
PENGEMBANGAN PRODUK DIGITAL GAME ROGUELIKE

MENGGUNAKAN UNITY DAN TOOLS AI

TUGAS AKHIR

ALVIN ANDRIUS OEPOJO

NIM: 311910002

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2023

LEMBAR PENGESAHAN

TUGAS AKHIR

PENGEMBANGAN PRODUK DIGITAL GAME ROGUELIKE

MENGGUNAKAN UNITY DAN TOOLS AI

Oleh:

ALVIN ANDRIUS OEPOJO

NIM. 311910002

dari:

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI dan DESAIN

UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan

dan berhak mendapatkan gelar Sarjana Komputer (S.Kom.)

Dosen Pembimbing I,

Windra Swastika, S.Kom., MT., Ph.D.

Dosen Pembimbing II,

Paulus Lucky Tirma Irawan, S.Kom.,

MT.

NIP. 20070039 NIP. 20100005

Dekan Fakultas Teknologi dan Desain,

Dr. Eng. Romy Budhi Widodo

NIP. 20070035

PENGEMBANGAN PRODUK DIGITAL GAME ROGUELIKE

MENGGUNAKAN UNITY DAN TOOLS AI

Alvin Andrius Oepojo1, Windra Swastika2, Paulus Lucky Tirma Irawan3

Universitas Ma Chung

Abstrak

Zaman sekarang, banyak sekali tools AI yang bisa digunakan untuk

berbagai macam aktivitas seperti menggambar, membuat musik, dan lain-lain.

Tools AI mampu mempercepat pembuatan sebuah produk entah digital maupun

fisikal dan salah satunya adalah game. Game mampu dibuat menggunakan AI,

tetapi belum pasti apakah pembuatan aset menggunakan tools AI bisa mempercepat

pembuatan game atau tidak. AI yang digunakan adalah ChatGPT untuk membuat

cerita sinopsis, kode serta membuat berbagai macam aspek game, Leonardo.ai

untuk membuat gambar background, menjelaskan cerita, dan kejadian acak,

Beatoven.ai untuk membuat musik background.

Penggunaan tools AI untuk pengembangan game bisa dilakukan dengan

lancar untuk Beatoven.ai, tetapi untuk ChatGPT dan Leonardo.ai memberikan hasil

yang cukup bagus dengan prompt yang diberikan, tetapi memiliki kekurangan

tertentu seperti kadang memberikan hasil yang kurang tepat dan bahkan sesekali

menghasilkan hasil yang tidak diinginkan.

Game yang dikembangkan adalah sebuah game simpel tetapi mampu

menghibur pemain dengan skor SUS 72.70 yaitu bisa dimainkan dengan sedikit

masalah dari 11 pengetes lelaki dan 1 pengetes perempuan dengan umur antara 19-

24. Hasil yang dibuat dengan AI mampu menghasilkan hasil yang bagus, tetapi

diperlukan pembelajaran lebih jauh mengenai pengembangan game menggunakan

tools AI untuk mempercepat pengembangan game dan sebagian besar pemain tidak

keberatan dengan game dikembangkan oleh AI atau tidak asalkan ada game yang

bisa dimainkan.

Kata kunci: tools AI, ChatGPT, Leonardo.ai, Beatoven.ai

DEVELOPMENT OF DIGITAL ROGUELIKE GAME USING UNITY

AND AI TOOLS

Alvin Andrius Oepojo1, Windra Swastika2, Paulus Lucky Tirma Irawan3

Universitas Ma Chung

Abstract

Nowadays, there are so many AI tools that can be used for different reasons

like drawing, making music and more. AI tools can be used to make a product

quicker whether it’s digital nor physical and one of them is a game. A game can be

made with AI, however it’s uncertain if asset creation can help to make a game

quicker. The AI tools that are going to be used are ChatGPT for story synopsis,

code and different aspects of the game, Leonardo.ai for background and

storytelling and Beatoven.ai for making background musics.

The use of AI tools can be done easily with Beatoven.ai, however for

ChatGPT and Leonardo.ai gave a decent result with the given prompts, but with

certain drawbacks such as sometimes giving less precise results and even gave the

wrong results occasionally.

The developed game was simple but able to entertain the players with the

SUS score of 72.70 which means playable with few problems from 11 male testers

and a female tester from 19-24 years old. The result that was made with AI tools

gave a good result but requires studying it further to be able to develop a game

quicker and most of the players don’t mind if the game was made with AI or not as

long there is a game to be played.

Keywords: AI tools, ChatGPT, Leonardo.AI, Beatoven.ai.

Kata Pengantar

Puji Syukur kepada Tuhan Yang Maha Esa, atas berkat Rahmat dan

Karunia-Nya bahwa Tugas Akhir ini telah terselesaikan dengan judul

“Pengembangan Produk Digital Game Roguelike Menggunakan Unity dan Tools

AI”. Berkat pertolongan dari berbagai pihak yang meluangkan waktu untuk Penulis

bisa menyelesaikan Tugas Akhir ini. Maka dari itu pada kesempatan ini, Penulis

ingin mengucapkan terima kasih sebesar-besarnya kepada:

1. Bapak Dr. Eng. Romy Budhi, ST., MT. selaku Dekan Fakultas Teknologi

dan Desain Universitas Ma Chung dan ketua penguji,

2. Bapak Hendry Setiawan, ST., M. Kom., selaku Kepala Program Studi

Teknik Informatika Universitas Ma Chung,

3. Bapak Windra Swastika, S.Kom., MT., Ph.D. selaku dosen pembimbing

pertama,

4. Bapak Paulus Lucky Tirma Irawan, S.Kom., MT. selaku dosen pembimbing

kedua,

5. Teman-teman saya yang membantu memberi nasehat dan pendapat,

6. Keluarga saya yang memberikan bantuan dan mendukung penulis untuk

mengerjakan Tugas Akhir ini.

