
PENGEMBANGAN METODE GEOTAGGING TANAMAN KAKAO

SECARA OTOMATIS MENGGUNAKAN SMARTPHONE

TUGAS AKHIR

DANIEL YOGATAMA MAYDIPUTRA

NIM : 311910006

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS MA CHUNG

MALANG

2023

LEMBAR PENGESAHAN

TUGAS AKHIR

PENGEMBANGAN METODE GEOTAGGING UNTUK MEREKAM

DATA SPASIAL TANAMAN KAKAO SECARA AUTOMATIS

MENGGUNAKAN SMARTPHONE

Oleh:

DANIEL YOGATAMA MAYDIPUTRA

NIM. 311910006

dari:

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS SAINS dan TEKNOLOGI

UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan
dan berhak mendapatkan gelar Sarjana Komputer (S.Kom.)

Dosen Pembimbing I,

Dr. Kestrilia Rega Prilianti, M.Si.

Dosen Pembimbing II,

Hendry Setiawan, ST., M.Kom.

NIP. 20120035 NIP. 20100006

Dekan Fakultas Sains dan Teknologi,

Dr. Kestrilia Rega Prilianti, M.Si.
NIP. 20120035

ii

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Tugas

Akhir saya dengan “PENGEMBANGAN METODE GEOTAGGING TANAMAN

KAKAO SECARA OTOMATIS MENGGUNAKAN SMARTPHONE” adalah benar-

benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-

bahan yang tidak diizinkan dan bukan merupakan karya pihak lain yang saya akui

sebagai karya sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap

pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia

menerima sanksi sesuai peraturan yang berlaku.

Malang, 21 Juli 2023

Daniel Yogatama Maydiputra
311910006

iii

PENGEMBANGAN METODE GEOTAGGING TANAMAN KAKAO

SECARA OTOMATIS MENGGUNAKAN SMARTPHONE

Daniel Yogatama Maydiputra, Kestrilia Rega Prilianti, Hendry Setiawan

Universitas Ma Chung

Abstrak

Kakao merupakan salah satu komoditas perkebunan strategis dalam
perekonomian Indonesia. Dengan adanya metode remote sensing, monitoring
perkebunan menjadi jauh lebih mudah. Pada citra orthophoto, tanaman kakao akan
tertutupi oleh kanopi tanaman penaung, sehingga tidak ada informasi mengenai
tanaman kakao yang dapat dianalis. Sehingga pada penelitian ini akan
dikembangkan sistem geotagging yang dapat memprediksi titik koordinat dan
jumlah buah pada citra tanaman kakao. Untuk melakukan prediksi titik koordinat
tanaman diperlukan titik koordinat citra, heading serta jarak tanaman terhadap
kamera. Hal ini dapat dilakukan dengan menggunakan model Convolutional Neural
Network monocular depth estimation. Model tersebut akan menghasilkan citra
heatmap yang setiap pikselnya merepresentasikan nilai prediksi kedalaman. Lalu
akan dikembangkan Artificial Neural Network untuk memprediksi nilai jarak
dengan input nilai rgb. Akan diambil nilai rgb objek pada citra heatmap tersebut
yang kemudian digunakan untuk memprediksi jarak kamera terhadap tanaman.
Kemudian digunakan Vincenty Formula untuk mengkalkulasi titik koordinat
tanaman berdasarkan titik koordinat kamera, heading, serta jarak kamera terhadap
tanaman. Untuk melakukan deteksi buah kakao akan digunakan model CNN
YOLOV8. Pengujian performa model dilakukan dengan mengevaluasi nilai loss
setiap model. Untuk melakukan prediksi jarak, model ANN yang memiliki akurasi
terbaik adalah model ANN yang dilatih menggunakan optimizer adamax dengan
batch size 7 pada epoch 1000. Model ANN tersebut memiliki akurasi loss MAE
sebesar 0.333776. Sedangkan model YOLO yang memiliki performa terbaik adalah
model YOLOV8 nano dengan epoch 100. Model tersebut memiliki nilai precision
0.907 dan recall 0.958. Sistem yang dikembangkan pada penelitian ini merupakan
prototipe sistem monitoring perkebunan yang praktis.

Kata Kunci: Artificial Neural Network, Citra orthophoto, Convolutional Neural

Network, Kakao, Remote sensing, YOLOV8

iv

DEVELOPMENT OF AUTOMATIC GEOTAGGING METHOD FOR

COCOA PLANTATION ON SMARTPHONE

Daniel Yogatama Maydiputra, Kestrilia Rega Prilianti, Hendry Setiawan

Universitas Ma Chung

Abstract

Cocoa is a crucial plantation commodity in Indonesia's economy. Remote
sensing methods offer an easier way to monitor plantations. However, the presence
of shade trees obstructs cocoa plant analysis in orthophoto images. To address this,
a geotagging system was developed in this research to predict cocoa plant
coordinates and fruit quantity. The system utilizes a Convolutional Neural Network
(CNN) for monocular depth estimation, generating a heatmap representing depth
predictions. An Artificial Neural Network (ANN) predicts the distance using input
RGB values extracted from the heatmap image, which helps determine the camera-
to-plant distance and heading. The Vincenty Formula is then applied to calculate
plant coordinates based on the camera coordinates. For cocoa fruit detection, a
YOLOV8 CNN model is employed. Model performance is evaluated by assessing
loss values, with the ANN model achieving a best MAE loss accuracy of 0.333776
when trained with the adamax optimizer, a batch size of 7, and 1000 epochs. The
top-performing YOLO model is YOLOV8 nano with 100 epochs, demonstrating a
precision of 0.907 and recall of 0.958. This research presents a practical prototype
of a plantation monitoring system.

Keywords: Artificial Neural Network, Cocoa, Convolutional Neural Network,

Orthophoto images, Remote sensing, YOLOV8

v

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Kuasa atas segala rahmat dan

karuniaNya penulis dapat menyelesaikan tugas akhir ini. Adapun judul dari tugas

akhir ini adalah “PENGEMBANGAN METODE GEOTAGGING TANAMAN

KAKAO SECARA OTOMATIS MENGGUNAKAN SMARTPHONE.”

Pada kesempatan ini penulis mengucapkan terima kasih kepada dosen

pembimbing yang telah mendampingi dan membimbing penulis selama pembuatan

tugas akhir ini.

Diharapkan adanya kritik dan saran yang membangun dari pembaca.

Penulis berharap makalah ini dapat berguna bagi penulis, pembaca serta

masyarakat.

Malang, 19 Juli 2023

Daniel Yogatama Maydiputra

311910006

vi

DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIR i
PERNYATAAN KEASLIAN TUGAS AKHIR ii
KATA PENGANTAR v
DAFTAR ISI vi
DAFTAR GAMBAR ix
DAFTAR TABEL xii
Bab I Pendahuluan 6

1.1. Latar Belakang Masalah 6
1.2. Identifikasi Masalah 8
1.3. Batasan Masalah 8
1.4. Perumusan Masalah 9
1.5. Tujuan Penelitian 9
1.6. Luaran 9
1.7. Manfaat 9
1.8. Sistematika Penulisan 9

Bab II Tinjauan Pustaka 11
2.1. Komoditas Kakao dan Permasalahannya 11

2.1.1. Komoditas Kakao 11
2.1.2. Penyakit Vascular Streak Dieback 12

2.2. Geographic Coordinate System (GCS) 12
2.3. Global Positioning System (GPS) 12
2.4. Geotagging 13
2.5. Remote Sensing 13
2.6. Remote Sensing pada kakao 14
2.7. Roboflow 14
2.8. Sistem Estimasi Titik Koordinat 14

2.8.1. Metode estimasi kedalaman monokular 15
2.8.2. Model CNN Segment Anything 16
2.8.3. Vincenty Formula 18

2.9. Sistem Deteksi Objek Buah Kakao menggunakan CNN YOLO 20
3.9.1. Arsitektur YOLOV8 21
3.9.2. Arstitektur YOLOV8n 23
3.9.3. Arstitektur YOLOV8m 24
3.9.4. Metode Deteksi Objek Buah menggunakan YOLO 26

2.10. Red, Green, Blue (RGB) 27
2.11. Mean Absolute Error (MAE) 28
2.12. Mean Squared Error (MSE) 29
2.13. Intersection over Union (IoU) 29
2.14. Perangkat Lunak 30

2.15.1 Python 30
2.15.2 Google Colaboratory 31
2.15.3 Numpy 31
2.15.4 OpenCV 32
2.15.5 Pandas 33
2.15.6 Matplotlib & Seaborn 34

vii

2.15.7 Visual Studio Code 35
2.15.8 Open Camera 35
2.15.9 Pytorch 36
2.15.10 Torchvision 37
2.15.11 Glob 37
2.15.12 PIL 37
2.15.13 Onnxruntime 38
2.15.14 Ipython.display 38
2.15.15 Time 39
2.15.16 Ultralytics 39
2.15.17 Sys 40
2.15.18 Scipy 40
2.15.19 Csv 41
2.15.20 Os 41
2.15.21 Warnings 42
2.15.22 Keras 42
2.15.23 Datetime 43
2.15.24 Math 43

Bab III Analisis dan Perancangan Sistem 44
3.1. Alur Penelitian 44
3.2. Analisis Kebutuhan 45

3.2.1. Kebutuhan Pengguna 45
3.2.2. Kebutuhan Peneliti 46

3.3. Identifikasi Masalah 46
3.4. Studi Pustaka 47
3.5. Pengumpulan Data 48
3.6. Desain Sistem 49

3.6.1. Desain Sistem Prediksi Jarak Objek pada Citra 52
3.6.2. Desain Sistem Prediksi Koordinat Tanaman Kakao pada Citra 52
3.6.3. Desain Sistem Estimasi Jumlah Buah Kakao 53

3.7. Pengujian Arsitektur 53
3.7.1. Pengujian Sistem Prediksi Jarak Objek pada Citra 53
3.7.2. Pengujian Sistem Prediksi Koordinat Tanaman Kakao pada Citra 54
3.7.3. Pengujian Sistem Estimasi Jumlah Buah Kakao 54

BAB IV HASIL DAN PEMBAHASAN 55
4.1. Dataset 55

4.1.1. Pembuatan Dataset Nilai Rgb dan Jarak Objek 55
4.1.2. Profil Dataset Nilai RGB dan Jarak Objek 57
4.1.3. Dataset Buah Kakao 57

4.2. Eksperimen Model ANN Prediksi Jarak Objek pada Citra 59
4.2.1. Model ANN dengan Optimizer Adamax dan Batch Size 1 61
4.2.2. Model ANN dengan Optimizer Adamax dan Batch Size 7 64
4.2.3. Model ANN dengan Optimizer Adamax dan Batch Size 15 66
4.2.4. Model ANN dengan Optimizer SGD dan Batch Size 1 70
4.2.5. Model ANN dengan Optimizer SGD dan Batch Size 7 72
4.2.6. Model ANN dengan Optimizer SGD dan Batch Size 15 76
4.2.7. Evaluasi model ANN Prediksi Jarak berdasarkan Citra RGB 79

4.3. Eksperimen Model Deteksi Buah Kakao 80

viii

4.3.1. Model YOLOV8n dengan 100 epoch 80
4.3.2. Model YOLOV8n dengan 300 epoch 82
4.3.3. Model YOLOV8n dengan 500 epoch 84
4.3.4. Model YOLOV8n dengan 700 epoch 86
4.3.5. Model YOLOV8n dengan 1000 epoch 88
4.3.6. Model YOLOV8m dengan 100 epoch 91
4.3.7. Model YOLOV8m dengan 300 epoch 93
4.3.8. Model YOLOV8m dengan 500 epoch 95
4.3.9. Model YOLOV8m dengan 700 epoch 97
4.3.10. Model YOLOV8m dengan 1000 epoch 99
4.3.11. Evaluasi 5 Model YOLOV8 dengan performa terbaik 101

4.4. Sistem Prediksi Jarak Objek pada Citra 101
4.4.1. Mengunggah Gambar dan Prediksi Kedalaman 102
4.4.2. Menentukan Titik Piksel pada Objek 103
4.4.3. Proses Segmentasi dengan Model CNN Segment Anything 104
4.4.4. Pengambilan nilai median RGB dan Prediksi Jarak 104
4.4.5. Evaluasi Sistem Prediksi Jarak Objek Pada Citra 105

4.5. Sistem Prediksi Koordinat Tanaman Kakao pada Citra 105
4.5.1. Evaluasi Akurasi Vincenty Formula 105

4.6. Sistem Estimasi Jumlah Buah Kakao 107
4.6.1. Evaluasi Sistem Estimasi Jumlah Buah Kakao 107

BAB V SIMPULAN DAN SARAN 113
5.1. Simpulan 113
5.2. Saran 113

Daftar Pustaka 114
Lampiran 116

ix

DAFTAR GAMBAR

Gambar 2. 1 Arsitektur CNN U-Net 16

Gambar 2. 2 Arsitektur Transformer pada model Segment Anything 18

Gambar 2.3 Arsitektur YOLOV8 22

Gambar 2. 4 Ruang Warna RGB 28

Gambar 2. 5 Penjelasan Intersection of Union 30

Gambar 2. 6 Logo Bahasa Pemrograman Python 31

Gambar 2. 7 Logo Google Colaboratory 31

Gambar 2. 8 Logo Library Numpy 32

Gambar 2. 9 Logo Library OpenCV 33

Gambar 2. 10 Logo Library Pandas 33

Gambar 2. 11 Logo Library Matplotlib 34

Gambar 2. 12 Logo Library Seaborn 34

Gambar 2. 13 Logo dan Tampilan Perangkat Lunak VS Code 35

Gambar 2. 14 Halaman Aplikasi Open Camera di Google Play 36

Gambar 2. 15 Logo ultralytics 40

Gambar 2. 16 Logo modul sys python 40

Gambar 2. 17 Logo Library SciPy 41

Gambar 2. 18 Logo Modul OS Python 42

Gambar 3.1 Alur Penelitian 44

Gambar 3.2 Alur Pengumpulan Data 48

Gambar 3.3 Desain Sistem Keseluruhan 50

Gambar 3.4 Visualisasi Desain Sistem 50

Gambar 3.5 Visualisasi Alur Sistem Keseluruhan 51

Gambar 3.6 Desain Sistem Metode Prediksi Jarak Objek pada Citra 52

Gambar 3.7 Desain Sistem Metode Prediksi Koordinat Tanaman Kakao 52

Gambar 3.8 Desain Sistem Metode Estimasi Jumlah Buah Kakao 53

Gambar 4.1 Alur Pembuatan Dataset 56

Gambar 4.2 Semua Dataset 58

Gambar 4.3 Pembagian Dataset untuk Train 58

Gambar 4.4 Pembagian Dataset untuk Valid 59

x

Gambar 4.5 Pembagian Dataset untuk Test 59

Gambar 4.6 Arsitektur Model ANN 60

Gambar 4.7 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 1000 61

Gambar 4.8 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 3000 62

Gambar 4.9 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 5000 63

Gambar 4.10 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 1000 64

Gambar 4.11 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 3000 65

Gambar 4.12 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 5000 66

Gambar 4.13 Grafik Loss Model ANN dengan optimizer adamax dan batch size 15

pada epoch 1000 67

Gambar 4.14 Grafik Loss Model ANN dengan optimizer adamax dan batch size 15

pada epoch 3000 68

Gambar 4.15 Grafik Loss Model ANN dengan optimizer adamax dan batch size 15

pada epoch 5000 69

Gambar 4.16 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1 pada

epoch 1000 70

Gambar 4.17 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 3000 71

Gambar 4.18 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1 pada

epoch 5000 72

Gambar 4.19 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 pada

epoch 1000 73

Gambar 4.20 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 pada

epoch 3000 74

Gambar 4.21 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7 pada

epoch 5000 75

xi

Gambar 4.22 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 pada

epoch 1000 76

Gambar 4.23 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 pada

epoch 3000 77

Gambar 4.24 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15 pada

epoch 5000 78

Gambar 4.25 loss model YOLOV8n dengan 100 epoch 81

Gambar 4.26 loss model YOLOV8n dengan 300 epoch 83

Gambar 4.27 loss model YOLOV8n dengan 500 epoch 85

Gambar 4.28 loss model YOLOV8n dengan 700 epoch 87

Gambar 4.29 dfl loss, box loss, cls loss model YOLOV8n dengan 1000 epoch (a)

dfl loss, (b) box loss dan (c) cls 89

Gambar 4.30 loss model YOLOV8n dengan 100 epoch (a) dfl loss, (b) box loss dan

(c) cls loss 91

Gambar 4.31 dfl loss, box loss, cls loss model YOLOV8n dengan 300 epoch (a)

dfl loss, (b) box loss dan (c) cls loss 93

Gambar 4.32 dfl loss, box loss, cls loss model YOLOV8n dengan 500 epoch (a)

dfl loss, (b) box loss dan (c) cls loss 95

Gambar 4.33 loss model YOLOV8n dengan 700 epoch (a) dfl loss, (b) box loss dan

(c) cls loss 97

Gambar 4.34 model YOLOV8n dengan 1000 epoch (a) dfl loss, (b) box loss dan

(c) cls loss 99

Gambar 4.35 Grafik 5 Model Dengan Nilai Recall Tertinggi 101

Gambar 4.36 Citra Tanaman Kakao Asli 102

Gambar 4.37 Citra Kedalaman Tanaman Kakao 102

Gambar 4.38 Tampilan awal untuk penentuan titik pada objek 103

Gambar 4.39 Tampilan gambar dengan titik piksel yang telah dipilih 103

Gambar 4.40 Hasil Segmentasi Area Objek Tanaman Kakao 104

Gambar 4. 41 Citra Tanaman Kakao dengan Buah muda 108

Gambar 4. 42 Citra Tanaman Kakao dengan Buah Matang 108

Gambar 4. 43 Hasil Deteksi Buah Kakao dengan model YOLOV8n 100 epoch 109

Gambar 4. 44 Hasil Deteksi Buah Kakao dengan model YOLOV8n 100 epoch 110

xii

DAFTAR TABEL

Tabel 2. 1 Arsitektur YOLOV8n (nano) 23

Tabel 2. 2 Arsitektur YOLOV8m (medium) 25

Tabel 3. 1 Studi Pustaka 47

Tabel 4.1 Dataset RGB dan Jarak Objek 57

Tabel 4.2 Perbandingan Model ANN 79

Tabel 4.3 Hasil Pelatihan YOLOV8n pada epoch 100 82

Tabel 4.4 Hasil Pelatihan YOLOV8n pada epoch 300 84

Tabel 4.5 Hasil Pelatihan YOLOV8n pada epoch 500 86

Tabel 4.6 Hasil Pelatihan YOLOV8n pada epoch 700 88

Tabel 4.7 Hasil Pelatihan YOLOV8n pada epoch 1000 90

Tabel 4.8 Hasil Pelatihan YOLOV8M pada epoch 100 92

Tabel 4.9 Hasil Pelatihan YOLOV8m pada epoch 300 94

Tabel 4.10 Hasil Pelatihan YOLOV8m pada epoch 500 96

Tabel 4.11 Hasil Pelatihan YOLOV8m pada epoch 700 98

Tabel 4.12 Hasil Pelatihan YOLOV8m pada epoch 1000 100

Tabel 4.13 Ground Truth Titik Koordinat Pengujian Vincety Formula 105

Tabel 4. 14 Ground Truth Titik Koordinat Pengujian Vincety Formula (lanjutan)

 106

Tabel 4. 15 Arah dan Jarak 106

Tabel 4. 16 Hasil Prediksi dan Selisih 106

Tabel 4. 17 Hasil Prediksi dan Selisih (lanjutan) 107

Tabel 4. 18 Evaluasi 5 model terbaik pada 2 contoh gambar 110

Tabel 4. 19 Evaluasi 5 model terbaik pada 2 contoh gambar (lanjutan) 111

6

BAB I

PENDAHULUAN

1.1. Latar Belakang Masalah

Kakao merupakan salah satu komoditas perkebunan strategis dalam

perekonomian Indonesia. Berdasarkan laporan yang dirilis oleh Direktorat Jenderal

Perkebunan, pada tahun 2020 nilai ekspor kakao mencapai 1,24 milyar US dolar.

Luasan area perkebunan kakao terus menurun sejak tahun 2016. Pada tahun 2016,

perkebunan kakao di Indonesia seluas 1,7 juta Ha. Sedangkan pada 2020,

perkebunan kakao di Indonesia seluas 1,5 juta Ha. Namun hal ini tidak menghambat

produksi kakao. Meskipun produktivitas kakao mengalami penurunan hingga titik

terendahnya yakni pada tahun 2019 menyentuh 721 kg/ha, produktivitas kakao

kembali meningkat pada tahun 2020. Produktivitas kakao pada tahun 2020

menyentuh angka 723 kg/ha. (Ditjenbun, 2020) Tidak hanya sebagai pendukung

ekonomi nasional, kakao juga menjadi sumber pendapatan utama 1,7 juta kepala

keluarga petani kakao di Indonesia (Puslitkoka, 2021).

Untuk menghasilkan produksi kakao yang optimal, diperlukan

pemeliharaan perkebunan kakao yang baik. Pemelliharaan perkebunan kakao

meliputi pemangkasan daun, pengelolaan tanaman penaung, pemupukan,

pengendalian hama, pengendalian penyakit dan pengendalian gulma. Pemangkasan

dilakukan untuk mengatur jumlah dan sebaran daun. Pemangkasan juga bertujuan

untuk mengatur iklim mikro yang tepat untuk pertumbuhan bunga dan buah.

Keberadaan tanaman penaung diperlukan untuk mengatur penyinaran matahari,

suhu, udara, kelembapan serta laju kehilangan lengas melalui transpirasi maupun

evaporasi. Pemupukan dilakukan untuk menambah unsur-unsur hara yang tidak

tersedia di dalam tanah. Pengendalian hama juga perlu dilakukan karena tanaman

kakao merupakan tanaman yang cukup disukai oleh hama. Tepatnya ada 130

spesies dalam kelompok serangga yang merupakan hama dari tanaman kakao. Hal

ini dilakukan dengan tujuan mengurangi kerusakan yang dapat mengurangi

produksi kakao dan kerusakan lingkungan. Pengendalian penyakit dilakukan untuk

mengurangi kegagalan dan menjaga kelestarian lingkungan. Sedangkan

pengendalian gulma perlu dilakukan karena apabila dihiraukan dapat menyebabkan

7

terhambatnya pertumbuhan tanaman muda dan menunda masa tanaman

menghasilkan, serta berpotensi untuk menjadi inang hama dan penyakit (Prawoto,

2009).

Sebelum adanya bantuan teknologi, monitoring perkebunan dilakukan

secara manual / tradisional. Dengan adanya metode remote sensing, monitoring

perkebunan menjadi jauh lebih mudah. Chatterjee (2018) menyatakan, monitoring

perkebunan berbasis remote sensing terbukti menjadi metode yang paling efisien

untuk melakukan estimasi dan prediksi hasil produksi dari waktu ke waktu. Remote

sensing dapat memonitor pertumbuhan tanaman berdasarkan periode waktu tertentu

dengan cepat. Hal ini dapat membantu pengelola perkebunan untuk melakukan

mitigasi pada tanaman dengan cepat apabila terdapat tanaman yang terkena

serangan hama dan penyakit. Monitoring tanaman dilakukan untuk menganalisis

dan mempelajari kondisi tanaman saat ini, serta membantu pengamatan

pertumbuhan tanaman.

Ditjenbun menjelaskan, tanaman kakao memerlukan tanaman penaung

untuk meredam suhu maksimum dari paparan sinar matahari yang dapat merusak

tanaman kakao. Tanaman penaung juga berfungsi sebagai pemecah angin karena

daun tanaman kakao mudah rontok. Namun, keberadaan tanaman penaung menjadi

faktor penghambat remote sensing pada perkebunan kakao. Metode remote sensing

pada umumnya menggunakan citra orthophoto yang merupakan hasil dari satelit /

penerbangan UAV sebagai sumber pengamatan. Pada citra orthophoto, tanaman

kakao akan tertutupi oleh kanopi tanaman penaung, sehingga tidak ada informasi

mengenai tanaman kakao yang dapat dianalisa (Ditjenbun, 2021).

Untuk mengatasi kendala tersebut, diperlukan teknologi geotagging

otomatis dengan memprediksi titik koordinat tanaman kakao. Dengan

menggunakan monocular depth estimation serta triangulation dapat dilakukan

pemetaan otomatis. Pemetaan otomatis ini dilakukan untuk mengidentifikasi

kemunculan beberapa objek yang mirip secara otomatis serta mendapatkan titik

koordinat dari objek tersebut. (Vladimir A. Krylov, 2018).

Dikarenakan terbatasnya informasi yang didapatkan pada metode

monitoring dari atas kanopi, maka penulis menggunakan metode monitoring di

bawah kanopi pada penelitian ini. Penulis menawarkan alternatif yang murah,

8

cepat, serta praktis untuk melakukan monitoring tanaman kakao dibawah kanopi.

Pada penelitian ini akan digunakan smartphone untuk melakukan pengambilan

gambar. Monitoring dilakukan dengan mengambil gambar tanaman kakao

menggunakan smartphone dari depan tanaman. Metode ini diharapkan dapat

memberikan informasi yang lebih lengkap dan akurat mengenai tanaman kakao.

Monitoring akan dilakukan dengan melakukan akuisisi citra setiap tanaman kakao.

Teknologi ini akan melakukan prediksi titik koordinat tanaman kakao berdasarkan

titik koordinat kamera pada saat pengambilan gambar dilakukan serta estimasi jarak

tanaman kakao dari kamera.

1.2. Identifikasi Masalah

Analisa kondisi tanaman kakao menggunakan orthophoto memiliki

beberapa keterbatasan. Data orthophoto hanya dapat menangkap informasi yang

nampak dari atas tanaman kakao. Sedangkan, di Indonesia, kebanyakan tanaman

kakao ditanam bersama dengan tanaman-tanaman lainnya sebagai tanaman

penaung. Hal ini dilakukan untuk mengurangi cahaya yang mengenai tanaman

kakao. Tanaman penaung menyebabkan teknik remote sensing menggunakan

orthophoto menjadi solusi yang kurang sesuai. Apabila dilihat dari atas, tanaman

kakao seringkali tertutup oleh tanaman penaungnya. Sehingga tidak dapat

dilakukan analisa lebih lanjut terkait tanaman kakao.

1.3. Batasan Masalah

Berikut beberapa batasan masalah dalam penelitian ini:

a. Posisi kamera lurus terhadap tanaman kakao untuk membatasi variasi sudut

pengambilan gambar

b. Tingkat akurasi model geotagging berdasarkan gps pada smartphone

c. Buah yang terhitung hanya buah yang terlihat jelas pada citra

d. Objek yang diamati : Tanaman Kakao

e. Akuisisi Citra dilakukan menggunakaan telepon genggam

f. Tanaman kakao yang diamati berada di perkebunan kakao di pasuruan.

9

g. Data Tanaman Kakao yang dihasilkan adalah jumlah buah pada tanaman

kakao

1.4. Perumusan Masalah

Berdasarkan identifikasi masalah di atas, berikut rumusan masalah dalam

penelitian ini.

a. Bagaimana pengembangan metode geotagging yang dapat memprediksi

titik koordinat tanaman?

b. Bagaimana pengembangan metode untuk melakukan kuantifikasi otomatis

yang dapat digunakan untuk menghitung jumlah buah kakao pada citra?

1.5. Tujuan Penelitian

a. Mengembangkan metode geotagging yang dapat memprediksi titik

koordinat tanaman.

b. Mengembangkan metode untuk melakukan kuantifikasi otomatis yang

dapat digunakan untuk menghitung jumlah buah kakao pada citra.

1.6. Luaran

Metode remote sensing baru yang dapat mengakuisisi lebih banyak

informasi mendetail pada kakao serta publikasi ilmiah terkait metode tersebut.

1.7. Manfaat

• Bagi Peneliti : melakukan penerapan ilmu.

• Bagi Masyarakat : mempermudah monitoring tanaman kakao pada

perkebunan kakao.

• Bagi Universitas : menambah kepustakaan.

1.8. Sistematika Penulisan

Sistematika dalam penulisan proposal Tugas Akhir ini akan dibagi menjadi lima

bab seperti berikut.

10

Bab I: Pendahuluan

Pada bab pendahuluan, akan dijelaskan latar belakang, identifikasi masalah, batasan

masalah, tujuan penelitian, manfaat penelitian, luaran tugas akhir, dan sistematika

penulisan.

Bab II: Tinjauan Pustaka

Pada bab tinjauan pustaka, akan diuraikan secara sistematis literatur yang

digunakan dalam penyusunan Tugas Akhir. Hal ini bertujuan untuk memperoleh

landasan teori terkait dengan CNN, Geotagging dan Kakao.

Bab III: Metodologi Penelitian

Bab ini akan menjelaskan tahapan pengerjaan dan analisis perancangan awal sistem

yang akan dibuat. Tahapan tersebut mencakup identifikasi masalah, studi pustaka,

pengumpulan data, profiling, desain sistem, dan pengujian.

Bab IV: Hasil dan Pembahasan

Bab ini akan menjelaskan tahapan pengerjaan dan analisis perancangan awal sistem

yang akan dibuat. Tahapan tersebut mencakup identifikasi masalah, studi pustaka,

pengumpulan data, desain sistem, dan pengujian.

Bab V: Kesimpulan dan Saran

Bab ini akan berisi simpulan dari hasil penelitian Tugas Akhir yang telah dilakukan,

serta saran yang mungkin dapat dilakukan untuk memperbaiki sistem aplikasi

dalam penelitian selanjutnya.

11

BAB II

TINJAUAN PUSTAKA

2.1. Komoditas Kakao dan Permasalahannya

Komoditas kakao merupakan tanaman tropis yang menghasilkan biji kakao

yang digunakan sebagai bahan baku dalam produksi cokelat. Kakao tumbuh

terutama di daerah tropis, terutama di Afrika Barat, Asia Tenggara, dan Amerika

Selatan. Kakao memiliki peran penting dalam perekonomian banyak negara

produsen, memberikan mata pencaharian bagi petani dan pendapatan ekspor yang

signifikan.

