafsirkan dan ditampilkan sebagai teks yang diformat dengan baik di 

dalam notebook. Semua fungsi ini membantu dalam membuat tampilan yang 

menarik dan interaktif di Jupyter Notebook (Ipython, 2019). 

 

2.15.15 Time 

Package `time` dalam bahasa pemrograman Python adalah sebuah package 

yang menyediakan fungsionalitas untuk mengakses waktu sistem dan melakukan 

operasi terkait waktu. Package ini memungkinkan pengembang untuk mengukur 

waktu eksekusi program, mengatur jeda atau penundaan dalam eksekusi program, 

dan melakukan operasi lainnya terkait waktu seperti mengubah format waktu, 

menghitung selisih waktu, dan mengatur waktu sistem. Package `time` sangat 

berguna dalam pengembangan aplikasi yang memerlukan pemantauan waktu, 

pengukuran kinerja, sinkronisasi tugas, atau manipulasi waktu secara umum 

(Python, 2023). 

 

2.15.16 Ultralytics 

Ultralytics adalah sebuah perusahaan teknologi yang mengkhususkan diri 

dalam pengembangan perangkat lunak komputer visi komputer berbasis Deep 

Learning dan deteksi objek real-time. Perusahaan ini terkenal karena library 

perangkat lunak YOLO (You Only Look Once) yang mereka kembangkan. YOLO 

merupakan salah satu pendekatan populer dalam deteksi objek yang memungkinkan 

pengguna untuk melakukan deteksi objek secara cepat dan akurat dalam aplikasi 

real-time. Ultralytics menyediakan perangkat lunak dan sumber daya yang 

membantu pengembang dan peneliti dalam mengimplementasikan deteksi objek 

menggunakan YOLO, serta terus mengembangkan dan meningkatkan kinerja 

model tersebut. (Ultralytics, 2021). 
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Gambar 2. 15 Logo ultralytics 

(Ultralytics, 2021) 

 

2.15.17 Sys 

Package `sys` dalam bahasa pemrograman Python adalah sebuah paket yang 

menyediakan akses ke fungsi dan variabel yang terkait dengan interpreter Python 

dan lingkungan sistem. Dengan package `sys`, pengembang dapat mengakses 

argumen baris perintah, mengelola jalur modul, mengontrol perilaku program, dan 

mendapatkan informasi tentang sistem operasi yang digunakan (Python, 2023). 

 
Gambar 2. 16 Logo modul sys python 

(Python, 2023) 

 

2.15.18 Scipy 

Scipy adalah sebuah library perangkat lunak open-source untuk bahasa 

pemrograman Python yang digunakan untuk komputasi ilmiah dan analisis data. 

Library ini menyediakan berbagai algoritma dan fungsi matematika yang kuat, 

termasuk optimisasi, integrasi numerik, transformasi Fourier, aljabar linear, 

statistik, pemrosesan sinyal, dan banyak lagi. Scipy memperluas fungsionalitas 

Python standar dengan menambahkan kemampuan komputasi numerik yang 

canggih, yang sangat berguna dalam penelitian ilmiah, analisis data, dan 
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pemodelan. Scipy digunakan secara luas dalam berbagai disiplin ilmu, seperti 

fisika, biologi, ekonomi, ilmu komputer, dan lain-lain (Jones, 2001).  

 

Gambar 2. 17 Logo Library SciPy 

 

2.15.19 Csv 

CSV dalam bahasa pemrograman Python adalah sebuah paket yang 

menyediakan fungsi-fungsi untuk membaca dan menulis file dalam format Comma-

Separated Values (CSV). CSV merupakan format yang umum digunakan untuk 

menyimpan data tabular, di mana nilai-nilai dalam setiap baris dipisahkan oleh 

tanda koma. Package CSV memudahkan pengembang dalam memanipulasi file 

CSV dengan menyediakan metode untuk membaca data dari file CSV ke dalam 

struktur data Python, serta menulis data dari struktur data Python ke dalam file 

CSV. Dengan menggunakan package CSV, pengembang dapat dengan mudah 

melakukan operasi seperti membaca, mengubah, atau menyimpan data dalam 

format CSV dengan cepat dan efisien  (A. Junaidi,2017). 

 

2.15.20 Os 

Package `os` dalam bahasa pemrograman Python adalah sebuah paket yang 

menyediakan fungsionalitas untuk berinteraksi dengan sistem operasi yang 

digunakan oleh komputer. Paket ini memungkinkan pengembang untuk melakukan 

berbagai operasi terkait sistem operasi, termasuk mengakses file dan direktori, 

mengatur variabel lingkungan, menjalankan perintah shell, dan banyak lagi. 

Dengan package ̀ os`, pengembang dapat dengan mudah mengelola file, melakukan 

manipulasi direktori, dan mengatur variabel lingkungan melalui bahasa 

pemrograman Python. Package `os` merupakan alat yang penting dalam 

pengembangan aplikasi yang melibatkan operasi system (Sridianti, 2022). 
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Gambar 2. 18 Logo Modul OS Python 

 

2.15.21 Warnings 

Package `warnings` dalam bahasa pemrograman Python adalah sebuah paket yang 

digunakan untuk mengelola dan mengontrol peringatan (warnings) yang muncul 

selama eksekusi program. Ketika suatu potensi masalah atau situasi yang tidak 

diharapkan terjadi selama proses eksekusi program, package `warnings` 

memungkinkan pengembang untuk memberikan peringatan kepada pengguna atau 

pengembang lain tentang situasi tersebut. Dengan package `warnings`, 

pengembang dapat mengatur tindakan yang diambil ketika peringatan muncul, 

seperti menampilkan pesan peringatan, mengabaikan peringatan, atau 

mengubahnya menjadi pengecualian (exception). Package `warnings` sangat 

berguna dalam pemeliharaan dan debug program, membantu pengembang untuk 

memperbaiki potensi masalah dan meningkatkan kualitas dan keandalan aplikasi 

(Python, 2023). 

 

2.15.22 Keras 

 Package `keras` dalam bahasa pemrograman Python adalah sebuah paket 

yang populer dan kuat untuk membangun dan melatih model jaringan saraf (neural 

network). Keras menyediakan antarmuka tingkat tinggi yang user-friendly untuk 

merancang dan mengimplementasikan berbagai jenis arsitektur jaringan saraf 

seperti jaringan saraf konvolusional (CNN), jaringan saraf rekurens (RNN), dan 

jaringan saraf yang dikombinasikan. Keras menyediakan beragam lapisan (layer), 

fungsi aktivasi, algoritma optimisasi, dan metrik evaluasi yang dapat digunakan 

dengan mudah untuk mengonstruksi model yang kompleks. Selain itu, Keras juga 
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menyediakan kemampuan untuk melatih dan menguji model dengan kumpulan data 

yang diberikan. Dengan pendekatan yang modular dan fleksibel, Keras 

mempermudah para pengembang dalam melakukan eksperimen, penyesuaian, dan 

peningkatan model jaringan saraf. (Chollet, 2015). 

 
 

2.15.23 Datetime 

 Package `datetime` dalam bahasa pemrograman Python adalah sebuah 

paket yang menyediakan fungsionalitas untuk mengelola, memanipulasi, dan 

bekerja dengan tanggal (date) dan waktu (time). Package ini menyediakan kelas-

kelas seperti `datetime`, `date`, `time`, `timedelta`, dan `tzinfo` yang 

memungkinkan pengembang untuk melakukan operasi seperti membuat objek 

tanggal dan waktu, mengekstrak komponen tanggal dan waktu (seperti tahun, bulan, 

hari, jam, menit, dan detik), melakukan operasi aritmatika pada tanggal dan waktu, 

memformat dan memparse tanggal dan waktu dalam berbagai format, serta 

mengubah zona waktu. Package `datetime` sangat berguna dalam pengembangan 

aplikasi yang memerlukan manipulasi dan pengaturan tanggal dan waktu dengan 

presisi dan keakuratan (Rosihan, 2018). 

 

2.15.24 Math 

Package `math` dalam bahasa pemrograman Python adalah sebuah paket 

yang menyediakan berbagai fungsi matematika yang umum digunakan. Package 

ini memberikan akses ke berbagai fungsi matematika dasar seperti trigonometri, 

logaritma, eksponensial, akar kuadrat, pembulatan, dan banyak lagi. Dengan 

package `math`, pengembang dapat melakukan operasi matematika kompleks 

dengan mudah, package ini menjadi alat yang penting dalam pengembangan 

aplikasi yang memerlukan manipulasi dan perhitungan matematika, seperti fisika, 

statistik, grafika, atau pemodelan matematika (Python, 2023). 
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BAB III 

ANALISIS DAN PERANCANGAN SISTEM 

 

3.1. Alur Penelitian 

Proyek Tugas Akhir ini bertujuan untuk mengembangkan metode Geo-

tagging menggunakan Artificial Neural Network dengan memprediksi koordinat 

tanaman kakao pada citra serta mendeteksi buah kakao untuk melakukan 

penghitungan otomatis buah pada tanaman kakao. Alur penelitian dari proyek ini 

dapat dilihat pada Gambar 3.1. 

 

 
Gambar 3.1 Alur Penelitian 
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Penelitian akan dimulai dengan mengidentifikasi masalah, dengan tujuan 

agar peneliti dapat mengetahui permasalahan yang dibahas pada penelitian ini. 

Selanjutnya, akan dilakukan studi pustaka untuk mempelajari penelitian beberapa 

tahun terakhir terkait topik penelitian ini. Beberapa dasar-dasar teori yang 

berhubungan juga akan dipelajari untuk mengetahui metode yang tepat untuk 

menyelesaikan permasalahan. Pada tahap selanjutnya, dilakukan pengumpulan 

data-data citra tanaman kakao yang akan digunakan untuk menguji akurasi model 

estimasi jarak tanaman kakao dan membangun model estimasi koordinat tanaman 

kakao berbasis Artificial Neural Network (ANN) untuk metode Geotagging. 

Kemudian citra-citra tersebut digunakan pula untuk melakukan pelatihan model 

CNN untuk mendeteksi buah kakao yang ada pada tanaman, untuk dilakukan 

penghitungan buah pada setiap tanaman kakao. 

 

3.2. Analisis Kebutuhan 

Pengembangan metode geotagging yang dikerjakan membutuhkan analisis 

agar penelitian berjalan dengan baik dan lancar. Analisis yang dilakukan untuk 

perancangan dan pengembangan model geotagging tanaman kakao, kebutuhan 

perangkat keras dan perangkat lunak pada sisi pengguna dan peneliti. 

 

3.2.1. Kebutuhan Pengguna 

Analisis kebutuhan diperoleh berdasarkan tujuan penelitian yaitu 

pengembangan metode geotagging pada tanaman kakao. Pengembangan model 

geotagging untuk melakukan estimasi koordinat tanaman kakao dapat digunakan 

pada aplikasi mini berbasis web. Model Geotagging akan menerima input citra yang 

memiliki informasi koordinat pengambilan gambar. Lalu model akan melakukan 

estimasi jarak tanaman kakao pada citra. Setelah itu, arsitektur ANN akan 

melakukan estimasi koordinat tanaman kakao berdasarkan koordinat pengambilan 

citra dan jarak tanaman kakao. Pengguna dapat menggunakan smartphone untuk 

mengambil citra tanaman kakao. Lalu hasil estimasi koordinat tanaman kakao akan 

ditampilkan. Pada penelitian ini akan dikembangkan pula metode kuantifikasi 

otomatis untuk mendapatkan jumlah buah pada tanaman kakao. Teknologi yang 
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akan digunakan yaitu CNN YOLO untuk mendeteksi buah pada tanaman kakao. 

Sehingga buah-buah yang terdeteksi akan dihitung, lalu akan ditampilkan jumlah 

buah pada tanaman kakao. 

 

3.2.2. Kebutuhan Peneliti 

Berikut terdapat beberapa perangkat keras dan perangkat lunak yang 

digunakan oleh peneliti dalam melakukan penelitian ini. 

1. Perangkat Keras 

a. Laptop Mac Book Air M1 2020 

i. Prosesor  : Apple M1 

ii. RAM  : 8 GB 

iii. SSD  : 512 GB 

iv. Sistem Operasi : macOS Monterey 

b. Smartphone Samsung Galaxy A6 2018 

i. Prosesor  : Exynos 7870 Octa 

ii. RAM  : 3 GB 

iii. Internal Storage : 32 GB 

iv. Lensa Kamera : 16 MP, f/1.7, 26mm (wide) 

v. Sistem Operasi : Android 8.0 (Oreo) 

2. Perangkat Lunak 

a. Python 3 

b. Google Colaboratory 

c. Visual Studio Code 

 

3.3. Identifikasi Masalah 

Masalah utama sistem monitoring perkebunan kakao saat ini adalah, dengan 

menggunakan foto udara (aerial) tidak banyak informasi terkait tanaman kakao 

yang dapat diekstrak. Karena, apabila dilihat dari atas kebanyakan tanaman kakao 

tertutup oleh tanaman penaungnya. Masalah utama yang saat ini dihadapi, belum 

ada teknologi yang murah untuk melakukan koleksi data spasial terkait tanaman 

kakao di perkebunan untuk sistem monitoring perkebunan. 
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3.4. Studi Pustaka 

Dalam tahap ini, peneliti akan melakukan studi pustaka terkait dengan 

geotagging otomatis dan penghitungan otomatis buah kakao. Tujuan dari studi 

pustaka ini adalah untuk menemukan metode dan langkah-langkah yang dapat 

digunakan dalam penelitian ini. Peneliti akan mencari dan mengumpulkan 

informasi dari penelitian terdahulu yang telah dilakukan dan relevan dengan topik 

penelitian ini. Ringkasan hasil studi pustaka akan ditampilkan pada tabel 3.1 yang 

berisi informasi singkat mengenai penelitian terdahulu yang digunakan sebagai 

acuan dalam penelitian ini. 

 

Tabel 3. 1 Studi Pustaka 

No Topik Pengetahuan Temuan 

1 Akurasi 

GPS 

Perangkat Telepon 

Genggam memiliki 

akurasi yang cukup 

baik 

Berdasarkan studi yang dilakukan, 

perangkat telepon genggam (iPhone 

6) memiliki rata-rata error pada 

rentang 7-13 m. Sedangkan 

geotagging yang akan dilakukan 

memerlukan akurasi pada tingkat 

sentimeter. (Merry, 2019) 

2 Estimasi 

Kedalaman 

Model CNN untuk 

melakukan Estimasi 

Kedalaman dapat 

digunakan untuk 

memprediksi jarak 

objek pada Citra 

Model CNN berbasis segmentasi 

(dengan arsitektur U-Net) dapat 

digunakan untuk melakukan estimasi 

kedalaman pada citra. (Godard, 

2019) 

3 Deteksi 

Buah 

Kakao 

Otomatis 

Model CNN YOLO 

dapat digunakan 

untuk mendeteksi 

Buah Kakao 

Model CNN dengan arsitektur 

YOLO-v5 dapat melakukan deteksi 

fenotip polong kedelai, termasuk 

klasifikasi dan kuantifikasi jumlah 

polong berdasarkan klasifikasinya. 

(Fu, 2022). 
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3.5. Pengumpulan Data 

Berikut gambar 3.2 yang menjelaskan alur pengumpulan data yang akan 

dilakukan pada penelitian ini. 

 
Gambar 3.2 Alur Pengumpulan Data 

 

Pengumpulan data dalam penelitian ini dimulai dengan pemilihan objek 

yang memiliki bentuk yang menyerupai tiang atau tongkat. Pemilihan objek juga 

mempertimbangkan lingkungan sekitar objek. Khususnya lingkungan yang menjadi 
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latar belakang objek. Latar belakang yang memiliki warna mirip dengan objek akan 

mempersulit proses segmentasinya. Sehingga perlu dicari objek yang berada pada 

lingkungan dengan latar belakang yang bersih. Artinya, tidak banyak objek yang 

mirip dengan objek tiang serta terdapat perbedaan warna yang jelas antara objek 

dan lingkungan sekitarnya. 

Objek yang menyerupai tiang dipilih karena objek dengan bentuk tersebut 

mudah dikenali oleh model CNN dan mampu memberikan hasil estimasi 

kedalaman yang optimal. Selanjutnya, jarak antara objek dan kamera diatur pada 

rentang 0,5-2 meter. Rentang jarak ini dipilih karena jarak yang terlalu dekat atau 

jauh dapat mempengaruhi kualitas hasil estimasi kedalaman yang diperoleh. 

Setelah jarak antara objek dan kamera diatur, dilakukan pencatatan jarak 

antara objek dan kamera pada kertas kecil. Pencatatan ini dilakukan untuk 

memastikan bahwa jarak antara objek dan kamera telah sesuai dengan rentang yang 

ditentukan sebelumnya. Selanjutnya, dilakukan pengambilan gambar bersama 

dengan objek yang telah dipilih sebelumnya. Pada tahap ini, dilakukan pencatatan 

titik koordinat kamera saat pengambilan gambar dan titik koordinat objek. 

Tahapan terakhir dalam pengumpulan data adalah mengunggah gambar 

yang telah diambil bersama dengan data koordinat kamera dan objek ke dalam 

sistem yang digunakan untuk analisis data lebih lanjut. Proses pengunggahan ini 

dilakukan agar data dapat diakses dan dianalisis dengan lebih mudah dan efektif. 

Dengan demikian, pengumpulan data yang dilakukan dengan metode ini dapat 

menghasilkan data yang akurat dan dapat digunakan untuk analisis lebih lanjut 

dalam berbagai aplikasi yang memerlukan estimasi kedalaman. 

 

3.6. Desain Sistem 

Pada tahapan ini, penulis memaparkan desain sistem yang akan dilakukan 

pada penelitian ini. Gambar 3.6 menjelaskan desain sistem terkait sistem prediksi 

jarak objek pada citra. Gambar 3.7 menjelaskan desain sistem mengenai sistem 

prediksi koordinat tanaman kakao pada citra. Sedangkan pada gambar 3.8 
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dijelaskan sistem estimasi jumlah buah kakao dengan melakukan deteksi buah 

kakao lalu menghitung jumlah buah yang terdeteksi. 

 
Gambar 3.3 Desain Sistem Keseluruhan 

 

Gambar 3.3 menjelaskan terkait Desain Sistem secara utuh. Tahap pertama 

yang dilakukan sistem yaitu melakukan prediksi jarak tanaman kakao dari kamera. 

Nilai jarak ini kemudian digunakan bersama titik koordinat kamera untuk 

memprediksi titik koordinat dari objek tanaman kakao. Lalu pada tahap terakhir 

dilakukan deteksi objek buah kakao untuk melakukan penghitungan buah kakao 

secara otomatis. Ilustrasi keseluruhan desain sistem dapat dilihat pada gambar 3.4 

dan 3.5. 

 
Gambar 3.4 Visualisasi Desain Sistem 
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Gambar 3.5 Visualisasi Alur Sistem Keseluruhan
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3.6.1. Desain Sistem Prediksi Jarak Objek pada Citra 

Pada tahap ini akan dijelaskan desain sistem prediksi jarak objek yang akan 

digunakan pada penelitian ini (dapat dilihat pada gambar 3.6). Model CNN 

monocular depth estimation digunakan pada penelitian ini, model tersebut 

dikembangkan oleh Godard (2019). Model CNN tersebut merupakan model yang 

dikembangkan menggunakan arsitektur U-Net untuk melakukan segmentasi objek 

kemudian memprediksi kedalaman dari setiap objek. 

 

 
Gambar 3.6 Desain Sistem Metode Prediksi Jarak Objek pada Citra 

 

3.6.2. Desain Sistem Prediksi Koordinat Tanaman Kakao pada Citra 

Pada tahap ini, akan dipaparkan sistem prediksi koordinat tanaman kakao 

pada citra (dapat dilihat pada gambar 3.7). Dalam proses ini, data citra yang telah 

diambil akan dimanfaatkan untuk melakukan proses ekstraksi fitur. Teknik 

pengolahan citra seperti segmentasi, ekstraksi tekstur, dan ekstraksi bentuk 

digunakan untuk mengidentifikasi dan memperoleh fitur-fitur yang relevan dari 

citra tersebut. Setelah fitur-fitur ini diperoleh, langkah selanjutnya adalah 

menerapkan algoritma prediksi yang telah dirancang. Algoritma ini dapat 

melibatkan pendekatan machine learning seperti pengklasifikasi atau regresi, yang 

memungkinkan sistem untuk memprediksi koordinat tanaman kakao dengan tingkat 

akurasi yang tinggi. Dengan menggunakan sistem prediksi ini, pemantauan 

pertumbuhan dan perkembangan tanaman kakao dapat dilakukan secara efisien dan 

otomatis, membantu para petani dan peneliti dalam mengoptimalkan produksi dan 

perawatan tanaman kakao. 

 

 
Gambar 3.7 Desain Sistem Metode Prediksi Koordinat Tanaman Kakao 
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3.6.3. Desain Sistem Estimasi Jumlah Buah Kakao 

Tahap ini merupakan paparan mengenai sistem estimasi jumlah buah kakao. 

Diagram alur desain sistem estimasi jumlah buah kakao terdapat pada Gambar 3.8. 