Malang, 25 September 2023

Alvin Andrius Oepojo

Daftar Isi

Abstrak ... i

Abstract ... ii

Kata Pengantar ... iii

Daftar Isi... iv

Daftar Gambar .. vi

Daftar Tabel ... viii

Bab I Pendahuluan ... 1

1.1 Latar Belakang .. 1

1.2 Identifikasi Masalah .. 3

1.3 Batasan Masalah.. 4

1.4 Perumusan Masalah ... 4

1.5 Tujuan Penelitian ... 4

1.6 Manfaat Penelitian .. 5

1.7 Luaran Penelitian .. 5

Bab II Tinjauan Pustaka ... 6

2.1 Artificial Intelligence (AI)... 6

2.2 AI as a Service (AIaaS)... 6

2.3 Prompt Engineering .. 7

2.4 ChatGPT .. 8

2.5 Leonardo.ai.. 10

2.6 Beatoven.ai .. 11

2.7 Video Game ... 11

2.8 Genre Game .. 12

2.8.1 Action ... 13

2.8.2 Role-Playing ... 14

2.8.3 Simulation .. 15

2.8.4 Strategy .. 15

2.9 Roguelike ... 16

2.10 Aset Game ... 18

2.11 Desain Game ... 21

2.12 Game Engine ... 22

2.12.1 Unity ... 22

2.12.2 Unreal Engine... 24

2.12.3 GameMaker Studio .. 26

2.12.4 Godot .. 27

2.12.5 RPG Maker .. 29

2.12.6 Ren’Py .. 30

2.13 System Usability Scale (SUS) ... 32

Bab III Analisis dan Perancangan Sistem ... 35

3.1 Tahapan Penelitian .. 35

3.2 Mencari Tools AI .. 35

3.3 Membuat Cerita Sinopsis dan Fitur Game 36

3.4 Pembuatan Aset Game .. 37

3.5 Pengembangan Game .. 37

3.5.1 Integrasi Aset Game ke Unity .. 38

3.5.2 Detail Pengembangan Game .. 38

3.6 Game Testing .. 44

3.7 Publikasi Game di itch.io dan Mengambil Data Review Game 45

Bab IV Hasil dan Pembahasan .. 47

4.1 Mencari Tools AI .. 47

4.2 Pembuatan Cerita Sinopsis dan Fitur Game.................................... 47

4.3 Hasil Pembuatan Aset Game ... 50

4.4 Pembuatan Game .. 57

4.5 Hasil Game .. 66

4.6 Hasil Testing ... 76

4.7 Mengeluarkan Game di itch.io dan Pendapat Pemain 80

Bab V Penutup .. 82

5.1 Kesimpulan ... 82

5.2 Saran .. 83

Daftar Pustaka ... 85

Lampiran ... 89

Daftar Gambar

Gambar 2.1 Gambar website ChatGPT ... 8

Gambar 2.2 Gambar website Leonardo.ai... 10

Gambar 2.3 Gambar website Beatoven.ai ... 11

Gambar 2.4 Tennis for Two di osiloskop.. 12

Gambar 2.5 Gameplay dari Counter Strike: Global Offensive 13

Gambar 2.6 Gameplay dari The Elder Scrolls V: Skyrim 14

Gambar 2.7 Gameplay dari PowerWash Simulator 15

Gambar 2.8 Gameplay dari Sid Meier’s Civilization VI 16

Gambar 2.9 Gameplay dari Rogue .. 17

Gambar 2.10 Game Risk of Rain .. 18

Gambar 2.11 Main Menu Team Fortress 2 ... 19

Gambar 2.12 Heads-up Display Team Fortress 2 19

Gambar 2.13 Backpack Team Fortress 2 .. 20

Gambar 2.14 Sebuah karakter dengan 2D dan 3D 20

Gambar 2.15 Contoh penggunaan engine Unity 23

Gambar 2.16 Gameplay dari One Dreamer... 24

Gambar 2.17 Contoh penggunaan engine Unreal Engine 25

Gambar 2.18 Gameplay dari Fortnite Chapter 2 25

Gambar 2.19 Contoh penggunaan game engine GameMaker Studio 26

Gambar 2.20 Gameplay dari Undertale .. 27

Gambar 2.21 Contoh penggunaan game engine Godot 28

Gambar 2.22 Gameplay dari Dead Cells... 28

Gambar 2.23 Contoh penggunaan game engine RPG Maker MZ 29

Gambar 2.24 Gameplay dari OneShot .. 30

Gambar 2.25 Gameplay dari Doki Doki Literature Club 32

Gambar 3.1 Tahapan Penelitian .. 35

Gambar 3.2 Pembuatan cerita sinopsis dengan ChatGPT 36

Gambar 3.3 Contoh menggambar dengan Leonardo.ai 37

Gambar 3.4 Mockup menu utama game ... 38

Gambar 3.5 Mockup interaksi tombol Play Game 39

Gambar 3.6 Mockup interaksi tombol Settings... 39

Gambar 3.7 Mockup kejadian acak ... 40

Gambar 3.8 Mockup menu peta game .. 41

Gambar 3.9 Mockup sistem perlawanan musuh 42

Gambar 3.10 Mockup menu Status ... 42

Gambar 3.11 Mockup sistem inventory .. 43

Gambar 4.1 Hasil menggambar menggunakan Leonardo.ai 50

Gambar 4.2 Hasil tiap kondisi karakter... 53

Gambar 4.3 Hasil akhir dari pembuatan judul .. 54

Gambar 4.4 Pengaturan ControlNet di Leonardo.ai.................................. 54

Gambar 4.5 Referensi gambar UI ... 55

Gambar 4.6 Hasil generasi Leonardo.ai dengan referensi Gambar 4.4 55

Gambar 4.7 Scene menu utama game ... 66

Gambar 4.8 Scene menu utama ... 67

Gambar 4.9 Scene intro game ... 68

Gambar 4.10 Scene character .. 68

Gambar 4.11 Pilihan karakter engineer ... 69

Gambar 4.12 Scene gameplay ... 70

Gambar 4.13 Contoh kejadian acak langsung ... 71

Gambar 4.14 Contoh kejadian acak pilihan .. 71

Gambar 4.15 Salah satu hasil dari kejadian acak dari Gambar 4.14 72

Gambar 4.16 Menu action ... 74

Gambar 4.17 Hasil aksi search .. 74

Gambar 4.18 Scene menang .. 75

Gambar 4.19 Salah satu scene kalah ... 75

Gambar 4.20 Grafik rata-rata total skor pengetes 78

Daftar Tabel

Tabel 2 Skor SUS dan artinya ... 34

Tabel 4.1 Generasi ChatGPT untuk cerita sinopsis 48

Tabel 4.2 Generasi ChatGPT untuk nama grup .. 49

Tabel 4.3 Prompt serta beberapa hasil gambar Leonardo.ai 51

Tabel 4.4 Pembuatan musik dengan Beatoven.ai...................................... 56