2.1.1. Komoditas Kakao

Kakao berasal dari hutan tropis di Amerika Tengah. Awalnya biji kakao

diolah oleh suku Indian dengan cara dikeringkan di bawah sinar matahari, lalu

disangrai dan dijadikan adonan. Suku Indian membuat minuman dari kakao, dengan

cara mencampur adonan tersebut dengan vanili. Pada masa tersebut, kakao tidak

hanya berfungsi sebagai minuman tetapi juga digunakan sebagai mata uang atau

alat tukar-menukar antar individu. Bangsa spanyol juga mencoba untuk mengolah

kakao dengan cara mereka sendiri yaitu dengan mengsangrai biji kakao, menumbuk

lalu ditambahkan gula tebu. Metode tersebut lebih disukai oleh Bangsa Spanyol.

Pada tahun 1560, Spanyol memperkenalkan kakao di Indonesia tepatnya di

Sulawesi. Kemudian pada tahun 1825-1838, Indonesia melakukan ekspor kakao ke

Manila sebanyak 92 ton. Namun, pada periode setelah itu ekspor kakao cenderung

menerun karena banyak tanaman kakao yang terserang penyakit. Kakao juga

ditanam di Ambon, pada 1859 terdapat 10.000-12.000 tanaman tanaman kakao dan

telah menghasilkan 11,6 ton. Di pulau Jawa, kakao baru ditanam pada tahun 1880.

(Wahyudi, 2008)

Dikutip dari Statistik Perkebunan Ditjenbun, produksi kakao di Indonesia

mencapai puncak dengan nilai 837.918 ton pada tahun 2010. Sedangkan luasan

lahan kakao di Indonesia sempat mencapai nilai maksimum pada tahun 2012 seluas

1.774.464 Ha. Luasan lahan perkebunan kakao terus menurun hingga tahun 2022,

Indonesia hanya memiliki lahan kakao seluas 1.476.776 Ha. Namun terdapat

12

peningkatan jumlah produksi kakao dari tahun 2021 ke tahun 2022. Pada tahun

2021, Indonesia memproduksi 706.636 ton kakao. Sedangkan pada tahun 2022

Indonesia memproduksi 732.256 ton kakao. Dengan berkurangnya luasan lahan

perkebunan kakao, namun Indonesia berhasil meningkatkan produksi kakao.

Artinya Indonesia berhasil meningkatkan produktivitas kakao (Ditjenbun 2021).

2.1.2. Penyakit Vascular Streak Dieback

Tanaman kakao yang terkena serangan vascular streak dieback akan

menunjukkan gejala adanya daun yang menguning dengan bercak-bercak berwarna

hijau. Daun-daun tersebut akan gugur sehingga tampak gejala ranting ompong.

Apabila bekas duduk daun disayat akan terlihat tiga buah noktah berwarna cokelat

kehitam-hitaman. Pada bekas potongan daun, bekas duduk daun, bekas potongan

ranting akan muncul benang-benang berwarna putih. Penyakit ini disebabkan oleh

jamur O. theobromae (Wahyudi, 2008).

2.2. Geographic Coordinate System (GCS)

Geographic Coordinate System (GCS) adalah sistem berbasis koordinat

yang digunakan untuk merepresentasikan posisi suatu lokasi di permukaan bumi.

GCS menggunakan permukaan 3 dimensi berbentuk bola untuk mendefinisikan

posisi. Terdapat 3 komponen GCS yakni latitude, longitude dan altitude. Latitude

dan longitude mendifinisikan lokasi di permukaan sedangkan altitude

mendefinisikan elevasi atatu ketinggian diatas atau kedalaman dibawah permukaan

laut. GCS yang paling umum digunakan adalah WGS 84 (World Geodetic System),

yang digunakan untuk navigasi, pemetaan dan sistem penentuan posisi satelit

(Longley, 2015).

2.3. Global Positioning System (GPS)

GPS adalah sistem navigasi berbasis satelit yang menyediakan informasi

lokasi dan waktu pada berbagai kondisi cuaca, di semua area di bumi. Sistem GPS

awalnya dikembangkan untuk kegunaan militer dan sekarang digunakan untuk

berbagai navigasi dan layanan berbasis lokasi seperti pemetaan, geotagging,

13

pelacakan lokasi. GPS receiver mengkalkulasi posisi dengan catatan waktu presisi

ketika sinyal dikirim oleh satelit GPS. Sinyal ini mengandung informasi mengenai

lokasi satelit, waktu ketika sinyal dikirim, kondisi ionosferik dan atmosferik yang

mempengaruhi pengiriman sinyal. Receiver menggunakan informasi ini untuk

menentukan lokasi dan menyediakan koordinat latitude, longitude dan altitude

(Zarchan, 1996).

2.4. Geotagging

Geotagging merupakan proses menambahkan informasi geografi seperti

koordinat, serta nama lokasi ke media digital seperti foto, video dan lainnya.

Geotagging mempermudah untuk melakukan pemetaan dan pencarian berbasis

lokasi. Informasi geografi dapat ditambahkan secara manual ataupun otomatis

dengan menggunakan perangkat GPS atau aplikasi kamera ponsel. Geotagging

digunakan dalam berbagai bidang termausk pariwisata, jurnalistik, perencanaan tata

kota, manajemen lingkungan, dan lainnya. Hal ini menyediakan informasi yang

berharga untuk melakukan visualisasi, analisa pola atau tren, relasi ruang fisik dan

virtual (Atunggal, 2018).

2.5. Remote Sensing

Remote Sensing adalah proses akuisisi data mengenai sebuah objek atau

fenomena tanpa melakukan kontak fisik dengan objek. Biasanya dilakukan

menggunakan perangkat berbasis satelit atau aerial, yang dapat menangkap

informasi mengenai objek. Beberapa sensor digunakan untuk menangkap informasi

mengenai objek, seperti sensor spectrometer, radiometer, hyperspectral radiometer,

sounder, accelerometer. Data-data yang dihasilkan sensor-sensor tersebut dapat

digunakan untuk melakukan monitoring informasi spasial berdasarkan waktu.

Selama 5 dekade terakhir, teknologi remote sensing telah digunakan dalam berbagai

riset area lahan basah seperti perubahan penggunaan lahan / pemetaan daerah lahan

basah. Siklus karbon dan peringatan perubahan iklim, pelepasan karbon pada

kebakaran lahan gambut, serta proses hidrologi pada lahan basah (Guo, 2017).

14

2.6. Remote Sensing pada kakao

Neswati (2019) menggunakan metode remote sensing untuk mendapatkan

informasi penggunaan lahan dan kesesuaian lahan untuk digunakan sebagai

perkebunan kakao. Hasil penelitian tersebut menyatakan bahwa hasil analisa area

yang berpotensi untuk dijadikan lahan perkebunan kakao menyatakan 90% dari

area yang di analisa sesuai untuk digunakan dengan index kesesuaian berkisar

antara 35 hingga 60. Sedangkan 10% dari area yang ada dinyatakan tidak sesuai

untuk ditanami kakao dengan Land Suitability Index kurang dari 25. Berdasarkan

hasil estimasi, produktivitas perkebunan hanya berkisar antara 0,3 hingga 1 ton/ha.

Angka ini dikategorikan sebagai produktivitas rendah hingga sedang (R Neswati,

2019).

2.7. Roboflow

Roboflow merupakan platform untuk melakukan pekerjaan dalam lingkup

computer vision. Platform ini digunakan oleh lebih dari 250.000 engineer untuk

membuat dataset, melatih model, dan melakukan deploy model pada server.

Beberapa fitur dari Roboflow meliputi bounding boxes poligon, label assist, dan

infrastruktur pelatihan model. Bagi para pengembang aplikasi yang ingin

menggunakan Roboflow dalam bahasa Python, tersedia library Python untuk

menggunakan Roboflow di PyPI. Library Python Roboflow adalah wrapper python

yang menghubungkan aplikasi web Roboflow inti dan REST API. Selain itu,

terdapat juga utilitas visi komputer sumber terbuka dan tutorial notebook dalam

bahasa Python yang tersedia di GitHub. Untuk informasi lebih lanjut tentang cara

menggunakan Roboflow, terdapat situs dokumentasi yang tersedia. Situs web

tersebut memberikan pengantar tentang Roboflow dan bagaimana

menggunakannya untuk membangun model visi komputer yang kuat. Roboflow

mempermudah manajemen dataset dan penggunaan dataset (Roboflow, 2023).

2.8. Sistem Estimasi Titik Koordinat

Dalam penelitian ini, akan dibuat sistem untuk mengkalkulasi estimasi titik

koordinat suatu objek berdasarkan data yang tersedia. Sistem ini bertujuan untuk

15

memberikan perkiraan titik koordinat yang mungkin dari objek yang diamati,

berdasarkan informasi yang ada. Metode yang digunakan dalam sistem ini

mencakup analisis data spasial, pengolahan citra, dan teknik pemodelan matematis.

Tujuan dari penelitian ini adalah meningkatkan akurasi dan ketepatan dalam

menentukan estimasi titik koordinat, sehingga dapat digunakan dalam berbagai

aplikasi seperti pemetaan, navigasi, dan pemantauan objek di lingkungan. Dalam

pengembangan sistem, akan dilakukan pengujian dan evaluasi untuk memastikan

kinerja dan keandalan sistem dalam memberikan estimasi titik koordinat yang

akurat.

2.8.1. Metode estimasi kedalaman monokular

Estimasi kedalaman monocular merupakan sebuah teknik untuk

memperkirakan kedalaman secara 3 dimensi dari citra 2 dimensi. Kedalaman 3

dimensi diprediksi dengan mengambil informasi dari gambar yang dihasilkan oleh

satu kamera. Salah satu Teknik estimasi kedalaman monocular yang paling populer

adalah menggunakan Convolutional Neural Network (CNN). Model CNN dapat

dilatih untuk mempelajari pola-pola dalam data gambar yang menunjukkan

kedalaman secara 3 dimensi. CNN mengambil gambar sebagai input dan

mengeluarkan prediksi kedalaman 3 dimensi sebagai output (Khan, 2020). Godard

(2019) mengembangkan metode estimasi kedalaman monokular berbasis arsitektur

U-Net. Pada penelitian tersebut, beberapa model diintegrasikan untuk

menghasilkan nilai estimasi kedalaman objek. Arsitektur CNN U-Net dapat dilihat

pada gambar 2.1.

16

Gambar 2. 1 Arsitektur CNN U-Net

Arsitektur jaringan ini digambarkan dalam Gambar 2.1. Jaringan ini terdiri

dari jalur kontraksi (sisi kiri) dan jalur ekspansi (sisi kanan). Jalur kontraksi

mengikuti arsitektur jaringan konvolusi yang khas. Jalur ini terdiri dari pengulangan

dua kali konvolusi 3x3 (konvolusi tanpa padding), masing-masing diikuti oleh unit

linear ReLU dan operasi max pooling 2x2 dengan langkah 2 untuk melakukan

downsampling. Pada setiap tahap downsampling, jumlah saluran fitur digandakan.

Setiap tahap pada jalur ekspansi terdiri dari upsampling dari peta fitur, diikuti oleh

konvolusi 2x2 ("up-convolution") yang mengurangi separuh jumlah saluran fitur,

penyatuan dengan peta fitur yang sesuai dari jalur kontraksi, dan dua konvolusi 3x3,

masing-masing diikuti oleh ReLU. Pemangkasan diperlukan karena adanya

kehilangan piksel batas pada setiap konvolusi. Pada lapisan akhir, konvolusi 1x1

digunakan untuk memetakan setiap vektor fitur 64-komponen menjadi jumlah kelas

yang diinginkan. Secara total, jaringan ini memiliki 23 lapisan konvolusi

(Ronneberger, 2015).

2.8.2. Model CNN Segment Anything

Segment Anything Model (SAM) adalah model CNN yang dikembangkan

oleh Meta AI Research yang mampu melakukan segmentasi terhadap objek apa pun

17

pada citra. SAM telah dilatih menggunakan dataset segmentasi yang sangat besar

dengan lebih dari 1 miliar mask dan telah menunjukkan potensi luar biasa dalam

berbagai aplikasi, termasuk segmentasi gambar, deteksi objek, dan ekstraksi otak.

SAM juga telah dikombinasikan dengan model-model lain, seperti Grounding

DINO, Stable Diffusion, dan ChatGPT, untuk menunjukkan keberagaman sebagai

model dasar. Namun, SAM memiliki keterbatasan dalam mendeteksi objek

transparan dan skenario yang menantang terkait kaca. Sebuah survei komprehensif

tentang SAM telah dilakukan untuk memberikan wawasan mengenai aplikasi

praktis, manfaat, dan keterbatasannya.

"Segment Anything" merupakan sebuah proyek dan model yang

dikembangkan oleh Meta AI untuk segmentasi gambar. Tujuan dari proyek ini

adalah menciptakan model yang dapat dengan akurat "memotong" atau melakukan

segmentasi pada objek apa pun dalam sebuah gambar hanya dengan satu klik.

Model Segment Anything (SAM) menggunakan berbagai input prompt, seperti titik

atau kotak, untuk menghasilkan masker objek berkualitas tinggi untuk semua objek

dalam gambar. Model ini telah dilatih menggunakan dataset berisi jutaan gambar

dan miliaran masker, dan telah menunjukkan performa yang kuat pada berbagai

tugas segmentasi. Model ini dapat digunakan untuk menghasilkan masker untuk

objek tertentu atau untuk seluruh gambar. Proyek Segment Anything bertujuan

untuk mendemokrasikan segmentasi gambar dan membuatnya lebih mudah diakses

(Zhang, 2023). Model ini dikembangkan menggunakan arsitektur transformer.

18

Gambar 2. 2 Arsitektur Transformer pada model Segment Anything

2.8.3. Vincenty Formula

Rumus Vincenty adalah dua metode iteratif terkait yang digunakan dalam

geodesi untuk menghitung jarak antara dua titik pada permukaan sebuah sferoid.

Rumus ini dikembangkan oleh Thaddeus Vincenty pada tahun 1975 dan didasarkan

pada asumsi bahwa bentuk Bumi adalah sebuah sferoid datar, sehingga

membuatnya lebih akurat dibandingkan dengan metode yang menganggap Bumi

sebagai bola, seperti jarak lingkaran besar. Rumus Vincenty digunakan untuk

menghitung jarak antara dua titik pada permukaan sebuah sferoid, seperti Bumi.

Rumus ini lebih akurat daripada metode yang menganggap Bumi sebagai bola.

Rumus Vincenty adalah metode iteratif, yang berarti mereka menggunakan

serangkaian pendekatan untuk mencapai jawaban akhir. Rumus ini dikembangkan

19

oleh Thaddeus Vincenty pada tahun 1975. Rumus Vincenty mengasumsikan bahwa

Bumi adalah sferoid datar, yang merupakan representasi yang lebih akurat tentang

bentuk Bumi daripada bola. Rumus ini sangat berguna untuk menghitung jarak

dalam jarak yang panjang atau pada permukaan sferoid datar, seperti Bumi. Namun,

perlu dicatat bahwa solusi inversi Vincenty dapat gagal pada titik yang hampir

antipodal.

Menggunakan rumus Vincenty memungkinkan kita untuk menghitung

latitude dan longitude tujuan dari suatu titik awal. Hal ini dimungkinkan karena

rumus Vincenty didasarkan pada model matematika ellipsoid, yang merupakan

representasi yang lebih akurat tentang bentuk Bumi daripada bola. Rumus ini

memperhitungkan perataan Bumi di kutub dan pembengkokan di khatulistiwa, yang

memengaruhi jarak antara dua titik di permukaan Bumi. Dengan menggunakan

metode iteratif, rumus Vincenty dapat menghitung jarak antara dua titik di

permukaan ellipsoid dengan akurasi tinggi. Ini memungkinkan penggunaan rumus

Vincenty untuk menghitung latitude dan longitude tujuan dari suatu titik awal,

dengan memberikan jarak yang ingin ditempuh (Kettle, 2017).

Dengan menggunakan titik awal (Φ1, L1) dan azimut awal, α1, serta jarak,

s, sepanjang garis lintang, masalahnya adalah untuk mencari titik tujuan (Φ2, L2)

dan azimut, α2. Mulai dengan melakukan perhitungan berikut.

!! = arctan	[(1 − -)/01ϕ!

3! = arctan2(/01!!, cos 8 − -)/01

9:1	8 = ;<9!!9:1	8!

=" = ;<9"	8 >
0" − ?"

?"
@ = (1 − 9:1"8) >

0" − ?"

?"
@

A = 1 +
="

16384
(4096 + ="[−768 + ="(320 − 175=")])

L =
="

1024
(256 + ="[−128 + ="(74 − 47=")])

Kemudian, dengan menggunakan nilai awal , lakukan iterasi pada

persamaan-persamaan berikut hingga tidak ada perubahan signifikan pada σ:

23# = 23! + 3

(2-1)
(2-2)

(2-3)

(2-4)

(2-5)

(2-6)

(2-7)

20

Δ3 = L	9:1	3 N;<9(23#)

+
1
4
L O;<93[−1 + 2;<9"(23#)]

−
L
6
[23#][−3 + 49:1"3][−3 + 4;<9"(23#)]PQ

Δ3 =
9
?A

+ Δ3

Setelah σ diperoleh dengan akurasi yang memadai, evaluasilah:

ϕ" = 0R;/012 S9:1!!;<93

+ ;<9	!! sin 	 3	;<9	8!, (1

− -)U9:1"8 + (sin 	!! 9:1	3 − cos!! cos 3 ;<9	8!)"	V

W = 0R;/012(sin 3 	9:1	8!, cos!! cos 3 − sin!! sin 3 	;<9	8!)

X =
-
16
;<9"8[4 + -(4 − 3	;<9"8)]

Y = W − (1 − X)-9:1	8{3

+ X	9:1	3(;<9[23#] + X cos 3 [= 1 + 2	;<9"(23#)])}

Y" = Y + Y!

8 = 0R;/012(sin 8, − 9:1	!! sin 3 + ;<9	!! cos 3 cos 8!)

Jika titik awal berada di Kutub Utara atau Kutub Selatan, maka persamaan pertama

tidak dapat ditentukan. Jika azimut awal adalah Timur atau Barat, maka persamaan

kedua tidak dapat ditentukan.

2.9. Sistem Deteksi Objek Buah Kakao menggunakan CNN YOLO

Pada penelitian ini akan dikembangkan model CNN untuk melakukan deteksi buah

kakao pada tanaman kakao. Arsitektur model CNN yang digunakan pada penelitian

ini adalah arsitektur YOLOV8. Arsitektur ini digunakan karena model yang

dihasilkan memiliki akurasi deteksi yang baik dan dapat melakukan deteksi secara

cepat.

(2-9)

(2-10)

(2-11)

(2-8)

(2-12)

(2-13)

(2-14)

21

3.9.1. Arsitektur YOLOV8

YOLOv8, yang dikembangkan oleh Ultralytics pada bulan Januari 2023

sebagai pengembangan dari YOLOv5, memperkenalkan beberapa versi dengan

skala yang berbeda, mulai dari YOLOv8n (nano) hingga YOLOv8x (extra large).

Model yang diperbarui ini mendukung beberapa tugas visi komputer seperti deteksi

objek, segmentasi, estimasi pose, pelacakan, dan klasifikasi. Arsitektur YOLOv8

didasarkan pada YOLOv5 namun dengan beberapa modifikasi, terutama pada

CSPLayer yang sekarang disebut sebagai modul C2f. Modul C2f menggabungkan

fitur tingkat tinggi dengan informasi kontekstual untuk meningkatkan akurasi

deteksi YOLOv8 menggunakan model tanpa anchor dengan kepala yang terpisah,

memungkinkan pemrosesan independen untuk tugas objek, klasifikasi, dan regresi.

Desain ini memungkinkan setiap cabang fokus pada tugasnya masing-masing dan

meningkatkan akurasi keseluruhan model. Pada lapisan output, YOLOv8

menggunakan fungsi sigmoid untuk skor objek, yang mewakili probabilitas

terdapatnya objek dalam sebuah bounding box. Fungsi softmax digunakan untuk

probabilitas kelas, menunjukkan kemungkinan objek termasuk dalam kelas-kelas

yang berbeda (Terven, 2023).

Fungsi loss pada YOLOv8 menggabungkan VFL Loss untuk klasifikasi dan

DFL Loss+CIOU Loss untuk regresi. VFL Loss merupakan varian dari fungsi Focal

Loss yang memberikan bobot lebih kepada contoh-contoh sulit dan mengurangi

pengaruh contoh-contoh mudah. DFL Loss merupakan fungsi loss berbasis

distribusi yang memodelkan distribusi koordinat bounding box dan memprediksi

rata-rata dan variansinya. CIOU Loss merupakan varian dari fungsi Intersection

over Union (IOU) yang memperhitungkan rasio aspek dan ukuran bounding box.

Untuk bounding box dan area segmentasi, fungsi loss mempertimbangkan nilai

confidence bounding box yang diprediksi dan IOU. Perhitungan loss digunakan

untuk mengestimasi jumlah kesalahan, yang kemudian digunakan oleh optimizer

untuk menyesuaikan bobot model. YOLOv8 menggunakan fungsi loss CIoU dan

DFL untuk loss bounding box dan binary cross-entropy untuk loss klasifikasi.

Fungsi-fungsi ini telah meningkatkan kinerja deteksi objek, terutama dalam

menghadapi objek-objek kecil (Terven, 2023). Arsitektur model CNN YOLOv8

dapat dilihat pada gambar 2.3.

22

Gambar 2.3 Arsitektur YOLOV8

23

3.9.2. Arstitektur YOLOV8n

YOLOv8 nano adalah model deteksi objek yang ringan dan efisien yang

dikembangkan oleh Ultralytics. Model ini didasarkan pada arsitektur You Only

Look Once (YOLO) dan secara khusus dirancang untuk lingkungan dengan sumber

daya terbatas dan daya komputasi terbatas, seperti perangkat edge dan sistem

embedded. YOLOv8 nano mencapai keseimbangan yang baik antara akurasi dan

kecepatan dengan menggunakan ukuran model yang lebih kecil dan

mengoptimalkan arsitektur jaringan, sehingga mampu mendeteksi objek secara

real-time. Meskipun ukurannya kompak, YOLOv8 nano tetap mempertahankan

akurasi tinggi dengan memanfaatkan teknik canggih seperti deteksi bebas anchor

dan feature pyramid networks. Hal ini menjadikannya cocok untuk berbagai

aplikasi, termasuk robotika, sistem pengawasan, dan perangkat IoT. Arsitektur

YOLOv8 nano dapat dilihat pada tabel 2.1.

Tabel 2. 1 Arsitektur YOLOV8n (nano)

layer

num
from n params modules arguments

0 -1 1 464 ultralytics.nn.modules.Conv [3, 16, 3, 2]

1 -1 1 4672 ultralytics.nn.modules.Conv [16, 32, 3, 2]

2 -1 1 7360 ultralytics.nn.modules.C2f [32, 32, 1, True]

3 -1 1 18560 ultralytics.nn.modules.Conv [32, 64, 3, 2]

4 -1 2 49664 ultralytics.nn.modules.C2f [64, 64, 2, True]

5 -1 1 73984 ultralytics.nn.modules.Conv [64, 128, 3, 2]

6 -1 2 197632 ultralytics.nn.modules.C2f [128, 128, 2,

True]

7 -1 1 295424 ultralytics.nn.modules.Conv [128, 256, 3, 2]

8 -1 1 460288 ultralytics.nn.modules.C2f [256, 256, 1,

True]

9 -1 1 164608 ultralytics.nn.modules.SPPF [256, 256, 5]

24

Tabel 2. 2 Arsitektur YOLOV8n (nano) (lanjutan)

layer

num
from n params modules arguments

10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2,

'nearest']

11 [-1, 6] 1 0 ultralytics.nn.modules.Concat [1]

12 -1 1 148224 ultralytics.nn.modules.C2f [384, 128, 1]

13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2,

'nearest']

14 [-1, 4] 1 0 ultralytics.nn.modules.Concat [1]

15 -1 1 37248 ultralytics.nn.modules.C2f [192, 64, 1]

16 -1 1 36992 ultralytics.nn.modules.Conv [64, 64, 3, 2]

17 [-1,

12]

1 0 ultralytics.nn.modules.Concat [1]

18 -1 1 123648 ultralytics.nn.modules.C2f [192, 128, 1]

19 -1 1 147712 ultralytics.nn.modules.Conv [128, 128, 3, 2]

20 [-1, 9] 1 0 ultralytics.nn.modules.Concat [1]

21 -1 1 493056 ultralytics.nn.modules.C2f [384, 256, 1]

22 [15,

18,

21]

1 751702 ultralytics.nn.modules.Detect [2, [64, 128,

256]]

3.9.3. Arstitektur YOLOV8m

YOLOv8 Medium adalah model deteksi objek yang dikembangkan oleh Ultralytics,

sebuah organisasi yang fokus pada visi komputer dan deep learning. Ini merupakan

perluasan dari keluarga model populer You Only Look Once (YOLO). YOLOv8

Medium dirancang untuk mendeteksi dan lokaliser objek dengan efisien dan akurat

dalam gambar atau frame video, sehingga cocok untuk aplikasi waktu nyata. Hal

ini dicapai dengan membagi gambar masukan menjadi sebuah grid dan

25

memprediksi bounding box serta probabilitas kelas untuk objek dalam setiap sel

grid. YOLOv8 Medium menggunakan arsitektur berukuran medium, menemukan

keseimbangan antara kompleksitas model dan kecepatan, sehingga cocok untuk

berbagai tugas visi komputer. Arsitektur model CNN YOLOv8 medium dapat

dilihat pada tabel berikut.

Tabel 2. 3 Arsitektur YOLOV8m (medium)

layer from n params module arguments

0

-1 1 1392 ultralytics.nn.modules.Conv [3, 48, 3, 2]

1

-1 1 41664 ultralytics.nn.modules.Conv [48, 96, 3, 2]

2

-1 2 111360 ultralytics.nn.modules.C2f

[96, 96, 2,

True]

3

-1 1 166272 ultralytics.nn.modules.Conv [96, 192, 3, 2]

4

-1 4 813312 ultralytics.nn.modules.C2f

[192, 192, 4,

True]

5

-1 1 664320 ultralytics.nn.modules.Conv

[192, 384, 3,

2]

6

-1 4 3248640 ultralytics.nn.modules.C2f

[384, 384, 4,

True]

7

-1 1 1991808 ultralytics.nn.modules.Conv

[384, 576, 3,

2]

8

-1 2 3985920 ultralytics.nn.modules.C2f

[576, 576, 2,

True]

9

-1 1 831168 ultralytics.nn.modules.SPPF [576, 576, 5]

10

-1 1 0 torch.nn.modules.upsampling.Upsample

[None, 2,

'nearest']

11 [-1, 6] 1 0 ultralytics.nn.modules.Concat [1]

12 -1 2 1993728 ultralytics.nn.modules.C2f [960, 384, 2]

26

Tabel 2. 4 Arsitektur YOLOV8m (medium) (lanjutan)

layer from n params module arguments layer

13

-1 1 0 torch.nn.modules.upsampling.Upsample [None,

2,

'nearest']

14 [-1, 4] 1 0 ultralytics.nn.modules.Concat [1]

15

-1 2 517632 ultralytics.nn.modules.C2f [576,

192, 2]

16

-1 1 332160 ultralytics.nn.modules.Conv [192,

192, 3,

2]

17 [-1,

1

2] 1 0 ultralytics.nn.modules.Concat [1]

18

-1 2 1846272 ultralytics.nn.modules.C2f [576,

384, 2]

19

-1 1 1327872 ultralytics.nn.modules.Conv [384,

384, 3,

2]

20 [-1, 9] 1 0 ultralytics.nn.modules.Concat [1]

21

-1 2 4207104 ultralytics.nn.modules.C2f [960,

576, 2]

22 [15,

18,

2

1] 1 3776854 ultralytics.nn.modules.Detect [2, [192,

384,

576]]

3.9.4. Metode Deteksi Objek Buah menggunakan YOLO

Fu (2022) mememperkenalkan metode baru untuk mendeteksi dan

menghitung jumlah polong kedelai secara otomatis dan akurat di lapangan. Metode

ini dapat mengatasi masalah efisiensi rendah, ketidakakuratan, dan ukuran sampel

yang kecil pada pengumpulan fenotipe kedelai secara manual di lapangan. Metode

27

ini menggunakan kendaraan pemindaian tiga dimensi yang dikembangkan sendiri

untuk memperoleh gambar warna RGB dan kedalaman polong kedelai di lapangan.

Kemudian, gambar RGB dan kedalaman disesuaikan menggunakan metrik titik

fitur tepi untuk mengidentifikasi dengan akurat polong kedelai di latar belakang

lingkungan yang kompleks.

Model jaringan yang dilatih menggunakan dataset gabungan RGB dan

kedalaman memberikan hasil yang lebih baik dibandingkan dengan model yang

hanya dilatih dengan dataset RGB. Tingkat ketepatan (precision) model jaringan

yang ditingkatkan YOLO-v5 juga meningkat sekitar 6%, dengan tingkat ketepatan

mencapai 88.14% dalam mendeteksi jumlah polong di populasi kedelai dengan 200

tanaman. Setelah dilakukan kompensasi model, kesalahan relatif antara jumlah

polong yang diprediksi dan yang sebenarnya hanya berkisar antara 2% hingga 3%

untuk dua varietas kedelai yang diuji. Meskipun masih terdapat beberapa faktor

lingkungan yang mempengaruhi deteksi dan kuantifikasi polong kedelai, metode

ini merupakan langkah awal yang signifikan untuk memperoleh data fenotipe

kedelai secara otomatis dan akurat di lapangan (Fu, 2022).

2.10. Red, Green, Blue (RGB)

Kusumanto et al. (2011) menjelaskan, RGB (Red, Green, Blue) adalah citra

warna yang masing-masing memiliki warna tertentu yaitu merah, hijau dan biru.

Masing-masing warna memiliki rentang intensitas 0 sampai dengan 255. Sehingga

dari kombinasi 3 warna tersebut menghasilkan 2563 kombinasi warna (16.777.216).

Gupta et al. (2014) menyatakan citra RGB dapat digunakan untuk melakukan

analisa pada tanaman. Dengan menggunakan citra RGB, dapat dilakukan metode

yang bersifat non-destruktif untuk menganalisa/mengevaluasi kondisi tanaman.

