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PENGEMBANGAN METODE GEOTAGGING TANAMAN KAKAO
SECARA OTOMATIS MENGGUNAKAN SMARTPHONE
Daniel Yogatama Maydiputra, Kestrilia Rega Prilianti, Hendry Setiawan

Universitas Ma Chung

Abstrak

Kakao merupakan salah satu komoditas perkebunan strategis dalam
perekonomian Indonesia. Dengan adanya metode remote sensing, monitoring
perkebunan menjadi jauh lebih mudah. Pada citra orthophoto, tanaman kakao akan
tertutupi oleh kanopi tanaman penaung, sehingga tidak ada informasi mengenai
tanaman kakao yang dapat dianalis. Sehingga pada penelitian ini akan
dikembangkan sistem geotagging yang dapat memprediksi titik koordinat dan
jumlah buah pada citra tanaman kakao. Untuk melakukan prediksi titik koordinat
tanaman diperlukan titik koordinat citra, heading serta jarak tanaman terhadap
kamera. Hal ini dapat dilakukan dengan menggunakan model Convolutional Neural
Network monocular depth estimation. Model tersebut akan menghasilkan citra
heatmap yang setiap pikselnya merepresentasikan nilai prediksi kedalaman. Lalu
akan dikembangkan Artificial Neural Network untuk memprediksi nilai jarak
dengan input nilai rgb. Akan diambil nilai rgb objek pada citra heatmap tersebut
yang kemudian digunakan untuk memprediksi jarak kamera terhadap tanaman.
Kemudian digunakan Vincenty Formula untuk mengkalkulasi titik koordinat
tanaman berdasarkan titik koordinat kamera, heading, serta jarak kamera terhadap
tanaman. Untuk melakukan deteksi buah kakao akan digunakan model CNN
YOLOVS. Pengujian performa model dilakukan dengan mengevaluasi nilai loss
setiap model. Untuk melakukan prediksi jarak, model ANN yang memiliki akurasi
terbaik adalah model ANN yang dilatih menggunakan optimizer adamax dengan
batch size 7 pada epoch 1000. Model ANN tersebut memiliki akurasi loss MAE
sebesar 0.333776. Sedangkan model YOLO yang memiliki performa terbaik adalah
model YOLOVS nano dengan epoch 100. Model tersebut memiliki nilai precision
0.907 dan recall 0.958. Sistem yang dikembangkan pada penelitian ini merupakan
prototipe sistem monitoring perkebunan yang praktis.

Kata Kunci: Artificial Neural Network, Citra orthophoto, Convolutional Neural
Network, Kakao, Remote sensing, YOLOVSE
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DEVELOPMENT OF AUTOMATIC GEOTAGGING METHOD FOR
COCOA PLANTATION ON SMARTPHONE
Daniel Yogatama Maydiputra, Kestrilia Rega Prilianti, Hendry Setiawan

Universitas Ma Chung

Abstract

Cocoa is a crucial plantation commodity in Indonesia's economy. Remote
sensing methods offer an easier way to monitor plantations. However, the presence
of shade trees obstructs cocoa plant analysis in orthophoto images. To address this,
a geotagging system was developed in this research to predict cocoa plant
coordinates and fruit quantity. The system utilizes a Convolutional Neural Network
(CNN) for monocular depth estimation, generating a heatmap representing depth
predictions. An Artificial Neural Network (ANN) predicts the distance using input
RGB values extracted from the heatmap image, which helps determine the camera-
to-plant distance and heading. The Vincenty Formula is then applied to calculate
plant coordinates based on the camera coordinates. For cocoa fruit detection, a
YOLOVS8 CNN model is employed. Model performance is evaluated by assessing
loss values, with the ANN model achieving a best MAE loss accuracy of 0.333776
when trained with the adamax optimizer, a batch size of 7, and 1000 epochs. The
top-performing YOLO model is YOLOVS8 nano with 100 epochs, demonstrating a
precision of 0.907 and recall of 0.958. This research presents a practical prototype
of a plantation monitoring system.

Keywords: Artificial Neural Network, Cocoa, Convolutional Neural Network,

Orthophoto images, Remote sensing, YOLOVS
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BAB 1
PENDAHULUAN

1.1. Latar Belakang Masalah

Kakao merupakan salah satu komoditas perkebunan strategis dalam
perekonomian Indonesia. Berdasarkan laporan yang dirilis oleh Direktorat Jenderal
Perkebunan, pada tahun 2020 nilai ekspor kakao mencapai 1,24 milyar US dolar.
Luasan area perkebunan kakao terus menurun sejak tahun 2016. Pada tahun 2016,
perkebunan kakao di Indonesia seluas 1,7 juta Ha. Sedangkan pada 2020,
perkebunan kakao di Indonesia seluas 1,5 juta Ha. Namun hal ini tidak menghambat
produksi kakao. Meskipun produktivitas kakao mengalami penurunan hingga titik
terendahnya yakni pada tahun 2019 menyentuh 721 kg/ha, produktivitas kakao
kembali meningkat pada tahun 2020. Produktivitas kakao pada tahun 2020
menyentuh angka 723 kg/ha. (Ditjenbun, 2020) Tidak hanya sebagai pendukung
ekonomi nasional, kakao juga menjadi sumber pendapatan utama 1,7 juta kepala
keluarga petani kakao di Indonesia (Puslitkoka, 2021).

Untuk menghasilkan produksi kakao yang optimal, diperlukan
pemeliharaan perkebunan kakao yang baik. Pemelliharaan perkebunan kakao
meliputi pemangkasan daun, pengelolaan tanaman penaung, pemupukan,
pengendalian hama, pengendalian penyakit dan pengendalian gulma. Pemangkasan
dilakukan untuk mengatur jumlah dan sebaran daun. Pemangkasan juga bertujuan
untuk mengatur iklim mikro yang tepat untuk pertumbuhan bunga dan buah.
Keberadaan tanaman penaung diperlukan untuk mengatur penyinaran matahari,
suhu, udara, kelembapan serta laju kehilangan lengas melalui transpirasi maupun
evaporasi. Pemupukan dilakukan untuk menambah unsur-unsur hara yang tidak
tersedia di dalam tanah. Pengendalian hama juga perlu dilakukan karena tanaman
kakao merupakan tanaman yang cukup disukai oleh hama. Tepatnya ada 130
spesies dalam kelompok serangga yang merupakan hama dari tanaman kakao. Hal
ini dilakukan dengan tujuan mengurangi kerusakan yang dapat mengurangi
produksi kakao dan kerusakan lingkungan. Pengendalian penyakit dilakukan untuk
mengurangi kegagalan dan menjaga kelestarian lingkungan. Sedangkan

pengendalian gulma perlu dilakukan karena apabila dihiraukan dapat menyebabkan



terhambatnya pertumbuhan tanaman muda dan menunda masa tanaman
menghasilkan, serta berpotensi untuk menjadi inang hama dan penyakit (Prawoto,
2009).

Sebelum adanya bantuan teknologi, monitoring perkebunan dilakukan
secara manual / tradisional. Dengan adanya metode remote sensing, monitoring
perkebunan menjadi jauh lebih mudah. Chatterjee (2018) menyatakan, monitoring
perkebunan berbasis remote sensing terbukti menjadi metode yang paling efisien
untuk melakukan estimasi dan prediksi hasil produksi dari waktu ke waktu. Remote
sensing dapat memonitor pertumbuhan tanaman berdasarkan periode waktu tertentu
dengan cepat. Hal ini dapat membantu pengelola perkebunan untuk melakukan
mitigasi pada tanaman dengan cepat apabila terdapat tanaman yang terkena
serangan hama dan penyakit. Monitoring tanaman dilakukan untuk menganalisis
dan mempelajari kondisi tanaman saat ini, serta membantu pengamatan
pertumbuhan tanaman.

Ditjenbun menjelaskan, tanaman kakao memerlukan tanaman penaung
untuk meredam suhu maksimum dari paparan sinar matahari yang dapat merusak
tanaman kakao. Tanaman penaung juga berfungsi sebagai pemecah angin karena
daun tanaman kakao mudah rontok. Namun, keberadaan tanaman penaung menjadi
faktor penghambat remote sensing pada perkebunan kakao. Metode remote sensing
pada umumnya menggunakan citra orthophoto yang merupakan hasil dari satelit /
penerbangan UAV sebagai sumber pengamatan. Pada citra orthophoto, tanaman
kakao akan tertutupi oleh kanopi tanaman penaung, sehingga tidak ada informasi
mengenai tanaman kakao yang dapat dianalisa (Ditjenbun, 2021).

Untuk mengatasi kendala tersebut, diperlukan teknologi geotagging
otomatis dengan memprediksi titik koordinat tanaman kakao. Dengan
menggunakan monocular depth estimation serta triangulation dapat dilakukan
pemetaan otomatis. Pemetaan otomatis ini dilakukan untuk mengidentifikasi
kemunculan beberapa objek yang mirip secara otomatis serta mendapatkan titik
koordinat dari objek tersebut. (Vladimir A. Krylov, 2018).

Dikarenakan terbatasnya informasi yang didapatkan pada metode
monitoring dari atas kanopi, maka penulis menggunakan metode monitoring di

bawah kanopi pada penelitian ini. Penulis menawarkan alternatif yang murah,



cepat, serta praktis untuk melakukan monitoring tanaman kakao dibawah kanopi.
Pada penelitian ini akan digunakan smartphone untuk melakukan pengambilan
gambar. Monitoring dilakukan dengan mengambil gambar tanaman kakao
menggunakan smartphone dari depan tanaman. Metode ini diharapkan dapat
memberikan informasi yang lebih lengkap dan akurat mengenai tanaman kakao.
Monitoring akan dilakukan dengan melakukan akuisisi citra setiap tanaman kakao.
Teknologi ini akan melakukan prediksi titik koordinat tanaman kakao berdasarkan
titik koordinat kamera pada saat pengambilan gambar dilakukan serta estimasi jarak

tanaman kakao dari kamera.

1.2. Identifikasi Masalah

Analisa kondisi tanaman kakao menggunakan orthophoto memiliki
beberapa keterbatasan. Data orthophoto hanya dapat menangkap informasi yang
nampak dari atas tanaman kakao. Sedangkan, di Indonesia, kebanyakan tanaman
kakao ditanam bersama dengan tanaman-tanaman lainnya sebagai tanaman
penaung. Hal ini dilakukan untuk mengurangi cahaya yang mengenai tanaman
kakao. Tanaman penaung menyebabkan teknik remote sensing menggunakan
orthophoto menjadi solusi yang kurang sesuai. Apabila dilihat dari atas, tanaman
kakao seringkali tertutup oleh tanaman penaungnya. Sehingga tidak dapat

dilakukan analisa lebih lanjut terkait tanaman kakao.

1.3. Batasan Masalah
Berikut beberapa batasan masalah dalam penelitian ini:
a. Posisi kamera lurus terhadap tanaman kakao untuk membatasi variasi sudut

pengambilan gambar

b. Tingkat akurasi model geotagging berdasarkan gps pada smartphone
c. Buah yang terhitung hanya buah yang terlihat jelas pada citra

d. Objek yang diamati : Tanaman Kakao

€. Akuisisi Citra dilakukan menggunakaan telepon genggam

f. Tanaman kakao yang diamati berada di perkebunan kakao di pasuruan.



1.4.

Data Tanaman Kakao yang dihasilkan adalah jumlah buah pada tanaman

kakao

Perumusan Masalah

Berdasarkan identifikasi masalah di atas, berikut rumusan masalah dalam

penelitian ini.

a.

1.5.

1.6.

Bagaimana pengembangan metode geotagging yang dapat memprediksi
titik koordinat tanaman?
Bagaimana pengembangan metode untuk melakukan kuantifikasi otomatis

yang dapat digunakan untuk menghitung jumlah buah kakao pada citra?

Tujuan Penelitian

Mengembangkan metode geotagging yang dapat memprediksi titik
koordinat tanaman.
Mengembangkan metode untuk melakukan kuantifikasi otomatis yang

dapat digunakan untuk menghitung jumlah buah kakao pada citra.

Luaran

Metode remote sensing baru yang dapat mengakuisisi lebih banyak

informasi mendetail pada kakao serta publikasi ilmiah terkait metode tersebut.

1.7.

1.8.

Manfaat
Bagi Peneliti : melakukan penerapan ilmu.
Bagi Masyarakat : mempermudah monitoring tanaman kakao pada

perkebunan kakao.

Bagi Universitas : menambah kepustakaan.

Sistematika Penulisan

Sistematika dalam penulisan proposal Tugas Akhir ini akan dibagi menjadi lima

bab seperti berikut.



Bab I: Pendahuluan
Pada bab pendahuluan, akan dijelaskan latar belakang, identifikasi masalah, batasan
masalah, tujuan penelitian, manfaat penelitian, luaran tugas akhir, dan sistematika

penulisan.

Bab II: Tinjauan Pustaka
Pada bab tinjauan pustaka, akan diuraikan secara sistematis literatur yang
digunakan dalam penyusunan Tugas Akhir. Hal ini bertujuan untuk memperoleh

landasan teori terkait dengan CNN, Geotagging dan Kakao.

Bab III: Metodologi Penelitian
Bab ini akan menjelaskan tahapan pengerjaan dan analisis perancangan awal sistem
yang akan dibuat. Tahapan tersebut mencakup identifikasi masalah, studi pustaka,

pengumpulan data, profiling, desain sistem, dan pengujian.

Bab IV: Hasil dan Pembahasan
Bab ini akan menjelaskan tahapan pengerjaan dan analisis perancangan awal sistem
yang akan dibuat. Tahapan tersebut mencakup identifikasi masalah, studi pustaka,

pengumpulan data, desain sistem, dan pengujian.

Bab V: Kesimpulan dan Saran
Bab ini akan berisi simpulan dari hasil penelitian Tugas Akhir yang telah dilakukan,
serta saran yang mungkin dapat dilakukan untuk memperbaiki sistem aplikasi

dalam penelitian selanjutnya.
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BAB 11
TINJAUAN PUSTAKA

2.1. Komoditas Kakao dan Permasalahannya

Komoditas kakao merupakan tanaman tropis yang menghasilkan biji kakao
yang digunakan sebagai bahan baku dalam produksi cokelat. Kakao tumbuh
terutama di daerah tropis, terutama di Afrika Barat, Asia Tenggara, dan Amerika
Selatan. Kakao memiliki peran penting dalam perekonomian banyak negara
produsen, memberikan mata pencaharian bagi petani dan pendapatan ekspor yang

signifikan.

2.1.1. Komoditas Kakao

Kakao berasal dari hutan tropis di Amerika Tengah. Awalnya biji kakao
diolah oleh suku Indian dengan cara dikeringkan di bawah sinar matahari, lalu
disangrai dan dijadikan adonan. Suku Indian membuat minuman dari kakao, dengan
cara mencampur adonan tersebut dengan vanili. Pada masa tersebut, kakao tidak
hanya berfungsi sebagai minuman tetapi juga digunakan sebagai mata uang atau
alat tukar-menukar antar individu. Bangsa spanyol juga mencoba untuk mengolah
kakao dengan cara mereka sendiri yaitu dengan mengsangrai biji kakao, menumbuk
lalu ditambahkan gula tebu. Metode tersebut lebih disukai oleh Bangsa Spanyol.
Pada tahun 1560, Spanyol memperkenalkan kakao di Indonesia tepatnya di
Sulawesi. Kemudian pada tahun 1825-1838, Indonesia melakukan ekspor kakao ke
Manila sebanyak 92 ton. Namun, pada periode setelah itu ekspor kakao cenderung
menerun karena banyak tanaman kakao yang terserang penyakit. Kakao juga
ditanam di Ambon, pada 1859 terdapat 10.000-12.000 tanaman tanaman kakao dan
telah menghasilkan 11,6 ton. Di pulau Jawa, kakao baru ditanam pada tahun 1880.
(Wahyudi, 2008)

Dikutip dari Statistik Perkebunan Ditjenbun, produksi kakao di Indonesia
mencapai puncak dengan nilai 837.918 ton pada tahun 2010. Sedangkan luasan
lahan kakao di Indonesia sempat mencapai nilai maksimum pada tahun 2012 seluas
1.774.464 Ha. Luasan lahan perkebunan kakao terus menurun hingga tahun 2022,

Indonesia hanya memiliki lahan kakao seluas 1.476.776 Ha. Namun terdapat
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peningkatan jumlah produksi kakao dari tahun 2021 ke tahun 2022. Pada tahun
2021, Indonesia memproduksi 706.636 ton kakao. Sedangkan pada tahun 2022
Indonesia memproduksi 732.256 ton kakao. Dengan berkurangnya luasan lahan
perkebunan kakao, namun Indonesia berhasil meningkatkan produksi kakao.

Artinya Indonesia berhasil meningkatkan produktivitas kakao (Ditjenbun 2021).

2.1.2. Penyakit Vascular Streak Dieback

Tanaman kakao yang terkena serangan vascular streak dieback akan
menunjukkan gejala adanya daun yang menguning dengan bercak-bercak berwarna
hijau. Daun-daun tersebut akan gugur sehingga tampak gejala ranting ompong.
Apabila bekas duduk daun disayat akan terlihat tiga buah noktah berwarna cokelat
kehitam-hitaman. Pada bekas potongan daun, bekas duduk daun, bekas potongan
ranting akan muncul benang-benang berwarna putih. Penyakit ini disebabkan oleh

jamur O. theobromae (Wahyudi, 2008).

2.2.  Geographic Coordinate System (GCS)

Geographic Coordinate System (GCS) adalah sistem berbasis koordinat
yang digunakan untuk merepresentasikan posisi suatu lokasi di permukaan bumi.
GCS menggunakan permukaan 3 dimensi berbentuk bola untuk mendefinisikan
posisi. Terdapat 3 komponen GCS yakni latitude, longitude dan altitude. Latitude
dan /ongitude mendifinisikan lokasi di permukaan sedangkan altitude
mendefinisikan elevasi atatu ketinggian diatas atau kedalaman dibawah permukaan
laut. GCS yang paling umum digunakan adalah WGS 84 (World Geodetic System),
yang digunakan untuk navigasi, pemetaan dan sistem penentuan posisi satelit

(Longley, 2015).

2.3.  Global Positioning System (GPS)

GPS adalah sistem navigasi berbasis satelit yang menyediakan informasi
lokasi dan waktu pada berbagai kondisi cuaca, di semua area di bumi. Sistem GPS
awalnya dikembangkan untuk kegunaan militer dan sekarang digunakan untuk

berbagai navigasi dan layanan berbasis lokasi seperti pemetaan, geotagging,
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pelacakan lokasi. GPS receiver mengkalkulasi posisi dengan catatan waktu presisi
ketika sinyal dikirim oleh satelit GPS. Sinyal ini mengandung informasi mengenai
lokasi satelit, waktu ketika sinyal dikirim, kondisi ionosferik dan atmosferik yang
mempengaruhi pengiriman sinyal. Receiver menggunakan informasi ini untuk
menentukan lokasi dan menyediakan koordinat latitude, longitude dan altitude

(Zarchan, 1996).

2.4. Geotagging

Geotagging merupakan proses menambahkan informasi geografi seperti
koordinat, serta nama lokasi ke media digital seperti foto, video dan lainnya.
Geotagging mempermudah untuk melakukan pemetaan dan pencarian berbasis
lokasi. Informasi geografi dapat ditambahkan secara manual ataupun otomatis
dengan menggunakan perangkat GPS atau aplikasi kamera ponsel. Geotagging
digunakan dalam berbagai bidang termausk pariwisata, jurnalistik, perencanaan tata
kota, manajemen lingkungan, dan lainnya. Hal ini menyediakan informasi yang
berharga untuk melakukan visualisasi, analisa pola atau tren, relasi ruang fisik dan

virtual (Atunggal, 2018).

2.5. Remote Sensing

Remote Sensing adalah proses akuisisi data mengenai sebuah objek atau
fenomena tanpa melakukan kontak fisik dengan objek. Biasanya dilakukan
menggunakan perangkat berbasis satelit atau aerial, yang dapat menangkap
informasi mengenai objek. Beberapa sensor digunakan untuk menangkap informasi
mengenai objek, seperti sensor spectrometer, radiometer, hyperspectral radiometer,
sounder, accelerometer. Data-data yang dihasilkan sensor-sensor tersebut dapat
digunakan untuk melakukan monitoring informasi spasial berdasarkan waktu.
Selama 5 dekade terakhir, teknologi remote sensing telah digunakan dalam berbagai
riset area lahan basah seperti perubahan penggunaan lahan / pemetaan daerah lahan
basah. Siklus karbon dan peringatan perubahan iklim, pelepasan karbon pada

kebakaran lahan gambut, serta proses hidrologi pada lahan basah (Guo, 2017).
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2.6. Remote Sensing pada kakao

Neswati (2019) menggunakan metode remote sensing untuk mendapatkan
informasi penggunaan lahan dan kesesuaian lahan untuk digunakan sebagai
perkebunan kakao. Hasil penelitian tersebut menyatakan bahwa hasil analisa area
yang berpotensi untuk dijadikan lahan perkebunan kakao menyatakan 90% dari
area yang di analisa sesuai untuk digunakan dengan index kesesuaian berkisar
antara 35 hingga 60. Sedangkan 10% dari area yang ada dinyatakan tidak sesuai
untuk ditanami kakao dengan Land Suitability Index kurang dari 25. Berdasarkan
hasil estimasi, produktivitas perkebunan hanya berkisar antara 0,3 hingga 1 ton/ha.
Angka ini dikategorikan sebagai produktivitas rendah hingga sedang (R Neswati,
2019).

2.7. Roboflow

Roboflow merupakan platform untuk melakukan pekerjaan dalam lingkup
computer vision. Platform ini digunakan oleh lebih dari 250.000 engineer untuk
membuat dataset, melatih model, dan melakukan deploy model pada server.
Beberapa fitur dari Roboflow meliputi bounding boxes poligon, label assist, dan
infrastruktur pelatihan model. Bagi para pengembang aplikasi yang ingin
menggunakan Roboflow dalam bahasa Python, tersedia /ibrary Python untuk
menggunakan Roboflow di PyPI. Library Python Roboflow adalah wrapper python
yang menghubungkan aplikasi web Roboflow inti dan REST API. Selain itu,
terdapat juga utilitas visi komputer sumber terbuka dan tutorial notebook dalam
bahasa Python yang tersedia di GitHub. Untuk informasi lebih lanjut tentang cara
menggunakan Roboflow, terdapat situs dokumentasi yang tersedia. Situs web
tersebut memberikan  pengantar tentang Roboflow dan bagaimana
menggunakannya untuk membangun model visi komputer yang kuat. Roboflow

mempermudah manajemen dataset dan penggunaan dataset (Roboflow, 2023).

2.8. Sistem Estimasi Titik Koordinat

Dalam penelitian ini, akan dibuat sistem untuk mengkalkulasi estimasi titik

koordinat suatu objek berdasarkan data yang tersedia. Sistem ini bertujuan untuk
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memberikan perkiraan titik koordinat yang mungkin dari objek yang diamati,
berdasarkan informasi yang ada. Metode yang digunakan dalam sistem ini
mencakup analisis data spasial, pengolahan citra, dan teknik pemodelan matematis.
Tujuan dari penelitian ini adalah meningkatkan akurasi dan ketepatan dalam
menentukan estimasi titik koordinat, sehingga dapat digunakan dalam berbagai
aplikasi seperti pemetaan, navigasi, dan pemantauan objek di lingkungan. Dalam
pengembangan sistem, akan dilakukan pengujian dan evaluasi untuk memastikan
kinerja dan keandalan sistem dalam memberikan estimasi titik koordinat yang

akurat.

2.8.1. Metode estimasi kedalaman monokular

Estimasi kedalaman monocular merupakan sebuah teknik untuk
memperkirakan kedalaman secara 3 dimensi dari citra 2 dimensi. Kedalaman 3
dimensi diprediksi dengan mengambil informasi dari gambar yang dihasilkan oleh
satu kamera. Salah satu Teknik estimasi kedalaman monocular yang paling populer
adalah menggunakan Convolutional Neural Network (CNN). Model CNN dapat
dilatih untuk mempelajari pola-pola dalam data gambar yang menunjukkan
kedalaman secara 3 dimensi. CNN mengambil gambar sebagai input dan
mengeluarkan prediksi kedalaman 3 dimensi sebagai output (Khan, 2020). Godard
(2019) mengembangkan metode estimasi kedalaman monokular berbasis arsitektur
U-Net. Pada penelitian tersebut, beberapa model diintegrasikan untuk
menghasilkan nilai estimasi kedalaman objek. Arsitektur CNN U-Net dapat dilihat
pada gambar 2.1.
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Gambar 2. 1 Arsitektur CNN U-Net

Arsitektur jaringan ini digambarkan dalam Gambar 2.1. Jaringan ini terdiri
dari jalur kontraksi (sisi kiri) dan jalur ekspansi (sisi kanan). Jalur kontraksi
mengikuti arsitektur jaringan konvolusi yang khas. Jalur ini terdiri dari pengulangan
dua kali konvolusi 3x3 (konvolusi tanpa padding), masing-masing diikuti oleh unit
linear ReLU dan operasi max pooling 2x2 dengan langkah 2 untuk melakukan
downsampling. Pada setiap tahap downsampling, jumlah saluran fitur digandakan.
Setiap tahap pada jalur ekspansi terdiri dari upsampling dari peta fitur, diikuti oleh
konvolusi 2x2 ("up-convolution") yang mengurangi separuh jumlah saluran fitur,
penyatuan dengan peta fitur yang sesuai dari jalur kontraksi, dan dua konvolusi 3x3,
masing-masing diikuti oleh ReLU. Pemangkasan diperlukan karena adanya
kehilangan piksel batas pada setiap konvolusi. Pada lapisan akhir, konvolusi 1x1
digunakan untuk memetakan setiap vektor fitur 64-komponen menjadi jumlah kelas
yang diinginkan. Secara total, jaringan ini memiliki 23 lapisan konvolusi

(Ronneberger, 2015).

2.8.2. Model CNN Segment Anything
Segment Anything Model (SAM) adalah model CNN yang dikembangkan

oleh Meta Al Research yang mampu melakukan segmentasi terhadap objek apa pun
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pada citra. SAM telah dilatih menggunakan dataset segmentasi yang sangat besar
dengan lebih dari 1 miliar mask dan telah menunjukkan potensi luar biasa dalam
berbagai aplikasi, termasuk segmentasi gambar, deteksi objek, dan ekstraksi otak.
SAM juga telah dikombinasikan dengan model-model lain, seperti Grounding
DINO, Stable Diffusion, dan ChatGPT, untuk menunjukkan keberagaman sebagai
model dasar. Namun, SAM memiliki keterbatasan dalam mendeteksi objek
transparan dan skenario yang menantang terkait kaca. Sebuah survei komprehensif
tentang SAM telah dilakukan untuk memberikan wawasan mengenai aplikasi
praktis, manfaat, dan keterbatasannya.

"Segment Anything" merupakan sebuah proyek dan model yang
dikembangkan oleh Meta Al untuk segmentasi gambar. Tujuan dari proyek ini
adalah menciptakan model yang dapat dengan akurat "memotong" atau melakukan
segmentasi pada objek apa pun dalam sebuah gambar hanya dengan satu klik.
Model Segment Anything (SAM) menggunakan berbagai input prompt, seperti titik
atau kotak, untuk menghasilkan masker objek berkualitas tinggi untuk semua objek
dalam gambar. Model ini telah dilatih menggunakan dataset berisi jutaan gambar
dan miliaran masker, dan telah menunjukkan performa yang kuat pada berbagai
tugas segmentasi. Model ini dapat digunakan untuk menghasilkan masker untuk
objek tertentu atau untuk seluruh gambar. Proyek Segment Anything bertujuan
untuk mendemokrasikan segmentasi gambar dan membuatnya lebih mudah diakses

(Zhang, 2023). Model ini dikembangkan menggunakan arsitektur transformer.
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Gambar 2. 2 Arsitektur Transformer pada model Segment Anything

2.8.3. Vincenty Formula

Rumus Vincenty adalah dua metode iteratif terkait yang digunakan dalam
geodesi untuk menghitung jarak antara dua titik pada permukaan sebuah sferoid.
Rumus ini dikembangkan oleh Thaddeus Vincenty pada tahun 1975 dan didasarkan
pada asumsi bahwa bentuk Bumi adalah sebuah sferoid datar, sehingga
membuatnya lebih akurat dibandingkan dengan metode yang menganggap Bumi
sebagai bola, seperti jarak lingkaran besar. Rumus Vincenty digunakan untuk
menghitung jarak antara dua titik pada permukaan sebuah sferoid, seperti Bumi.
Rumus ini lebih akurat daripada metode yang menganggap Bumi sebagai bola.
Rumus Vincenty adalah metode iteratif, yang berarti mereka menggunakan

serangkaian pendekatan untuk mencapai jawaban akhir. Rumus ini dikembangkan
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oleh Thaddeus Vincenty pada tahun 1975. Rumus Vincenty mengasumsikan bahwa
Bumi adalah sferoid datar, yang merupakan representasi yang lebih akurat tentang
bentuk Bumi daripada bola. Rumus ini sangat berguna untuk menghitung jarak
dalam jarak yang panjang atau pada permukaan sferoid datar, seperti Bumi. Namun,
perlu dicatat bahwa solusi inversi Vincenty dapat gagal pada titik yang hampir
antipodal.

Menggunakan rumus Vincenty memungkinkan kita untuk menghitung
latitude dan longitude tujuan dari suatu titik awal. Hal ini dimungkinkan karena
rumus Vincenty didasarkan pada model matematika ellipsoid, yang merupakan
representasi yang lebih akurat tentang bentuk Bumi daripada bola. Rumus ini
memperhitungkan perataan Bumi di kutub dan pembengkokan di khatulistiwa, yang
memengaruhi jarak antara dua titik di permukaan Bumi. Dengan menggunakan
metode iteratif, rumus Vincenty dapat menghitung jarak antara dua titik di
permukaan ellipsoid dengan akurasi tinggi. Ini memungkinkan penggunaan rumus
Vincenty untuk menghitung latitude dan longitude tujuan dari suatu titik awal,
dengan memberikan jarak yang ingin ditempuh (Kettle, 2017).

Dengan menggunakan titik awal (®1, L1) dan azimut awal, al, serta jarak,
s, sepanjang garis lintang, masalahnya adalah untuk mencari titik tujuan (®2, L2)

dan azimut, a2. Mulai dengan melakukan perhitungan berikut.