Tabel 4.5 Generasi ChatGPT untuk kejadian acak yang benar 58

Tabel 4.6 Generasi ChatGPT kejadian acak tidak sesuai 60

Tabel 4.7 Hasil generasi ChatGPT untuk kode script 62

Tabel 4.8 Generasi ChatGPT terhadap pertanyaan 63

Tabel 4.9 Generasi ChatGPT yang salah .. 64

Tabel 4.10 Generasi ChatGPT salah bahasa pemrograman 65

Tabel 4.11 Data asli pengetes game .. 78

Tabel 4.12 Data hasil SUS .. 79

Bab I

Pendahuluan

1.1 Latar Belakang

Zaman sekarang, ada banyak sekali tools AI yang bisa digunakan untuk

berbagai macam aktivitas. Hal-hal seperti membuat gambar, membuat sebuah cerita,

membuat suara dan lain-lainnya hanya dengan deskripsi yang diberikan oleh

pengguna AI. Contohnya seperti AI bernama Midjourney yang digunakan di

Discord sebagai bot digunakan untuk membuat gambar dengan berbagai macam

cara menggambar dengan deskripsi yang telah diberi yang lalu bisa diatur

tergantung keinginan pengguna (Amalia, 2022). Contoh lainnya berupa tools AI

yang bisa digunakan untuk membuat musik yaitu beatoven.ai yang bisa membuat

musik dengan memilih tema lagu serta suasana dan pengguna bisa mengatur sesuai

keinginan untuk membuat musik (Beatoven Private Limited, 2023). Tools AI

seperti ChatGPT mampu memberikan jawaban yang diminta oleh pengguna seperti

membuat sebuah cerita sinopsis, resep memasak dan lain-lainnya.

Karena bisa mendapatkan hasil yang bagus dengan menggunakan tools AI,

ada berbagai macam keuntungan yang bisa dimanfaatkan. Salah satu

keuntungannya adalah untuk mempercepat pembuatan sebuah produk, entah digital

maupun fisikal. Gambar yang dibuat oleh AI bisa dibuat untuk sebuah desain atau

logo barang dan bahkan bisa digunakan untuk membuat sebuah aset produk digital

berupa game. Tetapi karena tools AI bisa mendapatkan hasil yang bagus yang bisa

dibandingkan dengan artis lainnya, beberapa orang memiliki kebencian dari media

seni yang dibuat oleh AI karena tidak dibuat oleh manusia dan / atau mengurangi

lowongan kerja media seni seperti kasus di mana Jason M. Allen memenangkan

lomba di Colorado State Fair dengan menggunakan gambar yang dibuat

menggunakan Midjourney dan membuat pengguna di sosial media Twitter

membenci penggunaan AI untuk memenangkan sebuah lomba menggunakan AI

(Roose, 2022). Walaupun itu benar, tools AI bisa membantu untuk memberi ide dan

sebuah template untuk membuat hasil yang tepat (Tiernan, 2022).

Produk digital berupa game merupakan salah satu produk digital yang bisa

djiual dikarenakan produk digital berupa game digunakan untuk menghibur pemain

dengan berbagai macam cara. Penjualan produk digital berupa game juga mulai

menaik dikarenakan masa pandemik yang membuat orang-orang terpaksa untuk

tetap di rumah. Di tahun 2020, penjualan produk digital berupa game mencapai 155

miliar USD dan jumlah waktu orang bermain menaik sebanyak 39% dalam masa

pandemi (Clement, 2022). Dunia produk digital berupa game di Indonesia lebih

fokus ke game di perangkat mobile dengan jumlah 114 juta pemain karena sebagian

besar pemain tidak memiliki komputer dengan jumlah 46.1 juta pemain atau

console dengan jumlah 34.1 juta pemain pada tahun 2021 (Allcorrect Group, 2022)

dan memiliki jumlah pendapatan 1.92 miliar USD, 9% menaik dari tahun

sebelumnya. Di tahun 2019, game yang dibuat dengan satu orang sampai kelompok

kecil atau yang disebut game indie mencapai 332 game, 47.56% lebih tinggi

daripada tahun 2018 (Rizkinaswara, 2021).

Pembuatan produk digital berupa game dimulai dengan merencanakan

game seperti memilih platform, membuat konsep seni, rencana marketing dan lain-

lain. Contohnya seperti game Ada’s Delivery Service khusus untuk mengajar dasar

logika algoritma dan mempelajari dunia pemrograman yang bisa dilakukan dimana

saja menggunakan platform mobile (Irawan, Tandiono, & Setiawan, 2018). Selain

menggunakan platform mobile, website juga bisa digunakan untuk mempelajari

sesuatu seperti Scratch dan Greenfoot dengan bermain dan bahkan membuat game

sendiri (Widodo, Swastika, & Yuswanto, 2020).

Lalu, aset game bisa mulai dibuat menurut cerita untuk game. Lalu, game

dimulai pembuatannya yang dimulai dengan membuat prototype untuk mengetes

fitur. Hal yang diatur selain prototype adalah konsep visual, desain dari game,

desain suara dan pemrograman. Setelah dibuat, game bisa dites untuk mengecek

masalah yang ada seperti mengetes suara, apakah game bekerja dengan lancar dan

hal teknis lainnya. Game akhirnya bisa dipublikasikan dan diberi perbaikan dan /

atau konten baru bila ada (Gameace Creative Studio, 2021).

Setelah semua aset sudah dibuat, maka pembuatan game bisa dimulai

dengan membuatnya di dalam sebuah game engine. Ada berbagai macam game

engine yang bisa dipakai seperti Unity, Unreal Engine, dan lain-lainnya. Setelah

game selesai dibuat, maka game perlu dites dan memperbaiki beberapa masalah

setelah dites dan bila game selesai dibuat, maka siap untuk dipublikasikan di toko

game yang diinginkan.