Weinstein et al. (2019) menjelaskan, dengan menggunakan citra lanskap alam

berbasis RGB membuka banyak peluang baru dalam ekologi, perhutanan, serta

pengelolaan lahan. Model CNN deteksi tanaman saat ini masih dapat diperluas

kegunaannya. Tidak hanya untuk mendeteksi titik tanaman, apabila dikembangkan

maka model CNN juga dapat mendeteksi kondisi kesehatan tanaman. Maraknya

penggunaan UAV/drone dalam lingkungan remote sensing, juga membuka peluang

untuk mengkombinasikan data-data yang diambil secara mandiri / data lokal

28

dengan data pada skala informasi yang lebih luas. Pada umumnya, drone

konvensional hanya dapat menangkap reflektansi cahaya dalam format RGB. Data

tersebut dapat dikombinasikan dengan data-data dari satelit yang menangkap

informasi menggunakan sensor-sensor tertentu. Sensor-sensor tersebut dapat

menghasilkan citra multi spektral. Selain spektrum cahaya warna RGB, sensor

tersebut menangkap gelombang Nir-Infrared, penguapan air, serta gelombang

infrared pendek.

Gambar 2. 4 Ruang Warna RGB

2.11. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) merupakan parameter yang digunakan untuk

mengevaluasi akurasi nilai yang di prediksi oleh sebuah model prediksi. MAE

menunjukkan rata-rata kesalahan nilai aktual dengan nilai prediksi.

\A] =	^
|`$ − `|

1

 Keterangan :

 `$: Nilai Prediksi

 ` : Nilai Sebenarnya

 n : Jumlah Data

(Nixsensor, 2022)

(2-15)

29

2.12. Mean Squared Error (MSE)

Mean Square Error (MSE) adalah sebuah parameter yang mengukur

kesalahan pada sebuah prediksi dengan menghitung rata-rata kesalahan kuadrat

antara nilai sebenarnya dan nilai yang diprediksi. Dengan menggunakan metode ini,

kita dapat memperkirakan seberapa besar kesalahan pada prediksi tersebut.

 Keterangan :

 `$: Nilai Prediksi

 ` : Nilai Sebenarnya

 n : Jumlah Data

2.13. Intersection over Union (IoU)

Intersection over Union (IoU) adalah metrik yang umum digunakan untuk

mengevaluasi performa deteksi objek, segmentasi, dan tugas-tugas computer vision

lainnya. IoU mengukur seberapa banyak area yang tumpang tindih antara bounding

box atau masker prediksi dengan bounding box atau masker acuan. Untuk

menghitung IoU, pertama-tama kita menghitung luas area yang tumpang tindih

antara bounding box atau masker prediksi dan bounding box atau masker acuan.

Kemudian, kita menghitung luas keseluruhan dari kedua bounding box atau masker

tersebut. Akhirnya, kita membagi luas area yang tumpang tindih dengan luas area

keseluruhan untuk mendapatkan skor IoU.

Skor IoU berkisar dari 0 hingga 1, dengan skor 1 menunjukkan tumpang

tindih yang sempurna antara bounding box atau masker prediksi dan bounding box

atau masker acuan, dan skor 0 menunjukkan tidak ada tumpang tindih. IoU sering

digunakan sebagai metrik evaluasi dalam deteksi objek dan segmentasi karena

memberikan ukuran kuantitatif seberapa baik model dapat melokalisasi dan

mengsegmentasi objek dalam gambar. Skor IoU yang lebih tinggi menunjukkan

bahwa model lebih baik dalam memprediksi lokasi dan ukuran yang benar dari

objek pada gambar.

(2-16)

30

Gambar 2. 5 Penjelasan Intersection of Union

2.14. Perangkat Lunak

Perangkat lunak digunakan dalam pengembangan sistem atau model untuk

memberikan alat yang diperlukan dalam proses desain, pengkodean, dan pengujian.

Perangkat lunak seperti lingkungan pengembangan terintegrasi (IDE), framework,

dan library menyediakan alat dan sumber daya yang diperlukan untuk

mengimplementasikan sistem atau model secara efisien. Mereka juga membantu

dalam mengelola data, mengoptimalkan kinerja, dan mempermudah proses

pengembangan secara keseluruhan.

2.15.1 Python

Bahasa pemrograman python menggunakan perintah dalam bahasa inggris

dan sintaks yang mudah dimengerti. Python menawarkan alternatif open-source

untuk teknik-teknik tradisional dan aplikasi (Sahoo et al, 2019). Python memiliki

pilihan library standard yang besar. Library-library tersebut berfokus pada general

programming, serta memuat modul-modul untuk berinteraksi dengan sistem

operasi, jaringan, basis data, pengolahan citra digital serta keperluan spesifik

lainnya (Ozgur et al, 2017). Python menyediakan banyak pilihan struktur data

tingkat tinggi. Beberapa contohnya yaitu list untuk melakukan numerasi pada

sebuah koleksi objek, dictionary untuk membangun hash tables dan lainnya.

Bagaimanapun, struktur data diatas tidak sepenuhnya ideal untuk melakukan

komputasi numerikal dengan performa tinggi (Walt et al, 2011).

31

Gambar 2. 6 Logo Bahasa Pemrograman Python

(Python, 2022)

2.15.2 Google Colaboratory

Google Colaboratory atau yang dikenal secara umum Google Colab

merupakan layanan open source yang disediakan oleh google kepada semua

pengguna layanan akun gmail. Google Colab menyediakan GPU (Unit Pemrosesan

Grafis) untuk melakukan riset. Layanan ini ditujukan bagi orang-orang yang tidak

memiliki sumber daya GPU untuk melakukan komputasi tingkat tinggi. Layanan

Google Colab menyediakan RAM sebesar 12,72 GB dan ruang penyimpanan hard

disk sebesar 358,27 GB dalam 1 runtime. Setiap runtime berlangsung selama 12

jam, setelah itu runtime akan ter-reset dan pengguna perlu melakukan koneksi

ulang. Hal ini diberlakukan untuk memastikan bahwa layanan GPU tidak digunakan

untuk melakukan penambangan mata uang kripto dan tujuan illegal lainnya. Setelah

pengguna membuka Google Colab, pengguna perlu memilih jenis runtime.

Terdapat 3 pilihan runtime, yaitu none, GPU, TPU. None artinya runtime hanya

akan menggunakan CPU pada komputer pengguna. GPU artinya runtime akan

menggunakan GPU di dalam server Google. TPU, digunakan untuk melakukan

proses tensor (Kanani et al, 2019).

Gambar 2. 7 Logo Google Colaboratory

(Google Colab, 2017)

2.15.3 Numpy

Numpy adalah sebuah library numerikal Python yang secara efisien

memanipulasi array besar (Drude et al, 2018). Pada pertengahan 90an, sebuah tim

32

internasional yang terdiri dari relawan-relawan memulai pengembangan sebuah

struktur data untuk melakukan komputasi array dengan efisien. Struktur ini

berkembang menjadi apa yang saat ini kita kenali sebagai N-dimensional Numpy

array. Library Numpy yang terdiri dari berbagai gabungan fungsi matematis.

Library tersebut telah dimanfaatkan pada berbagai bidang seperti akademis,

laboratorium nasional, serta berbagai implementasi di industri yang tersebar mulai

dari industri gaming hingga eksplorasi antariksa (Walt, 2011). Array NumPy

merupakan sebuah koleksi elemen serupa dalam multi dimensi. Sebuah Array

digambarkan oleh tipe elemen didalamnya serta oleh bentuknya. Sebagai contoh,

sebuah matriks dapat direpresentasikan sebagai sebuah array yang berbentuk (M x

N) yang mengandung angka-angka, nilai desimal atau bilangan kompleks. Namun,

tidak seperti matriks, array Numpy dapat memiliki berbagai dimensi. Lebih jauh

lagi, array tersebut dapat memuat berbagai jenis elemen lainnya (bahkan kombinasi

beberapa elemen) seperti boolean atau tanggal. Array NumPy merupakan metode

yang cukup mudah untuk mendekripsikan satu atau lebih blok memori komputer

sehingga angka-angka yang direpresentasikan dapat dengan mudah dimanipulasi.

Gambar 2. 8 Logo Library Numpy

(Numpy, 2022)

2.15.4 OpenCV

OpenCV merupakan sebuah library penglihatan komputer. Pengembangan

OpenCV dimulai sebagai sebuah projek riset di Intel pada 1998. OpenCV sudah

dapat digunakan pada tahun 2000 dibawah lisensi open source BSD. OpenCV

bertujuan untuk menyediakan perangkat lunak yang diperlukan untuk

menyelesaikan permasalahan penglihatan computer. Didalam library OpenCV

terdapat gabungan dari fungsi pemrosesan gambar tingkat rendah dan algoritma

tingkat tinggi seperti deteksi wajah, deteksi pejalan kaki, pencocokan fitur dan

33

pelacakan. Library tersebut telah diunduh sebanyak lebih dari 3 juta kali. Pada 2010

sebuah modul baru yang menyediakan akselerasi GPU ditambahkan ke OpenCV.

Modul GPU tersebut mencakup bagian signifikan dari fungsionalitas library dan

masih aktif dalam pengembangan. Modul tersebut mengimplementasikan

penggunaan CUDA (Pulli et al, 2012).

Gambar 2. 9 Logo Library OpenCV

(OpenCV, 2022)

2.15.5 Pandas

Library Pandas, telah dikembangkan semenjak 2008. Library Pandas

bertujuan untuk menjembatani banyaknya perangkat lunak analisis data dalam

Python. Pandas tidak hanya bertujuan untuk menyediakan fungsionalitas sebagai

pembaca data, namun juga menyediakan banyak fitur seperti penyelarasan data

otomatis dan pengindeksan hierarkis. Dimana fitur-fitur tersebut tidak terintegrasi

dalam library lainnya ataupun lingkungan komputasi lainnya. Selagi

dikembangkan untuk analisis data finansial, pengembang berharap Pandas dapat

akan memungkinkan Python saintifik menjadi lebih atraktif serta menjadi

lingkungan komputasi statistik yang praktis bagi praktisi akademis dan industri.

Nama Pandas berasal dari panel data, sebuah istilah umum untuk dataset

multidimensi dalam statistic dan ekonometriks (Walt, 2011).

Gambar 2. 10 Logo Library Pandas

Pandas, 2022

34

2.15.6 Matplotlib & Seaborn

Matplotlib merupakan salah satu library Python untuk melakukan

visualisasi data yang cukup popular. Library ini dibangun oleh John Hunter

bersama beberapa kontributor. Matplotlib merupakan library grafis untuk

melakukan visualisasi data dalam Python. Matplotlib dapat digunakan dengan

beberapa library yang umum digunakan dalam pengolahan data pada Python seperti

Numpy, Pandas dan library lainnya (Sial et al, 2021). Stančin et al, (2019)

mendefinisikan Matplotlib sebagai library Python yang mengimplementasikan

grafik-grafik yang ada didalam MATLAB. Matplotlib menawarkan banyak variasi

dan penyesuaian sesuai kebutuhan pengguna. Sintaks Matplotlib cukup

membingungkan bagi pemula, namun setelah memahami konsep utamanya akan

jadi mudah untuk membuat berbagai jenis grafik.

Seaborn merupakan library yang dikembangkan di atas library Matplotlib

dan lebih mudah untuk digunakan dan dipelajari bagi pemula ketimbang Matplotlib.

Meskipun lebih mudah untuk digunakan, pada kasus yang memerlukan

penyesuaian dan keperluan yang lebih kompleks Seaborn akan menjadi pilihan

yang kurang tepat (Stančin et al, 2019).

Gambar 2. 11 Logo Library Matplotlib

(matplotlib, 2022)

Gambar 2. 12 Logo Library Seaborn

(Seaborn, 2022)

35

2.15.7 Visual Studio Code

Visual Studio Code (VS Code) adalah sebuah teks editor ringan dan handal

yang dibuat oleh Microsoft yang bersifat multiplatform. Artinya VS Code dapat

berjalan pada sistem operasi Linux, Mac dan Windows. Teks editor ini secara

langsung mendukung Bahasa pemrograman JavaScript, Typescript, dan Node.js,

serta Bahasa lainnya (seperti C++, C#, Python, Go, Java) dengan bantuan plugin

yang dapat dipasang via marketplace Visual Studio Code. Terdapat banyak fitur-

fitur yang disediakan oleh Visual Studio Code, diantaranya Intellisense, Git

Integration, Debugging, dan fitur ekstensi yang menambah kemampuan teks editor.

Fitur-fitur tersebut akan terus bertambah seiring dengan bertambahnya versi Visual

Studio Code. VS Code bersifat open source, artinya sumber kodenya dapat dilihat

dan dikembangkan oleh semua orang. Hal ini merupakan daya tarik tersendiri bagi

pengembang aplikasi karena dapat ikut serta dalam pengembangan VS Code

(Salamah 2021).

Gambar 2. 13 Logo dan Tampilan Perangkat Lunak VS Code

(Microsoft, 2022)

2.15.8 Open Camera

Open Camera adalah aplikasi kamera open source untuk ponsel dan tablet

android yang memiliki berbagai fitur. Dalam aplikasi ini, terdapat opsi untuk

menjaga foto tetap seimbang dan tidak miring, serta menambahkan berbagai mode

pengambilan gambar, efek warna, keseimbangan warna, ISO, kunci eksposur, selfie

dengan "flash layar", dan video HD. Selain timer dengan suara penghitung mundur,

pengulangan otomatis dengan penundaan yang dapat dikonfigurasi, dan opsi untuk

mengambil foto dari jauh dengan suara. Open Camera juga menyediakan fitur untuk

36

menambahkan bingkai grid dan panduan potong, serta opsi penandaan lokasi GPS

(geotagging) pada foto dan video. Aplikasi ini juga memiliki dukungan untuk HDR.

Selain itu, terdapat opsi untuk menghapus metadata exif perangkat dari foto,

panorama, reduksi kebisingan, dan mode optimasi rentang dinamis. Open Camera

adalah aplikasi yang gratis dan tanpa iklan di dalamnya serta sumber terbuka

(OpenCamera, 2021).

Gambar 2. 14 Halaman Aplikasi Open Camera di Google Play

(OpenCamera, 2021)

2.15.9 Pytorch

PyTorch adalah sebuah library machine learning yang dirancang untuk mendukung

gaya pemrograman yang imperatif. PyTorch memudahkan pemodelan kode,

memudahkan proses debugging, dan konsisten dengan library komputasi ilmiah

populer lainnya. Selain itu, PyTorch tetap efisien dan mendukung akselerator

perangkat keras seperti GPU. PyTorch merupakan framework deep learning yang

menyediakan operasi kustom, lapisan, model, dan alat untuk penelitian,

pengembangan, dan evaluasi codec kompresi gambar dan video end-to-end.

PyTorch dibangun di atas beberapa proyek, terutama Lua Torch, Chainer, dan HIPS

Autograd. PyTorch menyediakan lingkungan berkinerja tinggi dengan akses mudah

ke diferensiasi otomatis pada model yang dieksekusi di perangkat yang berbeda,

seperti CPU dan GPU. Selain itu, PyTorch juga digunakan dalam bidang-bidang

37

lain seperti serangan dan pertahanan adversarial, rekonstruksi jejak partikel

menggunakan pembelajaran mendalam, dan mempercepat penelitian pembelajaran

mendalam 3D (Paszke, 2019).

2.15.10 Torchvision

Torchvision adalah sebuah libray PyTorch yang menyediakan berbagai alat dan

model terkait visi komputer untuk para peneliti dan praktisi di bidang tersebut.

Library ini mencakup dataset, data loader, transformasi, model, dan utilitas untuk

tugas-tugas umum dalam visi komputer seperti klasifikasi gambar, deteksi objek,

segmentasi semantik, dan lainnya. Torchvision menyediakan model-model yang

telah dilatih sebelumnya untuk tugas klasifikasi gambar dan deteksi objek, seperti

AlexNet, VGG, ResNet, dan Faster R-CNN, di antara lainnya. Selain itu,

Torchvision juga menyediakan berbagai teknik augmentasi data, seperti

pemotongan acak, pembalikan, dan variasi warna, untuk membantu meningkatkan

generalisasi model (Jatavallabhula, 2019).

2.15.11 Glob

Modul glob dalam Python digunakan untuk mencari semua nama alamat direktori

yang cocok dengan pola yang ditentukan sesuai dengan aturan yang digunakan oleh

shell Unix. Modul ini mengembalikan daftar nama alamat direktori yang cocok

dengan pola yang ditentukan, yang kemudian dapat digunakan untuk melakukan

berbagai operasi pada file-file tersebut. Modul glob mendukung berbagai pola yang

dapat digunakan untuk mencocokkan nama file, seperti * untuk mencocokkan string

karakter apa pun, ? untuk mencocokkan satu karakter saja, dan [] untuk

mencocokkan karakter apa pun dalam set yang ditentukan. Perlu diperhatikan

bahwa glob hanya mengembalikan nama jalur file yang ada dan dapat dibaca

(Virtanen, 2019).

2.15.12 PIL

Python Imaging Library (PIL) adalah sebuah library untuk bekerja dengan gambar

dalam bahasa Python. Library ini menyediakan berbagai fungsi pemrosesan

gambar, seperti pengubah ukuran, pemotongan, rotasi, dan penyaringan, serta

38

dukungan untuk berbagai format file gambar. PIL adalah library populer untuk

pemrosesan gambar dalam Python dan telah digunakan dalam berbagai aplikasi,

termasuk visi komputer, citra ilmiah, dan pengembangan web. Namun, PIL tidak

lagi aktif dipelihara dan telah digantikan oleh library Pillow, yang merupakan

cabang dari PIL yang menyediakan fitur tambahan dan perbaikan bug. Pillow

dirancang sebagai pengganti PIL yang kompatibel dan menyediakan API yang

serupa, sehingga mudah beralih dari PIL ke Pillow (Guan, 2019).

2.15.13 Onnxruntime

ONNX Runtime adalah mesin inferensi sumber terbuka yang dirancang untuk

menjalankan model pembelajaran mesin yang sesuai dengan format Open Neural

Network Exchange (ONNX). ONNX Runtime dirancang untuk memberikan

eksekusi yang efisien dan portabel dari model pembelajaran mesin pada berbagai

platform perangkat keras, termasuk CPU, GPU, dan akselerator khusus. ONNX

Runtime mendukung berbagai bahasa pemrograman, termasuk Python, C++, dan

C#, dan dapat diintegrasikan dengan framework pembelajaran mesin populer

seperti PyTorch dan TensorFlow. ONNX Runtime menyediakan serangkaian API

yang memungkinkan pengembang untuk memuat, menjalankan, dan mengelola

model pembelajaran mesin, serta alat-alat untuk mengoptimalkan dan memproses

kinerja model. ONNX Runtime dioptimalkan secara khusus untuk inferensi dengan

latensi rendah dan mendukung berbagai backend dan metode optimasi (Ashfaq,

2022).

2.15.14 Ipython.display

Modul IPython.display dalam IPython menyediakan sejumlah fungsi yang sangat

berguna untuk menampilkan berbagai jenis konten di Jupyter Notebook. Fungsi

"display" digunakan untuk menampilkan objek dengan representasi terbaik yang

tersedia di Jupyter Notebook. Misalnya, jika kita ingin menampilkan gambar, kita

dapat menggunakan fungsi "Image" untuk menampilkan gambar di dalam

notebook. Fungsi "Video" memungkinkan kita untuk menampilkan video di dalam

notebook, sementara fungsi "Audio" digunakan untuk menampilkan pemutar audio

yang memungkinkan kita untuk memainkan file audio langsung di dalam notebook.

39

Selain itu, modul IPython.display juga menyediakan fungsi "HTML" yang

memungkinkan kita untuk menampilkan kode HTML di dalam notebook, dan

fungsi "Markdown" yang memungkinkan kita untuk menampilkan kode Markdown

yang akan ditafsirkan dan ditampilkan sebagai teks yang diformat dengan baik di

dalam notebook. Semua fungsi ini membantu dalam membuat tampilan yang

menarik dan interaktif di Jupyter Notebook (Ipython, 2019).

2.15.15 Time

Package `time` dalam bahasa pemrograman Python adalah sebuah package

yang menyediakan fungsionalitas untuk mengakses waktu sistem dan melakukan

operasi terkait waktu. Package ini memungkinkan pengembang untuk mengukur

waktu eksekusi program, mengatur jeda atau penundaan dalam eksekusi program,

dan melakukan operasi lainnya terkait waktu seperti mengubah format waktu,

menghitung selisih waktu, dan mengatur waktu sistem. Package `time` sangat

berguna dalam pengembangan aplikasi yang memerlukan pemantauan waktu,

pengukuran kinerja, sinkronisasi tugas, atau manipulasi waktu secara umum

(Python, 2023).

2.15.16 Ultralytics

Ultralytics adalah sebuah perusahaan teknologi yang mengkhususkan diri

dalam pengembangan perangkat lunak komputer visi komputer berbasis Deep

Learning dan deteksi objek real-time. Perusahaan ini terkenal karena library

perangkat lunak YOLO (You Only Look Once) yang mereka kembangkan. YOLO

merupakan salah satu pendekatan populer dalam deteksi objek yang memungkinkan

pengguna untuk melakukan deteksi objek secara cepat dan akurat dalam aplikasi

real-time. Ultralytics menyediakan perangkat lunak dan sumber daya yang

membantu pengembang dan peneliti dalam mengimplementasikan deteksi objek

menggunakan YOLO, serta terus mengembangkan dan meningkatkan kinerja

model tersebut. (Ultralytics, 2021).

40

Gambar 2. 15 Logo ultralytics

(Ultralytics, 2021)

2.15.17 Sys

Package `sys` dalam bahasa pemrograman Python adalah sebuah paket yang

menyediakan akses ke fungsi dan variabel yang terkait dengan interpreter Python

dan lingkungan sistem. Dengan package `sys`, pengembang dapat mengakses

argumen baris perintah, mengelola jalur modul, mengontrol perilaku program, dan

mendapatkan informasi tentang sistem operasi yang digunakan (Python, 2023).

Gambar 2. 16 Logo modul sys python

(Python, 2023)

2.15.18 Scipy

Scipy adalah sebuah library perangkat lunak open-source untuk bahasa

pemrograman Python yang digunakan untuk komputasi ilmiah dan analisis data.

Library ini menyediakan berbagai algoritma dan fungsi matematika yang kuat,

termasuk optimisasi, integrasi numerik, transformasi Fourier, aljabar linear,

statistik, pemrosesan sinyal, dan banyak lagi. Scipy memperluas fungsionalitas

Python standar dengan menambahkan kemampuan komputasi numerik yang

canggih, yang sangat berguna dalam penelitian ilmiah, analisis data, dan

41

pemodelan. Scipy digunakan secara luas dalam berbagai disiplin ilmu, seperti

fisika, biologi, ekonomi, ilmu komputer, dan lain-lain (Jones, 2001).

Gambar 2. 17 Logo Library SciPy

2.15.19 Csv

CSV dalam bahasa pemrograman Python adalah sebuah paket yang

menyediakan fungsi-fungsi untuk membaca dan menulis file dalam format Comma-

Separated Values (CSV). CSV merupakan format yang umum digunakan untuk

menyimpan data tabular, di mana nilai-nilai dalam setiap baris dipisahkan oleh

tanda koma. Package CSV memudahkan pengembang dalam memanipulasi file

CSV dengan menyediakan metode untuk membaca data dari file CSV ke dalam

struktur data Python, serta menulis data dari struktur data Python ke dalam file

CSV. Dengan menggunakan package CSV, pengembang dapat dengan mudah

melakukan operasi seperti membaca, mengubah, atau menyimpan data dalam

format CSV dengan cepat dan efisien (A. Junaidi,2017).

2.15.20 Os

Package `os` dalam bahasa pemrograman Python adalah sebuah paket yang

menyediakan fungsionalitas untuk berinteraksi dengan sistem operasi yang

digunakan oleh komputer. Paket ini memungkinkan pengembang untuk melakukan

berbagai operasi terkait sistem operasi, termasuk mengakses file dan direktori,

mengatur variabel lingkungan, menjalankan perintah shell, dan banyak lagi.

Dengan package ̀ os`, pengembang dapat dengan mudah mengelola file, melakukan

manipulasi direktori, dan mengatur variabel lingkungan melalui bahasa

pemrograman Python. Package `os` merupakan alat yang penting dalam

pengembangan aplikasi yang melibatkan operasi system (Sridianti, 2022).

42

Gambar 2. 18 Logo Modul OS Python

2.15.21 Warnings

Package `warnings` dalam bahasa pemrograman Python adalah sebuah paket yang

digunakan untuk mengelola dan mengontrol peringatan (warnings) yang muncul

selama eksekusi program. Ketika suatu potensi masalah atau situasi yang tidak

diharapkan terjadi selama proses eksekusi program, package `warnings`

memungkinkan pengembang untuk memberikan peringatan kepada pengguna atau

pengembang lain tentang situasi tersebut. Dengan package `warnings`,

pengembang dapat mengatur tindakan yang diambil ketika peringatan muncul,

seperti menampilkan pesan peringatan, mengabaikan peringatan, atau

mengubahnya menjadi pengecualian (exception). Package `warnings` sangat

berguna dalam pemeliharaan dan debug program, membantu pengembang untuk

memperbaiki potensi masalah dan meningkatkan kualitas dan keandalan aplikasi

(Python, 2023).

2.15.22 Keras

 Package `keras` dalam bahasa pemrograman Python adalah sebuah paket

yang populer dan kuat untuk membangun dan melatih model jaringan saraf (neural

network). Keras menyediakan antarmuka tingkat tinggi yang user-friendly untuk

merancang dan mengimplementasikan berbagai jenis arsitektur jaringan saraf

seperti jaringan saraf konvolusional (CNN), jaringan saraf rekurens (RNN), dan

jaringan saraf yang dikombinasikan. Keras menyediakan beragam lapisan (layer),

fungsi aktivasi, algoritma optimisasi, dan metrik evaluasi yang dapat digunakan

dengan mudah untuk mengonstruksi model yang kompleks. Selain itu, Keras juga

43

menyediakan kemampuan untuk melatih dan menguji model dengan kumpulan data

yang diberikan. Dengan pendekatan yang modular dan fleksibel, Keras

mempermudah para pengembang dalam melakukan eksperimen, penyesuaian, dan

peningkatan model jaringan saraf. (Chollet, 2015).

2.15.23 Datetime

 Package `datetime` dalam bahasa pemrograman Python adalah sebuah

paket yang menyediakan fungsionalitas untuk mengelola, memanipulasi, dan

bekerja dengan tanggal (date) dan waktu (time). Package ini menyediakan kelas-

kelas seperti `datetime`, `date`, `time`, `timedelta`, dan `tzinfo` yang

memungkinkan pengembang untuk melakukan operasi seperti membuat objek

tanggal dan waktu, mengekstrak komponen tanggal dan waktu (seperti tahun, bulan,

hari, jam, menit, dan detik), melakukan operasi aritmatika pada tanggal dan waktu,

memformat dan memparse tanggal dan waktu dalam berbagai format, serta

mengubah zona waktu. Package `datetime` sangat berguna dalam pengembangan

aplikasi yang memerlukan manipulasi dan pengaturan tanggal dan waktu dengan

presisi dan keakuratan (Rosihan, 2018).

2.15.24 Math

Package `math` dalam bahasa pemrograman Python adalah sebuah paket

yang menyediakan berbagai fungsi matematika yang umum digunakan. Package

ini memberikan akses ke berbagai fungsi matematika dasar seperti trigonometri,

logaritma, eksponensial, akar kuadrat, pembulatan, dan banyak lagi. Dengan

package `math`, pengembang dapat melakukan operasi matematika kompleks

dengan mudah, package ini menjadi alat yang penting dalam pengembangan

aplikasi yang memerlukan manipulasi dan perhitungan matematika, seperti fisika,

statistik, grafika, atau pemodelan matematika (Python, 2023).

44

BAB III

ANALISIS DAN PERANCANGAN SISTEM

3.1. Alur Penelitian

Proyek Tugas Akhir ini bertujuan untuk mengembangkan metode Geo-

tagging menggunakan Artificial Neural Network dengan memprediksi koordinat

tanaman kakao pada citra serta mendeteksi buah kakao untuk melakukan

penghitungan otomatis buah pada tanaman kakao. Alur penelitian dari proyek ini

dapat dilihat pada Gambar 3.1.

Gambar 3.1 Alur Penelitian

45

Penelitian akan dimulai dengan mengidentifikasi masalah, dengan tujuan

agar peneliti dapat mengetahui permasalahan yang dibahas pada penelitian ini.

Selanjutnya, akan dilakukan studi pustaka untuk mempelajari penelitian beberapa

tahun terakhir terkait topik penelitian ini. Beberapa dasar-dasar teori yang

berhubungan juga akan dipelajari untuk mengetahui metode yang tepat untuk

menyelesaikan permasalahan. Pada tahap selanjutnya, dilakukan pengumpulan

data-data citra tanaman kakao yang akan digunakan untuk menguji akurasi model

estimasi jarak tanaman kakao dan membangun model estimasi koordinat tanaman

kakao berbasis Artificial Neural Network (ANN) untuk metode Geotagging.

Kemudian citra-citra tersebut digunakan pula untuk melakukan pelatihan model

CNN untuk mendeteksi buah kakao yang ada pada tanaman, untuk dilakukan

penghitungan buah pada setiap tanaman kakao.

3.2. Analisis Kebutuhan

Pengembangan metode geotagging yang dikerjakan membutuhkan analisis

agar penelitian berjalan dengan baik dan lancar. Analisis yang dilakukan untuk

perancangan dan pengembangan model geotagging tanaman kakao, kebutuhan

perangkat keras dan perangkat lunak pada sisi pengguna dan peneliti.

3.2.1. Kebutuhan Pengguna

Analisis kebutuhan diperoleh berdasarkan tujuan penelitian yaitu

pengembangan metode geotagging pada tanaman kakao. Pengembangan model

geotagging untuk melakukan estimasi koordinat tanaman kakao dapat digunakan

pada aplikasi mini berbasis web. Model Geotagging akan menerima input citra yang

memiliki informasi koordinat pengambilan gambar. Lalu model akan melakukan

estimasi jarak tanaman kakao pada citra. Setelah itu, arsitektur ANN akan

melakukan estimasi koordinat tanaman kakao berdasarkan koordinat pengambilan

citra dan jarak tanaman kakao. Pengguna dapat menggunakan smartphone untuk

mengambil citra tanaman kakao. Lalu hasil estimasi koordinat tanaman kakao akan

ditampilkan. Pada penelitian ini akan dikembangkan pula metode kuantifikasi

otomatis untuk mendapatkan jumlah buah pada tanaman kakao. Teknologi yang

46

akan digunakan yaitu CNN YOLO untuk mendeteksi buah pada tanaman kakao.