Untuk mengembangkan model CNN, diperlukan pelatihan menggunakan data set 

mengenai objek terkait. Pada penelitian ini, objek yang akan dideteksi adalah buah 

kakao. Sehingga tahap pertama yang diperlukan yaitu mengumpulkan dan 

menandai buah kakao pada citra tanaman kakao. Dataset buah kakao memiliki 2 

kelas yaitu kelas buah kakao yang sudah matang dan kelas buah kakalo yang belum 

matang. Setelah itu, tanda / anotasi buah kakao beserta citra tanaman kakao akan 

digunakan pada tahap pelatihan model CNN YOLO. Setelah pelatihan selesai 

dilakukan, maka dihasilkan sebuah model CNN YOLO yang dapat mendeteksi 

buah kakao serta prediksi status kematangan buah tersebut. Buah-buah yang 

berhasil dideteksi oleh model CNN YOLO akan dihitung. 

 

 
Gambar 3.8 Desain Sistem Metode Estimasi Jumlah Buah Kakao 

 

3.7. Pengujian Arsitektur 

Pada tahap pengujian arsitektur akan dilakukan beberapa percobaan untuk 

menguji akurasi dari sistem prediksi jarak, sistem prediksi koordinat serta sistem 

estimasi jumlah buah kakao. 

 

3.7.1. Pengujian Sistem Prediksi Jarak Objek pada Citra 

Untuk mengetahui akurasi nilai output dari sistem prediksi jarak objek pada 

citra maka pada penelitian ini digunakan parameter Mean Absolute Error (MAE) 

dan Mean Squared Error (MSE). 
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3.7.2. Pengujian Sistem Prediksi Koordinat Tanaman Kakao pada Citra 

Untuk mengetahui akurasi nilai output dari sistem prediksi koordinat berupa 

longituda dan latitude tanaman kakao pada citra maka pada penelitian ini digunakan 

parameter Mean Absolute Error (MAE) dan Mean Squared Error (MSE). 

 

3.7.3. Pengujian Sistem Estimasi Jumlah Buah Kakao 

Untuk mengetahui akurasi hasil deteksi objek pada sistem estimasi jumlah 

buah kakao akan digunakan metrik Intersection over Union (IoU). IoU mengukur 

seberapa banyak area yang tumpang tindih antara bounding box atau masker 

prediksi dengan bounding box atau masker acuan. 
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BAB IV HASIL DAN PEMBAHASAN 

 

4.1. Dataset 

Pada penelitian ini, dilakukan pengumpulan data untuk membangun dataset 

yang akan digunakan dalam proses pelatihan model Artificial Neural Network 

(ANN) untuk memprediksi jarak serta model Convolutional Neural Network (CNN) 

YOLO untuk mendeteksi buah kakao. Pengumpulan data dilakukan dengan cara 

mengambil sampel gambar-gambar buah kakao yang sudah matang dan yang belum 

matang. Selama proses pengumpulan data, gambar-gambar tersebut diolah dan 

diberikan anotasi. Anotasi ini mencakup informasi mengenai koordinat atau 

bounding box yang menandai letak buah kakao pada gambar, serta label yang 

menunjukkan jenis atau kelas buah kakao yang terdeteksi. Setelah pengumpulan 

data selesai, dataset yang terdiri dari gambar-gambar dan anotasinya akan 

digunakan dalam proses pelatihan model. Model ANN akan dilatih menggunakan 

data jarak antara kamera dan buah kakao sebagai input, serta data yang sesuai 

dengan jarak tersebut sebagai output yang diharapkan. Sementara itu, model CNN 

YOLO akan dilatih menggunakan gambar-gambar buah kakao beserta anotasinya. 

Proses pelatihan ini bertujuan untuk mengajarkan model untuk mendeteksi dan 

mengidentifikasi buah kakao dalam gambar. 

 

4.1.1. Pembuatan Dataset Nilai Rgb dan Jarak Objek 

Pembuatan dataset dimulai dengan mencari objek yang menyerupai tiang 

untuk menggantikan batang tanaman kakao. Setelah objek yang sesuai ditemukan, 

jarak antara kamera dan objek ditentukan. Setelah jarak kamera dengan objek 

ditentukan, citra diambil menggunakan kamera atau perangkat lainnya. Pada 

langkah ini, citra yang telah diambil akan diproses menggunakan model CNN 

monodepth estimation. Model ini akan memperkirakan kedalaman objek 

berdasarkan nilai RGB pada citra. Setelah estimasi kedalaman dilakukan, 

ditentukan titik koordinat piksel (x, y) pada area objek yang diestimasi 
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kedalamannya. Titik koordinat ini akan digunakan dalam proses segmentasi 

selanjutnya. Pada langkah ini, model CNN segment anything digunakan untuk  

melakukan segmentasi pada citra hasil estimasi kedalaman. Model CNN segment 

anything melakukan proses segmentasi berdasarkan titik koordinat yang telah 

ditentukan. Titik tersebut menjadi dasar penunjuk objek yang akan disegmentasi 

areanya. Segmentasi akan mengidentifikasi bagian objek yang menyerupai tiang 

dan memisahkannya dari latar belakang. Setelah proses segmentasi, nilai RGB pada 

bagian objek yang diidentifikasi akan diperoleh. Nilai RGB ini merupakan warna 

piksel pada citra hasil estimasi kedalaman. Setelah mendapatkan kumpulan nilai 

RGB, nilai median dari kumpulan tersebut diambil. Nilai median memberikan 

representasi warna tengah dari kumpulan tersebut, yang akan digunakan sebagai 

representasi nilai RGB untuk jarak objek yang diestimasi. Setelah semua langkah 

di atas dilakukan untuk setiap objek yang dipilih, data yang terkumpul ditambahkan 

ke dataset. Setiap data terdiri dari pasangan nilai RGB (nilai median) dan jarak 

kamera terhadap objek yang sesuai. 

 
Gambar 4.1 Alur Pembuatan Dataset 
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4.1.2. Profil Dataset Nilai RGB dan Jarak Objek 

Pada penelitian ini, terdapat dataset yang berisi pasangan nilai 

Red,Green,Blue (RGB) terhadap jarak objek dalam satuan meter. Namun, perlu 

dicatat bahwa nilai RGB yang ada dalam dataset tersebut bukanlah nilai RGB dari 

citra asli, melainkan nilai RGB yang berasal dari proses estimasi kedalaman 

menggunakan model CNN monodepth estimation. Nilai RGB akan digunakan 

sebagai input untuk memperkirakan jarak objek. Proses estimasi kedalaman 

menggunakan model CNN monodepth estimation. Dataset ini terdiri dari 112 data, 

dimana setiap data terdiri dari nilai RGB dan jarak objek yang sesuai. 

 

Tabel 4.1 Dataset RGB dan Jarak Objek 

id r g b distance 

0 251.0 138.0 99.0 2.90 

1 141.0 41.0 128.0 4.22 

2 220.0 72.0 107.0 1.00 

3 80.0 18.0 123.0 3.00 

4 225.0 76.0 103.0 3.75 

... ... ... ... ... 

110 222.0 75.0 124.0 2.70 

111 252.0 158.0 112.0 1.20 

112 156.0 46.0 126.0 2.40 

 

4.1.3. Dataset Buah Kakao 

Dataset Buah Kakao dilakukan dengan melakukan pengambilan citra di 

perkebunan kakao yang terletak di Puslitkoka, Jember. Dilakukan pengambilan 

citra pada tanaman kakao yang sedang berbuah baik yang buahnya sudah matang 

maupun yang belum matang. Pengambilan citra juga divariasikan jaraknya yaitu 

pada rentang jarak sebesar 0,8 hingga 2,8 m sesuai dengan variasi yang terdapat 

pada dataset nilai rgb dan jarak objek (Bab 4.1.2). Dataset Buah Kakao terdiri dari 
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total 67 gambar buah kakao dengaan 446 anotasi. Untuk melakukan proses training 

digunakan 46 gambar (sekitar 69% dari total dataset). Selanjutnya, untuk 

memvalidasi performa model, 13 gambar (sekitar 19% dari total dataset) akan 

digunakan sebagai validation set. Terakhir, 8 gambar (sekitar 12% dari total dataset) 

akan dijadikan sebagai test set untuk menguji akurasi model yang telah dilatih. 

Dalam setiap gambar, terdapat rata-rata 6 anotasi (label) untuk buah kakao. Dataset 

ini memiliki dua kelas, yaitu buah kakao matang dan belum matang. Dengan 

pembagian ini, diharapkan model dapat mempelajari dan mengklasifikasikan 

gambar-gambar buah kakao dengan akurasi yang tinggi. 

 

 
Gambar 4.2 Semua Dataset 

 

Secara keseluruhan, jumlah anotasi pada kedua kelas, yaitu kelas cocoa matang 

(ripe cocoa) dan kelas cocoa belum matang (unripe cocoa), tergolong cukup 

seimbang. Terdapat 227 anotasi pada kelas cocoa matang dan 217 anotasi pada 

kelas cocoa belum matang. Perbedaan jumlah anotasi antara kedua kelas tersebut 

tidak terlalu signifikan. 

 

 
Gambar 4.3 Pembagian Dataset untuk Train 

 

Data pelatihan ini memiliki jumlah sampel yang cukup representatif untuk kedua 

kelas, yaitu 171 sampel pada kelas cocoa matang (ripe cocoa) dan 130 sampel pada 

kelas cocoa belum matang (unripe cocoa). Dengan jumlah yang seimbang antara 

kedua kelas, model pembelajaran mesin dapat mempelajari pola dan informasi yang 

relevan dari masing-masing kelas. Dengan menggunakan data pelatihan yang 

representatif ini, model yang dihasilkan memiliki kemampuan yang lebih baik 

dalam mengklasifikasikan cocoa berdasarkan tingkat kematangannya. 
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Gambar 4.4 Pembagian Dataset untuk Valid 

 

Dataset validasi yang mencakup kedua kelas, yaitu cocoa matang (ripe cocoa) 

dengan 24 sampel dan cocoa belum matang (unripe cocoa) dengan 47 sampel, 

memungkinkan pengujian kehandalan model dalam mengklasifikasikan tingkat 

kematangan cocoa. Evaluasi menggunakan dataset validasi ini memberikan 

gambaran yang lebih akurat tentang kemampuan model dalam dunia nyata. 

 

 
Gambar 4.5 Pembagian Dataset untuk Test 

 

Pada dataset uji (test set), terdapat 32 sampel anotasi pada kelas cocoa matang (ripe 

cocoa) dan 40 sampel anotasi pada kelas cocoa belum matang (unripe cocoa). 

Dataset uji ini digunakan untuk menguji performa model yang telah dilatih pada 

data pelatihan dan divalidasi pada data validasi. Dengan menggunakan dataset uji 

yang mencakup kedua kelas, model dapat dievaluasi lebih lanjut dalam 

kemampuannya mengklasifikasikan cocoa berdasarkan tingkat kematangannya.  

 

4.2. Eksperimen Model ANN Prediksi Jarak Objek pada Citra 

Pada penelitian ini, dilakukan beberapa percobaan pelatihan Artificial 

Neural Network (ANN) untuk mengetahui korelasi antara variabel RGB piksel 

dengan jarak aktualnya. Percobaan ini menggunakan model CNN Monodepth 

Estimation yang menghasilkan citra RGB dengan nilai yang sangat bervariasi. 

Percobaan dilakukan dengan menggunakan dua jenis optimizer, yaitu Adamax dan 

SGD. Optimizer digunakan untuk mengatur proses pembelajaran ANN dengan 

menyesuaikan bobot dan bias agar mencapai hasil yang optimal. Model akan dilatih 

dengan sebanyak 112 data. 
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Selain itu, juga dilakukan variasi pada 3 jumlah epoch (1000, 3000, 5000) 

dan 3 variasi batch size (1, 7, 15). Epoch merupakan iterasi yang dilakukan saat 

melatih model, sedangkan batch size menentukan jumlah sampel yang digunakan 

dalam satu iterasi. Dengan menggabungkan variasi optimizer, epoch, dan batch 

size, percobaan ini bertujuan untuk mencari kombinasi yang paling baik dalam 

menghasilkan model ANN yang dapat memprediksi jarak aktual berdasarkan nilai 

RGB piksel. Sebagai tambahan informasi, pada pengembangan model ANN ini 

digunakan Mean Absolute Error (MAE) sebagai loss metric untuk mengetahui 

akurasi model yang telah dilatih. Sebagai acuan, pada penelitian ini telah disepakati 

untuk mengembangkan model ANN yang memiliki nilai MAE dibawah 0.3. 

Adapun arsitektur ANN yang akan digunakan dapat dilihat pada gambar 4.6. 

 

 
Gambar 4.6 Arsitektur Model ANN 
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Dari kombinasi epoch, batch size serta optimizer dihasilkan 18 model ANN berikut. 

 

4.2.1. Model ANN dengan Optimizer Adamax dan Batch Size 1 

Pada model ANN ini, digunakan optimizer Adamax dengan parameter batch size 

sebesar 1. Dilakukan training sampai dengan epoch ke 1000. Setelah melalui 

pelatihan awal yang berlangsung hingga mencapai 1000 epoch, ditemukan bahwa   

nilai Mean Absolute Error (MAE) model sebesar 0.577566921710968. Data histori 

pelatihan model dapat dilihat pada gambar 4.7. 

 
Gambar 4.7 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 1000 

 

Meskipun demikian, belum terlihat perbaikan yang signifikan pada nilai loss baik 

pada data latih maupun data uji. Nilai loss test tidak menurun secara signifikan dan 

terus berubah pada kisaran 1 hingga 0,9. Sedangkan nilai loss train mengalami 

penurunan sedikit dari 0,6 menjadi 0,577. Meskipun penurunannya tidak signifikan, 

terdapat perbaikan nilai yang terjadi. Namun nilai MAE 0,577 masih terlalu besar 

dari acuan awal. Proses training dilanjutkan pada epoch 1000 hingga 3000. Pada 

gambar 4.8 akan disajikan hasil perbaikan nilai loss train dan test pada epoch 3000. 
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Gambar 4.8 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 3000 

 

Setelah melatih model ini hingga epoch 3000, terlihat indikasi bahwa model 

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss 

pada data uji (test) dan data latih (train). Namun, meskipun demikian, model ini 

berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai 

dengan target yang diinginkan, yaitu 0,24485. Selanjutnya pelatihan model 

dilanjutkan pada epoch 3000 hingga 5000. Hasil pelatihan tersebut dapat dilihat 

pada gambar 4.9. 
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Gambar 4.9 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 5000 

 

Setelah dilakukan pelatihan ulang hingga epoch 5000, model ini terindikasi 

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss 

pada data test dan data train. Tidak terlihat adanya perbaikan yang signifikan pada 

nilai loss juga. Nilai loss pada data test bervariasi antara 0,4 hingga 0,8, sedangkan 

nilai loss pada data train berkisar antara 0,2 hingga 0,4. Meskipun demikian, model 

ini berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai 

dengan target yang diinginkan, yaitu sebesar 0,2388. 

  



64 
 

4.2.2. Model ANN dengan Optimizer Adamax dan Batch Size 7 

Eksperimen dilanjutkan dengan melakukan pelatihan model menggunakan 

optimizer Adamax dan menggunakan batch size sebesar 7. Pelatihan model 

dilakukan hingga epoch 1000. Hasil dari pelatihan tersebut dapat dilihat pada 

gambar 4.10. 

 
Gambar 4.10 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7 

pada epoch 1000 

 

Pada grafik terlihat terjadi penurunan nilai loss yang signifikan pada proses train 

dan test. Hal ini mengindikasikan adanya perbaikan akurasi model. Nilai loss test 

awalnya berkisar pada 0,7, namun mengalami penurunan yang signifikan hingga 

mencapai kisaran nilai 0,35 pada epoch 800. Sementara itu, nilai loss train juga 

mengalami penurunan yang signifikan, dimulai dari kisaran 0,4 dan mencapai 

kisaran 0,35 pada epoch 1000. Meskipun nilai tersebut masih lebih tinggi 

dibandingkan dengan acuan yang ingin dicapai, pada proses pelatihan ini model 
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berhasil memperbaiki loss dengan baik. Pelatihan pada model ini dilanjutkan 

hingga epoch 3000. Hasil dari pelatihan tersebut akan disajikan pada gambar 4.11. 

 
Gambar 4.11 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7 

pada epoch 3000 

 

Pada grafik terlihat terjadi perbedaan antara tren grafik train dan test. Grafik test 

cenderung meningkat sedangkan grafik train cenderung menurun. Nilai test naik 

dari kisaran 0,4 hingga 0,55, sementara nilai train menurun dari kisaran 0,35 hingga 

0,2. Hal ini merupakan indikasi yang kuat terjadinya overfitting. Namun, model ini 

berhasil mencatatkan nilai MAE yang cukup baik, yaitu sebesar 0,27245. Nilai 

MAE tersebut lebih kecil dibandingkan dengan nilai MAE acuan yang ingin 

dicapai. Pelatihan kembali dilanjutkan hingga epoch 5000. Hasil pelatihan tersebut 

akan disajikan pada gambar 4.12. 
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Gambar 4.12 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7 

pada epoch 5000 

 

Dapat dilihat pada grafik di atas, terjadi perbaikan model yang signifikan antara 

epoch 3000 hingga 3800. Nilai test dan train secara bersamaan mengalami 

penurunan. Namun, setelah epoch 3800, nilai train terus menurun sementara nilai 

test kembali meningkat dan berkisar pada 0,5. Model ini berhasil mencapai MAE 

yang sesuai dengan acuan awal, yaitu sebesar 0,28234. 

 

4.2.3. Model ANN dengan Optimizer Adamax dan Batch Size 15 

Pada model Artificial Neural Network (ANN) ini, digunakan optimizer Adamax 

dengan parameter batch size sebesar 15. Dilakukan pelatihan model hingga 

mencapai epoch ke-1000. Dalam proses tersebut, dilakukan optimisasi 

menggunakan optimizer Adamax. Pelatihan dimulai hingga epoch 1000, hasil 

pelatihan tersebut akan disajikan pada gambar 4.13. 
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Gambar 4.13 Grafik Loss Model ANN dengan optimizer adamax dan batch size 

15 pada epoch 1000 

 

Pelatihan awal ini berhasil memperbaiki model dengan signifikan, terlihat dari 

penurunan nilai loss baik pada data train maupun data test. Pada epoch 1000, model 

ini mencapai nilai MAE sebesar 0,37186. Meskipun nilai MAE tersebut masih lebih 

besar dari acuan awal yang ditetapkan, tidak terlihat indikasi overfitting maupun 

underfitting pada model tersebut. Hal ini menunjukkan bahwa model tersebut dapat 

secara baik menyesuaikan diri dengan data pelatihan tanpa kehilangan kemampuan 

umum untuk memprediksi data baru. Pelatihan model ini dilanjutkan hingga epoch 

3000. Hasil pelatihan tersebut akan disajikan pada gambar 4.14. 
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Gambar 4.14 Grafik Loss Model ANN dengan optimizer adamax dan batch size 

15 pada epoch 3000 

 

Pada pelatihan ini, terdapat indikasi bahwa model mengalami overfitting. Terlihat 

adanya penyimpangan pada sekitar epoch 1600, di mana nilai test cenderung 

meningkat sedangkan nilai train cenderung menurun. Model ini mencatatkan nilai 

MAE sebesar 0,317, yang masih lebih besar dari acuan awal yang ditetapkan. 

Selanjutnya, model akan dilatih kembali hingga epoch 5000, dan hasil pelatihan 

tersebut akan ditampilkan pada gambar 4.15. 
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Gambar 4.15 Grafik Loss Model ANN dengan optimizer adamax dan batch size 

15 pada epoch 5000 

 

Pada pelatihan ini, terjadi penurunan yang cukup signifikan pada epoch 3000 

hingga 3750. Nilai test dan train secara bersamaan mengalami perbaikan nilai. 

Namun, pada epoch 3750 hingga 4500, tidak terjadi perbaikan nilai yang signifikan. 

Kemudian, pada epoch 4500 hingga 5000, terdapat indikasi overfitting di mana nilai 

test cenderung meningkat sedangkan nilai train cenderung menurun. 

Berdasarkan eksperimen yang telah dilakukan, optimizer Adamax berhasil 

menghasilkan perbaikan nilai yang signifikan pada epoch 0 hingga 1000. Pada 

beberapa kasus lainnya, seperti pada epoch 3000 hingga 4000, juga terjadi 

perbaikan nilai yang signifikan. Namun, pada epoch 1000 hingga 3000 dan 4000 

hingga 5000, sering terjadi overfitting pada model. Keterbatasan jumlah data juga 

menjadi faktor yang mempersulit perbaikan model pada epoch di atas 1000. Oleh 

karena itu, melalui eksperimen berbagai kombinasi pelatihan model, akan dicari 
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model yang memiliki nilai MAE terendah. Terdapat 2 model dengan nilai MAE 

terendah yakni model yang dilatih menggunakan optimizer adamax dengan batch 

size 1 pada epoch 3000 dan 5000. Model pada epoch 3000 memiliki nilai MAE 

sebesar 0.2448507845401764 sedangkan model pada epoch 5000 memiliki nilai 

MAE sebesar 0.23888996243476868. Namun kedua model tersebut terindikasi 

mengalami overfitting. Adapun model lainnya yang memiliki nilai loss mae 

terendah namun tidak mengalami indikasi overfitting yakni model dengan 

optimizer adamax dan batchsize sebesar 7 pada epoch 1000. Model tersebut 

memiliki nilai mae sebesar 0.333776. 