Produk digital berupa game tidak hanya dibuat oleh perusahaan besar, tetapi

juga dibuat oleh sebuh grup kecil atau satu orang saja. Produk digital berupa game

seperti Stardew Valley dibuat oleh satu orang yaitu Eric Barone dalam waktu empat

setengah tahun untuk membuat produk digital berupa game mulai dari desain game,

animasi, membuat musik sampai kodenya (White, 2018). Ada beberapa alasan

kenapa produk digital berupa game dibuat hanya dengan satu orang atau sebuah

grup kecil contohnya seperti untuk mendapatkan ide lebih baik serta lebih hemat

daripada membayar banyak karyawan atau tenaga kerja untuk membuat sebuah

produk digital berupa game.

Dengan menggunakan tools AI, pengembang game mampu

mengembangkan game untuk membuat aset game lebih cepat dan membantu

mendapatkan hasil yang cukup baik bila dibandingkan dengan membuat aset game

secara manual yang membutuhkan beberapa minggu bahkan bulan untuk

mendapatkan hasil yang memuaskan. Tidak cuma itu, menggunakan tools AI lebih

murah untuk membuat aset daripada membuat aset dari meminta komisi orang lain.

Keuntungan lainnya adalah ada beberapa dari tools AI memberikan layanannya

secara gratis dan tidak perlu memikirkan mengenai hak cipta atau hanya perlu

memberikan kredit kepada AI tersebut.

1.2 Identifikasi Masalah

Semua aspek dari pembuatan produk digital berupa game memerlukan

waktu. Pembuatan gambar atau aset untuk produk digital berupa game perlu waktu

untuk digambar dan cerita juga memerlukan waktu untuk dibuat. Karena untuk

mendapatkan sukses dari produk digital berupa game, diperlukan kreativitas yang

besar dan hal-hal menarik yang bisa membuat orang tertarik untuk bermain. Bila

pembuatan produk digital berupa game dilakukan oleh satu orang atau dalam grup

kecil, maka pekerjaan akan lebih banyak dan lebih lama untuk dikerjakan. Dengan

menggunakan tools AI yang bisa digunakan untuk membuat cerita, karakter dan

berbagai macam aset lainnya, pembuatan aset game menjadi lebih hemat waktu

serta tidak memerlukan seorang profesional untuk membuat aset game.

1.3 Batasan Masalah

Batasan masalah yang akan difokuskan adalah sebagai berikut:

1. Pembuatan sebuah produk digital berupa game dengan tipe genre

roguelike yang bisa dibuat dengan tools AI untuk membuat sebuah

produk digital berupa game lebih cepat dan tidak memerlukan

kemampuan tertentu untuk membuat game.

2. Pembuatan aset yang diinginkan untuk produk digital berupa game

seperti cerita sinopsis menggunakan ChatGPT, 145 gambar

menggunakan Leonardo.ai, dan enam musik background menggunakan

Beatoven.ai.

3. Pengembangan game dengan game engine Unity.

4. Publikasi game dengan itch.io.

1.4 Perumusan Masalah

Rumusan masalah yang dapat diambil adalah:

1. Bagaimana mengembangkan game dengan Unity dan pembuatan aset

game dengan berbagai macam tools AI yaitu ChatGPT, Leonardo.ai dan

Beatoven.ai?

2. Bagaimana cara menjelaskan kepada tools AI untuk menghasilkan aset-

aset game sesuai dengan skenario game yang sedang dikembangkan?

3. Apakah game dengan aset yang dihasilkan menggunakan tools AI bisa

dikomersialkan dan dapat diterima oleh komunitas gaming dengan

jumlah review dan jumlah rating di itch.io?

1.5 Tujuan Penelitian

Tujuan dari penelitian ini adalah membuat sebuah produk digital berupa

game hanya dengan menggunakan AI untuk pembuatan berbagai macam aspek

produk digital berupa game yaitu cerita dan aset produk digital berupa game seperti

gambar, musik, dan lain-lain.

1.6 Manfaat Penelitian

Adapun manfaat yang dapat diambil dari penelitian ini:

1. Bagi pengguna, produk digital berupa game bisa dimainkan untuk hiburan

serta mempelajari hal-hal yang bisa dipelajari dari penggunaan AI.

2. Bagi Universitas Ma Chung, penelitian ini bisa membantu memberikan

referensi untuk penulis lainnya.

1.7 Luaran Penelitian

Luaran dari penelitian ini adalah sebuah produk digital berupa game dengan

genre roguelike yang sudah dipublikasikan di itch.io serta artikel ilmiah untuk

publikasi di jurnal.

Bab II

Tinjauan Pustaka

2.1 Artificial Intelligence (AI)

Artificial Intelligence atau kecerdasan buatan merupakan sebuah simulasi

otak manusia yang dibuat di dalam sebuah mesin atau komputer dan diprogram

untuk bekerja seperti manusia seperti mencari arti, belajar dari pengalaman, dan

mencapai sebuah kesimpulan (Copeland, 2023). AI bisa membantu pekerjaan

manusia yang biasanya terlalu rumit untuk dilakukan oleh manusia sendiri, salah

satu contohnya seperti menghitung berbagai macam kasus. Manusia tidak bisa

menghitung berbagai macam cara atau mencari berbagai macam solusi dalam

waktu bersamaan, tetapi AI mampu melakukannya dengan berbagai macam data

yang sudah didapat.

AI memiliki cara untuk mempelajari berbagai kesalahan atau pengalaman

yang sudah dialami dan akan menggunakan hal-hal tersebut untuk menyelesaikan

masalah berikutnya lebih baik. AI juga bisa mencari hasil terbaik dalam sebuah

masalah dengan melakukan berbagai macam simulasi kemungkinan yang bisa

terjadi dalam sebuah masalah. Salah satu contoh penerapannya adalah sebuah AI

bernama AlphaGo. AlphaGo merupakan sebuah AI yang digunakan untuk

mempelajari permainan Go. AlphaGo awalnya diberi 100 ribu data pertandingan

Go untuk dipelajari lalu setiap kali kalah, AlphaGo akan memperbaiki

kesalahannya untuk pertandingan selanjutnya dan pada tahun 2016, AlphaGo

menang melawan juara dunia Go yaitu Lee Sedol.