U, = arctan [(1 — f)tand, (2-1)

0, = arctan2(tanU,, cosa — f)tan (2-2)

sina = cosU;sin a, (2-3)

a? — b2 a? — b2

u? = cos? a( 2 ) =(1- sinza)< 2 ) (2-4)
2

A= 1+—20 (4096 +u?[~768 + u?(320 — 175u?)]) (2-3)
2

B =152 (256 + u?[—128 + u?(74 — 47u?))) (2-6)

Kemudian, dengan menggunakan nilai awal 7~ ﬁ, lakukan iterasi pada
persamaan-persamaan berikut hingga tidak ada perubahan signifikan pada c:

20,, =20, +0 (2-7)
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Ao =Bsinao {cos(Zam) (2-8)

1
+ ZB (cosa[—l + 2c0s*(20p,)]

B . 5 2
- [20,,]1[—3 + 4sin*a][—-3 + 4cos (ZO'm)])}

S
Ao = oA + Ao (2-9)

Setelah ¢ diperoleh dengan akurasi yang memadai, evaluasilah:
¢, = arctan?2 (sinUlcosa

+ cos U; sin o cos a4, (1 (2-10)

- f)\/sinza + (sin U; sin 0 — cos U; cos o cos a,)? )

A = arctan2(sino sin a;,cos U; cosg —sinU; sino cos a;) (2-11)

C = %cosza[él + f(4 — 3 cos?a)] (2-12)
L=2—0-C)fsinafo (2-13)
+ C sin o(cos[20,,] + C coso [= 1+ 2 cos?(20,,)])}
Ly=L+1L,

a = arctan2(sin a, — sin U; sino + cos U; cos o cos a;) (2-14)

Jika titik awal berada di Kutub Utara atau Kutub Selatan, maka persamaan pertama
tidak dapat ditentukan. Jika azimut awal adalah Timur atau Barat, maka persamaan

kedua tidak dapat ditentukan.

2.9. Sistem Deteksi Objek Buah Kakao menggunakan CNN YOLO

Pada penelitian ini akan dikembangkan model CNN untuk melakukan deteksi buah
kakao pada tanaman kakao. Arsitektur model CNN yang digunakan pada penelitian
ini adalah arsitektur YOLOVS. Arsitektur ini digunakan karena model yang
dihasilkan memiliki akurasi deteksi yang baik dan dapat melakukan deteksi secara

cepat.
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3.9.1. Arsitektur YOLOVS

YOLOVS, yang dikembangkan oleh Ultralytics pada bulan Januari 2023
sebagai pengembangan dari YOLOvS, memperkenalkan beberapa versi dengan
skala yang berbeda, mulai dari YOLOv8n (nano) hingga YOLOvV8x (extra large).
Model yang diperbarui ini mendukung beberapa tugas visi komputer seperti deteksi
objek, segmentasi, estimasi pose, pelacakan, dan klasifikasi. Arsitektur YOLOVS
didasarkan pada YOLOVS namun dengan beberapa modifikasi, terutama pada
CSPLayer yang sekarang disebut sebagai modul C2f. Modul C2f menggabungkan
fitur tingkat tinggi dengan informasi kontekstual untuk meningkatkan akurasi
deteksi YOLOv8 menggunakan model tanpa anchor dengan kepala yang terpisah,
memungkinkan pemrosesan independen untuk tugas objek, klasifikasi, dan regresi.
Desain ini memungkinkan setiap cabang fokus pada tugasnya masing-masing dan
meningkatkan akurasi keseluruhan model. Pada lapisan output, YOLOvVS
menggunakan fungsi sigmoid untuk skor objek, yang mewakili probabilitas
terdapatnya objek dalam sebuah bounding box. Fungsi softmax digunakan untuk
probabilitas kelas, menunjukkan kemungkinan objek termasuk dalam kelas-kelas
yang berbeda (Terven, 2023).

Fungsi /loss pada YOLOvS menggabungkan VFL Loss untuk klasifikasi dan
DFL Loss+CIOU Loss untuk regresi. VFL Loss merupakan varian dari fungsi Focal
Loss yang memberikan bobot lebih kepada contoh-contoh sulit dan mengurangi
pengaruh contoh-contoh mudah. DFL Loss merupakan fungsi loss berbasis
distribusi yang memodelkan distribusi koordinat bounding box dan memprediksi
rata-rata dan variansinya. CIOU Loss merupakan varian dari fungsi Intersection
over Union (IOU) yang memperhitungkan rasio aspek dan ukuran bounding box.
Untuk bounding box dan area segmentasi, fungsi loss mempertimbangkan nilai
confidence bounding box yang diprediksi dan IOU. Perhitungan loss digunakan
untuk mengestimasi jumlah kesalahan, yang kemudian digunakan oleh optimizer
untuk menyesuaikan bobot model. YOLOv8 menggunakan fungsi loss CloU dan
DFL untuk loss bounding box dan binary cross-entropy untuk loss klasifikasi.
Fungsi-fungsi ini telah meningkatkan kinerja deteksi objek, terutama dalam
menghadapi objek-objek kecil (Terven, 2023). Arsitektur model CNN YOLOVS
dapat dilihat pada gambar 2.3.
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3.9.2. Arstitektur YOLOVS8n

YOLOvVS8 nano adalah model deteksi objek yang ringan dan efisien yang
dikembangkan oleh Ultralytics. Model ini didasarkan pada arsitektur You Only
Look Once (YOLO) dan secara khusus dirancang untuk lingkungan dengan sumber
daya terbatas dan daya komputasi terbatas, seperti perangkat edge dan sistem
embedded. YOLOvV8 nano mencapai keseimbangan yang baik antara akurasi dan
kecepatan dengan menggunakan ukuran model yang lebih kecil dan
mengoptimalkan arsitektur jaringan, sehingga mampu mendeteksi objek secara
real-time. Meskipun ukurannya kompak, YOLOvVS nano tetap mempertahankan
akurasi tinggi dengan memanfaatkan teknik canggih seperti deteksi bebas anchor
dan feature pyramid networks. Hal ini menjadikannya cocok untuk berbagai
aplikasi, termasuk robotika, sistem pengawasan, dan perangkat IoT. Arsitektur

YOLOVS nano dapat dilihat pada tabel 2.1.

Tabel 2. 1 Arsitektur YOLOVS8n (nano)

layer
from n params modules arguments

num

0 -1 1 464 ultralytics.nn.modules.Conv [3, 16, 3, 2]

1 -1 1 4672  ultralytics.nn.modules.Conv [16, 32,3, 2]

2 -1 1 7360  ultralytics.nn.modules.C2f [32, 32, 1, True]

3 -1 1 18560 ultralytics.nn.modules.Conv [32, 64, 3, 2]

4 -1 2 49664 ultralytics.nn.modules.C2f [64, 64, 2, True]

5 -1 1 73984 ultralytics.nn.modules.Conv [64, 128, 3, 2]

6 -1 2 197632 ultralytics.nn.modules.C2f [128, 128, 2,
True]

7 -1 1 295424 ultralytics.nn.modules.Conv [128, 256, 3, 2]

8 -1 1 460288 ultralytics.nn.modules.C2f [256, 256, 1,
True]

9 -1 1 164608 ultralytics.nn.modules.SPPF [256, 256, 5]
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Tabel 2. 2 Arsitektur YOLOVS8n (nano) (lanjutan)

layer
from n params modules arguments
num
10 -1 10 torch.nn.modules.upsampling.Upsample [None, 2,
'nearest']
11 [-1,6] 10 ultralytics.nn.modules.Concat [1]
12 -1 1 148224 ultralytics.nn.modules.C2f [384, 128, 1]
13 -1 10 torch.nn.modules.upsampling.Upsample [None, 2,
'nearest']
14 [-1,4]10 ultralytics.nn.modules.Concat [1]
15 -1 1 37248 ultralytics.nn.modules.C2f [192, 64, 1]
16 -1 1 36992 ultralytics.nn.modules.Conv [64, 64, 3, 2]
17 [-1, 10 ultralytics.nn.modules.Concat [1]
12]
18 -1 1 123648 ultralytics.nn.modules.C2f [192, 128, 1]
19 -1 1 147712 ultralytics.nn.modules.Conv [128, 128, 3, 2]
20 [-1,9] 10 ultralytics.nn.modules.Concat [1]

21 -1 1 493056 ultralytics.nn.modules.C2f [384, 256, 1]
22 [15, 1 751702 ultralytics.nn.modules.Detect [2, [64, 128,
18, 256]]

21]

3.9.3. Arstitektur YOLOV8m

YOLOv8 Medium adalah model deteksi objek yang dikembangkan oleh Ultralytics,
sebuah organisasi yang fokus pada visi komputer dan deep learning. Ini merupakan
perluasan dari keluarga model populer You Only Look Once (YOLO). YOLOv8
Medium dirancang untuk mendeteksi dan lokaliser objek dengan efisien dan akurat
dalam gambar atau frame video, sehingga cocok untuk aplikasi waktu nyata. Hal

ini dicapai dengan membagi gambar masukan menjadi sebuah grid dan
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memprediksi bounding box serta probabilitas kelas untuk objek dalam setiap sel
grid. YOLOvV8 Medium menggunakan arsitektur berukuran medium, menemukan
keseimbangan antara kompleksitas model dan kecepatan, sehingga cocok untuk
berbagai tugas visi komputer. Arsitektur model CNN YOLOvV8 medium dapat
dilihat pada tabel berikut.

Tabel 2. 3 Arsitektur YOLOV8m (medium)

layer from n params module arguments
0 -111392 ultralytics.nn.modules.Conv [3,48, 3, 2]
1 -1 1 41664  ultralytics.nn.modules.Conv [48, 96, 3, 2]
[96, 96, 2,
2 -1 2 111360 ultralytics.nn.modules.C2f True]
3 -1 1 166272 ultralytics.nn.modules.Conv [96, 192, 3, 2]
[192, 192, 4,
4 -1 4 813312 ultralytics.nn.modules.C2f True]
[192, 384, 3,
5 -1 1 664320 ultralytics.nn.modules.Conv 2]
[384, 384, 4,
6 -1 4 3248640 ultralytics.nn.modules.C2f True]
[384, 576, 3,
7 -1 1 1991808 ultralytics.nn.modules.Conv 2]
[576, 576, 2,
8 -1 2 3985920 ultralytics.nn.modules.C2f True]
9 -1 1 831168 ultralytics.nn.modules.SPPF [576, 576, 5]
[None, 2,
10 -110 torch.nn.modules.upsampling.Upsample mearest']
11 [-1,6]10 ultralytics.nn.modules.Concat [1]
12 -1 2 1993728 ultralytics.nn.modules.C2f [960, 384, 2]
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Tabel 2. 4 Arsitektur YOLOV8m (medium) (lanjutan)

layer from n params module arguments layer
13 -11 0 torch.nn.modules.upsampling.Upsample [None,
2,
'nearest']
14 [-1, 4]1 0 ultralytics.nn.modules.Concat [1]
15 -12 517632 ultralytics.nn.modules.C2f [576,
192, 2]
16 -11 332160 ultralytics.nn.modules.Conv [192,
192, 3,
2]
17 [-1, 2]1 0 ultralytics.nn.modules.Concat [1]
1
18 -12 1846272 ultralytics.nn.modules.C2f [576,
384, 2]
19 -11 1327872 ultralytics.nn.modules.Conv [384,
384, 3,
2]
20 [-1, 9]1 0 ultralytics.nn.modules.Concat [1]
21 -12 4207104 ultralytics.nn.modules.C2f [960,
576, 2]
22 [15, 1]1 3776854 ultralytics.nn.modules.Detect [2,[192,
18, 384,
2 576]]

3.9.4. Metode Deteksi Objek Buah menggunakan YOLO

Fu (2022) mememperkenalkan metode baru untuk mendeteksi dan
menghitung jumlah polong kedelai secara otomatis dan akurat di lapangan. Metode
ini dapat mengatasi masalah efisiensi rendah, ketidakakuratan, dan ukuran sampel

yang kecil pada pengumpulan fenotipe kedelai secara manual di lapangan. Metode
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ini menggunakan kendaraan pemindaian tiga dimensi yang dikembangkan sendiri
untuk memperoleh gambar warna RGB dan kedalaman polong kedelai di lapangan.
Kemudian, gambar RGB dan kedalaman disesuaikan menggunakan metrik titik
fitur tepi untuk mengidentifikasi dengan akurat polong kedelai di latar belakang
lingkungan yang kompleks.

Model jaringan yang dilatih menggunakan dataset gabungan RGB dan
kedalaman memberikan hasil yang lebih baik dibandingkan dengan model yang
hanya dilatih dengan dataset RGB. Tingkat ketepatan (precision) model jaringan
yang ditingkatkan YOLO-v5 juga meningkat sekitar 6%, dengan tingkat ketepatan
mencapai 88.14% dalam mendeteksi jumlah polong di populasi kedelai dengan 200
tanaman. Setelah dilakukan kompensasi model, kesalahan relatif antara jumlah
polong yang diprediksi dan yang sebenarnya hanya berkisar antara 2% hingga 3%
untuk dua varietas kedelai yang diuji. Meskipun masih terdapat beberapa faktor
lingkungan yang mempengaruhi deteksi dan kuantifikasi polong kedelai, metode
ini merupakan langkah awal yang signifikan untuk memperoleh data fenotipe

kedelai secara otomatis dan akurat di lapangan (Fu, 2022).

2.10. Red, Green, Blue (RGB)

Kusumanto ef al. (2011) menjelaskan, RGB (Red, Green, Blue) adalah citra
warna yang masing-masing memiliki warna tertentu yaitu merah, hijau dan biru.
Masing-masing warna memiliki rentang intensitas 0 sampai dengan 255. Sehingga
dari kombinasi 3 warna tersebut menghasilkan 256 kombinasi warna (16.777.216).
Gupta et al. (2014) menyatakan citra RGB dapat digunakan untuk melakukan
analisa pada tanaman. Dengan menggunakan citra RGB, dapat dilakukan metode
yang bersifat non-destruktif untuk menganalisa/mengevaluasi kondisi tanaman.
Weinstein et al. (2019) menjelaskan, dengan menggunakan citra lanskap alam
berbasis RGB membuka banyak peluang baru dalam ekologi, perhutanan, serta
pengelolaan lahan. Model CNN deteksi tanaman saat ini masih dapat diperluas
kegunaannya. Tidak hanya untuk mendeteksi titik tanaman, apabila dikembangkan
maka model CNN juga dapat mendeteksi kondisi kesehatan tanaman. Maraknya
penggunaan UAV/drone dalam lingkungan remote sensing, juga membuka peluang

untuk mengkombinasikan data-data yang diambil secara mandiri / data lokal
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dengan data pada skala informasi yang lebih luas. Pada umumnya, drone
konvensional hanya dapat menangkap reflektansi cahaya dalam format RGB. Data
tersebut dapat dikombinasikan dengan data-data dari satelit yang menangkap
informasi menggunakan sensor-sensor tertentu. Sensor-sensor tersebut dapat
menghasilkan citra multi spektral. Selain spektrum cahaya warna RGB, sensor
tersebut menangkap gelombang Nir-Infrared, penguapan air, serta gelombang
infrared pendek.
YELLOW

RED GREEN

MAGENTA CYAN

BLUE
Gambar 2. 4 Ruang Warna RGB (Nixsensor, 2022)

2.11. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) merupakan parameter yang digunakan untuk
mengevaluasi akurasi nilai yang di prediksi oleh sebuah model prediksi. MAE

menunjukkan rata-rata kesalahan nilai aktual dengan nilai prediksi.

mag = Y N (2-15)
n
Keterangan :
Y’ : Nilai Prediksi
Y : Nilai Sebenarnya
n : Jumlah Data
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2.12. Mean Squared Error (MSE)

Mean Square Error (MSE) adalah sebuah parameter yang mengukur
kesalahan pada sebuah prediksi dengan menghitung rata-rata kesalahan kuadrat
antara nilai sebenarnya dan nilai yang diprediksi. Dengan menggunakan metode ini,

kita dapat memperkirakan seberapa besar kesalahan pada prediksi tersebut.

1 n
MSE = — 3 (yi = )’ (2-16)
i=1
Keterangan :
Y’ : Nilai Prediksi
Y : Nilai Sebenarnya
n : Jumlah Data

2.13. Intersection over Union (I1o0U)

Intersection over Union (IoU) adalah metrik yang umum digunakan untuk
mengevaluasi performa deteksi objek, segmentasi, dan tugas-tugas computer vision
lainnya. IoU mengukur seberapa banyak area yang tumpang tindih antara bounding
box atau masker prediksi dengan bounding box atau masker acuan. Untuk
menghitung loU, pertama-tama kita menghitung luas area yang tumpang tindih
antara bounding box atau masker prediksi dan bounding box atau masker acuan.
Kemudian, kita menghitung luas keseluruhan dari kedua bounding box atau masker
tersebut. Akhirnya, kita membagi luas area yang tumpang tindih dengan luas area
keseluruhan untuk mendapatkan skor IoU.

Skor IoU berkisar dari 0 hingga 1, dengan skor 1 menunjukkan tumpang
tindih yang sempurna antara bounding box atau masker prediksi dan bounding box
atau masker acuan, dan skor 0 menunjukkan tidak ada tumpang tindih. IoU sering
digunakan sebagai metrik evaluasi dalam deteksi objek dan segmentasi karena
memberikan ukuran kuantitatif seberapa baik model dapat melokalisasi dan
mengsegmentasi objek dalam gambar. Skor IoU yang lebih tinggi menunjukkan
bahwa model lebih baik dalam memprediksi lokasi dan ukuran yang benar dari

objek pada gambar.
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Area of Overlap
loU =

Area of Union

Gambar 2. 5 Penjelasan Intersection of Union

2.14. Perangkat Lunak

Perangkat lunak digunakan dalam pengembangan sistem atau model untuk
memberikan alat yang diperlukan dalam proses desain, pengkodean, dan pengujian.
Perangkat lunak seperti lingkungan pengembangan terintegrasi (IDE), framework,
dan library menyediakan alat dan sumber daya yang diperlukan untuk
mengimplementasikan sistem atau model secara efisien. Mereka juga membantu
dalam mengelola data, mengoptimalkan kinerja, dan mempermudah proses

pengembangan secara keseluruhan.

2.15.1 Python

Bahasa pemrograman python menggunakan perintah dalam bahasa inggris
dan sintaks yang mudah dimengerti. Python menawarkan alternatif open-source
untuk teknik-teknik tradisional dan aplikasi (Sahoo et al, 2019). Python memiliki
pilihan library standard yang besar. Library-library tersebut berfokus pada general
programming, serta memuat modul-modul untuk berinteraksi dengan sistem
operasi, jaringan, basis data, pengolahan citra digital serta keperluan spesifik
lainnya (Ozgur et al, 2017). Python menyediakan banyak pilihan struktur data
tingkat tinggi. Beberapa contohnya yaitu /ist untuk melakukan numerasi pada
sebuah koleksi objek, dictionary untuk membangun hash tables dan lainnya.
Bagaimanapun, struktur data diatas tidak sepenuhnya ideal untuk melakukan

komputasi numerikal dengan performa tinggi (Walt ef a/, 2011).
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Gambar 2. 6 Logo Bahasa Pemrograman Python
(Python, 2022)

2.15.2 Google Colaboratory

Google Colaboratory atau yang dikenal secara umum Google Colab
merupakan layanan open source yang disediakan oleh google kepada semua
pengguna layanan akun gmail. Google Colab menyediakan GPU (Unit Pemrosesan
Grafis) untuk melakukan riset. Layanan ini ditujukan bagi orang-orang yang tidak
memiliki sumber daya GPU untuk melakukan komputasi tingkat tinggi. Layanan
Google Colab menyediakan RAM sebesar 12,72 GB dan ruang penyimpanan hard
disk sebesar 358,27 GB dalam 1 runtime. Setiap runtime berlangsung selama 12
jam, setelah itu runtime akan ter-reset dan pengguna perlu melakukan koneksi
ulang. Hal ini diberlakukan untuk memastikan bahwa layanan GPU tidak digunakan
untuk melakukan penambangan mata uang kripto dan tujuan illegal lainnya. Setelah
pengguna membuka Google Colab, pengguna perlu memilih jenis runtime.
Terdapat 3 pilihan runtime, yaitu none, GPU, TPU. None artinya runtime hanya
akan menggunakan CPU pada komputer pengguna. GPU artinya runtime akan
menggunakan GPU di dalam server Google. TPU, digunakan untuk melakukan

proses tensor (Kanani et al, 2019).

(O

Gambar 2. 7 Logo Google Colaboratory
(Google Colab, 2017)

2.15.3 Numpy
Numpy adalah sebuah /ibrary numerikal Python yang secara efisien

memanipulasi array besar (Drude et al, 2018). Pada pertengahan 90an, sebuah tim
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internasional yang terdiri dari relawan-relawan memulai pengembangan sebuah
struktur data untuk melakukan komputasi array dengan efisien. Struktur ini
berkembang menjadi apa yang saat ini kita kenali sebagai N-dimensional Numpy
array. Library Numpy yang terdiri dari berbagai gabungan fungsi matematis.
Library tersebut telah dimanfaatkan pada berbagai bidang seperti akademis,
laboratorium nasional, serta berbagai implementasi di industri yang tersebar mulai
dari industri gaming hingga eksplorasi antariksa (Walt, 2011). Array NumPy
merupakan sebuah koleksi elemen serupa dalam multi dimensi. Sebuah Array
digambarkan oleh tipe elemen didalamnya serta oleh bentuknya. Sebagai contoh,
sebuah matriks dapat direpresentasikan sebagai sebuah array yang berbentuk (M x
N) yang mengandung angka-angka, nilai desimal atau bilangan kompleks. Namun,
tidak seperti matriks, array Numpy dapat memiliki berbagai dimensi. Lebih jauh
lagi, array tersebut dapat memuat berbagai jenis elemen lainnya (bahkan kombinasi
beberapa elemen) seperti boolean atau tanggal. Array NumPy merupakan metode
yang cukup mudah untuk mendekripsikan satu atau lebih blok memori komputer

sehingga angka-angka yang direpresentasikan dapat dengan mudah dimanipulasi.

NumPy

Gambar 2. 8 Logo Library Numpy
(Numpy, 2022)

2.154 OpenCV

OpenCV merupakan sebuah /ibrary penglihatan komputer. Pengembangan
OpenCV dimulai sebagai sebuah projek riset di Intel pada 1998. OpenCV sudah
dapat digunakan pada tahun 2000 dibawah lisensi open source BSD. OpenCV
bertujuan untuk menyediakan perangkat Ilunak yang diperlukan untuk
menyelesaikan permasalahan penglihatan computer. Didalam [library OpenCV
terdapat gabungan dari fungsi pemrosesan gambar tingkat rendah dan algoritma

tingkat tinggi seperti deteksi wajah, deteksi pejalan kaki, pencocokan fitur dan
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pelacakan. Library tersebut telah diunduh sebanyak lebih dari 3 juta kali. Pada 2010
sebuah modul baru yang menyediakan akselerasi GPU ditambahkan ke OpenCV.
Modul GPU tersebut mencakup bagian signifikan dari fungsionalitas library dan

masih aktif dalam pengembangan. Modul tersebut mengimplementasikan

penggunaan CUDA (Pulli et al, 2012).

OpenCV

Gambar 2. 9 Logo Library OpenCV
(OpenCV, 2022)

2.15.5 Pandas

Library Pandas, telah dikembangkan semenjak 2008. Library Pandas
bertujuan untuk menjembatani banyaknya perangkat lunak analisis data dalam
Python. Pandas tidak hanya bertujuan untuk menyediakan fungsionalitas sebagai
pembaca data, namun juga menyediakan banyak fitur seperti penyelarasan data
otomatis dan pengindeksan hierarkis. Dimana fitur-fitur tersebut tidak terintegrasi
dalam /ibrary lainnya ataupun lingkungan komputasi lainnya. Selagi
dikembangkan untuk analisis data finansial, pengembang berharap Pandas dapat
akan memungkinkan Python saintifik menjadi lebih atraktif serta menjadi
lingkungan komputasi statistik yang praktis bagi praktisi akademis dan industri.
Nama Pandas berasal dari panel data, sebuah istilah umum untuk dataset

multidimensi dalam statistic dan ekonometriks (Walt, 2011).

I
: das
.1 pAanad
i
i
Pandas, 2022
Gambar 2. 10 Logo Library Pandas
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2.15.6 Matplotlib & Seaborn

Matplotlib merupakan salah satu /ibrary Python untuk melakukan
visualisasi data yang cukup popular. Library ini dibangun oleh John Hunter
bersama beberapa kontributor. Matplotlib merupakan [library grafis untuk
melakukan visualisasi data dalam Python. Matplotlib dapat digunakan dengan
beberapa library yang umum digunakan dalam pengolahan data pada Python seperti
Numpy, Pandas dan library lainnya (Sial et al, 2021). Stancin et al, (2019)
mendefinisikan Matplotlib sebagai /ibrary Python yang mengimplementasikan
grafik-grafik yang ada didalam MATLAB. Matplotlib menawarkan banyak variasi
dan penyesuaian sesuai kebutuhan pengguna. Sintaks Matplotlib cukup
membingungkan bagi pemula, namun setelah memahami konsep utamanya akan
jadi mudah untuk membuat berbagai jenis grafik.

Seaborn merupakan /ibrary yang dikembangkan di atas /ibrary Matplotlib
dan lebih mudah untuk digunakan dan dipelajari bagi pemula ketimbang Matplotlib.
Meskipun lebih mudah untuk digunakan, pada kasus yang memerlukan
penyesuaian dan keperluan yang lebih kompleks Seaborn akan menjadi pilihan

yang kurang tepat (Stancin ef al, 2019).

matpl@tlib

Gambar 2. 11 Logo Library Matplotlib
(matplotlib, 2022)

seaborn

Gambar 2. 12 Logo Library Seaborn
(Seaborn, 2022)
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2.15.7 Visual Studio Code

Visual Studio Code (VS Code) adalah sebuah teks editor ringan dan handal
yang dibuat oleh Microsoft yang bersifat multiplatform. Artinya VS Code dapat
berjalan pada sistem operasi Linux, Mac dan Windows. Teks editor ini secara
langsung mendukung Bahasa pemrograman JavaScript, Typescript, dan Node.js,
serta Bahasa lainnya (seperti C++, C#, Python, Go, Java) dengan bantuan plugin
yang dapat dipasang via marketplace Visual Studio Code. Terdapat banyak fitur-
fitur yang disediakan oleh Visual Studio Code, diantaranya Intellisense, Git
Integration, Debugging, dan fitur ekstensi yang menambah kemampuan teks editor.
Fitur-fitur tersebut akan terus bertambah seiring dengan bertambahnya versi Visual
Studio Code. VS Code bersifat open source, artinya sumber kodenya dapat dilihat
dan dikembangkan oleh semua orang. Hal ini merupakan daya tarik tersendiri bagi
pengembang aplikasi karena dapat ikut serta dalam pengembangan VS Code

(Salamah 2021).

-

Gambar 2. 13 Logo dan Tapilan Perangkat Lunak VS Code
(Microsoft, 2022)

2.15.8 Open Camera

Open Camera adalah aplikasi kamera open source untuk ponsel dan tablet
android yang memiliki berbagai fitur. Dalam aplikasi ini, terdapat opsi untuk
menjaga foto tetap seimbang dan tidak miring, serta menambahkan berbagai mode
pengambilan gambar, efek warna, keseimbangan warna, ISO, kunci eksposur, selfie
dengan "flash layar", dan video HD. Selain timer dengan suara penghitung mundur,
pengulangan otomatis dengan penundaan yang dapat dikonfigurasi, dan opsi untuk

mengambil foto dari jauh dengan suara. Open Camera juga menyediakan fitur untuk
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menambahkan bingkai grid dan panduan potong, serta opsi penandaan lokasi GPS
(geotagging) pada foto dan video. Aplikasi ini juga memiliki dukungan untuk HDR.
Selain itu, terdapat opsi untuk menghapus metadata exif perangkat dari foto,
panorama, reduksi kebisingan, dan mode optimasi rentang dinamis. Open Camera
adalah aplikasi yang gratis dan tanpa iklan di dalamnya serta sumber terbuka

(OpenCamera, 2021).

' Google Play Games Apps  Movies&TV  Books  Kids Q

Open Camera

Mark Harman

LG This app is available f

Gambar 2. 14 Halaman Aplikasi Open Camera di Google Play
(OpenCamera, 2021)

2.15.9 Pytorch

PyTorch adalah sebuah /ibrary machine learning yang dirancang untuk mendukung
gaya pemrograman yang imperatif. PyTorch memudahkan pemodelan kode,
memudahkan proses debugging, dan konsisten dengan /ibrary komputasi ilmiah
populer lainnya. Selain itu, PyTorch tetap efisien dan mendukung akselerator
perangkat keras seperti GPU. PyTorch merupakan framework deep learning yang
menyediakan operasi kustom, lapisan, model, dan alat untuk penelitian,
pengembangan, dan evaluasi codec kompresi gambar dan video end-to-end.
PyTorch dibangun di atas beberapa proyek, terutama Lua Torch, Chainer, dan HIPS
Autograd. PyTorch menyediakan lingkungan berkinerja tinggi dengan akses mudah
ke diferensiasi otomatis pada model yang dieksekusi di perangkat yang berbeda,

seperti CPU dan GPU. Selain itu, PyTorch juga digunakan dalam bidang-bidang
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lain seperti serangan dan pertahanan adversarial, rekonstruksi jejak partikel
menggunakan pembelajaran mendalam, dan mempercepat penelitian pembelajaran

mendalam 3D (Paszke, 2019).

2.15.10 Torchvision

Torchvision adalah sebuah /ibray PyTorch yang menyediakan berbagai alat dan
model terkait visi komputer untuk para peneliti dan praktisi di bidang tersebut.
Library ini mencakup dataset, data loader, transformasi, model, dan utilitas untuk
tugas-tugas umum dalam visi komputer seperti klasifikasi gambar, deteksi objek,
segmentasi semantik, dan lainnya. Torchvision menyediakan model-model yang
telah dilatih sebelumnya untuk tugas klasifikasi gambar dan deteksi objek, seperti
AlexNet, VGG, ResNet, dan Faster R-CNN, di antara lainnya. Selain itu,
Torchvision juga menyediakan berbagai teknik augmentasi data, seperti
pemotongan acak, pembalikan, dan variasi warna, untuk membantu meningkatkan

generalisasi model (Jatavallabhula, 2019).