 

4.2.4. Model ANN dengan Optimizer SGD dan Batch Size 1 

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size 

sebesar 1. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan 

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki 

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada 

indikasi terjadinya overfitting atau underfitting pada model. 

 
Gambar 4.16 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1 

pada epoch 1000 
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Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.16, 

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini 

memiliki akurasi MAE sebesar 0.385, yang masih sedikit jauh dari acuan awal yang 

telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. Hasil 

pelatihan tersebut dapat dilihat pada gambar 4.17. 

 
Gambar 4.17 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 3000 

 

Seperti yang terlihat pada Gambar 4.16, tidak terjadi perbaikan yang signifikan 

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan 

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.45 hingga 0.7, 

sementara nilai loss MAE pada train hanya berkisar antara 0.3 hingga 0.4. Model 

mencatatkan nilai MAE sebesar 0.37452, dimana nilai tersebut yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan. Pelatihan model kembali dilanjutkan 

hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 4.18. 
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Gambar 4.18 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1 

pada epoch 5000 

 

Seperti yang terlihat pada Gambar 4.17, tidak terjadi perbaikan yang signifikan 

pada model. Namun nilai loss pada train mengalami penurunan sedikit demi sedikit. 

Nilai loss MAE pada test berkisar antara 0.45 hingga 0.7, sementara nilai loss MAE 

pada train hanya berkisar pada nilai 0.4. Model mencatatkan nilai MAE sebesar 

0.3702, dimana nilai tersebut yang masih sedikit jauh dari acuan awal yang telah 

ditetapkan. 

 

4.2.5. Model ANN dengan Optimizer SGD dan Batch Size 7 

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size 

sebesar 7. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan 

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki 
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performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada 

indikasi terjadinya overfitting atau underfitting pada model. 

 
Gambar 4.19 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 

pada epoch 1000 

 

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.19, 

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini 

memiliki akurasi MAE sebesar 0.3773933, yang masih sedikit jauh dari acuan awal 

yang telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. 

Hasil pelatihan tersebut dapat dilihat pada gambar 4.20. 
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Gambar 4.20 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 

pada epoch 3000 

 

Seperti yang terlihat pada Gambar 4.20. tidak terjadi perbaikan yang signifikan 

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan 

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6, 

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model 

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan 

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali 

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 

4.21. 
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Gambar 4.21 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 

pada epoch 5000 

 

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.21, 

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya 

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.4. Sedangkan nilai 

train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada 

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.3569, yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan.   
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4.2.6. Model ANN dengan Optimizer SGD dan Batch Size 15 

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size 

sebesar 15. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan 

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki 

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada 

indikasi terjadinya overfitting atau underfitting pada model. 

 
Gambar 4.22 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 

pada epoch 1000 

 

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.22, nilai 

loss mae test mengalami penurunan yang awalnya berkisar pada nilai 0.6 hingga 

pada epoch 1000 berkisar pada nilai 0.5. Sedangkan nilai loss mae train tidak 

mengalami penurunan yang signifikan. Pada epoch 200 hingga epoch 1000 tetap 

berkisar pada 0.4. Pada evaluasi akhir, model ini memiliki akurasi MAE sebesar 

0.396369, yang masih sedikit jauh dari acuan awal yang telah ditetapkan. Pelatihan 
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model kembali dilanjutkan hingga epoch 3000. Hasil pelatihan tersebut dapat 

dilihat pada gambar 4.23. 

 
Gambar 4.23 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 

pada epoch 3000 

 

Seperti yang terlihat pada Gambar 4.23. Tidak terjadi perbaikan yang signifikan 

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan 

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6, 

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model 

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan 

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali 

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 

4.24. 
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Gambar 4.24 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 

pada epoch 5000 

 

Pelatihan dilakukan hingga mencapai epoch 5000. Terlihat pada Gambar 4.24, 

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya 

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.45. Sedangkan 

nilai train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada 

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.36400321, dimana nilai 

tersebut sedikit jauh dari acuan awal yang telah ditetapkan. 

Setelah melakukan beberapa eksperimen kombinasi parameter diatas maka 

didapatkan 2 model yang memiliki nilai mae terkecil yaitu sebesar 

0.35695648193359375 pada model yang dilatih menggunakan batch size sebesar 7 

dan dilatih hingga epoch 5000. Lalu ada pula model yang memiliki nilai mae 

sebesar 0.35471969842910767 yaitu model yang dilatih menggunakan batch size 

sebesar 15 dan dilatih hingga epoch 3000. 
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4.2.7. Evaluasi model ANN Prediksi Jarak berdasarkan Citra RGB 

Setelah bereksperimen dengan berbagai kombinasi parameter training, maka 

disimpulkan untuk menggunakan model ANN dengan optimizer adamax, batch size 

7 pada epoch 1000. Model tersebut memiliki nilai mae 0.333776. Model tersebut 

digunakan karena tidak mengalami indikasi overfitting maupun underfitting. 

Sehingga diharapkan model tersebut dapat melakukan prediksi secara stabil. Hasil 

seluruh eksperimen model ANN dapat dilihat pada tabel 4.2. 

 

Tabel 4.2 Perbandingan Model ANN 

Model Batch Size Epoch Last Train MAE 

adamax 1 1000 0.5775669217 

adamax 1 3000 0.2448507845 

adamax 1 5000 0.2388899624 

adamax 7 1000 0.3337768912 

adamax 7 3000 0.2724565864 

adamax 7 5000 0.2823437452 

adamax 15 1000 0.3718636036 

adamax 15 3000 0.3173060715 

adamax 15 5000 0.3213479519 

sgd 1 1000 0.3855191469 

sgd 1 3000 0.3745284975 

sgd 1 5000 0.3702289462 

sgd 7 1000 0.3773933947 

sgd 7 3000 0.3603681922 

sgd 7 5000 0.3569564819 

sgd 15 1000 0.3963693976 

sgd 15 3000 0.3547196984 

sgd 15 5000 0.3640032113 
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4.3. Eksperimen Model Deteksi Buah Kakao 

Pada pelatihan model CNN YOLO, digunakan 80 gambar dan anotasi yang 

menggambarkan buah kakao matang dan belum matang dengan lima variasi epoch, 

yaitu 100, 300, 500, 700, 1000. Pada pelatihan ini, menggunakan optimizer SGD 

dan kombinasi dari beberapa fungsi loss. YOLOv8 menggunakan fungsi loss CIoU 

dan DFL untuk loss kotak pembatas dan binary cross-entropy untuk loss klasifikasi. 

Pelatihan akan dilakukan dengan menggunakan 2 skala arsitektur yaitu pada skala 

nano dan medium. Perbedaan skala arsitektur terdapat pada perbedaan jumlah 

parameter yang digunakan pada setiap layernya. Model dengan arsitektur nano juga 

akan memproduksi model dengan ukuran file yang lebih kecil ketimbang model 

dengan medium. 

Pelatihan dilakukan selama 100 epoch dengan optimizer SGD dan batch size 

sebesar 16. Ukuran gambar input adalah 800x800, dan model akan disimpan setelah 

pelatihan selesai. Tidak digunakan cache, dan perangkat yang digunakan akan 

disesuaikan secara otomatis. Selain itu, dilakukan pengolahan data paralel dengan 

8 workers. Informasi tentang pelatihan, seperti verbose, seed, dan deterministic juga 

telah ditentukan. Model ini dapat mendeteksi multiple kelas, dan tidak 

menggunakan bobot gambar atau training rectangular. Pada evaluasi, akan 

diperhatikan nilai ambang batas kepercayaan dan IoU threshold, serta jumlah 

deteksi maksimum. Grafik pelatihan akan ditampilkan, tetapi tidak akan 

menampilkan gambar deteksi secara visual. Tidak ada penyimpanan dalam format 

teks, confidence map, atau crop objek deteksi. Label objek dan confidence score 

akan ditampilkan, serta tebal garis boks deteksi sebesar 3. 

 

4.3.1. Model YOLOV8n dengan 100 epoch 

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.25. 
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Gambar 4.25 loss model YOLOV8n dengan 100 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan 
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nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya 

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan 

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.3. 

 

Tabel 4.3  Hasil Pelatihan YOLOV8n pada epoch 100 

Class Box(P) R 

all 0.907 0.704 

ripe cocoa 0.925 0.792 

unripe cocoa 0.889 0.617 

 

Setelah melatih model YOLOV8M selama 100 epoch, dapat disimpulkan 

bahwa hasil pelatihan menunjukkan kinerja yang baik dalam melakukan deteksi 

buah kakao matang dan belum matang. Keseluruhan model mencapai akurasi 

deteksi sebesar 83.4% dengan recall sebesar 82%. Hasil yang lebih baik diperoleh 

untuk deteksi buah kakao matang, dengan akurasi mencapai 88% dan recall sebesar 

91.7%. Namun, performa deteksi pada buah kakao belum matang sedikit lebih 

rendah, dengan akurasi sebesar 78.8% dan recall sebesar 72.3%. 

 

Meskipun demikian, secara keseluruhan model telah mampu melakukan 

deteksi dengan baik pada dataset yang digunakan. Namun, ada ruang untuk 

pengembangan lebih lanjut dalam meningkatkan performa deteksi pada buah kakao 

belum matang agar sejajar dengan deteksi buah kakao matang. Dengan demikian, 

dapat dilakukan penyesuaian atau peningkatan model untuk mencapai akurasi 

deteksi yang lebih tinggi dan recall yang lebih baik pada kelas buah kakao belum 

matang. 

 

4.3.2. Model YOLOV8n dengan 300 epoch 

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.26. 
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Gambar 4.26 loss model YOLOV8n dengan 300 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.26 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss 
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terus menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik 

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai 

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss 

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat 

dilihat pada tabel 4.4. 

 

Tabel 4.4  Hasil Pelatihan YOLOV8n pada epoch 300 

Class Box(P) R 

all 0.799 0.799 

ripe cocoa 0.734 0.920 

unripe cocoa 0.864 0.678 

 

Setelah melatih model, diperoleh hasil pelatihan yang menunjukkan kinerja 

yang cukup baik dalam melakukan deteksi buah kakao matang dan belum matang. 

Dalam hal ini, model mencapai akurasi deteksi sebesar 79.9% dan recall 

(kemampuan mengidentifikasi dengan benar) sebesar 79.9% untuk semua kelas. 

Meskipun akurasi dan recall secara keseluruhan seimbang, terdapat perbedaan 

dalam kinerja deteksi antara kelas buah kakao matang dan belum matang. 

 

Untuk kelas buah kakao matang, model mencapai akurasi deteksi sebesar 

73.4% dengan recall sebesar 92%. Hal ini menunjukkan bahwa model mampu 

mengenali dengan baik buah kakao yang telah matang. Namun, untuk kelas buah 

kakao belum matang, model memiliki akurasi deteksi yang sedikit lebih tinggi 

sebesar 86.4% namun recall yang sedikit lebih rendah, yakni sebesar 67.8%. Secara 

keseluruhan, model telah mencapai kinerja yang cukup baik dalam melakukan 

deteksi buah kakao matang dan belum matang. 

 

4.3.3. Model YOLOV8n dengan 500 epoch 

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test dapat dilihat 

pada gambar 4.27. 



85 
 

 
Gambar 4.27 loss model YOLOV8n dengan 500 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.27 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss 
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terus menurun seiring berjalannya pelatihan hingga epoch 200. Namun pada metrik 

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai 

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss 

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat 

dilihat pada tabel 4.5. 

 

Tabel 4.5  Hasil Pelatihan YOLOV8n pada epoch 500 

Class Box(P) R 

all 0.860 0.809 

ripe cocoa 0.867 1.000 

unripe cocoa 0.853 0.618 

 

Berdasarkan hasil pelatihan model YOLOV8N selama 500 epoch, secara 

keseluruhan model ini memiliki tingkat akurasi deteksi yang baik sebesar 0,86 dan 

presisi yang cukup tinggi sebesar 0,809. Model ini mampu dengan efektif 

mendeteksi dan mengklasifikasikan cokelat matang ("ripe cocoa") dengan tingkat 

akurasi yang tinggi sebesar 0,867 dan recall sempurna sebesar 1. Namun, model 

menghadapi beberapa kesulitan dalam mendeteksi cokelat yang belum matang 

("unripe cocoa"), dengan tingkat akurasi yang sedikit lebih rendah sebesar 0,853 

dan recall sebesar 0,618. Untuk meningkatkan performa model dalam 

mengklasifikasikan cokelat yang belum matang, perlu dilakukan penyesuaian pada 

proses pelatihan, seperti penambahan data latihan yang lebih representatif atau 

penyetelan parameter model yang lebih optimal. Secara keseluruhan, meskipun 

model YOLOV8N telah menunjukkan kinerja yang baik dalam mendeteksi objek 

secara umum, masih diperlukan peningkatan dalam mengklasifikasikan cokelat 

yang belum matang dengan lebih baik. 

 

4.3.4. Model YOLOV8n dengan 700 epoch 

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.28. 
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Gambar 4.28 loss model YOLOV8n dengan 700 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.28 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi 

terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test mengalami 

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss 

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.6. 

 

Tabel 4.6  Hasil Pelatihan YOLOV8n pada epoch 700 

Class Box(P) R 

all 0.917 0.707 

ripe cocoa 0.947 0.743 

unripe cocoa 0.887 0.671 

 

Dalam hasil pelatihan model YOLOV8N selama 700 epoch, terjadi 

peningkatan yang signifikan dalam kinerja model. Secara keseluruhan, model 

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,917 dengan nilai presisi 

sebesar 0,707. Ini menunjukkan bahwa model berhasil meningkatkan 

kemampuannya dalam mendeteksi objek secara umum. Hasil yang lebih baik ini 

dapat memberikan kepercayaan lebih dalam penggunaan model untuk mendeteksi 

berbagai objek di dalam gambar. 

Ketika fokus pada kategori "ripe cocoa", model menunjukkan peningkatan 

yang konsisten dengan tingkat akurasi sebesar 0,947 dan presisi sebesar 0,743. 

Meskipun recall masih dapat ditingkatkan, peningkatan ini menunjukkan bahwa 

model semakin mampu mengklasifikasikan cokelat matang dengan akurasi yang 

lebih tinggi. Namun, untuk kategori "unripe cocoa", meskipun terjadi peningkatan, 

model masih menghadapi beberapa tantangan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang. Dengan tingkat akurasi sebesar 

0,887 dan recall sebesar 0,671, masih ada ruang untuk perbaikan lebih lanjut. 

 

4.3.5. Model YOLOV8n dengan 1000 epoch 

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.29. 
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Gambar 4.29 dfl loss, box loss, cls  loss model YOLOV8n dengan 1000 epoch 

(a) dfl loss, (b) box loss dan (c) cls 

 

Seperti yang dapat dilihat pada ketiga gambar 4.29 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi 

terjadinya overfitting. Pada epoch ke-400 nilai loss train dan test mengalami 

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss 

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.7. 

 

Tabel 4.7  Hasil Pelatihan YOLOV8n pada epoch 1000 

Class Box(P) R 

all 0.869 0.767 

ripe cocoa 0.775 0.917 

unripe cocoa 0.963 0.617 

 

Dalam pelatihan model YOLOV8N, terdapat hasil yang menarik untuk 

setiap kategori. Secara keseluruhan, model mencapai tingkat akurasi deteksi sebesar 

0,869 dengan presisi sebesar 0,767. Meskipun tingkat presisi yang tinggi 

menunjukkan kemampuan model dalam mengenali objek secara spesifik, recall 

yang sebesar 0,767 menandakan adanya ruang untuk perbaikan dalam mencakup 

semua objek yang ada dalam gambar secara lebih lengkap. 

Dalam kategori "ripe cocoa", model menunjukkan tingkat presisi sebesar 

0,775 yang cukup baik. Namun, recall yang rendah sebesar 0,917 mengindikasikan 

bahwa model masih melewatkan beberapa cokelat matang yang seharusnya 

terdeteksi. Sementara itu, dalam kategori "unripe cocoa", model berhasil mencapai 

tingkat presisi yang tinggi sebesar 0,963. Namun, recall yang rendah sebesar 0,617 

menunjukkan bahwa model masih menghadapi kesulitan dalam mendeteksi 

sebagian besar cokelat yang belum matang. 

Secara keseluruhan, model YOLOV8N telah menunjukkan kemajuan yang 

baik dalam deteksi objek, namun masih ada aspek-aspek yang perlu ditingkatkan. 

Peningkatan pada recall dalam kedua kategori "ripe cocoa" dan "unripe cocoa" akan 

menjadi prioritas dalam pelatihan selanjutnya. Dengan demikian, model dapat 

mengenali dan mengklasifikasikan objek dengan lebih akurat dan menyeluruh, 

menghasilkan hasil yang lebih baik dalam aplikasi deteksi objek yang berkaitan 

dengan cokelat.. 
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4.3.6. Model YOLOV8m dengan 100 epoch 

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.30. 

 
Gambar 4.30 loss model YOLOV8n dengan 100 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.30 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan 

nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya 

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan 

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.8. 

 

Tabel 4.8  Hasil Pelatihan YOLOV8M pada epoch 100 

Class Box(P) R 

all 0.834 0.820 

ripe cocoa 0.880 0.917 

unripe cocoa 0.788 0.723 

 

Model YOLOV8M, setelah melalui pelatihan selama 100 epoch, 

menunjukkan hasil yang cukup baik. Dalam kategori "all", model mencapai tingkat 

akurasi deteksi sebesar 0,834 dengan presisi sebesar 0,82. Hasil ini menunjukkan 

kemampuan model dalam mendeteksi objek secara umum dalam dataset yang 

digunakan. Tingkat akurasi yang tinggi ini memberikan kepercayaan bahwa model 

dapat mengenali objek dengan baik. 

Ketika berfokus pada kategori "ripe cocoa", model YOLOV8M mencapai 

tingkat akurasi yang lebih tinggi sebesar 0,88 dengan recall sebesar 0,917. Hal ini 

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang 

dengan akurasi yang baik dan mampu mendeteksi sebagian besar objek yang ada. 

Tingkat recall yang tinggi juga menandakan bahwa model dapat mengenali 

sebagian besar cokelat matang yang ada dalam dataset. 

Namun, dalam kategori "unripe cocoa", model menghadapi beberapa 

tantangan dengan tingkat akurasi sebesar 0,788 dan recall sebesar 0,723. Hal ini 

mengindikasikan bahwa model masih perlu ditingkatkan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang. Secara keseluruhan, model 

YOLOV8M menunjukkan kemampuan yang baik dalam mendeteksi objek secara 

umum dan khususnya dalam kategori "ripe cocoa".  
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4.3.7. Model YOLOV8m dengan 300 epoch 

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8m. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.31. 

 
Gambar 4.31 dfl loss, box loss, cls  loss model YOLOV8n dengan 300 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 



94 
 

 

Seperti yang dapat dilihat pada ketiga gambar 4.31 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss 

terus menurun seiring berjalannya pelatihan. Namun pada metrik dfl loss ada 

indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test 

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat 

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada 

tabel 4.9. 

 

Tabel 4.9  Hasil Pelatihan YOLOV8m pada epoch 300 

Class Box(P) R 

all 0.820 0.725 

ripe cocoa 0.903 0.875 

unripe cocoa 0.737 0.574 

 

Setelah melalui pelatihan selama 300 epoch, model YOLOV8M 

menunjukkan hasil yang menarik. Secara keseluruhan, model ini mencapai tingkat 

akurasi deteksi sebesar 0,82 dengan presisi sebesar 0,725 dalam kategori "all". 

Meskipun tingkat akurasi yang cukup baik, recall yang sebesar 0,725 menunjukkan 

bahwa model mungkin masih melewatkan sebagian objek yang ada dalam gambar. 

Dalam kategori "ripe cocoa", model menunjukkan peningkatan performa dengan 

tingkat akurasi sebesar 0,903 dan recall sebesar 0,875. Hasil ini mengindikasikan 

kemampuan model dalam mengklasifikasikan cokelat matang dengan akurasi yang 

tinggi dan mampu mendeteksi sebagian besar objek yang ada. Peningkatan tersebut 

menunjukkan adanya kemajuan dalam pelatihan model. 

Namun, dalam kategori "unripe cocoa", model masih mengalami beberapa 

kendala dengan tingkat akurasi sebesar 0,737 dan recall sebesar 0,574. Hal ini 

menandakan bahwa model masih menghadapi kesulitan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan 

yang lebih baik. Secara keseluruhan, model YOLOV8M telah menunjukkan 

kemajuan dalam pelatihan selama 300 epoch. Meskipun tingkat akurasi dan presisi 
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dalam kategori "all" cukup baik, recall masih perlu ditingkatkan. Peningkatan 

signifikan terlihat dalam kategori "ripe cocoa" dengan akurasi dan recall yang lebih 

baik. 