Sehingga buah-buah yang terdeteksi akan dihitung, lalu akan ditampilkan jumlah

buah pada tanaman kakao.

3.2.2. Kebutuhan Peneliti

Berikut terdapat beberapa perangkat keras dan perangkat lunak yang

digunakan oleh peneliti dalam melakukan penelitian ini.

1. Perangkat Keras

a. Laptop Mac Book Air M1 2020

i. Prosesor : Apple M1

ii. RAM : 8 GB

iii. SSD : 512 GB

iv. Sistem Operasi : macOS Monterey

b. Smartphone Samsung Galaxy A6 2018

i. Prosesor : Exynos 7870 Octa

ii. RAM : 3 GB

iii. Internal Storage : 32 GB

iv. Lensa Kamera : 16 MP, f/1.7, 26mm (wide)

v. Sistem Operasi : Android 8.0 (Oreo)

2. Perangkat Lunak

a. Python 3

b. Google Colaboratory

c. Visual Studio Code

3.3. Identifikasi Masalah

Masalah utama sistem monitoring perkebunan kakao saat ini adalah, dengan

menggunakan foto udara (aerial) tidak banyak informasi terkait tanaman kakao

yang dapat diekstrak. Karena, apabila dilihat dari atas kebanyakan tanaman kakao

tertutup oleh tanaman penaungnya. Masalah utama yang saat ini dihadapi, belum

ada teknologi yang murah untuk melakukan koleksi data spasial terkait tanaman

kakao di perkebunan untuk sistem monitoring perkebunan.

47

3.4. Studi Pustaka

Dalam tahap ini, peneliti akan melakukan studi pustaka terkait dengan

geotagging otomatis dan penghitungan otomatis buah kakao. Tujuan dari studi

pustaka ini adalah untuk menemukan metode dan langkah-langkah yang dapat

digunakan dalam penelitian ini. Peneliti akan mencari dan mengumpulkan

informasi dari penelitian terdahulu yang telah dilakukan dan relevan dengan topik

penelitian ini. Ringkasan hasil studi pustaka akan ditampilkan pada tabel 3.1 yang

berisi informasi singkat mengenai penelitian terdahulu yang digunakan sebagai

acuan dalam penelitian ini.

Tabel 3. 1 Studi Pustaka

No Topik Pengetahuan Temuan

1 Akurasi

GPS

Perangkat Telepon

Genggam memiliki

akurasi yang cukup

baik

Berdasarkan studi yang dilakukan,

perangkat telepon genggam (iPhone

6) memiliki rata-rata error pada

rentang 7-13 m. Sedangkan

geotagging yang akan dilakukan

memerlukan akurasi pada tingkat

sentimeter. (Merry, 2019)

2 Estimasi

Kedalaman

Model CNN untuk

melakukan Estimasi

Kedalaman dapat

digunakan untuk

memprediksi jarak

objek pada Citra

Model CNN berbasis segmentasi

(dengan arsitektur U-Net) dapat

digunakan untuk melakukan estimasi

kedalaman pada citra. (Godard,

2019)

3 Deteksi

Buah

Kakao

Otomatis

Model CNN YOLO

dapat digunakan

untuk mendeteksi

Buah Kakao

Model CNN dengan arsitektur

YOLO-v5 dapat melakukan deteksi

fenotip polong kedelai, termasuk

klasifikasi dan kuantifikasi jumlah

polong berdasarkan klasifikasinya.

(Fu, 2022).

48

3.5. Pengumpulan Data

Berikut gambar 3.2 yang menjelaskan alur pengumpulan data yang akan

dilakukan pada penelitian ini.

Gambar 3.2 Alur Pengumpulan Data

Pengumpulan data dalam penelitian ini dimulai dengan pemilihan objek

yang memiliki bentuk yang menyerupai tiang atau tongkat. Pemilihan objek juga

mempertimbangkan lingkungan sekitar objek. Khususnya lingkungan yang menjadi

49

latar belakang objek. Latar belakang yang memiliki warna mirip dengan objek akan

mempersulit proses segmentasinya. Sehingga perlu dicari objek yang berada pada

lingkungan dengan latar belakang yang bersih. Artinya, tidak banyak objek yang

mirip dengan objek tiang serta terdapat perbedaan warna yang jelas antara objek

dan lingkungan sekitarnya.

Objek yang menyerupai tiang dipilih karena objek dengan bentuk tersebut

mudah dikenali oleh model CNN dan mampu memberikan hasil estimasi

kedalaman yang optimal. Selanjutnya, jarak antara objek dan kamera diatur pada

rentang 0,5-2 meter. Rentang jarak ini dipilih karena jarak yang terlalu dekat atau

jauh dapat mempengaruhi kualitas hasil estimasi kedalaman yang diperoleh.

Setelah jarak antara objek dan kamera diatur, dilakukan pencatatan jarak

antara objek dan kamera pada kertas kecil. Pencatatan ini dilakukan untuk

memastikan bahwa jarak antara objek dan kamera telah sesuai dengan rentang yang

ditentukan sebelumnya. Selanjutnya, dilakukan pengambilan gambar bersama

dengan objek yang telah dipilih sebelumnya. Pada tahap ini, dilakukan pencatatan

titik koordinat kamera saat pengambilan gambar dan titik koordinat objek.

Tahapan terakhir dalam pengumpulan data adalah mengunggah gambar

yang telah diambil bersama dengan data koordinat kamera dan objek ke dalam

sistem yang digunakan untuk analisis data lebih lanjut. Proses pengunggahan ini

dilakukan agar data dapat diakses dan dianalisis dengan lebih mudah dan efektif.

Dengan demikian, pengumpulan data yang dilakukan dengan metode ini dapat

menghasilkan data yang akurat dan dapat digunakan untuk analisis lebih lanjut

dalam berbagai aplikasi yang memerlukan estimasi kedalaman.

3.6. Desain Sistem

Pada tahapan ini, penulis memaparkan desain sistem yang akan dilakukan

pada penelitian ini. Gambar 3.6 menjelaskan desain sistem terkait sistem prediksi

jarak objek pada citra. Gambar 3.7 menjelaskan desain sistem mengenai sistem

prediksi koordinat tanaman kakao pada citra. Sedangkan pada gambar 3.8

50

dijelaskan sistem estimasi jumlah buah kakao dengan melakukan deteksi buah

kakao lalu menghitung jumlah buah yang terdeteksi.

Gambar 3.3 Desain Sistem Keseluruhan

Gambar 3.3 menjelaskan terkait Desain Sistem secara utuh. Tahap pertama

yang dilakukan sistem yaitu melakukan prediksi jarak tanaman kakao dari kamera.

Nilai jarak ini kemudian digunakan bersama titik koordinat kamera untuk

memprediksi titik koordinat dari objek tanaman kakao. Lalu pada tahap terakhir

dilakukan deteksi objek buah kakao untuk melakukan penghitungan buah kakao

secara otomatis. Ilustrasi keseluruhan desain sistem dapat dilihat pada gambar 3.4

dan 3.5.

Gambar 3.4 Visualisasi Desain Sistem

51

Gambar 3.5 Visualisasi Alur Sistem Keseluruhan

52

3.6.1. Desain Sistem Prediksi Jarak Objek pada Citra

Pada tahap ini akan dijelaskan desain sistem prediksi jarak objek yang akan

digunakan pada penelitian ini (dapat dilihat pada gambar 3.6). Model CNN

monocular depth estimation digunakan pada penelitian ini, model tersebut

dikembangkan oleh Godard (2019). Model CNN tersebut merupakan model yang

dikembangkan menggunakan arsitektur U-Net untuk melakukan segmentasi objek

kemudian memprediksi kedalaman dari setiap objek.

Gambar 3.6 Desain Sistem Metode Prediksi Jarak Objek pada Citra

3.6.2. Desain Sistem Prediksi Koordinat Tanaman Kakao pada Citra

Pada tahap ini, akan dipaparkan sistem prediksi koordinat tanaman kakao

pada citra (dapat dilihat pada gambar 3.7). Dalam proses ini, data citra yang telah

diambil akan dimanfaatkan untuk melakukan proses ekstraksi fitur. Teknik

pengolahan citra seperti segmentasi, ekstraksi tekstur, dan ekstraksi bentuk

digunakan untuk mengidentifikasi dan memperoleh fitur-fitur yang relevan dari

citra tersebut. Setelah fitur-fitur ini diperoleh, langkah selanjutnya adalah

menerapkan algoritma prediksi yang telah dirancang. Algoritma ini dapat

melibatkan pendekatan machine learning seperti pengklasifikasi atau regresi, yang

memungkinkan sistem untuk memprediksi koordinat tanaman kakao dengan tingkat

akurasi yang tinggi. Dengan menggunakan sistem prediksi ini, pemantauan

pertumbuhan dan perkembangan tanaman kakao dapat dilakukan secara efisien dan

otomatis, membantu para petani dan peneliti dalam mengoptimalkan produksi dan

perawatan tanaman kakao.

Gambar 3.7 Desain Sistem Metode Prediksi Koordinat Tanaman Kakao

53

3.6.3. Desain Sistem Estimasi Jumlah Buah Kakao

Tahap ini merupakan paparan mengenai sistem estimasi jumlah buah kakao.

Diagram alur desain sistem estimasi jumlah buah kakao terdapat pada Gambar 3.8.

Untuk mengembangkan model CNN, diperlukan pelatihan menggunakan data set

mengenai objek terkait. Pada penelitian ini, objek yang akan dideteksi adalah buah

kakao. Sehingga tahap pertama yang diperlukan yaitu mengumpulkan dan

menandai buah kakao pada citra tanaman kakao. Dataset buah kakao memiliki 2

kelas yaitu kelas buah kakao yang sudah matang dan kelas buah kakalo yang belum

matang. Setelah itu, tanda / anotasi buah kakao beserta citra tanaman kakao akan

digunakan pada tahap pelatihan model CNN YOLO. Setelah pelatihan selesai

dilakukan, maka dihasilkan sebuah model CNN YOLO yang dapat mendeteksi

buah kakao serta prediksi status kematangan buah tersebut. Buah-buah yang

berhasil dideteksi oleh model CNN YOLO akan dihitung.

Gambar 3.8 Desain Sistem Metode Estimasi Jumlah Buah Kakao

3.7. Pengujian Arsitektur

Pada tahap pengujian arsitektur akan dilakukan beberapa percobaan untuk

menguji akurasi dari sistem prediksi jarak, sistem prediksi koordinat serta sistem

estimasi jumlah buah kakao.

3.7.1. Pengujian Sistem Prediksi Jarak Objek pada Citra

Untuk mengetahui akurasi nilai output dari sistem prediksi jarak objek pada

citra maka pada penelitian ini digunakan parameter Mean Absolute Error (MAE)

dan Mean Squared Error (MSE).

54

3.7.2. Pengujian Sistem Prediksi Koordinat Tanaman Kakao pada Citra

Untuk mengetahui akurasi nilai output dari sistem prediksi koordinat berupa

longituda dan latitude tanaman kakao pada citra maka pada penelitian ini digunakan

parameter Mean Absolute Error (MAE) dan Mean Squared Error (MSE).

3.7.3. Pengujian Sistem Estimasi Jumlah Buah Kakao

Untuk mengetahui akurasi hasil deteksi objek pada sistem estimasi jumlah

buah kakao akan digunakan metrik Intersection over Union (IoU). IoU mengukur

seberapa banyak area yang tumpang tindih antara bounding box atau masker

prediksi dengan bounding box atau masker acuan.

55

BAB IV HASIL DAN PEMBAHASAN

4.1. Dataset

Pada penelitian ini, dilakukan pengumpulan data untuk membangun dataset

yang akan digunakan dalam proses pelatihan model Artificial Neural Network

(ANN) untuk memprediksi jarak serta model Convolutional Neural Network (CNN)

YOLO untuk mendeteksi buah kakao. Pengumpulan data dilakukan dengan cara

mengambil sampel gambar-gambar buah kakao yang sudah matang dan yang belum

matang. Selama proses pengumpulan data, gambar-gambar tersebut diolah dan

diberikan anotasi. Anotasi ini mencakup informasi mengenai koordinat atau

bounding box yang menandai letak buah kakao pada gambar, serta label yang

menunjukkan jenis atau kelas buah kakao yang terdeteksi. Setelah pengumpulan

data selesai, dataset yang terdiri dari gambar-gambar dan anotasinya akan

digunakan dalam proses pelatihan model. Model ANN akan dilatih menggunakan

data jarak antara kamera dan buah kakao sebagai input, serta data yang sesuai

dengan jarak tersebut sebagai output yang diharapkan. Sementara itu, model CNN

YOLO akan dilatih menggunakan gambar-gambar buah kakao beserta anotasinya.

Proses pelatihan ini bertujuan untuk mengajarkan model untuk mendeteksi dan

mengidentifikasi buah kakao dalam gambar.

4.1.1. Pembuatan Dataset Nilai Rgb dan Jarak Objek

Pembuatan dataset dimulai dengan mencari objek yang menyerupai tiang

untuk menggantikan batang tanaman kakao. Setelah objek yang sesuai ditemukan,

jarak antara kamera dan objek ditentukan. Setelah jarak kamera dengan objek

ditentukan, citra diambil menggunakan kamera atau perangkat lainnya. Pada

langkah ini, citra yang telah diambil akan diproses menggunakan model CNN

monodepth estimation. Model ini akan memperkirakan kedalaman objek

berdasarkan nilai RGB pada citra. Setelah estimasi kedalaman dilakukan,

ditentukan titik koordinat piksel (x, y) pada area objek yang diestimasi

56

kedalamannya. Titik koordinat ini akan digunakan dalam proses segmentasi

selanjutnya. Pada langkah ini, model CNN segment anything digunakan untuk

melakukan segmentasi pada citra hasil estimasi kedalaman. Model CNN segment

anything melakukan proses segmentasi berdasarkan titik koordinat yang telah

ditentukan. Titik tersebut menjadi dasar penunjuk objek yang akan disegmentasi

areanya. Segmentasi akan mengidentifikasi bagian objek yang menyerupai tiang

dan memisahkannya dari latar belakang. Setelah proses segmentasi, nilai RGB pada

bagian objek yang diidentifikasi akan diperoleh. Nilai RGB ini merupakan warna

piksel pada citra hasil estimasi kedalaman. Setelah mendapatkan kumpulan nilai

RGB, nilai median dari kumpulan tersebut diambil. Nilai median memberikan

representasi warna tengah dari kumpulan tersebut, yang akan digunakan sebagai

representasi nilai RGB untuk jarak objek yang diestimasi. Setelah semua langkah

di atas dilakukan untuk setiap objek yang dipilih, data yang terkumpul ditambahkan

ke dataset. Setiap data terdiri dari pasangan nilai RGB (nilai median) dan jarak

kamera terhadap objek yang sesuai.

Gambar 4.1 Alur Pembuatan Dataset

57

4.1.2. Profil Dataset Nilai RGB dan Jarak Objek

Pada penelitian ini, terdapat dataset yang berisi pasangan nilai

Red,Green,Blue (RGB) terhadap jarak objek dalam satuan meter. Namun, perlu

dicatat bahwa nilai RGB yang ada dalam dataset tersebut bukanlah nilai RGB dari

citra asli, melainkan nilai RGB yang berasal dari proses estimasi kedalaman

menggunakan model CNN monodepth estimation. Nilai RGB akan digunakan

sebagai input untuk memperkirakan jarak objek. Proses estimasi kedalaman

menggunakan model CNN monodepth estimation. Dataset ini terdiri dari 112 data,

dimana setiap data terdiri dari nilai RGB dan jarak objek yang sesuai.

Tabel 4.1 Dataset RGB dan Jarak Objek

id r g b distance

0 251.0 138.0 99.0 2.90

1 141.0 41.0 128.0 4.22

2 220.0 72.0 107.0 1.00

3 80.0 18.0 123.0 3.00

4 225.0 76.0 103.0 3.75

...

110 222.0 75.0 124.0 2.70

111 252.0 158.0 112.0 1.20

112 156.0 46.0 126.0 2.40

4.1.3. Dataset Buah Kakao

Dataset Buah Kakao dilakukan dengan melakukan pengambilan citra di

perkebunan kakao yang terletak di Puslitkoka, Jember. Dilakukan pengambilan

citra pada tanaman kakao yang sedang berbuah baik yang buahnya sudah matang

maupun yang belum matang. Pengambilan citra juga divariasikan jaraknya yaitu

pada rentang jarak sebesar 0,8 hingga 2,8 m sesuai dengan variasi yang terdapat

pada dataset nilai rgb dan jarak objek (Bab 4.1.2). Dataset Buah Kakao terdiri dari

58

total 67 gambar buah kakao dengaan 446 anotasi. Untuk melakukan proses training

digunakan 46 gambar (sekitar 69% dari total dataset). Selanjutnya, untuk

memvalidasi performa model, 13 gambar (sekitar 19% dari total dataset) akan

digunakan sebagai validation set. Terakhir, 8 gambar (sekitar 12% dari total dataset)

akan dijadikan sebagai test set untuk menguji akurasi model yang telah dilatih.

Dalam setiap gambar, terdapat rata-rata 6 anotasi (label) untuk buah kakao. Dataset

ini memiliki dua kelas, yaitu buah kakao matang dan belum matang. Dengan

pembagian ini, diharapkan model dapat mempelajari dan mengklasifikasikan

gambar-gambar buah kakao dengan akurasi yang tinggi.

Gambar 4.2 Semua Dataset

Secara keseluruhan, jumlah anotasi pada kedua kelas, yaitu kelas cocoa matang

(ripe cocoa) dan kelas cocoa belum matang (unripe cocoa), tergolong cukup

seimbang. Terdapat 227 anotasi pada kelas cocoa matang dan 217 anotasi pada

kelas cocoa belum matang. Perbedaan jumlah anotasi antara kedua kelas tersebut

tidak terlalu signifikan.

Gambar 4.3 Pembagian Dataset untuk Train

Data pelatihan ini memiliki jumlah sampel yang cukup representatif untuk kedua

kelas, yaitu 171 sampel pada kelas cocoa matang (ripe cocoa) dan 130 sampel pada

kelas cocoa belum matang (unripe cocoa). Dengan jumlah yang seimbang antara

kedua kelas, model pembelajaran mesin dapat mempelajari pola dan informasi yang

relevan dari masing-masing kelas. Dengan menggunakan data pelatihan yang

representatif ini, model yang dihasilkan memiliki kemampuan yang lebih baik

dalam mengklasifikasikan cocoa berdasarkan tingkat kematangannya.

59

Gambar 4.4 Pembagian Dataset untuk Valid

Dataset validasi yang mencakup kedua kelas, yaitu cocoa matang (ripe cocoa)

dengan 24 sampel dan cocoa belum matang (unripe cocoa) dengan 47 sampel,

memungkinkan pengujian kehandalan model dalam mengklasifikasikan tingkat

kematangan cocoa. Evaluasi menggunakan dataset validasi ini memberikan

gambaran yang lebih akurat tentang kemampuan model dalam dunia nyata.

Gambar 4.5 Pembagian Dataset untuk Test

Pada dataset uji (test set), terdapat 32 sampel anotasi pada kelas cocoa matang (ripe

cocoa) dan 40 sampel anotasi pada kelas cocoa belum matang (unripe cocoa).

Dataset uji ini digunakan untuk menguji performa model yang telah dilatih pada

data pelatihan dan divalidasi pada data validasi. Dengan menggunakan dataset uji

yang mencakup kedua kelas, model dapat dievaluasi lebih lanjut dalam

kemampuannya mengklasifikasikan cocoa berdasarkan tingkat kematangannya.

4.2. Eksperimen Model ANN Prediksi Jarak Objek pada Citra

Pada penelitian ini, dilakukan beberapa percobaan pelatihan Artificial

Neural Network (ANN) untuk mengetahui korelasi antara variabel RGB piksel

dengan jarak aktualnya. Percobaan ini menggunakan model CNN Monodepth

Estimation yang menghasilkan citra RGB dengan nilai yang sangat bervariasi.

Percobaan dilakukan dengan menggunakan dua jenis optimizer, yaitu Adamax dan

SGD. Optimizer digunakan untuk mengatur proses pembelajaran ANN dengan

menyesuaikan bobot dan bias agar mencapai hasil yang optimal. Model akan dilatih

dengan sebanyak 112 data.

60

Selain itu, juga dilakukan variasi pada 3 jumlah epoch (1000, 3000, 5000)

dan 3 variasi batch size (1, 7, 15). Epoch merupakan iterasi yang dilakukan saat

melatih model, sedangkan batch size menentukan jumlah sampel yang digunakan

dalam satu iterasi. Dengan menggabungkan variasi optimizer, epoch, dan batch

size, percobaan ini bertujuan untuk mencari kombinasi yang paling baik dalam

menghasilkan model ANN yang dapat memprediksi jarak aktual berdasarkan nilai

RGB piksel. Sebagai tambahan informasi, pada pengembangan model ANN ini

digunakan Mean Absolute Error (MAE) sebagai loss metric untuk mengetahui

akurasi model yang telah dilatih. Sebagai acuan, pada penelitian ini telah disepakati

untuk mengembangkan model ANN yang memiliki nilai MAE dibawah 0.3.

Adapun arsitektur ANN yang akan digunakan dapat dilihat pada gambar 4.6.

Gambar 4.6 Arsitektur Model ANN

61

Dari kombinasi epoch, batch size serta optimizer dihasilkan 18 model ANN berikut.

4.2.1. Model ANN dengan Optimizer Adamax dan Batch Size 1

Pada model ANN ini, digunakan optimizer Adamax dengan parameter batch size

sebesar 1. Dilakukan training sampai dengan epoch ke 1000. Setelah melalui

pelatihan awal yang berlangsung hingga mencapai 1000 epoch, ditemukan bahwa

nilai Mean Absolute Error (MAE) model sebesar 0.577566921710968. Data histori

pelatihan model dapat dilihat pada gambar 4.7.

Gambar 4.7 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 1000

Meskipun demikian, belum terlihat perbaikan yang signifikan pada nilai loss baik

pada data latih maupun data uji. Nilai loss test tidak menurun secara signifikan dan

terus berubah pada kisaran 1 hingga 0,9. Sedangkan nilai loss train mengalami

penurunan sedikit dari 0,6 menjadi 0,577. Meskipun penurunannya tidak signifikan,

terdapat perbaikan nilai yang terjadi. Namun nilai MAE 0,577 masih terlalu besar

dari acuan awal. Proses training dilanjutkan pada epoch 1000 hingga 3000. Pada

gambar 4.8 akan disajikan hasil perbaikan nilai loss train dan test pada epoch 3000.

62

Gambar 4.8 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 3000

Setelah melatih model ini hingga epoch 3000, terlihat indikasi bahwa model

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss

pada data uji (test) dan data latih (train). Namun, meskipun demikian, model ini

berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai

dengan target yang diinginkan, yaitu 0,24485. Selanjutnya pelatihan model

dilanjutkan pada epoch 3000 hingga 5000. Hasil pelatihan tersebut dapat dilihat

pada gambar 4.9.

63

Gambar 4.9 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 5000

Setelah dilakukan pelatihan ulang hingga epoch 5000, model ini terindikasi

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss

pada data test dan data train. Tidak terlihat adanya perbaikan yang signifikan pada

nilai loss juga. Nilai loss pada data test bervariasi antara 0,4 hingga 0,8, sedangkan

nilai loss pada data train berkisar antara 0,2 hingga 0,4. Meskipun demikian, model

ini berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai

dengan target yang diinginkan, yaitu sebesar 0,2388.

64

4.2.2. Model ANN dengan Optimizer Adamax dan Batch Size 7

Eksperimen dilanjutkan dengan melakukan pelatihan model menggunakan

optimizer Adamax dan menggunakan batch size sebesar 7. Pelatihan model

dilakukan hingga epoch 1000. Hasil dari pelatihan tersebut dapat dilihat pada

gambar 4.10.

Gambar 4.10 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 1000

Pada grafik terlihat terjadi penurunan nilai loss yang signifikan pada proses train

dan test. Hal ini mengindikasikan adanya perbaikan akurasi model. Nilai loss test

awalnya berkisar pada 0,7, namun mengalami penurunan yang signifikan hingga

mencapai kisaran nilai 0,35 pada epoch 800. Sementara itu, nilai loss train juga

mengalami penurunan yang signifikan, dimulai dari kisaran 0,4 dan mencapai

kisaran 0,35 pada epoch 1000. Meskipun nilai tersebut masih lebih tinggi

dibandingkan dengan acuan yang ingin dicapai, pada proses pelatihan ini model

65

berhasil memperbaiki loss dengan baik. Pelatihan pada model ini dilanjutkan

hingga epoch 3000. Hasil dari pelatihan tersebut akan disajikan pada gambar 4.11.

Gambar 4.11 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 3000

Pada grafik terlihat terjadi perbedaan antara tren grafik train dan test. Grafik test

cenderung meningkat sedangkan grafik train cenderung menurun. Nilai test naik

dari kisaran 0,4 hingga 0,55, sementara nilai train menurun dari kisaran 0,35 hingga

0,2. Hal ini merupakan indikasi yang kuat terjadinya overfitting. Namun, model ini

berhasil mencatatkan nilai MAE yang cukup baik, yaitu sebesar 0,27245. Nilai

MAE tersebut lebih kecil dibandingkan dengan nilai MAE acuan yang ingin

dicapai. Pelatihan kembali dilanjutkan hingga epoch 5000. Hasil pelatihan tersebut

akan disajikan pada gambar 4.12.

66

Gambar 4.12 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 5000

Dapat dilihat pada grafik di atas, terjadi perbaikan model yang signifikan antara

epoch 3000 hingga 3800. Nilai test dan train secara bersamaan mengalami

penurunan. Namun, setelah epoch 3800, nilai train terus menurun sementara nilai

test kembali meningkat dan berkisar pada 0,5. Model ini berhasil mencapai MAE

yang sesuai dengan acuan awal, yaitu sebesar 0,28234.

4.2.3. Model ANN dengan Optimizer Adamax dan Batch Size 15

Pada model Artificial Neural Network (ANN) ini, digunakan optimizer Adamax

dengan parameter batch size sebesar 15. Dilakukan pelatihan model hingga

mencapai epoch ke-1000. Dalam proses tersebut, dilakukan optimisasi

menggunakan optimizer Adamax. Pelatihan dimulai hingga epoch 1000, hasil

pelatihan tersebut akan disajikan pada gambar 4.13.

67

Gambar 4.13 Grafik Loss Model ANN dengan optimizer adamax dan batch size

15 pada epoch 1000

Pelatihan awal ini berhasil memperbaiki model dengan signifikan, terlihat dari

penurunan nilai loss baik pada data train maupun data test. Pada epoch 1000, model

ini mencapai nilai MAE sebesar 0,37186. Meskipun nilai MAE tersebut masih lebih

besar dari acuan awal yang ditetapkan, tidak terlihat indikasi overfitting maupun

underfitting pada model tersebut. Hal ini menunjukkan bahwa model tersebut dapat

secara baik menyesuaikan diri dengan data pelatihan tanpa kehilangan kemampuan

umum untuk memprediksi data baru. Pelatihan model ini dilanjutkan hingga epoch

3000. Hasil pelatihan tersebut akan disajikan pada gambar 4.14.

68

Gambar 4.14 Grafik Loss Model ANN dengan optimizer adamax dan batch size

15 pada epoch 3000

Pada pelatihan ini, terdapat indikasi bahwa model mengalami overfitting. Terlihat

adanya penyimpangan pada sekitar epoch 1600, di mana nilai test cenderung

meningkat sedangkan nilai train cenderung menurun. Model ini mencatatkan nilai

MAE sebesar 0,317, yang masih lebih besar dari acuan awal yang ditetapkan.

Selanjutnya, model akan dilatih kembali hingga epoch 5000, dan hasil pelatihan

tersebut akan ditampilkan pada gambar 4.15.

69

Gambar 4.15 Grafik Loss Model ANN dengan optimizer adamax dan batch size

15 pada epoch 5000

Pada pelatihan ini, terjadi penurunan yang cukup signifikan pada epoch 3000

hingga 3750. Nilai test dan train secara bersamaan mengalami perbaikan nilai.

Namun, pada epoch 3750 hingga 4500, tidak terjadi perbaikan nilai yang signifikan.

Kemudian, pada epoch 4500 hingga 5000, terdapat indikasi overfitting di mana nilai

test cenderung meningkat sedangkan nilai train cenderung menurun.

Berdasarkan eksperimen yang telah dilakukan, optimizer Adamax berhasil

menghasilkan perbaikan nilai yang signifikan pada epoch 0 hingga 1000. Pada

beberapa kasus lainnya, seperti pada epoch 3000 hingga 4000, juga terjadi

perbaikan nilai yang signifikan. Namun, pada epoch 1000 hingga 3000 dan 4000

hingga 5000, sering terjadi overfitting pada model. Keterbatasan jumlah data juga

menjadi faktor yang mempersulit perbaikan model pada epoch di atas 1000. Oleh

karena itu, melalui eksperimen berbagai kombinasi pelatihan model, akan dicari

70

model yang memiliki nilai MAE terendah. Terdapat 2 model dengan nilai MAE

terendah yakni model yang dilatih menggunakan optimizer adamax dengan batch

size 1 pada epoch 3000 dan 5000. Model pada epoch 3000 memiliki nilai MAE

sebesar 0.2448507845401764 sedangkan model pada epoch 5000 memiliki nilai

MAE sebesar 0.23888996243476868. Namun kedua model tersebut terindikasi

mengalami overfitting. Adapun model lainnya yang memiliki nilai loss mae

terendah namun tidak mengalami indikasi overfitting yakni model dengan

optimizer adamax dan batchsize sebesar 7 pada epoch 1000. Model tersebut

memiliki nilai mae sebesar 0.333776.

4.2.4. Model ANN dengan Optimizer SGD dan Batch Size 1

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size

sebesar 1. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Gambar 4.16 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1

pada epoch 1000

71

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.16,

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini

memiliki akurasi MAE sebesar 0.385, yang masih sedikit jauh dari acuan awal yang

telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. Hasil

pelatihan tersebut dapat dilihat pada gambar 4.17.