2.15.11 Glob

Modul glob dalam Python digunakan untuk mencari semua nama alamat direktori
yang cocok dengan pola yang ditentukan sesuai dengan aturan yang digunakan oleh
shell Unix. Modul ini mengembalikan daftar nama alamat direktori yang cocok
dengan pola yang ditentukan, yang kemudian dapat digunakan untuk melakukan
berbagai operasi pada file-file tersebut. Modul glob mendukung berbagai pola yang
dapat digunakan untuk mencocokkan nama file, seperti * untuk mencocokkan string
karakter apa pun, ? untuk mencocokkan satu karakter saja, dan [] untuk
mencocokkan karakter apa pun dalam set yang ditentukan. Perlu diperhatikan
bahwa glob hanya mengembalikan nama jalur file yang ada dan dapat dibaca

(Virtanen, 2019).

2.15.12 PIL
Python Imaging Library (PIL) adalah sebuah library untuk bekerja dengan gambar
dalam bahasa Python. Library ini menyediakan berbagai fungsi pemrosesan

gambar, seperti pengubah ukuran, pemotongan, rotasi, dan penyaringan, serta
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dukungan untuk berbagai format file gambar. PIL adalah library populer untuk
pemrosesan gambar dalam Python dan telah digunakan dalam berbagai aplikasi,
termasuk visi komputer, citra ilmiah, dan pengembangan web. Namun, PIL tidak
lagi aktif dipelihara dan telah digantikan oleh library Pillow, yang merupakan
cabang dari PIL yang menyediakan fitur tambahan dan perbaikan bug. Pillow
dirancang sebagai pengganti PIL yang kompatibel dan menyediakan API yang
serupa, sehingga mudah beralih dari PIL ke Pillow (Guan, 2019).

2.15.13 Onnxruntime

ONNX Runtime adalah mesin inferensi sumber terbuka yang dirancang untuk
menjalankan model pembelajaran mesin yang sesuai dengan format Open Neural
Network Exchange (ONNX). ONNX Runtime dirancang untuk memberikan
eksekusi yang efisien dan portabel dari model pembelajaran mesin pada berbagai
platform perangkat keras, termasuk CPU, GPU, dan akselerator khusus. ONNX
Runtime mendukung berbagai bahasa pemrograman, termasuk Python, C++, dan
C#, dan dapat diintegrasikan dengan framework pembelajaran mesin populer
seperti PyTorch dan TensorFlow. ONNX Runtime menyediakan serangkaian API
yang memungkinkan pengembang untuk memuat, menjalankan, dan mengelola
model pembelajaran mesin, serta alat-alat untuk mengoptimalkan dan memproses
kinerja model. ONNX Runtime dioptimalkan secara khusus untuk inferensi dengan
latensi rendah dan mendukung berbagai backend dan metode optimasi (Ashfaq,

2022).

2.15.14 Ipython.display

Modul IPython.display dalam IPython menyediakan sejumlah fungsi yang sangat
berguna untuk menampilkan berbagai jenis konten di Jupyter Notebook. Fungsi
"display" digunakan untuk menampilkan objek dengan representasi terbaik yang
tersedia di Jupyter Notebook. Misalnya, jika kita ingin menampilkan gambar, kita
dapat menggunakan fungsi "Image" untuk menampilkan gambar di dalam
notebook. Fungsi "Video" memungkinkan kita untuk menampilkan video di dalam
notebook, sementara fungsi "Audio" digunakan untuk menampilkan pemutar audio

yang memungkinkan kita untuk memainkan file audio langsung di dalam notebook.

38



Selain itu, modul IPython.display juga menyediakan fungsi "HTML" yang
memungkinkan kita untuk menampilkan kode HTML di dalam notebook, dan
fungsi "Markdown" yang memungkinkan kita untuk menampilkan kode Markdown
yang akan ditafsirkan dan ditampilkan sebagai teks yang diformat dengan baik di
dalam notebook. Semua fungsi ini membantu dalam membuat tampilan yang

menarik dan interaktif di Jupyter Notebook (Ipython, 2019).

2.15.15 Time

Package "time’ dalam bahasa pemrograman Python adalah sebuah package
yang menyediakan fungsionalitas untuk mengakses waktu sistem dan melakukan
operasi terkait waktu. Package ini memungkinkan pengembang untuk mengukur
waktu eksekusi program, mengatur jeda atau penundaan dalam eksekusi program,
dan melakukan operasi lainnya terkait waktu seperti mengubah format waktu,
menghitung selisih waktu, dan mengatur waktu sistem. Package “time’ sangat
berguna dalam pengembangan aplikasi yang memerlukan pemantauan waktu,
pengukuran kinerja, sinkronisasi tugas, atau manipulasi waktu secara umum

(Python, 2023).

2.15.16 Ultralytics

Ultralytics adalah sebuah perusahaan teknologi yang mengkhususkan diri
dalam pengembangan perangkat lunak komputer visi komputer berbasis Deep
Learning dan deteksi objek real-time. Perusahaan ini terkenal karena library
perangkat lunak YOLO (You Only Look Once) yang mereka kembangkan. YOLO
merupakan salah satu pendekatan populer dalam deteksi objek yang memungkinkan
pengguna untuk melakukan deteksi objek secara cepat dan akurat dalam aplikasi
real-time. Ultralytics menyediakan perangkat lunak dan sumber daya yang
membantu pengembang dan peneliti dalam mengimplementasikan deteksi objek
menggunakan YOLO, serta terus mengembangkan dan meningkatkan kinerja

model tersebut. (Ultralytics, 2021).
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@ ultralytics

Gambar 2. 15 Logo ultralytics
(Ultralytics, 2021)

2.15.17 Sys

Package “sys’ dalam bahasa pemrograman Python adalah sebuah paket yang
menyediakan akses ke fungsi dan variabel yang terkait dengan interpreter Python
dan lingkungan sistem. Dengan package ‘sys’, pengembang dapat mengakses
argumen baris perintah, mengelola jalur modul, mengontrol perilaku program, dan

mendapatkan informasi tentang sistem operasi yang digunakan (Python, 2023).

sys Module

Gambar 2. 16 Logo modul sys python
(Python, 2023)

2.15.18 Scipy

Scipy adalah sebuah library perangkat lunak open-source untuk bahasa
pemrograman Python yang digunakan untuk komputasi ilmiah dan analisis data.
Library ini menyediakan berbagai algoritma dan fungsi matematika yang kuat,
termasuk optimisasi, integrasi numerik, transformasi Fourier, aljabar linear,
statistik, pemrosesan sinyal, dan banyak lagi. Scipy memperluas fungsionalitas
Python standar dengan menambahkan kemampuan komputasi numerik yang

canggih, yang sangat berguna dalam penelitian ilmiah, analisis data, dan
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pemodelan. Scipy digunakan secara luas dalam berbagai disiplin ilmu, seperti

fisika, biologi, ekonomi, ilmu komputer, dan lain-lain (Jones, 2001).

@ SciPy

Gambar 2. 17 Logo Library SciPy

2.15.19 Csv

CSV dalam bahasa pemrograman Python adalah sebuah paket yang
menyediakan fungsi-fungsi untuk membaca dan menulis file dalam format Comma-
Separated Values (CSV). CSV merupakan format yang umum digunakan untuk
menyimpan data tabular, di mana nilai-nilai dalam setiap baris dipisahkan oleh
tanda koma. Package CSV memudahkan pengembang dalam memanipulasi file
CSV dengan menyediakan metode untuk membaca data dari file CSV ke dalam
struktur data Python, serta menulis data dari struktur data Python ke dalam file
CSV. Dengan menggunakan package CSV, pengembang dapat dengan mudah
melakukan operasi seperti membaca, mengubah, atau menyimpan data dalam

format CSV dengan cepat dan efisien (A. Junaidi,2017).

2.15.20 Os

Package “os’ dalam bahasa pemrograman Python adalah sebuah paket yang
menyediakan fungsionalitas untuk berinteraksi dengan sistem operasi yang
digunakan oleh komputer. Paket ini memungkinkan pengembang untuk melakukan
berbagai operasi terkait sistem operasi, termasuk mengakses file dan direktori,
mengatur variabel lingkungan, menjalankan perintah shell, dan banyak lagi.
Dengan package "os’, pengembang dapat dengan mudah mengelola file, melakukan
manipulasi direktori, dan mengatur variabel lingkungan melalui bahasa
pemrograman Python. Package ‘os’ merupakan alat yang penting dalam

pengembangan aplikasi yang melibatkan operasi system (Sridianti, 2022).
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A

OS Module

>>> import

Gambar 2. 18 Logo Modul OS Python

2.15.21 Warnings

Package "warnings® dalam bahasa pemrograman Python adalah sebuah paket yang
digunakan untuk mengelola dan mengontrol peringatan (warnings) yang muncul
selama eksekusi program. Ketika suatu potensi masalah atau situasi yang tidak
diharapkan terjadi selama proses eksekusi program, package “warnings’
memungkinkan pengembang untuk memberikan peringatan kepada pengguna atau
pengembang lain tentang situasi tersebut. Dengan package “warnings’,
pengembang dapat mengatur tindakan yang diambil ketika peringatan muncul,
seperti menampilkan pesan peringatan, mengabaikan peringatan, atau
mengubahnya menjadi pengecualian (exception). Package ‘warnings' sangat
berguna dalam pemeliharaan dan debug program, membantu pengembang untuk

memperbaiki potensi masalah dan meningkatkan kualitas dan keandalan aplikasi

(Python, 2023).

2.15.22 Keras

Package “keras® dalam bahasa pemrograman Python adalah sebuah paket
yang populer dan kuat untuk membangun dan melatih model jaringan saraf (neural
network). Keras menyediakan antarmuka tingkat tinggi yang user-friendly untuk
merancang dan mengimplementasikan berbagai jenis arsitektur jaringan saraf
seperti jaringan saraf konvolusional (CNN), jaringan saraf rekurens (RNN), dan
jaringan saraf yang dikombinasikan. Keras menyediakan beragam lapisan (layer),
fungsi aktivasi, algoritma optimisasi, dan metrik evaluasi yang dapat digunakan

dengan mudah untuk mengonstruksi model yang kompleks. Selain itu, Keras juga
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menyediakan kemampuan untuk melatih dan menguji model dengan kumpulan data
yang diberikan. Dengan pendekatan yang modular dan fleksibel, Keras
mempermudah para pengembang dalam melakukan eksperimen, penyesuaian, dan

peningkatan model jaringan saraf. (Chollet, 2015).

- Keras

2.15.23 Datetime

Package “datetime’ dalam bahasa pemrograman Python adalah sebuah
paket yang menyediakan fungsionalitas untuk mengelola, memanipulasi, dan
bekerja dengan tanggal (date) dan waktu (time). Package ini menyediakan kelas-
kelas seperti ‘datetime’, ‘date’, ‘time’, ‘timedelta’, dan ‘tzinfo' yang
memungkinkan pengembang untuk melakukan operasi seperti membuat objek
tanggal dan waktu, mengekstrak komponen tanggal dan waktu (seperti tahun, bulan,
hari, jam, menit, dan detik), melakukan operasi aritmatika pada tanggal dan waktu,
memformat dan memparse tanggal dan waktu dalam berbagai format, serta
mengubah zona waktu. Package "datetime’ sangat berguna dalam pengembangan
aplikasi yang memerlukan manipulasi dan pengaturan tanggal dan waktu dengan

presisi dan keakuratan (Rosihan, 2018).

2.15.24 Math

Package "'math’ dalam bahasa pemrograman Python adalah sebuah paket
yang menyediakan berbagai fungsi matematika yang umum digunakan. Package
ini memberikan akses ke berbagai fungsi matematika dasar seperti trigonometri,
logaritma, eksponensial, akar kuadrat, pembulatan, dan banyak lagi. Dengan
package "math’, pengembang dapat melakukan operasi matematika kompleks
dengan mudah, package ini menjadi alat yang penting dalam pengembangan
aplikasi yang memerlukan manipulasi dan perhitungan matematika, seperti fisika,

statistik, grafika, atau pemodelan matematika (Python, 2023).
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BAB III
ANALISIS DAN PERANCANGAN SISTEM

3.1. Alur Penelitian

Proyek Tugas Akhir ini bertujuan untuk mengembangkan metode Geo-
tagging menggunakan Artificial Neural Network dengan memprediksi koordinat
tanaman kakao pada citra serta mendeteksi buah kakao untuk melakukan
penghitungan otomatis buah pada tanaman kakao. Alur penelitian dari proyek ini

dapat dilihat pada Gambar 3.1.

s A
Identifikasi Masalah
| J
{ l N\
Studi Pustaka
. J
4 * N\
Pengumpulan Data
- J
Desain Sistem Desain Sistem
Metode Geotagging Metode Estimasi
Tanaman kakao Jumlah Buah Kakao

Pengujian Metode Pengujian Metode
e ek Estimasi Jumiah Buah
- Kakao

\/

{ Integrasi Sistem ]

Gambar 3.1 Alur Penelitian
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Penelitian akan dimulai dengan mengidentifikasi masalah, dengan tujuan
agar peneliti dapat mengetahui permasalahan yang dibahas pada penelitian ini.
Selanjutnya, akan dilakukan studi pustaka untuk mempelajari penelitian beberapa
tahun terakhir terkait topik penelitian ini. Beberapa dasar-dasar teori yang
berhubungan juga akan dipelajari untuk mengetahui metode yang tepat untuk
menyelesaikan permasalahan. Pada tahap selanjutnya, dilakukan pengumpulan
data-data citra tanaman kakao yang akan digunakan untuk menguji akurasi model
estimasi jarak tanaman kakao dan membangun model estimasi koordinat tanaman
kakao berbasis Artificial Neural Network (ANN) untuk metode Geotagging.
Kemudian citra-citra tersebut digunakan pula untuk melakukan pelatihan model
CNN untuk mendeteksi buah kakao yang ada pada tanaman, untuk dilakukan

penghitungan buah pada setiap tanaman kakao.

3.2. Analisis Kebutuhan

Pengembangan metode geotagging yang dikerjakan membutuhkan analisis
agar penelitian berjalan dengan baik dan lancar. Analisis yang dilakukan untuk
perancangan dan pengembangan model geotagging tanaman kakao, kebutuhan

perangkat keras dan perangkat lunak pada sisi pengguna dan peneliti.

3.2.1. Kebutuhan Pengguna

Analisis kebutuhan diperoleh berdasarkan tujuan penelitian yaitu
pengembangan metode geotagging pada tanaman kakao. Pengembangan model
geotagging untuk melakukan estimasi koordinat tanaman kakao dapat digunakan
pada aplikasi mini berbasis web. Model Geotagging akan menerima input citra yang
memiliki informasi koordinat pengambilan gambar. Lalu model akan melakukan
estimasi jarak tanaman kakao pada citra. Setelah itu, arsitektur ANN akan
melakukan estimasi koordinat tanaman kakao berdasarkan koordinat pengambilan
citra dan jarak tanaman kakao. Pengguna dapat menggunakan smartphone untuk
mengambil citra tanaman kakao. Lalu hasil estimasi koordinat tanaman kakao akan
ditampilkan. Pada penelitian ini akan dikembangkan pula metode kuantifikasi

otomatis untuk mendapatkan jumlah buah pada tanaman kakao. Teknologi yang
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akan digunakan yaitu CNN YOLO untuk mendeteksi buah pada tanaman kakao.
Sehingga buah-buah yang terdeteksi akan dihitung, lalu akan ditampilkan jumlah

buah pada tanaman kakao.

3.2.2. Kebutuhan Peneliti

Berikut terdapat beberapa perangkat keras dan perangkat lunak yang
digunakan oleh peneliti dalam melakukan penelitian ini.
1. Perangkat Keras

a. Laptop Mac Book Air M1 2020

i.  Prosesor : Apple M1
ii. RAM :8GB
iii.  SSD :512GB
iv.  Sistem Operasi : macOS Monterey

b. Smartphone Samsung Galaxy A6 2018

i.  Prosesor : Exynos 7870 Octa
ii. RAM :3GB
iii.  Internal Storage :32GB
iv. Lensa Kamera : 16 MP, 1/1.7, 26mm (wide)
v.  Sistem Operasi : Android 8.0 (Oreo)

2. Perangkat Lunak
a. Python3
b. Google Colaboratory
c. Visual Studio Code

3.3. Identifikasi Masalah

Masalah utama sistem monitoring perkebunan kakao saat ini adalah, dengan
menggunakan foto udara (aerial) tidak banyak informasi terkait tanaman kakao
yang dapat diekstrak. Karena, apabila dilihat dari atas kebanyakan tanaman kakao
tertutup oleh tanaman penaungnya. Masalah utama yang saat ini dihadapi, belum
ada teknologi yang murah untuk melakukan koleksi data spasial terkait tanaman

kakao di perkebunan untuk sistem monitoring perkebunan.
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34.

Studi Pustaka

Dalam tahap ini, peneliti akan melakukan studi pustaka terkait dengan

geotagging otomatis dan penghitungan otomatis buah kakao. Tujuan dari studi

pustaka ini adalah untuk menemukan metode dan langkah-langkah yang dapat

digunakan dalam penelitian ini. Peneliti akan mencari dan mengumpulkan

informasi dari penelitian terdahulu yang telah dilakukan dan relevan dengan topik

penelitian ini. Ringkasan hasil studi pustaka akan ditampilkan pada tabel 3.1 yang

berisi informasi singkat mengenai penelitian terdahulu yang digunakan sebagai

acuan dalam penelitian ini.

Tabel 3. 1 Studi Pustaka

No Topik Pengetahuan Temuan
1 Akurasi Perangkat Telepon Berdasarkan studi yang dilakukan,
GPS Genggam memiliki  perangkat telepon genggam (iPhone
akurasi yang cukup  6) memiliki rata-rata error pada
baik rentang 7-13 m. Sedangkan
geotagging yang akan dilakukan
memerlukan akurasi pada tingkat
sentimeter. (Merry, 2019)
2 Estimasi Model CNN untuk Model CNN berbasis segmentasi
Kedalaman melakukan Estimasi  (dengan arsitektur U-Net) dapat
Kedalaman dapat digunakan untuk melakukan estimasi
digunakan untuk kedalaman pada citra. (Godard,
memprediksi jarak 2019)
objek pada Citra
3 Deteksi Model CNN YOLO  Model CNN dengan arsitektur
Buah dapat digunakan YOLO-vS5 dapat melakukan deteksi
Kakao untuk mendeteksi fenotip polong kedelai, termasuk
Otomatis Buah Kakao klasifikasi dan kuantifikasi jumlah

polong berdasarkan klasifikasinya.

(Fu, 2022).
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3.5. Pengumpulan Data

Berikut gambar 3.2 yang menjelaskan alur pengumpulan data yang akan

( Mulai ’

v
Memilih objek yang
menyerupai tiang /
tongkat

dilakukan pada penelitian ini.

v
Mengambil posisi
pada jarak 0,5 — 2 m
terhadap objek

v
Menulis jarak objek
terhadap kamera
pada kertas

v
Mengambil gambar
dengan memegang

kertas di samping objek

v
Mencatat koordinat
kamera serta
koordinat objek

A 4

Mengunggah
gambar

A 4

< Selesai )

Gambar 3.2 Alur Pengumpulan Data
Pengumpulan data dalam penelitian ini dimulai dengan pemilihan objek

yang memiliki bentuk yang menyerupai tiang atau tongkat. Pemilihan objek juga

mempertimbangkan lingkungan sekitar objek. Khususnya lingkungan yang menjadi
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latar belakang objek. Latar belakang yang memiliki warna mirip dengan objek akan
mempersulit proses segmentasinya. Sehingga perlu dicari objek yang berada pada
lingkungan dengan latar belakang yang bersih. Artinya, tidak banyak objek yang
mirip dengan objek tiang serta terdapat perbedaan warna yang jelas antara objek
dan lingkungan sekitarnya.

Objek yang menyerupai tiang dipilih karena objek dengan bentuk tersebut
mudah dikenali oleh model CNN dan mampu memberikan hasil estimasi
kedalaman yang optimal. Selanjutnya, jarak antara objek dan kamera diatur pada
rentang 0,5-2 meter. Rentang jarak ini dipilih karena jarak yang terlalu dekat atau
jauh dapat mempengaruhi kualitas hasil estimasi kedalaman yang diperoleh.

Setelah jarak antara objek dan kamera diatur, dilakukan pencatatan jarak
antara objek dan kamera pada kertas kecil. Pencatatan ini dilakukan untuk
memastikan bahwa jarak antara objek dan kamera telah sesuai dengan rentang yang
ditentukan sebelumnya. Selanjutnya, dilakukan pengambilan gambar bersama
dengan objek yang telah dipilih sebelumnya. Pada tahap ini, dilakukan pencatatan
titik koordinat kamera saat pengambilan gambar dan titik koordinat objek.

Tahapan terakhir dalam pengumpulan data adalah mengunggah gambar
yang telah diambil bersama dengan data koordinat kamera dan objek ke dalam
sistem yang digunakan untuk analisis data lebih lanjut. Proses pengunggahan ini
dilakukan agar data dapat diakses dan dianalisis dengan lebih mudah dan efektif.
Dengan demikian, pengumpulan data yang dilakukan dengan metode ini dapat
menghasilkan data yang akurat dan dapat digunakan untuk analisis lebih lanjut

dalam berbagai aplikasi yang memerlukan estimasi kedalaman.

3.6. Desain Sistem

Pada tahapan ini, penulis memaparkan desain sistem yang akan dilakukan
pada penelitian ini. Gambar 3.6 menjelaskan desain sistem terkait sistem prediksi
jarak objek pada citra. Gambar 3.7 menjelaskan desain sistem mengenai sistem

prediksi koordinat tanaman kakao pada citra. Sedangkan pada gambar 3.8
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dijelaskan sistem estimasi jumlah buah kakao dengan melakukan deteksi buah

kakao lalu menghitung jumlah buah yang terdeteksi.

Geotagging

II
Sistem Prediksi Koordinat Tanaman
Kakao berdasarkan Jarak Tanaman
Kakao dan Koordinat Kamera

I
Sistem Prediksi Jarak Tanaman
Kakao terhadap Kamera

11
Sistem Deteksi
Objek Buah Kakao

Gambar 3.3 Desain Sistem Keseluruhan

Gambar 3.3 menjelaskan terkait Desain Sistem secara utuh. Tahap pertama
yang dilakukan sistem yaitu melakukan prediksi jarak tanaman kakao dari kamera.
Nilai jarak ini kemudian digunakan bersama titik koordinat kamera untuk
memprediksi titik koordinat dari objek tanaman kakao. Lalu pada tahap terakhir
dilakukan deteksi objek buah kakao untuk melakukan penghitungan buah kakao

secara otomatis. Ilustrasi keseluruhan desain sistem dapat dilihat pada gambar 3.4
dan 3.5.

(-7.349234,12.12321)

Gambar 3.4 Visualisasi Desain Sistem
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Gambar 3.5 Visualisasi Alur Sistem Keseluruhan
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3.6.1. Desain Sistem Prediksi Jarak Objek pada Citra

Pada tahap ini akan dijelaskan desain sistem prediksi jarak objek yang akan
digunakan pada penelitian ini (dapat dilihat pada gambar 3.6). Model CNN
monocular depth estimation digunakan pada penelitian ini, model tersebut
dikembangkan oleh Godard (2019). Model CNN tersebut merupakan model yang
dikembangkan menggunakan arsitektur U-Net untuk melakukan segmentasi objek

kemudian memprediksi kedalaman dari setiap objek.

Pengambilan Data Citra, Jarak " X Mencari Pola korelasi hasil
dan Koordinat Kamera dan Prediksi Keda(l:aiir::n Objek pada prediksi kedalaman objek
Tanaman Kakao dengan jarak objek sebenarnya

Gambar 3.6 Desain Sistem Metode Prediksi Jarak Objek pada Citra

3.6.2. Desain Sistem Prediksi Koordinat Tanaman Kakao pada Citra

Pada tahap ini, akan dipaparkan sistem prediksi koordinat tanaman kakao
pada citra (dapat dilihat pada gambar 3.7). Dalam proses ini, data citra yang telah
diambil akan dimanfaatkan untuk melakukan proses ekstraksi fitur. Teknik
pengolahan citra seperti segmentasi, ekstraksi tekstur, dan ekstraksi bentuk
digunakan untuk mengidentifikasi dan memperoleh fitur-fitur yang relevan dari
citra tersebut. Setelah fitur-fitur ini diperoleh, langkah selanjutnya adalah
menerapkan algoritma prediksi yang telah dirancang. Algoritma ini dapat
melibatkan pendekatan machine learning seperti pengklasifikasi atau regresi, yang
memungkinkan sistem untuk memprediksi koordinat tanaman kakao dengan tingkat
akurasi yang tinggi. Dengan menggunakan sistem prediksi ini, pemantauan
pertumbuhan dan perkembangan tanaman kakao dapat dilakukan secara efisien dan
otomatis, membantu para petani dan peneliti dalam mengoptimalkan produksi dan

perawatan tanaman kakao.

Pelatihan Model ANN untuk

Prediksi Koordinat Tanaman Pengujian Model ANN Prediksi
Kakao berdasarkan jarak Tanaman Koordinat

Kakao dan Koordinat Kamera

Pengambilan Data Citra, Jarak
dan Koordinat Kamera dan
Tanaman Kakao

Gambar 3.7 Desain Sistem Metode Prediksi Koordinat Tanaman Kakao
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3.6.3. Desain Sistem Estimasi Jumlah Buah Kakao

Tahap ini merupakan paparan mengenai sistem estimasi jumlah buah kakao.
Diagram alur desain sistem estimasi jumlah buah kakao terdapat pada Gambar 3.8.
Untuk mengembangkan model CNN, diperlukan pelatihan menggunakan data set
mengenai objek terkait. Pada penelitian ini, objek yang akan dideteksi adalah buah
kakao. Sehingga tahap pertama yang diperlukan yaitu mengumpulkan dan
menandai buah kakao pada citra tanaman kakao. Dataset buah kakao memiliki 2
kelas yaitu kelas buah kakao yang sudah matang dan kelas buah kakalo yang belum
matang. Setelah itu, tanda / anotasi buah kakao beserta citra tanaman kakao akan
digunakan pada tahap pelatihan model CNN YOLO. Setelah pelatihan selesai
dilakukan, maka dihasilkan sebuah model CNN YOLO yang dapat mendeteksi
buah kakao serta prediksi status kematangan buah tersebut. Buah-buah yang
berhasil dideteksi oleh model CNN YOLO akan dihitung.

Pengambilan Data Citra Pelatihan Model CNN YOLO Pengujian Model CNN YOLO
Tanaman Kakao untuk mendeteksi Buah Kakao untuk mendeteksi Buah Kakao

Gambar 3.8 Desain Sistem Metode Estimasi Jumlah Buah Kakao

3.7. Pengujian Arsitektur

Pada tahap pengujian arsitektur akan dilakukan beberapa percobaan untuk
menguji akurasi dari sistem prediksi jarak, sistem prediksi koordinat serta sistem

estimasi jumlah buah kakao.

3.7.1. Pengujian Sistem Prediksi Jarak Objek pada Citra
Untuk mengetahui akurasi nilai output dari sistem prediksi jarak objek pada

citra maka pada penelitian ini digunakan parameter Mean Absolute Error (MAE)

dan Mean Squared Error (MSE).
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3.7.2. Pengujian Sistem Prediksi Koordinat Tanaman Kakao pada Citra
Untuk mengetahui akurasi nilai output dari sistem prediksi koordinat berupa
longituda dan latitude tanaman kakao pada citra maka pada penelitian ini digunakan

parameter Mean Absolute Error (MAE) dan Mean Squared Error (MSE).

3.7.3. Pengujian Sistem Estimasi Jumlah Buah Kakao

Untuk mengetahui akurasi hasil deteksi objek pada sistem estimasi jumlah
buah kakao akan digunakan metrik Intersection over Union (IoU). loU mengukur
seberapa banyak area yang tumpang tindih antara bounding box atau masker

prediksi dengan bounding box atau masker acuan.
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BAB IV HASIL DAN PEMBAHASAN

4.1. Dataset

Pada penelitian ini, dilakukan pengumpulan data untuk membangun dataset
yang akan digunakan dalam proses pelatihan model Artificial Neural Network
(ANN) untuk memprediksi jarak serta model Convolutional Neural Network (CNN)
YOLO untuk mendeteksi buah kakao. Pengumpulan data dilakukan dengan cara
mengambil sampel gambar-gambar buah kakao yang sudah matang dan yang belum
matang. Selama proses pengumpulan data, gambar-gambar tersebut diolah dan
diberikan anotasi. Anotasi ini mencakup informasi mengenai koordinat atau
bounding box yang menandai letak buah kakao pada gambar, serta label yang
menunjukkan jenis atau kelas buah kakao yang terdeteksi. Setelah pengumpulan
data selesai, dataset yang terdiri dari gambar-gambar dan anotasinya akan
digunakan dalam proses pelatihan model. Model ANN akan dilatih menggunakan
data jarak antara kamera dan buah kakao sebagai input, serta data yang sesuai
dengan jarak tersebut sebagai output yang diharapkan. Sementara itu, model CNN
YOLO akan dilatih menggunakan gambar-gambar buah kakao beserta anotasinya.
Proses pelatihan ini bertujuan untuk mengajarkan model untuk mendeteksi dan

mengidentifikasi buah kakao dalam gambar.

4.1.1. Pembuatan Dataset Nilai Rgb dan Jarak Objek

Pembuatan dataset dimulai dengan mencari objek yang menyerupai tiang
untuk menggantikan batang tanaman kakao. Setelah objek yang sesuai ditemukan,
jarak antara kamera dan objek ditentukan. Setelah jarak kamera dengan objek
ditentukan, citra diambil menggunakan kamera atau perangkat lainnya. Pada
langkah ini, citra yang telah diambil akan diproses menggunakan model CNN
monodepth estimation. Model ini akan memperkirakan kedalaman objek
berdasarkan nilai RGB pada citra. Setelah estimasi kedalaman dilakukan,

ditentukan titik koordinat piksel (x, y) pada area objek yang diestimasi
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kedalamannya. Titik koordinat ini akan digunakan dalam proses segmentasi
selanjutnya. Pada langkah ini, model CNN segment anything digunakan untuk

melakukan segmentasi pada citra hasil estimasi kedalaman. Model CNN segment
anything melakukan proses segmentasi berdasarkan titik koordinat yang telah
ditentukan. Titik tersebut menjadi dasar penunjuk objek yang akan disegmentasi
areanya. Segmentasi akan mengidentifikasi bagian objek yang menyerupai tiang
dan memisahkannya dari latar belakang. Setelah proses segmentasi, nilai RGB pada
bagian objek yang diidentifikasi akan diperoleh. Nilai RGB ini merupakan warna
piksel pada citra hasil estimasi kedalaman. Setelah mendapatkan kumpulan nilai
RGB, nilai median dari kumpulan tersebut diambil. Nilai median memberikan
representasi warna tengah dari kumpulan tersebut, yang akan digunakan sebagai
representasi nilai RGB untuk jarak objek yang diestimasi. Setelah semua langkah
di atas dilakukan untuk setiap objek yang dipilih, data yang terkumpul ditambahkan
ke dataset. Setiap data terdiri dari pasangan nilai RGB (nilai median) dan jarak

kamera terhadap objek yang sesuai.