 

4.3.8. Model YOLOV8m dengan 500 epoch 

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.32. 

 
Gambar 4.32 dfl loss, box loss, cls  loss model YOLOV8n dengan 500 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model berhasil 

meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss terus 

menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl 

loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss 

train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val 

meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat 

dilihat pada tabel 4.10. 

 

Tabel 4.10  Hasil Pelatihan YOLOV8m pada epoch 500 

Class Box(P) R 

all 0.910 0.704 

ripe cocoa 0.959 0.792 

unripe cocoa 0.861 0.617 

 

Setelah melalui pelatihan selama 500 epoch, model YOLOV8M 

menunjukkan hasil yang menggembirakan. Secara keseluruhan, model ini 

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,91 dengan presisi sebesar 

0,704 dalam kategori "all". Meskipun tingkat akurasi yang tinggi, recall yang 

sebesar 0,704 menunjukkan bahwa model mungkin masih melewatkan sebagian 

objek yang ada dalam gambar. 

Dalam kategori "ripe cocoa", model menunjukkan performa yang sangat 

baik dengan tingkat akurasi sebesar 0,959 dan recall sebesar 0,792. Hasil ini 

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang 

dengan akurasi yang tinggi dan mampu mendeteksi sebagian besar objek yang ada. 

Namun, dalam kategori "unripe cocoa", model masih menghadapi beberapa kendala 

dengan tingkat akurasi sebesar 0,861 dan recall sebesar 0,617. Hal ini menandakan 

bahwa model masih mengalami kesulitan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan 

yang lebih baik. 
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4.3.9. Model YOLOV8m dengan 700 epoch 

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8m. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.33. 

 
Gambar 4.33 loss model YOLOV8n dengan 700 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.33 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss 

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test 

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat 

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada 

tabel 4.11. 

 

Tabel 4.11  Hasil Pelatihan YOLOV8m pada epoch 700 

Class Box(P) R 

all 0.748 0.808 

ripe cocoa 0.610 0.958 

unripe cocoa 0.885 0.658 

 

Model YOLOV8M dilatih selama 700 epoch dan mencapai akurasi deteksi 

sebesar 0,748 dan presisi 0,808 dalam kategori "semua". Namun, recall 0,808 

menunjukkan ruang untuk meningkatkan deteksi objek dalam gambar. Dalam 

kategori "kakao matang", akurasi 0,61 dengan recall tinggi 0,958 menunjukkan 

kemampuan model mengklasifikasikan kakao matang, meskipun dengan positif 

palsu. Dalam kategori "kakao mentah", akurasi 0,885 dengan recall 0,658 

menunjukkan model masih kesulitan mendeteksi kakao mentah. Model perlu 

meningkatkan recall dalam kategori ini. Secara keseluruhan, YOLOV8M 

menunjukkan kemajuan selama 700 epoch. Dalam kategori "semua", recall perlu 

ditingkatkan untuk mendeteksi lebih banyak objek. Dalam kategori "kakao 

matang", recall tinggi menunjukkan kemampuan model, tetapi perlu penanganan 

positif palsu. Dalam kategori "kakao mentah", meningkatkan recall menjadi fokus 

utama untuk meningkatkan deteksi kakao mentah dengan akurasi yang lebih tinggi. 
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4.3.10. Model YOLOV8m dengan 1000 epoch 

Dilakukan pelatihan model hingga epoch 1000 menggunakan arsitektur 

YOLOV8m. Pada akhir proses training, nilai akurasi dan loss pada training dan test 

bisa dilihat pada gambar 4.34. 

 
Gambar 4.34 model YOLOV8n dengan 1000 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.34 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss 

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test 

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat 

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada 

tabel 4.12. 

 

Tabel 4.12  Hasil Pelatihan YOLOV8m pada epoch 1000 

Class Box(P) R 

all 0.816 0.768 

ripe cocoa 0.746 0.856 

unripe cocoa 0.886 0.681 

 

Model YOLOV8M telah dilatih selama 1000 epoch dan menunjukkan hasil 

yang menarik. Dalam kategori "semua", model ini mencapai presisi sebesar 0,816 

dan recall sebesar 0,768. Ini menunjukkan kemampuan model dalam mengenali dan 

mengklasifikasikan objek dengan akurasi yang cukup tinggi. Dalam kategori 

"kakao matang", model mencapai presisi sebesar 0,746 dengan recall yang lebih 

tinggi, yaitu 0,856. Ini menunjukkan kemampuan model dalam mendeteksi dan 

mengklasifikasikan kakao matang dengan baik, meskipun masih terdapat ruang 

untuk meningkatkan presisi. Di sisi lain, dalam kategori "kakao mentah", model 

mencapai presisi sebesar 0,886 dengan recall sebesar 0,681. 

Meskipun akurasi cukup baik, recall yang rendah menunjukkan bahwa 

model masih kesulitan dalam mendeteksi sebagian besar kakao mentah. 

Meningkatkan recall dalam kategori ini menjadi fokus utama untuk meningkatkan 

kemampuan model dalam mengklasifikasikan kakao mentah dengan akurasi yang 

lebih tinggi. Secara keseluruhan, YOLOV8M telah menunjukkan kemajuan dalam 

1000 epoch pelatihan. Meskipun memiliki akurasi yang baik dalam kategori 

"semua" dan "kakao matang", meningkatkan recall akan membantu model dalam 

menangkap lebih banyak objek secara akurat. Untuk kategori "kakao mentah", 
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meningkatkan recall menjadi hal yang penting untuk meningkatkan kemampuan 

model dalam mendeteksi kakao mentah dengan lebih baik. 

 

4.3.11. Evaluasi 5 Model YOLOV8 dengan performa terbaik 

Untuk menentukan model YOLOV8 yang memiliki akurasi paling baik 

maka berikut akan ditampilkan 5 model dengan nilai R dan Box(P) (box loss) yang 

paling tinggi diantara model-model lainnya pada gambar 4.35. 

 

 
Gambar 4.35 Grafik 5 Model Dengan Nilai Recall Tertinggi 

 

Dari model dengan arsitektur YOLOV8 diatas maka disimpulkan model terbaik 

adalah model dengan arsitektur YOLOV8 nano dengan 100 epoch. 

 

4.4. Sistem Prediksi Jarak Objek pada Citra 

Sistem ini akan melakukan Prediksi Jarak Objek terhadap kamera. Prediksi 

dilakukan menggunakan nilai rgb sebagai input. Proses dimulai dengan memilih 

titik koordinat salah satu piksel yang berada pada area objek sebagai input proses 

segmentasi. Kemudian dilakukan segmentasi pada citra untuk mendapatkan area 

objek. Kemudian dilakukan prediksi kedalaman citra menggunakan Model CNN 

Monocular Depth Estimation. Area yang telah didapatkan digunakan untuk 

mengambil warna pada citra hasil prediksi kedalaman pada area yang diinginkan. 
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Kemudian dari kumpulan warna tersebut dicari nilai mediannya sehingga 

didapatkan nilai median rgb untuk digunakan pada input model ANN prediksi jarak. 

Sehingga kemudian didapatkan nilai jarak objek terhadap kamera. 

 

4.4.1. Mengunggah Gambar dan Prediksi Kedalaman 

Proses awal yang harus dilakukan yakni mengunggah gambar tanaman 

kakao yang akan digunakan. Setelah itu dilakukan proses prediksi kedalaman 

menggunakan Model CNN Monocular Depth Estimation. Sehingga dihasilkan citra 

yang merepresentasikan kedalaman atau dapat disebut sebagai citra kedalaman. 

Citra inilah yang nantinya akan digunakan nilai rgbnya sebagai input untuk 

memprediksi jarak objek terhadap kamera. 

 
Gambar 4.36 Citra Tanaman Kakao Asli 

 
Gambar 4.37 Citra Kedalaman Tanaman Kakao 
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4.4.2. Menentukan Titik Piksel pada Objek 

Karena sistem yang dikembangkan belum dapat mengidentifikasi bagian 

batang tanaman kakao secara otomatis, maka pada penelitian ini masih diperlukan 

input manual untuk menentukan titik piksel yang merupakan bagian dari tanaman 

kakao. Proses ini dilakukan dengan melihat terlebih dahulu gambar serta axis untuk 

melakukan taksiran lokasi x,y piksel yang akan digunakan. 

 
Gambar 4.38 Tampilan awal untuk penentuan titik pada objek 

Setelah melakukan taksiran maka pada gambar ini akan digunakan titik pada 

koordinat 2750, 3000. Nilai x,y tersebut akan ditampilkan dengan simbol bintang 

seperti pada gambar berikut. 

 

 
Gambar 4.39 Tampilan gambar dengan titik piksel yang telah dipilih 
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Setelah menemukan titik piksel yang akan digunakan, maka pada proses 

selanjutnya titik tersebut akan digunakan sebagai input pada proses segmentasi. 

 

4.4.3. Proses Segmentasi dengan Model CNN Segment Anything 

Pada proses ini akan dilakukan segmentasi untuk mendapatkan area objek 

yang akan digunakan (Tanaman Kakao). Titik koordinat yang telah ditentukan 

menjadi input/acuan model untuk memprediksi area sekitarnya yang masih 

merupakan bagian dari objek. Hal ini dilakukan untuk mempermudah pemilihan 

area objek. 

 
Gambar 4.40 Hasil Segmentasi Area Objek Tanaman Kakao 

Area/mask tersebut kemudian akan digunakan untuk mengambil nilai rgb pada citra 

kedalaman. 

 

4.4.4. Pengambilan nilai median RGB dan Prediksi Jarak 

Setelah mendapatkan area objek tanaman kakao, maka nilai rgb pada citra 

kedalaman yang beririsan dengan area objek tanaman kakao akan diambil. Dari 

nilai-nilai tersebut kemudian akan didapatkan nilai median RGB. Nilai median 
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RGB kemudian digunakan untuk memprediksi jarak. Dengan menggunakan model 

ANN yang telah dikembangkan, dilakukan prediksi jarak menggunakan nilai rgb 

sebagai input. Sehingga kemudian didapatkan nilai jarak objek tanaman kakao 

terhadap kamera dalam satuan meter. 

 

4.4.5. Evaluasi Sistem Prediksi Jarak Objek Pada Citra 

Penggunaan model CNN Segment Anything belum bisa optimal untuk 

mengambil bagian tanaman saja karena adanya noise pada background objek 

tersebut. Hal ini dipengaruhi oleh kondisi lingkungan perkebunan kakao yang padat 

dengan tanaman kakao. 

 

4.5. Sistem Prediksi Koordinat Tanaman Kakao pada Citra 

Pada bagian ini akan dilakukan prediksi nilai koordinat tanaman kakao. 

Pada tahap ini diperlukan beberapa variabel sebagai input yaitu nilai koordinat 

longitude dan latitude tanaman kakao, nilai derajat arah hadap kamera, serta jarak 

objek terhadap kamera. Pada proses ini akan digunakan rumus yang bernama 

Vincenty Formula. Hasil dari kalkulasi menggunakan rumus tersebut yakni titik 

koordinat longitude serta latitude objek tanaman kakao. Untuk menguji akurasi dari 

rumus tersebut, pada bagian selanjutnya akan dilakukan percobaan kalkulasi pada 

5 titik lokasi.  

 

4.5.1. Evaluasi Akurasi Vincenty Formula 

Pada bagian ini akan dilakukan pengujian akurasi dari hasil kalkulasi 

Vinceny Formula. Pengujian akan dilakukan pada 5 lokasi pada tabel 4.13. 

 

Tabel 4.13 Ground Truth Titik Koordinat 

No 
Building Destination 

Name Coordinate Name Coordinate 

1 

Alun-Alun 

Tugu Malang 

-7.97692544511029, 

112.634055029002 

Stasiun Malang 

Kota Baru 

-7.97720169566579, 

112.637112747216 
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Tabel 4. 14 Ground Truth Titik Koordinat (lanjutan) 

No 
Building  Destination  

Name Coordinate Name Coordinate 

2 Alun-Alun 

Tugu Malang 

-7.97692544511029, 

112.634055029002 

Bulan Photocopy 

& Print 

-7.97419601839356, 

112.634292801417 

3 Gerbang UB 

Soekarno hatta 

-7.94984, 

112.615411 

Soekarno Hatta 

Bridge 

-7.9496079959561, 

112.615839888356 

4 Gerbang UB 

Soekarno hatta 

-7.94984, 

112.615411 

Kober Mie Setan -7.9481629265072, 

112.61676260122 

5 Gerbang UB 

Soekarno hatta 

-7.94984, 

112.615411 

Mixue Suhat 

Malang 

-7.94637779324508, 

112.618050061491 

 

Tabel 4. 15 Arah dan Jarak 

No Heading Distance to Desstination (km) 

1 96,607° 0.28 

2 4,124 0.3 

3 45,456° 0.069 

4 43,014° 0.22 

5 -40,579° 0.45 

 

Tabel 4. 16 Hasil Prediksi dan Selisih 

No Predicted Coordinate  Differences 

1 
-7.97721516624731, 

112.636580818575 
 -1.347 x 10-5, -5.319 x 10-4 

2 
-7.97423446585066, 

112.634250919231 
 -3.845 x 10-5, -4.188 x 10-5 

3 
-7.94936783429258, 

112.615817547406 
 -3.845 x 10-5, -4.188 x 10-5 
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Tabel 4. 17 Hasil Prediksi dan Selisih (lanjutan) 

No Predicted Coordinate  Differences 

4 
-7.94839333872107, 

112.616773784662 
 -2.304 x 10-4, 1.118 x 10-5 

5 
-7.9467662955678, 

112.618069047894 
 -3.885 x 10-4, 1.899 x 10-5 

 

Berdasarkan lima percobaan yang telah dilakukan, dapat disimpulkan bahwa rumus 

yang digunakan memiliki akurasi yang cukup baik dan kesalahan yang relatif kecil. 

Perbedaan rata-rata antara hasil yang diperoleh dari rumus dan titik koordinat 

sebenarnya adalah sangat kecil, yaitu sebesar -0,00009966528437. Selain itu, 

perbedaan maksimum antara hasil yang diperoleh dari rumus dan nilai sebenarnya 

juga cukup kecil, hanya sekitar 0,0002401616635. Sehingga dapat disimpulkan 

rumus Vincenty Formula tersebut dapat digunakan untuk melakukan kalkulasi titik 

koordinat suatu objek berdasarkan titik koordinat asal, derajat arah serta jarak 

terhadap objek. 

 

4.6. Sistem Estimasi Jumlah Buah Kakao 

Sistem ini melakukan deteksi buah kakao. Buah kakao yang terdeteksi 

dalam bentuk bounding box akan dihitung jumlahnya. Setelah terdeteksi maka 

setiap buah dalam setiap bounding box tersebut diklasifikasi untuk memprediksi 

buah tersebut telah memasuki usia matang atau belum. Proses pada sistem ini cukup 

sederhana, pengguna cukup mengunggah citra tanaman kakao. Lalu sistem akan 

melakukan deteksi buah kakao, serta mengkalkulasi bounding box yang muncul. 

Sehingga akan ditampilkan kepada pengguna berapa jumlah buah kakao yang ada 

pada tanaman kakao tersebut. Adapun deteksi ini dilakukan dengan menggunakan 

confidence threshold sebesar 0.25. 

 

4.6.1. Evaluasi Sistem Estimasi Jumlah Buah Kakao 

Pada tahap ini akan dilakukan evaluasi pada 5 model CNN YOLOV8 terbaik 

yang digunakan untuk melakukan deteksi buah kakao. Selain metriks pelatihan 
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seperti box loss, dfl loss dan cls loss akan dilakukan pula pengujian manual secara 

visual. Model akan dijalankan untuk melakukan proses deteksi, lalu hasil deteksi 

akan dibandingkan dengan hasil penghitungan buah kakao manual secara visual. 

Adapun berikut 2 citra yang akan digunakan untuk melakukan evaluasi sistem 

estimasi jumlah buah kakao yaitu gambar 4.41 dan 4.42. 

 

 
Gambar 4. 41 Citra Tanaman Kakao dengan Buah muda 

 

Dapat dilihat pada gambar 4.40 terdapat 19 buah muda. Buah kakao yang masih 

muda akan nampak berwarna hijau. Lama-kelamaan akan muncul titik titik 

kecoklatan pada buah kakao. Beberapa buah kakao pada gambar 4.40 berada pada 

posisi yang sulit untuk dideteksi seperti buah yang tertutupi oleh buah lainnya, serta 

buah yang berada dibalik batang. Buah pada posisi yang sulit dijangkau ini akan 

sulit untuk dideteksi oleh model CNN YOLO. 

 
Gambar 4. 42 Citra Tanaman Kakao dengan Buah Matang 
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Dapat dilihat pada gambar 4.41 terdapat 20 buah matang. Pada kedua citra diatas 

yaitu gambar 4.40 dan gambar 4.41 akan dilakukan deteksi menggunakan model 

YOLOV8n dengan 100 epoch. Hasil deteksi dapat dilihat pada gambar 4.43 dan 

4.44. 

 

Gambar 4. 43 Hasil Deteksi Buah Kakao dengan model YOLOV8n 100 epoch 

 

Pada gambar 4.43 terdapat 8 bounding box. Artinya terdapat 8 buah kakao matang 

yang terdeteksi. Kedelapan bounding box tersebut juga memiliki confidece 

threshold yang tinggi, yaitu pada nilai diatas 0.9 yang artinya model cukup yakin 

bahwa prediksinya akurat. Namun masih terdapat 10 buah yang tidak terdeteksi. 

Buah yang tidak terdeteksi kebanyakan memiliki posisi yang susah untuk dideteksi 

seperti berada dibalik batang, dibalik buah lainnya, serta ukurannya sangat kecil. 

Deteksi dilakukan pula pada tanaman kakao dengan buah muda. Hasil deteksi dapat 

dilihat pada gambar 4.44. 
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Gambar 4. 44 Hasil Deteksi Buah Kakao dengan model YOLOV8n 100 epoch 

 

Seperti yang dapat dilihat pada gambar 4.44, terdapat 9 bounding box/buah yang 

berhasil terdeteksi. Namun pada ground truth terdapat 19 buah, sehingga masih 

terdapat 10 buah. Deteksi dilakukan menggunakan kelima model pada 2 gambar 

tersebut. Hasil evaluasi pada kelima model dapat dilihat pada tabel 4.15. 

 

Tabel 4. 18 Evaluasi 5 model terbaik pada 2 contoh gambar 

model filename 

prediction result 

num of ripe 

cocoa 

num of unripe 

cocoa 

YOLOV8n 100 

epoch 
IMG_20230621_160151.jpg  9 

 IMG_20230621_160747.jpg 8  
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Tabel 4. 19 Evaluasi 5 model terbaik pada 2 contoh gambar (lanjutan) 

model filename 

prediction result 

num of ripe 

cocoa 

num of unripe 

cocoa 

YOLOV8n 500 

epoch 
IMG_20230621_160151.jpg  12 

 IMG_20230621_160747.jpg 10  

YOLOV8m 100 

epoch 
IMG_20230621_160151.jpg 2 14 

 IMG_20230621_160747.jpg 17  

YOLOV8m 700 

epoch 
IMG_20230621_160151.jpg 3 11 

 IMG_20230621_160747.jpg 11  

YOLOV8n 300 

epoch 
IMG_20230621_160151.jpg  10 

 IMG_20230621_160747.jpg 11  

 

Secara keseluruhan model belum berhasil mendeteksi semua buah kakao yang ada 

pada tanaman kakao. Hal ini disebabkan karena banyak posisi buah kakao yang 

tertutupi oleh objek lain seperti batang tanaman kakao, buah kakao, serta ukurannya 

yang kecil. Hal ini dapat dikembangkan dengan cara melengkapi dataset yang lebih 

bervariatif seperti menambahkan anotasi bounding box pada buah kakao yang 

tertutupi. Namun hal tersebut juga perlu diimbangi dengan adanya metode yang 

dapat melokalisasi hasil deteksi karena apabila sebuah kakao terletak dibalik batang 

sehingga seolah-olah nampak terdapat dua buah kakao maka menjadi akan bias bagi 

model. 