Gambar 4.17 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 3000

Seperti yang terlihat pada Gambar 4.16, tidak terjadi perbaikan yang signifikan

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.45 hingga 0.7,

sementara nilai loss MAE pada train hanya berkisar antara 0.3 hingga 0.4. Model

mencatatkan nilai MAE sebesar 0.37452, dimana nilai tersebut yang masih sedikit

jauh dari acuan awal yang telah ditetapkan. Pelatihan model kembali dilanjutkan

hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 4.18.

72

Gambar 4.18 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1

pada epoch 5000

Seperti yang terlihat pada Gambar 4.17, tidak terjadi perbaikan yang signifikan

pada model. Namun nilai loss pada train mengalami penurunan sedikit demi sedikit.

Nilai loss MAE pada test berkisar antara 0.45 hingga 0.7, sementara nilai loss MAE

pada train hanya berkisar pada nilai 0.4. Model mencatatkan nilai MAE sebesar

0.3702, dimana nilai tersebut yang masih sedikit jauh dari acuan awal yang telah

ditetapkan.

4.2.5. Model ANN dengan Optimizer SGD dan Batch Size 7

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size

sebesar 7. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki

73

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Gambar 4.19 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7

pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.19,

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini

memiliki akurasi MAE sebesar 0.3773933, yang masih sedikit jauh dari acuan awal

yang telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000.

Hasil pelatihan tersebut dapat dilihat pada gambar 4.20.

74

Gambar 4.20 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7

pada epoch 3000

Seperti yang terlihat pada Gambar 4.20. tidak terjadi perbaikan yang signifikan

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6,

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar

4.21.

75

Gambar 4.21 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7

pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.21,

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.4. Sedangkan nilai

train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.3569, yang masih sedikit

jauh dari acuan awal yang telah ditetapkan.

76

4.2.6. Model ANN dengan Optimizer SGD dan Batch Size 15

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size

sebesar 15. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Gambar 4.22 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15

pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.22, nilai

loss mae test mengalami penurunan yang awalnya berkisar pada nilai 0.6 hingga

pada epoch 1000 berkisar pada nilai 0.5. Sedangkan nilai loss mae train tidak

mengalami penurunan yang signifikan. Pada epoch 200 hingga epoch 1000 tetap

berkisar pada 0.4. Pada evaluasi akhir, model ini memiliki akurasi MAE sebesar

0.396369, yang masih sedikit jauh dari acuan awal yang telah ditetapkan. Pelatihan

77

model kembali dilanjutkan hingga epoch 3000. Hasil pelatihan tersebut dapat

dilihat pada gambar 4.23.

Gambar 4.23 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15

pada epoch 3000

Seperti yang terlihat pada Gambar 4.23. Tidak terjadi perbaikan yang signifikan

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6,

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar

4.24.

78

Gambar 4.24 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15

pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 5000. Terlihat pada Gambar 4.24,

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.45. Sedangkan

nilai train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.36400321, dimana nilai

tersebut sedikit jauh dari acuan awal yang telah ditetapkan.

Setelah melakukan beberapa eksperimen kombinasi parameter diatas maka

didapatkan 2 model yang memiliki nilai mae terkecil yaitu sebesar

0.35695648193359375 pada model yang dilatih menggunakan batch size sebesar 7

dan dilatih hingga epoch 5000. Lalu ada pula model yang memiliki nilai mae

sebesar 0.35471969842910767 yaitu model yang dilatih menggunakan batch size

sebesar 15 dan dilatih hingga epoch 3000.

79

4.2.7. Evaluasi model ANN Prediksi Jarak berdasarkan Citra RGB

Setelah bereksperimen dengan berbagai kombinasi parameter training, maka

disimpulkan untuk menggunakan model ANN dengan optimizer adamax, batch size

7 pada epoch 1000. Model tersebut memiliki nilai mae 0.333776. Model tersebut

digunakan karena tidak mengalami indikasi overfitting maupun underfitting.

Sehingga diharapkan model tersebut dapat melakukan prediksi secara stabil. Hasil

seluruh eksperimen model ANN dapat dilihat pada tabel 4.2.

Tabel 4.2 Perbandingan Model ANN

Model Batch Size Epoch Last Train MAE

adamax 1 1000 0.5775669217

adamax 1 3000 0.2448507845

adamax 1 5000 0.2388899624

adamax 7 1000 0.3337768912

adamax 7 3000 0.2724565864

adamax 7 5000 0.2823437452

adamax 15 1000 0.3718636036

adamax 15 3000 0.3173060715

adamax 15 5000 0.3213479519

sgd 1 1000 0.3855191469

sgd 1 3000 0.3745284975

sgd 1 5000 0.3702289462

sgd 7 1000 0.3773933947

sgd 7 3000 0.3603681922

sgd 7 5000 0.3569564819

sgd 15 1000 0.3963693976

sgd 15 3000 0.3547196984

sgd 15 5000 0.3640032113

80

4.3. Eksperimen Model Deteksi Buah Kakao

Pada pelatihan model CNN YOLO, digunakan 80 gambar dan anotasi yang

menggambarkan buah kakao matang dan belum matang dengan lima variasi epoch,

yaitu 100, 300, 500, 700, 1000. Pada pelatihan ini, menggunakan optimizer SGD

dan kombinasi dari beberapa fungsi loss. YOLOv8 menggunakan fungsi loss CIoU

dan DFL untuk loss kotak pembatas dan binary cross-entropy untuk loss klasifikasi.

Pelatihan akan dilakukan dengan menggunakan 2 skala arsitektur yaitu pada skala

nano dan medium. Perbedaan skala arsitektur terdapat pada perbedaan jumlah

parameter yang digunakan pada setiap layernya. Model dengan arsitektur nano juga

akan memproduksi model dengan ukuran file yang lebih kecil ketimbang model

dengan medium.

Pelatihan dilakukan selama 100 epoch dengan optimizer SGD dan batch size

sebesar 16. Ukuran gambar input adalah 800x800, dan model akan disimpan setelah

pelatihan selesai. Tidak digunakan cache, dan perangkat yang digunakan akan

disesuaikan secara otomatis. Selain itu, dilakukan pengolahan data paralel dengan

8 workers. Informasi tentang pelatihan, seperti verbose, seed, dan deterministic juga

telah ditentukan. Model ini dapat mendeteksi multiple kelas, dan tidak

menggunakan bobot gambar atau training rectangular. Pada evaluasi, akan

diperhatikan nilai ambang batas kepercayaan dan IoU threshold, serta jumlah

deteksi maksimum. Grafik pelatihan akan ditampilkan, tetapi tidak akan

menampilkan gambar deteksi secara visual. Tidak ada penyimpanan dalam format

teks, confidence map, atau crop objek deteksi. Label objek dan confidence score

akan ditampilkan, serta tebal garis boks deteksi sebesar 3.

4.3.1. Model YOLOV8n dengan 100 epoch

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.25.

81

Gambar 4.25 loss model YOLOV8n dengan 100 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan

82

nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.3.

Tabel 4.3 Hasil Pelatihan YOLOV8n pada epoch 100

Class Box(P) R

all 0.907 0.704

ripe cocoa 0.925 0.792

unripe cocoa 0.889 0.617

Setelah melatih model YOLOV8M selama 100 epoch, dapat disimpulkan

bahwa hasil pelatihan menunjukkan kinerja yang baik dalam melakukan deteksi

buah kakao matang dan belum matang. Keseluruhan model mencapai akurasi

deteksi sebesar 83.4% dengan recall sebesar 82%. Hasil yang lebih baik diperoleh

untuk deteksi buah kakao matang, dengan akurasi mencapai 88% dan recall sebesar

91.7%. Namun, performa deteksi pada buah kakao belum matang sedikit lebih

rendah, dengan akurasi sebesar 78.8% dan recall sebesar 72.3%.

Meskipun demikian, secara keseluruhan model telah mampu melakukan

deteksi dengan baik pada dataset yang digunakan. Namun, ada ruang untuk

pengembangan lebih lanjut dalam meningkatkan performa deteksi pada buah kakao

belum matang agar sejajar dengan deteksi buah kakao matang. Dengan demikian,

dapat dilakukan penyesuaian atau peningkatan model untuk mencapai akurasi

deteksi yang lebih tinggi dan recall yang lebih baik pada kelas buah kakao belum

matang.

4.3.2. Model YOLOV8n dengan 300 epoch

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.26.

83

Gambar 4.26 loss model YOLOV8n dengan 300 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.26 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss

84

terus menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.4.

Tabel 4.4 Hasil Pelatihan YOLOV8n pada epoch 300

Class Box(P) R

all 0.799 0.799

ripe cocoa 0.734 0.920

unripe cocoa 0.864 0.678

Setelah melatih model, diperoleh hasil pelatihan yang menunjukkan kinerja

yang cukup baik dalam melakukan deteksi buah kakao matang dan belum matang.

Dalam hal ini, model mencapai akurasi deteksi sebesar 79.9% dan recall

(kemampuan mengidentifikasi dengan benar) sebesar 79.9% untuk semua kelas.

Meskipun akurasi dan recall secara keseluruhan seimbang, terdapat perbedaan

dalam kinerja deteksi antara kelas buah kakao matang dan belum matang.

Untuk kelas buah kakao matang, model mencapai akurasi deteksi sebesar

73.4% dengan recall sebesar 92%. Hal ini menunjukkan bahwa model mampu

mengenali dengan baik buah kakao yang telah matang. Namun, untuk kelas buah

kakao belum matang, model memiliki akurasi deteksi yang sedikit lebih tinggi

sebesar 86.4% namun recall yang sedikit lebih rendah, yakni sebesar 67.8%. Secara

keseluruhan, model telah mencapai kinerja yang cukup baik dalam melakukan

deteksi buah kakao matang dan belum matang.

4.3.3. Model YOLOV8n dengan 500 epoch

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test dapat dilihat

pada gambar 4.27.

85

Gambar 4.27 loss model YOLOV8n dengan 500 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.27 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss

86

terus menurun seiring berjalannya pelatihan hingga epoch 200. Namun pada metrik

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.5.

Tabel 4.5 Hasil Pelatihan YOLOV8n pada epoch 500

Class Box(P) R

all 0.860 0.809

ripe cocoa 0.867 1.000

unripe cocoa 0.853 0.618

Berdasarkan hasil pelatihan model YOLOV8N selama 500 epoch, secara

keseluruhan model ini memiliki tingkat akurasi deteksi yang baik sebesar 0,86 dan

presisi yang cukup tinggi sebesar 0,809. Model ini mampu dengan efektif

mendeteksi dan mengklasifikasikan cokelat matang ("ripe cocoa") dengan tingkat

akurasi yang tinggi sebesar 0,867 dan recall sempurna sebesar 1. Namun, model

menghadapi beberapa kesulitan dalam mendeteksi cokelat yang belum matang

("unripe cocoa"), dengan tingkat akurasi yang sedikit lebih rendah sebesar 0,853

dan recall sebesar 0,618. Untuk meningkatkan performa model dalam

mengklasifikasikan cokelat yang belum matang, perlu dilakukan penyesuaian pada

proses pelatihan, seperti penambahan data latihan yang lebih representatif atau

penyetelan parameter model yang lebih optimal. Secara keseluruhan, meskipun

model YOLOV8N telah menunjukkan kinerja yang baik dalam mendeteksi objek

secara umum, masih diperlukan peningkatan dalam mengklasifikasikan cokelat

yang belum matang dengan lebih baik.

4.3.4. Model YOLOV8n dengan 700 epoch

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.28.

87

Gambar 4.28 loss model YOLOV8n dengan 700 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.28 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

88

berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi

terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test mengalami

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.6.

Tabel 4.6 Hasil Pelatihan YOLOV8n pada epoch 700

Class Box(P) R

all 0.917 0.707

ripe cocoa 0.947 0.743

unripe cocoa 0.887 0.671

Dalam hasil pelatihan model YOLOV8N selama 700 epoch, terjadi

peningkatan yang signifikan dalam kinerja model. Secara keseluruhan, model

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,917 dengan nilai presisi

sebesar 0,707. Ini menunjukkan bahwa model berhasil meningkatkan

kemampuannya dalam mendeteksi objek secara umum. Hasil yang lebih baik ini

dapat memberikan kepercayaan lebih dalam penggunaan model untuk mendeteksi

berbagai objek di dalam gambar.

Ketika fokus pada kategori "ripe cocoa", model menunjukkan peningkatan

yang konsisten dengan tingkat akurasi sebesar 0,947 dan presisi sebesar 0,743.

Meskipun recall masih dapat ditingkatkan, peningkatan ini menunjukkan bahwa

model semakin mampu mengklasifikasikan cokelat matang dengan akurasi yang

lebih tinggi. Namun, untuk kategori "unripe cocoa", meskipun terjadi peningkatan,

model masih menghadapi beberapa tantangan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang. Dengan tingkat akurasi sebesar

0,887 dan recall sebesar 0,671, masih ada ruang untuk perbaikan lebih lanjut.

4.3.5. Model YOLOV8n dengan 1000 epoch

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.29.

89

Gambar 4.29 dfl loss, box loss, cls loss model YOLOV8n dengan 1000 epoch

(a) dfl loss, (b) box loss dan (c) cls

Seperti yang dapat dilihat pada ketiga gambar 4.29 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

90

berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi

terjadinya overfitting. Pada epoch ke-400 nilai loss train dan test mengalami

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.7.

Tabel 4.7 Hasil Pelatihan YOLOV8n pada epoch 1000

Class Box(P) R

all 0.869 0.767

ripe cocoa 0.775 0.917

unripe cocoa 0.963 0.617

Dalam pelatihan model YOLOV8N, terdapat hasil yang menarik untuk

setiap kategori. Secara keseluruhan, model mencapai tingkat akurasi deteksi sebesar

0,869 dengan presisi sebesar 0,767. Meskipun tingkat presisi yang tinggi

menunjukkan kemampuan model dalam mengenali objek secara spesifik, recall

yang sebesar 0,767 menandakan adanya ruang untuk perbaikan dalam mencakup

semua objek yang ada dalam gambar secara lebih lengkap.

Dalam kategori "ripe cocoa", model menunjukkan tingkat presisi sebesar

0,775 yang cukup baik. Namun, recall yang rendah sebesar 0,917 mengindikasikan

bahwa model masih melewatkan beberapa cokelat matang yang seharusnya

terdeteksi. Sementara itu, dalam kategori "unripe cocoa", model berhasil mencapai

tingkat presisi yang tinggi sebesar 0,963. Namun, recall yang rendah sebesar 0,617

menunjukkan bahwa model masih menghadapi kesulitan dalam mendeteksi

sebagian besar cokelat yang belum matang.

Secara keseluruhan, model YOLOV8N telah menunjukkan kemajuan yang

baik dalam deteksi objek, namun masih ada aspek-aspek yang perlu ditingkatkan.

Peningkatan pada recall dalam kedua kategori "ripe cocoa" dan "unripe cocoa" akan

menjadi prioritas dalam pelatihan selanjutnya. Dengan demikian, model dapat

mengenali dan mengklasifikasikan objek dengan lebih akurat dan menyeluruh,

menghasilkan hasil yang lebih baik dalam aplikasi deteksi objek yang berkaitan

dengan cokelat..

91

4.3.6. Model YOLOV8m dengan 100 epoch

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.30.

Gambar 4.30 loss model YOLOV8n dengan 100 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

92

Seperti yang dapat dilihat pada ketiga gambar 4.30 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan

nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.8.

Tabel 4.8 Hasil Pelatihan YOLOV8M pada epoch 100

Class Box(P) R

all 0.834 0.820

ripe cocoa 0.880 0.917

unripe cocoa 0.788 0.723

Model YOLOV8M, setelah melalui pelatihan selama 100 epoch,

menunjukkan hasil yang cukup baik. Dalam kategori "all", model mencapai tingkat

akurasi deteksi sebesar 0,834 dengan presisi sebesar 0,82. Hasil ini menunjukkan

kemampuan model dalam mendeteksi objek secara umum dalam dataset yang

digunakan. Tingkat akurasi yang tinggi ini memberikan kepercayaan bahwa model

dapat mengenali objek dengan baik.

Ketika berfokus pada kategori "ripe cocoa", model YOLOV8M mencapai

tingkat akurasi yang lebih tinggi sebesar 0,88 dengan recall sebesar 0,917. Hal ini

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang

dengan akurasi yang baik dan mampu mendeteksi sebagian besar objek yang ada.

Tingkat recall yang tinggi juga menandakan bahwa model dapat mengenali

sebagian besar cokelat matang yang ada dalam dataset.

Namun, dalam kategori "unripe cocoa", model menghadapi beberapa

tantangan dengan tingkat akurasi sebesar 0,788 dan recall sebesar 0,723. Hal ini

mengindikasikan bahwa model masih perlu ditingkatkan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang. Secara keseluruhan, model

YOLOV8M menunjukkan kemampuan yang baik dalam mendeteksi objek secara

umum dan khususnya dalam kategori "ripe cocoa".

93

4.3.7. Model YOLOV8m dengan 300 epoch

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.31.

Gambar 4.31 dfl loss, box loss, cls loss model YOLOV8n dengan 300 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

94

Seperti yang dapat dilihat pada ketiga gambar 4.31 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss

terus menurun seiring berjalannya pelatihan. Namun pada metrik dfl loss ada

indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.9.

Tabel 4.9 Hasil Pelatihan YOLOV8m pada epoch 300

Class Box(P) R

all 0.820 0.725

ripe cocoa 0.903 0.875

unripe cocoa 0.737 0.574

Setelah melalui pelatihan selama 300 epoch, model YOLOV8M

menunjukkan hasil yang menarik. Secara keseluruhan, model ini mencapai tingkat

akurasi deteksi sebesar 0,82 dengan presisi sebesar 0,725 dalam kategori "all".

Meskipun tingkat akurasi yang cukup baik, recall yang sebesar 0,725 menunjukkan

bahwa model mungkin masih melewatkan sebagian objek yang ada dalam gambar.

Dalam kategori "ripe cocoa", model menunjukkan peningkatan performa dengan

tingkat akurasi sebesar 0,903 dan recall sebesar 0,875. Hasil ini mengindikasikan

kemampuan model dalam mengklasifikasikan cokelat matang dengan akurasi yang

tinggi dan mampu mendeteksi sebagian besar objek yang ada. Peningkatan tersebut

menunjukkan adanya kemajuan dalam pelatihan model.

Namun, dalam kategori "unripe cocoa", model masih mengalami beberapa

kendala dengan tingkat akurasi sebesar 0,737 dan recall sebesar 0,574. Hal ini

menandakan bahwa model masih menghadapi kesulitan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan

yang lebih baik. Secara keseluruhan, model YOLOV8M telah menunjukkan

kemajuan dalam pelatihan selama 300 epoch. Meskipun tingkat akurasi dan presisi

95

dalam kategori "all" cukup baik, recall masih perlu ditingkatkan. Peningkatan

signifikan terlihat dalam kategori "ripe cocoa" dengan akurasi dan recall yang lebih

baik.

4.3.8. Model YOLOV8m dengan 500 epoch

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.32.

Gambar 4.32 dfl loss, box loss, cls loss model YOLOV8n dengan 500 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

96

Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model berhasil

meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss terus

menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl

loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss

train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val

meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.10.

Tabel 4.10 Hasil Pelatihan YOLOV8m pada epoch 500

Class Box(P) R

all 0.910 0.704

ripe cocoa 0.959 0.792

unripe cocoa 0.861 0.617

Setelah melalui pelatihan selama 500 epoch, model YOLOV8M

menunjukkan hasil yang menggembirakan. Secara keseluruhan, model ini

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,91 dengan presisi sebesar

0,704 dalam kategori "all". Meskipun tingkat akurasi yang tinggi, recall yang

sebesar 0,704 menunjukkan bahwa model mungkin masih melewatkan sebagian

objek yang ada dalam gambar.

Dalam kategori "ripe cocoa", model menunjukkan performa yang sangat

baik dengan tingkat akurasi sebesar 0,959 dan recall sebesar 0,792. Hasil ini

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang

dengan akurasi yang tinggi dan mampu mendeteksi sebagian besar objek yang ada.

Namun, dalam kategori "unripe cocoa", model masih menghadapi beberapa kendala

dengan tingkat akurasi sebesar 0,861 dan recall sebesar 0,617. Hal ini menandakan

bahwa model masih mengalami kesulitan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan

yang lebih baik.

97

4.3.9. Model YOLOV8m dengan 700 epoch

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.33.

Gambar 4.33 loss model YOLOV8n dengan 700 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

98

Seperti yang dapat dilihat pada ketiga gambar 4.33 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.11.

Tabel 4.11 Hasil Pelatihan YOLOV8m pada epoch 700

Class Box(P) R

all 0.748 0.808

ripe cocoa 0.610 0.958

unripe cocoa 0.885 0.658

Model YOLOV8M dilatih selama 700 epoch dan mencapai akurasi deteksi

sebesar 0,748 dan presisi 0,808 dalam kategori "semua". Namun, recall 0,808

menunjukkan ruang untuk meningkatkan deteksi objek dalam gambar. Dalam

kategori "kakao matang", akurasi 0,61 dengan recall tinggi 0,958 menunjukkan

kemampuan model mengklasifikasikan kakao matang, meskipun dengan positif

palsu. Dalam kategori "kakao mentah", akurasi 0,885 dengan recall 0,658

menunjukkan model masih kesulitan mendeteksi kakao mentah. Model perlu

meningkatkan recall dalam kategori ini. Secara keseluruhan, YOLOV8M

menunjukkan kemajuan selama 700 epoch. Dalam kategori "semua", recall perlu

ditingkatkan untuk mendeteksi lebih banyak objek. Dalam kategori "kakao

matang", recall tinggi menunjukkan kemampuan model, tetapi perlu penanganan

positif palsu. Dalam kategori "kakao mentah", meningkatkan recall menjadi fokus

utama untuk meningkatkan deteksi kakao mentah dengan akurasi yang lebih tinggi.

99

4.3.10. Model YOLOV8m dengan 1000 epoch

Dilakukan pelatihan model hingga epoch 1000 menggunakan arsitektur

YOLOV8m. Pada akhir proses training, nilai akurasi dan loss pada training dan test

bisa dilihat pada gambar 4.34.

Gambar 4.34 model YOLOV8n dengan 1000 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

100

Seperti yang dapat dilihat pada ketiga gambar 4.34 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.12.

Tabel 4.12 Hasil Pelatihan YOLOV8m pada epoch 1000

Class Box(P) R

all 0.816 0.768

ripe cocoa 0.746 0.856

unripe cocoa 0.886 0.681

Model YOLOV8M telah dilatih selama 1000 epoch dan menunjukkan hasil

yang menarik. Dalam kategori "semua", model ini mencapai presisi sebesar 0,816

dan recall sebesar 0,768. Ini menunjukkan kemampuan model dalam mengenali dan

mengklasifikasikan objek dengan akurasi yang cukup tinggi. Dalam kategori

"kakao matang", model mencapai presisi sebesar 0,746 dengan recall yang lebih

tinggi, yaitu 0,856. Ini menunjukkan kemampuan model dalam mendeteksi dan

mengklasifikasikan kakao matang dengan baik, meskipun masih terdapat ruang

untuk meningkatkan presisi. Di sisi lain, dalam kategori "kakao mentah", model

mencapai presisi sebesar 0,886 dengan recall sebesar 0,681.

Meskipun akurasi cukup baik, recall yang rendah menunjukkan bahwa

model masih kesulitan dalam mendeteksi sebagian besar kakao mentah.

Meningkatkan recall dalam kategori ini menjadi fokus utama untuk meningkatkan

kemampuan model dalam mengklasifikasikan kakao mentah dengan akurasi yang

lebih tinggi. Secara keseluruhan, YOLOV8M telah menunjukkan kemajuan dalam

1000 epoch pelatihan. Meskipun memiliki akurasi yang baik dalam kategori

"semua" dan "kakao matang", meningkatkan recall akan membantu model dalam

menangkap lebih banyak objek secara akurat. Untuk kategori "kakao mentah",

101

meningkatkan recall menjadi hal yang penting untuk meningkatkan kemampuan

model dalam mendeteksi kakao mentah dengan lebih baik.

4.3.11. Evaluasi 5 Model YOLOV8 dengan performa terbaik

Untuk menentukan model YOLOV8 yang memiliki akurasi paling baik

maka berikut akan ditampilkan 5 model dengan nilai R dan Box(P) (box loss) yang

paling tinggi diantara model-model lainnya pada gambar 4.35.

Gambar 4.35 Grafik 5 Model Dengan Nilai Recall Tertinggi

Dari model dengan arsitektur YOLOV8 diatas maka disimpulkan model terbaik

adalah model dengan arsitektur YOLOV8 nano dengan 100 epoch.

4.4. Sistem Prediksi Jarak Objek pada Citra

Sistem ini akan melakukan Prediksi Jarak Objek terhadap kamera. Prediksi

dilakukan menggunakan nilai rgb sebagai input. Proses dimulai dengan memilih

titik koordinat salah satu piksel yang berada pada area objek sebagai input proses

segmentasi. Kemudian dilakukan segmentasi pada citra untuk mendapatkan area

objek. Kemudian dilakukan prediksi kedalaman citra menggunakan Model CNN

Monocular Depth Estimation. Area yang telah didapatkan digunakan untuk

mengambil warna pada citra hasil prediksi kedalaman pada area yang diinginkan.

102

Kemudian dari kumpulan warna tersebut dicari nilai mediannya sehingga

didapatkan nilai median rgb untuk digunakan pada input model ANN prediksi jarak.

Sehingga kemudian didapatkan nilai jarak objek terhadap kamera.

4.4.1. Mengunggah Gambar dan Prediksi Kedalaman

Proses awal yang harus dilakukan yakni mengunggah gambar tanaman

kakao yang akan digunakan. Setelah itu dilakukan proses prediksi kedalaman

menggunakan Model CNN Monocular Depth Estimation. Sehingga dihasilkan citra

yang merepresentasikan kedalaman atau dapat disebut sebagai citra kedalaman.

Citra inilah yang nantinya akan digunakan nilai rgbnya sebagai input untuk

memprediksi jarak objek terhadap kamera.

Gambar 4.36 Citra Tanaman Kakao Asli

Gambar 4.37 Citra Kedalaman Tanaman Kakao

103

4.4.2. Menentukan Titik Piksel pada Objek

Karena sistem yang dikembangkan belum dapat mengidentifikasi bagian

batang tanaman kakao secara otomatis, maka pada penelitian ini masih diperlukan

input manual untuk menentukan titik piksel yang merupakan bagian dari tanaman

kakao. Proses ini dilakukan dengan melihat terlebih dahulu gambar serta axis untuk

melakukan taksiran lokasi x,y piksel yang akan digunakan.

Gambar 4.38 Tampilan awal untuk penentuan titik pada objek

Setelah melakukan taksiran maka pada gambar ini akan digunakan titik pada

koordinat 2750, 3000. Nilai x,y tersebut akan ditampilkan dengan simbol bintang

seperti pada gambar berikut.

Gambar 4.39 Tampilan gambar dengan titik piksel yang telah dipilih

104

Setelah menemukan titik piksel yang akan digunakan, maka pada proses

selanjutnya titik tersebut akan digunakan sebagai input pada proses segmentasi.

4.4.3. Proses Segmentasi dengan Model CNN Segment Anything

Pada proses ini akan dilakukan segmentasi untuk mendapatkan area objek

yang akan digunakan (Tanaman Kakao). Titik koordinat yang telah ditentukan

menjadi input/acuan model untuk memprediksi area sekitarnya yang masih

merupakan bagian dari objek. Hal ini dilakukan untuk mempermudah pemilihan

area objek.

Gambar 4.40 Hasil Segmentasi Area Objek Tanaman Kakao

Area/mask tersebut kemudian akan digunakan untuk mengambil nilai rgb pada citra

kedalaman.

4.4.4. Pengambilan nilai median RGB dan Prediksi Jarak

Setelah mendapatkan area objek tanaman kakao, maka nilai rgb pada citra

kedalaman yang beririsan dengan area objek tanaman kakao akan diambil. Dari

nilai-nilai tersebut kemudian akan didapatkan nilai median RGB. Nilai median

105

RGB kemudian digunakan untuk memprediksi jarak. Dengan menggunakan model

ANN yang telah dikembangkan, dilakukan prediksi jarak menggunakan nilai rgb

sebagai input. Sehingga kemudian didapatkan nilai jarak objek tanaman kakao

terhadap kamera dalam satuan meter.

4.4.5. Evaluasi Sistem Prediksi Jarak Objek Pada Citra

Penggunaan model CNN Segment Anything belum bisa optimal untuk

mengambil bagian tanaman saja karena adanya noise pada background objek

tersebut. Hal ini dipengaruhi oleh kondisi lingkungan perkebunan kakao yang padat

dengan tanaman kakao.

4.5. Sistem Prediksi Koordinat Tanaman Kakao pada Citra

Pada bagian ini akan dilakukan prediksi nilai koordinat tanaman kakao.

Pada tahap ini diperlukan beberapa variabel sebagai input yaitu nilai koordinat

longitude dan latitude tanaman kakao, nilai derajat arah hadap kamera, serta jarak

objek terhadap kamera. Pada proses ini akan digunakan rumus yang bernama

Vincenty Formula. Hasil dari kalkulasi menggunakan rumus tersebut yakni titik

koordinat longitude serta latitude objek tanaman kakao. Untuk menguji akurasi dari

rumus tersebut, pada bagian selanjutnya akan dilakukan percobaan kalkulasi pada

5 titik lokasi.

4.5.1. Evaluasi Akurasi Vincenty Formula

Pada bagian ini akan dilakukan pengujian akurasi dari hasil kalkulasi

Vinceny Formula. Pengujian akan dilakukan pada 5 lokasi pada tabel 4.13.