Gambar 4.1 Alur Pembuatan Dataset
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4.1.2. Profil Dataset Nilai RGB dan Jarak Objek

Pada penelitian ini, terdapat dataset yang berisi pasangan nilai
Red,Green,Blue (RGB) terhadap jarak objek dalam satuan meter. Namun, perlu
dicatat bahwa nilai RGB yang ada dalam dataset tersebut bukanlah nilai RGB dari
citra asli, melainkan nilai RGB yang berasal dari proses estimasi kedalaman
menggunakan model CNN monodepth estimation. Nilai RGB akan digunakan
sebagai input untuk memperkirakan jarak objek. Proses estimasi kedalaman
menggunakan model CNN monodepth estimation. Dataset ini terdiri dari 112 data,

dimana setiap data terdiri dari nilai RGB dan jarak objek yang sesuai.

Tabel 4.1 Dataset RGB dan Jarak Objek

id r g b distance

0 251.0 138.0 99.0 2.90

1 141.0 41.0 128.0 4.22

2 220.0 72.0 107.0 1.00

3 80.0 18.0 123.0 3.00

4 225.0 76.0 103.0 3.75

110  222.0 75.0 124.0 2.70

111 252.0 1580 112.0 1.20

112 156.0 46.0 126.0 2.40

4.1.3. Dataset Buah Kakao

Dataset Buah Kakao dilakukan dengan melakukan pengambilan citra di
perkebunan kakao yang terletak di Puslitkoka, Jember. Dilakukan pengambilan
citra pada tanaman kakao yang sedang berbuah baik yang buahnya sudah matang
maupun yang belum matang. Pengambilan citra juga divariasikan jaraknya yaitu
pada rentang jarak sebesar 0,8 hingga 2,8 m sesuai dengan variasi yang terdapat

pada dataset nilai rgb dan jarak objek (Bab 4.1.2). Dataset Buah Kakao terdiri dari
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total 67 gambar buah kakao dengaan 446 anotasi. Untuk melakukan proses training
digunakan 46 gambar (sekitar 69% dari total dataset). Selanjutnya, untuk
memvalidasi performa model, 13 gambar (sekitar 19% dari total dataset) akan
digunakan sebagai validation set. Terakhir, 8 gambar (sekitar 12% dari total dataset)
akan dijadikan sebagai fest set untuk menguji akurasi model yang telah dilatih.
Dalam setiap gambar, terdapat rata-rata 6 anotasi (label) untuk buah kakao. Dataset
ini memiliki dua kelas, yaitu buah kakao matang dan belum matang. Dengan
pembagian ini, diharapkan model dapat mempelajari dan mengklasifikasikan

gambar-gambar buah kakao dengan akurasi yang tinggi.

Class Balance

train  valid test

ripecocoa 227
unripecocoa 217

Gambar 4.2 Semua Dataset

Secara keseluruhan, jumlah anotasi pada kedua kelas, yaitu kelas cocoa matang
(ripe cocoa) dan kelas cocoa belum matang (unripe cocoa), tergolong cukup
seimbang. Terdapat 227 anotasi pada kelas cocoa matang dan 217 anotasi pada
kelas cocoa belum matang. Perbedaan jumlah anotasi antara kedua kelas tersebut

tidak terlalu signifikan.

Class Balance

all valid  test

ripecocoa 7
unripecocoa 130

Gambar 4.3 Pembagian Dataset untuk Train

Data pelatihan ini memiliki jumlah sampel yang cukup representatif untuk kedua
kelas, yaitu 171 sampel pada kelas cocoa matang (ripe cocoa) dan 130 sampel pada
kelas cocoa belum matang (unripe cocoa). Dengan jumlah yang seimbang antara
kedua kelas, model pembelajaran mesin dapat mempelajari pola dan informasi yang
relevan dari masing-masing kelas. Dengan menggunakan data pelatihan yang
representatif ini, model yang dihasilkan memiliki kemampuan yang lebih baik

dalam mengklasifikasikan cocoa berdasarkan tingkat kematangannya.
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Class Balance

all  train | valid | test

ripecocoa 24 under represented
unripecocoa 47

Gambar 4.4 Pembagian Dataset untuk Valid

Dataset validasi yang mencakup kedua kelas, yaitu cocoa matang (ripe cocoa)
dengan 24 sampel dan cocoa belum matang (unripe cocoa) dengan 47 sampel,
memungkinkan pengujian kehandalan model dalam mengklasifikasikan tingkat
kematangan cocoa. Evaluasi menggunakan dataset validasi ini memberikan

gambaran yang lebih akurat tentang kemampuan model dalam dunia nyata.

Class Balance

all train  valid | test |
ripecocoa 32
unripecocoa 40

Gambar 4.5 Pembagian Dataset untuk Test

Pada dataset uji (test set), terdapat 32 sampel anotasi pada kelas cocoa matang (ripe
cocoa) dan 40 sampel anotasi pada kelas cocoa belum matang (unripe cocoa).
Dataset uji ini digunakan untuk menguji performa model yang telah dilatih pada
data pelatihan dan divalidasi pada data validasi. Dengan menggunakan dataset uji
yang mencakup kedua kelas, model dapat dievaluasi lebih lanjut dalam

kemampuannya mengklasifikasikan cocoa berdasarkan tingkat kematangannya.

4.2. Eksperimen Model ANN Prediksi Jarak Objek pada Citra

Pada penelitian ini, dilakukan beberapa percobaan pelatihan Artificial
Neural Network (ANN) untuk mengetahui korelasi antara variabel RGB piksel
dengan jarak aktualnya. Percobaan ini menggunakan model CNN Monodepth
Estimation yang menghasilkan citra RGB dengan nilai yang sangat bervariasi.
Percobaan dilakukan dengan menggunakan dua jenis optimizer, yaitu Adamax dan
SGD. Optimizer digunakan untuk mengatur proses pembelajaran ANN dengan
menyesuaikan bobot dan bias agar mencapai hasil yang optimal. Model akan dilatih

dengan sebanyak 112 data.
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Selain itu, juga dilakukan variasi pada 3 jumlah epoch (1000, 3000, 5000)
dan 3 variasi batch size (1, 7, 15). Epoch merupakan iterasi yang dilakukan saat
melatih model, sedangkan batch size menentukan jumlah sampel yang digunakan
dalam satu iterasi. Dengan menggabungkan variasi optimizer, epoch, dan batch
size, percobaan ini bertujuan untuk mencari kombinasi yang paling baik dalam
menghasilkan model ANN yang dapat memprediksi jarak aktual berdasarkan nilai
RGB piksel. Sebagai tambahan informasi, pada pengembangan model ANN ini
digunakan Mean Absolute Error (MAE) sebagai loss metric untuk mengetahui
akurasi model yang telah dilatih. Sebagai acuan, pada penelitian ini telah disepakati
untuk mengembangkan model ANN yang memiliki nilai MAE dibawah 0.3.
Adapun arsitektur ANN yang akan digunakan dapat dilihat pada gambar 4.6.

dense_input | input: | [(None, 3)]

InputLayer | output: | [(None, 3)]

dense | input: (None, 3)

Dense | output: | (None, 1000)

dense_1 | input: | (None, 1000)
Dense | output: | (None, 750)

dense_2 | input: | (None, 750)
Dense | output: | (None, 500)

dense_3 | input: | (None, 500)
Dense | output: | (None, 300)

dense_4 | input: | (None, 300)
Dense | output: | (None, 200)

dense_5 | input: | (None, 200)
Dense | output: | (None, 150)

dense_6 | input: | (None, 150)
Dense | output: | (None, 100)

dense_7 | input: | (None, 100)
Dense | output: | (None, 50)

dense_8 | input: | (None, 50)

Dense | output: | (None, 1)

Gambar 4.6 Arsitektur Model ANN
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Dari kombinasi epoch, batch size serta optimizer dihasilkan 18 model ANN berikut.

4.2.1. Model ANN dengan Optimizer Adamax dan Batch Size 1

Pada model ANN ini, digunakan optimizer Adamax dengan parameter batch size
sebesar 1. Dilakukan training sampai dengan epoch ke 1000. Setelah melalui
pelatihan awal yang berlangsung hingga mencapai 1000 epoch, ditemukan bahwa
nilai Mean Absolute Error (MAE) model sebesar 0.577566921710968. Data histori
pelatihan model dapat dilihat pada gambar 4.7.

Model Loss

Optimizer:adamax, Batchsize:1, Time:2023-06-26-09_53_31, —— train
Last MAE=0.577566921710968_epoch 1000 test

1.0

0.9

loss

0.8

0.7 1

0 200 400 600 800 1000
epoch

Gambar 4.7 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 1000

Meskipun demikian, belum terlihat perbaikan yang signifikan pada nilai loss baik
pada data latih maupun data uji. Nilai loss fest tidak menurun secara signifikan dan
terus berubah pada kisaran 1 hingga 0,9. Sedangkan nilai loss train mengalami
penurunan sedikit dari 0,6 menjadi 0,577. Meskipun penurunannya tidak signifikan,
terdapat perbaikan nilai yang terjadi. Namun nilai MAE 0,577 masih terlalu besar
dari acuan awal. Proses training dilanjutkan pada epoch 1000 hingga 3000. Pada

gambar 4.8 akan disajikan hasil perbaikan nilai loss train dan fest pada epoch 3000.
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Model Loss

0.8
Optimizer:adamax, Batchsize:1, Time:2023-06-26-08_52_52, ) —— ftrain
Last MAE=0.2448507845401764_epoch 3000 . test
0.7 1
0.6
@ 0.5
o
0.4
0.3 |
0.2 A
T T T T T T T
0 500 1000 1500 2000 2500 3000
epoch

Gambar 4.8 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 3000

Setelah melatih model ini hingga epoch 3000, terlihat indikasi bahwa model
mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss
pada data uji (test) dan data latih (zrain). Namun, meskipun demikian, model ini
berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai
dengan target yang diinginkan, yaitu 0,24485. Selanjutnya pelatihan model
dilanjutkan pada epoch 3000 hingga 5000. Hasil pelatihan tersebut dapat dilihat
pada gambar 4.9.

62



Medel Loss

Optimizer:adamax, Batchsize:1, Time2023-07-035-10_30_26, | — wan
Last MAE =0, 23888996243476868_epoch 5000 Sest
08 4
a4
06
0s 4
041
03 4
02 4
0 2% 00 7% 3000 1230 1300 1730 2000
epoch

Gambar 4.9 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 5000

Setelah dilakukan pelatihan ulang hingga epoch 5000, model ini terindikasi
mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss
pada data fest dan data train. Tidak terlihat adanya perbaikan yang signifikan pada
nilai loss juga. Nilai loss pada data test bervariasi antara 0,4 hingga 0,8, sedangkan
nilai loss pada data train berkisar antara 0,2 hingga 0,4. Meskipun demikian, model
ini berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai

dengan target yang diinginkan, yaitu sebesar 0,2388.
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4.2.2. Model ANN dengan Optimizer Adamax dan Batch Size 7
Eksperimen dilanjutkan dengan melakukan pelatihan model menggunakan
optimizer Adamax dan menggunakan batch size sebesar 7. Pelatihan model

dilakukan hingga epoch 1000. Hasil dari pelatihan tersebut dapat dilihat pada

gambar 4.10.
Model Loss
Optimizer:adamax, Batchsize:7, Time:2023-06-26-10_20_54, —— train
Last MAE=0.33377689123153687_epoch 1000 test
0.9
0.8 1
0.7

loss
———

0.6

"1 Mm i

o T

0.3

0 200 400 600 800 1000
epoch

Gambar 4.10 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7
pada epoch 1000

Pada grafik terlihat terjadi penurunan nilai loss yang signifikan pada proses train
dan test. Hal ini mengindikasikan adanya perbaikan akurasi model. Nilai loss test
awalnya berkisar pada 0,7, namun mengalami penurunan yang signifikan hingga
mencapai kisaran nilai 0,35 pada epoch 800. Sementara itu, nilai loss train juga
mengalami penurunan yang signifikan, dimulai dari kisaran 0,4 dan mencapai
kisaran 0,35 pada epoch 1000. Meskipun nilai tersebut masih lebih tinggi

dibandingkan dengan acuan yang ingin dicapai, pada proses pelatihan ini model
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berhasil memperbaiki loss dengan baik. Pelatihan pada model ini dilanjutkan

hingga epoch 3000. Hasil dari pelatihan tersebut akan disajikan pada gambar 4.11.

Model Loss
Optimizer:adamax, Batchsize:7, Time:2023-07-05-11_04_04, —— ftrain
Last MAE=0.2724565863609314_epoch 3000 test
0.6 1
0.5 A
&
o
0.4
0.3

0 250 500 750 1000 1250 1500 1750 2000
epoch

Gambar 4.11 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7
pada epoch 3000

Pada grafik terlihat terjadi perbedaan antara tren grafik train dan test. Grafik test
cenderung meningkat sedangkan grafik train cenderung menurun. Nilai fest naik
dari kisaran 0,4 hingga 0,55, sementara nilai t7ain menurun dari kisaran 0,35 hingga
0,2. Hal ini merupakan indikasi yang kuat terjadinya overfitting. Namun, model ini
berhasil mencatatkan nilai MAE yang cukup baik, yaitu sebesar 0,27245. Nilai
MAE tersebut lebih kecil dibandingkan dengan nilai MAE acuan yang ingin
dicapai. Pelatihan kembali dilanjutkan hingga epoch 5000. Hasil pelatihan tersebut
akan disajikan pada gambar 4.12.
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Model Loss

Optimizer:adamax, Batchsize:7, Time:2023-07-05-11_11 58, —— ftrain
Last MAE=0.2823437452316284_epoch 5000 test

1.0 A

0.9 A

0.8 A

0.7 A

loss
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04 ] Y M
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0 250 500 750 1000 1250 1500 1750 2000
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Gambar 4.12 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7
pada epoch 5000

Dapat dilihat pada grafik di atas, terjadi perbaikan model yang signifikan antara
epoch 3000 hingga 3800. Nilai test dan train secara bersamaan mengalami
penurunan. Namun, setelah epoch 3800, nilai train terus menurun sementara nilai
test kembali meningkat dan berkisar pada 0,5. Model ini berhasil mencapai MAE

yang sesuai dengan acuan awal, yaitu sebesar 0,28234.

4.2.3. Model ANN dengan Optimizer Adamax dan Batch Size 15

Pada model Artificial Neural Network (ANN) ini, digunakan optimizer Adamax
dengan parameter batch size sebesar 15. Dilakukan pelatihan model hingga
mencapai epoch ke-1000. Dalam proses tersebut, dilakukan optimisasi
menggunakan optimizer Adamax. Pelatihan dimulai hingga epoch 1000, hasil

pelatihan tersebut akan disajikan pada gambar 4.13.
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Model Loss

Optimizer:adamax, Batchsize:15, Time:2023-06-26-10_33_57, —— ftrain
Last MAE=0.37186360359191895_epoch 1000 test

1.0 A
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0.7

loss

0.6 A

0.5 A

0.4

0.3

0 200 400 600 800 1000
epoch

Gambar 4.13 Grafik Loss Model ANN dengan optimizer adamax dan batch size
15 pada epoch 1000

Pelatihan awal ini berhasil memperbaiki model dengan signifikan, terlihat dari
penurunan nilai loss baik pada data train maupun data fest. Pada epoch 1000, model
ini mencapai nilai MAE sebesar 0,37186. Meskipun nilai MAE tersebut masih lebih
besar dari acuan awal yang ditetapkan, tidak terlihat indikasi overfitting maupun
underfitting pada model tersebut. Hal ini menunjukkan bahwa model tersebut dapat
secara baik menyesuaikan diri dengan data pelatihan tanpa kehilangan kemampuan
umum untuk memprediksi data baru. Pelatihan model ini dilanjutkan hingga epoch

3000. Hasil pelatihan tersebut akan disajikan pada gambar 4.14.
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Gambar 4.14 Grafik Loss Model ANN dengan optimizer adamax dan batch size

Pada pelatihan ini, terdapat indikasi bahwa model mengalami overfitting. Terlihat
adanya penyimpangan pada sekitar epoch 1600, di mana nilai test cenderung
meningkat sedangkan nilai train cenderung menurun. Model ini mencatatkan nilai
MAE sebesar 0,317, yang masih lebih besar dari acuan awal yang ditetapkan.
Selanjutnya, model akan dilatih kembali hingga epoch 5000, dan hasil pelatihan

Model Loss
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15 pada epoch 3000

tersebut akan ditampilkan pada gambar 4.15.
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Gambar 4.15 Grafik Loss Model ANN dengan optimizer adamax dan batch size
15 pada epoch 5000

Pada pelatihan ini, terjadi penurunan yang cukup signifikan pada epoch 3000
hingga 3750. Nilai test dan train secara bersamaan mengalami perbaikan nilai.
Namun, pada epoch 3750 hingga 4500, tidak terjadi perbaikan nilai yang signifikan.
Kemudian, pada epoch 4500 hingga 5000, terdapat indikasi overfitting di mana nilai
test cenderung meningkat sedangkan nilai train cenderung menurun.

Berdasarkan eksperimen yang telah dilakukan, optimizer Adamax berhasil
menghasilkan perbaikan nilai yang signifikan pada epoch 0 hingga 1000. Pada
beberapa kasus lainnya, seperti pada epoch 3000 hingga 4000, juga terjadi
perbaikan nilai yang signifikan. Namun, pada epoch 1000 hingga 3000 dan 4000
hingga 5000, sering terjadi overfitting pada model. Keterbatasan jumlah data juga
menjadi faktor yang mempersulit perbaikan model pada epoch di atas 1000. Oleh

karena itu, melalui eksperimen berbagai kombinasi pelatihan model, akan dicari
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model yang memiliki nilai MAE terendah. Terdapat 2 model dengan nilai MAE
terendah yakni model yang dilatih menggunakan optimizer adamax dengan batch
size 1 pada epoch 3000 dan 5000. Model pada epoch 3000 memiliki nilai MAE
sebesar 0.2448507845401764 sedangkan model pada epoch 5000 memiliki nilai
MAE sebesar 0.23888996243476868. Namun kedua model tersebut terindikasi
mengalami overfitting. Adapun model lainnya yang memiliki nilai loss mae
terendah namun tidak mengalami indikasi overfitting yakni model dengan
optimizer adamax dan batchsize sebesar 7 pada epoch 1000. Model tersebut

memiliki nilai mae sebesar 0.333776.

4.2.4. Model ANN dengan Optimizer SGD dan Batch Size 1

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size
sebesar 1. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan
dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki
performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada
indikasi terjadinya overfitting atau underfitting pada model.
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Gambar 4.16 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1
pada epoch 1000
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Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.16,
terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini
memiliki akurasi MAE sebesar 0.385, yang masih sedikit jauh dari acuan awal yang
telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. Hasil
pelatihan tersebut dapat dilihat pada gambar 4.17.

Model Loss
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Gambar 4.17 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 3000

Seperti yang terlihat pada Gambar 4.16, tidak terjadi perbaikan yang signifikan
pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan
yang signifikan. Nilai loss MAE pada fest berfluktuasi antara 0.45 hingga 0.7,
sementara nilai loss MAE pada train hanya berkisar antara 0.3 hingga 0.4. Model
mencatatkan nilai MAE sebesar 0.37452, dimana nilai tersebut yang masih sedikit
jauh dari acuan awal yang telah ditetapkan. Pelatihan model kembali dilanjutkan

hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 4.18.
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Gambar 4.18 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1
pada epoch 5000

Seperti yang terlihat pada Gambar 4.17, tidak terjadi perbaikan yang signifikan
pada model. Namun nilai loss pada train mengalami penurunan sedikit demi sedikit.
Nilai loss MAE pada test berkisar antara 0.45 hingga 0.7, sementara nilai loss MAE
pada train hanya berkisar pada nilai 0.4. Model mencatatkan nilai MAE sebesar
0.3702, dimana nilai tersebut yang masih sedikit jauh dari acuan awal yang telah

ditetapkan.

4.2.5. Model ANN dengan Optimizer SGD dan Batch Size 7
Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size
sebesar 7. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki
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performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Model Loss
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Gambar 4.19 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7
pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.19,
terjadi penurunan signifikan pada nilai train dan fest. Pada evaluasi akhir, model ini
memiliki akurasi MAE sebesar 0.3773933, yang masih sedikit jauh dari acuan awal
yang telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000.
Hasil pelatihan tersebut dapat dilihat pada gambar 4.20.
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Gambar 4.20 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7
pada epoch 3000

Seperti yang terlihat pada Gambar 4.20. tidak terjadi perbaikan yang signifikan
pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan
yang signifikan. Nilai loss MAE pada fest berfluktuasi antara 0.4 hingga 0.6,
sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model
mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit
jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan
merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali
dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar
4.21.
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Gambar 4.21 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7
pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.21,
terjadi penurunan signifikan pada nilai frain dan test. Nilai fest yang awalnya
berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.4. Sedangkan nilai
train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada
evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.3569, yang masih sedikit

jauh dari acuan awal yang telah ditetapkan.
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4.2.6. Model ANN dengan Optimizer SGD dan Batch Size 15

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size
sebesar 15. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan
dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki
performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Model Loss
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Gambar 4.22 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15
pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.22, nilai
loss mae test mengalami penurunan yang awalnya berkisar pada nilai 0.6 hingga
pada epoch 1000 berkisar pada nilai 0.5. Sedangkan nilai loss mae train tidak
mengalami penurunan yang signifikan. Pada epoch 200 hingga epoch 1000 tetap
berkisar pada 0.4. Pada evaluasi akhir, model ini memiliki akurasi MAE sebesar

0.396369, yang masih sedikit jauh dari acuan awal yang telah ditetapkan. Pelatihan
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model kembali dilanjutkan hingga epoch 3000. Hasil pelatihan tersebut dapat

dilihat pada gambar 4.23.
Model Loss
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Gambar 4.23 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15
pada epoch 3000

Seperti yang terlihat pada Gambar 4.23. Tidak terjadi perbaikan yang signifikan
pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan
yang signifikan. Nilai loss MAE pada fest berfluktuasi antara 0.4 hingga 0.6,
sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model
mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit
jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan
merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali
dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar
4.24.
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Gambar 4.24 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15
pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 5000. Terlihat pada Gambar 4.24,
terjadi penurunan signifikan pada nilai train dan fest. Nilai test yang awalnya
berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.45. Sedangkan
nilai train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada
evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.36400321, dimana nilai
tersebut sedikit jauh dari acuan awal yang telah ditetapkan.

Setelah melakukan beberapa eksperimen kombinasi parameter diatas maka
didapatkan 2 model yang memiliki nilai mae terkecil yaitu sebesar
0.35695648193359375 pada model yang dilatih menggunakan batch size sebesar 7
dan dilatih hingga epoch 5000. Lalu ada pula model yang memiliki nilai mae
sebesar 0.35471969842910767 yaitu model yang dilatih menggunakan batch size
sebesar 15 dan dilatih hingga epoch 3000.
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4.2.7. Evaluasi model ANN Prediksi Jarak berdasarkan Citra RGB

Setelah bereksperimen dengan berbagai kombinasi parameter training, maka
disimpulkan untuk menggunakan model ANN dengan optimizer adamax, batch size
7 pada epoch 1000. Model tersebut memiliki nilai mae 0.333776. Model tersebut
digunakan karena tidak mengalami indikasi overfitting maupun underfitting.
Sehingga diharapkan model tersebut dapat melakukan prediksi secara stabil. Hasil

seluruh eksperimen model ANN dapat dilihat pada tabel 4.2.

Tabel 4.2 Perbandingan Model ANN

Model Batch Size Epoch Last Train MAE

adamax 1 1000 0.5775669217
adamax 1 3000 0.2448507845
adamax 1 5000 0.2388899624
adamax 7 1000 0.3337768912
adamax 7 3000 0.2724565864
adamax 7 5000 0.2823437452
adamax 15 1000 0.3718636036
adamax 15 3000 0.3173060715
adamax 15 5000 0.3213479519
sgd 1 1000 0.3855191469
sgd 1 3000 0.3745284975
sgd 1 5000 0.3702289462
sgd 7 1000 0.3773933947
sgd 7 3000 0.3603681922
sgd 7 5000 0.3569564819
sgd 15 1000 0.3963693976
sgd 15 3000 0.3547196984
sgd 15 5000 0.3640032113
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4.3. Eksperimen Model Deteksi Buah Kakao

Pada pelatihan model CNN YOLO, digunakan 80 gambar dan anotasi yang
menggambarkan buah kakao matang dan belum matang dengan lima variasi epoch,
yaitu 100, 300, 500, 700, 1000. Pada pelatihan ini, menggunakan optimizer SGD
dan kombinasi dari beberapa fungsi loss. YOLOv8 menggunakan fungsi loss CloU
dan DFL untuk loss kotak pembatas dan binary cross-entropy untuk loss klasifikasi.
Pelatihan akan dilakukan dengan menggunakan 2 skala arsitektur yaitu pada skala
nano dan medium. Perbedaan skala arsitektur terdapat pada perbedaan jumlah
parameter yang digunakan pada setiap layernya. Model dengan arsitektur nano juga
akan memproduksi model dengan ukuran file yang lebih kecil ketimbang model
dengan medium.

Pelatihan dilakukan selama 100 epoch dengan optimizer SGD dan batch size
sebesar 16. Ukuran gambar input adalah 800x800, dan model akan disimpan setelah
pelatihan selesai. Tidak digunakan cache, dan perangkat yang digunakan akan
disesuaikan secara otomatis. Selain itu, dilakukan pengolahan data paralel dengan
8 workers. Informasi tentang pelatihan, seperti verbose, seed, dan deterministic juga
telah ditentukan. Model ini dapat mendeteksi multiple kelas, dan tidak
menggunakan bobot gambar atau training rectangular. Pada evaluasi, akan
diperhatikan nilai ambang batas kepercayaan dan IoU threshold, serta jumlah
deteksi maksimum. Grafik pelatihan akan ditampilkan, tetapi tidak akan
menampilkan gambar deteksi secara visual. Tidak ada penyimpanan dalam format
teks, confidence map, atau crop objek deteksi. Label objek dan confidence score

akan ditampilkan, serta tebal garis boks deteksi sebesar 3.

4.3.1. Model YOLOVS8n dengan 100 epoch
Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan zest bisa dilihat

pada gambar 4.25.
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Gambar 4.25 loss model YOLOVS8n dengan 100 epoch

(a) dfl loss, (b) box loss dan (¢) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan
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nilai pelatihan (#rain) dan pengujian (zest) tidak menunjukkan indikasi adanya
overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.3.

Tabel 4.3 Hasil Pelatihan YOLOV8n pada epoch 100

Class Box(P) R

all 0.907 0.704
ripe cocoa  0.925 0.792

unripe cocoa 0.889 0.617

Setelah melatih model YOLOV8M selama 100 epoch, dapat disimpulkan
bahwa hasil pelatihan menunjukkan kinerja yang baik dalam melakukan deteksi
buah kakao matang dan belum matang. Keseluruhan model mencapai akurasi
deteksi sebesar 83.4% dengan recall sebesar 82%. Hasil yang lebih baik diperoleh
untuk deteksi buah kakao matang, dengan akurasi mencapai 88% dan recall sebesar
91.7%. Namun, performa deteksi pada buah kakao belum matang sedikit lebih

rendah, dengan akurasi sebesar 78.8% dan recall sebesar 72.3%.

Meskipun demikian, secara keseluruhan model telah mampu melakukan
deteksi dengan baik pada dataset yang digunakan. Namun, ada ruang untuk
pengembangan lebih lanjut dalam meningkatkan performa deteksi pada buah kakao
belum matang agar sejajar dengan deteksi buah kakao matang. Dengan demikian,
dapat dilakukan penyesuaian atau peningkatan model untuk mencapai akurasi
deteksi yang lebih tinggi dan recall yang lebih baik pada kelas buah kakao belum

matang.

4.3.2. Model YOLOVS8n dengan 300 epoch
Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan zest bisa dilihat

pada gambar 4.26.
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Gambar 4.26 loss model YOLOVS8n dengan 300 epoch
(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.26 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss
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terus menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik
dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai
loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss
val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.4.

Tabel 4.4 Hasil Pelatihan YOLOV8n pada epoch 300

Class Box(P) R

all 0.799  0.799
ripe cocoa 0.734  0.920
unripe cocoa  0.864  0.678

Setelah melatih model, diperoleh hasil pelatihan yang menunjukkan kinerja
yang cukup baik dalam melakukan deteksi buah kakao matang dan belum matang.
Dalam hal ini, model mencapai akurasi deteksi sebesar 79.9% dan recall
(kemampuan mengidentifikasi dengan benar) sebesar 79.9% untuk semua kelas.
Meskipun akurasi dan recall secara keseluruhan seimbang, terdapat perbedaan

dalam kinerja deteksi antara kelas buah kakao matang dan belum matang.

Untuk kelas buah kakao matang, model mencapai akurasi deteksi sebesar
73.4% dengan recall sebesar 92%. Hal ini menunjukkan bahwa model mampu
mengenali dengan baik buah kakao yang telah matang. Namun, untuk kelas buah
kakao belum matang, model memiliki akurasi deteksi yang sedikit lebih tinggi
sebesar 86.4% namun recall yang sedikit lebih rendah, yakni sebesar 67.8%. Secara
keseluruhan, model telah mencapai kinerja yang cukup baik dalam melakukan

deteksi buah kakao matang dan belum matang.