2.2 AI as a Service (AIaaS)

 AI as a Service merupakan sebuah layanan yang diberi oleh AI yang dibuat

oleh pihak ketiga untuk melakukan apa yang diperlukan oleh pengguna (Kleinings,

2022). Perusahaan atau pengguna bisa menggunakan AI tanpa memerlukan

investasi modal yang besar untuk menggunakannya. Perusahaan juga bisa

memberikan data untuk membantu membangun AI menjadi lebih baik lagi.

Perusahaan bisa memberikan layanan yang lebih baik seperti lebih cepat

mendapatkan hasil, memberi lebih banyak kesempatan untuk menggunakan

layanan dan lain-lain kepada pengguna bila pengguna ingin menggunakan layanan

yang lebih baik dengan membayar bulanan atau tahunan.

Contoh layanan yang diberi bisa beragam seperti chat bot yang bisa

melakukan konversasi, memberi jawaban atau instruksi yang diberi oleh pengguna,

membuat gambar dari deskripsi pengguna, membuat musik dari deskripsi pengguna

dan lain-lain. Salah satu contohnya adalah Midjourney dimana pengguna bisa

menggunakan AI untuk membuat gambar yang diminta oleh pengguna dengan

memberi instruksi kepada AI. Walaupun AI bisa memberikan hal yang diminta

pengguna, penjelasan lebih spesifik bisa membantu untuk memberikan pengguna

hasil yang diinginkan.

2.3 Prompt Engineering

Prompt engineering merupakan cara membuat kalimat yang dibuat secara

benar dan jelas untuk menghasilkan sesuatu yang diinginkan. AI yang memerlukan

deskripsi untuk membuat sesuatu seperti ChatGPT dan Midjourney, memerlukan

prompt engineering untuk memberikan hasil yang diinginkan. Prompt bisa berupa

instruksi, pertanyaan, contoh dan data input yang dimasukkan. Untuk memberikan

hasil teks biasa, pengguna hanya perlu menjelaskan kepada AI hal yang ingin

dijawab. Untuk membuat gambar, pengguna bisa menjelaskan dengan teks dan /

atau menggunakan gambar yang diinginkan.

Prompt engineering bisa berbeda tergantung dari AI yang dipakai.

Contohnya untuk AI Stable Diffusion, pembuatan gambar dijelaskan dengan

memberikan subjek apa, digambar menggunakan apa, menggambar dengan gaya

apa dan lain-lainnya (Andrew, 2023). Deskripsi yang ditulis juga dibuat dengan

menggunakan koma setelah memberikan deskripsi tertentu. Contohnya seperti

“Hooded character, comic, realistic, medieval”. Kalimat tersebut targetnya adalah

membuat sebuah gambar untuk sebuah karakter yang memakai pakaian

berkerudung yang digambar seperti komik secara realistik dengan tema medieval.

Deskripsi tersebut memberi AI berbagai macam cara untuk menggambar, posisi

karakter, warna, dan lain-lain. Untuk mendapatkan hasil yang spesifik, penjelasan

spesifik juga perlu dimasukkan.

Beberapa penelitian sudah pernah dilakukan untuk melakukan prompt

engineering untuk hal tertentu. Salah satu contohnya adalah RePrompt, yaitu

sebuah pengatur prompt untuk memberikan ekspresi emosi yang jelas pada gambar

(Wang, Shen, & Lim, 2023). Contohnya pengguna ingin membuat gambar dengan

prompt “orang terkejut karena diundang ke sebuah liburan yang tidak terencana”.

RePrompt akan mengubah prompt tersebut untuk mendapatkan hasil yang lebih

tepat untuk membuktikan gambar orang terkejut. Ada penelitian lain yang

menggunakan prompt engineering untuk membuat pesan kesadaran kesehatan

dengan mengambil pesan kesehatan dari Twitter dan diatur menggunakan prompt

engineering untuk membuat kata yang tepat dan akurat (Lim & Schmälzle,

Artificial Intelligence for Health Message Generation: Theory, Method, and an

Empirical Study Using Prompt Engineering, 2022).

2.4 ChatGPT

ChatGPT adalah sebuah AI yang dibuat oleh perusahaan OpenAI yang bisa

digunakan oleh pengguna dimana ChatGPT akan menjawab pertanyaan atau

instruksi yang diminta oleh pengguna. ChatGPT menggunakan machine learning

dan deep learning untuk mempelajari dan memahami bahasa manusia melalui teks.

Contohnya seorang pengguna ingin membuat sebuah cerita mengenai seorang

pahlawan. ChatGPT akan membuat cerita mengenai seorang pahlawan, tetapi

memberitahu cerita tersebut secara umum. Pemberian penjelasan yang lebih

spesifik akan membantu ChatGPT untuk membuat sesuatu lebih baik dan mencapai

keinginan pengguna. Mengulang menggunakan penjelasan yang sama juga akan

memberi hasil yang berbeda tergantung dari kerumitan penjelasan yang diberi oleh

pengguna. Gambar 2.1 menunjukkan penggunaan ChatGPT.

Gambar 2.1 Gambar website ChatGPT

ChatGPT tidak hanya bisa berkerja di bahasa inggris, tetapi juga bisa

menggunakan bahasa manusia lain. Hal ini bisa dilakukan dikarenakan dalam

proses pelatihan, AI diberi berbagai macam bahasa manusia yang ada. Semakin

banyak orang yang menggunakan ChatGPT, ChatGPT mampu memberikan hasil

yang lebih baik dan jelas. ChatGPT tidak bisa menjawab semua pertanyaan atau

instruksi yang diminta, seperti pertanyaan yang tidak jelas atau tidak masuk akal.

Bila hal itu terjadi, ChatGPT akan meminta maaf kepada pengguna dan

menjelaskan keterbatasan yang dimiliki.