 

Apabila ketiga sistem diatas digabungkan, sistem dapat digunakan sebagai alat 

untuk melakukan monitoring perkebunan kakao dengan metode geotagging. Pada 

penelitian ini sistem hanya mampu untuk melakukan prediksi titik koordinat 
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tanaman kakao serta deteksi buah kakao. Sehingga sistem dapat menghasilkan 

output berupa titik koordinat serta jumlah buah kakao. Sistem ini merupakan 

alternatif murah untuk mengetahui perkembangan dari setiap tanaman kakao dari 

waktu ke waktu.  
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BAB IV HASIL DAN PEMBAHASAN 

 

4.1. Dataset 

Pada penelitian ini, dilakukan pengumpulan data untuk membangun dataset 

yang akan digunakan dalam proses pelatihan model Artificial Neural Network 

(ANN) untuk memprediksi jarak serta model Convolutional Neural Network (CNN) 

YOLO untuk mendeteksi buah kakao. Pengumpulan data dilakukan dengan cara 

mengambil sampel gambar-gambar buah kakao yang sudah matang dan yang belum 

matang. Selama proses pengumpulan data, gambar-gambar tersebut diolah dan 

diberikan anotasi. Anotasi ini mencakup informasi mengenai koordinat atau 

bounding box yang menandai letak buah kakao pada gambar, serta label yang 

menunjukkan jenis atau kelas buah kakao yang terdeteksi. Setelah pengumpulan 

data selesai, dataset yang terdiri dari gambar-gambar dan anotasinya akan 

digunakan dalam proses pelatihan model. Model ANN akan dilatih menggunakan 

data jarak antara kamera dan buah kakao sebagai input, serta data yang sesuai 

dengan jarak tersebut sebagai output yang diharapkan. Sementara itu, model CNN 

YOLO akan dilatih menggunakan gambar-gambar buah kakao beserta anotasinya. 

Proses pelatihan ini bertujuan untuk mengajarkan model untuk mendeteksi dan 

mengidentifikasi buah kakao dalam gambar. 

 

4.1.1. Pembuatan Dataset Nilai Rgb dan Jarak Objek 

Pembuatan dataset dimulai dengan mencari objek yang menyerupai tiang 

untuk menggantikan batang tanaman kakao. Setelah objek yang sesuai ditemukan, 

jarak antara kamera dan objek ditentukan. Setelah jarak kamera dengan objek 

ditentukan, citra diambil menggunakan kamera atau perangkat lainnya. Pada 

langkah ini, citra yang telah diambil akan diproses menggunakan model CNN 

monodepth estimation. Model ini akan memperkirakan kedalaman objek 

berdasarkan nilai RGB pada citra. Setelah estimasi kedalaman dilakukan, 

ditentukan titik koordinat piksel (x, y) pada area objek yang diestimasi 
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kedalamannya. Titik koordinat ini akan digunakan dalam proses segmentasi 

selanjutnya. Pada langkah ini, model CNN segment anything digunakan untuk  

melakukan segmentasi pada citra hasil estimasi kedalaman. Model CNN segment 

anything melakukan proses segmentasi berdasarkan titik koordinat yang telah 

ditentukan. Titik tersebut menjadi dasar penunjuk objek yang akan disegmentasi 

areanya. Segmentasi akan mengidentifikasi bagian objek yang menyerupai tiang 

dan memisahkannya dari latar belakang. Setelah proses segmentasi, nilai RGB pada 

bagian objek yang diidentifikasi akan diperoleh. Nilai RGB ini merupakan warna 

piksel pada citra hasil estimasi kedalaman. Setelah mendapatkan kumpulan nilai 

RGB, nilai median dari kumpulan tersebut diambil. Nilai median memberikan 

representasi warna tengah dari kumpulan tersebut, yang akan digunakan sebagai 

representasi nilai RGB untuk jarak objek yang diestimasi. Setelah semua langkah 

di atas dilakukan untuk setiap objek yang dipilih, data yang terkumpul ditambahkan 

ke dataset. Setiap data terdiri dari pasangan nilai RGB (nilai median) dan jarak 

kamera terhadap objek yang sesuai. 

 
Gambar 4.1 Alur Pembuatan Dataset 
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4.1.2. Profil Dataset Nilai RGB dan Jarak Objek 

Pada penelitian ini, terdapat dataset yang berisi pasangan nilai 

Red,Green,Blue (RGB) terhadap jarak objek dalam satuan meter. Namun, perlu 

dicatat bahwa nilai RGB yang ada dalam dataset tersebut bukanlah nilai RGB dari 

citra asli, melainkan nilai RGB yang berasal dari proses estimasi kedalaman 

menggunakan model CNN monodepth estimation. Nilai RGB akan digunakan 

sebagai input untuk memperkirakan jarak objek. Proses estimasi kedalaman 

menggunakan model CNN monodepth estimation. Dataset ini terdiri dari 112 data, 

dimana setiap data terdiri dari nilai RGB dan jarak objek yang sesuai. 

 

Tabel 4.1 Dataset RGB dan Jarak Objek 

id r g b distance 

0 251.0 138.0 99.0 2.90 

1 141.0 41.0 128.0 4.22 

2 220.0 72.0 107.0 1.00 

3 80.0 18.0 123.0 3.00 

4 225.0 76.0 103.0 3.75 

... ... ... ... ... 

110 222.0 75.0 124.0 2.70 

111 252.0 158.0 112.0 1.20 

112 156.0 46.0 126.0 2.40 

 

4.1.3. Dataset Buah Kakao 

Dataset Buah Kakao dilakukan dengan melakukan pengambilan citra di 

perkebunan kakao yang terletak di Puslitkoka, Jember. Dilakukan pengambilan 

citra pada tanaman kakao yang sedang berbuah baik yang buahnya sudah matang 

maupun yang belum matang. Pengambilan citra juga divariasikan jaraknya yaitu 

pada rentang jarak sebesar 0,8 hingga 2,8 m sesuai dengan variasi yang terdapat 

pada dataset nilai rgb dan jarak objek (Bab 4.1.2). Dataset Buah Kakao terdiri dari 



58 
 

total 67 gambar buah kakao dengaan 446 anotasi. Untuk melakukan proses training 

digunakan 46 gambar (sekitar 69% dari total dataset). Selanjutnya, untuk 

memvalidasi performa model, 13 gambar (sekitar 19% dari total dataset) akan 

digunakan sebagai validation set. Terakhir, 8 gambar (sekitar 12% dari total dataset) 

akan dijadikan sebagai test set untuk menguji akurasi model yang telah dilatih. 

Dalam setiap gambar, terdapat rata-rata 6 anotasi (label) untuk buah kakao. Dataset 

ini memiliki dua kelas, yaitu buah kakao matang dan belum matang. Dengan 

pembagian ini, diharapkan model dapat mempelajari dan mengklasifikasikan 

gambar-gambar buah kakao dengan akurasi yang tinggi. 

 

 
Gambar 4.2 Semua Dataset 

 

Secara keseluruhan, jumlah anotasi pada kedua kelas, yaitu kelas cocoa matang 

(ripe cocoa) dan kelas cocoa belum matang (unripe cocoa), tergolong cukup 

seimbang. Terdapat 227 anotasi pada kelas cocoa matang dan 217 anotasi pada 

kelas cocoa belum matang. Perbedaan jumlah anotasi antara kedua kelas tersebut 

tidak terlalu signifikan. 

 

 
Gambar 4.3 Pembagian Dataset untuk Train 

 

Data pelatihan ini memiliki jumlah sampel yang cukup representatif untuk kedua 

kelas, yaitu 171 sampel pada kelas cocoa matang (ripe cocoa) dan 130 sampel pada 

kelas cocoa belum matang (unripe cocoa). Dengan jumlah yang seimbang antara 

kedua kelas, model pembelajaran mesin dapat mempelajari pola dan informasi yang 

relevan dari masing-masing kelas. Dengan menggunakan data pelatihan yang 

representatif ini, model yang dihasilkan memiliki kemampuan yang lebih baik 

dalam mengklasifikasikan cocoa berdasarkan tingkat kematangannya. 
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Gambar 4.4 Pembagian Dataset untuk Valid 

 

Dataset validasi yang mencakup kedua kelas, yaitu cocoa matang (ripe cocoa) 

dengan 24 sampel dan cocoa belum matang (unripe cocoa) dengan 47 sampel, 

memungkinkan pengujian kehandalan model dalam mengklasifikasikan tingkat 

kematangan cocoa. Evaluasi menggunakan dataset validasi ini memberikan 

gambaran yang lebih akurat tentang kemampuan model dalam dunia nyata. 

 

 
Gambar 4.5 Pembagian Dataset untuk Test 

 

Pada dataset uji (test set), terdapat 32 sampel anotasi pada kelas cocoa matang (ripe 

cocoa) dan 40 sampel anotasi pada kelas cocoa belum matang (unripe cocoa). 

Dataset uji ini digunakan untuk menguji performa model yang telah dilatih pada 

data pelatihan dan divalidasi pada data validasi. Dengan menggunakan dataset uji 

yang mencakup kedua kelas, model dapat dievaluasi lebih lanjut dalam 

kemampuannya mengklasifikasikan cocoa berdasarkan tingkat kematangannya.  

 

4.2. Eksperimen Model ANN Prediksi Jarak Objek pada Citra 

Pada penelitian ini, dilakukan beberapa percobaan pelatihan Artificial 

Neural Network (ANN) untuk mengetahui korelasi antara variabel RGB piksel 

dengan jarak aktualnya. Percobaan ini menggunakan model CNN Monodepth 

Estimation yang menghasilkan citra RGB dengan nilai yang sangat bervariasi. 

Percobaan dilakukan dengan menggunakan dua jenis optimizer, yaitu Adamax dan 

SGD. Optimizer digunakan untuk mengatur proses pembelajaran ANN dengan 

menyesuaikan bobot dan bias agar mencapai hasil yang optimal. Model akan dilatih 

dengan sebanyak 112 data. 
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Selain itu, juga dilakukan variasi pada 3 jumlah epoch (1000, 3000, 5000) 

dan 3 variasi batch size (1, 7, 15). Epoch merupakan iterasi yang dilakukan saat 

melatih model, sedangkan batch size menentukan jumlah sampel yang digunakan 

dalam satu iterasi. Dengan menggabungkan variasi optimizer, epoch, dan batch 

size, percobaan ini bertujuan untuk mencari kombinasi yang paling baik dalam 

menghasilkan model ANN yang dapat memprediksi jarak aktual berdasarkan nilai 

RGB piksel. Sebagai tambahan informasi, pada pengembangan model ANN ini 

digunakan Mean Absolute Error (MAE) sebagai loss metric untuk mengetahui 

akurasi model yang telah dilatih. Sebagai acuan, pada penelitian ini telah disepakati 

untuk mengembangkan model ANN yang memiliki nilai MAE dibawah 0.3. 

Adapun arsitektur ANN yang akan digunakan dapat dilihat pada gambar 4.6. 

 

 
Gambar 4.6 Arsitektur Model ANN 
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Dari kombinasi epoch, batch size serta optimizer dihasilkan 18 model ANN berikut. 

 

4.2.1. Model ANN dengan Optimizer Adamax dan Batch Size 1 

Pada model ANN ini, digunakan optimizer Adamax dengan parameter batch size 

sebesar 1. Dilakukan training sampai dengan epoch ke 1000. Setelah melalui 

pelatihan awal yang berlangsung hingga mencapai 1000 epoch, ditemukan bahwa   

nilai Mean Absolute Error (MAE) model sebesar 0.577566921710968. Data histori 

pelatihan model dapat dilihat pada gambar 4.6. 

 
Gambar 4.7 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 1000 

 

Meskipun demikian, belum terlihat perbaikan yang signifikan pada nilai loss baik 

pada data latih maupun data uji. Nilai loss test tidak menurun secara signifikan dan 

terus berubah pada kisaran 1 hingga 0,9. Sedangkan nilai loss train mengalami 

penurunan sedikit dari 0,6 menjadi 0,577. Meskipun penurunannya tidak signifikan, 

terdapat perbaikan nilai yang terjadi. Namun nilai MAE 0,577 masih terlalu besar 

dari acuan awal. Proses training dilanjutkan pada epoch 1000 hingga 3000. Pada 

gambar 4.7 akan disajikan hasil perbaikan nilai loss train dan test pada epoch 3000. 



62 
 

 
Gambar 4.8 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 3000 

 

Setelah melatih model ini hingga epoch 3000, terlihat indikasi bahwa model 

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss 

pada data uji (test) dan data latih (train). Namun, meskipun demikian, model ini 

berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai 

dengan target yang diinginkan, yaitu 0,24485. Selanjutnya pelatihan model 

dilanjutkan pada epoch 3000 hingga 5000. Hasil pelatihan tersebut dapat dilihat 

pada gambar 4.8. 
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Gambar 4.9 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 5000 

 

Setelah dilakukan pelatihan ulang hingga epoch 5000, model ini terindikasi 

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss 

pada data test dan data train. Tidak terlihat adanya perbaikan yang signifikan pada 

nilai loss juga. Nilai loss pada data test bervariasi antara 0,4 hingga 0,8, sedangkan 

nilai loss pada data train berkisar antara 0,2 hingga 0,4. Meskipun demikian, model 

ini berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai 

dengan target yang diinginkan, yaitu sebesar 0,2388. 
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4.2.2. Model ANN dengan Optimizer Adamax dan Batch Size 7 

Eksperimen dilanjutkan dengan melakukan pelatihan model menggunakan 

optimizer Adamax dan menggunakan batch size sebesar 7. Pelatihan model 

dilakukan hingga epoch 1000. Hasil dari pelatihan tersebut dapat dilihat pada 

gambar 4.9. 

 
Gambar 4.10 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7 

pada epoch 1000 

 

Pada grafik terlihat terjadi penurunan nilai loss yang signifikan pada proses train 

dan test. Hal ini mengindikasikan adanya perbaikan akurasi model. Nilai loss test 

awalnya berkisar pada 0,7, namun mengalami penurunan yang signifikan hingga 

mencapai kisaran nilai 0,35 pada epoch 800. Sementara itu, nilai loss train juga 

mengalami penurunan yang signifikan, dimulai dari kisaran 0,4 dan mencapai 

kisaran 0,35 pada epoch 1000. Meskipun nilai tersebut masih lebih tinggi 

dibandingkan dengan acuan yang ingin dicapai, pada proses pelatihan ini model 
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berhasil memperbaiki loss dengan baik. Pelatihan pada model ini dilanjutkan 

hingga epoch 3000. Hasil dari pelatihan tersebut akan disajikan pada gambar 4.10. 

 
Gambar 4.11 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7 

pada epoch 3000 

 

Pada grafik terlihat terjadi perbedaan antara tren grafik train dan test. Grafik test 

cenderung meningkat sedangkan grafik train cenderung menurun. Nilai test naik 

dari kisaran 0,4 hingga 0,55, sementara nilai train menurun dari kisaran 0,35 hingga 

0,2. Hal ini merupakan indikasi yang kuat terjadinya overfitting. Namun, model ini 

berhasil mencatatkan nilai MAE yang cukup baik, yaitu sebesar 0,27245. Nilai 

MAE tersebut lebih kecil dibandingkan dengan nilai MAE acuan yang ingin 

dicapai. Pelatihan kembali dilanjutkan hingga epoch 5000. Hasil pelatihan tersebut 

akan disajikan pada gambar 4.11.  
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Gambar 4.12 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7 

pada epoch 5000 

 

Dapat dilihat pada grafik di atas, terjadi perbaikan model yang signifikan antara 

epoch 3000 hingga 3800. Nilai test dan train secara bersamaan mengalami 

penurunan. Namun, setelah epoch 3800, nilai train terus menurun sementara nilai 

test kembali meningkat dan berkisar pada 0,5. Model ini berhasil mencapai MAE 

yang sesuai dengan acuan awal, yaitu sebesar 0,28234. 

 

4.2.3. Model ANN dengan Optimizer Adamax dan Batch Size 15 

Pada model Artificial Neural Network (ANN) ini, digunakan optimizer Adamax 

dengan parameter batch size sebesar 15. Dilakukan pelatihan model hingga 

mencapai epoch ke-1000. Dalam proses tersebut, dilakukan optimisasi 

menggunakan optimizer Adamax. Pelatihan dimulai hingga epoch 1000, hasil 

pelatihan tersebut akan disajikan pada gambar 4.12. 
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Gambar 4.13 Grafik Loss Model ANN dengan optimizer adamax dan batch size 

15 pada epoch 1000 

 

Pelatihan awal ini berhasil memperbaiki model dengan signifikan, terlihat dari 

penurunan nilai loss baik pada data train maupun data test. Pada epoch 1000, model 

ini mencapai nilai MAE sebesar 0,37186. Meskipun nilai MAE tersebut masih lebih 

besar dari acuan awal yang ditetapkan, tidak terlihat indikasi overfitting maupun 

underfitting pada model tersebut. Hal ini menunjukkan bahwa model tersebut dapat 

secara baik menyesuaikan diri dengan data pelatihan tanpa kehilangan kemampuan 

umum untuk memprediksi data baru. Pelatihan model ini dilanjutkan hingga epoch 

3000. Hasil pelatihan tersebut akan disajikan pada gambar 4.13. 
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Gambar 4.14 Grafik Loss Model ANN dengan optimizer adamax dan batch size 

15 pada epoch 3000 

 

Pada pelatihan ini, terdapat indikasi bahwa model mengalami overfitting. Terlihat 

adanya penyimpangan pada sekitar epoch 1600, di mana nilai test cenderung 

meningkat sedangkan nilai train cenderung menurun. Model ini mencatatkan nilai 

MAE sebesar 0,317, yang masih lebih besar dari acuan awal yang ditetapkan. 

Selanjutnya, model akan dilatih kembali hingga epoch 5000, dan hasil pelatihan 

tersebut akan ditampilkan pada Gambar 4.14. 
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Gambar 4.15 Grafik Loss Model ANN dengan optimizer adamax dan batch size 

15 pada epoch 5000 

 

Pada pelatihan ini, terjadi penurunan yang cukup signifikan pada epoch 3000 

hingga 3750. Nilai test dan train secara bersamaan mengalami perbaikan nilai. 

Namun, pada epoch 3750 hingga 4500, tidak terjadi perbaikan nilai yang signifikan. 

Kemudian, pada epoch 4500 hingga 5000, terdapat indikasi overfitting di mana nilai 

test cenderung meningkat sedangkan nilai train cenderung menurun. 

Berdasarkan eksperimen yang telah dilakukan, optimizer Adamax berhasil 

menghasilkan perbaikan nilai yang signifikan pada epoch 0 hingga 1000. Pada 

beberapa kasus lainnya, seperti pada epoch 3000 hingga 4000, juga terjadi 

perbaikan nilai yang signifikan. Namun, pada epoch 1000 hingga 3000 dan 4000 

hingga 5000, sering terjadi overfitting pada model. Keterbatasan jumlah data juga 

menjadi faktor yang mempersulit perbaikan model pada epoch di atas 1000. Oleh 

karena itu, melalui eksperimen berbagai kombinasi pelatihan model, akan dicari 
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model yang memiliki nilai MAE terendah. Terdapat 2 model dengan nilai MAE 

terendah yakni model yang dilatih menggunakan optimizer adamax dengan batch 

size 1 pada epoch 3000 dan 5000. Model pada epoch 3000 memiliki nilai MAE 

sebesar 0.2448507845401764 sedangkan model pada epoch 5000 memiliki nilai 

MAE sebesar 0.23888996243476868. Namun kedua model tersebut terindikasi 

mengalami overfitting. Adapun model lainnya yang memiliki nilai loss mae 

terendah namun tidak mengalami indikasi overfitting yakni model dengan 

optimizer adamax dan batchsize sebesar 7 pada epoch 1000. Model tersebut 

memiliki nilai mae sebesar 0.333776. 

 

4.2.4. Model ANN dengan Optimizer SGD dan Batch Size 1 

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size 

sebesar 1. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan 

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki 

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada 

indikasi terjadinya overfitting atau underfitting pada model. 

 
Gambar 4.16 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1 

pada epoch 1000 
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Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.15, 

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini 

memiliki akurasi MAE sebesar 0.385, yang masih sedikit jauh dari acuan awal yang 

telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. Hasil 

pelatihan tersebut dapat dilihat pada gambar 4.16. 

 
Gambar 4.17 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1 

pada epoch 3000 

 

Seperti yang terlihat pada Gambar 4.16, tidak terjadi perbaikan yang signifikan 

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan 

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.45 hingga 0.7, 

sementara nilai loss MAE pada train hanya berkisar antara 0.3 hingga 0.4. Model 

mencatatkan nilai MAE sebesar 0.37452, dimana nilai tersebut yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan. Pelatihan model kembali dilanjutkan 

hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 4.17. 
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Gambar 4.18 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1 

pada epoch 5000 

 

Seperti yang terlihat pada Gambar 4.17, tidak terjadi perbaikan yang signifikan 

pada model. Namun nilai loss pada train mengalami penurunan sedikit demi sedikit. 

Nilai loss MAE pada test berkisar antara 0.45 hingga 0.7, sementara nilai loss MAE 

pada train hanya berkisar pada nilai 0.4. Model mencatatkan nilai MAE sebesar 

0.3702, dimana nilai tersebut yang masih sedikit jauh dari acuan awal yang telah 

ditetapkan. 

 

4.2.5. Model ANN dengan Optimizer SGD dan Batch Size 7 

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size 

sebesar 7. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan 

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki 
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performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada 

indikasi terjadinya overfitting atau underfitting pada model. 

 
Gambar 4.19 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 

pada epoch 1000 

 

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.18, 

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini 

memiliki akurasi MAE sebesar 0.3773933, yang masih sedikit jauh dari acuan awal 

yang telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. 