4.3.3. Model YOLOVS8n dengan 500 epoch
Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan test dapat dilihat

pada gambar 4.27.
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Gambar 4.27 loss model YOLOVS8n dengan 500 epoch
(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.27 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss
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terus menurun seiring berjalannya pelatihan hingga epoch 200. Namun pada metrik
dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai
loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss
val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.5.

Tabel 4.5 Hasil Pelatihan YOLOV8n pada epoch 500

Class Box(P) R

all 0.860  0.809
ripe cocoa 0.867  1.000

unripe cocoa  0.853  0.618

Berdasarkan hasil pelatihan model YOLOVS8N selama 500 epoch, secara
keseluruhan model ini memiliki tingkat akurasi deteksi yang baik sebesar 0,86 dan
presisi yang cukup tinggi sebesar 0,809. Model ini mampu dengan efektif
mendeteksi dan mengklasifikasikan cokelat matang ("ripe cocoa") dengan tingkat
akurasi yang tinggi sebesar 0,867 dan recall sempurna sebesar 1. Namun, model
menghadapi beberapa kesulitan dalam mendeteksi cokelat yang belum matang
("unripe cocoa"), dengan tingkat akurasi yang sedikit lebih rendah sebesar 0,853
dan recall sebesar 0,618. Untuk meningkatkan performa model dalam
mengklasifikasikan cokelat yang belum matang, perlu dilakukan penyesuaian pada
proses pelatihan, seperti penambahan data latihan yang lebih representatif atau
penyetelan parameter model yang lebih optimal. Secara keseluruhan, meskipun
model YOLOVS8N telah menunjukkan kinerja yang baik dalam mendeteksi objek
secara umum, masih diperlukan peningkatan dalam mengklasifikasikan cokelat

yang belum matang dengan lebih baik.

4.3.4. Model YOLOVS8n dengan 700 epoch
Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan zest bisa dilihat

pada gambar 4.28.
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== train/dfl_loss e« val/dfl_loss
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Gambar 4.28 loss model YOLOVS8n dengan 700 epoch
(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.28 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi
terjadinya overfitting. Pada epoch ke-200 nilai loss train dan fest mengalami
pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.6.

Tabel 4.6 Hasil Pelatihan YOLOV8n pada epoch 700

Class Box(P) R

all 0917  0.707

ripe cocoa 0.947  0.743

unripe cocoa  0.887  0.671

Dalam hasil pelatthan model YOLOVS8N selama 700 epoch, terjadi
peningkatan yang signifikan dalam kinerja model. Secara keseluruhan, model
mencapai tingkat akurasi deteksi yang tinggi sebesar 0,917 dengan nilai presisi
sebesar 0,707. Ini menunjukkan bahwa model berhasil meningkatkan
kemampuannya dalam mendeteksi objek secara umum. Hasil yang lebih baik ini
dapat memberikan kepercayaan lebih dalam penggunaan model untuk mendeteksi
berbagai objek di dalam gambar.

Ketika fokus pada kategori "ripe cocoa", model menunjukkan peningkatan
yang konsisten dengan tingkat akurasi sebesar 0,947 dan presisi sebesar 0,743.
Meskipun recall masih dapat ditingkatkan, peningkatan ini menunjukkan bahwa
model semakin mampu mengklasifikasikan cokelat matang dengan akurasi yang
lebih tinggi. Namun, untuk kategori "unripe cocoa", meskipun terjadi peningkatan,
model masih menghadapi beberapa tantangan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang. Dengan tingkat akurasi sebesar

0,887 dan recall sebesar 0,671, masih ada ruang untuk perbaikan lebih lanjut.

4.3.5. Model YOLOVS8n dengan 1000 epoch
Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.29.
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== train/dfl_loss e+++ val/dfl_loss

dfl loss
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Gambar 4.29 dfl loss, box loss, cls loss model YOLOV8n dengan 1000 epoch
(a) dfl loss, (b) box loss dan (c) cls

Seperti yang dapat dilihat pada ketiga gambar 4.29 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi
terjadinya overfitting. Pada epoch ke-400 nilai loss train dan fest mengalami
pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.7.

Tabel 4.7 Hasil Pelatihan YOLOV8n pada epoch 1000

Class Box(P) R

all 0.869  0.767
ripe cocoa 0.775 0917

unripe cocoa  0.963  0.617

Dalam pelatihan model YOLOVS8N, terdapat hasil yang menarik untuk
setiap kategori. Secara keseluruhan, model mencapai tingkat akurasi deteksi sebesar
0,869 dengan presisi sebesar 0,767. Meskipun tingkat presisi yang tinggi
menunjukkan kemampuan model dalam mengenali objek secara spesifik, recall
yang sebesar 0,767 menandakan adanya ruang untuk perbaikan dalam mencakup
semua objek yang ada dalam gambar secara lebih lengkap.

Dalam kategori "ripe cocoa", model menunjukkan tingkat presisi sebesar
0,775 yang cukup baik. Namun, recall yang rendah sebesar 0,917 mengindikasikan
bahwa model masih melewatkan beberapa cokelat matang yang seharusnya
terdeteksi. Sementara itu, dalam kategori "unripe cocoa", model berhasil mencapai
tingkat presisi yang tinggi sebesar 0,963. Namun, recall yang rendah sebesar 0,617
menunjukkan bahwa model masih menghadapi kesulitan dalam mendeteksi
sebagian besar cokelat yang belum matang.

Secara keseluruhan, model YOLOVS8N telah menunjukkan kemajuan yang
baik dalam deteksi objek, namun masih ada aspek-aspek yang perlu ditingkatkan.
Peningkatan pada recall dalam kedua kategori "ripe cocoa" dan "unripe cocoa" akan
menjadi prioritas dalam pelatihan selanjutnya. Dengan demikian, model dapat
mengenali dan mengklasifikasikan objek dengan lebih akurat dan menyeluruh,
menghasilkan hasil yang lebih baik dalam aplikasi deteksi objek yang berkaitan

dengan cokelat..
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4.3.6. Model YOLOV8m dengan 100 epoch
Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.30.
== train/dfl_loss e+ val/dfl_loss
dfl loss
50 100
epoch
(a)
== train/box_loss s+ val/box_loss
1.6
1.4
box loss 1.2
1
0.8
50 100
epoch
(b)
== train/cls_loss s+ val/cls_loss
e
cls loss

50 100
epoch
()

Gambar 4.30 loss model YOLOVS8n dengan 100 epoch
(a) dfl loss, (b) box loss dan (c) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.30 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan
nilai pelatihan (#rain) dan pengujian (zest) tidak menunjukkan indikasi adanya
overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.8.

Tabel 4.8 Hasil Pelatihan YOLOV8M pada epoch 100

Class Box(P) R

all 0.834  0.820
ripe cocoa 0.880 0917

unripe cocoa  0.788  0.723

Model YOLOVSM, setelah melalui pelatihan selama 100 epoch,
menunjukkan hasil yang cukup baik. Dalam kategori "all", model mencapai tingkat
akurasi deteksi sebesar 0,834 dengan presisi sebesar 0,82. Hasil ini menunjukkan
kemampuan model dalam mendeteksi objek secara umum dalam dataset yang
digunakan. Tingkat akurasi yang tinggi ini memberikan kepercayaan bahwa model
dapat mengenali objek dengan baik.

Ketika berfokus pada kategori "ripe cocoa", model YOLOV8M mencapai
tingkat akurasi yang lebih tinggi sebesar 0,88 dengan recall sebesar 0,917. Hal ini
menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang
dengan akurasi yang baik dan mampu mendeteksi sebagian besar objek yang ada.
Tingkat recall yang tinggi juga menandakan bahwa model dapat mengenali
sebagian besar cokelat matang yang ada dalam dataset.

Namun, dalam kategori "unripe cocoa", model menghadapi beberapa
tantangan dengan tingkat akurasi sebesar 0,788 dan recall sebesar 0,723. Hal ini
mengindikasikan bahwa model masih perlu ditingkatkan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang. Secara keseluruhan, model
YOLOVS8M menunjukkan kemampuan yang baik dalam mendeteksi objek secara

umum dan khususnya dalam kategori "ripe cocoa".
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4.3.7. Model YOLOV8m dengan 300 epoch
Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.31.
== train/dfl_loss e+ val/dfl_loss
dfl loss
100 200 300
epoch
(a)
== train/box_loss <+ val/box_loss
1.5
boxloss 7 4. A
1 S
0.5
100 300
epoch
(b)
== train/cls_loss e+ val/cls_loss
4
cls loss

100 200 300
epoch
(c)
Gambar 4.31 dfl loss, box loss, cls loss model YOLOV8n dengan 300 epoch

(a) dfl loss, (b) box loss dan (c) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.31 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss
terus menurun seiring berjalannya pelatihan. Namun pada metrik dfl loss ada
indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test
mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat
namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.9.

Tabel 4.9 Hasil Pelatihan YOLOV8m pada epoch 300

Class Box(P) R

all 0.820  0.725
ripe cocoa 0.903  0.875
unripe cocoa  0.737  0.574

Setelah melalui pelatihan selama 300 epoch, model YOLOV8M
menunjukkan hasil yang menarik. Secara keseluruhan, model ini mencapai tingkat
akurasi deteksi sebesar 0,82 dengan presisi sebesar 0,725 dalam kategori "all".
Meskipun tingkat akurasi yang cukup baik, recall yang sebesar 0,725 menunjukkan
bahwa model mungkin masih melewatkan sebagian objek yang ada dalam gambar.
Dalam kategori "ripe cocoa", model menunjukkan peningkatan performa dengan
tingkat akurasi sebesar 0,903 dan recall sebesar 0,875. Hasil ini mengindikasikan
kemampuan model dalam mengklasifikasikan cokelat matang dengan akurasi yang
tinggi dan mampu mendeteksi sebagian besar objek yang ada. Peningkatan tersebut
menunjukkan adanya kemajuan dalam pelatihan model.

Namun, dalam kategori "unripe cocoa", model masih mengalami beberapa
kendala dengan tingkat akurasi sebesar 0,737 dan recall sebesar 0,574. Hal ini
menandakan bahwa model masih menghadapi kesulitan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan
yang lebih baik. Secara keseluruhan, model YOLOV8M telah menunjukkan

kemajuan dalam pelatihan selama 300 epoch. Meskipun tingkat akurasi dan presisi
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dalam kategori "all" cukup baik, recall masih perlu ditingkatkan. Peningkatan
signifikan terlihat dalam kategori "ripe cocoa" dengan akurasi dan recall yang lebih

baik.

4.3.8. Model YOLOV8m dengan 500 epoch
Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.32.
== train/dfl_loss s+ val/dfl_loss
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4
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c

Gambar 4.32 dfl loss, box loss, cls loss model YOLOV8n dengan 500 epoch
(a) dfl loss, (b) box loss dan (¢) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model berhasil
meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss terus
menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl
loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss
train dan fest mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val
meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.10.

Tabel 4.10 Hasil Pelatihan YOLOV8m pada epoch 500

Class Box(P) R

all 0910 0.704
ripe cocoa 0.959  0.792

unripe cocoa  0.861  0.617

Setelah melalui pelatihan selama 500 epoch, model YOLOV8M
menunjukkan hasil yang menggembirakan. Secara keseluruhan, model ini
mencapai tingkat akurasi deteksi yang tinggi sebesar 0,91 dengan presisi sebesar
0,704 dalam kategori "all". Meskipun tingkat akurasi yang tinggi, recall yang
sebesar 0,704 menunjukkan bahwa model mungkin masih melewatkan sebagian
objek yang ada dalam gambar.

Dalam kategori "ripe cocoa", model menunjukkan performa yang sangat
baik dengan tingkat akurasi sebesar 0,959 dan recall sebesar 0,792. Hasil ini
menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang
dengan akurasi yang tinggi dan mampu mendeteksi sebagian besar objek yang ada.
Namun, dalam kategori "unripe cocoa", model masih menghadapi beberapa kendala
dengan tingkat akurasi sebesar 0,861 dan recall sebesar 0,617. Hal ini menandakan
bahwa model masih mengalami kesulitan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan

yang lebih baik.
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4.3.9. Model YOLOV8m dengan 700 epoch
Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.33.
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Gambar 4.33 loss model YOLOVS8n dengan 700 epoch
(a) dfl loss, (b) box loss dan (c) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.33 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss
ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test
mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat
namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.11.

Tabel 4.11 Hasil Pelatihan YOLOV8m pada epoch 700

Class Box(P) R

all 0.748  0.808
ripe cocoa 0.610  0.958
unripe cocoa 0.885  0.658

Model YOLOV8M dilatih selama 700 epoch dan mencapai akurasi deteksi
sebesar 0,748 dan presisi 0,808 dalam kategori "semua". Namun, recall 0,808
menunjukkan ruang untuk meningkatkan deteksi objek dalam gambar. Dalam
kategori "kakao matang", akurasi 0,61 dengan recall tinggi 0,958 menunjukkan
kemampuan model mengklasifikasikan kakao matang, meskipun dengan positif
palsu. Dalam kategori "kakao mentah", akurasi 0,885 dengan recall 0,658
menunjukkan model masih kesulitan mendeteksi kakao mentah. Model perlu
meningkatkan recall dalam kategori ini. Secara keseluruhan, YOLOV8M
menunjukkan kemajuan selama 700 epoch. Dalam kategori "semua", recall perlu
ditingkatkan untuk mendeteksi lebih banyak objek. Dalam kategori "kakao
matang", recall tinggi menunjukkan kemampuan model, tetapi perlu penanganan
positif palsu. Dalam kategori "kakao mentah", meningkatkan recall menjadi fokus

utama untuk meningkatkan deteksi kakao mentah dengan akurasi yang lebih tinggi.
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4.3.10. Model YOLOV8m dengan 1000 epoch
Dilakukan pelatihan model hingga epoch 1000 menggunakan arsitektur
YOLOVS8m. Pada akhir proses training, nilai akurasi dan loss pada training dan test

bisa dilihat pada gambar 4.34.

== train/dfl_loss e val/dfl_loss
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== train/box_loss e+ val/box_loss
1.5
box loss

0.5

500 1000
epoch

(b)

= train/cls_loss -+ val/cls_loss
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Gambar 4.34 model YOLOVS8n dengan 1000 epoch

(a) dfl loss, (b) box loss dan (c) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.34 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss
ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test
mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat
namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.12.

Tabel 4.12 Hasil Pelatihan YOLOV8m pada epoch 1000

Class Box(P) R

all 0.816  0.768
ripe cocoa 0.746  0.856

unripe cocoa  0.886  0.681

Model YOLOVS8M telah dilatih selama 1000 epoch dan menunjukkan hasil
yang menarik. Dalam kategori "semua", model ini mencapai presisi sebesar 0,816
dan recall sebesar 0,768. Ini menunjukkan kemampuan model dalam mengenali dan
mengklasifikasikan objek dengan akurasi yang cukup tinggi. Dalam kategori
"kakao matang", model mencapai presisi sebesar 0,746 dengan recall yang lebih
tinggi, yaitu 0,856. Ini menunjukkan kemampuan model dalam mendeteksi dan
mengklasifikasikan kakao matang dengan baik, meskipun masih terdapat ruang
untuk meningkatkan presisi. Di sisi lain, dalam kategori "kakao mentah", model
mencapai presisi sebesar 0,886 dengan recall sebesar 0,681.

Meskipun akurasi cukup baik, recall yang rendah menunjukkan bahwa
model masih kesulitan dalam mendeteksi sebagian besar kakao mentah.
Meningkatkan recall dalam kategori ini menjadi fokus utama untuk meningkatkan
kemampuan model dalam mengklasifikasikan kakao mentah dengan akurasi yang
lebih tinggi. Secara keseluruhan, YOLOVS8M telah menunjukkan kemajuan dalam
1000 epoch pelatihan. Meskipun memiliki akurasi yang baik dalam kategori
"semua" dan "kakao matang", meningkatkan recall akan membantu model dalam

menangkap lebih banyak objek secara akurat. Untuk kategori "kakao mentah",
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meningkatkan recall menjadi hal yang penting untuk meningkatkan kemampuan

model dalam mendeteksi kakao mentah dengan lebih baik.

4.3.11. Evaluasi S Model YOLOVS dengan performa terbaik
Untuk menentukan model YOLOVS8 yang memiliki akurasi paling baik
maka berikut akan ditampilkan 5 model dengan nilai R dan Box(P) (box loss) yang

paling tinggi diantara model-model lainnya pada gambar 4.35.

B R W Box(P)

1.00

0.75

0.50

0.25

0.00
YOLOV8N100  YOLOV8N500 YOLOV8M100 YOLOV8M700  YOLOV8N300

Gambar 4.35 Grafik 5 Model Dengan Nilai Recall Tertinggi

Dari model dengan arsitektur YOLOVS diatas maka disimpulkan model terbaik
adalah model dengan arsitektur YOLOVS8 nano dengan 100 epoch.

4.4. Sistem Prediksi Jarak Objek pada Citra

Sistem ini akan melakukan Prediksi Jarak Objek terhadap kamera. Prediksi
dilakukan menggunakan nilai rgb sebagai input. Proses dimulai dengan memilih
titik koordinat salah satu piksel yang berada pada area objek sebagai input proses
segmentasi. Kemudian dilakukan segmentasi pada citra untuk mendapatkan area
objek. Kemudian dilakukan prediksi kedalaman citra menggunakan Model CNN
Monocular Depth Estimation. Area yang telah didapatkan digunakan untuk

mengambil warna pada citra hasil prediksi kedalaman pada area yang diinginkan.
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Kemudian dari kumpulan warna tersebut dicari nilai mediannya sehingga
didapatkan nilai median rgb untuk digunakan pada input model ANN prediksi jarak.
Sehingga kemudian didapatkan nilai jarak objek terhadap kamera.

4.4.1. Mengunggah Gambar dan Prediksi Kedalaman

Proses awal yang harus dilakukan yakni mengunggah gambar tanaman
kakao yang akan digunakan. Setelah itu dilakukan proses prediksi kedalaman
menggunakan Model CNN Monocular Depth Estimation. Sehingga dihasilkan citra
yang merepresentasikan kedalaman atau dapat disebut sebagai citra kedalaman.
Citra inilah yang nantinya akan digunakan nilai rgbnya sebagai input untuk

memprediksi jarak objek terhadap kamera.

~ N

Gambar 4.36 Citra Tanaman Kakao Asli

Gambar 4.37 Citra Kedalaman Tanaman Kakao
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4.4.2. Menentukan Titik Piksel pada Objek

Karena sistem yang dikembangkan belum dapat mengidentifikasi bagian
batang tanaman kakao secara otomatis, maka pada penelitian ini masih diperlukan
input manual untuk menentukan titik piksel yang merupakan bagian dari tanaman
kakao. Proses ini dilakukan dengan melihat terlebih dahulu gambar serta axis untuk

melakukan taksiran lokasi x,y piksel yang akan digunakan.

1000 2000 3000

Gambar 4.38 Tampilan awal untuk penentuan titik pada objek
Setelah melakukan taksiran maka pada gambar ini akan digunakan titik pada
koordinat 2750, 3000. Nilai x,y tersebut akan ditampilkan dengan simbol bintang
seperti pada gambar berikut.

1000 2000 3000

Gambar 4.39 Tampilan gambar dengan titik piksel yang telah dipilih
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Setelah menemukan titik piksel yang akan digunakan, maka pada proses

selanjutnya titik tersebut akan digunakan sebagai input pada proses segmentasi.

4.4.3. Proses Segmentasi dengan Model CNN Segment Anything

Pada proses ini akan dilakukan segmentasi untuk mendapatkan area objek
yang akan digunakan (Tanaman Kakao). Titik koordinat yang telah ditentukan
menjadi input/acuan model untuk memprediksi area sekitarnya yang masih
merupakan bagian dari objek. Hal ini dilakukan untuk mempermudah pemilihan

area objek.

500

1000

3000

0 100 2000 00 0
Gambar 4.40 Hasil Segmentasi Area Objek Tanaman Kakao

Area/mask tersebut kemudian akan digunakan untuk mengambil nilai rgb pada citra

kedalaman.

4.4.4. Pengambilan nilai median RGB dan Prediksi Jarak
Setelah mendapatkan area objek tanaman kakao, maka nilai rgb pada citra
kedalaman yang beririsan dengan area objek tanaman kakao akan diambil. Dari

nilai-nilai tersebut kemudian akan didapatkan nilai median RGB. Nilai median
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RGB kemudian digunakan untuk memprediksi jarak. Dengan menggunakan model
ANN yang telah dikembangkan, dilakukan prediksi jarak menggunakan nilai rgb
sebagai input. Sehingga kemudian didapatkan nilai jarak objek tanaman kakao

terhadap kamera dalam satuan meter.

4.4.5. Evaluasi Sistem Prediksi Jarak Objek Pada Citra

Penggunaan model CNN Segment Anything belum bisa optimal untuk
mengambil bagian tanaman saja karena adanya noise pada background objek
tersebut. Hal ini dipengaruhi oleh kondisi lingkungan perkebunan kakao yang padat

dengan tanaman kakao.

4.5. Sistem Prediksi Koordinat Tanaman Kakao pada Citra

Pada bagian ini akan dilakukan prediksi nilai koordinat tanaman kakao.
Pada tahap ini diperlukan beberapa variabel sebagai input yaitu nilai koordinat
longitude dan latitude tanaman kakao, nilai derajat arah hadap kamera, serta jarak
objek terhadap kamera. Pada proses ini akan digunakan rumus yang bernama
Vincenty Formula. Hasil dari kalkulasi menggunakan rumus tersebut yakni titik
koordinat longitude serta latitude objek tanaman kakao. Untuk menguji akurasi dari
rumus tersebut, pada bagian selanjutnya akan dilakukan percobaan kalkulasi pada

5 titik lokasi.

4.5.1. Evaluasi Akurasi Vincenty Formula
Pada bagian ini akan dilakukan pengujian akurasi dari hasil kalkulasi

Vinceny Formula. Pengujian akan dilakukan pada 5 lokasi pada tabel 4.13.

Tabel 4.13 Ground Truth Titik Koordinat

Building Destination
No

Name Coordinate Name Coordinate

Alun-Alun -7.97692544511029, Stasiun Malang -7.97720169566579,
1 Tugu Malang 112.634055029002 Kota Baru 112.637112747216
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Tabel 4. 14 Ground Truth Titik Koordinat (lanjutan)

Building Destination
No

Name Coordinate Name Coordinate

2 Alun-Alun -7.97692544511029, Bulan Photocopy -7.97419601839356,

Tugu Malang 112.634055029002 & Print 112.634292801417
3 Gerbang UB -7.94984, Soekarno  Hatta -7.9496079959561,
Soekarno hatta 112.615411 Bridge 112.615839888356
4  Gerbang UB -7.94984, Kober Mie Setan -7.9481629265072,
Soekarno hatta 112.615411 112.61676260122
5 Gerbang UB -7.94984, Mixue Suhat -7.94637779324508,
Soekarno hatta 112.615411 Malang 112.618050061491

Tabel 4. 15 Arah dan Jarak

No Heading Distance to Desstination (km)

1 96,607° 0.28
2 4,124 0.3

3 45456° 0.069
4 43,014° 0.22
5 -40,579° 0.45

Tabel 4. 16 Hasil Prediksi dan Selisih

No Predicted Coordinate Differences
-7.97721516624731,

1 -1.347x 107, -5.319 x 10
112.636580818575
-7.97423446585066,

2 -3.845x 107, -4.188 x 10~
112.634250919231
-7.94936783429258,

3 -3.845x 107, -4.188 x 10~
112.615817547406
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Tabel 4. 17 Hasil Prediksi dan Selisih (lanjutan)

No Predicted Coordinate Differences
-7.94839333872107,

4 -2304x 104 1.118 x 10
112.616773784662
-7.9467662955678,

5 -3.885x10% 1.899 x 10
112.618069047894

Berdasarkan lima percobaan yang telah dilakukan, dapat disimpulkan bahwa rumus
yang digunakan memiliki akurasi yang cukup baik dan kesalahan yang relatif kecil.
Perbedaan rata-rata antara hasil yang diperoleh dari rumus dan titik koordinat
sebenarnya adalah sangat kecil, yaitu sebesar -0,00009966528437. Selain itu,
perbedaan maksimum antara hasil yang diperoleh dari rumus dan nilai sebenarnya
juga cukup kecil, hanya sekitar 0,0002401616635. Sehingga dapat disimpulkan
rumus Vincenty Formula tersebut dapat digunakan untuk melakukan kalkulasi titik
koordinat suatu objek berdasarkan titik koordinat asal, derajat arah serta jarak

terhadap objek.

4.6. Sistem Estimasi Jumlah Buah Kakao

Sistem ini melakukan deteksi buah kakao. Buah kakao yang terdeteksi
dalam bentuk bounding box akan dihitung jumlahnya. Setelah terdeteksi maka
setiap buah dalam setiap bounding box tersebut diklasifikasi untuk memprediksi
buah tersebut telah memasuki usia matang atau belum. Proses pada sistem ini cukup
sederhana, pengguna cukup mengunggah citra tanaman kakao. Lalu sistem akan
melakukan deteksi buah kakao, serta mengkalkulasi bounding box yang muncul.
Sehingga akan ditampilkan kepada pengguna berapa jumlah buah kakao yang ada
pada tanaman kakao tersebut. Adapun deteksi ini dilakukan dengan menggunakan

confidence threshold sebesar 0.25.

4.6.1. Evaluasi Sistem Estimasi Jumlah Buah Kakao
Pada tahap ini akan dilakukan evaluasi pada 5 model CNN YOLOVS terbaik

yang digunakan untuk melakukan deteksi buah kakao. Selain metriks pelatihan
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seperti box loss, dfl loss dan cls loss akan dilakukan pula pengujian manual secara
visual. Model akan dijalankan untuk melakukan proses deteksi, lalu hasil deteksi
akan dibandingkan dengan hasil penghitungan buah kakao manual secara visual.
Adapun berikut 2 citra yang akan digunakan untuk melakukan evaluasi sistem

estimasi jumlah buah kakao yaitu gambar 4.41 dan 4.42.

Gambar 4. 41 Citra Tanaman Kakao dengan Buah muda

Dapat dilihat pada gambar 4.40 terdapat 19 buah muda. Buah kakao yang masih
muda akan nampak berwarna hijau. Lama-kelamaan akan muncul titik titik
kecoklatan pada buah kakao. Beberapa buah kakao pada gambar 4.40 berada pada
posisi yang sulit untuk dideteksi seperti buah yang tertutupi oleh buah lainnya, serta
buah yang berada dibalik batang. Buah pada posisi yang sulit dijangkau ini akan

SR

Gambar 4. 42 Citra Tanaman Kakao dengan Buah Matang
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Dapat dilihat pada gambar 4.41 terdapat 20 buah matang. Pada kedua citra diatas

yaitu gambar 4.40 dan gambar 4.41 akan dilakukan deteksi menggunakan model
YOLOVS8n dengan 100 epoch. Hasil deteksi dapat dilihat pada gambar 4.43 dan
4.44.

Gambar 4. 43 Hasil Deteksi Buah Kakao dengan model YOLOV8&n 100 epoch

Pada gambar 4.43 terdapat 8 bounding box. Artinya terdapat 8 buah kakao matang
yang terdeteksi. Kedelapan bounding box tersebut juga memiliki confidece
threshold yang tinggi, yaitu pada nilai diatas 0.9 yang artinya model cukup yakin
bahwa prediksinya akurat. Namun masih terdapat 10 buah yang tidak terdeteksi.
Buah yang tidak terdeteksi kebanyakan memiliki posisi yang susah untuk dideteksi
seperti berada dibalik batang, dibalik buah lainnya, serta ukurannya sangat kecil.
Deteksi dilakukan pula pada tanaman kakao dengan buah muda. Hasil deteksi dapat
dilihat pada gambar 4.44.
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Gambar 4. 44 Hasil Deteksi Buah Kakao dengan model YOLOV8n 100 epoch

Seperti yang dapat dilihat pada gambar 4.44, terdapat 9 bounding box/buah yang
berhasil terdeteksi. Namun pada ground truth terdapat 19 buah, sehingga masih
terdapat 10 buah. Deteksi dilakukan menggunakan kelima model pada 2 gambar
tersebut. Hasil evaluasi pada kelima model dapat dilihat pada tabel 4.15.

Tabel 4. 18 Evaluasi 5 model terbaik pada 2 contoh gambar

prediction result

model filename num of ripe  num of unripe

cocoa cocoa

YOLOVS8n 100
IMG 20230621 160151.jpg 9
epoch

IMG 20230621 160747.jpg 8
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Tabel 4. 19 Evaluasi 5 model terbaik pada 2 contoh gambar (lanjutan)

prediction result

model filename num of ripe  num of unripe
cocoa cocoa
YOLOVS8n 500
IMG 20230621 160151.jpg 12
epoch
IMG 20230621 160747.jpg 10
YOLOVS8m 100
IMG 20230621 160151.jpg 2 14
epoch
IMG 20230621 160747.jpg 17
YOLOVS8m 700
IMG 20230621 160151.jpg 3 11
epoch
IMG 20230621 160747.jpg 11
YOLOVS8n 300
IMG 20230621 160151.jpg 10
epoch
IMG 20230621 160747.jpg 11

Secara keseluruhan model belum berhasil mendeteksi semua buah kakao yang ada
pada tanaman kakao. Hal ini disebabkan karena banyak posisi buah kakao yang
tertutupi oleh objek lain seperti batang tanaman kakao, buah kakao, serta ukurannya
yang kecil. Hal ini dapat dikembangkan dengan cara melengkapi dataset yang lebih
bervariatif seperti menambahkan anotasi bounding box pada buah kakao yang
tertutupi. Namun hal tersebut juga perlu diimbangi dengan adanya metode yang
dapat melokalisasi hasil deteksi karena apabila sebuah kakao terletak dibalik batang
sehingga seolah-olah nampak terdapat dua buah kakao maka menjadi akan bias bagi

model.
Apabila ketiga sistem diatas digabungkan, sistem dapat digunakan sebagai alat

untuk melakukan monitoring perkebunan kakao dengan metode geotagging. Pada

penelitian ini sistem hanya mampu untuk melakukan prediksi titik koordinat
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tanaman kakao serta deteksi buah kakao. Sehingga sistem dapat menghasilkan
output berupa titik koordinat serta jumlah buah kakao. Sistem ini merupakan
alternatif murah untuk mengetahui perkembangan dari setiap tanaman kakao dari

waktu ke waktu.
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BAB IV HASIL DAN PEMBAHASAN

4.1. Dataset

Pada penelitian ini, dilakukan pengumpulan data untuk membangun dataset
yang akan digunakan dalam proses pelatihan model Artificial Neural Network
(ANN) untuk memprediksi jarak serta model Convolutional Neural Network (CNN)
YOLO untuk mendeteksi buah kakao. Pengumpulan data dilakukan dengan cara
mengambil sampel gambar-gambar buah kakao yang sudah matang dan yang belum
matang. Selama proses pengumpulan data, gambar-gambar tersebut diolah dan
diberikan anotasi. Anotasi ini mencakup informasi mengenai koordinat atau
bounding box yang menandai letak buah kakao pada gambar, serta label yang
menunjukkan jenis atau kelas buah kakao yang terdeteksi. Setelah pengumpulan
data selesai, dataset yang terdiri dari gambar-gambar dan anotasinya akan
digunakan dalam proses pelatihan model. Model ANN akan dilatih menggunakan
data jarak antara kamera dan buah kakao sebagai input, serta data yang sesuai
dengan jarak tersebut sebagai output yang diharapkan. Sementara itu, model CNN
YOLO akan dilatih menggunakan gambar-gambar buah kakao beserta anotasinya.
Proses pelatihan ini bertujuan untuk mengajarkan model untuk mendeteksi dan

mengidentifikasi buah kakao dalam gambar.