Tabel 4.13 Ground Truth Titik Koordinat

No
Building Destination

Name Coordinate Name Coordinate

1

Alun-Alun

Tugu Malang

-7.97692544511029,

112.634055029002

Stasiun Malang

Kota Baru

-7.97720169566579,

112.637112747216

106

Tabel 4. 14 Ground Truth Titik Koordinat (lanjutan)

No
Building Destination

Name Coordinate Name Coordinate

2 Alun-Alun

Tugu Malang

-7.97692544511029,

112.634055029002

Bulan Photocopy

& Print

-7.97419601839356,

112.634292801417

3 Gerbang UB

Soekarno hatta

-7.94984,

112.615411

Soekarno Hatta

Bridge

-7.9496079959561,

112.615839888356

4 Gerbang UB

Soekarno hatta

-7.94984,

112.615411

Kober Mie Setan -7.9481629265072,

112.61676260122

5 Gerbang UB

Soekarno hatta

-7.94984,

112.615411

Mixue Suhat

Malang

-7.94637779324508,

112.618050061491

Tabel 4. 15 Arah dan Jarak

No Heading Distance to Desstination (km)

1 96,607° 0.28

2 4,124 0.3

3 45,456° 0.069

4 43,014° 0.22

5 -40,579° 0.45

Tabel 4. 16 Hasil Prediksi dan Selisih

No Predicted Coordinate Differences

1
-7.97721516624731,

112.636580818575
 -1.347 x 10-5, -5.319 x 10-4

2
-7.97423446585066,

112.634250919231
 -3.845 x 10-5, -4.188 x 10-5

3
-7.94936783429258,

112.615817547406
 -3.845 x 10-5, -4.188 x 10-5

107

Tabel 4. 17 Hasil Prediksi dan Selisih (lanjutan)

No Predicted Coordinate Differences

4
-7.94839333872107,

112.616773784662
 -2.304 x 10-4, 1.118 x 10-5

5
-7.9467662955678,

112.618069047894
 -3.885 x 10-4, 1.899 x 10-5

Berdasarkan lima percobaan yang telah dilakukan, dapat disimpulkan bahwa rumus

yang digunakan memiliki akurasi yang cukup baik dan kesalahan yang relatif kecil.

Perbedaan rata-rata antara hasil yang diperoleh dari rumus dan titik koordinat

sebenarnya adalah sangat kecil, yaitu sebesar -0,00009966528437. Selain itu,

perbedaan maksimum antara hasil yang diperoleh dari rumus dan nilai sebenarnya

juga cukup kecil, hanya sekitar 0,0002401616635. Sehingga dapat disimpulkan

rumus Vincenty Formula tersebut dapat digunakan untuk melakukan kalkulasi titik

koordinat suatu objek berdasarkan titik koordinat asal, derajat arah serta jarak

terhadap objek.

4.6. Sistem Estimasi Jumlah Buah Kakao

Sistem ini melakukan deteksi buah kakao. Buah kakao yang terdeteksi

dalam bentuk bounding box akan dihitung jumlahnya. Setelah terdeteksi maka

setiap buah dalam setiap bounding box tersebut diklasifikasi untuk memprediksi

buah tersebut telah memasuki usia matang atau belum. Proses pada sistem ini cukup

sederhana, pengguna cukup mengunggah citra tanaman kakao. Lalu sistem akan

melakukan deteksi buah kakao, serta mengkalkulasi bounding box yang muncul.

Sehingga akan ditampilkan kepada pengguna berapa jumlah buah kakao yang ada

pada tanaman kakao tersebut. Adapun deteksi ini dilakukan dengan menggunakan

confidence threshold sebesar 0.25.

4.6.1. Evaluasi Sistem Estimasi Jumlah Buah Kakao

Pada tahap ini akan dilakukan evaluasi pada 5 model CNN YOLOV8 terbaik

yang digunakan untuk melakukan deteksi buah kakao. Selain metriks pelatihan

108

seperti box loss, dfl loss dan cls loss akan dilakukan pula pengujian manual secara

visual. Model akan dijalankan untuk melakukan proses deteksi, lalu hasil deteksi

akan dibandingkan dengan hasil penghitungan buah kakao manual secara visual.

Adapun berikut 2 citra yang akan digunakan untuk melakukan evaluasi sistem

estimasi jumlah buah kakao yaitu gambar 4.41 dan 4.42.

Gambar 4. 41 Citra Tanaman Kakao dengan Buah muda

Dapat dilihat pada gambar 4.40 terdapat 19 buah muda. Buah kakao yang masih

muda akan nampak berwarna hijau. Lama-kelamaan akan muncul titik titik

kecoklatan pada buah kakao. Beberapa buah kakao pada gambar 4.40 berada pada

posisi yang sulit untuk dideteksi seperti buah yang tertutupi oleh buah lainnya, serta

buah yang berada dibalik batang. Buah pada posisi yang sulit dijangkau ini akan

sulit untuk dideteksi oleh model CNN YOLO.

Gambar 4. 42 Citra Tanaman Kakao dengan Buah Matang

109

Dapat dilihat pada gambar 4.41 terdapat 20 buah matang. Pada kedua citra diatas

yaitu gambar 4.40 dan gambar 4.41 akan dilakukan deteksi menggunakan model

YOLOV8n dengan 100 epoch. Hasil deteksi dapat dilihat pada gambar 4.43 dan

4.44.

Gambar 4. 43 Hasil Deteksi Buah Kakao dengan model YOLOV8n 100 epoch

Pada gambar 4.43 terdapat 8 bounding box. Artinya terdapat 8 buah kakao matang

yang terdeteksi. Kedelapan bounding box tersebut juga memiliki confidece

threshold yang tinggi, yaitu pada nilai diatas 0.9 yang artinya model cukup yakin

bahwa prediksinya akurat. Namun masih terdapat 10 buah yang tidak terdeteksi.

Buah yang tidak terdeteksi kebanyakan memiliki posisi yang susah untuk dideteksi

seperti berada dibalik batang, dibalik buah lainnya, serta ukurannya sangat kecil.

Deteksi dilakukan pula pada tanaman kakao dengan buah muda. Hasil deteksi dapat

dilihat pada gambar 4.44.

110

Gambar 4. 44 Hasil Deteksi Buah Kakao dengan model YOLOV8n 100 epoch

Seperti yang dapat dilihat pada gambar 4.44, terdapat 9 bounding box/buah yang

berhasil terdeteksi. Namun pada ground truth terdapat 19 buah, sehingga masih

terdapat 10 buah. Deteksi dilakukan menggunakan kelima model pada 2 gambar

tersebut. Hasil evaluasi pada kelima model dapat dilihat pada tabel 4.15.

Tabel 4. 18 Evaluasi 5 model terbaik pada 2 contoh gambar

model filename

prediction result

num of ripe

cocoa

num of unripe

cocoa

YOLOV8n 100

epoch
IMG_20230621_160151.jpg 9

 IMG_20230621_160747.jpg 8

111

Tabel 4. 19 Evaluasi 5 model terbaik pada 2 contoh gambar (lanjutan)

model filename

prediction result

num of ripe

cocoa

num of unripe

cocoa

YOLOV8n 500

epoch
IMG_20230621_160151.jpg 12

 IMG_20230621_160747.jpg 10

YOLOV8m 100

epoch
IMG_20230621_160151.jpg 2 14

 IMG_20230621_160747.jpg 17

YOLOV8m 700

epoch
IMG_20230621_160151.jpg 3 11

 IMG_20230621_160747.jpg 11

YOLOV8n 300

epoch
IMG_20230621_160151.jpg 10

 IMG_20230621_160747.jpg 11

Secara keseluruhan model belum berhasil mendeteksi semua buah kakao yang ada

pada tanaman kakao. Hal ini disebabkan karena banyak posisi buah kakao yang

tertutupi oleh objek lain seperti batang tanaman kakao, buah kakao, serta ukurannya

yang kecil. Hal ini dapat dikembangkan dengan cara melengkapi dataset yang lebih

bervariatif seperti menambahkan anotasi bounding box pada buah kakao yang

tertutupi. Namun hal tersebut juga perlu diimbangi dengan adanya metode yang

dapat melokalisasi hasil deteksi karena apabila sebuah kakao terletak dibalik batang

sehingga seolah-olah nampak terdapat dua buah kakao maka menjadi akan bias bagi

model.

Apabila ketiga sistem diatas digabungkan, sistem dapat digunakan sebagai alat

untuk melakukan monitoring perkebunan kakao dengan metode geotagging. Pada

penelitian ini sistem hanya mampu untuk melakukan prediksi titik koordinat

112

tanaman kakao serta deteksi buah kakao. Sehingga sistem dapat menghasilkan

output berupa titik koordinat serta jumlah buah kakao. Sistem ini merupakan

alternatif murah untuk mengetahui perkembangan dari setiap tanaman kakao dari

waktu ke waktu.

55

BAB IV HASIL DAN PEMBAHASAN

4.1. Dataset

Pada penelitian ini, dilakukan pengumpulan data untuk membangun dataset

yang akan digunakan dalam proses pelatihan model Artificial Neural Network

(ANN) untuk memprediksi jarak serta model Convolutional Neural Network (CNN)

YOLO untuk mendeteksi buah kakao. Pengumpulan data dilakukan dengan cara

mengambil sampel gambar-gambar buah kakao yang sudah matang dan yang belum

matang. Selama proses pengumpulan data, gambar-gambar tersebut diolah dan

diberikan anotasi. Anotasi ini mencakup informasi mengenai koordinat atau

bounding box yang menandai letak buah kakao pada gambar, serta label yang

menunjukkan jenis atau kelas buah kakao yang terdeteksi. Setelah pengumpulan

data selesai, dataset yang terdiri dari gambar-gambar dan anotasinya akan

digunakan dalam proses pelatihan model. Model ANN akan dilatih menggunakan

data jarak antara kamera dan buah kakao sebagai input, serta data yang sesuai

dengan jarak tersebut sebagai output yang diharapkan. Sementara itu, model CNN

YOLO akan dilatih menggunakan gambar-gambar buah kakao beserta anotasinya.

Proses pelatihan ini bertujuan untuk mengajarkan model untuk mendeteksi dan

mengidentifikasi buah kakao dalam gambar.

4.1.1. Pembuatan Dataset Nilai Rgb dan Jarak Objek

Pembuatan dataset dimulai dengan mencari objek yang menyerupai tiang

untuk menggantikan batang tanaman kakao. Setelah objek yang sesuai ditemukan,

jarak antara kamera dan objek ditentukan. Setelah jarak kamera dengan objek

ditentukan, citra diambil menggunakan kamera atau perangkat lainnya. Pada

langkah ini, citra yang telah diambil akan diproses menggunakan model CNN

monodepth estimation. Model ini akan memperkirakan kedalaman objek

berdasarkan nilai RGB pada citra. Setelah estimasi kedalaman dilakukan,

ditentukan titik koordinat piksel (x, y) pada area objek yang diestimasi

56

kedalamannya. Titik koordinat ini akan digunakan dalam proses segmentasi

selanjutnya. Pada langkah ini, model CNN segment anything digunakan untuk

melakukan segmentasi pada citra hasil estimasi kedalaman. Model CNN segment

anything melakukan proses segmentasi berdasarkan titik koordinat yang telah

ditentukan. Titik tersebut menjadi dasar penunjuk objek yang akan disegmentasi

areanya. Segmentasi akan mengidentifikasi bagian objek yang menyerupai tiang

dan memisahkannya dari latar belakang. Setelah proses segmentasi, nilai RGB pada

bagian objek yang diidentifikasi akan diperoleh. Nilai RGB ini merupakan warna

piksel pada citra hasil estimasi kedalaman. Setelah mendapatkan kumpulan nilai

RGB, nilai median dari kumpulan tersebut diambil. Nilai median memberikan

representasi warna tengah dari kumpulan tersebut, yang akan digunakan sebagai

representasi nilai RGB untuk jarak objek yang diestimasi. Setelah semua langkah

di atas dilakukan untuk setiap objek yang dipilih, data yang terkumpul ditambahkan

ke dataset. Setiap data terdiri dari pasangan nilai RGB (nilai median) dan jarak

kamera terhadap objek yang sesuai.

Gambar 4.1 Alur Pembuatan Dataset

57

4.1.2. Profil Dataset Nilai RGB dan Jarak Objek

Pada penelitian ini, terdapat dataset yang berisi pasangan nilai

Red,Green,Blue (RGB) terhadap jarak objek dalam satuan meter. Namun, perlu

dicatat bahwa nilai RGB yang ada dalam dataset tersebut bukanlah nilai RGB dari

citra asli, melainkan nilai RGB yang berasal dari proses estimasi kedalaman

menggunakan model CNN monodepth estimation. Nilai RGB akan digunakan

sebagai input untuk memperkirakan jarak objek. Proses estimasi kedalaman

menggunakan model CNN monodepth estimation. Dataset ini terdiri dari 112 data,

dimana setiap data terdiri dari nilai RGB dan jarak objek yang sesuai.

Tabel 4.1 Dataset RGB dan Jarak Objek

id r g b distance

0 251.0 138.0 99.0 2.90

1 141.0 41.0 128.0 4.22

2 220.0 72.0 107.0 1.00

3 80.0 18.0 123.0 3.00

4 225.0 76.0 103.0 3.75

...

110 222.0 75.0 124.0 2.70

111 252.0 158.0 112.0 1.20

112 156.0 46.0 126.0 2.40

4.1.3. Dataset Buah Kakao

Dataset Buah Kakao dilakukan dengan melakukan pengambilan citra di

perkebunan kakao yang terletak di Puslitkoka, Jember. Dilakukan pengambilan

citra pada tanaman kakao yang sedang berbuah baik yang buahnya sudah matang

maupun yang belum matang. Pengambilan citra juga divariasikan jaraknya yaitu

pada rentang jarak sebesar 0,8 hingga 2,8 m sesuai dengan variasi yang terdapat

pada dataset nilai rgb dan jarak objek (Bab 4.1.2). Dataset Buah Kakao terdiri dari

58

total 67 gambar buah kakao dengaan 446 anotasi. Untuk melakukan proses training

digunakan 46 gambar (sekitar 69% dari total dataset). Selanjutnya, untuk

memvalidasi performa model, 13 gambar (sekitar 19% dari total dataset) akan

digunakan sebagai validation set. Terakhir, 8 gambar (sekitar 12% dari total dataset)

akan dijadikan sebagai test set untuk menguji akurasi model yang telah dilatih.

Dalam setiap gambar, terdapat rata-rata 6 anotasi (label) untuk buah kakao. Dataset

ini memiliki dua kelas, yaitu buah kakao matang dan belum matang. Dengan

pembagian ini, diharapkan model dapat mempelajari dan mengklasifikasikan

gambar-gambar buah kakao dengan akurasi yang tinggi.

Gambar 4.2 Semua Dataset

Secara keseluruhan, jumlah anotasi pada kedua kelas, yaitu kelas cocoa matang

(ripe cocoa) dan kelas cocoa belum matang (unripe cocoa), tergolong cukup

seimbang. Terdapat 227 anotasi pada kelas cocoa matang dan 217 anotasi pada

kelas cocoa belum matang. Perbedaan jumlah anotasi antara kedua kelas tersebut

tidak terlalu signifikan.

Gambar 4.3 Pembagian Dataset untuk Train

Data pelatihan ini memiliki jumlah sampel yang cukup representatif untuk kedua

kelas, yaitu 171 sampel pada kelas cocoa matang (ripe cocoa) dan 130 sampel pada

kelas cocoa belum matang (unripe cocoa). Dengan jumlah yang seimbang antara

kedua kelas, model pembelajaran mesin dapat mempelajari pola dan informasi yang

relevan dari masing-masing kelas. Dengan menggunakan data pelatihan yang

representatif ini, model yang dihasilkan memiliki kemampuan yang lebih baik

dalam mengklasifikasikan cocoa berdasarkan tingkat kematangannya.

59

Gambar 4.4 Pembagian Dataset untuk Valid

Dataset validasi yang mencakup kedua kelas, yaitu cocoa matang (ripe cocoa)

dengan 24 sampel dan cocoa belum matang (unripe cocoa) dengan 47 sampel,

memungkinkan pengujian kehandalan model dalam mengklasifikasikan tingkat

kematangan cocoa. Evaluasi menggunakan dataset validasi ini memberikan

gambaran yang lebih akurat tentang kemampuan model dalam dunia nyata.

Gambar 4.5 Pembagian Dataset untuk Test

Pada dataset uji (test set), terdapat 32 sampel anotasi pada kelas cocoa matang (ripe

cocoa) dan 40 sampel anotasi pada kelas cocoa belum matang (unripe cocoa).

Dataset uji ini digunakan untuk menguji performa model yang telah dilatih pada

data pelatihan dan divalidasi pada data validasi. Dengan menggunakan dataset uji

yang mencakup kedua kelas, model dapat dievaluasi lebih lanjut dalam

kemampuannya mengklasifikasikan cocoa berdasarkan tingkat kematangannya.

4.2. Eksperimen Model ANN Prediksi Jarak Objek pada Citra

Pada penelitian ini, dilakukan beberapa percobaan pelatihan Artificial

Neural Network (ANN) untuk mengetahui korelasi antara variabel RGB piksel

dengan jarak aktualnya. Percobaan ini menggunakan model CNN Monodepth

Estimation yang menghasilkan citra RGB dengan nilai yang sangat bervariasi.

Percobaan dilakukan dengan menggunakan dua jenis optimizer, yaitu Adamax dan

SGD. Optimizer digunakan untuk mengatur proses pembelajaran ANN dengan

menyesuaikan bobot dan bias agar mencapai hasil yang optimal. Model akan dilatih

dengan sebanyak 112 data.

60

Selain itu, juga dilakukan variasi pada 3 jumlah epoch (1000, 3000, 5000)

dan 3 variasi batch size (1, 7, 15). Epoch merupakan iterasi yang dilakukan saat

melatih model, sedangkan batch size menentukan jumlah sampel yang digunakan

dalam satu iterasi. Dengan menggabungkan variasi optimizer, epoch, dan batch

size, percobaan ini bertujuan untuk mencari kombinasi yang paling baik dalam

menghasilkan model ANN yang dapat memprediksi jarak aktual berdasarkan nilai

RGB piksel. Sebagai tambahan informasi, pada pengembangan model ANN ini

digunakan Mean Absolute Error (MAE) sebagai loss metric untuk mengetahui

akurasi model yang telah dilatih. Sebagai acuan, pada penelitian ini telah disepakati

untuk mengembangkan model ANN yang memiliki nilai MAE dibawah 0.3.

Adapun arsitektur ANN yang akan digunakan dapat dilihat pada gambar 4.6.

Gambar 4.6 Arsitektur Model ANN

61

Dari kombinasi epoch, batch size serta optimizer dihasilkan 18 model ANN berikut.

4.2.1. Model ANN dengan Optimizer Adamax dan Batch Size 1

Pada model ANN ini, digunakan optimizer Adamax dengan parameter batch size

sebesar 1. Dilakukan training sampai dengan epoch ke 1000. Setelah melalui

pelatihan awal yang berlangsung hingga mencapai 1000 epoch, ditemukan bahwa

nilai Mean Absolute Error (MAE) model sebesar 0.577566921710968. Data histori

pelatihan model dapat dilihat pada gambar 4.6.

Gambar 4.7 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 1000

Meskipun demikian, belum terlihat perbaikan yang signifikan pada nilai loss baik

pada data latih maupun data uji. Nilai loss test tidak menurun secara signifikan dan

terus berubah pada kisaran 1 hingga 0,9. Sedangkan nilai loss train mengalami

penurunan sedikit dari 0,6 menjadi 0,577. Meskipun penurunannya tidak signifikan,

terdapat perbaikan nilai yang terjadi. Namun nilai MAE 0,577 masih terlalu besar

dari acuan awal. Proses training dilanjutkan pada epoch 1000 hingga 3000. Pada

gambar 4.7 akan disajikan hasil perbaikan nilai loss train dan test pada epoch 3000.

62

Gambar 4.8 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 3000

Setelah melatih model ini hingga epoch 3000, terlihat indikasi bahwa model

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss

pada data uji (test) dan data latih (train). Namun, meskipun demikian, model ini

berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai

dengan target yang diinginkan, yaitu 0,24485. Selanjutnya pelatihan model

dilanjutkan pada epoch 3000 hingga 5000. Hasil pelatihan tersebut dapat dilihat

pada gambar 4.8.

63

Gambar 4.9 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 5000

Setelah dilakukan pelatihan ulang hingga epoch 5000, model ini terindikasi

mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss

pada data test dan data train. Tidak terlihat adanya perbaikan yang signifikan pada

nilai loss juga. Nilai loss pada data test bervariasi antara 0,4 hingga 0,8, sedangkan

nilai loss pada data train berkisar antara 0,2 hingga 0,4. Meskipun demikian, model

ini berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai

dengan target yang diinginkan, yaitu sebesar 0,2388.

64

4.2.2. Model ANN dengan Optimizer Adamax dan Batch Size 7

Eksperimen dilanjutkan dengan melakukan pelatihan model menggunakan

optimizer Adamax dan menggunakan batch size sebesar 7. Pelatihan model

dilakukan hingga epoch 1000. Hasil dari pelatihan tersebut dapat dilihat pada

gambar 4.9.

Gambar 4.10 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 1000

Pada grafik terlihat terjadi penurunan nilai loss yang signifikan pada proses train

dan test. Hal ini mengindikasikan adanya perbaikan akurasi model. Nilai loss test

awalnya berkisar pada 0,7, namun mengalami penurunan yang signifikan hingga

mencapai kisaran nilai 0,35 pada epoch 800. Sementara itu, nilai loss train juga

mengalami penurunan yang signifikan, dimulai dari kisaran 0,4 dan mencapai

kisaran 0,35 pada epoch 1000. Meskipun nilai tersebut masih lebih tinggi

dibandingkan dengan acuan yang ingin dicapai, pada proses pelatihan ini model

65

berhasil memperbaiki loss dengan baik. Pelatihan pada model ini dilanjutkan

hingga epoch 3000. Hasil dari pelatihan tersebut akan disajikan pada gambar 4.10.

Gambar 4.11 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 3000

Pada grafik terlihat terjadi perbedaan antara tren grafik train dan test. Grafik test

cenderung meningkat sedangkan grafik train cenderung menurun. Nilai test naik

dari kisaran 0,4 hingga 0,55, sementara nilai train menurun dari kisaran 0,35 hingga

0,2. Hal ini merupakan indikasi yang kuat terjadinya overfitting. Namun, model ini

berhasil mencatatkan nilai MAE yang cukup baik, yaitu sebesar 0,27245. Nilai

MAE tersebut lebih kecil dibandingkan dengan nilai MAE acuan yang ingin

dicapai. Pelatihan kembali dilanjutkan hingga epoch 5000. Hasil pelatihan tersebut

akan disajikan pada gambar 4.11.

66

Gambar 4.12 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7

pada epoch 5000

Dapat dilihat pada grafik di atas, terjadi perbaikan model yang signifikan antara

epoch 3000 hingga 3800. Nilai test dan train secara bersamaan mengalami

penurunan. Namun, setelah epoch 3800, nilai train terus menurun sementara nilai

test kembali meningkat dan berkisar pada 0,5. Model ini berhasil mencapai MAE

yang sesuai dengan acuan awal, yaitu sebesar 0,28234.

4.2.3. Model ANN dengan Optimizer Adamax dan Batch Size 15

Pada model Artificial Neural Network (ANN) ini, digunakan optimizer Adamax

dengan parameter batch size sebesar 15. Dilakukan pelatihan model hingga

mencapai epoch ke-1000. Dalam proses tersebut, dilakukan optimisasi

menggunakan optimizer Adamax. Pelatihan dimulai hingga epoch 1000, hasil

pelatihan tersebut akan disajikan pada gambar 4.12.

67

Gambar 4.13 Grafik Loss Model ANN dengan optimizer adamax dan batch size

15 pada epoch 1000

Pelatihan awal ini berhasil memperbaiki model dengan signifikan, terlihat dari

penurunan nilai loss baik pada data train maupun data test. Pada epoch 1000, model

ini mencapai nilai MAE sebesar 0,37186. Meskipun nilai MAE tersebut masih lebih

besar dari acuan awal yang ditetapkan, tidak terlihat indikasi overfitting maupun

underfitting pada model tersebut. Hal ini menunjukkan bahwa model tersebut dapat

secara baik menyesuaikan diri dengan data pelatihan tanpa kehilangan kemampuan

umum untuk memprediksi data baru. Pelatihan model ini dilanjutkan hingga epoch

3000. Hasil pelatihan tersebut akan disajikan pada gambar 4.13.

68

Gambar 4.14 Grafik Loss Model ANN dengan optimizer adamax dan batch size

15 pada epoch 3000

Pada pelatihan ini, terdapat indikasi bahwa model mengalami overfitting. Terlihat

adanya penyimpangan pada sekitar epoch 1600, di mana nilai test cenderung

meningkat sedangkan nilai train cenderung menurun. Model ini mencatatkan nilai

MAE sebesar 0,317, yang masih lebih besar dari acuan awal yang ditetapkan.

Selanjutnya, model akan dilatih kembali hingga epoch 5000, dan hasil pelatihan

tersebut akan ditampilkan pada Gambar 4.14.

69

Gambar 4.15 Grafik Loss Model ANN dengan optimizer adamax dan batch size

15 pada epoch 5000

Pada pelatihan ini, terjadi penurunan yang cukup signifikan pada epoch 3000

hingga 3750. Nilai test dan train secara bersamaan mengalami perbaikan nilai.

Namun, pada epoch 3750 hingga 4500, tidak terjadi perbaikan nilai yang signifikan.

Kemudian, pada epoch 4500 hingga 5000, terdapat indikasi overfitting di mana nilai

test cenderung meningkat sedangkan nilai train cenderung menurun.

Berdasarkan eksperimen yang telah dilakukan, optimizer Adamax berhasil

menghasilkan perbaikan nilai yang signifikan pada epoch 0 hingga 1000. Pada

beberapa kasus lainnya, seperti pada epoch 3000 hingga 4000, juga terjadi

perbaikan nilai yang signifikan. Namun, pada epoch 1000 hingga 3000 dan 4000

hingga 5000, sering terjadi overfitting pada model. Keterbatasan jumlah data juga

menjadi faktor yang mempersulit perbaikan model pada epoch di atas 1000. Oleh

karena itu, melalui eksperimen berbagai kombinasi pelatihan model, akan dicari

70

model yang memiliki nilai MAE terendah. Terdapat 2 model dengan nilai MAE

terendah yakni model yang dilatih menggunakan optimizer adamax dengan batch

size 1 pada epoch 3000 dan 5000. Model pada epoch 3000 memiliki nilai MAE

sebesar 0.2448507845401764 sedangkan model pada epoch 5000 memiliki nilai

MAE sebesar 0.23888996243476868. Namun kedua model tersebut terindikasi

mengalami overfitting. Adapun model lainnya yang memiliki nilai loss mae

terendah namun tidak mengalami indikasi overfitting yakni model dengan

optimizer adamax dan batchsize sebesar 7 pada epoch 1000. Model tersebut

memiliki nilai mae sebesar 0.333776.

4.2.4. Model ANN dengan Optimizer SGD dan Batch Size 1

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size

sebesar 1. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Gambar 4.16 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1

pada epoch 1000

71

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.15,

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini

memiliki akurasi MAE sebesar 0.385, yang masih sedikit jauh dari acuan awal yang

telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. Hasil

pelatihan tersebut dapat dilihat pada gambar 4.16.

Gambar 4.17 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1

pada epoch 3000

Seperti yang terlihat pada Gambar 4.16, tidak terjadi perbaikan yang signifikan

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.45 hingga 0.7,

sementara nilai loss MAE pada train hanya berkisar antara 0.3 hingga 0.4. Model

mencatatkan nilai MAE sebesar 0.37452, dimana nilai tersebut yang masih sedikit

jauh dari acuan awal yang telah ditetapkan. Pelatihan model kembali dilanjutkan

hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 4.17.

72

Gambar 4.18 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1

pada epoch 5000

Seperti yang terlihat pada Gambar 4.17, tidak terjadi perbaikan yang signifikan

pada model. Namun nilai loss pada train mengalami penurunan sedikit demi sedikit.

Nilai loss MAE pada test berkisar antara 0.45 hingga 0.7, sementara nilai loss MAE

pada train hanya berkisar pada nilai 0.4. Model mencatatkan nilai MAE sebesar

0.3702, dimana nilai tersebut yang masih sedikit jauh dari acuan awal yang telah

ditetapkan.

4.2.5. Model ANN dengan Optimizer SGD dan Batch Size 7

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size

sebesar 7. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki

73

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Gambar 4.19 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7

pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.18,

terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini

memiliki akurasi MAE sebesar 0.3773933, yang masih sedikit jauh dari acuan awal

yang telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000.

Hasil pelatihan tersebut dapat dilihat pada gambar 4.19.

74

Gambar 4.20 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7

pada epoch 3000

Seperti yang terlihat pada Gambar 4.19. tidak terjadi perbaikan yang signifikan

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6,

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar

4.20.

75

Gambar 4.21 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7

pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.20,

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.4. Sedangkan nilai

train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.3569, yang masih sedikit

jauh dari acuan awal yang telah ditetapkan.

76

4.2.6. Model ANN dengan Optimizer SGD dan Batch Size 15

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size

sebesar 15. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki

performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Gambar 4.22 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15

pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.21, nilai

loss mae test mengalami penurunan yang awalnya berkisar pada nilai 0.6 hingga

pada epoch 1000 berkisar pada nilai 0.5. Sedangkan nilai loss mae train tidak

mengalami penurunan yang signifikan. Pada epoch 200 hingga epoch 1000 tetap

berkisar pada 0.4. Pada evaluasi akhir, model ini memiliki akurasi MAE sebesar

0.396369, yang masih sedikit jauh dari acuan awal yang telah ditetapkan. Pelatihan

77

model kembali dilanjutkan hingga epoch 3000. Hasil pelatihan tersebut dapat

dilihat pada gambar 4.22.

Gambar 4.23 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15

pada epoch 3000

Seperti yang terlihat pada Gambar 4.22. Tidak terjadi perbaikan yang signifikan

pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan

yang signifikan. Nilai loss MAE pada test berfluktuasi antara 0.4 hingga 0.6,

sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model

mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit

jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan

merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali

dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar

4.23.

78

Gambar 4.24 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15

pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 5000. Terlihat pada Gambar 4.23,

terjadi penurunan signifikan pada nilai train dan test. Nilai test yang awalnya

berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.45. Sedangkan

nilai train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada

evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.36400321, dimana nilai

tersebut sedikit jauh dari acuan awal yang telah ditetapkan.

Setelah melakukan beberapa eksperimen kombinasi parameter diatas maka

didapatkan 2 model yang memiliki nilai mae terkecil yaitu sebesar

0.35695648193359375 pada model yang dilatih menggunakan batch size sebesar 7

dan dilatih hingga epoch 5000. Lalu ada pula model yang memiliki nilai mae

sebesar 0.35471969842910767 yaitu model yang dilatih menggunakan batch size

sebesar 15 dan dilatih hingga epoch 3000.