Hasil pelatihan tersebut dapat dilihat pada gambar 4.19. 
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Gambar 4.20 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 

pada epoch 3000 

 

Seperti yang terlihat pada Gambar 4.19. tidak terjadi perbaikan yang signifikan 

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan 

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6, 

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model 

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan 

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali 

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 

4.20. 
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Gambar 4.21 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 

pada epoch 5000 

 

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.20, 

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya 

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.4. Sedangkan nilai 

train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada 

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.3569, yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan.   
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4.2.6. Model ANN dengan Optimizer SGD dan Batch Size 15 

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size 

sebesar 15. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan 

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki 

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada 

indikasi terjadinya overfitting atau underfitting pada model. 

 
Gambar 4.22 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 

pada epoch 1000 

 

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.21, nilai 

loss mae test mengalami penurunan yang awalnya berkisar pada nilai 0.6 hingga 

pada epoch 1000 berkisar pada nilai 0.5. Sedangkan nilai loss mae train tidak 

mengalami penurunan yang signifikan. Pada epoch 200 hingga epoch 1000 tetap 

berkisar pada 0.4. Pada evaluasi akhir, model ini memiliki akurasi MAE sebesar 

0.396369, yang masih sedikit jauh dari acuan awal yang telah ditetapkan. Pelatihan 
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model kembali dilanjutkan hingga epoch 3000. Hasil pelatihan tersebut dapat 

dilihat pada gambar 4.22. 

 
Gambar 4.23 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 

pada epoch 3000 

 

Seperti yang terlihat pada Gambar 4.22. Tidak terjadi perbaikan yang signifikan 

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan 

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6, 

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model 

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit 

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan 

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali 

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 

4.23. 
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Gambar 4.24 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 

pada epoch 5000 

 

Pelatihan dilakukan hingga mencapai epoch 5000. Terlihat pada Gambar 4.23, 

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya 

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.45. Sedangkan 

nilai train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada 

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.36400321, dimana nilai 

tersebut sedikit jauh dari acuan awal yang telah ditetapkan. 

Setelah melakukan beberapa eksperimen kombinasi parameter diatas maka 

didapatkan 2 model yang memiliki nilai mae terkecil yaitu sebesar 

0.35695648193359375 pada model yang dilatih menggunakan batch size sebesar 7 

dan dilatih hingga epoch 5000. Lalu ada pula model yang memiliki nilai mae 

sebesar 0.35471969842910767 yaitu model yang dilatih menggunakan batch size 

sebesar 15 dan dilatih hingga epoch 3000. 
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4.2.7. Evaluasi model ANN Prediksi Jarak berdasarkan Citra RGB 

Setelah bereksperimen dengan berbagai kombinasi parameter training, maka 

disimpulkan untuk menggunakan model ANN dengan optimizer adamax, batch size 

7 pada epoch 1000. Model tersebut memiliki nilai mae 0.333776. Model tersebut 

digunakan karena tidak mengalami indikasi overfitting maupun underfitting. 

Sehingga diharapkan model tersebut dapat melakukan prediksi secara stabil. Hasil 

seluruh eksperimen model ANN dapat dilihat pada tabel 4.2. 

 

Tabel 4.2 Perbandingan Model ANN 

Model Batch Size Epoch Last Train MAE 

adamax 1 1000 0.5775669217 

adamax 1 3000 0.2448507845 

adamax 1 5000 0.2388899624 

adamax 7 1000 0.3337768912 

adamax 7 3000 0.2724565864 

adamax 7 5000 0.2823437452 

adamax 15 1000 0.3718636036 

adamax 15 3000 0.3173060715 

adamax 15 5000 0.3213479519 

sgd 1 1000 0.3855191469 

sgd 1 3000 0.3745284975 

sgd 1 5000 0.3702289462 

sgd 7 1000 0.3773933947 

sgd 7 3000 0.3603681922 

sgd 7 5000 0.3569564819 

sgd 15 1000 0.3963693976 

sgd 15 3000 0.3547196984 

sgd 15 5000 0.3640032113 
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4.3. Eksperimen Model Deteksi Buah Kakao untuk Mengestimasi Jumlah 

Buah Kakao 

Pada pelatihan model CNN YOLO, digunakan 80 gambar dan anotasi yang 

menggambarkan buah kakao matang dan belum matang dengan lima variasi epoch, 

yaitu 100, 300, 500, 700, 1000. Pada pelatihan ini, menggunakan optimizer SGD 

dan kombinasi dari beberapa fungsi loss. YOLOv8 menggunakan fungsi loss CIoU 

dan DFL untuk loss kotak pembatas dan binary cross-entropy untuk loss klasifikasi. 

Pelatihan akan dilakukan dengan menggunakan 2 skala arsitektur yaitu pada skala 

nano dan medium. Perbedaan skala arsitektur terdapat pada perbedaan jumlah 

parameter yang digunakan pada setiap layernya. Model dengan arsitektur nano juga 

akan memproduksi model dengan ukuran file yang lebih kecil ketimbang model 

dengan medium. 

Pelatihan dilakukan selama 100 epoch dengan optimizer SGD dan batch size 

sebesar 16. Ukuran gambar input adalah 800x800, dan model akan disimpan setelah 

pelatihan selesai. Tidak digunakan cache, dan perangkat yang digunakan akan 

disesuaikan secara otomatis. Selain itu, dilakukan pengolahan data paralel dengan 

8 workers. Informasi tentang pelatihan, seperti verbose, seed, dan deterministic juga 

telah ditentukan. Model ini dapat mendeteksi multiple kelas, dan tidak 

menggunakan bobot gambar atau training rectangular. Pada evaluasi, akan 

diperhatikan nilai ambang batas kepercayaan dan IoU threshold, serta jumlah 

deteksi maksimum. Grafik pelatihan akan ditampilkan, tetapi tidak akan 

menampilkan gambar deteksi secara visual. Tidak ada penyimpanan dalam format 

teks, confidence map, atau crop objek deteksi. Label objek dan confidence score 

akan ditampilkan, serta tebal garis boks deteksi sebesar 3. 

 

4.3.1. Model YOLOV8n dengan 100 epoch 

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.24. 
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Gambar 4.25 loss model YOLOV8n dengan 100 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.24 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan 
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nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya 

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan 

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.3. 

 

Tabel 4.3  Hasil Pelatihan YOLOV8n pada epoch 100 

Class Box(P) R 

all 0.907 0.704 

ripe cocoa 0.925 0.792 

unripe cocoa 0.889 0.617 

 

Setelah melatih model YOLOV8M selama 100 epoch, dapat disimpulkan 

bahwa hasil pelatihan menunjukkan kinerja yang baik dalam melakukan deteksi 

buah kakao matang dan belum matang. Keseluruhan model mencapai akurasi 

deteksi sebesar 83.4% dengan recall sebesar 82%. Hasil yang lebih baik diperoleh 

untuk deteksi buah kakao matang, dengan akurasi mencapai 88% dan recall sebesar 

91.7%. Namun, performa deteksi pada buah kakao belum matang sedikit lebih 

rendah, dengan akurasi sebesar 78.8% dan recall sebesar 72.3%. 

 

Meskipun demikian, secara keseluruhan model telah mampu melakukan 

deteksi dengan baik pada dataset yang digunakan. Namun, ada ruang untuk 

pengembangan lebih lanjut dalam meningkatkan performa deteksi pada buah kakao 

belum matang agar sejajar dengan deteksi buah kakao matang. Dengan demikian, 

dapat dilakukan penyesuaian atau peningkatan model untuk mencapai akurasi 

deteksi yang lebih tinggi dan recall yang lebih baik pada kelas buah kakao belum 

matang. 

 

4.3.2. Model YOLOV8n dengan 300 epoch 

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.25. 
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Gambar 4.26 loss model YOLOV8n dengan 300 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss 
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terus menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik 

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai 

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss 

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat 

dilihat pada tabel 4.4. 

 

Tabel 4.4  Hasil Pelatihan YOLOV8n pada epoch 300 

Class Box(P) R 

all 0.799 0.799 

ripe cocoa 0.734 0.920 

unripe cocoa 0.864 0.678 

 

Setelah melatih model, diperoleh hasil pelatihan yang menunjukkan kinerja 

yang cukup baik dalam melakukan deteksi buah kakao matang dan belum matang. 

Dalam hal ini, model mencapai akurasi deteksi sebesar 79.9% dan recall 

(kemampuan mengidentifikasi dengan benar) sebesar 79.9% untuk semua kelas. 

Meskipun akurasi dan recall secara keseluruhan seimbang, terdapat perbedaan 

dalam kinerja deteksi antara kelas buah kakao matang dan belum matang. 

 

Untuk kelas buah kakao matang, model mencapai akurasi deteksi sebesar 

73.4% dengan recall sebesar 92%. Hal ini menunjukkan bahwa model mampu 

mengenali dengan baik buah kakao yang telah matang. Namun, untuk kelas buah 

kakao belum matang, model memiliki akurasi deteksi yang sedikit lebih tinggi 

sebesar 86.4% namun recall yang sedikit lebih rendah, yakni sebesar 67.8%. Secara 

keseluruhan, model telah mencapai kinerja yang cukup baik dalam melakukan 

deteksi buah kakao matang dan belum matang. 

 

4.3.3. Model YOLOV8n dengan 500 epoch 

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test dapat dilihat 

pada gambar 4.26. 
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Gambar 4.27 loss model YOLOV8n dengan 500 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.26 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss 
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terus menurun seiring berjalannya pelatihan hingga epoch 200. Namun pada metrik 

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai 

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss 

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat 

dilihat pada tabel 4.5. 

 

Tabel 4.5  Hasil Pelatihan YOLOV8n pada epoch 500 

Class Box(P) R 

all 0.860 0.809 

ripe cocoa 0.867 1.000 

unripe cocoa 0.853 0.618 

 

Berdasarkan hasil pelatihan model YOLOV8N selama 500 epoch, secara 

keseluruhan model ini memiliki tingkat akurasi deteksi yang baik sebesar 0,86 dan 

presisi yang cukup tinggi sebesar 0,809. Model ini mampu dengan efektif 

mendeteksi dan mengklasifikasikan cokelat matang ("ripe cocoa") dengan tingkat 

akurasi yang tinggi sebesar 0,867 dan recall sempurna sebesar 1. Namun, model 

menghadapi beberapa kesulitan dalam mendeteksi cokelat yang belum matang 

("unripe cocoa"), dengan tingkat akurasi yang sedikit lebih rendah sebesar 0,853 

dan recall sebesar 0,618. Untuk meningkatkan performa model dalam 

mengklasifikasikan cokelat yang belum matang, perlu dilakukan penyesuaian pada 

proses pelatihan, seperti penambahan data latihan yang lebih representatif atau 

penyetelan parameter model yang lebih optimal. Secara keseluruhan, meskipun 

model YOLOV8N telah menunjukkan kinerja yang baik dalam mendeteksi objek 

secara umum, masih diperlukan peningkatan dalam mengklasifikasikan cokelat 

yang belum matang dengan lebih baik. 

 

4.3.4. Model YOLOV8n dengan 700 epoch 

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.27. 
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Gambar 4.28 loss model YOLOV8n dengan 700 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 

 

Seperti yang dapat dilihat pada ketiga gambar 4.27 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi 

terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test mengalami 

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss 

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.6. 

 

Tabel 4.6  Hasil Pelatihan YOLOV8n pada epoch 700 

Class Box(P) R 

all 0.917 0.707 

ripe cocoa 0.947 0.743 

unripe cocoa 0.887 0.671 

 

Dalam hasil pelatihan model YOLOV8N selama 700 epoch, terjadi 

peningkatan yang signifikan dalam kinerja model. Secara keseluruhan, model 

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,917 dengan nilai presisi 

sebesar 0,707. Ini menunjukkan bahwa model berhasil meningkatkan 

kemampuannya dalam mendeteksi objek secara umum. Hasil yang lebih baik ini 

dapat memberikan kepercayaan lebih dalam penggunaan model untuk mendeteksi 

berbagai objek di dalam gambar. 

Ketika fokus pada kategori "ripe cocoa", model menunjukkan peningkatan 

yang konsisten dengan tingkat akurasi sebesar 0,947 dan presisi sebesar 0,743. 

Meskipun recall masih dapat ditingkatkan, peningkatan ini menunjukkan bahwa 

model semakin mampu mengklasifikasikan cokelat matang dengan akurasi yang 

lebih tinggi. Namun, untuk kategori "unripe cocoa", meskipun terjadi peningkatan, 

model masih menghadapi beberapa tantangan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang. Dengan tingkat akurasi sebesar 

0,887 dan recall sebesar 0,671, masih ada ruang untuk perbaikan lebih lanjut. 

 

4.3.5. Model YOLOV8n dengan 1000 epoch 

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.28. 
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Gambar 4.29 dfl loss, box loss, cls  loss model YOLOV8n dengan 1000 epoch 

(a) dfl loss, (b) box loss dan (c) cls 

 

Seperti yang dapat dilihat pada ketiga gambar 4.28 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi 

terjadinya overfitting. Pada epoch ke-400 nilai loss train dan test mengalami 

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss 

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.7. 

 

Tabel 4.7  Hasil Pelatihan YOLOV8n pada epoch 1000 

Class Box(P) R 

all 0.869 0.767 

ripe cocoa 0.775 0.917 

unripe cocoa 0.963 0.617 

 

Dalam pelatihan model YOLOV8N, terdapat hasil yang menarik untuk 

setiap kategori. Secara keseluruhan, model mencapai tingkat akurasi deteksi sebesar 

0,869 dengan presisi sebesar 0,767. Meskipun tingkat presisi yang tinggi 

menunjukkan kemampuan model dalam mengenali objek secara spesifik, recall 

yang sebesar 0,767 menandakan adanya ruang untuk perbaikan dalam mencakup 

semua objek yang ada dalam gambar secara lebih lengkap. 

Dalam kategori "ripe cocoa", model menunjukkan tingkat presisi sebesar 

0,775 yang cukup baik. Namun, recall yang rendah sebesar 0,917 mengindikasikan 

bahwa model masih melewatkan beberapa cokelat matang yang seharusnya 

terdeteksi. Sementara itu, dalam kategori "unripe cocoa", model berhasil mencapai 

tingkat presisi yang tinggi sebesar 0,963. Namun, recall yang rendah sebesar 0,617 

menunjukkan bahwa model masih menghadapi kesulitan dalam mendeteksi 

sebagian besar cokelat yang belum matang. 

Secara keseluruhan, model YOLOV8N telah menunjukkan kemajuan yang 

baik dalam deteksi objek, namun masih ada aspek-aspek yang perlu ditingkatkan. 

Peningkatan pada recall dalam kedua kategori "ripe cocoa" dan "unripe cocoa" akan 

menjadi prioritas dalam pelatihan selanjutnya. Dengan demikian, model dapat 

mengenali dan mengklasifikasikan objek dengan lebih akurat dan menyeluruh, 

menghasilkan hasil yang lebih baik dalam aplikasi deteksi objek yang berkaitan 

dengan cokelat.. 
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4.3.6. Model YOLOV8m dengan 100 epoch 

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.29. 

 
Gambar 4.30 loss model YOLOV8n dengan 100 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.29 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan 

nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya 

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan 

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.8. 

 

Tabel 4.8  Hasil Pelatihan YOLOV8M pada epoch 100 

Class Box(P) R 

all 0.834 0.820 

ripe cocoa 0.880 0.917 

unripe cocoa 0.788 0.723 

 

Model YOLOV8M, setelah melalui pelatihan selama 100 epoch, 

menunjukkan hasil yang cukup baik. Dalam kategori "all", model mencapai tingkat 

akurasi deteksi sebesar 0,834 dengan presisi sebesar 0,82. Hasil ini menunjukkan 

kemampuan model dalam mendeteksi objek secara umum dalam dataset yang 

digunakan. Tingkat akurasi yang tinggi ini memberikan kepercayaan bahwa model 

dapat mengenali objek dengan baik. 

Ketika berfokus pada kategori "ripe cocoa", model YOLOV8M mencapai 

tingkat akurasi yang lebih tinggi sebesar 0,88 dengan recall sebesar 0,917. Hal ini 

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang 

dengan akurasi yang baik dan mampu mendeteksi sebagian besar objek yang ada. 

Tingkat recall yang tinggi juga menandakan bahwa model dapat mengenali 

sebagian besar cokelat matang yang ada dalam dataset. 

Namun, dalam kategori "unripe cocoa", model menghadapi beberapa 

tantangan dengan tingkat akurasi sebesar 0,788 dan recall sebesar 0,723. Hal ini 

mengindikasikan bahwa model masih perlu ditingkatkan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang. Secara keseluruhan, model 

YOLOV8M menunjukkan kemampuan yang baik dalam mendeteksi objek secara 

umum dan khususnya dalam kategori "ripe cocoa".  
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4.3.7. Model YOLOV8m dengan 300 epoch 

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8m. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.30. 

 
Gambar 4.31 dfl loss, box loss, cls  loss model YOLOV8n dengan 300 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.30 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss 

terus menurun seiring berjalannya pelatihan. Namun pada metrik dfl loss ada 

indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test 

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat 

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada 

tabel 4.8. 

 

Tabel 4.9  Hasil Pelatihan YOLOV8m pada epoch 300 

Class Box(P) R 

all 0.820 0.725 

ripe cocoa 0.903 0.875 

unripe cocoa 0.737 0.574 

 

Setelah melalui pelatihan selama 300 epoch, model YOLOV8M 

menunjukkan hasil yang menarik. Secara keseluruhan, model ini mencapai tingkat 

akurasi deteksi sebesar 0,82 dengan presisi sebesar 0,725 dalam kategori "all". 

Meskipun tingkat akurasi yang cukup baik, recall yang sebesar 0,725 menunjukkan 

bahwa model mungkin masih melewatkan sebagian objek yang ada dalam gambar. 

Dalam kategori "ripe cocoa", model menunjukkan peningkatan performa dengan 

tingkat akurasi sebesar 0,903 dan recall sebesar 0,875. Hasil ini mengindikasikan 

kemampuan model dalam mengklasifikasikan cokelat matang dengan akurasi yang 

tinggi dan mampu mendeteksi sebagian besar objek yang ada. Peningkatan tersebut 

menunjukkan adanya kemajuan dalam pelatihan model. 

Namun, dalam kategori "unripe cocoa", model masih mengalami beberapa 

kendala dengan tingkat akurasi sebesar 0,737 dan recall sebesar 0,574. Hal ini 

menandakan bahwa model masih menghadapi kesulitan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan 

yang lebih baik. Secara keseluruhan, model YOLOV8M telah menunjukkan 

kemajuan dalam pelatihan selama 300 epoch. Meskipun tingkat akurasi dan presisi 
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dalam kategori "all" cukup baik, recall masih perlu ditingkatkan. Peningkatan 

signifikan terlihat dalam kategori "ripe cocoa" dengan akurasi dan recall yang lebih 

baik. 

 

4.3.8. Model YOLOV8m dengan 500 epoch 

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.31. 

 
Gambar 4.32 dfl loss, box loss, cls  loss model YOLOV8n dengan 500 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model berhasil 

meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss terus 

menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl 

loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss 

train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val 

meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat 

dilihat pada tabel 4.9. 

 

Tabel 4.10  Hasil Pelatihan YOLOV8m pada epoch 500 

Class Box(P) R 

all 0.910 0.704 

ripe cocoa 0.959 0.792 

unripe cocoa 0.861 0.617 

 

Setelah melalui pelatihan selama 500 epoch, model YOLOV8M 

menunjukkan hasil yang menggembirakan. Secara keseluruhan, model ini 

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,91 dengan presisi sebesar 

0,704 dalam kategori "all". Meskipun tingkat akurasi yang tinggi, recall yang 

sebesar 0,704 menunjukkan bahwa model mungkin masih melewatkan sebagian 

objek yang ada dalam gambar. 

Dalam kategori "ripe cocoa", model menunjukkan performa yang sangat 

baik dengan tingkat akurasi sebesar 0,959 dan recall sebesar 0,792. Hasil ini 

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang 

dengan akurasi yang tinggi dan mampu mendeteksi sebagian besar objek yang ada. 

Namun, dalam kategori "unripe cocoa", model masih menghadapi beberapa kendala 

dengan tingkat akurasi sebesar 0,861 dan recall sebesar 0,617. Hal ini menandakan 

bahwa model masih mengalami kesulitan dalam mendeteksi dan 

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan 

yang lebih baik. 
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4.3.9. Model YOLOV8m dengan 700 epoch 

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8m. 

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat 

pada gambar 4.32. 

 
Gambar 4.33 loss model YOLOV8n dengan 700 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss 

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test 

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat 

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada 

tabel 4.10. 