4.1.1. Pembuatan Dataset Nilai Rgb dan Jarak Objek

Pembuatan dataset dimulai dengan mencari objek yang menyerupai tiang
untuk menggantikan batang tanaman kakao. Setelah objek yang sesuai ditemukan,
jarak antara kamera dan objek ditentukan. Setelah jarak kamera dengan objek
ditentukan, citra diambil menggunakan kamera atau perangkat lainnya. Pada
langkah ini, citra yang telah diambil akan diproses menggunakan model CNN
monodepth estimation. Model ini akan memperkirakan kedalaman objek
berdasarkan nilai RGB pada citra. Setelah estimasi kedalaman dilakukan,

ditentukan titik koordinat piksel (x, y) pada area objek yang diestimasi
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kedalamannya. Titik koordinat ini akan digunakan dalam proses segmentasi
selanjutnya. Pada langkah ini, model CNN segment anything digunakan untuk

melakukan segmentasi pada citra hasil estimasi kedalaman. Model CNN segment
anything melakukan proses segmentasi berdasarkan titik koordinat yang telah
ditentukan. Titik tersebut menjadi dasar penunjuk objek yang akan disegmentasi
areanya. Segmentasi akan mengidentifikasi bagian objek yang menyerupai tiang
dan memisahkannya dari latar belakang. Setelah proses segmentasi, nilai RGB pada
bagian objek yang diidentifikasi akan diperoleh. Nilai RGB ini merupakan warna
piksel pada citra hasil estimasi kedalaman. Setelah mendapatkan kumpulan nilai
RGB, nilai median dari kumpulan tersebut diambil. Nilai median memberikan
representasi warna tengah dari kumpulan tersebut, yang akan digunakan sebagai
representasi nilai RGB untuk jarak objek yang diestimasi. Setelah semua langkah
di atas dilakukan untuk setiap objek yang dipilih, data yang terkumpul ditambahkan
ke dataset. Setiap data terdiri dari pasangan nilai RGB (nilai median) dan jarak

kamera terhadap objek yang sesuai.

Gambar 4.1 Alur Pembuatan Dataset
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4.1.2. Profil Dataset Nilai RGB dan Jarak Objek

Pada penelitian ini, terdapat dataset yang berisi pasangan nilai
Red,Green,Blue (RGB) terhadap jarak objek dalam satuan meter. Namun, perlu
dicatat bahwa nilai RGB yang ada dalam dataset tersebut bukanlah nilai RGB dari
citra asli, melainkan nilai RGB yang berasal dari proses estimasi kedalaman
menggunakan model CNN monodepth estimation. Nilai RGB akan digunakan
sebagai input untuk memperkirakan jarak objek. Proses estimasi kedalaman
menggunakan model CNN monodepth estimation. Dataset ini terdiri dari 112 data,

dimana setiap data terdiri dari nilai RGB dan jarak objek yang sesuai.

Tabel 4.1 Dataset RGB dan Jarak Objek

id r g b distance

0 251.0 138.0 99.0 2.90
1 141.0 41.0 128.0 4.22
2 220.0 72.0 107.0 1.00
3 80.0 18.0 123.0 3.00

4 225.0 76.0 103.0 3.75

110  222.0 75.0 124.0 2.70
111 252.0 158.0 112.0 1.20

112 156.0 46.0 126.0 2.40

4.1.3. Dataset Buah Kakao

Dataset Buah Kakao dilakukan dengan melakukan pengambilan citra di
perkebunan kakao yang terletak di Puslitkoka, Jember. Dilakukan pengambilan
citra pada tanaman kakao yang sedang berbuah baik yang buahnya sudah matang
maupun yang belum matang. Pengambilan citra juga divariasikan jaraknya yaitu
pada rentang jarak sebesar 0,8 hingga 2,8 m sesuai dengan variasi yang terdapat

pada dataset nilai rgb dan jarak objek (Bab 4.1.2). Dataset Buah Kakao terdiri dari
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total 67 gambar buah kakao dengaan 446 anotasi. Untuk melakukan proses training
digunakan 46 gambar (sekitar 69% dari total dataset). Selanjutnya, untuk
memvalidasi performa model, 13 gambar (sekitar 19% dari total dataset) akan
digunakan sebagai validation set. Terakhir, 8 gambar (sekitar 12% dari total dataset)
akan dijadikan sebagai fest set untuk menguji akurasi model yang telah dilatih.
Dalam setiap gambar, terdapat rata-rata 6 anotasi (label) untuk buah kakao. Dataset
ini memiliki dua kelas, yaitu buah kakao matang dan belum matang. Dengan
pembagian ini, diharapkan model dapat mempelajari dan mengklasifikasikan

gambar-gambar buah kakao dengan akurasi yang tinggi.

Class Balance

train  valid test

ripecocoa 227
unripecocoa 217

Gambar 4.2 Semua Dataset

Secara keseluruhan, jumlah anotasi pada kedua kelas, yaitu kelas cocoa matang
(ripe cocoa) dan kelas cocoa belum matang (unripe cocoa), tergolong cukup
seimbang. Terdapat 227 anotasi pada kelas cocoa matang dan 217 anotasi pada
kelas cocoa belum matang. Perbedaan jumlah anotasi antara kedua kelas tersebut

tidak terlalu signifikan.

Class Balance

all valid  test

ripecocoa 171
unripecocoa 130

Gambar 4.3 Pembagian Dataset untuk Train

Data pelatihan ini memiliki jumlah sampel yang cukup representatif untuk kedua
kelas, yaitu 171 sampel pada kelas cocoa matang (ripe cocoa) dan 130 sampel pada
kelas cocoa belum matang (unripe cocoa). Dengan jumlah yang seimbang antara
kedua kelas, model pembelajaran mesin dapat mempelajari pola dan informasi yang
relevan dari masing-masing kelas. Dengan menggunakan data pelatihan yang
representatif ini, model yang dihasilkan memiliki kemampuan yang lebih baik

dalam mengklasifikasikan cocoa berdasarkan tingkat kematangannya.
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Class Balance

all  train | valid | test

ripecocoa 24 under represented
unripecocoa 47

Gambar 4.4 Pembagian Dataset untuk Valid

Dataset validasi yang mencakup kedua kelas, yaitu cocoa matang (ripe cocoa)
dengan 24 sampel dan cocoa belum matang (unripe cocoa) dengan 47 sampel,
memungkinkan pengujian kehandalan model dalam mengklasifikasikan tingkat
kematangan cocoa. Evaluasi menggunakan dataset validasi ini memberikan

gambaran yang lebih akurat tentang kemampuan model dalam dunia nyata.

Class Balance
all train valid test

ripecocoa 32
unripecocoa 40

Gambar 4.5 Pembagian Dataset untuk Test

Pada dataset uji (test set), terdapat 32 sampel anotasi pada kelas cocoa matang (ripe
cocoa) dan 40 sampel anotasi pada kelas cocoa belum matang (unripe cocoa).
Dataset uji ini digunakan untuk menguji performa model yang telah dilatih pada
data pelatihan dan divalidasi pada data validasi. Dengan menggunakan dataset uji
yang mencakup kedua kelas, model dapat dievaluasi lebih lanjut dalam

kemampuannya mengklasifikasikan cocoa berdasarkan tingkat kematangannya.

4.2. Eksperimen Model ANN Prediksi Jarak Objek pada Citra

Pada penelitian ini, dilakukan beberapa percobaan pelatihan Artificial
Neural Network (ANN) untuk mengetahui korelasi antara variabel RGB piksel
dengan jarak aktualnya. Percobaan ini menggunakan model CNN Monodepth
Estimation yang menghasilkan citra RGB dengan nilai yang sangat bervariasi.
Percobaan dilakukan dengan menggunakan dua jenis optimizer, yaitu Adamax dan
SGD. Optimizer digunakan untuk mengatur proses pembelajaran ANN dengan
menyesuaikan bobot dan bias agar mencapai hasil yang optimal. Model akan dilatih

dengan sebanyak 112 data.
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Selain itu, juga dilakukan variasi pada 3 jumlah epoch (1000, 3000, 5000)
dan 3 variasi batch size (1, 7, 15). Epoch merupakan iterasi yang dilakukan saat
melatih model, sedangkan batch size menentukan jumlah sampel yang digunakan
dalam satu iterasi. Dengan menggabungkan variasi optimizer, epoch, dan batch
size, percobaan ini bertujuan untuk mencari kombinasi yang paling baik dalam
menghasilkan model ANN yang dapat memprediksi jarak aktual berdasarkan nilai
RGB piksel. Sebagai tambahan informasi, pada pengembangan model ANN ini
digunakan Mean Absolute Error (MAE) sebagai loss metric untuk mengetahui
akurasi model yang telah dilatih. Sebagai acuan, pada penelitian ini telah disepakati
untuk mengembangkan model ANN yang memiliki nilai MAE dibawah 0.3.
Adapun arsitektur ANN yang akan digunakan dapat dilihat pada gambar 4.6.

dense_input | input: | [(None, 3)]

InputLayer | output: | [(None, 3)]

dense | input: (None, 3)
Dense | output: | (None, 1000)

dense_1 | input: | (None, 1000)
Dense | output: | (None, 750)

dense_2 | input: | (None, 750)
Dense | output: | (None, 500)

dense_3 | input: | (None, 500)
Dense | output: | (None, 300)

dense_4 | input: | (None, 300)
Dense | output: | (None, 200)

dense_5 | input: | (None, 200)
Dense | output: | (None, 150)

dense_6 | input: | (None, 150)
Dense | output: | (None, 100)

dense_7 | input: | (None, 100)

Dense | output: | (None, 50)

dense_8 | input: | (None, 50)

Dense | output: | (None, 1)

Gambar 4.6 Arsitektur Model ANN
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Dari kombinasi epoch, batch size serta optimizer dihasilkan 18 model ANN berikut.

4.2.1. Model ANN dengan Optimizer Adamax dan Batch Size 1

Pada model ANN ini, digunakan optimizer Adamax dengan parameter batch size
sebesar 1. Dilakukan training sampai dengan epoch ke 1000. Setelah melalui
pelatihan awal yang berlangsung hingga mencapai 1000 epoch, ditemukan bahwa
nilai Mean Absolute Error (MAE) model sebesar 0.577566921710968. Data histori
pelatihan model dapat dilihat pada gambar 4.6.

Model Loss

Optimizer:adamax, Batchsize:1, Time:2023-06-26-09_53_31, —— train
Last MAE=0.577566921710968_epoch 1000 test

1.0

0.9

loss

0.8

0.7 1

0.6 MM

0 200 400 600 800 1000
epoch

Gambar 4.7 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 1000

Meskipun demikian, belum terlihat perbaikan yang signifikan pada nilai loss baik
pada data latih maupun data uji. Nilai loss fest tidak menurun secara signifikan dan
terus berubah pada kisaran 1 hingga 0,9. Sedangkan nilai loss train mengalami
penurunan sedikit dari 0,6 menjadi 0,577. Meskipun penurunannya tidak signifikan,
terdapat perbaikan nilai yang terjadi. Namun nilai MAE 0,577 masih terlalu besar
dari acuan awal. Proses training dilanjutkan pada epoch 1000 hingga 3000. Pada

gambar 4.7 akan disajikan hasil perbaikan nilai loss train dan fest pada epoch 3000.
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Model Loss

0.8 1 =
Optimizer:adamax, Batchsize:1, Time:2023-06-26-08_52_52, —— ftrain
Last MAE=0.2448507845401764_epoch 3000 — test
0.7 1
0.6
@ 0.5
o
0.4
0.3 1
0.2 1
0 500 1000 1500 2000 2500 3000
epoch

Gambar 4.8 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 3000

Setelah melatih model ini hingga epoch 3000, terlihat indikasi bahwa model
mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss
pada data uji (test) dan data latih (zrain). Namun, meskipun demikian, model ini
berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai
dengan target yang diinginkan, yaitu 0,24485. Selanjutnya pelatihan model
dilanjutkan pada epoch 3000 hingga 5000. Hasil pelatihan tersebut dapat dilihat
pada gambar 4.8.
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Model Loss

Optimizer:adamax, Batchsize:1, Time2023-0705-10_30_26, — vam
Last MAE =0, 2388599624 3476868 _epoch 5000 test
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Gambar 4.9 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 5000

Setelah dilakukan pelatihan ulang hingga epoch 5000, model ini terindikasi
mengalami overfitting karena terdapat perbedaan yang signifikan antara nilai loss
pada data fest dan data train. Tidak terlihat adanya perbaikan yang signifikan pada
nilai loss juga. Nilai loss pada data test bervariasi antara 0,4 hingga 0,8, sedangkan
nilai loss pada data train berkisar antara 0,2 hingga 0,4. Meskipun demikian, model
ini berhasil mencapai Mean Absolute Error (MAE) yang cukup kecil dan sesuai

dengan target yang diinginkan, yaitu sebesar 0,2388.
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4.2.2. Model ANN dengan Optimizer Adamax dan Batch Size 7
Eksperimen dilanjutkan dengan melakukan pelatihan model menggunakan
optimizer Adamax dan menggunakan batch size sebesar 7. Pelatihan model

dilakukan hingga epoch 1000. Hasil dari pelatihan tersebut dapat dilihat pada

gambar 4.9.
Model Loss
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Gambar 4.10 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7
pada epoch 1000

Pada grafik terlihat terjadi penurunan nilai loss yang signifikan pada proses train
dan test. Hal ini mengindikasikan adanya perbaikan akurasi model. Nilai loss test
awalnya berkisar pada 0,7, namun mengalami penurunan yang signifikan hingga
mencapai kisaran nilai 0,35 pada epoch 800. Sementara itu, nilai loss train juga
mengalami penurunan yang signifikan, dimulai dari kisaran 0,4 dan mencapai
kisaran 0,35 pada epoch 1000. Meskipun nilai tersebut masih lebih tinggi

dibandingkan dengan acuan yang ingin dicapai, pada proses pelatihan ini model
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berhasil memperbaiki loss dengan baik. Pelatihan pada model ini dilanjutkan

hingga epoch 3000. Hasil dari pelatihan tersebut akan disajikan pada gambar 4.10.

Model Loss
Optimizer:adamax, Batchsize:7, Time:2023-07-05-11_04_04, —— ftrain
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Gambar 4.11 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7
pada epoch 3000

Pada grafik terlihat terjadi perbedaan antara tren grafik train dan test. Grafik test
cenderung meningkat sedangkan grafik train cenderung menurun. Nilai fest naik
dari kisaran 0,4 hingga 0,55, sementara nilai t7ain menurun dari kisaran 0,35 hingga
0,2. Hal ini merupakan indikasi yang kuat terjadinya overfitting. Namun, model ini
berhasil mencatatkan nilai MAE yang cukup baik, yaitu sebesar 0,27245. Nilai
MAE tersebut lebih kecil dibandingkan dengan nilai MAE acuan yang ingin
dicapai. Pelatihan kembali dilanjutkan hingga epoch 5000. Hasil pelatihan tersebut
akan disajikan pada gambar 4.11.

65



Model Loss
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Gambar 4.12 Grafik Loss Model ANN dengan optimizer adamax dan batch size 7
pada epoch 5000

Dapat dilihat pada grafik di atas, terjadi perbaikan model yang signifikan antara
epoch 3000 hingga 3800. Nilai test dan train secara bersamaan mengalami
penurunan. Namun, setelah epoch 3800, nilai train terus menurun sementara nilai
test kembali meningkat dan berkisar pada 0,5. Model ini berhasil mencapai MAE

yang sesuai dengan acuan awal, yaitu sebesar 0,28234.

4.2.3. Model ANN dengan Optimizer Adamax dan Batch Size 15

Pada model Artificial Neural Network (ANN) ini, digunakan optimizer Adamax
dengan parameter batch size sebesar 15. Dilakukan pelatihan model hingga
mencapai epoch ke-1000. Dalam proses tersebut, dilakukan optimisasi
menggunakan optimizer Adamax. Pelatihan dimulai hingga epoch 1000, hasil

pelatihan tersebut akan disajikan pada gambar 4.12.
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Model Loss
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Gambar 4.13 Grafik Loss Model ANN dengan optimizer adamax dan batch size
15 pada epoch 1000

Pelatihan awal ini berhasil memperbaiki model dengan signifikan, terlihat dari
penurunan nilai loss baik pada data train maupun data fest. Pada epoch 1000, model
ini mencapai nilai MAE sebesar 0,37186. Meskipun nilai MAE tersebut masih lebih
besar dari acuan awal yang ditetapkan, tidak terlihat indikasi overfitting maupun
underfitting pada model tersebut. Hal ini menunjukkan bahwa model tersebut dapat
secara baik menyesuaikan diri dengan data pelatihan tanpa kehilangan kemampuan
umum untuk memprediksi data baru. Pelatihan model ini dilanjutkan hingga epoch

3000. Hasil pelatihan tersebut akan disajikan pada gambar 4.13.
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Model Loss
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Gambar 4.14 Grafik Loss Model ANN dengan optimizer adamax dan batch size
15 pada epoch 3000

Pada pelatihan ini, terdapat indikasi bahwa model mengalami overfitting. Terlihat
adanya penyimpangan pada sekitar epoch 1600, di mana nilai test cenderung
meningkat sedangkan nilai train cenderung menurun. Model ini mencatatkan nilai
MAE sebesar 0,317, yang masih lebih besar dari acuan awal yang ditetapkan.
Selanjutnya, model akan dilatih kembali hingga epoch 5000, dan hasil pelatihan
tersebut akan ditampilkan pada Gambar 4.14.
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Model Loss
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Gambar 4.15 Grafik Loss Model ANN dengan optimizer adamax dan batch size
15 pada epoch 5000

Pada pelatihan ini, terjadi penurunan yang cukup signifikan pada epoch 3000
hingga 3750. Nilai test dan train secara bersamaan mengalami perbaikan nilai.
Namun, pada epoch 3750 hingga 4500, tidak terjadi perbaikan nilai yang signifikan.
Kemudian, pada epoch 4500 hingga 5000, terdapat indikasi overfitting di mana nilai
test cenderung meningkat sedangkan nilai train cenderung menurun.

Berdasarkan eksperimen yang telah dilakukan, optimizer Adamax berhasil
menghasilkan perbaikan nilai yang signifikan pada epoch 0 hingga 1000. Pada
beberapa kasus lainnya, seperti pada epoch 3000 hingga 4000, juga terjadi
perbaikan nilai yang signifikan. Namun, pada epoch 1000 hingga 3000 dan 4000
hingga 5000, sering terjadi overfitting pada model. Keterbatasan jumlah data juga
menjadi faktor yang mempersulit perbaikan model pada epoch di atas 1000. Oleh

karena itu, melalui eksperimen berbagai kombinasi pelatihan model, akan dicari
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model yang memiliki nilai MAE terendah. Terdapat 2 model dengan nilai MAE
terendah yakni model yang dilatih menggunakan optimizer adamax dengan batch
size 1 pada epoch 3000 dan 5000. Model pada epoch 3000 memiliki nilai MAE
sebesar 0.2448507845401764 sedangkan model pada epoch 5000 memiliki nilai
MAE sebesar 0.23888996243476868. Namun kedua model tersebut terindikasi
mengalami overfitting. Adapun model lainnya yang memiliki nilai loss mae
terendah namun tidak mengalami indikasi overfitting yakni model dengan
optimizer adamax dan batchsize sebesar 7 pada epoch 1000. Model tersebut

memiliki nilai mae sebesar 0.333776.

4.2.4. Model ANN dengan Optimizer SGD dan Batch Size 1

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size
sebesar 1. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan
dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki
performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada
indikasi terjadinya overfitting atau underfitting pada model.

Model Loss
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Gambar 4.16 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1
pada epoch 1000
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Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.15,
terjadi penurunan signifikan pada nilai train dan test. Pada evaluasi akhir, model ini
memiliki akurasi MAE sebesar 0.385, yang masih sedikit jauh dari acuan awal yang
telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000. Hasil
pelatihan tersebut dapat dilihat pada gambar 4.16.

Model Loss
Optimizer:sgd, Batchsize:1, Time:2023-07-05-10_47_17, —— train
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Gambar 4.17 Grafik Loss Model ANN dengan optimizer adamax dan batch size 1
pada epoch 3000

Seperti yang terlihat pada Gambar 4.16, tidak terjadi perbaikan yang signifikan
pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan
yang signifikan. Nilai loss MAE pada fest berfluktuasi antara 0.45 hingga 0.7,
sementara nilai loss MAE pada train hanya berkisar antara 0.3 hingga 0.4. Model
mencatatkan nilai MAE sebesar 0.37452, dimana nilai tersebut yang masih sedikit
jauh dari acuan awal yang telah ditetapkan. Pelatihan model kembali dilanjutkan

hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar 4.17.
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Model Loss
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Gambar 4.18 Grafik Loss Model ANN dengan optimizer sgd dan batch size 1
pada epoch 5000

Seperti yang terlihat pada Gambar 4.17, tidak terjadi perbaikan yang signifikan
pada model. Namun nilai loss pada train mengalami penurunan sedikit demi sedikit.
Nilai loss MAE pada test berkisar antara 0.45 hingga 0.7, sementara nilai loss MAE
pada train hanya berkisar pada nilai 0.4. Model mencatatkan nilai MAE sebesar
0.3702, dimana nilai tersebut yang masih sedikit jauh dari acuan awal yang telah

ditetapkan.

4.2.5. Model ANN dengan Optimizer SGD dan Batch Size 7
Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size
sebesar 7. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan

dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki
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performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Model Loss
Optimizer:sgd, Batchsize:7, Time:2023-06-26-11_18_49, —— train
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Gambar 4.19 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7
pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.18,
terjadi penurunan signifikan pada nilai train dan fest. Pada evaluasi akhir, model ini
memiliki akurasi MAE sebesar 0.3773933, yang masih sedikit jauh dari acuan awal
yang telah ditetapkan. Pelatihan model kembali dilanjutkan hinnga epoch 3000.
Hasil pelatihan tersebut dapat dilihat pada gambar 4.19.
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Gambar 4.20 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7
pada epoch 3000

Seperti yang terlihat pada Gambar 4.19. tidak terjadi perbaikan yang signifikan
pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan
yang signifikan. Nilai loss MAE pada fest berfluktuasi antara 0.4 hingga 0.6,
sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model
mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit
jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan
merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali
dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar
4.20.
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Model Loss
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Gambar 4.21 Grafik Loss Model ANN dengan optimizer sgd dan batch size 7
pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.20,
terjadi penurunan signifikan pada nilai frain dan test. Nilai fest yang awalnya
berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.4. Sedangkan nilai
train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada
evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.3569, yang masih sedikit

jauh dari acuan awal yang telah ditetapkan.
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4.2.6. Model ANN dengan Optimizer SGD dan Batch Size 15

Pada tahap ini, model akan dilatih menggunakan optimizer SGD dengan batch size
sebesar 15. Perkembangan model pada epoch ke-1000, ke-3000, dan ke-5000 akan
dievaluasi. Nilai MAE akan menjadi parameter apakah model sudah memiliki
performa yang cukup baik atau belum. Selain itu, akan dilihat pula apakah ada

indikasi terjadinya overfitting atau underfitting pada model.

Model Loss
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Gambar 4.22 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15
pada epoch 1000

Pelatihan dilakukan hingga mencapai epoch 1000. Terlihat pada Gambar 4.21, nilai
loss mae test mengalami penurunan yang awalnya berkisar pada nilai 0.6 hingga
pada epoch 1000 berkisar pada nilai 0.5. Sedangkan nilai loss mae train tidak
mengalami penurunan yang signifikan. Pada epoch 200 hingga epoch 1000 tetap
berkisar pada 0.4. Pada evaluasi akhir, model ini memiliki akurasi MAE sebesar

0.396369, yang masih sedikit jauh dari acuan awal yang telah ditetapkan. Pelatihan
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model kembali dilanjutkan hingga epoch 3000. Hasil pelatihan tersebut dapat

dilihat pada gambar 4.22.
Model Loss
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Gambar 4.23 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15
pada epoch 3000

Seperti yang terlihat pada Gambar 4.22. Tidak terjadi perbaikan yang signifikan
pada model. Nilai loss MAE pada train maupun test tidak mengalami perubahan
yang signifikan. Nilai loss MAE pada fest berfluktuasi antara 0.4 hingga 0.6,
sementara nilai loss MAE pada train hanya berkisar antara 0.35 hingga 0.4. Model
mencatatkan nilai MAE sebesar 0.360368, dimana nilai tersebut yang masih sedikit
jauh dari acuan awal yang telah ditetapkan. Tidak adanya perbaikan yang signifikan
merupakan indikasi terjadinya overfitting pada model ini. Pelatihan model kembali
dilanjutkan hinnga epoch 5000. Hasil pelatihan tersebut dapat dilihat pada gambar
4.23.
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Model Loss
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Gambar 4.24 Grafik Loss Model ANN dengan optimizer sgd dan batch size 15
pada epoch 5000

Pelatihan dilakukan hingga mencapai epoch 5000. Terlihat pada Gambar 4.23,
terjadi penurunan signifikan pada nilai train dan fest. Nilai test yang awalnya
berkisar pada 0.6 mengalami penurunan hingga mencapai nilai 0.45. Sedangkan
nilai train mengalami penurunan sedikit demi sedikit pada kisaran nilai 0.4. Pada
evaluasi akhir, model ini memiliki akurasi MAE sebesar 0.36400321, dimana nilai
tersebut sedikit jauh dari acuan awal yang telah ditetapkan.

Setelah melakukan beberapa eksperimen kombinasi parameter diatas maka
didapatkan 2 model yang memiliki nilai mae terkecil yaitu sebesar
0.35695648193359375 pada model yang dilatih menggunakan batch size sebesar 7
dan dilatih hingga epoch 5000. Lalu ada pula model yang memiliki nilai mae
sebesar 0.35471969842910767 yaitu model yang dilatih menggunakan batch size
sebesar 15 dan dilatih hingga epoch 3000.
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4.2.7. Evaluasi model ANN Prediksi Jarak berdasarkan Citra RGB

Setelah bereksperimen dengan berbagai kombinasi parameter training, maka
disimpulkan untuk menggunakan model ANN dengan optimizer adamax, batch size
7 pada epoch 1000. Model tersebut memiliki nilai mae 0.333776. Model tersebut
digunakan karena tidak mengalami indikasi overfitting maupun underfitting.
Sehingga diharapkan model tersebut dapat melakukan prediksi secara stabil. Hasil

seluruh eksperimen model ANN dapat dilihat pada tabel 4.2.

Tabel 4.2 Perbandingan Model ANN

Model Batch Size Epoch Last Train MAE

adamax 1 1000 0.5775669217
adamax 1 3000 0.2448507845
adamax 1 5000 0.2388899624
adamax 7 1000 0.3337768912
adamax 7 3000 0.2724565864
adamax 7 5000 0.2823437452
adamax 15 1000 0.3718636036
adamax 15 3000 0.3173060715
adamax 15 5000 0.3213479519
sgd 1 1000 0.3855191469
sgd 1 3000 0.3745284975
sgd 1 5000 0.3702289462
sgd 7 1000 0.3773933947
sgd 7 3000 0.3603681922
sgd 7 5000 0.3569564819
sgd 15 1000 0.3963693976
sgd 15 3000 0.3547196984
sgd 15 5000 0.3640032113
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4.3. Eksperimen Model Deteksi Buah Kakao untuk Mengestimasi Jumlah
Buah Kakao

Pada pelatihan model CNN YOLO, digunakan 80 gambar dan anotasi yang
menggambarkan buah kakao matang dan belum matang dengan lima variasi epoch,
yaitu 100, 300, 500, 700, 1000. Pada pelatihan ini, menggunakan optimizer SGD
dan kombinasi dari beberapa fungsi loss. YOLOv8 menggunakan fungsi loss CloU
dan DFL untuk loss kotak pembatas dan binary cross-entropy untuk loss klasifikasi.
Pelatihan akan dilakukan dengan menggunakan 2 skala arsitektur yaitu pada skala
nano dan medium. Perbedaan skala arsitektur terdapat pada perbedaan jumlah
parameter yang digunakan pada setiap layernya. Model dengan arsitektur nano juga
akan memproduksi model dengan ukuran file yang lebih kecil ketimbang model
dengan medium.

Pelatihan dilakukan selama 100 epoch dengan optimizer SGD dan batch size
sebesar 16. Ukuran gambar input adalah 800x800, dan model akan disimpan setelah
pelatihan selesai. Tidak digunakan cache, dan perangkat yang digunakan akan
disesuaikan secara otomatis. Selain itu, dilakukan pengolahan data paralel dengan
8 workers. Informasi tentang pelatihan, seperti verbose, seed, dan deterministic juga
telah ditentukan. Model ini dapat mendeteksi multiple kelas, dan tidak
menggunakan bobot gambar atau training rectangular. Pada evaluasi, akan
diperhatikan nilai ambang batas kepercayaan dan IoU threshold, serta jumlah
deteksi maksimum. Grafik pelatihan akan ditampilkan, tetapi tidak akan
menampilkan gambar deteksi secara visual. Tidak ada penyimpanan dalam format
teks, confidence map, atau crop objek deteksi. Label objek dan confidence score

akan ditampilkan, serta tebal garis boks deteksi sebesar 3.