ChatGPT memiliki berbagai macam cara untuk memberi instruksi. Berikut

adalah beberapa prompt engineering yang khusus digunakan untuk ChatGPT

(Wolff, 2023):

1. Zero Shot Prompting: Memberikan prompt yang sangat dasar tanpa

memberikan contoh apapun. Biasanya prompt yang diberi merupakan

instruksi mendasar atau menanyakan sebuah hal umum seperti “Bagaimana

cara matahari bekerja?”

2. One Shot Prompting: Memberikan prompt yang lebih spesifik dari Zero-

Shot Prompting dengan memberikan penjelasan yang simpel dan memberi

sebuah contoh untuk menghasilkan hal yang spesifik.

3. Few Shot Prompting: Seperti One Shot Prompting, tetapi menjelaskan

instruksi dengan memberikan beberapa tambahan contoh untuk

mendapatkan hasil yang lebih spesifik.

4. Role Prompting: Sebuah prompt dimana AI diatur untuk memerankan

seperti orang dengan latar belakang tertentu. Hal ini juga bisa merubah

bagaimana ChatGPT menjawab.

5. Chain of Thought Prompting: Membuat prompt yang mengikuti instruksi

sebelumnya tanpa mengulang menulis instruksi tersebut. Contohnya seperti

prompt pertama meminta menghapus huruf b untuk sebuah teks tertentu.

Pengguna hanya perlu menulis instruksi seperti “Lakukan hal yang sama

dengan teks ini” untuk mengulang instruksi.

2.5 Leonardo.ai

Leonardo.ai merupakan sebuah AI yang digunakan untuk membuat

berbagai macam gambar dengan berbagai macam model dengan deskripsi yang

dibuat oleh pengguna. Deskripsi yang diberi bisa secara dasar untuk mendapatkan

berbagai macam hasil atau diberi deskripsi yang detil untuk membuat gambar yang

diinginkan. Leonardo.ai juga mampu membuat gambar dengan deskripsi larangan

yang tidak diinginkan oleh pengguna. Leonardo juga memberi berbagai macam

fitur seperti memberikan gambar lebih jelas, memberikan zoom in atau zoom out

dari gambar yang sudah dibuat, membuat model sendiri untuk membuat gambar

yang diinginkan dan lain-lain. Gambar 2.2 merupakan gambar dari website

Leonardo.ai.

Gambar 2.2 Gambar website Leonardo.ai

Untuk bisa menggunakan Leonardo.ai, pengguna harus melakukan

registrasi untuk masuk dan menunggu email dari Leonardo.ai untuk di-whitelist

agar bisa digunakan. Tidak hanya itu, pengguna hanya memiliki 150 token yang

akan di-reset setiap hari untuk menggunakannya dan beberapa fitur juga memiliki

keterbatasan penggunaan. Token ini akan digunakan dengan jumlah tertentu

tergantung dari jumlah gambar yang ingin dibuat dan menggunakan berbagai

macam fitur yang diberikan oleh Leonardo.ai. Pengguna bisa membuat model untuk

melatih AI untuk mendapatkan hasil yang diinginkan oleh pengguna, tetapi hanya

bisa melatih dua model tiap bulan. Untuk menggunakan fitur dan membuat gambar

lebih banyak, Leonardo.ai memberikan subskripsi dengan berbagai macam harga.

2.6 Beatoven.ai

Beatoven.ai merupakan sebuah AI yang digunakan untuk membuat musik

latar belakang atau background music. Pembuatan musik dengan beatoven.ai

dimulai dengan mengisi judul, memilih durasi musik, dan memilih kecepatan tempo.

Setelah itu, pengguna bisa memilih satu dari delapan genre yang ingin dibuat dan

demo dari genre musik tersebut bisa didengarkan. Lalu, pengguna akan memilih

satu dari enam belas suasana dan demo suasana juga bisa didengarkan. Lalu AI akan

membuat musik tersebut dan pengguna bisa mengatur empat instrumen, mengubah

Susana, dan lain-lain. Pengguna bisa menggunakan peralatan sepuasnya, tetapi

hanya bisa download lagu 5 menit per bulan. Beatoven.ai juga memberi subskripsi

untuk memberikan fitur lain dan download lagu lebih lama. Gambar 2.3

menunjukkan gambar penggunaan Beatoven.ai.

Gambar 2.3 Gambar website Beatoven.ai

2.7 Video Game

Video game adalah sebuah produk digital yang fokusnya menghibur

pengguna dan juga bisa digunakan untuk mempelajari sesuatu. Video game yang

pertama kali dibuat adalah Tennis for Two yang dibuat pada tahun 1958 oleh

William Higinbotham yang membuat ide dan gambarannya dan Robert Drovak

membangun perangkatnya (Tretkoff, October 1958: Physicist Invents First Video

Game, 2008). Tennis for Two adalah sebuah produk digital berupa game yang

menunjukkan permainan tennis yang ditampilkan dari samping yang bisa

dimainkan di komputer analog yang bisa ditampilkan di sebuah osiloskop. Di

Gambar 2.4 menunjukkan Tennis for Two di sebuah osiloskop.

Gambar 2.4 Tennis for Two di osiloskop

Gambar dari (Parks, 2022)

Semakin banyak video game yang dibuat, semakin banyak tipe game atau

genre game yang bisa dimainkan. Video game sekarang memiliki berbagai macam

genre seperti Adventure atau petualangan seseorang atau sebuah kelompak, RPG

atau Role Playing Game yang mengajak pemain untuk bermain menjadi sebuah

karakter atau kelompok untuk mengikuti cerita dari game tersebut, dan berbagai

macam genre lainnya. Sebuah video game bisa memiliki satu genre saja tetapi

memiliki berbagai macam genre bisa membantu untuk menjelaskan isi dari game.

2.8 Genre Game

 Genre game merupakan sebuah cara untuk mengetahui berbagai macam

tipe game yang memiliki berbagai macam cara untuk memainkan game tersebut.

Game biasanya memiliki satu genre game inti yang bisa menjelaskan bagaimana

game dimainkan serta beberapa genre lainnya untuk membantu mengerti isi dari

game tersebut. Genre game juga bisa membantu mencari tahu apakah game tersebut

memiliki hal yang diinginkan atau tidak tergantung dari keinginan dari pemain.