79

4.2.7. Evaluasi model ANN Prediksi Jarak berdasarkan Citra RGB

Setelah bereksperimen dengan berbagai kombinasi parameter training, maka

disimpulkan untuk menggunakan model ANN dengan optimizer adamax, batch size

7 pada epoch 1000. Model tersebut memiliki nilai mae 0.333776. Model tersebut

digunakan karena tidak mengalami indikasi overfitting maupun underfitting.

Sehingga diharapkan model tersebut dapat melakukan prediksi secara stabil. Hasil

seluruh eksperimen model ANN dapat dilihat pada tabel 4.2.

Tabel 4.2 Perbandingan Model ANN

Model Batch Size Epoch Last Train MAE

adamax 1 1000 0.5775669217

adamax 1 3000 0.2448507845

adamax 1 5000 0.2388899624

adamax 7 1000 0.3337768912

adamax 7 3000 0.2724565864

adamax 7 5000 0.2823437452

adamax 15 1000 0.3718636036

adamax 15 3000 0.3173060715

adamax 15 5000 0.3213479519

sgd 1 1000 0.3855191469

sgd 1 3000 0.3745284975

sgd 1 5000 0.3702289462

sgd 7 1000 0.3773933947

sgd 7 3000 0.3603681922

sgd 7 5000 0.3569564819

sgd 15 1000 0.3963693976

sgd 15 3000 0.3547196984

sgd 15 5000 0.3640032113

80

4.3. Eksperimen Model Deteksi Buah Kakao untuk Mengestimasi Jumlah

Buah Kakao

Pada pelatihan model CNN YOLO, digunakan 80 gambar dan anotasi yang

menggambarkan buah kakao matang dan belum matang dengan lima variasi epoch,

yaitu 100, 300, 500, 700, 1000. Pada pelatihan ini, menggunakan optimizer SGD

dan kombinasi dari beberapa fungsi loss. YOLOv8 menggunakan fungsi loss CIoU

dan DFL untuk loss kotak pembatas dan binary cross-entropy untuk loss klasifikasi.

Pelatihan akan dilakukan dengan menggunakan 2 skala arsitektur yaitu pada skala

nano dan medium. Perbedaan skala arsitektur terdapat pada perbedaan jumlah

parameter yang digunakan pada setiap layernya. Model dengan arsitektur nano juga

akan memproduksi model dengan ukuran file yang lebih kecil ketimbang model

dengan medium.

Pelatihan dilakukan selama 100 epoch dengan optimizer SGD dan batch size

sebesar 16. Ukuran gambar input adalah 800x800, dan model akan disimpan setelah

pelatihan selesai. Tidak digunakan cache, dan perangkat yang digunakan akan

disesuaikan secara otomatis. Selain itu, dilakukan pengolahan data paralel dengan

8 workers. Informasi tentang pelatihan, seperti verbose, seed, dan deterministic juga

telah ditentukan. Model ini dapat mendeteksi multiple kelas, dan tidak

menggunakan bobot gambar atau training rectangular. Pada evaluasi, akan

diperhatikan nilai ambang batas kepercayaan dan IoU threshold, serta jumlah

deteksi maksimum. Grafik pelatihan akan ditampilkan, tetapi tidak akan

menampilkan gambar deteksi secara visual. Tidak ada penyimpanan dalam format

teks, confidence map, atau crop objek deteksi. Label objek dan confidence score

akan ditampilkan, serta tebal garis boks deteksi sebesar 3.

4.3.1. Model YOLOV8n dengan 100 epoch

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.24.

81

Gambar 4.25 loss model YOLOV8n dengan 100 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.24 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan

82

nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.3.

Tabel 4.3 Hasil Pelatihan YOLOV8n pada epoch 100

Class Box(P) R

all 0.907 0.704

ripe cocoa 0.925 0.792

unripe cocoa 0.889 0.617

Setelah melatih model YOLOV8M selama 100 epoch, dapat disimpulkan

bahwa hasil pelatihan menunjukkan kinerja yang baik dalam melakukan deteksi

buah kakao matang dan belum matang. Keseluruhan model mencapai akurasi

deteksi sebesar 83.4% dengan recall sebesar 82%. Hasil yang lebih baik diperoleh

untuk deteksi buah kakao matang, dengan akurasi mencapai 88% dan recall sebesar

91.7%. Namun, performa deteksi pada buah kakao belum matang sedikit lebih

rendah, dengan akurasi sebesar 78.8% dan recall sebesar 72.3%.

Meskipun demikian, secara keseluruhan model telah mampu melakukan

deteksi dengan baik pada dataset yang digunakan. Namun, ada ruang untuk

pengembangan lebih lanjut dalam meningkatkan performa deteksi pada buah kakao

belum matang agar sejajar dengan deteksi buah kakao matang. Dengan demikian,

dapat dilakukan penyesuaian atau peningkatan model untuk mencapai akurasi

deteksi yang lebih tinggi dan recall yang lebih baik pada kelas buah kakao belum

matang.

4.3.2. Model YOLOV8n dengan 300 epoch

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.25.

83

Gambar 4.26 loss model YOLOV8n dengan 300 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss

84

terus menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.4.

Tabel 4.4 Hasil Pelatihan YOLOV8n pada epoch 300

Class Box(P) R

all 0.799 0.799

ripe cocoa 0.734 0.920

unripe cocoa 0.864 0.678

Setelah melatih model, diperoleh hasil pelatihan yang menunjukkan kinerja

yang cukup baik dalam melakukan deteksi buah kakao matang dan belum matang.

Dalam hal ini, model mencapai akurasi deteksi sebesar 79.9% dan recall

(kemampuan mengidentifikasi dengan benar) sebesar 79.9% untuk semua kelas.

Meskipun akurasi dan recall secara keseluruhan seimbang, terdapat perbedaan

dalam kinerja deteksi antara kelas buah kakao matang dan belum matang.

Untuk kelas buah kakao matang, model mencapai akurasi deteksi sebesar

73.4% dengan recall sebesar 92%. Hal ini menunjukkan bahwa model mampu

mengenali dengan baik buah kakao yang telah matang. Namun, untuk kelas buah

kakao belum matang, model memiliki akurasi deteksi yang sedikit lebih tinggi

sebesar 86.4% namun recall yang sedikit lebih rendah, yakni sebesar 67.8%. Secara

keseluruhan, model telah mencapai kinerja yang cukup baik dalam melakukan

deteksi buah kakao matang dan belum matang.

4.3.3. Model YOLOV8n dengan 500 epoch

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test dapat dilihat

pada gambar 4.26.

85

Gambar 4.27 loss model YOLOV8n dengan 500 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.26 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss

86

terus menurun seiring berjalannya pelatihan hingga epoch 200. Namun pada metrik

dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai

loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss

val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.5.

Tabel 4.5 Hasil Pelatihan YOLOV8n pada epoch 500

Class Box(P) R

all 0.860 0.809

ripe cocoa 0.867 1.000

unripe cocoa 0.853 0.618

Berdasarkan hasil pelatihan model YOLOV8N selama 500 epoch, secara

keseluruhan model ini memiliki tingkat akurasi deteksi yang baik sebesar 0,86 dan

presisi yang cukup tinggi sebesar 0,809. Model ini mampu dengan efektif

mendeteksi dan mengklasifikasikan cokelat matang ("ripe cocoa") dengan tingkat

akurasi yang tinggi sebesar 0,867 dan recall sempurna sebesar 1. Namun, model

menghadapi beberapa kesulitan dalam mendeteksi cokelat yang belum matang

("unripe cocoa"), dengan tingkat akurasi yang sedikit lebih rendah sebesar 0,853

dan recall sebesar 0,618. Untuk meningkatkan performa model dalam

mengklasifikasikan cokelat yang belum matang, perlu dilakukan penyesuaian pada

proses pelatihan, seperti penambahan data latihan yang lebih representatif atau

penyetelan parameter model yang lebih optimal. Secara keseluruhan, meskipun

model YOLOV8N telah menunjukkan kinerja yang baik dalam mendeteksi objek

secara umum, masih diperlukan peningkatan dalam mengklasifikasikan cokelat

yang belum matang dengan lebih baik.

4.3.4. Model YOLOV8n dengan 700 epoch

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.27.

87

Gambar 4.28 loss model YOLOV8n dengan 700 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.27 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

88

berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi

terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test mengalami

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.6.

Tabel 4.6 Hasil Pelatihan YOLOV8n pada epoch 700

Class Box(P) R

all 0.917 0.707

ripe cocoa 0.947 0.743

unripe cocoa 0.887 0.671

Dalam hasil pelatihan model YOLOV8N selama 700 epoch, terjadi

peningkatan yang signifikan dalam kinerja model. Secara keseluruhan, model

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,917 dengan nilai presisi

sebesar 0,707. Ini menunjukkan bahwa model berhasil meningkatkan

kemampuannya dalam mendeteksi objek secara umum. Hasil yang lebih baik ini

dapat memberikan kepercayaan lebih dalam penggunaan model untuk mendeteksi

berbagai objek di dalam gambar.

Ketika fokus pada kategori "ripe cocoa", model menunjukkan peningkatan

yang konsisten dengan tingkat akurasi sebesar 0,947 dan presisi sebesar 0,743.

Meskipun recall masih dapat ditingkatkan, peningkatan ini menunjukkan bahwa

model semakin mampu mengklasifikasikan cokelat matang dengan akurasi yang

lebih tinggi. Namun, untuk kategori "unripe cocoa", meskipun terjadi peningkatan,

model masih menghadapi beberapa tantangan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang. Dengan tingkat akurasi sebesar

0,887 dan recall sebesar 0,671, masih ada ruang untuk perbaikan lebih lanjut.

4.3.5. Model YOLOV8n dengan 1000 epoch

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.28.

89

Gambar 4.29 dfl loss, box loss, cls loss model YOLOV8n dengan 1000 epoch

(a) dfl loss, (b) box loss dan (c) cls

Seperti yang dapat dilihat pada ketiga gambar 4.28 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

90

berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi

terjadinya overfitting. Pada epoch ke-400 nilai loss train dan test mengalami

pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.7.

Tabel 4.7 Hasil Pelatihan YOLOV8n pada epoch 1000

Class Box(P) R

all 0.869 0.767

ripe cocoa 0.775 0.917

unripe cocoa 0.963 0.617

Dalam pelatihan model YOLOV8N, terdapat hasil yang menarik untuk

setiap kategori. Secara keseluruhan, model mencapai tingkat akurasi deteksi sebesar

0,869 dengan presisi sebesar 0,767. Meskipun tingkat presisi yang tinggi

menunjukkan kemampuan model dalam mengenali objek secara spesifik, recall

yang sebesar 0,767 menandakan adanya ruang untuk perbaikan dalam mencakup

semua objek yang ada dalam gambar secara lebih lengkap.

Dalam kategori "ripe cocoa", model menunjukkan tingkat presisi sebesar

0,775 yang cukup baik. Namun, recall yang rendah sebesar 0,917 mengindikasikan

bahwa model masih melewatkan beberapa cokelat matang yang seharusnya

terdeteksi. Sementara itu, dalam kategori "unripe cocoa", model berhasil mencapai

tingkat presisi yang tinggi sebesar 0,963. Namun, recall yang rendah sebesar 0,617

menunjukkan bahwa model masih menghadapi kesulitan dalam mendeteksi

sebagian besar cokelat yang belum matang.

Secara keseluruhan, model YOLOV8N telah menunjukkan kemajuan yang

baik dalam deteksi objek, namun masih ada aspek-aspek yang perlu ditingkatkan.

Peningkatan pada recall dalam kedua kategori "ripe cocoa" dan "unripe cocoa" akan

menjadi prioritas dalam pelatihan selanjutnya. Dengan demikian, model dapat

mengenali dan mengklasifikasikan objek dengan lebih akurat dan menyeluruh,

menghasilkan hasil yang lebih baik dalam aplikasi deteksi objek yang berkaitan

dengan cokelat..

91

4.3.6. Model YOLOV8m dengan 100 epoch

Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.29.

Gambar 4.30 loss model YOLOV8n dengan 100 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

92

Seperti yang dapat dilihat pada ketiga gambar 4.29 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan

nilai pelatihan (train) dan pengujian (test) tidak menunjukkan indikasi adanya

overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.8.

Tabel 4.8 Hasil Pelatihan YOLOV8M pada epoch 100

Class Box(P) R

all 0.834 0.820

ripe cocoa 0.880 0.917

unripe cocoa 0.788 0.723

Model YOLOV8M, setelah melalui pelatihan selama 100 epoch,

menunjukkan hasil yang cukup baik. Dalam kategori "all", model mencapai tingkat

akurasi deteksi sebesar 0,834 dengan presisi sebesar 0,82. Hasil ini menunjukkan

kemampuan model dalam mendeteksi objek secara umum dalam dataset yang

digunakan. Tingkat akurasi yang tinggi ini memberikan kepercayaan bahwa model

dapat mengenali objek dengan baik.

Ketika berfokus pada kategori "ripe cocoa", model YOLOV8M mencapai

tingkat akurasi yang lebih tinggi sebesar 0,88 dengan recall sebesar 0,917. Hal ini

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang

dengan akurasi yang baik dan mampu mendeteksi sebagian besar objek yang ada.

Tingkat recall yang tinggi juga menandakan bahwa model dapat mengenali

sebagian besar cokelat matang yang ada dalam dataset.

Namun, dalam kategori "unripe cocoa", model menghadapi beberapa

tantangan dengan tingkat akurasi sebesar 0,788 dan recall sebesar 0,723. Hal ini

mengindikasikan bahwa model masih perlu ditingkatkan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang. Secara keseluruhan, model

YOLOV8M menunjukkan kemampuan yang baik dalam mendeteksi objek secara

umum dan khususnya dalam kategori "ripe cocoa".

93

4.3.7. Model YOLOV8m dengan 300 epoch

Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.30.

Gambar 4.31 dfl loss, box loss, cls loss model YOLOV8n dengan 300 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

94

Seperti yang dapat dilihat pada ketiga gambar 4.30 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss

terus menurun seiring berjalannya pelatihan. Namun pada metrik dfl loss ada

indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.8.

Tabel 4.9 Hasil Pelatihan YOLOV8m pada epoch 300

Class Box(P) R

all 0.820 0.725

ripe cocoa 0.903 0.875

unripe cocoa 0.737 0.574

Setelah melalui pelatihan selama 300 epoch, model YOLOV8M

menunjukkan hasil yang menarik. Secara keseluruhan, model ini mencapai tingkat

akurasi deteksi sebesar 0,82 dengan presisi sebesar 0,725 dalam kategori "all".

Meskipun tingkat akurasi yang cukup baik, recall yang sebesar 0,725 menunjukkan

bahwa model mungkin masih melewatkan sebagian objek yang ada dalam gambar.

Dalam kategori "ripe cocoa", model menunjukkan peningkatan performa dengan

tingkat akurasi sebesar 0,903 dan recall sebesar 0,875. Hasil ini mengindikasikan

kemampuan model dalam mengklasifikasikan cokelat matang dengan akurasi yang

tinggi dan mampu mendeteksi sebagian besar objek yang ada. Peningkatan tersebut

menunjukkan adanya kemajuan dalam pelatihan model.

Namun, dalam kategori "unripe cocoa", model masih mengalami beberapa

kendala dengan tingkat akurasi sebesar 0,737 dan recall sebesar 0,574. Hal ini

menandakan bahwa model masih menghadapi kesulitan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan

yang lebih baik. Secara keseluruhan, model YOLOV8M telah menunjukkan

kemajuan dalam pelatihan selama 300 epoch. Meskipun tingkat akurasi dan presisi

95

dalam kategori "all" cukup baik, recall masih perlu ditingkatkan. Peningkatan

signifikan terlihat dalam kategori "ripe cocoa" dengan akurasi dan recall yang lebih

baik.

4.3.8. Model YOLOV8m dengan 500 epoch

Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.31.

Gambar 4.32 dfl loss, box loss, cls loss model YOLOV8n dengan 500 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

96

Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model berhasil

meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss terus

menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl

loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss

train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val

meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.9.

Tabel 4.10 Hasil Pelatihan YOLOV8m pada epoch 500

Class Box(P) R

all 0.910 0.704

ripe cocoa 0.959 0.792

unripe cocoa 0.861 0.617

Setelah melalui pelatihan selama 500 epoch, model YOLOV8M

menunjukkan hasil yang menggembirakan. Secara keseluruhan, model ini

mencapai tingkat akurasi deteksi yang tinggi sebesar 0,91 dengan presisi sebesar

0,704 dalam kategori "all". Meskipun tingkat akurasi yang tinggi, recall yang

sebesar 0,704 menunjukkan bahwa model mungkin masih melewatkan sebagian

objek yang ada dalam gambar.

Dalam kategori "ripe cocoa", model menunjukkan performa yang sangat

baik dengan tingkat akurasi sebesar 0,959 dan recall sebesar 0,792. Hasil ini

menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang

dengan akurasi yang tinggi dan mampu mendeteksi sebagian besar objek yang ada.

Namun, dalam kategori "unripe cocoa", model masih menghadapi beberapa kendala

dengan tingkat akurasi sebesar 0,861 dan recall sebesar 0,617. Hal ini menandakan

bahwa model masih mengalami kesulitan dalam mendeteksi dan

mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan

yang lebih baik.

97

4.3.9. Model YOLOV8m dengan 700 epoch

Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.32.

Gambar 4.33 loss model YOLOV8n dengan 700 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

98

Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.10.

Tabel 4.11 Hasil Pelatihan YOLOV8m pada epoch 700

Class Box(P) R

all 0.748 0.808

ripe cocoa 0.610 0.958

unripe cocoa 0.885 0.658

Model YOLOV8M dilatih selama 700 epoch dan mencapai akurasi deteksi

sebesar 0,748 dan presisi 0,808 dalam kategori "semua". Namun, recall 0,808

menunjukkan ruang untuk meningkatkan deteksi objek dalam gambar. Dalam

kategori "kakao matang", akurasi 0,61 dengan recall tinggi 0,958 menunjukkan

kemampuan model mengklasifikasikan kakao matang, meskipun dengan positif

palsu. Dalam kategori "kakao mentah", akurasi 0,885 dengan recall 0,658

menunjukkan model masih kesulitan mendeteksi kakao mentah. Model perlu

meningkatkan recall dalam kategori ini. Secara keseluruhan, YOLOV8M

menunjukkan kemajuan selama 700 epoch. Dalam kategori "semua", recall perlu

ditingkatkan untuk mendeteksi lebih banyak objek. Dalam kategori "kakao

matang", recall tinggi menunjukkan kemampuan model, tetapi perlu penanganan

positif palsu. Dalam kategori "kakao mentah", meningkatkan recall menjadi fokus

utama untuk meningkatkan deteksi kakao mentah dengan akurasi yang lebih tinggi.

99

4.3.10. Model YOLOV8m dengan 1000 epoch

Dilakukan pelatihan model hingga epoch 1000 menggunakan arsitektur

YOLOV8m. Pada akhir proses training, nilai akurasi dan loss pada training dan test

bisa dilihat pada gambar 4.33.

Gambar 4.34 model YOLOV8n dengan 1000 epoch

(a) dfl loss, (b) box loss dan (c) cls loss

100

Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring

berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss

ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test

mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat

namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.11.

Tabel 4.12 Hasil Pelatihan YOLOV8m pada epoch 1000

Class Box(P) R

all 0.816 0.768

ripe cocoa 0.746 0.856

unripe cocoa 0.886 0.681

Model YOLOV8M telah dilatih selama 1000 epoch dan menunjukkan hasil

yang menarik. Dalam kategori "semua", model ini mencapai presisi sebesar 0,816

dan recall sebesar 0,768. Ini menunjukkan kemampuan model dalam mengenali dan

mengklasifikasikan objek dengan akurasi yang cukup tinggi. Dalam kategori

"kakao matang", model mencapai presisi sebesar 0,746 dengan recall yang lebih

tinggi, yaitu 0,856. Ini menunjukkan kemampuan model dalam mendeteksi dan

mengklasifikasikan kakao matang dengan baik, meskipun masih terdapat ruang

untuk meningkatkan presisi. Di sisi lain, dalam kategori "kakao mentah", model

mencapai presisi sebesar 0,886 dengan recall sebesar 0,681.

Meskipun akurasi cukup baik, recall yang rendah menunjukkan bahwa

model masih kesulitan dalam mendeteksi sebagian besar kakao mentah.

Meningkatkan recall dalam kategori ini menjadi fokus utama untuk meningkatkan

kemampuan model dalam mengklasifikasikan kakao mentah dengan akurasi yang

lebih tinggi. Secara keseluruhan, YOLOV8M telah menunjukkan kemajuan dalam

1000 epoch pelatihan. Meskipun memiliki akurasi yang baik dalam kategori

"semua" dan "kakao matang", meningkatkan recall akan membantu model dalam

menangkap lebih banyak objek secara akurat. Untuk kategori "kakao mentah",

101

meningkatkan recall menjadi hal yang penting untuk meningkatkan kemampuan

model dalam mendeteksi kakao mentah dengan lebih baik.

4.3.11. Evaluasi 5 Model YOLOV8 dengan performa terbaik

Untuk menentukan model YOLOV8 yang memiliki akurasi paling baik

maka berikut akan ditampilkan 5 model dengan nilai R dan Box(P) (box loss) yang

paling tinggi diantara model-model lainnya pada gambar 4.35.

Gambar 4.35 Grafik 5 Model Dengan Nilai Recall Tertinggi

Dari model dengan arsitektur YOLOV8 diatas maka disimpulkan model terbaik

adalah model dengan arsitektur YOLOV8 nano dengan 100 epoch.

4.4. Sistem Prediksi Jarak Objek pada Citra

Sistem ini akan melakukan Prediksi Jarak Objek terhadap kamera. Prediksi

dilakukan menggunakan nilai rgb sebagai input. Proses dimulai dengan memilih

titik koordinat salah satu piksel yang berada pada area objek sebagai input proses

segmentasi. Kemudian dilakukan segmentasi pada citra untuk mendapatkan area

objek. Kemudian dilakukan prediksi kedalaman citra menggunakan Model CNN

Monocular Depth Estimation. Area yang telah didapatkan digunakan untuk

mengambil warna pada citra hasil prediksi kedalaman pada area yang diinginkan.

102

Kemudian dari kumpulan warna tersebut dicari nilai mediannya sehingga

didapatkan nilai median rgb untuk digunakan pada input model ANN prediksi jarak.

Sehingga kemudian didapatkan nilai jarak objek terhadap kamera.

4.4.1. Mengunggah Gambar dan Penggunaan Model CNN Monocular Depth

Estimation

Proses awal yang harus dilakukan yakni mengunggah gambar tanaman

kakao yang akan digunakan. Setelah itu dilakukan proses prediksi kedalaman

menggunakan Model CNN Monocular Depth Estimation. Sehingga dihasilkan citra

yang merepresentasikan kedalaman atau dapat disebut sebagai citra kedalaman.

Citra inilah yang nantinya akan digunakan nilai rgbnya sebagai input untuk

memprediksi jarak objek terhadap kamera.

Gambar 4.36 Citra Tanaman Kakao Asli

Gambar 4.37 Citra Kedalaman Tanaman Kakao

103

4.4.2. Menentukan Titik Piksel pada Objek

Karena sistem yang dikembangkan belum dapat mengidentifikasi bagian

batang tanaman kakao secara otomatis, maka pada penelitian ini masih diperlukan

input manual untuk menentukan titik piksel yang merupakan bagian dari tanaman

kakao. Proses ini dilakukan dengan melihat terlebih dahulu gambar serta axis untuk

melakukan taksiran lokasi x,y piksel yang akan digunakan.

Gambar 4.38 Tampilan awal untuk penentuan titik pada objek

Setelah melakukan taksiran maka pada gambar ini akan digunakan titik pada

koordinat 2750, 3000. Nilai x,y tersebut akan ditampilkan dengan simbol bintang

seperti pada gambar berikut.

Gambar 4.39 Tampilan gambar dengan titik piksel yang telah dipilih

104

Setelah menemukan titik piksel yang akan digunakan, maka pada proses

selanjutnya titik tersebut akan digunakan sebagai input pada proses segmentasi.

4.4.3. Proses Segmentasi dengan Model CNN Segment Anything

Pada proses ini akan dilakukan segmentasi untuk mendapatkan area objek

yang akan digunakan (Tanaman Kakao). Titik koordinat yang telah ditentukan

menjadi input/acuan model untuk memprediksi area sekitarnya yang masih

merupakan bagian dari objek. Hal ini dilakukan untuk mempermudah pemilihan

area objek.

Gambar 4.40 Hasil Segmentasi Area Objek Tanaman Kakao

Area/mask tersebut kemudian akan digunakan untuk mengambil nilai rgb pada citra

kedalaman.

4.4.4. Pengambilan nilai median RGB dan Prediksi Jarak

Setelah mendapatkan area objek tanaman kakao, maka nilai rgb pada citra

kedalaman yang beririsan dengan area objek tanaman kakao akan diambil. Dari

nilai-nilai tersebut kemudian akan didapatkan nilai median RGB. Nilai median

105

RGB kemudian digunakan untuk memprediksi jarak. Dengan menggunakan model

ANN yang telah dikembangkan, dilakukan prediksi jarak menggunakan nilai rgb

sebagai input. Sehingga kemudian didapatkan nilai jarak objek tanaman kakao

terhadap kamera dalam satuan meter.

4.4.5. Evaluasi Sistem Prediksi Jarak Objek Pada Citra

Penggunaan model CNN Segment Anything belum bisa optimal untuk

mengambil bagian tanaman saja karena adanya noise pada background objek

tersebut. Hal ini dipengaruhi oleh kondisi lingkungan perkebunan kakao yang padat

dengan tanaman kakao.

4.5. Sistem Prediksi Koordinat Tanaman Kakao pada Citra

Pada bagian ini akan dilakukan prediksi nilai koordinat tanaman kakao.

Pada tahap ini diperlukan beberapa variabel sebagai input yaitu nilai koordinat

longitude dan latitude tanaman kakao, nilai derajat arah hadap kamera, serta jarak

objek terhadap kamera. Pada proses ini akan digunakan rumus yang bernama

Vincenty Formula. Hasil dari kalkulasi menggunakan rumus tersebut yakni titik

koordinat longitude serta latitude objek tanaman kakao. Untuk menguji akurasi dari

rumus tersebut, pada bagian selanjutnya akan dilakukan percobaan kalkulasi pada

5 titik lokasi.

4.5.1. Evaluasi Akurasi Vincenty Formula

Pada bagian ini akan dilakukan pengujian akurasi dari hasil kalkulasi

Vinceny Formula. Pengujian akan dilakukan pada 5 lokasi pada tabel 4.13.

Tabel 4.13 Ground Truth Titik Koordinat Pengujian Vincety Formula

No
Building Destination

Name Coordinate Name Coordinate

1

Alun-Alun

Tugu Malang

-7.97692544511029,

112.634055029002

Stasiun Malang

Kota Baru

-7.97720169566579,

112.637112747216

106

Tabel 4. 14 Ground Truth Titik Koordinat Pengujian Vincety Formula (lanjutan)

No
Building Destination

Name Coordinate Name Coordinate

2 Alun-Alun

Tugu Malang

-7.97692544511029,

112.634055029002

Bulan Photocopy

& Print

-7.97419601839356,

112.634292801417

3 Gerbang UB

Soekarno hatta

-7.94984,

112.615411

Soekarno Hatta

Bridge

-7.9496079959561,

112.615839888356

4 Gerbang UB

Soekarno hatta

-7.94984,

112.615411

Kober Mie Setan -7.9481629265072,

112.61676260122

5 Gerbang UB

Soekarno hatta

-7.94984,

112.615411

Mixue Suhat

Malang

-7.94637779324508,

112.618050061491

Tabel 4. 15 Arah dan Jarak

No Heading Distance to Desstination (km)

1 96,607° 0.28

2 4,124 0.3

3 45,456° 0.069

4 43,014° 0.22

5 -40,579° 0.45

Tabel 4. 16 Hasil Prediksi dan Selisih

No Predicted Coordinate Differences

1
-7.97721516624731,

112.636580818575
 -1.347 x 10-5, -5.319 x 10-4

2
-7.97423446585066,

112.634250919231
 -3.845 x 10-5, -4.188 x 10-5

3
-7.94936783429258,

112.615817547406
 -3.845 x 10-5, -4.188 x 10-5

107

Tabel 4. 17 Hasil Prediksi dan Selisih (lanjutan)

No Predicted Coordinate Differences

4
-7.94839333872107,

112.616773784662
 -2.304 x 10-4, 1.118 x 10-5

5
-7.9467662955678,

112.618069047894
 -3.885 x 10-4, 1.899 x 10-5

Berdasarkan lima percobaan yang telah dilakukan, dapat disimpulkan bahwa rumus

yang digunakan memiliki akurasi yang cukup baik dan kesalahan yang relatif kecil.

Perbedaan rata-rata antara hasil yang diperoleh dari rumus dan titik koordinat

sebenarnya adalah sangat kecil, yaitu sebesar -0,00009966528437. Selain itu,

perbedaan maksimum antara hasil yang diperoleh dari rumus dan nilai sebenarnya

juga cukup kecil, hanya sekitar 0,0002401616635. Sehingga dapat disimpulkan

rumus Vincenty Formula tersebut dapat digunakan untuk melakukan kalkulasi titik

koordinat suatu objek berdasarkan titik koordinat asal, derajat arah serta jarak

terhadap objek.

4.6. Sistem Estimasi Jumlah Buah Kakao

Sistem ini melakukan deteksi buah kakao. Buah kakao yang terdeteksi

dalam bentuk bounding box akan dihitung jumlahnya. Setelah terdeteksi maka

setiap buah dalam setiap bounding box tersebut diklasifikasi untuk memprediksi

buah tersebut telah memasuki usia matang atau belum. Proses pada sistem ini cukup

sederhana, pengguna cukup mengunggah citra tanaman kakao. Lalu sistem akan

melakukan deteksi buah kakao, serta mengkalkulasi bounding box yang muncul.

Sehingga akan ditampilkan kepada pengguna berapa jumlah buah kakao yang ada

pada tanaman kakao tersebut. Adapun deteksi ini dilakukan dengan menggunakan

confidence threshold sebesar 0.25.