4.3.1. Model YOLOVS8n dengan 100 epoch
Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan zest bisa dilihat

pada gambar 4.24.
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Gambar 4.25 loss model YOLOVS8n dengan 100 epoch
(a) dfl loss, (b) box loss dan (¢) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.24 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan
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nilai pelatihan (#rain) dan pengujian (zest) tidak menunjukkan indikasi adanya
overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.3.

Tabel 4.3 Hasil Pelatihan YOLOVS8n pada epoch 100

Class Box(P) R

all 0.907 0.704
ripe cocoa  0.925 0.792

unripe cocoa 0.889 0.617

Setelah melatih model YOLOV8M selama 100 epoch, dapat disimpulkan
bahwa hasil pelatihan menunjukkan kinerja yang baik dalam melakukan deteksi
buah kakao matang dan belum matang. Keseluruhan model mencapai akurasi
deteksi sebesar 83.4% dengan recall sebesar 82%. Hasil yang lebih baik diperoleh
untuk deteksi buah kakao matang, dengan akurasi mencapai 88% dan recall sebesar
91.7%. Namun, performa deteksi pada buah kakao belum matang sedikit lebih

rendah, dengan akurasi sebesar 78.8% dan recall sebesar 72.3%.

Meskipun demikian, secara keseluruhan model telah mampu melakukan
deteksi dengan baik pada dataset yang digunakan. Namun, ada ruang untuk
pengembangan lebih lanjut dalam meningkatkan performa deteksi pada buah kakao
belum matang agar sejajar dengan deteksi buah kakao matang. Dengan demikian,
dapat dilakukan penyesuaian atau peningkatan model untuk mencapai akurasi
deteksi yang lebih tinggi dan recall yang lebih baik pada kelas buah kakao belum

matang.

4.3.2. Model YOLOVS8n dengan 300 epoch
Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan zest bisa dilihat

pada gambar 4.25.
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Gambar 4.26 loss model YOLOVS8n dengan 300 epoch
(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss
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terus menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik
dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai
loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss
val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.4.

Tabel 4.4 Hasil Pelatihan YOLOV8n pada epoch 300

Class Box(P) R

all 0.799  0.799
ripe cocoa 0.734  0.920
unripe cocoa  0.864  0.678

Setelah melatih model, diperoleh hasil pelatihan yang menunjukkan kinerja
yang cukup baik dalam melakukan deteksi buah kakao matang dan belum matang.
Dalam hal ini, model mencapai akurasi deteksi sebesar 79.9% dan recall
(kemampuan mengidentifikasi dengan benar) sebesar 79.9% untuk semua kelas.
Meskipun akurasi dan recall secara keseluruhan seimbang, terdapat perbedaan

dalam kinerja deteksi antara kelas buah kakao matang dan belum matang.

Untuk kelas buah kakao matang, model mencapai akurasi deteksi sebesar
73.4% dengan recall sebesar 92%. Hal ini menunjukkan bahwa model mampu
mengenali dengan baik buah kakao yang telah matang. Namun, untuk kelas buah
kakao belum matang, model memiliki akurasi deteksi yang sedikit lebih tinggi
sebesar 86.4% namun recall yang sedikit lebih rendah, yakni sebesar 67.8%. Secara
keseluruhan, model telah mencapai kinerja yang cukup baik dalam melakukan

deteksi buah kakao matang dan belum matang.

4.3.3. Model YOLOVS8n dengan 500 epoch
Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan test dapat dilihat

pada gambar 4.26.
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Gambar 4.27 loss model YOLOVS8n dengan 500 epoch
(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.26 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss
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terus menurun seiring berjalannya pelatihan hingga epoch 200. Namun pada metrik
dfl loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai
loss train dan test mengalami pergerakan ke arah yang berbeda. Dimana nilai loss
val meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.5.

Tabel 4.5 Hasil Pelatihan YOLOV8n pada epoch 500

Class Box(P) R

all 0.860  0.809
ripe cocoa 0.867  1.000

unripe cocoa  0.853  0.618

Berdasarkan hasil pelatihan model YOLOVS8N selama 500 epoch, secara
keseluruhan model ini memiliki tingkat akurasi deteksi yang baik sebesar 0,86 dan
presisi yang cukup tinggi sebesar 0,809. Model ini mampu dengan efektif
mendeteksi dan mengklasifikasikan cokelat matang ("ripe cocoa") dengan tingkat
akurasi yang tinggi sebesar 0,867 dan recall sempurna sebesar 1. Namun, model
menghadapi beberapa kesulitan dalam mendeteksi cokelat yang belum matang
("unripe cocoa"), dengan tingkat akurasi yang sedikit lebih rendah sebesar 0,853
dan recall sebesar 0,618. Untuk meningkatkan performa model dalam
mengklasifikasikan cokelat yang belum matang, perlu dilakukan penyesuaian pada
proses pelatihan, seperti penambahan data latihan yang lebih representatif atau
penyetelan parameter model yang lebih optimal. Secara keseluruhan, meskipun
model YOLOVS8N telah menunjukkan kinerja yang baik dalam mendeteksi objek
secara umum, masih diperlukan peningkatan dalam mengklasifikasikan cokelat

yang belum matang dengan lebih baik.

4.3.4. Model YOLOVS8n dengan 700 epoch
Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan zest bisa dilihat

pada gambar 4.27.
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Gambar 4.28 loss model YOLOVS8n dengan 700 epoch
(a) dfl loss, (b) box loss dan (c) cls loss

Seperti yang dapat dilihat pada ketiga gambar 4.27 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi
terjadinya overfitting. Pada epoch ke-200 nilai loss train dan fest mengalami
pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.6.

Tabel 4.6 Hasil Pelatihan YOLOV8n pada epoch 700

Class Box(P) R

all 0917  0.707

ripe cocoa 0.947  0.743

unripe cocoa  0.887  0.671

Dalam hasil pelatthan model YOLOVS8N selama 700 epoch, terjadi
peningkatan yang signifikan dalam kinerja model. Secara keseluruhan, model
mencapai tingkat akurasi deteksi yang tinggi sebesar 0,917 dengan nilai presisi
sebesar 0,707. Ini menunjukkan bahwa model berhasil meningkatkan
kemampuannya dalam mendeteksi objek secara umum. Hasil yang lebih baik ini
dapat memberikan kepercayaan lebih dalam penggunaan model untuk mendeteksi
berbagai objek di dalam gambar.

Ketika fokus pada kategori "ripe cocoa", model menunjukkan peningkatan
yang konsisten dengan tingkat akurasi sebesar 0,947 dan presisi sebesar 0,743.
Meskipun recall masih dapat ditingkatkan, peningkatan ini menunjukkan bahwa
model semakin mampu mengklasifikasikan cokelat matang dengan akurasi yang
lebih tinggi. Namun, untuk kategori "unripe cocoa", meskipun terjadi peningkatan,
model masih menghadapi beberapa tantangan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang. Dengan tingkat akurasi sebesar

0,887 dan recall sebesar 0,671, masih ada ruang untuk perbaikan lebih lanjut.

4.3.5. Model YOLOVS8n dengan 1000 epoch
Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.
Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.28.
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Gambar 4.29 dfl loss, box loss, cls loss model YOLOV8n dengan 1000 epoch
(a) dfl loss, (b) box loss dan (c) cls

Seperti yang dapat dilihat pada ketiga gambar 4.28 terlihat bahwa model

berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
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berjalannya pelatihan model. Namun pada metrik dfl loss serta box loss ada indikasi
terjadinya overfitting. Pada epoch ke-400 nilai loss train dan fest mengalami
pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat namun nilai loss

train menurun. Hasil akhir pelatihan model ini dapat dilihat pada tabel 4.7.

Tabel 4.7 Hasil Pelatihan YOLOV8n pada epoch 1000

Class Box(P) R

all 0.869  0.767
ripe cocoa 0.775 0917

unripe cocoa  0.963  0.617

Dalam pelatihan model YOLOVS8N, terdapat hasil yang menarik untuk
setiap kategori. Secara keseluruhan, model mencapai tingkat akurasi deteksi sebesar
0,869 dengan presisi sebesar 0,767. Meskipun tingkat presisi yang tinggi
menunjukkan kemampuan model dalam mengenali objek secara spesifik, recall
yang sebesar 0,767 menandakan adanya ruang untuk perbaikan dalam mencakup
semua objek yang ada dalam gambar secara lebih lengkap.

Dalam kategori "ripe cocoa", model menunjukkan tingkat presisi sebesar
0,775 yang cukup baik. Namun, recall yang rendah sebesar 0,917 mengindikasikan
bahwa model masih melewatkan beberapa cokelat matang yang seharusnya
terdeteksi. Sementara itu, dalam kategori "unripe cocoa", model berhasil mencapai
tingkat presisi yang tinggi sebesar 0,963. Namun, recall yang rendah sebesar 0,617
menunjukkan bahwa model masih menghadapi kesulitan dalam mendeteksi
sebagian besar cokelat yang belum matang.

Secara keseluruhan, model YOLOVS8N telah menunjukkan kemajuan yang
baik dalam deteksi objek, namun masih ada aspek-aspek yang perlu ditingkatkan.
Peningkatan pada recall dalam kedua kategori "ripe cocoa" dan "unripe cocoa" akan
menjadi prioritas dalam pelatihan selanjutnya. Dengan demikian, model dapat
mengenali dan mengklasifikasikan objek dengan lebih akurat dan menyeluruh,
menghasilkan hasil yang lebih baik dalam aplikasi deteksi objek yang berkaitan

dengan cokelat..
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4.3.6. Model YOLOV8m dengan 100 epoch
Dilakukan pelatihan model hingga epoch 100 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.29.
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Gambar 4.30 loss model YOLOVS8n dengan 100 epoch
(a) dfl loss, (b) box loss dan (c) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.29 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-100. Pergerakan
nilai pelatihan (#rain) dan pengujian (zest) tidak menunjukkan indikasi adanya
overfitting atau underfitting. Nilai loss terus menurun seiring berjalannya pelatihan

hingga epoch 100. Hasil akhir pelatihan dapat dilihat pada tabel 4.8.

Tabel 4.8 Hasil Pelatihan YOLOV8M pada epoch 100

Class Box(P) R

all 0.834  0.820
ripe cocoa 0.880 0917

unripe cocoa  0.788  0.723

Model YOLOVSM, setelah melalui pelatihan selama 100 epoch,
menunjukkan hasil yang cukup baik. Dalam kategori "all", model mencapai tingkat
akurasi deteksi sebesar 0,834 dengan presisi sebesar 0,82. Hasil ini menunjukkan
kemampuan model dalam mendeteksi objek secara umum dalam dataset yang
digunakan. Tingkat akurasi yang tinggi ini memberikan kepercayaan bahwa model
dapat mengenali objek dengan baik.

Ketika berfokus pada kategori "ripe cocoa", model YOLOV8M mencapai
tingkat akurasi yang lebih tinggi sebesar 0,88 dengan recall sebesar 0,917. Hal ini
menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang
dengan akurasi yang baik dan mampu mendeteksi sebagian besar objek yang ada.
Tingkat recall yang tinggi juga menandakan bahwa model dapat mengenali
sebagian besar cokelat matang yang ada dalam dataset.

Namun, dalam kategori "unripe cocoa", model menghadapi beberapa
tantangan dengan tingkat akurasi sebesar 0,788 dan recall sebesar 0,723. Hal ini
mengindikasikan bahwa model masih perlu ditingkatkan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang. Secara keseluruhan, model
YOLOV8M menunjukkan kemampuan yang baik dalam mendeteksi objek secara

umum dan khususnya dalam kategori "ripe cocoa".
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4.3.7. Model YOLOV8m dengan 300 epoch
Dilakukan pelatihan model hingga epoch 300 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.30.
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Gambar 4.31 dfl loss, box loss, cls loss model YOLOV8n dengan 300 epoch
(a) dfl loss, (b) box loss dan (c) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.30 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik sampai pada epoch ke-200. Nilai loss
terus menurun seiring berjalannya pelatihan. Namun pada metrik dfl loss ada
indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test
mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat
namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.8.

Tabel 4.9 Hasil Pelatihan YOLOV8m pada epoch 300

Class Box(P) R

all 0.820  0.725
ripe cocoa 0.903  0.875
unripe cocoa  0.737  0.574

Setelah melalui pelatihan selama 300 epoch, model YOLOV8M
menunjukkan hasil yang menarik. Secara keseluruhan, model ini mencapai tingkat
akurasi deteksi sebesar 0,82 dengan presisi sebesar 0,725 dalam kategori "all".
Meskipun tingkat akurasi yang cukup baik, recall yang sebesar 0,725 menunjukkan
bahwa model mungkin masih melewatkan sebagian objek yang ada dalam gambar.
Dalam kategori "ripe cocoa", model menunjukkan peningkatan performa dengan
tingkat akurasi sebesar 0,903 dan recall sebesar 0,875. Hasil ini mengindikasikan
kemampuan model dalam mengklasifikasikan cokelat matang dengan akurasi yang
tinggi dan mampu mendeteksi sebagian besar objek yang ada. Peningkatan tersebut
menunjukkan adanya kemajuan dalam pelatihan model.

Namun, dalam kategori "unripe cocoa", model masih mengalami beberapa
kendala dengan tingkat akurasi sebesar 0,737 dan recall sebesar 0,574. Hal ini
menandakan bahwa model masih menghadapi kesulitan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan
yang lebih baik. Secara keseluruhan, model YOLOV8M telah menunjukkan

kemajuan dalam pelatihan selama 300 epoch. Meskipun tingkat akurasi dan presisi
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dalam kategori "all" cukup baik, recall masih perlu ditingkatkan. Peningkatan
signifikan terlihat dalam kategori "ripe cocoa" dengan akurasi dan recall yang lebih

baik.

4.3.8. Model YOLOV8m dengan 500 epoch
Dilakukan pelatihan model hingga epoch 500 menggunakan arsitektur YOLOV8n.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.31.
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Gambar 4.32 dfl loss, box loss, cls loss model YOLOV8n dengan 500 epoch
(a) dfl loss, (b) box loss dan (¢) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.25 terlihat bahwa model berhasil
meningkatkan akurasi dengan baik sampai pada epoch ke-300. Nilai loss terus
menurun seiring berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl
loss serta box loss ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss
train dan fest mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val
meningkat namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat

dilihat pada tabel 4.9.

Tabel 4.10 Hasil Pelatihan YOLOV8m pada epoch 500

Class Box(P) R

all 0910 0.704
ripe cocoa 0.959  0.792

unripe cocoa  0.861  0.617

Setelah melalui pelatihan selama 500 epoch, model YOLOV8M
menunjukkan hasil yang menggembirakan. Secara keseluruhan, model ini
mencapai tingkat akurasi deteksi yang tinggi sebesar 0,91 dengan presisi sebesar
0,704 dalam kategori "all". Meskipun tingkat akurasi yang tinggi, recall yang
sebesar 0,704 menunjukkan bahwa model mungkin masih melewatkan sebagian
objek yang ada dalam gambar.

Dalam kategori "ripe cocoa", model menunjukkan performa yang sangat
baik dengan tingkat akurasi sebesar 0,959 dan recall sebesar 0,792. Hasil ini
menunjukkan kemampuan model dalam mengklasifikasikan cokelat matang
dengan akurasi yang tinggi dan mampu mendeteksi sebagian besar objek yang ada.
Namun, dalam kategori "unripe cocoa", model masih menghadapi beberapa kendala
dengan tingkat akurasi sebesar 0,861 dan recall sebesar 0,617. Hal ini menandakan
bahwa model masih mengalami kesulitan dalam mendeteksi dan
mengklasifikasikan cokelat yang belum matang dengan akurasi dan kelengkapan

yang lebih baik.
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4.3.9. Model YOLOV8m dengan 700 epoch
Dilakukan pelatihan model hingga epoch 700 menggunakan arsitektur YOLOV8m.

Pada akhir proses training, nilai akurasi dan loss pada training dan test bisa dilihat

pada gambar 4.32.
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Gambar 4.33 loss model YOLOVS8n dengan 700 epoch
(a) dfl loss, (b) box loss dan (c) cls loss

97



Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss
ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test
mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat
namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.10.

Tabel 4.11 Hasil Pelatihan YOLOV8m pada epoch 700

Class Box(P) R

all 0.748  0.808
ripe cocoa 0.610  0.958
unripe cocoa  0.885  0.658

Model YOLOV8M dilatih selama 700 epoch dan mencapai akurasi deteksi
sebesar 0,748 dan presisi 0,808 dalam kategori "semua". Namun, recall 0,808
menunjukkan ruang untuk meningkatkan deteksi objek dalam gambar. Dalam
kategori "kakao matang", akurasi 0,61 dengan recall tinggi 0,958 menunjukkan
kemampuan model mengklasifikasikan kakao matang, meskipun dengan positif
palsu. Dalam kategori "kakao mentah", akurasi 0,885 dengan recall 0,658
menunjukkan model masih kesulitan mendeteksi kakao mentah. Model perlu
meningkatkan recall dalam kategori ini. Secara keseluruhan, YOLOV8M
menunjukkan kemajuan selama 700 epoch. Dalam kategori "semua", recall perlu
ditingkatkan untuk mendeteksi lebih banyak objek. Dalam kategori "kakao
matang", recall tinggi menunjukkan kemampuan model, tetapi perlu penanganan
positif palsu. Dalam kategori "kakao mentah", meningkatkan recall menjadi fokus

utama untuk meningkatkan deteksi kakao mentah dengan akurasi yang lebih tinggi.
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4.3.10. Model YOLOV8m dengan 1000 epoch
Dilakukan pelatihan model hingga epoch 1000 menggunakan arsitektur
YOLOVS8m. Pada akhir proses training, nilai akurasi dan loss pada training dan test

bisa dilihat pada gambar 4.33.
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Gambar 4.34 model YOLOVS8n dengan 1000 epoch

(a) dfl loss, (b) box loss dan (c) cls loss
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Seperti yang dapat dilihat pada ketiga gambar 4.32 terlihat bahwa model
berhasil meningkatkan akurasi dengan baik. Nilai loss terus menurun seiring
berjalannya pelatihan hingga epoch 300. Namun pada metrik dfl loss serta box loss
ada indikasi terjadinya overfitting. Pada epoch ke-200 nilai loss train dan test
mengalami pergerakan ke arah yang berbeda. Dimana nilai loss val meningkat
namun nilai loss train menurun. Hasil akhir pelatihan model ini dapat dilihat pada

tabel 4.11.

Tabel 4.12 Hasil Pelatihan YOLOV8m pada epoch 1000

Class Box(P) R

all 0.816  0.768
ripe cocoa 0.746  0.856

unripe cocoa  0.886  0.681

Model YOLOVS8M telah dilatih selama 1000 epoch dan menunjukkan hasil
yang menarik. Dalam kategori "semua", model ini mencapai presisi sebesar 0,816
dan recall sebesar 0,768. Ini menunjukkan kemampuan model dalam mengenali dan
mengklasifikasikan objek dengan akurasi yang cukup tinggi. Dalam kategori
"kakao matang", model mencapai presisi sebesar 0,746 dengan recall yang lebih
tinggi, yaitu 0,856. Ini menunjukkan kemampuan model dalam mendeteksi dan
mengklasifikasikan kakao matang dengan baik, meskipun masih terdapat ruang
untuk meningkatkan presisi. Di sisi lain, dalam kategori "kakao mentah", model
mencapai presisi sebesar 0,886 dengan recall sebesar 0,681.

Meskipun akurasi cukup baik, recall yang rendah menunjukkan bahwa
model masih kesulitan dalam mendeteksi sebagian besar kakao mentah.
Meningkatkan recall dalam kategori ini menjadi fokus utama untuk meningkatkan
kemampuan model dalam mengklasifikasikan kakao mentah dengan akurasi yang
lebih tinggi. Secara keseluruhan, YOLOVS8M telah menunjukkan kemajuan dalam
1000 epoch pelatihan. Meskipun memiliki akurasi yang baik dalam kategori
"semua" dan "kakao matang", meningkatkan recall akan membantu model dalam

menangkap lebih banyak objek secara akurat. Untuk kategori "kakao mentah",
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meningkatkan recall menjadi hal yang penting untuk meningkatkan kemampuan

model dalam mendeteksi kakao mentah dengan lebih baik.

4.3.11. Evaluasi S Model YOLOVS dengan performa terbaik
Untuk menentukan model YOLOVS8 yang memiliki akurasi paling baik
maka berikut akan ditampilkan 5 model dengan nilai R dan Box(P) (box loss) yang

paling tinggi diantara model-model lainnya pada gambar 4.35.

B R W Box(P)

1.00

0.75

0.50

0.25

0.00

YOLOV8N100  YOLOV8NS500 YOLOV8M100 YOLOV8M700  YOLOV8N300

Gambar 4.35 Grafik 5 Model Dengan Nilai Recall Tertinggi

Dari model dengan arsitektur YOLOVS diatas maka disimpulkan model terbaik
adalah model dengan arsitektur YOLOVS8 nano dengan 100 epoch.

4.4. Sistem Prediksi Jarak Objek pada Citra

Sistem ini akan melakukan Prediksi Jarak Objek terhadap kamera. Prediksi
dilakukan menggunakan nilai rgb sebagai input. Proses dimulai dengan memilih
titik koordinat salah satu piksel yang berada pada area objek sebagai input proses
segmentasi. Kemudian dilakukan segmentasi pada citra untuk mendapatkan area
objek. Kemudian dilakukan prediksi kedalaman citra menggunakan Model CNN
Monocular Depth Estimation. Area yang telah didapatkan digunakan untuk

mengambil warna pada citra hasil prediksi kedalaman pada area yang diinginkan.
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Kemudian dari kumpulan warna tersebut dicari nilai mediannya sehingga
didapatkan nilai median rgb untuk digunakan pada input model ANN prediksi jarak.
Sehingga kemudian didapatkan nilai jarak objek terhadap kamera.

4.4.1. Mengunggah Gambar dan Penggunaan Model CNN Monocular Depth
Estimation
Proses awal yang harus dilakukan yakni mengunggah gambar tanaman
kakao yang akan digunakan. Setelah itu dilakukan proses prediksi kedalaman
menggunakan Model CNN Monocular Depth Estimation. Sehingga dihasilkan citra
yang merepresentasikan kedalaman atau dapat disebut sebagai citra kedalaman.
Citra inilah yang nantinya akan digunakan nilai rgbnya sebagai input untuk

memprediksi jarak objek terhadap kamera.

\
. b S
RN

Gambar 4.36 Citra Tanaman Kakao Asli

Gambar 4.37 Citra Kedalaman Tanaman Kakao
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4.4.2. Menentukan Titik Piksel pada Objek

Karena sistem yang dikembangkan belum dapat mengidentifikasi bagian
batang tanaman kakao secara otomatis, maka pada penelitian ini masih diperlukan
input manual untuk menentukan titik piksel yang merupakan bagian dari tanaman
kakao. Proses ini dilakukan dengan melihat terlebih dahulu gambar serta axis untuk

melakukan taksiran lokasi x,y piksel yang akan digunakan.

Gambar 4.38 Tampilan awal untuk penentuan titik pada objek
Setelah melakukan taksiran maka pada gambar ini akan digunakan titik pada
koordinat 2750, 3000. Nilai x,y tersebut akan ditampilkan dengan simbol bintang
seperti pada gambar berikut.

1000 2000

Gambar 4.39 Tampilan gambar dengan titik piksel yang telah dipilih
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Setelah menemukan titik piksel yang akan digunakan, maka pada proses

selanjutnya titik tersebut akan digunakan sebagai input pada proses segmentasi.

4.4.3. Proses Segmentasi dengan Model CNN Segment Anything
Pada proses ini akan dilakukan segmentasi untuk mendapatkan area objek
yang akan digunakan (Tanaman Kakao). Titik koordinat yang telah ditentukan
menjadi input/acuan model untuk memprediksi area sekitarnya yang masih
merupakan bagian dari objek. Hal ini dilakukan untuk mempermudah pemilihan
area objek.
500
1000

1500

2000

3000

0 1600 2000 ;bOO 4006
Gambar 4.40 Hasil Segmentasi Area Objek Tanaman Kakao

Area/mask tersebut kemudian akan digunakan untuk mengambil nilai rgb pada citra

kedalaman.

4.4.4. Pengambilan nilai median RGB dan Prediksi Jarak
Setelah mendapatkan area objek tanaman kakao, maka nilai rgb pada citra
kedalaman yang beririsan dengan area objek tanaman kakao akan diambil. Dari

nilai-nilai tersebut kemudian akan didapatkan nilai median RGB. Nilai median

104



RGB kemudian digunakan untuk memprediksi jarak. Dengan menggunakan model
ANN yang telah dikembangkan, dilakukan prediksi jarak menggunakan nilai rgb
sebagai input. Sehingga kemudian didapatkan nilai jarak objek tanaman kakao

terhadap kamera dalam satuan meter.

4.4.5. Evaluasi Sistem Prediksi Jarak Objek Pada Citra

Penggunaan model CNN Segment Anything belum bisa optimal untuk
mengambil bagian tanaman saja karena adanya noise pada background objek
tersebut. Hal ini dipengaruhi oleh kondisi lingkungan perkebunan kakao yang padat

dengan tanaman kakao.

4.5. Sistem Prediksi Koordinat Tanaman Kakao pada Citra

Pada bagian ini akan dilakukan prediksi nilai koordinat tanaman kakao.
Pada tahap ini diperlukan beberapa variabel sebagai input yaitu nilai koordinat
longitude dan latitude tanaman kakao, nilai derajat arah hadap kamera, serta jarak
objek terhadap kamera. Pada proses ini akan digunakan rumus yang bernama
Vincenty Formula. Hasil dari kalkulasi menggunakan rumus tersebut yakni titik
koordinat longitude serta latitude objek tanaman kakao. Untuk menguji akurasi dari
rumus tersebut, pada bagian selanjutnya akan dilakukan percobaan kalkulasi pada

5 titik lokasi.

4.5.1. Evaluasi Akurasi Vincenty Formula
Pada bagian ini akan dilakukan pengujian akurasi dari hasil kalkulasi

Vinceny Formula. Pengujian akan dilakukan pada 5 lokasi pada tabel 4.13.

Tabel 4.13 Ground Truth Titik Koordinat Pengujian Vincety Formula

Building Destination
No

Name Coordinate Name Coordinate

Alun-Alun -7.97692544511029, Stasiun Malang -7.97720169566579,
1 Tugu Malang 112.634055029002 Kota Baru 112.637112747216
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Tabel 4. 14 Ground Truth Titik Koordinat Pengujian Vincety Formula (lanjutan)

Building Destination
No

Name Coordinate Name Coordinate

2 Alun-Alun -7.97692544511029, Bulan Photocopy -7.97419601839356,

Tugu Malang 112.634055029002 & Print 112.634292801417
3 Gerbang UB -7.94984, Soekarno  Hatta -7.9496079959561,
Soekarno hatta 112.615411 Bridge 112.615839888356
4  Gerbang UB -7.94984, Kober Mie Setan -7.9481629265072,
Soekarno hatta 112.615411 112.61676260122
5 Gerbang UB -7.94984, Mixue Suhat -7.94637779324508,
Soekarno hatta 112.615411 Malang 112.618050061491

Tabel 4. 15 Arah dan Jarak

No Heading Distance to Desstination (km)

1 96,607° 0.28
2 4,124 0.3

3 45456° 0.069
4 43,014° 0.22
5 -40,579° 0.45

Tabel 4. 16 Hasil Prediksi dan Selisih

No Predicted Coordinate Differences
-7.97721516624731,

1 -1.347x 107, -5.319 x 10
112.636580818575
-7.97423446585066,

2 -3.845x 107, -4.188 x 10~
112.634250919231
-7.94936783429258,

3 -3.845x 107, -4.188 x 10~
112.615817547406
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Tabel 4. 17 Hasil Prediksi dan Selisih (lanjutan)

No Predicted Coordinate Differences
-7.94839333872107,

4 -2304x 104 1.118 x 10
112.616773784662
-7.9467662955678,

5 -3.885x10% 1.899 x 10
112.618069047894

Berdasarkan lima percobaan yang telah dilakukan, dapat disimpulkan bahwa rumus
yang digunakan memiliki akurasi yang cukup baik dan kesalahan yang relatif kecil.
Perbedaan rata-rata antara hasil yang diperoleh dari rumus dan titik koordinat
sebenarnya adalah sangat kecil, yaitu sebesar -0,00009966528437. Selain itu,
perbedaan maksimum antara hasil yang diperoleh dari rumus dan nilai sebenarnya
juga cukup kecil, hanya sekitar 0,0002401616635. Sehingga dapat disimpulkan
rumus Vincenty Formula tersebut dapat digunakan untuk melakukan kalkulasi titik
koordinat suatu objek berdasarkan titik koordinat asal, derajat arah serta jarak

terhadap objek.

4.6. Sistem Estimasi Jumlah Buah Kakao

Sistem ini melakukan deteksi buah kakao. Buah kakao yang terdeteksi
dalam bentuk bounding box akan dihitung jumlahnya. Setelah terdeteksi maka
setiap buah dalam setiap bounding box tersebut diklasifikasi untuk memprediksi
buah tersebut telah memasuki usia matang atau belum. Proses pada sistem ini cukup
sederhana, pengguna cukup mengunggah citra tanaman kakao. Lalu sistem akan
melakukan deteksi buah kakao, serta mengkalkulasi bounding box yang muncul.
Sehingga akan ditampilkan kepada pengguna berapa jumlah buah kakao yang ada
pada tanaman kakao tersebut. Adapun deteksi ini dilakukan dengan menggunakan

confidence threshold sebesar 0.25.