Genre game sangat susah untuk dibedakan karena ada berbagai macam cara

untuk membagikannya mulai dari cara bermain, tipe visual dari game, genre yang

memiliki gabungan genre lain dan berbagai hal. Thomas H. Apperley menjelaskan

bahwa sebuah genre akan berubah dan tidak akan tetap sama. Hal ini karena pemain

akan menjadi bosan bila sebuah genre tidak berubah dan genre akan tetap

memberikan inovasi baru atau bahkan genre baru (Apperley, 2008). Karena banyak

sekali genre yang ada di dunia game, Thomas H. Apperley membagi genre game

menjadi empat yaitu action, role-playing, simulation, dan strategy.

2.8.1 Action

 Genre game action merupakan genre game yang fokusnya menuju ke

perspektif sinematik yang biasanya penuh dengan gerakan besar dan cepat dan

membuat pemain merasakan adrenalin untuk menyelesaikan masalah yang

memerlukan waktu pemikiran yang cepat. Genre ini memiliki dua subgenre yaitu

First Person Shooter (FPS) dimana pemain menggerakkan sebuah karakter dari

persepktif karakter dan Third Person Shooter (TPS) dimana pemain menggerakkan

sebuah karakter dengan melihat dari belakang karakter. Shooter merupakan genre

game dimana pemain memiliki senjata api atau senjata lain yang bisa digunakan

untuk menembak.

 Contoh game yang memiliki genre action adalah Counter Strike: Global

Offensive. Tugas dari game ini adalah untuk mengalahkan tim musuh dengan

menembak satu sama lain menggunakan berbagai macam senjata api dan alat-alat

yang bisa membantu pemain atau menyelesaikan tugas tertentu. Pemain bisa

mendapatkan senjata api dan alat dengan membelinya di dalam game dengan uang

yang didapat dari awal ronde game dan setelah menang atau kalah dari ronde

tersebut. Pemain harus berpikir cepat untuk membunuh musuh dengan cara apapun.

Gambar 2.5 di bawah menunjukkan gameplay dari Counter Strike: Global

Offensive.

Gambar 2.5 Gameplay dari Counter Strike: Global Offensive

Gambar dari (Wong, 2016)

2.8.2 Role-Playing

 Genre game Role-Playing (RPG) merupakan genre dimana pemain menjadi

sebuah karakter yang disiapkan atau dibuat oleh pemain sendiri yang pemain bisa

gunakan untuk berinteraksi dengan dunia game. RPG memiliki dua cara untuk

bermain yaitu singleplayer dan multiplayer. Singleplayer adalah cara bermain yang

hanya memerlukan satu pemain saja dimana pemain mengikuti cerita dari karakter

dengan sendiri. Multiplayer adalah kebalikan dari singleplayer dimana pemain

bermain dengan teman atau orang lain untuk mengikuti cerita. Genre game ini bisa

disebut sebagai Massively Multiplayer Online Role-Playing Game (MMORPG),

dimana sebuah game memiliki banyak sekali pemain yang bermain dalam waktu

bersamaan untuk mengikuti cerita atau melakukan hal lainnya (techopedia, 2017).

 Contoh game dengan genre RPG adalah The Elder Scrolls V: Skyrim. Game

ini dimulai dengan membuat karakter sendiri dengan berbagai macam fitur wajah

serta pengaturan tubuh untuk merepresentasikan pemain. Pemain bisa mengikuti

cerita dari game atau bisa menjelajahi dunia dari game dan melakukan berbagai

macam hal. Kebebasan pemain untuk melakukan apapun di dalam sebuah game

adalah sebuah genre yang disebut sebagai sandbox. Pemain mampu membangun

apapun, membuat apapun, dan melakukan apapun terhadap dunia game. Gambar

2.6 menunjukkan gameplay dari The Elder Scrolls V: Skyrim.

Gambar 2.6 Gameplay dari The Elder Scrolls V: Skyrim

Gambar dari (Johnson, 2022)

2.8.3 Simulation

 Genre game Simulation merupakan sebuah genre dimana pemain

melakukan sebuah simulasi dari sesuatu dari dunia asli maupun fantasi. Simulation

tidak hanya bisa digunakan untuk memberi hiburan kepada pemain, tetapi pemain

juga bisa mempelajari bagaimana cara kerja dari suatu hal bila hal yang

disimulasikan berasal dari dunia asli. Hal yang disimulasikan bisa berbagai macam

hal seperti mengendarai kendaraan, membangun sebuah kota, dan berbagai macam

hal lainnya.

 Contoh game yang memiliki genre simulation adalah PowerWash Simulator.

Game ini memberi simulasi kepada pemain untuk bekerja sebagai pembersih yang

menggunakan power washer untuk membersihkan berbagai macam hal. Pemain

memiliki tugas untuk membersihkan sebuah lingkungan mulai dari membersihkan

sebuah mobil sampai membersihkan rumah besar. Pemain juga mampu membeli

berbagai macam peralatan yang bisa membantu membersihkan sesuatu lebih cepat

dan efisien. Gambar 2.7 menunjukkan gameplay dari PowerWash Simulator.

Gambar 2.7 Gameplay dari PowerWash Simulator

Gambar dari (Futurlab, 2022)

2.8.4 Strategy

 Genre game Strategy merupakan sebuah game dimana pemain perlu

pemikiran yang tepat untuk membuat sebuah rencana untuk mencapai sasaran yang

diinginkan. Genre ini bisa dibagi menjadi dua subgenre yaitu Real-Time Strategy

(RTS) dan Turn-Based Strategy (TBS). RTS adalah sebuah subgenre dimana

pemain membuat strategi untuk mencapai sasaran dengan game masih berjalan.

TBS merupakan subgenre yang pemain bisa membuat strategi dengan pemain

memiliki lebih banyak waktu karena game diberi giliran antara pemain dengan

musuh dan / atau orang lain.