 

Tabel 4.11  Hasil Pelatihan YOLOV8m pada epoch 700 

Class Box(P) R 

all 0.748 0.808 

ripe cocoa 0.610 0.958 

unripe cocoa 0.885 0.658 

 

Model YOLOV8M dilatih selama 700 epoch dan mencapai akurasi deteksi 

sebesar 0,748 dan presisi 0,808 dalam kategori "semua". Namun, recall 0,808 

menunjukkan ruang untuk meningkatkan deteksi objek dalam gambar. Dalam 

kategori "kakao matang", akurasi 0,61 dengan recall tinggi 0,958 menunjukkan 

kemampuan model mengklasifikasikan kakao matang, meskipun dengan positif 

palsu. Dalam kategori "kakao mentah", akurasi 0,885 dengan recall 0,658 

menunjukkan model masih kesulitan mendeteksi kakao mentah. Model perlu 

meningkatkan recall dalam kategori ini. Secara keseluruhan, YOLOV8M 

menunjukkan kemajuan selama 700 epoch. Dalam kategori "semua", recall perlu 

ditingkatkan untuk mendeteksi lebih banyak objek. Dalam kategori "kakao 

matang", recall tinggi menunjukkan kemampuan model, tetapi perlu penanganan 

positif palsu. Dalam kategori "kakao mentah", meningkatkan recall menjadi fokus 

utama untuk meningkatkan deteksi kakao mentah dengan akurasi yang lebih tinggi. 
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4.3.10. Model YOLOV8m dengan 1000 epoch 

Dilakukan pelatihan model hingga epoch 1000 menggunakan arsitektur 

YOLOV8m. Pada akhir proses training, nilai akurasi dan loss pada training dan test 

bisa dilihat pada gambar 4.33. 

 
Gambar 4.34 model YOLOV8n dengan 1000 epoch 

(a) dfl loss, (b) box loss dan (c) cls loss 
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Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model 

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring 

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss 

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test 

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat 

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada 

tabel 4.11. 

 

Tabel 4.12  Hasil Pelatihan YOLOV8m pada epoch 1000 

Class Box(P) R 

all 0.816 0.768 

ripe cocoa 0.746 0.856 

unripe cocoa 0.886 0.681 

 

Model YOLOV8M telah dilatih selama 1000 epoch dan menunjukkan hasil 

yang menarik. Dalam kategori "semua", model ini mencapai presisi sebesar 0,816 

dan recall sebesar 0,768. Ini menunjukkan kemampuan model dalam mengenali dan 

mengklasifikasikan objek dengan akurasi yang cukup tinggi. Dalam kategori 

"kakao matang", model mencapai presisi sebesar 0,746 dengan recall yang lebih 

tinggi, yaitu 0,856. Ini menunjukkan kemampuan model dalam mendeteksi dan 

mengklasifikasikan kakao matang dengan baik, meskipun masih terdapat ruang 

untuk meningkatkan presisi. Di sisi lain, dalam kategori "kakao mentah", model 

mencapai presisi sebesar 0,886 dengan recall sebesar 0,681. 

Meskipun akurasi cukup baik, recall yang rendah menunjukkan bahwa 

model masih kesulitan dalam mendeteksi sebagian besar kakao mentah. 

Meningkatkan recall dalam kategori ini menjadi fokus utama untuk meningkatkan 

kemampuan model dalam mengklasifikasikan kakao mentah dengan akurasi yang 

lebih tinggi. Secara keseluruhan, YOLOV8M telah menunjukkan kemajuan dalam 

1000 epoch pelatihan. Meskipun memiliki akurasi yang baik dalam kategori 

"semua" dan "kakao matang", meningkatkan recall akan membantu model dalam 

menangkap lebih banyak objek secara akurat. Untuk kategori "kakao mentah", 
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meningkatkan recall menjadi hal yang penting untuk meningkatkan kemampuan 

model dalam mendeteksi kakao mentah dengan lebih baik. 

 

4.3.11. Evaluasi 5 Model YOLOV8 dengan performa terbaik 

Untuk menentukan model YOLOV8 yang memiliki akurasi paling baik 

maka berikut akan ditampilkan 5 model dengan nilai R dan Box(P) (box loss) yang 

paling tinggi diantara model-model lainnya pada gambar 4.35. 

 

 
Gambar 4.35 Grafik 5 Model Dengan Nilai Recall Tertinggi 

 

Dari model dengan arsitektur YOLOV8 diatas maka disimpulkan model terbaik 

adalah model dengan arsitektur YOLOV8 nano dengan 100 epoch. 

 

4.4. Sistem Prediksi Jarak Objek pada Citra 

Sistem ini akan melakukan Prediksi Jarak Objek terhadap kamera. Prediksi 

dilakukan menggunakan nilai rgb sebagai input. Proses dimulai dengan memilih 

titik koordinat salah satu piksel yang berada pada area objek sebagai input proses 

segmentasi. Kemudian dilakukan segmentasi pada citra untuk mendapatkan area 

objek. Kemudian dilakukan prediksi kedalaman citra menggunakan Model CNN 

Monocular Depth Estimation. Area yang telah didapatkan digunakan untuk 

mengambil warna pada citra hasil prediksi kedalaman pada area yang diinginkan. 
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Kemudian dari kumpulan warna tersebut dicari nilai mediannya sehingga 

didapatkan nilai median rgb untuk digunakan pada input model ANN prediksi jarak. 

Sehingga kemudian didapatkan nilai jarak objek terhadap kamera. 

 

4.4.1. Mengunggah Gambar dan Penggunaan Model CNN Monocular Depth 

Estimation 

Proses awal yang harus dilakukan yakni mengunggah gambar tanaman 

kakao yang akan digunakan. Setelah itu dilakukan proses prediksi kedalaman 

menggunakan Model CNN Monocular Depth Estimation. Sehingga dihasilkan citra 

yang merepresentasikan kedalaman atau dapat disebut sebagai citra kedalaman. 

Citra inilah yang nantinya akan digunakan nilai rgbnya sebagai input untuk 

memprediksi jarak objek terhadap kamera. 

 
Gambar 4.36 Citra Tanaman Kakao Asli 

 
Gambar 4.37 Citra Kedalaman Tanaman Kakao 
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4.4.2. Menentukan Titik Piksel pada Objek 

Karena sistem yang dikembangkan belum dapat mengidentifikasi bagian 

batang tanaman kakao secara otomatis, maka pada penelitian ini masih diperlukan 

input manual untuk menentukan titik piksel yang merupakan bagian dari tanaman 

kakao. Proses ini dilakukan dengan melihat terlebih dahulu gambar serta axis untuk 

melakukan taksiran lokasi x,y piksel yang akan digunakan. 

 
Gambar 4.38 Tampilan awal untuk penentuan titik pada objek 

Setelah melakukan taksiran maka pada gambar ini akan digunakan titik pada 

koordinat 2750, 3000. Nilai x,y tersebut akan ditampilkan dengan simbol bintang 

seperti pada gambar berikut. 

 

 
Gambar 4.39 Tampilan gambar dengan titik piksel yang telah dipilih 
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Setelah menemukan titik piksel yang akan digunakan, maka pada proses 

selanjutnya titik tersebut akan digunakan sebagai input pada proses segmentasi. 

 

4.4.3. Proses Segmentasi dengan Model CNN Segment Anything 

Pada proses ini akan dilakukan segmentasi untuk mendapatkan area objek 

yang akan digunakan (Tanaman Kakao). Titik koordinat yang telah ditentukan 

menjadi input/acuan model untuk memprediksi area sekitarnya yang masih 

merupakan bagian dari objek. Hal ini dilakukan untuk mempermudah pemilihan 

area objek. 

 
Gambar 4.40 Hasil Segmentasi Area Objek Tanaman Kakao 

Area/mask tersebut kemudian akan digunakan untuk mengambil nilai rgb pada citra 

kedalaman. 

 

4.4.4. Pengambilan nilai median RGB dan Prediksi Jarak 

Setelah mendapatkan area objek tanaman kakao, maka nilai rgb pada citra 

kedalaman yang beririsan dengan area objek tanaman kakao akan diambil. Dari 

nilai-nilai tersebut kemudian akan didapatkan nilai median RGB. Nilai median 
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RGB kemudian digunakan untuk memprediksi jarak. Dengan menggunakan model 

ANN yang telah dikembangkan, dilakukan prediksi jarak menggunakan nilai rgb 

sebagai input. Sehingga kemudian didapatkan nilai jarak objek tanaman kakao 

terhadap kamera dalam satuan meter. 

 

4.4.5. Evaluasi Sistem Prediksi Jarak Objek Pada Citra 

Penggunaan model CNN Segment Anything belum bisa optimal untuk 

mengambil bagian tanaman saja karena adanya noise pada background objek 

tersebut. Hal ini dipengaruhi oleh kondisi lingkungan perkebunan kakao yang padat 

dengan tanaman kakao. 

 

4.5. Sistem Prediksi Koordinat Tanaman Kakao pada Citra 

Pada bagian ini akan dilakukan prediksi nilai koordinat tanaman kakao. 

Pada tahap ini diperlukan beberapa variabel sebagai input yaitu nilai koordinat 

longitude dan latitude tanaman kakao, nilai derajat arah hadap kamera, serta jarak 

objek terhadap kamera. Pada proses ini akan digunakan rumus yang bernama 

Vincenty Formula. Hasil dari kalkulasi menggunakan rumus tersebut yakni titik 

koordinat longitude serta latitude objek tanaman kakao. Untuk menguji akurasi dari 

rumus tersebut, pada bagian selanjutnya akan dilakukan percobaan kalkulasi pada 

5 titik lokasi.  

 

4.5.1. Evaluasi Akurasi Vincenty Formula 

Pada bagian ini akan dilakukan pengujian akurasi dari hasil kalkulasi 

Vinceny Formula. Pengujian akan dilakukan pada 5 lokasi pada tabel 4.13. 

 

Tabel 4.13 Ground Truth Titik Koordinat Pengujian Vincety Formula 

No 
Building Destination 

Name Coordinate Name Coordinate 

1 

Alun-Alun 

Tugu Malang 

-7.97692544511029, 

112.634055029002 

Stasiun Malang 

Kota Baru 

-7.97720169566579, 

112.637112747216 
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Tabel 4. 14 Ground Truth Titik Koordinat Pengujian Vincety Formula (lanjutan) 

No 
Building  Destination  

Name Coordinate Name Coordinate 

2 Alun-Alun 

Tugu Malang 

-7.97692544511029, 

112.634055029002 

Bulan Photocopy 

& Print 

-7.97419601839356, 

112.634292801417 

3 Gerbang UB 

Soekarno hatta 

-7.94984, 

112.615411 

Soekarno Hatta 

Bridge 

-7.9496079959561, 

112.615839888356 

4 Gerbang UB 

Soekarno hatta 

-7.94984, 

112.615411 

Kober Mie Setan -7.9481629265072, 

112.61676260122 

5 Gerbang UB 

Soekarno hatta 

-7.94984, 

112.615411 

Mixue Suhat 

Malang 

-7.94637779324508, 

112.618050061491 

 

Tabel 4. 15 Arah dan Jarak 

No Heading Distance to Desstination (km) 

1 96,607° 0.28 

2 4,124 0.3 

3 45,456° 0.069 

4 43,014° 0.22 

5 -40,579° 0.45 

 

Tabel 4. 16 Hasil Prediksi dan Selisih 

No Predicted Coordinate  Differences 

1 
-7.97721516624731, 

112.636580818575 
 -1.347 x 10-5, -5.319 x 10-4 

2 
-7.97423446585066, 

112.634250919231 
 -3.845 x 10-5, -4.188 x 10-5 

3 
-7.94936783429258, 

112.615817547406 
 -3.845 x 10-5, -4.188 x 10-5 
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Tabel 4. 17 Hasil Prediksi dan Selisih (lanjutan) 

No Predicted Coordinate  Differences 

4 
-7.94839333872107, 

112.616773784662 
 -2.304 x 10-4, 1.118 x 10-5 

5 
-7.9467662955678, 

112.618069047894 
 -3.885 x 10-4, 1.899 x 10-5 

 

Berdasarkan lima percobaan yang telah dilakukan, dapat disimpulkan bahwa rumus 

yang digunakan memiliki akurasi yang cukup baik dan kesalahan yang relatif kecil. 

Perbedaan rata-rata antara hasil yang diperoleh dari rumus dan titik koordinat 

sebenarnya adalah sangat kecil, yaitu sebesar -0,00009966528437. Selain itu, 

perbedaan maksimum antara hasil yang diperoleh dari rumus dan nilai sebenarnya 

juga cukup kecil, hanya sekitar 0,0002401616635. Sehingga dapat disimpulkan 

rumus Vincenty Formula tersebut dapat digunakan untuk melakukan kalkulasi titik 

koordinat suatu objek berdasarkan titik koordinat asal, derajat arah serta jarak 

terhadap objek. 

 

4.6. Sistem Estimasi Jumlah Buah Kakao 

Sistem ini melakukan deteksi buah kakao. Buah kakao yang terdeteksi 

dalam bentuk bounding box akan dihitung jumlahnya. Setelah terdeteksi maka 

setiap buah dalam setiap bounding box tersebut diklasifikasi untuk memprediksi 

buah tersebut telah memasuki usia matang atau belum. Proses pada sistem ini cukup 

sederhana, pengguna cukup mengunggah citra tanaman kakao. Lalu sistem akan 

melakukan deteksi buah kakao, serta mengkalkulasi bounding box yang muncul. 

Sehingga akan ditampilkan kepada pengguna berapa jumlah buah kakao yang ada 

pada tanaman kakao tersebut. Adapun deteksi ini dilakukan dengan menggunakan 

confidence threshold sebesar 0.25. 

 

4.6.1. Evaluasi Sistem Estimasi Jumlah Buah Kakao 

Pada tahap ini akan dilakukan evaluasi pada 5 model CNN YOLOV8 terbaik 

yang digunakan untuk melakukan deteksi buah kakao. Selain metriks pelatihan 
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seperti box loss, dfl loss dan cls loss akan dilakukan pula pengujian manual secara 

visual. Model akan dijalankan untuk melakukan proses deteksi, lalu hasil deteksi 

akan dibandingkan dengan hasil penghitungan buah kakao manual secara visual. 

Adapun berikut 2 citra yang akan digunakan untuk melakukan evaluasi sistem 

estimasi jumlah buah kakao yaitu gambar 4.41 dan 4.42. 

 

 
Gambar 4. 41 Citra Tanaman Kakao dengan Buah muda 

 

Dapat dilihat pada gambar 4.40 terdapat 19 buah muda. Buah kakao yang masih 

muda akan nampak berwarna hijau. Lama-kelamaan akan muncul titik titik 

kecoklatan pada buah kakao. Beberapa buah kakao pada gambar 4.40 berada pada 

posisi yang sulit untuk dideteksi seperti buah yang tertutupi oleh buah lainnya, serta 

buah yang berada dibalik batang. Buah pada posisi yang sulit dijangkau ini akan 

sulit untuk dideteksi oleh model CNN YOLO. 

 
Gambar 4. 42 Citra Tanaman Kakao dengan Buah Matang 



109 
 

Dapat dilihat pada gambar 4.41 terdapat 20 buah matang. Pada kedua citra diatas 

yaitu gambar 4.40 dan gambar 4.41 akan dilakukan deteksi menggunakan model 

YOLOV8n dengan 100 epoch. Hasil deteksi dapat dilihat pada gambar 4.43 dan 

4.44. 

 

Gambar 4. 43 Hasil Deteksi Buah Kakao menggunakan model YOLOV8n dengan 

100 epoch 

Pada gambar 4.43 terdapat 8 bounding box. Artinya terdapat 8 buah kakao matang 

yang terdeteksi. Kedelapan bounding box tersebut juga memiliki confidece 

threshold yang tinggi, yaitu pada nilai diatas 0.9 yang artinya model cukup yakin 

bahwa prediksinya akurat. Namun masih terdapat 10 buah yang tidak terdeteksi. 

Buah yang tidak terdeteksi kebanyakan memiliki posisi yang susah untuk dideteksi 

seperti berada dibalik batang, dibalik buah lainnya, serta ukurannya sangat kecil. 

Deteksi dilakukan pula pada tanaman kakao dengan buah muda. Hasil deteksi dapat 

dilihat pada gambar 4.44. 
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Gambar 4. 44 Hasil Deteksi Buah Kakao menggunakan model YOLOV8n dengan 

100 epoch 

 

Seperti yang dapat dilihat pada gambar 4.44, terdapat 9 bounding box/buah yang 

berhasil terdeteksi. Namun pada ground truth terdapat 19 buah, sehingga masih 

terdapat 10 buah. Deteksi dilakukan menggunakan kelima model pada 2 gambar 

tersebut. Hasil evaluasi pada kelima model dapat dilihat pada tabel 4.15. 

 

Tabel 4. 18 Evaluasi 5 model terbaik pada 2 contoh gambar 

model filename 

prediction result 

num of ripe 

cocoa 

num of unripe 

cocoa 

YOLOV8n 100 

epoch 
IMG_20230621_160151.jpg  9 

 IMG_20230621_160747.jpg 8  
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Tabel 4. 19 Evaluasi 5 model terbaik pada 2 contoh gambar (lanjutan) 

model filename 

prediction result 

num of ripe 

cocoa 

num of unripe 

cocoa 

YOLOV8n 500 

epoch 
IMG_20230621_160151.jpg  12 

 IMG_20230621_160747.jpg 10  

YOLOV8m 100 

epoch 
IMG_20230621_160151.jpg 2 14 

 IMG_20230621_160747.jpg 17  

YOLOV8m 700 

epoch 
IMG_20230621_160151.jpg 3 11 

 IMG_20230621_160747.jpg 11  

YOLOV8n 300 

epoch 
IMG_20230621_160151.jpg  10 

 IMG_20230621_160747.jpg 11  

 

Secara keseluruhan model belum berhasil mendeteksi semua buah kakao yang ada 

pada tanaman kakao. Hal ini disebabkan karena banyak posisi buah kakao yang 

tertutupi oleh objek lain seperti batang tanaman kakao, buah kakao, serta ukurannya 

yang kecil. Hal ini dapat dikembangkan dengan cara melengkapi dataset yang lebih 

bervariatif seperti menambahkan anotasi bounding box pada buah kakao yang 

tertutupi. Namun hal tersebut juga perlu diimbangi dengan adanya metode yang 

dapat melokalisasi hasil deteksi karena apabila sebuah kakao terletak dibalik batang 

sehingga seolah-olah nampak terdapat dua buah kakao maka menjadi akan bias bagi 

model. 

 

Apabila ketiga sistem diatas digabungkan, sistem dapat digunakan sebagai alat 

untuk melakukan monitoring perkebunan kakao dengan metode geotagging. Pada 
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penelitian ini sistem hanya mampu untuk melakukan prediksi titik koordinat 

tanaman kakao serta deteksi buah kakao. Sehingga sistem dapat menghasilkan 

output berupa titik koordinat serta jumlah buah kakao. Sistem ini merupakan 

alternatif murah untuk mengetahui perkembangan dari setiap tanaman kakao dari 

waktu ke waktu.  
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BAB V SIMPULAN DAN SARAN 

 

5.1. Simpulan 

Berikut kesimpulan pada penelitian ini. 

1. Pada penelitian ini telah berhasil dikembangkan metode geotagging dengan 

beberapa sistem didalamnya diantaranya model CNN estimasi kedalaman, 

Segment Anything, ANN prediksi jarak, serta rumus Vincenty Formula. 

Dimana hasil eksperimen ANN menghasilkan model ANN dengan nilai loss 

mae sebesar 0.333776. Dimana model tersebut menggunakan optimizer 

adamax, batch size 7 pada epoch 1000. 

2. Pada penelitian ini berhasil dikembangkan metode untuk melakukan 

kuantifikasi otomatis yaitu dengan menggunakan model CNN YOLOV8. 

Dari hasil eksperimen, didapatkan model CNN YOLOV8 dengan nilai 

pricision 0.907 serta recall 0.958. 

 

5.2. Saran 

Adapun saran-saran dan masukan yang dapat digunakan sebagai referensi 

penelitian selanjutnya dengan topik yang sama yakni terkait geotagging. 

1. Akurasi model ANN dapat diperbaiki apabila model tersebut dilatih ulang  

2. Terdapat metode pengujian akurasi prediksi jarak yang lebih komperehensif 

3. Dapat dilakukan penyempurnaan sistem yakni dengan menambahkan model 

CNN untuk melakukan deteksi objek. Sehingga pengguna tidak lagi perlu 

untuk menentukan salah satu titik pada objek. 

4. Menambahkan anotasi bounding box pada buah yang tertutupi buah/objek 

lain. 