4.6.1. Evaluasi Sistem Estimasi Jumlah Buah Kakao
Pada tahap ini akan dilakukan evaluasi pada 5 model CNN YOLOVS terbaik

yang digunakan untuk melakukan deteksi buah kakao. Selain metriks pelatihan
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seperti box loss, dfl loss dan cls loss akan dilakukan pula pengujian manual secara
visual. Model akan dijalankan untuk melakukan proses deteksi, lalu hasil deteksi
akan dibandingkan dengan hasil penghitungan buah kakao manual secara visual.
Adapun berikut 2 citra yang akan digunakan untuk melakukan evaluasi sistem

estimasi jumlah buah kakao yaitu gambar 4.41 dan 4.42.

e L , .
Gambar 4. 41 Citra Tanaman Kakao dengan Buah muda

Dapat dilihat pada gambar 4.40 terdapat 19 buah muda. Buah kakao yang masih
muda akan nampak berwarna hijau. Lama-kelamaan akan muncul titik titik
kecoklatan pada buah kakao. Beberapa buah kakao pada gambar 4.40 berada pada
posisi yang sulit untuk dideteksi seperti buah yang tertutupi oleh buah lainnya, serta

buah yang berada dibalik batang. Buah pada posisi yang sulit dijangkau ini akan

sulit untuk dideteksi oleh model CNN YOLO.
PSS

- a“ <
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Gambar 4. 42 Citra Tanaman Kakao dengan Buah Matang
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Dapat dilihat pada gambar 4.41 terdapat 20 buah matang. Pada kedua citra diatas

yaitu gambar 4.40 dan gambar 4.41 akan dilakukan deteksi menggunakan model
YOLOVS8n dengan 100 epoch. Hasil deteksi dapat dilihat pada gambar 4.43 dan
4.44.

Gambar 4. 43 Hasil Deteksi Buah Kakao menggunakan model YOLOVS8n dengan
100 epoch

Pada gambar 4.43 terdapat 8 bounding box. Artinya terdapat 8 buah kakao matang
yang terdeteksi. Kedelapan bounding box tersebut juga memiliki confidece
threshold yang tinggi, yaitu pada nilai diatas 0.9 yang artinya model cukup yakin
bahwa prediksinya akurat. Namun masih terdapat 10 buah yang tidak terdeteksi.
Buah yang tidak terdeteksi kebanyakan memiliki posisi yang susah untuk dideteksi
seperti berada dibalik batang, dibalik buah lainnya, serta ukurannya sangat kecil.
Deteksi dilakukan pula pada tanaman kakao dengan buah muda. Hasil deteksi dapat
dilihat pada gambar 4.44.
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Gambar 4. 44 Hasil Deteksi Buah Kakao menggunakan model YOLOV8n dengan
100 epoch

Seperti yang dapat dilihat pada gambar 4.44, terdapat 9 bounding box/buah yang
berhasil terdeteksi. Namun pada ground truth terdapat 19 buah, sehingga masih
terdapat 10 buah. Deteksi dilakukan menggunakan kelima model pada 2 gambar
tersebut. Hasil evaluasi pada kelima model dapat dilihat pada tabel 4.15.

Tabel 4. 18 Evaluasi 5 model terbaik pada 2 contoh gambar

prediction result

model filename num of ripe  num of unripe

cocoa cocoa

YOLOVSn 100
IMG_20230621_160151.jpg 9

epoch
IMG 20230621 160747.jpg 8
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Tabel 4. 19 Evaluasi 5 model terbaik pada 2 contoh gambar (lanjutan)

prediction result

model filename num of ripe  num of unripe
cocoa cocoa
YOLOV8n 500
IMG 20230621 160151.jpg 12
epoch
IMG 20230621 160747.jpg 10
YOLOVS8m 100
IMG 20230621 160151.jpg 2 14
epoch
IMG 20230621 160747.jpg 17
YOLOVS8m 700
IMG 20230621 160151.jpg 3 11
epoch
IMG 20230621 160747.jpg 11
YOLOVS8n 300
IMG 20230621 160151.jpg 10
epoch
IMG 20230621 160747.jpg 11

Secara keseluruhan model belum berhasil mendeteksi semua buah kakao yang ada
pada tanaman kakao. Hal ini disebabkan karena banyak posisi buah kakao yang
tertutupi oleh objek lain seperti batang tanaman kakao, buah kakao, serta ukurannya
yang kecil. Hal ini dapat dikembangkan dengan cara melengkapi dataset yang lebih
bervariatif seperti menambahkan anotasi bounding box pada buah kakao yang
tertutupi. Namun hal tersebut juga perlu diimbangi dengan adanya metode yang
dapat melokalisasi hasil deteksi karena apabila sebuah kakao terletak dibalik batang
sehingga seolah-olah nampak terdapat dua buah kakao maka menjadi akan bias bagi

model.

Apabila ketiga sistem diatas digabungkan, sistem dapat digunakan sebagai alat

untuk melakukan monitoring perkebunan kakao dengan metode geotagging. Pada
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penelitian ini sistem hanya mampu untuk melakukan prediksi titik koordinat
tanaman kakao serta deteksi buah kakao. Sehingga sistem dapat menghasilkan
output berupa titik koordinat serta jumlah buah kakao. Sistem ini merupakan
alternatif murah untuk mengetahui perkembangan dari setiap tanaman kakao dari

waktu ke waktu.

112



5.1.

BAB V SIMPULAN DAN SARAN

Simpulan

Berikut kesimpulan pada penelitian ini.

1.

5.2.

Pada penelitian ini telah berhasil dikembangkan metode geotagging dengan
beberapa sistem didalamnya diantaranya model CNN estimasi kedalaman,
Segment Anything, ANN prediksi jarak, serta rumus Vincenty Formula.
Dimana hasil eksperimen ANN menghasilkan model ANN dengan nilai loss
mae sebesar 0.333776. Dimana model tersebut menggunakan optimizer
adamax, batch size 7 pada epoch 1000.

Pada penelitian ini berhasil dikembangkan metode untuk melakukan
kuantifikasi otomatis yaitu dengan menggunakan model CNN YOLOVS.
Dari hasil eksperimen, didapatkan model CNN YOLOVS8 dengan nilai
pricision 0.907 serta recall 0.958.

Saran

Adapun saran-saran dan masukan yang dapat digunakan sebagai referensi

penelitian selanjutnya dengan topik yang sama yakni terkait geotagging.

1.
2.
3.

Akurasi model ANN dapat diperbaiki apabila model tersebut dilatih ulang
Terdapat metode pengujian akurasi prediksi jarak yang lebih komperehensif
Dapat dilakukan penyempurnaan sistem yakni dengan menambahkan model
CNN untuk melakukan deteksi objek. Sehingga pengguna tidak lagi perlu
untuk menentukan salah satu titik pada objek.

Menambahkan anotasi bounding box pada buah yang tertutupi buah/objek
lain.

Sistem ini dapat diterapkan sebagai back end pada antarmuka web dimana
pengguna dapat melakukan pengambilan citra, pemilihan titik, memprediksi

jarak serta mendeteksi buah kakao.

113



DAFTAR PUSTAKA

(n.d.). Retrieved from Federal Aviation Administration of United States

Department of Transportation: https://www.faa.gov/uas

Abdoellah, D. S. (2021). Analisis Kinerja dan Prospek Komoditas Kakao. Jember,
Jawa Timur: Pusat Penelitian Kopi dan Kakao Indonesia, PT Riset
Perkebunan Nusantara.

Adam Paszke, S. G. (2019). PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Machine Learning (cs.LG); Mathematical Software
(cs.MS),; Machine Learning (stat. ML).

Alexander Kirillov, E. M.-Y. (2023). Segment Anything. Computer Vision and
Pattern Recognition (cs.CV); Artificial Intelligence (cs.Al); Machine
Learning (cs.LG).

Barima Yao Sadaiou Sabas, K. G. (2020). Cocoa Production and Forest Dynamics
in Ivory Coast from 1985 to 2019. Land 2020.

Bradford W. Parkinson, J. J. (1966). Global Positioning System: Theory and
Applications. Washington DC: American Institute of Aeronautics and
Astronautics, Inc.

Chatterjee, S. (2018). Time Series Crop Monitoring of an Agricultural Scheme on
a Plot Basis Using Complementary Remote Sensing .

Cle ment Godard, O. M. (2019). Digging Into Self-Supervised Monocular Depth
Estimation.

Dedi Atunggal, N. H. (2018). Developing Android Application for Precise
Geotagging Using RTK GPS Module. 2018 4th International Conference
on Science and Technology (ICST);2018;1, ; . Yogyakarta.

Faisal Khan, S. S. (2020). Deep Learning-Based Monocular Depth Estimation
Methods—A State-of-the-Art Review. Sensors.

Indonesia, D. J. (2021). Laporan Tahunan 2021 Direktorat Jenderal Perkebunan
Kementrian Pertanian Pengembangan Perkebunan 2021.

Indonesia, D. J. (2021). Statistik Perkebunan Unggulan Nasional 2020-2022.

Krista Merry, P. B. (2019). Smartphone GPS accuracy study in an urban
environment. PLOS ONE.

114



Meng Guo, J. L. (2017). A Review of Wetland Remote Sensing. Special Issue
"Understanding Land Surface Processes and Ecosystem Changes with
Optical and Laser Remote Sensing".

Olaf Ronneberger, P. F. (n.d.). U-Net: Convolutional Networks for Biomedical
Image Segmentation. Computer Science Department and BIOSS Centre for
Biological Signalling Studies, University of Freiburg, Germany.

Paul A. Longley, M. F. (2015). Geographic Information Science and Systems.
Wiley.

R Neswati, L. A. (2019). Land Suitability for Cocoa Development in South
Sulawesi: An Analysis using GIS and Parametric Approach. The 4th
International Conference of Indonesian Society for Remote Sensing. 10P
Conference Series: Earth and Environmental Science.

Rachita Byahatti, D. S. (2021). Object Detection and Classification using YOLOV3.
International Journal of Engineering Research & Technology (IJERT).

Roboflow, L. (2023). roboflow. Retrieved from https://roboflow.com

Saad Ashfaq, M. A. (2022). Accelerating Deep Learning Model Inference on Arm
CPUs with Ultra-Low Bit Quantization and Runtime. Machine Learning
(cs.LG); Artificial Intelligence (cs.Al).

Sugiarto, A. C. (n.d.). Manajemen Produksi Cokelat Vicco Dark Premium 70 Gram
Di Pusat Penelitian Kopi Dan Kakao Indonesia.

Vladimir A. Krylov, E. K. (2018). Automatic Discovery and Geotagging of Objects
from Street View Imagery. remote sensing MDPI.

Wahyudi, T. P. (2008). Panduan lengkap kakao manajemen agribisnis dari hulu
hingga hilir . Jakarta: Penebar Swadaya.

Xiaoming Fu, A. L. (2022). A Dynamic Detection Method for Phenotyping Pods in
a Soybean Population Based on an Improved YOLO-v5 Network. MDPI.

Xiaoming Fu, A. L. (2022). A Dynamic Detection Method for Phenotyping Pods in
a Soybean Population Based on an Improved YOLO-v5 Network. MDPI
Agronomy.

115



LAMPIRAN

### Environment Setup & Architecture Config

import pandas as pd

from keras.models import Sequential, load model

from keras.layers import Dense

import matplotlib.pyplot as plt

import datetime

from sklearn.model selection import train test split
# Load the dataset from the CSV file

# data = pd.read csv('/Volumes/Sandisk SSD/All
Skripsi/Skripsi/Dataset.csv')

# print (len(data))

# Split the dataset into input (X) and output (y)
variables
# X = datal[['r', 'g', 'b']]

data['distance']

#y

# Create the neural network model

model = Sequential ()

model.add (Dense (1000, input dim=3, activation='relu'))
model.add (Dense (750, activation='sigmoid'))
model.add (Dense (500, activation='relu'))
model.add (Dense (300, activation='sigmoid'))
model.add (Dense (200, activation='relu'))
model.add (Dense (150, activation='sigmoid'))
model.add (Dense (100, activation='relu'))
model.add (Dense (50, activation='sigmoid'))
model.add (Dense (1, activation='linear'))

from tensorflow.keras.utils import plot model
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# Visualize the model

plot model (model, to file='model.png',
show shapes=True, show layer names=True)

from PIL import Image

import matplotlib.pyplot as plt

# Load and display the image
image = Image.open ('model.png')
plt.imshow (image)
plt.axis('off")

plt.show ()

X.count

data

# TTS

X train, X test, y train, y test = train test split (X,
y, test size=0.04, random state=20)

# Options

optimizer selected = 'adamax'

bathsize selected = 1

epoch selected = 1000

model.compile (loss="mean absolute error',
optimizer=optimizer selected,

metrics="'mean absolute error')

# optimizer = adam, sgd, adamax, nadam
# train = model.fit (X train, y train,
epochs=epoch selected, batch size=bathsize selected,

validation data=(X test, y test))

# Plot Result

plt.figure(figsize=(8,8))
plt.plot(train.history['loss'], linewidth=1.0)
plt.plot(train.history['val loss'], linewidth=1.0)
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plt.ylabel ('Cross Entropy')

plt.ylabel ('loss')
plt.xlabel ('epoch')

plt.legend(['train', "test'], loc='upper right')

current time = datetime.datetime.now().strftime ("3Y-3m-
$d-%H %M $S")

last MAE =
train.history['mean absolute error'][len(train.history|
'mean absolute error'])-1]

filename = f"/Volumes/Sandisk SSD/A11
Skripsi/Pengembangan Model ANN RGB to
Jarak/Models/local {optimizer selected} {bathsize selec

ted} {current time} Last MAE={last MAE} epoch 5000"

plt.title('Model Loss')
description = f"Optimizer: {optimizer selected},
Batchsize: {bathsize selected}, Time: {current time},

\nLast MAE={last MAE} epoch 5000"

plt.text (0.1, 0.98, description,
transform=plt.gca () .transAxes, fontsize=10,
verticalalignment="top', bbox=dict (facecolor="'white',

edgecolor='gray', boxstyle='round,pad=0.5"))

#llllllllllllllllllll

model.save (filename+".h5")

plt.savefig(filename+".png")
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filename = "/Volumes/Sandisk SSD/All
Skripsi/Pengembangan Model ANN RGB to
Jarak/Models/local sgd 15 2023-07-05-11 39 58 Last
MAE=0.35471969842910767 epoch 3000"

loaded model = load model (filename+".h5")

optimizer selected = 'sgd'

bathsize selected = 15

epoch selected = 2000

loaded model.compile (loss="'mean absolute error',
optimizer=optimizer selected,

metrics="'mean absolute error')

train = loaded model.fit (X train, y train,
epochs=epoch selected, batch size=bathsize selected,
validation data=(X test, y test))

Lampiran 1 Kode Pelatihan Model ANN prediksi jarak menggunakan nilai RGB
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# —-*- coding: utf-8 -*-
"""train-yolov8-object-detection-on-custom-
dataset.ipynb

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/1N9sR5hrgWg-
M603xucAvXrMtvkbcu9Rk

Tutorial
https://docs.ultralytics.com/yolov5/tutorials/tips for
best training results/

dY£71g3b90rPADMDhQhcwSDpS

## Prep

!pip install comet ml

import comet ml

comet ml.init (project name="yolov8")

from comet ml import Experiment

from comet ml.integration.pytorch import log model

experiment = Experiment (
api key = "dYf71g3b90rPADmDhQhcwSDpS",
project name = "yolov8",

workspace="agunggg"
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""UH4 Before you start"""
'nvidia-smi

import os

HOME = os.getcwd()

print (HOME)

# Pip install method (recommended)

'pip install ultralytics==8.0.20

from IPython import display
display.clear output ()

import ultralytics

ultralytics.checks ()

from ultralytics import YOLO

from IPython.display import display, Image

!pip install roboflow --quiet

from roboflow import Roboflow

"UUHEE Custom Training"""

# Commented out IPython magic to ensure
compatibility.

!mkdir {HOME}/datasets

# %cd {HOME}/datasets

rf = Roboflow(api key="Dcl5orKoyjBh7DRAKSBU")
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project = rf.workspace ("gungs") .project ("yolo-cocoa")

dataset = project.version(2).download("yolov5")

import os

def count files(directory):

file count = 0
# Iterate through all the items in the directory
for item in os.listdir (directory):
item path = os.path.join(directory, item)
# Check if the current item is a file
if os.path.isfile(item path):
file count += 1

return file count

# Provide the directory path you want to count files in

directory path = '/content/datasets/YOLO-cocoa-
2/valid/images/"
file count = count files(directory path)

print ("Total files in the directory:", file count)

mwn ## TRAIN" nwmn

# Commented out IPython magic to ensure Python
compatibility.
# %cd {HOME}

!yolo task=detect mode=train model= yolov8m.pt
data={dataset.location}/data.yaml epochs=700 imgsz=800

plots=True patience=0
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"""### train resultsl'""

result folder = '/content/runs/detect/train/'

!1ls {HOME}/runs/detect/train/

# Commented out IPython magic to ensure Python
compatibility.

# %cd {HOME}

Image (filename=f"{result folder}"+"/confusion matrix.pn

g", width=600)

# Commented out IPython magic to ensure Python
compatibility.

# %cd {HOME}

Image (filename=f"{result folder}"+"/results.png",

width=600)

# Commented out IPython magic to ensure Python
compatibility.

# %cd {HOME}

Image (filename=f"{result folder}"+"/val batch0 pred.jpg
", width=600)

"nwnid Tnference with Custom Model"™""

result folder

# Commented out IPython magic to ensure Python

compatibility.
# %$cd {HOME}
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test = !'yolo task=detect mode=predict
model={HOME}/runs/detect/train/weights/best.pt
conf=0.25 source=/content/test save=True

test

"NUAANOTE: ** Let's take a look at few results."""

import glob
from IPython.display import Image, display

for image path in

glob.glob (f'{HOME}/runs/detect/predict/*.jpg"') :
display (Image (filename=image path, width=600))
print ("\n")

""vH4$ Download Zipped model"™"

from google.colab import files

import shutil

import os

folder path = '/content/runs/'

# Create a zip file of the folder
shutil.make archive (folder path, 'zip', folder path)

# Download the zip file
files.download(folder path+'.zip')

files.download('/content/yolov8m.pt"')

from ultralytics import YOLO
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# Load a model

# model = YOLO('yolov8n.pt') # load an official model
model =
YOLO ('/content/runs/detect/train/weights/best.pt") #

load a custom model

# Predict with the model
img = '/content/datasets/YOLO-cocoa-
2/valid/images/IMG 20230621 125352 jpg.rf.a01376e8cc4b2
0efl124622299f340d11.jpg"’

results = model (img) # predict on an image
from google.colab.patches import cvZ imshow
res = model (img)

res plotted = results[O]

cvZ2 imshow (res plotted)

Lampiran 2 Kode pelatihan YOLOVS8 untuk deteksi Buah Kakao
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# -*- coding: utf-8 -*-

"""Final System refactored.ipynb

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/1GorMCVpZ8aPCDy
ns5Ja73SHOKpiWCVDqg

# Prep all packages

lgit clone

https://github.com/danielyoga/Models Skripsi 2023.git
import os

HOME = os.getcwd()

print (HOME)

# Pip install method (recommended)

lpip install ultralytics==8.0.20

from IPython import display
display.clear output ()

import ultralytics

ultralytics.checks ()

from ultralytics import YOLO

from IPython.display import display, Image
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!pip install roboflow --quiet

from roboflow import Roboflow

lgit clone
https://github.com/nianticlabs/monodepth2.git

!python -m pip install opencv-python matplotlib onnx
onnxruntime

!'python -m pip install
'git+https://github.com/facebookresearch/segment-
anything.git'

'wget
https://dl.fbaipublicfiles.com/segment anything/sam vit
~h 4b8939.pth

import c¢v2, numpy as np, glob, subprocess, os,
matplotlib.pyplot as plt, math, torch, onnxruntime
from google.colab import drive, files

from PIL import Image

from PIL import Image

from onnxruntime.quantization import QuantType

from onnxruntime.quantization.quantize import
quantize dynamic

from segment anything import sam model registry,
SamPredictor

from segment anything.utils.onnx import SamOnnxModel

from keras.models import load model

loaded model =
load model ("/content/Models Skripsi 2023/local adamax 1
2023-06-26-10 18 29 Last MAE=0.24479460716247559 epoch
5000.h5")
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onnx model path

"/content/Models Skripsi 2023/sam onnx quantized exampl

e.onnx"

checkpoint = "sam vit h 4b8939.pth"
model type = "vit h"

sam

sam_model registry[model type] (checkpoint=checkpoint)

def show mask (mask, ax):

color = np.array([30/255, 144/255,

h, w = mask.shape[-2:]

mask image = mask.reshape (h,

color.reshape (1, 1, -1)

ax.limshow (mask image)

255/255,

Wy,

.61)

1) *

def show points(coords, labels, ax, marker size=375):

pos_points = coords[labels==1]
neg points = coords[labels==0]
ax.scatter (pos points|[:, 071,
color='green', marker="'*",

edgecolor="'white', linewidth=1.25)
ax.scatter (neg points|[:, 071,
color='red', marker="'*",

edgecolor="'white', linewidth=1.25)

"4 1, Prediksi Jarak

## Depth Estimation

# Commented out IPython magic

compatibility.
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neg points/[:,

to

11,

s=marker size,

11,

s=marker size,

ensure
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# Execute Process

# Upload File
uploaded file = files.upload()
filename = next (iter (uploaded file))

file content = uploaded file[filename]
with open(filename, 'wb') as f:
f.write(file content)

print (f"File '{filename}' uploaded and saved.")

# Estimate Depth

# grun monodepth2/test simple.py --image path
"/content/"{filename} --model name mono 1024x320

"tvgg Pilih Titik di Objek"™"

# Show image with axis
image = cv2.imread(filename)

image = cv2.cvtColor (image, cv2.COLOR BGR2RGB)

plt.figure(figsize=(10,10))
plt.imshow (image)
plt.axis('on'")

plt.show ()

image disp = cv2.imread (filename.replace (".Jjpg",

" disp.jpeg"))

plt.figure(figsize=(10,10))
plt.imshow (image disp)
plt.axis('on"')

plt.show ()
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# Check titik yang dipilih
np.array ([ [2700, 2900]1])

input point

input label = np.array([1])

plt.figure(figsize=(10,10))

plt.imshow (image)

show points (input point, input label, plt.gca())
plt.axis('on'")

plt.show ()

""r4E Segment Object Area"""

ort session =
onnxruntime.InferenceSession (onnx model path)
sam.to (device="cuda')

predictor = SamPredictor (sam)

predictor.set image (image)
image embedding =

predictor.get image embedding () .cpu() .numpy ()

onnx coord = np.concatenate ([input point, [[0.0, 0.0]]],
axis=0) [None, :, :]
onnx label = np.concatenate ([input label, [-111,

axis=0) [None, :].astype(np.float32)
onnx_coord =
predictor.transform.apply coords (onnx coord,

image.shape[:2]) .astype (np.float32)

ort inputs = {

"image embeddings": image embedding,
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"point coords": onnx coord,

"point labels": onnx label,

"mask input": np.zeros ((1, 1, 256, 256),
dtype=np.float32),

"has mask input": np.zeros(l, dtype=np.float32),

"orig im size": np.array(image.shape[:2],
dtype=np.float32)
}

masks, s low res logits = ort session.run (None,
ort inputs)

masks = masks > predictor.model.mask threshold

plt.figure(figsize=(10,10))

plt.imshow (image)

show mask (masks, plt.gca())

show points (input point, input label, plt.gca())
plt.axis('on"')

plt.show ()

"""## get median pada segment area on disp image"""

converted array = masks.astype (int)

positions = np.where (converted array == 1)

x_coords positions[2]

y coords = positions]([3]

pixel positions = np.column stack((x coords, y coords))
data = np.array(cv2.imread(filename.replace (".Jjpg",
" disp.jpeg")))
# data = np.array(Image.open(filename.replace(".jpg",
" disp.jpeg")))
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# Get pixel values at the specified positions
pixel values = data[pixel positions][:, 0],

pixel positions[:, 11]]

median = np.median(pixel values, axis=0)

print ("Median:", median)

"""## median to jarak"""

# Execute process

# predict jarak using median rgb

median = median.reshape(l, -1)

predictions = loaded model.predict (median)

predictions predictions[0] [0].tolist ()

predictions

predicted distance = predictions

predicted distance

nnrd 2. Perhitungan Koordinat

## Get Camera Long Lat

image = Image.open (filename)

exif data = image. getexif ()

gps_info = exif data.get (34853)

direction = gps _info[1l7]

latitude = gps_info.get (2)
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longitude = gps_info.get (4)

latitude decimal = float(latitude[0] + latitude[l] / 60
+ latitude[2] / 3600)

longitude decimal = float(longitude[0] + longitude[l] /
60 + longitude[2] / 3600)

print (latitude decimal, longitude decimal, direction)

latl = latitude

lonl = longitude

mnndd Count Coordinate"""

# Constants

R = 6371.0 # Earth's radius in kilometers

# Starting point

latlong = [latitude decimal, longitude decimal]
latl = math.radians(latlong[0])

lonl

math.radians (latlong([1])

# Heading in degrees

heading = math.radians (direction)

# Distance in kilometers

distance = predictions/1000

# Calculate destination point
lat2 = math.asin(math.sin(latl) * math.cos(distance/R)
+

math.cos (latl) * math.sin(distance/R)

* math.cos (heading))
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lon?2 = lonl + math.atan2 (math.sin (heading) *
math.sin(distance/R) * math.cos (latl),
math.cos (distance/R) -

math.sin(latl) * math.sin(lat2))

# Convert back to degrees
lat?2 = math.degrees(lat?)

lon?2 = math.degrees(lon?2)

# Display the destination coordinates

print (f"Destination: {lat2}, {lon2}")

"nrd 3 Deteksi Buah Kakao"""

# If not found, create predict and predict result folder
import os

import shutil

if not os.path.exists("/content/predict"):
os.makedirs ("/content/predict")
else
file list = os.listdir("/content/predict")
for file name in file list:
file path = os.path.join ("/content/predict",

file name)

if os.path.isfile(file path):

os.remove (file path)

# Add the current image to the "predict" folder
image name = os.path.basename (filename)
predict image path = os.path.join("/content/predict",

image name)
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shutil.copy (image name, predict image path)

# Commented out IPython magic to ensure Python
compatibility.

# %cd {HOME}

test = !'yolo task=detect mode=predict
model="'/content/Models Skripsi 2023/best.pt' conf=0.25
source=/content/predict/ save=True

test

import re

for i in test:
match = re.search(r' (?<=to\s).*', 1)
if match:
result = match.group()
clean string = re.sub ("\xlb\[.*?m", "", result)

print (clean string)

num unripecocoas = num_ripecocoas = 0

for element in test:
if "unripecocoas" in element:
ripecocoas_index =
element.index ("unripecocoas")
num unripecocoas = int(element[ripecocoas index
- 3:ripecocoas_index].strip())
print ("Terdeteksi ",num ripecocoas," Buah Kakao

Belum Matang")

if "ripecocoas" in element

ripecocoas_index = element.index ("ripecocoas")
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num ripecocoas = int (element[ripecocoas index -
3:ripecocoas_index].strip())
print ("Terdeteksi ",num ripecocoas," Buah Kakao

Matang")

# Show image with axis
image = cv2.imread(str (os.path.join("/content/",
clean string, filename)))

image = cv2.cvtColor (image, cv2.COLOR BGR2RGB)

plt.figure(figsize=(10,10))
plt.imshow (image)
plt.axis('on'")

plt.show ()

"nrasd Tnitiate Dataframe"""

import pandas as pd

# Column names for the new DataFrame
column names = ['predicted distance'’,
'latl',
'lonl',
'lat2',
'lon2',
'num_unripecocoas',

'num_ ripecocoas']

# Creating an empty DataFrame with the specified column
names
geotagging database =

pd.DataFrame (columns=column names)
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# Displaying the newly created DataFrame
print (geotagging database)

"nrg4d Append to dataframe"™"

data_to_append = [[predicted_distance,
latl,
lonl,
lat?2,
lon2,
num unripecocoas,

num_ ripecocoas] ]

geotagging database.append(pd.DataFrame (data to append,

columns=column names), ignore index=True)

geotagging database =
geotagging database.append(pd.DataFrame (data to append,

columns=column names), ignore index=True)

geotagging database

""nwd Check GPU Available Resources"""

if torch.cuda.is available():

gpu_stats = torch.cuda.memory stats()

total memory =
gpu_stats["allocated bytes.all.current"] / (1024 ** 3)

max memory = gpu stats["allocated bytes.all.peak"]
/ (1024 ** 3)

available memory = max memory - total memory

print (f"Available GPU memory:
{available memory:.2f} GB")
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else:

print ("No GPU available.")

"nrd Pembuktian Rumus"""

import math

import pandas as pd

# Starting coordinates
def calculate destination(latlong, heading, distance):

R = 6371 # Earth's radius in kilometers

# Starting point
latl = math.radians(latlong[0])
lonl

math.radians (latlong[1l])

# Heading in degrees

heading = math.radians (heading)

# Distance in kilometers

# distance = predictions

# Calculate destination point

lat2 = math.asin(math.sin(latl)
math.cos (distance/R) +

math.cos (latl)

math.sin(distance/R) * math.cos (heading))

lon?2 = lonl + math.atan2 (math.sin (heading)
math.sin(distance/R) * math.cos (latl),

math.cos (distance/R)

math.sin(latl) * math.sin(lat2))

# Convert back to degrees
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lat?2 math.degrees (lat?2)

lon2 = math.degrees (lon?2)

# Return the destination coordinates

return lat2, lon?2

calculate destination([-7.94984, 112.615411], 40.45¢0,
0.069)

Lampiran 3 Kode Sistem Keseluruhan
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cOo & Final_System refactored.ipynb

File Edit View Insert Runtime Tools Help All chang:

B Comment 2% Share 2 .

+ Code + Text Connect ~ ~

° print(geotagging_database)

Q [, Empty DataFrame
Columns: (predicted distance, latl, lonl, lat2, lon2, num_unripecocoas, num_ripecocoas]
®) Index: []

B + Append to dataframe

ERAR-N = I Nl |
° data_to_append = [[predicted_distance,
latl,
lonl,
lat2,
lon2,
num_unripecocoas,
num_ripecocoas] ]

geotagging_database.append(pd.DataFrame(data_to_append, columns=column_names), ignore_index=True)

The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.

predicted_distance lat1 lonl lat2 lon2 num_unripecocoas num_ripecocoas

0 1.808395 7.639722 112.830556 7.639709 112.830565 o 17

geotagging_database = geotagging_database.append(pd.DataFrame(data_to_append, columns=column_names), ignore_index=True)

geotagging_database

The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.

< predicted_distance latl lonl lat2 lon2 num_unripecocoas num_ripecocoas
= 0 1.808395 7.639722 112.830556 7.639709 112.830565 0 17
>_]

Lampiran 4 Dataframe Sebagai Penyimpanan Sementara Data Hasil Prediksi

Koordinat
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© plt.imshow(image)
plt.axis('on')
plt.show()

Lampiran 5 Tangkapan Layar Hasil Deteksi Buah Kakao
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