4.6.1. Evaluasi Sistem Estimasi Jumlah Buah Kakao

Pada tahap ini akan dilakukan evaluasi pada 5 model CNN YOLOV8 terbaik

yang digunakan untuk melakukan deteksi buah kakao. Selain metriks pelatihan

108

seperti box loss, dfl loss dan cls loss akan dilakukan pula pengujian manual secara

visual. Model akan dijalankan untuk melakukan proses deteksi, lalu hasil deteksi

akan dibandingkan dengan hasil penghitungan buah kakao manual secara visual.

Adapun berikut 2 citra yang akan digunakan untuk melakukan evaluasi sistem

estimasi jumlah buah kakao yaitu gambar 4.41 dan 4.42.

Gambar 4. 41 Citra Tanaman Kakao dengan Buah muda

Dapat dilihat pada gambar 4.40 terdapat 19 buah muda. Buah kakao yang masih

muda akan nampak berwarna hijau. Lama-kelamaan akan muncul titik titik

kecoklatan pada buah kakao. Beberapa buah kakao pada gambar 4.40 berada pada

posisi yang sulit untuk dideteksi seperti buah yang tertutupi oleh buah lainnya, serta

buah yang berada dibalik batang. Buah pada posisi yang sulit dijangkau ini akan

sulit untuk dideteksi oleh model CNN YOLO.

Gambar 4. 42 Citra Tanaman Kakao dengan Buah Matang

109

Dapat dilihat pada gambar 4.41 terdapat 20 buah matang. Pada kedua citra diatas

yaitu gambar 4.40 dan gambar 4.41 akan dilakukan deteksi menggunakan model

YOLOV8n dengan 100 epoch. Hasil deteksi dapat dilihat pada gambar 4.43 dan

4.44.

Gambar 4. 43 Hasil Deteksi Buah Kakao menggunakan model YOLOV8n dengan

100 epoch

Pada gambar 4.43 terdapat 8 bounding box. Artinya terdapat 8 buah kakao matang

yang terdeteksi. Kedelapan bounding box tersebut juga memiliki confidece

threshold yang tinggi, yaitu pada nilai diatas 0.9 yang artinya model cukup yakin

bahwa prediksinya akurat. Namun masih terdapat 10 buah yang tidak terdeteksi.

Buah yang tidak terdeteksi kebanyakan memiliki posisi yang susah untuk dideteksi

seperti berada dibalik batang, dibalik buah lainnya, serta ukurannya sangat kecil.

Deteksi dilakukan pula pada tanaman kakao dengan buah muda. Hasil deteksi dapat

dilihat pada gambar 4.44.

110

Gambar 4. 44 Hasil Deteksi Buah Kakao menggunakan model YOLOV8n dengan

100 epoch

Seperti yang dapat dilihat pada gambar 4.44, terdapat 9 bounding box/buah yang

berhasil terdeteksi. Namun pada ground truth terdapat 19 buah, sehingga masih

terdapat 10 buah. Deteksi dilakukan menggunakan kelima model pada 2 gambar

tersebut. Hasil evaluasi pada kelima model dapat dilihat pada tabel 4.15.

Tabel 4. 18 Evaluasi 5 model terbaik pada 2 contoh gambar

model filename

prediction result

num of ripe

cocoa

num of unripe

cocoa

YOLOV8n 100

epoch
IMG_20230621_160151.jpg 9

 IMG_20230621_160747.jpg 8

111

Tabel 4. 19 Evaluasi 5 model terbaik pada 2 contoh gambar (lanjutan)

model filename

prediction result

num of ripe

cocoa

num of unripe

cocoa

YOLOV8n 500

epoch
IMG_20230621_160151.jpg 12

 IMG_20230621_160747.jpg 10

YOLOV8m 100

epoch
IMG_20230621_160151.jpg 2 14

 IMG_20230621_160747.jpg 17

YOLOV8m 700

epoch
IMG_20230621_160151.jpg 3 11

 IMG_20230621_160747.jpg 11

YOLOV8n 300

epoch
IMG_20230621_160151.jpg 10

 IMG_20230621_160747.jpg 11

Secara keseluruhan model belum berhasil mendeteksi semua buah kakao yang ada

pada tanaman kakao. Hal ini disebabkan karena banyak posisi buah kakao yang

tertutupi oleh objek lain seperti batang tanaman kakao, buah kakao, serta ukurannya

yang kecil. Hal ini dapat dikembangkan dengan cara melengkapi dataset yang lebih

bervariatif seperti menambahkan anotasi bounding box pada buah kakao yang

tertutupi. Namun hal tersebut juga perlu diimbangi dengan adanya metode yang

dapat melokalisasi hasil deteksi karena apabila sebuah kakao terletak dibalik batang

sehingga seolah-olah nampak terdapat dua buah kakao maka menjadi akan bias bagi

model.

Apabila ketiga sistem diatas digabungkan, sistem dapat digunakan sebagai alat

untuk melakukan monitoring perkebunan kakao dengan metode geotagging. Pada

112

penelitian ini sistem hanya mampu untuk melakukan prediksi titik koordinat

tanaman kakao serta deteksi buah kakao. Sehingga sistem dapat menghasilkan

output berupa titik koordinat serta jumlah buah kakao. Sistem ini merupakan

alternatif murah untuk mengetahui perkembangan dari setiap tanaman kakao dari

waktu ke waktu.

113

BAB V SIMPULAN DAN SARAN

5.1. Simpulan

Berikut kesimpulan pada penelitian ini.

1. Pada penelitian ini telah berhasil dikembangkan metode geotagging dengan

beberapa sistem didalamnya diantaranya model CNN estimasi kedalaman,

Segment Anything, ANN prediksi jarak, serta rumus Vincenty Formula.

Dimana hasil eksperimen ANN menghasilkan model ANN dengan nilai loss

mae sebesar 0.333776. Dimana model tersebut menggunakan optimizer

adamax, batch size 7 pada epoch 1000.

2. Pada penelitian ini berhasil dikembangkan metode untuk melakukan

kuantifikasi otomatis yaitu dengan menggunakan model CNN YOLOV8.

Dari hasil eksperimen, didapatkan model CNN YOLOV8 dengan nilai

pricision 0.907 serta recall 0.958.

5.2. Saran

Adapun saran-saran dan masukan yang dapat digunakan sebagai referensi

penelitian selanjutnya dengan topik yang sama yakni terkait geotagging.

1. Akurasi model ANN dapat diperbaiki apabila model tersebut dilatih ulang

2. Terdapat metode pengujian akurasi prediksi jarak yang lebih komperehensif

3. Dapat dilakukan penyempurnaan sistem yakni dengan menambahkan model

CNN untuk melakukan deteksi objek. Sehingga pengguna tidak lagi perlu

untuk menentukan salah satu titik pada objek.

4. Menambahkan anotasi bounding box pada buah yang tertutupi buah/objek

lain.

5. Sistem ini dapat diterapkan sebagai back end pada antarmuka web dimana

pengguna dapat melakukan pengambilan citra, pemilihan titik, memprediksi

jarak serta mendeteksi buah kakao.

114

DAFTAR PUSTAKA

(n.d.). Retrieved from Federal Aviation Administration of United States

Department of Transportation: https://www.faa.gov/uas

Abdoellah, D. S. (2021). Analisis Kinerja dan Prospek Komoditas Kakao. Jember,

Jawa Timur: Pusat Penelitian Kopi dan Kakao Indonesia, PT Riset

Perkebunan Nusantara.

Adam Paszke, S. G. (2019). PyTorch: An Imperative Style, High-Performance

Deep Learning Library. Machine Learning (cs.LG); Mathematical Software

(cs.MS); Machine Learning (stat.ML).

Alexander Kirillov, E. M.-Y. (2023). Segment Anything. Computer Vision and

Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine

Learning (cs.LG).

Barima Yao Sadaiou Sabas, K. G. (2020). Cocoa Production and Forest Dynamics

in Ivory Coast from 1985 to 2019. Land 2020.

Bradford W. Parkinson, J. J. (1966). Global Positioning System: Theory and

Applications. Washington DC: American Institute of Aeronautics and

Astronautics, Inc.

Chatterjee, S. (2018). Time Series Crop Monitoring of an Agricultural Scheme on

a Plot Basis Using Complementary Remote Sensing .

Cle ́ment Godard, O. M. (2019). Digging Into Self-Supervised Monocular Depth

Estimation.

Dedi Atunggal, N. H. (2018). Developing Android Application for Precise

Geotagging Using RTK GPS Module. 2018 4th International Conference

on Science and Technology (ICST);2018;1; ; . Yogyakarta.

Faisal Khan, S. S. (2020). Deep Learning-Based Monocular Depth Estimation

Methods—A State-of-the-Art Review. Sensors.

Indonesia, D. J. (2021). Laporan Tahunan 2021 Direktorat Jenderal Perkebunan

Kementrian Pertanian Pengembangan Perkebunan 2021.

Indonesia, D. J. (2021). Statistik Perkebunan Unggulan Nasional 2020-2022.

Krista Merry, P. B. (2019). Smartphone GPS accuracy study in an urban

environment. PLOS ONE.

115

Meng Guo, J. L. (2017). A Review of Wetland Remote Sensing. Special Issue

"Understanding Land Surface Processes and Ecosystem Changes with

Optical and Laser Remote Sensing".

Olaf Ronneberger, P. F. (n.d.). U-Net: Convolutional Networks for Biomedical

Image Segmentation. Computer Science Department and BIOSS Centre for

Biological Signalling Studies, University of Freiburg, Germany.

Paul A. Longley, M. F. (2015). Geographic Information Science and Systems.

Wiley.

R Neswati, L. A. (2019). Land Suitability for Cocoa Development in South

Sulawesi: An Analysis using GIS and Parametric Approach. The 4th

International Conference of Indonesian Society for Remote Sensing. IOP

Conference Series: Earth and Environmental Science.

Rachita Byahatti, D. S. (2021). Object Detection and Classification using YOLOv3.

International Journal of Engineering Research & Technology (IJERT).

Roboflow, I. (2023). roboflow. Retrieved from https://roboflow.com

Saad Ashfaq, M. A. (2022). Accelerating Deep Learning Model Inference on Arm

CPUs with Ultra-Low Bit Quantization and Runtime. Machine Learning

(cs.LG); Artificial Intelligence (cs.AI).

Sugiarto, A. C. (n.d.). Manajemen Produksi Cokelat Vicco Dark Premium 70 Gram

Di Pusat Penelitian Kopi Dan Kakao Indonesia.

Vladimir A. Krylov, E. K. (2018). Automatic Discovery and Geotagging of Objects

from Street View Imagery. remote sensing MDPI.

Wahyudi, T. P. (2008). Panduan lengkap kakao manajemen agribisnis dari hulu

hingga hilir . Jakarta: Penebar Swadaya.

Xiaoming Fu, A. L. (2022). A Dynamic Detection Method for Phenotyping Pods in

a Soybean Population Based on an Improved YOLO-v5 Network. MDPI.

Xiaoming Fu, A. L. (2022). A Dynamic Detection Method for Phenotyping Pods in

a Soybean Population Based on an Improved YOLO-v5 Network. MDPI

Agronomy.

116

LAMPIRAN

Environment Setup & Architecture Config

import pandas as pd

from keras.models import Sequential, load_model

from keras.layers import Dense

import matplotlib.pyplot as plt

import datetime

from sklearn.model_selection import train_test_split

Load the dataset from the CSV file

data = pd.read_csv('/Volumes/Sandisk SSD/All

Skripsi/Skripsi/Dataset.csv')

print(len(data))

Split the dataset into input (X) and output (y)

variables

X = data[['r', 'g', 'b']]

y = data['distance']

Create the neural network model

model = Sequential()

model.add(Dense(1000, input_dim=3, activation='relu'))

model.add(Dense(750, activation='sigmoid'))

model.add(Dense(500, activation='relu'))

model.add(Dense(300, activation='sigmoid'))

model.add(Dense(200, activation='relu'))

model.add(Dense(150, activation='sigmoid'))

model.add(Dense(100, activation='relu'))

model.add(Dense(50, activation='sigmoid'))

model.add(Dense(1, activation='linear'))

from tensorflow.keras.utils import plot_model

117

Visualize the model

plot_model(model, to_file='model.png',

show_shapes=True, show_layer_names=True)

from PIL import Image

import matplotlib.pyplot as plt

Load and display the image

image = Image.open('model.png')

plt.imshow(image)

plt.axis('off')

plt.show()

X.count

data

TTS

X_train, X_test, y_train, y_test = train_test_split(X,

y, test_size=0.04, random_state=20)

Options

optimizer_selected = 'adamax'

bathsize_selected = 1

epoch_selected = 1000

model.compile(loss='mean_absolute_error',

optimizer=optimizer_selected,

metrics='mean_absolute_error')

optimizer = adam, sgd, adamax, nadam

train = model.fit(X_train, y_train,

epochs=epoch_selected, batch_size=bathsize_selected,

validation_data=(X_test, y_test))

Plot Result

plt.figure(figsize=(8,8))

plt.plot(train.history['loss'], linewidth=1.0)

plt.plot(train.history['val_loss'], linewidth=1.0)

118

plt.ylabel('Cross Entropy')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train','test'], loc='upper right')

current_time = datetime.datetime.now().strftime("%Y-%m-

%d-%H_%M_%S")

last_MAE =

train.history['mean_absolute_error'][len(train.history[

'mean_absolute_error'])-1]

filename = f"/Volumes/Sandisk SSD/All

Skripsi/Pengembangan Model ANN RGB to

Jarak/Models/local_{optimizer_selected}_{bathsize_selec

ted}_{current_time}_Last MAE={last_MAE}_epoch 5000"

plt.title('Model Loss')

description = f"Optimizer:{optimizer_selected},

Batchsize:{bathsize_selected}, Time:{current_time},

\nLast MAE={last_MAE}_epoch 5000"

plt.text(0.1, 0.98, description,

transform=plt.gca().transAxes, fontsize=10,

verticalalignment='top', bbox=dict(facecolor='white',

edgecolor='gray', boxstyle='round,pad=0.5'))

!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!

model.save(filename+".h5")

plt.savefig(filename+".png")

119

filename = "/Volumes/Sandisk SSD/All

Skripsi/Pengembangan Model ANN RGB to

Jarak/Models/local_sgd_15_2023-07-05-11_39_58_Last

MAE=0.35471969842910767_epoch 3000"

loaded_model = load_model(filename+".h5")

optimizer_selected = 'sgd'

bathsize_selected = 15

epoch_selected = 2000

loaded_model.compile(loss='mean_absolute_error',

optimizer=optimizer_selected,

metrics='mean_absolute_error')

train = loaded_model.fit(X_train, y_train,

epochs=epoch_selected, batch_size=bathsize_selected,

validation_data=(X_test, y_test))

Lampiran 1 Kode Pelatihan Model ANN prediksi jarak menggunakan nilai RGB

120

-*- coding: utf-8 -*-

"""train-yolov8-object-detection-on-custom-

dataset.ipynb

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/1N9sR5hrgWq-

M603xucAvXrMtvkbcu9Rk

Tutorial

https://docs.ultralytics.com/yolov5/tutorials/tips_for_

best_training_results/

dYf7lq3b9OrPADmDhQhcwSDpS

Prep

"""

!pip install comet_ml

import comet_ml

comet_ml.init(project_name="yolov8")

from comet_ml import Experiment

from comet_ml.integration.pytorch import log_model

experiment = Experiment(

 api_key = "dYf7lq3b9OrPADmDhQhcwSDpS",

 project_name = "yolov8",

 workspace="agunggg"

)

121

"""## Before you start"""

!nvidia-smi

import os

HOME = os.getcwd()

print(HOME)

Pip install method (recommended)

!pip install ultralytics==8.0.20

from IPython import display

display.clear_output()

import ultralytics

ultralytics.checks()

from ultralytics import YOLO

from IPython.display import display, Image

!pip install roboflow --quiet

from roboflow import Roboflow

"""## Custom Training"""

Commented out IPython magic to ensure Python

compatibility.

!mkdir {HOME}/datasets

%cd {HOME}/datasets

rf = Roboflow(api_key="Dcl5orKoyjBh7DRAKSBU")

122

project = rf.workspace("gungs").project("yolo-cocoa")

dataset = project.version(2).download("yolov5")

import os

def count_files(directory):

 file_count = 0

 # Iterate through all the items in the directory

 for item in os.listdir(directory):

 item_path = os.path.join(directory, item)

 # Check if the current item is a file

 if os.path.isfile(item_path):

 file_count += 1

 return file_count

Provide the directory path you want to count files in

directory_path = '/content/datasets/YOLO-cocoa-

2/valid/images/'

file_count = count_files(directory_path)

print("Total files in the directory:", file_count)

"""## TRAIN"""

Commented out IPython magic to ensure Python

compatibility.

%cd {HOME}

!yolo task=detect mode=train model= yolov8m.pt

data={dataset.location}/data.yaml epochs=700 imgsz=800

plots=True patience=0

123

"""### train results"""

result_folder = '/content/runs/detect/train/'

!ls {HOME}/runs/detect/train/

Commented out IPython magic to ensure Python

compatibility.

%cd {HOME}

Image(filename=f"{result_folder}"+"/confusion_matrix.pn

g", width=600)

Commented out IPython magic to ensure Python

compatibility.

%cd {HOME}

Image(filename=f"{result_folder}"+"/results.png",

width=600)

Commented out IPython magic to ensure Python

compatibility.

%cd {HOME}

Image(filename=f"{result_folder}"+"/val_batch0_pred.jpg

", width=600)

"""## Inference with Custom Model"""

result_folder

Commented out IPython magic to ensure Python

compatibility.

%cd {HOME}

124

test = !yolo task=detect mode=predict

model={HOME}/runs/detect/train/weights/best.pt

conf=0.25 source=/content/test save=True

test

"""**NOTE:** Let's take a look at few results."""

import glob

from IPython.display import Image, display

for image_path in

glob.glob(f'{HOME}/runs/detect/predict/*.jpg'):

 display(Image(filename=image_path, width=600))

 print("\n")

"""### Download Zipped model"""

from google.colab import files

import shutil

import os

folder_path = '/content/runs/'

Create a zip file of the folder

shutil.make_archive(folder_path, 'zip', folder_path)

Download the zip file

files.download(folder_path+'.zip')

files.download('/content/yolov8m.pt')

from ultralytics import YOLO

125

Load a model

model = YOLO('yolov8n.pt') # load an official model

model =

YOLO('/content/runs/detect/train/weights/best.pt') #

load a custom model

Predict with the model

img = '/content/datasets/YOLO-cocoa-

2/valid/images/IMG_20230621_125352_jpg.rf.a01376e8cc4b2

0ef124622299f340d11.jpg'

results = model(img) # predict on an image

from google.colab.patches import cv2_imshow

res = model(img)

res_plotted = results[0]

cv2_imshow(res_plotted)

Lampiran 2 Kode pelatihan YOLOV8 untuk deteksi Buah Kakao

126

-*- coding: utf-8 -*-

"""Final_System refactored.ipynb

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/1GorMCVpZ8aPCDy

ns5Ja73SH0KpiWCVDq

Prep all packages

"""

!git clone

https://github.com/danielyoga/Models_Skripsi_2023.git

import os

HOME = os.getcwd()

print(HOME)

Pip install method (recommended)

!pip install ultralytics==8.0.20

from IPython import display

display.clear_output()

import ultralytics

ultralytics.checks()

from ultralytics import YOLO

from IPython.display import display, Image

127

!pip install roboflow --quiet

from roboflow import Roboflow

!git clone

https://github.com/nianticlabs/monodepth2.git

!python -m pip install opencv-python matplotlib onnx

onnxruntime

!python -m pip install

'git+https://github.com/facebookresearch/segment-

anything.git'

!wget

https://dl.fbaipublicfiles.com/segment_anything/sam_vit

_h_4b8939.pth

import cv2, numpy as np, glob, subprocess, os,

matplotlib.pyplot as plt, math, torch, onnxruntime

from google.colab import drive, files

from PIL import Image

from PIL import Image

from onnxruntime.quantization import QuantType

from onnxruntime.quantization.quantize import

quantize_dynamic

from segment_anything import sam_model_registry,

SamPredictor

from segment_anything.utils.onnx import SamOnnxModel

from keras.models import load_model

loaded_model =

load_model("/content/Models_Skripsi_2023/local_adamax_1

_2023-06-26-10_18_29_Last MAE=0.24479460716247559_epoch

5000.h5")

128

onnx_model_path =

"/content/Models_Skripsi_2023/sam_onnx_quantized_exampl

e.onnx"

checkpoint = "sam_vit_h_4b8939.pth"

model_type = "vit_h"

sam =

sam_model_registry[model_type](checkpoint=checkpoint)

def show_mask(mask, ax):

 color = np.array([30/255, 144/255, 255/255, 0.6])

 h, w = mask.shape[-2:]

 mask_image = mask.reshape(h, w, 1) *

color.reshape(1, 1, -1)

 ax.imshow(mask_image)

def show_points(coords, labels, ax, marker_size=375):

 pos_points = coords[labels==1]

 neg_points = coords[labels==0]

 ax.scatter(pos_points[:, 0], pos_points[:, 1],

color='green', marker='*', s=marker_size,

edgecolor='white', linewidth=1.25)

 ax.scatter(neg_points[:, 0], neg_points[:, 1],

color='red', marker='*', s=marker_size,

edgecolor='white', linewidth=1.25)

"""# 1. Prediksi Jarak

Depth Estimation

"""

Commented out IPython magic to ensure Python

compatibility.

129

Execute Process

Upload File

uploaded_file = files.upload()

filename = next(iter(uploaded_file))

file_content = uploaded_file[filename]

with open(filename, 'wb') as f:

 f.write(file_content)

 print(f"File '{filename}' uploaded and saved.")

Estimate Depth

%run monodepth2/test_simple.py --image_path

"/content/"{filename} --model_name mono_1024x320

"""## Pilih Titik di Objek"""

Show image with axis

image = cv2.imread(filename)

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

plt.figure(figsize=(10,10))

plt.imshow(image)

plt.axis('on')

plt.show()

image_disp = cv2.imread(filename.replace(".jpg",

"_disp.jpeg"))

plt.figure(figsize=(10,10))

plt.imshow(image_disp)

plt.axis('on')

plt.show()

130

Check titik yang dipilih

input_point = np.array([[2700, 2900]])

input_label = np.array([1])

plt.figure(figsize=(10,10))

plt.imshow(image)

show_points(input_point, input_label, plt.gca())

plt.axis('on')

plt.show()

"""## Segment Object Area"""

ort_session =

onnxruntime.InferenceSession(onnx_model_path)

sam.to(device='cuda')

predictor = SamPredictor(sam)

predictor.set_image(image)

image_embedding =

predictor.get_image_embedding().cpu().numpy()

onnx_coord = np.concatenate([input_point, [[0.0, 0.0]]],

axis=0)[None, :, :]

onnx_label = np.concatenate([input_label, [-1]],

axis=0)[None, :].astype(np.float32)

onnx_coord =

predictor.transform.apply_coords(onnx_coord,

image.shape[:2]).astype(np.float32)

ort_inputs = {

 "image_embeddings": image_embedding,

131

 "point_coords": onnx_coord,

 "point_labels": onnx_label,

 "mask_input": np.zeros((1, 1, 256, 256),

dtype=np.float32),

 "has_mask_input": np.zeros(1, dtype=np.float32),

 "orig_im_size": np.array(image.shape[:2],

dtype=np.float32)

}

masks, _, low_res_logits = ort_session.run(None,

ort_inputs)

masks = masks > predictor.model.mask_threshold

plt.figure(figsize=(10,10))

plt.imshow(image)

show_mask(masks, plt.gca())

show_points(input_point, input_label, plt.gca())

plt.axis('on')

plt.show()

"""## get median pada segment area on disp image"""

converted_array = masks.astype(int)

positions = np.where(converted_array == 1)

x_coords = positions[2]

y_coords = positions[3]

pixel_positions = np.column_stack((x_coords, y_coords))

data = np.array(cv2.imread(filename.replace(".jpg",

"_disp.jpeg")))

data = np.array(Image.open(filename.replace(".jpg",

"_disp.jpeg")))

132

Get pixel values at the specified positions

pixel_values = data[pixel_positions[:, 0],

pixel_positions[:, 1]]

median = np.median(pixel_values, axis=0)

print("Median:", median)

"""## median to jarak"""

Execute process

predict jarak using median rgb

median = median.reshape(1, -1)

predictions = loaded_model.predict(median)

predictions = predictions[0][0].tolist()

predictions

predicted_distance = predictions

predicted_distance

"""# 2. Perhitungan Koordinat

Get Camera Long Lat

"""

image = Image.open(filename)

exif_data = image._getexif()

gps_info = exif_data.get(34853)

direction = gps_info[17]

latitude = gps_info.get(2)

133

longitude = gps_info.get(4)

latitude_decimal = float(latitude[0] + latitude[1] / 60

+ latitude[2] / 3600)

longitude_decimal = float(longitude[0] + longitude[1] /

60 + longitude[2] / 3600)

print(latitude_decimal, longitude_decimal, direction)

lat1 = latitude

lon1 = longitude

"""## Count Coordinate"""

Constants

R = 6371.0 # Earth's radius in kilometers

Starting point

latlong = [latitude_decimal, longitude_decimal]

lat1 = math.radians(latlong[0])

lon1 = math.radians(latlong[1])

Heading in degrees

heading = math.radians(direction)

Distance in kilometers

distance = predictions/1000

Calculate destination point

lat2 = math.asin(math.sin(lat1) * math.cos(distance/R)

+

 math.cos(lat1) * math.sin(distance/R)

* math.cos(heading))

134

lon2 = lon1 + math.atan2(math.sin(heading) *

math.sin(distance/R) * math.cos(lat1),

 math.cos(distance/R) -

math.sin(lat1) * math.sin(lat2))

Convert back to degrees

lat2 = math.degrees(lat2)

lon2 = math.degrees(lon2)

Display the destination coordinates

print(f"Destination: {lat2}, {lon2}")

"""# 3. Deteksi Buah Kakao"""

If not found, create predict and predict result folder

import os

import shutil

if not os.path.exists("/content/predict"):

 os.makedirs("/content/predict")

else :

 file_list = os.listdir("/content/predict")

 for file_name in file_list:

 file_path = os.path.join("/content/predict",

file_name)

 if os.path.isfile(file_path):

 os.remove(file_path)

Add the current image to the "predict" folder

image_name = os.path.basename(filename)

predict_image_path = os.path.join("/content/predict",

image_name)

135

shutil.copy(image_name, predict_image_path)

Commented out IPython magic to ensure Python

compatibility.

%cd {HOME}

test = !yolo task=detect mode=predict

model='/content/Models_Skripsi_2023/best.pt' conf=0.25

source=/content/predict/ save=True

test

import re

for i in test:

 match = re.search(r'(?<=to\s).*', i)

 if match:

 result = match.group()

 clean_string = re.sub("\x1b\[.*?m", "", result)

 print(clean_string)

num_unripecocoas = num_ripecocoas = 0

for element in test:

 if "unripecocoas" in element:

 ripecocoas_index =

element.index("unripecocoas")

 num_unripecocoas = int(element[ripecocoas_index

- 3:ripecocoas_index].strip())

 print("Terdeteksi ",num_ripecocoas," Buah Kakao

Belum Matang")

 if "ripecocoas" in element :

 ripecocoas_index = element.index("ripecocoas")

136

 num_ripecocoas = int(element[ripecocoas_index -

3:ripecocoas_index].strip())

 print("Terdeteksi ",num_ripecocoas," Buah Kakao

Matang")

Show image with axis

image = cv2.imread(str(os.path.join("/content/",

clean_string, filename)))

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

plt.figure(figsize=(10,10))

plt.imshow(image)

plt.axis('on')

plt.show()

"""### Initiate Dataframe"""

import pandas as pd

Column names for the new DataFrame

column_names = ['predicted_distance',

 'lat1',

 'lon1',

 'lat2',

 'lon2',

 'num_unripecocoas',

 'num_ripecocoas']

Creating an empty DataFrame with the specified column

names

geotagging_database =

pd.DataFrame(columns=column_names)

137

Displaying the newly created DataFrame

print(geotagging_database)

"""### Append to dataframe"""

data_to_append = [[predicted_distance,

 lat1,

 lon1,

 lat2,

 lon2,

 num_unripecocoas,

 num_ripecocoas]]

geotagging_database.append(pd.DataFrame(data_to_append,

columns=column_names), ignore_index=True)

geotagging_database =

geotagging_database.append(pd.DataFrame(data_to_append,

columns=column_names), ignore_index=True)

geotagging_database

"""# Check GPU Available Resources"""

if torch.cuda.is_available():

 gpu_stats = torch.cuda.memory_stats()

 total_memory =

gpu_stats["allocated_bytes.all.current"] / (1024 ** 3)

 max_memory = gpu_stats["allocated_bytes.all.peak"]

/ (1024 ** 3)

 available_memory = max_memory - total_memory

 print(f"Available GPU memory:

{available_memory:.2f} GB")

138

else:

 print("No GPU available.")

"""# Pembuktian Rumus"""

import math

import pandas as pd

Starting coordinates

def calculate_destination(latlong, heading, distance):

 R = 6371 # Earth's radius in kilometers

 # Starting point

 lat1 = math.radians(latlong[0])

 lon1 = math.radians(latlong[1])

 # Heading in degrees

 heading = math.radians(heading)

 # Distance in kilometers

 # distance = predictions

 # Calculate destination point

 lat2 = math.asin(math.sin(lat1) *

math.cos(distance/R) +

 math.cos(lat1) *

math.sin(distance/R) * math.cos(heading))

 lon2 = lon1 + math.atan2(math.sin(heading) *

math.sin(distance/R) * math.cos(lat1),

 math.cos(distance/R) -

math.sin(lat1) * math.sin(lat2))

 # Convert back to degrees

139

 lat2 = math.degrees(lat2)

 lon2 = math.degrees(lon2)

 # Return the destination coordinates

 return lat2, lon2

calculate_destination([-7.94984, 112.615411], 40.456,

0.069)

Lampiran 3 Kode Sistem Keseluruhan

140

Lampiran 4 Dataframe Sebagai Penyimpanan Sementara Data Hasil Prediksi

Koordinat

141

Lampiran 5 Tangkapan Layar Hasil Deteksi Buah Kakao