5. Sistem ini dapat diterapkan sebagai back end pada antarmuka web dimana 

pengguna dapat melakukan pengambilan citra, pemilihan titik, memprediksi 

jarak serta mendeteksi buah kakao.  
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LAMPIRAN 

 
### Environment Setup & Architecture Config 

import pandas as pd 

from keras.models import Sequential, load_model 

from keras.layers import Dense 

import matplotlib.pyplot as plt 

import datetime 

from sklearn.model_selection import train_test_split 

# Load the dataset from the CSV file 

# data = pd.read_csv('/Volumes/Sandisk SSD/All 

Skripsi/Skripsi/Dataset.csv') 

# print(len(data)) 

 

# Split the dataset into input (X) and output (y) 

variables 

# X = data[['r', 'g', 'b']] 

# y = data['distance'] 

 

 

# Create the neural network model 

model = Sequential() 

model.add(Dense(1000, input_dim=3, activation='relu')) 

model.add(Dense(750, activation='sigmoid')) 

model.add(Dense(500, activation='relu')) 

model.add(Dense(300, activation='sigmoid')) 

model.add(Dense(200, activation='relu')) 

model.add(Dense(150, activation='sigmoid')) 

model.add(Dense(100, activation='relu')) 

model.add(Dense(50, activation='sigmoid')) 

model.add(Dense(1, activation='linear')) 

from tensorflow.keras.utils import plot_model 
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# Visualize the model 

plot_model(model, to_file='model.png', 

show_shapes=True, show_layer_names=True) 

from PIL import Image 

import matplotlib.pyplot as plt 

 

# Load and display the image 

image = Image.open('model.png') 

plt.imshow(image) 

plt.axis('off') 

plt.show() 

 

X.count 

data 

# TTS 

X_train, X_test, y_train, y_test = train_test_split(X, 

y, test_size=0.04, random_state=20) 

# Options 

optimizer_selected = 'adamax' 

bathsize_selected = 1 

epoch_selected = 1000 

 

model.compile(loss='mean_absolute_error', 

optimizer=optimizer_selected, 

metrics='mean_absolute_error') 

# optimizer = adam, sgd, adamax, nadam 

# train = model.fit(X_train, y_train, 

epochs=epoch_selected, batch_size=bathsize_selected, 

validation_data=(X_test, y_test)) 

# Plot Result 

plt.figure(figsize=(8,8)) 

plt.plot(train.history['loss'], linewidth=1.0) 

plt.plot(train.history['val_loss'], linewidth=1.0) 
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plt.ylabel('Cross Entropy') 

 

 

plt.ylabel('loss') 

plt.xlabel('epoch') 

 

plt.legend(['train','test'], loc='upper right') 

 

current_time = datetime.datetime.now().strftime("%Y-%m-

%d-%H_%M_%S") 

last_MAE = 

train.history['mean_absolute_error'][len(train.history[

'mean_absolute_error'])-1] 

filename = f"/Volumes/Sandisk SSD/All 

Skripsi/Pengembangan Model ANN RGB to 

Jarak/Models/local_{optimizer_selected}_{bathsize_selec

ted}_{current_time}_Last MAE={last_MAE}_epoch 5000" 

 

plt.title('Model Loss') 

description = f"Optimizer:{optimizer_selected}, 

Batchsize:{bathsize_selected}, Time:{current_time}, 

\nLast MAE={last_MAE}_epoch 5000" 

plt.text(0.1, 0.98, description, 

transform=plt.gca().transAxes, fontsize=10, 

verticalalignment='top', bbox=dict(facecolor='white', 

edgecolor='gray', boxstyle='round,pad=0.5')) 

 

# !!!!!!!!!!!!!!!!!!!! 

# !!!!!!!!!!!!!!!!!!!! 

# !!!!!!!!!!!!!!!!!!!! 

model.save(filename+".h5") 

plt.savefig(filename+".png") 
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filename = "/Volumes/Sandisk SSD/All 

Skripsi/Pengembangan Model ANN RGB to 

Jarak/Models/local_sgd_15_2023-07-05-11_39_58_Last 

MAE=0.35471969842910767_epoch 3000" 

loaded_model = load_model(filename+".h5") 

optimizer_selected = 'sgd' 

bathsize_selected = 15 

epoch_selected = 2000 

loaded_model.compile(loss='mean_absolute_error', 

optimizer=optimizer_selected, 

metrics='mean_absolute_error') 

train = loaded_model.fit(X_train, y_train, 

epochs=epoch_selected, batch_size=bathsize_selected, 

validation_data=(X_test, y_test)) 

Lampiran 1 Kode Pelatihan Model ANN prediksi jarak menggunakan nilai RGB 
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# -*- coding: utf-8 -*- 

"""train-yolov8-object-detection-on-custom-

dataset.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    

https://colab.research.google.com/drive/1N9sR5hrgWq-

M603xucAvXrMtvkbcu9Rk 

 

Tutorial 

https://docs.ultralytics.com/yolov5/tutorials/tips_for_

best_training_results/ 

 

dYf7lq3b9OrPADmDhQhcwSDpS 

 

## Prep 

""" 

 

!pip install comet_ml 

import comet_ml 

 

comet_ml.init(project_name="yolov8") 

 

from comet_ml import Experiment 

from comet_ml.integration.pytorch import log_model 

 

experiment = Experiment( 

  api_key = "dYf7lq3b9OrPADmDhQhcwSDpS", 

  project_name = "yolov8", 

  workspace="agunggg" 

) 
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"""## Before you start""" 

 

!nvidia-smi 

 

import os 

HOME = os.getcwd() 

print(HOME) 

# Pip install method (recommended) 

 

!pip install ultralytics==8.0.20 

 

from IPython import display 

display.clear_output() 

 

import ultralytics 

ultralytics.checks() 

 

from ultralytics import YOLO 

 

from IPython.display import display, Image 

 

!pip install roboflow --quiet 

from roboflow import Roboflow 

 

"""## Custom Training""" 

 

# Commented out IPython magic to ensure Python 

compatibility. 

!mkdir {HOME}/datasets 

# %cd {HOME}/datasets 

 

rf = Roboflow(api_key="Dcl5orKoyjBh7DRAKSBU") 
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project = rf.workspace("gungs").project("yolo-cocoa") 

dataset = project.version(2).download("yolov5") 

 

import os 

 

def count_files(directory): 

    file_count = 0 

 

    # Iterate through all the items in the directory 

    for item in os.listdir(directory): 

        item_path = os.path.join(directory, item) 

 

        # Check if the current item is a file 

        if os.path.isfile(item_path): 

            file_count += 1 

 

    return file_count 

 

# Provide the directory path you want to count files in 

directory_path = '/content/datasets/YOLO-cocoa-

2/valid/images/' 

file_count = count_files(directory_path) 

print("Total files in the directory:", file_count) 

 

"""## TRAIN""" 

 

# Commented out IPython magic to ensure Python 

compatibility. 

# %cd {HOME} 

 

!yolo task=detect mode=train model= yolov8m.pt 

data={dataset.location}/data.yaml epochs=700 imgsz=800 

plots=True patience=0 
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"""### train results""" 

 

result_folder = '/content/runs/detect/train/' 

 

!ls {HOME}/runs/detect/train/ 

 

# Commented out IPython magic to ensure Python 

compatibility. 

# %cd {HOME} 

Image(filename=f"{result_folder}"+"/confusion_matrix.pn

g", width=600) 

 

# Commented out IPython magic to ensure Python 

compatibility. 

# %cd {HOME} 

Image(filename=f"{result_folder}"+"/results.png", 

width=600) 

 

# Commented out IPython magic to ensure Python 

compatibility. 

# %cd {HOME} 

Image(filename=f"{result_folder}"+"/val_batch0_pred.jpg

", width=600) 

 

"""## Inference with Custom Model""" 

 

result_folder 

 

# Commented out IPython magic to ensure Python 

compatibility. 

# %cd {HOME} 
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test = !yolo task=detect mode=predict 

model={HOME}/runs/detect/train/weights/best.pt 

conf=0.25 source=/content/test save=True 

test 

 

"""**NOTE:** Let's take a look at few results.""" 

 

import glob 

from IPython.display import Image, display 

 

for image_path in 

glob.glob(f'{HOME}/runs/detect/predict/*.jpg'): 

      display(Image(filename=image_path, width=600)) 

      print("\n") 

 

"""### Download Zipped model""" 

 

from google.colab import files 

import shutil 

import os 

 

folder_path = '/content/runs/' 

 

# Create a zip file of the folder 

shutil.make_archive(folder_path, 'zip', folder_path) 

 

# Download the zip file 

files.download(folder_path+'.zip') 

 

files.download('/content/yolov8m.pt') 

 

from ultralytics import YOLO 

 



125 
 

# Load a model 

# model = YOLO('yolov8n.pt')  # load an official model 

model = 

YOLO('/content/runs/detect/train/weights/best.pt')  # 

load a custom model 

 

# Predict with the model 

img = '/content/datasets/YOLO-cocoa-

2/valid/images/IMG_20230621_125352_jpg.rf.a01376e8cc4b2

0ef124622299f340d11.jpg' 

results = model(img)  # predict on an image 

 

from google.colab.patches import cv2_imshow 

 

res = model(img) 

res_plotted = results[0] 

cv2_imshow(res_plotted)  

Lampiran 2 Kode pelatihan YOLOV8 untuk deteksi Buah Kakao 
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# -*- coding: utf-8 -*- 

"""Final_System refactored.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    

https://colab.research.google.com/drive/1GorMCVpZ8aPCDy

ns5Ja73SH0KpiWCVDq 

 

# Prep all packages 

""" 

 

!git clone 

https://github.com/danielyoga/Models_Skripsi_2023.git 

 

import os 

HOME = os.getcwd() 

print(HOME) 

# Pip install method (recommended) 

 

!pip install ultralytics==8.0.20 

 

from IPython import display 

display.clear_output() 

 

import ultralytics 

ultralytics.checks() 

 

from ultralytics import YOLO 

 

from IPython.display import display, Image 
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!pip install roboflow --quiet 

from roboflow import Roboflow 

 

!git clone 

https://github.com/nianticlabs/monodepth2.git 

!python -m pip install opencv-python matplotlib onnx 

onnxruntime 

!python -m pip install 

'git+https://github.com/facebookresearch/segment-

anything.git' 

!wget 

https://dl.fbaipublicfiles.com/segment_anything/sam_vit

_h_4b8939.pth 

 

import cv2, numpy as np, glob, subprocess, os, 

matplotlib.pyplot as plt, math, torch, onnxruntime 

from google.colab import drive, files 

from PIL import Image 

from PIL import Image 

 

from onnxruntime.quantization import QuantType 

from onnxruntime.quantization.quantize import 

quantize_dynamic 

from segment_anything import sam_model_registry, 

SamPredictor 

from segment_anything.utils.onnx import SamOnnxModel 

 

from keras.models import load_model 

loaded_model = 

load_model("/content/Models_Skripsi_2023/local_adamax_1

_2023-06-26-10_18_29_Last MAE=0.24479460716247559_epoch 

5000.h5") 
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onnx_model_path = 

"/content/Models_Skripsi_2023/sam_onnx_quantized_exampl

e.onnx" 

checkpoint = "sam_vit_h_4b8939.pth" 

model_type = "vit_h" 

 

sam = 

sam_model_registry[model_type](checkpoint=checkpoint) 

 

def show_mask(mask, ax): 

    color = np.array([30/255, 144/255, 255/255, 0.6]) 

    h, w = mask.shape[-2:] 

    mask_image = mask.reshape(h, w, 1) * 

color.reshape(1, 1, -1) 

    ax.imshow(mask_image) 

 

def show_points(coords, labels, ax, marker_size=375): 

    pos_points = coords[labels==1] 

    neg_points = coords[labels==0] 

    ax.scatter(pos_points[:, 0], pos_points[:, 1], 

color='green', marker='*', s=marker_size, 

edgecolor='white', linewidth=1.25) 

    ax.scatter(neg_points[:, 0], neg_points[:, 1], 

color='red', marker='*', s=marker_size, 

edgecolor='white', linewidth=1.25) 

 

"""# 1. Prediksi Jarak 

 

## Depth Estimation 

""" 

 

# Commented out IPython magic to ensure Python 

compatibility. 
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# Execute Process 

 

# Upload File 

uploaded_file = files.upload() 

filename = next(iter(uploaded_file)) 

file_content = uploaded_file[filename] 

 

with open(filename, 'wb') as f: 

    f.write(file_content) 

    print(f"File '{filename}' uploaded and saved.") 

 

# Estimate Depth 

# %run monodepth2/test_simple.py --image_path 

"/content/"{filename} --model_name mono_1024x320 

 

"""## Pilih Titik di Objek""" 

 

# Show image with axis 

image = cv2.imread(filename) 

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

 

plt.figure(figsize=(10,10)) 

plt.imshow(image) 

plt.axis('on') 

plt.show() 

 

image_disp = cv2.imread(filename.replace(".jpg", 

"_disp.jpeg")) 

 

plt.figure(figsize=(10,10)) 

plt.imshow(image_disp) 

plt.axis('on') 

plt.show() 
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# Check titik yang dipilih 

input_point = np.array([[2700, 2900]]) 

input_label = np.array([1]) 

 

plt.figure(figsize=(10,10)) 

plt.imshow(image) 

show_points(input_point, input_label, plt.gca()) 

plt.axis('on') 

plt.show() 

 

"""## Segment Object Area""" 

 

ort_session = 

onnxruntime.InferenceSession(onnx_model_path) 

sam.to(device='cuda') 

predictor = SamPredictor(sam) 

 

predictor.set_image(image) 

image_embedding = 

predictor.get_image_embedding().cpu().numpy() 

 

onnx_coord = np.concatenate([input_point, [[0.0, 0.0]]], 

axis=0)[None, :, :] 

onnx_label = np.concatenate([input_label, [-1]], 

axis=0)[None, :].astype(np.float32) 

 

onnx_coord = 

predictor.transform.apply_coords(onnx_coord, 

image.shape[:2]).astype(np.float32) 

 

ort_inputs = { 

    "image_embeddings": image_embedding, 
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    "point_coords": onnx_coord, 

    "point_labels": onnx_label, 

    "mask_input": np.zeros((1, 1, 256, 256), 

dtype=np.float32), 

    "has_mask_input": np.zeros(1, dtype=np.float32), 

    "orig_im_size": np.array(image.shape[:2], 

dtype=np.float32) 

} 

 

masks, _, low_res_logits = ort_session.run(None, 

ort_inputs) 

masks = masks > predictor.model.mask_threshold 

 

plt.figure(figsize=(10,10)) 

plt.imshow(image) 

show_mask(masks, plt.gca()) 

show_points(input_point, input_label, plt.gca()) 

plt.axis('on') 

plt.show() 

 

"""## get median pada segment area on disp image""" 

 

converted_array = masks.astype(int) 

positions = np.where(converted_array == 1) 

x_coords = positions[2] 

y_coords = positions[3] 

pixel_positions = np.column_stack((x_coords, y_coords)) 

 

data = np.array(cv2.imread(filename.replace(".jpg", 

"_disp.jpeg"))) 

# data = np.array(Image.open(filename.replace(".jpg", 

"_disp.jpeg"))) 
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# Get pixel values at the specified positions 

pixel_values = data[pixel_positions[:, 0], 

pixel_positions[:, 1]] 

 

median = np.median(pixel_values, axis=0) 

 

print("Median:", median) 

 

"""## median to jarak""" 

 

# Execute process 

# predict jarak using median rgb 

median = median.reshape(1, -1) 

predictions = loaded_model.predict(median) 

predictions = predictions[0][0].tolist() 

predictions 

 

predicted_distance = predictions 

predicted_distance 

 

"""# 2. Perhitungan Koordinat 

 

## Get Camera Long Lat 

""" 

 

image = Image.open(filename) 

exif_data = image._getexif() 

 

gps_info = exif_data.get(34853) 

 

direction = gps_info[17] 

 

latitude = gps_info.get(2) 
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longitude = gps_info.get(4) 

 

latitude_decimal = float(latitude[0] + latitude[1] / 60 

+ latitude[2] / 3600) 

longitude_decimal = float(longitude[0] + longitude[1] / 

60 + longitude[2] / 3600) 

 

print(latitude_decimal, longitude_decimal, direction) 

 

lat1 = latitude 

lon1 = longitude 

 

"""## Count Coordinate""" 

 

# Constants 

R = 6371.0  # Earth's radius in kilometers 

 

# Starting point 

latlong = [latitude_decimal, longitude_decimal] 

lat1 = math.radians(latlong[0]) 

lon1 = math.radians(latlong[1]) 

 

# Heading in degrees 

heading = math.radians(direction) 

 

# Distance in kilometers 

distance = predictions/1000 

 

# Calculate destination point 

lat2 = math.asin(math.sin(lat1) * math.cos(distance/R) 

+ 

                 math.cos(lat1) * math.sin(distance/R) 

* math.cos(heading)) 
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lon2 = lon1 + math.atan2(math.sin(heading) * 

math.sin(distance/R) * math.cos(lat1), 

                         math.cos(distance/R) - 

math.sin(lat1) * math.sin(lat2)) 

 

# Convert back to degrees 

lat2 = math.degrees(lat2) 

lon2 = math.degrees(lon2) 

 

# Display the destination coordinates 

print(f"Destination: {lat2}, {lon2}") 

 

"""# 3. Deteksi Buah Kakao""" 

 

# If not found, create predict and predict result folder 

import os 

import shutil 

 

if not os.path.exists("/content/predict"): 

    os.makedirs("/content/predict") 

else : 

    file_list = os.listdir("/content/predict") 

    for file_name in file_list: 

      file_path = os.path.join("/content/predict", 

file_name) 

 

      if os.path.isfile(file_path): 

          os.remove(file_path) 

 

# Add the current image to the "predict" folder 

image_name = os.path.basename(filename) 

predict_image_path = os.path.join("/content/predict", 

image_name) 
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shutil.copy(image_name, predict_image_path) 

 

# Commented out IPython magic to ensure Python 

compatibility. 

# %cd {HOME} 

test = !yolo task=detect mode=predict 

model='/content/Models_Skripsi_2023/best.pt' conf=0.25 

source=/content/predict/ save=True 

test 

 

import re 

 

for i in test: 

  match = re.search(r'(?<=to\s).*', i) 

  if match: 

      result = match.group() 

      clean_string = re.sub("\x1b\[.*?m", "", result) 

      print(clean_string) 

 

num_unripecocoas = num_ripecocoas = 0 

 

for element in test: 

    if "unripecocoas" in element: 

        ripecocoas_index = 

element.index("unripecocoas") 

        num_unripecocoas = int(element[ripecocoas_index 

- 3:ripecocoas_index].strip()) 

        print("Terdeteksi ",num_ripecocoas," Buah Kakao 

Belum Matang") 

 

    if "ripecocoas" in element : 

        ripecocoas_index = element.index("ripecocoas") 
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        num_ripecocoas = int(element[ripecocoas_index - 

3:ripecocoas_index].strip()) 

        print("Terdeteksi ",num_ripecocoas," Buah Kakao 

Matang") 

 

# Show image with axis 

image = cv2.imread(str(os.path.join("/content/", 

clean_string, filename))) 

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

 

plt.figure(figsize=(10,10)) 

plt.imshow(image) 

plt.axis('on') 

plt.show() 

 

"""### Initiate Dataframe""" 

 

import pandas as pd 

 

# Column names for the new DataFrame 

column_names = ['predicted_distance', 

                'lat1', 

                'lon1', 

                'lat2', 

                'lon2', 

                'num_unripecocoas', 

                'num_ripecocoas'] 

 

# Creating an empty DataFrame with the specified column 

names 

geotagging_database = 

pd.DataFrame(columns=column_names) 
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# Displaying the newly created DataFrame 

print(geotagging_database) 

 

"""### Append to dataframe""" 

 

data_to_append = [[predicted_distance, 

                  lat1, 

                  lon1, 

                  lat2, 

                  lon2, 

                  num_unripecocoas, 

                  num_ripecocoas]] 

 

geotagging_database.append(pd.DataFrame(data_to_append, 

columns=column_names), ignore_index=True) 

 

geotagging_database = 

geotagging_database.append(pd.DataFrame(data_to_append, 

columns=column_names), ignore_index=True) 

 

geotagging_database 

 

"""# Check GPU Available Resources""" 

 

if torch.cuda.is_available(): 

    gpu_stats = torch.cuda.memory_stats() 

    total_memory = 

gpu_stats["allocated_bytes.all.current"] / (1024 ** 3) 

    max_memory = gpu_stats["allocated_bytes.all.peak"] 

/ (1024 ** 3) 

    available_memory = max_memory - total_memory 

    print(f"Available GPU memory: 

{available_memory:.2f} GB") 



138 
 

else: 

    print("No GPU available.") 

 

"""# Pembuktian Rumus""" 

 

import math 

import pandas as pd 

 

# Starting coordinates 

def calculate_destination(latlong, heading, distance): 

    R = 6371  # Earth's radius in kilometers 

 

    # Starting point 

    lat1 = math.radians(latlong[0]) 

    lon1 = math.radians(latlong[1]) 

 

    # Heading in degrees 

    heading = math.radians(heading) 

 

    # Distance in kilometers 

    # distance = predictions 

 

    # Calculate destination point 

    lat2 = math.asin(math.sin(lat1) * 

math.cos(distance/R) + 

                     math.cos(lat1) * 

math.sin(distance/R) * math.cos(heading)) 

    lon2 = lon1 + math.atan2(math.sin(heading) * 

math.sin(distance/R) * math.cos(lat1), 

                             math.cos(distance/R) - 

math.sin(lat1) * math.sin(lat2)) 

 

    # Convert back to degrees 
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    lat2 = math.degrees(lat2) 

    lon2 = math.degrees(lon2) 

 

    # Return the destination coordinates 

    return lat2, lon2 

 

calculate_destination([-7.94984, 112.615411], 40.456, 

0.069) 

Lampiran 3 Kode Sistem Keseluruhan 
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Lampiran 4 Dataframe Sebagai Penyimpanan Sementara Data Hasil Prediksi 

Koordinat  
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Lampiran 5 Tangkapan Layar Hasil Deteksi Buah Kakao 