 Contoh game yang memiliki genre strategy adalah Sid Meier’s Civilization

VI. Game ini merupakan sebuah game dimana pemain membangun sebuah

peradaban. Pemain bisa memilih berbagai macam peradaban yang memberi

berbagai macam keuntungan seperti Amerika, Inggris, Mesir, dan lain-lain. Pemain

juga bisa menemui tiap pemimpin dari tiap peradaban untuk melakukan diskusi

serta melakukan tawar menawar. Civilization VI memiliki berbagai macam cara

untuk menang mulai dari memiliki kemajuan teknologi dan membangun sebuah

base di Mars, sampai menguasai ibu kota dari tiap peradaban. Gambar 2.8

menunjukkan gameplay dari Sid Meier’s Civilization VI.

Gambar 2.8 Gameplay dari Sid Meier’s Civilization VI

Gambar dari (IGN, 2016)

2.9 Roguelike

Roguelike merupakan sebuah genre game yang terinspirasi oleh produk

digital berupa game yang bernama Rogue yang dibuat pada tahun 1980. Rogue

adalah sebuah produk digital berupa game dimana pemain harus menjelajahi ruang

bawah tanah untuk mencari barang dan hal penting untuk membantu pemain

melawan musuh yang ada secara bergiliran. Ide utamanya adalah pemain

mempelajari pengalaman dari game tersebut dari karakter game mati karena hal

tertentu lalu yang disebut permadeath atau mati secara permanen dimana pemain

bisa bermain lagi dengan mempelajari kesalahan tersebut dan bermain kembali dari

awal game (Stegner, 2021). Gambar 2.9 menunjukkan gameplay dari Rogue.

Gambar 2.9 Gameplay dari Rogue

Gambar dari (Halliday, 2020)

Roguelike biasanya memiliki random environment generator atau generasi

lingkungan secara acak agar pemain bermain di lingkungan yang berbeda terus

menerus, tetapi generasi lingkungan secara acak ini menggunakan procedural

generation yang membantu generasi lingkungan bisa dimenangkan dan adil untuk

pemain. Barang-barang, musuh dan bahkan karakter pemain dimulai diatur dan

diletak secara acak setiap kali pemain masuk ke level berikutnya.

Produk digital berupa game yang memiliki genre roguelike biasanya susah

tetapi adil. Kebutuhan yang diperlukan oleh pemain seperti senjata, bantuan oleh

karakter lain atau hal lainnya akan diberikan oleh game, tetapi diberi secara terbatas.

Salah satu contoh produk digital berupa game yang bergenre roguelike adalah Risk

of Rain yang tugasnya adalah bertahan hidup dalam sebuah planet aneh yang

memiliki berbagai macam musuh dengan berbagai macam pilihan karakter dan

mencapai kapal luar angkasa untuk melarikan diri dari planet tersebut.

Risk of Rain memiliki genre inti roguelike yang memiliki genre platformer

dimana pemain bisa menjelajahi sebuah lingkungan dengan platform dan shooter

dimana pemain melawan musuh dengan menembak dengan senjata apapun. Produk

digital berupa game ini bekerja dengan membuat level secara acak serta meletakkan

berbagai macam barang yang bisa diinteraksi dengan uang yang bisa didapat

dengan membunuh musuh dan memberi barang yang bisa membantu pemain dan

mengatur kekuatan pemain tergantung dari barang yang didapat pemain dan

kesusahan game yang dipilih di awal game. Semakin lama pemain bertahan hidup,

game akan mengatur kesusahan pemain lebih susah daripada sebelumnya yang bisa

mengatur jumlah musuh, tipe musuh dan lain-lainnya. Gambar 2.10 menunjukkan

gameplay bermain Risk of Rain.

Gambar 2.10 Game Risk of Rain

Gambar dari (Hopoo Games, 2013)

2.10 Aset Game

Di dalam sebuah video game, aset game merupakan hal yang paling penting

untuk mengekspresikan game apa yang akan ditunjukkan. Aset game memiliki

berbagai macam aspek game seperti musik background yang digunakan di beberpa

skenario, karakter pemain dan musuh, objek yang bisa diinteraksi, dan lain-lainnya.

Salah satu hal yang penting adalah User Experience (UX) dan User Interface (UI).

UX dibuat untuk membantu pemain bermain dengan melakukan interaksi dan

mampu melanjutkan cerita dengan lancar. Pembuatan UX bisa dibuat dengan

membuat mockup atau sebuah contoh pengalaman yang akan pemain alami saat

bermain game dan harus dipastikan tidak menutupi sesuatu atau mengganggu

pemain saat bermain. UI lebih menuju ke bagaimana UX akan ditunjukkan.

Pembuatan UI bisa seperti pembuatan menu awal dari game, menu untuk

menyimpan progres dari game, dan lain-lain. Dipastikan pada saat membuat UI, UI

tidak membuat pemain kewalahan. Aset game bisa dibuat dari awal atau bisa

diambil dari toko aset dengan membayarnya atau memakainya dengan gratis.

Berikut adalah beberapa gambar UI untuk game Team Fortress 2.

Gambar 2.11 Main Menu Team Fortress 2

Gambar dari (Team Fortress 2 Official Wiki, n.d.)

Gambar 2.11 menunjukkan sebuah gambar menu utama dimana pemain

akan temui pada saat memulai bermain game. Menu utama juga berfungsi untuk

membantu pemain melakukan interkasi lain seperti bermain game, mengatur

pengaturan game seperti suara dan kualitas gambar, dan lain-lain.

Gambar 2.12 Heads-up Display Team Fortress 2

Gambar dari (Team Fortress 2 Official Wiki, n.d.)

Gambar 2.12 merupakan Heads-up Display atau HUD dari sebuah game.

HUD digunakan untuk membantu pemain memberi informasi dalam bermain game,

masalah yang harus diselesaikan, dan lain-lain.

Gambar 2.13 Backpack Team Fortress 2

Gambar dari (Team Fortress 2 Official WIki, n.d.)

Gambar 2.13 menunjukkan barang-barang yang dimiliki oleh pemain.

Barang-barang bisa berupa hal penting seperti variasi senjata, hal yang tidak terlalu

penting seperti baju dan kosmetik, dan hal-hal lainnya.

Kerumitan pengembangan aset game bisa diukur tergantung dari produk

digital berupa game yang akan dibuat. Bila membuat game yang memiliki tiga

dimensi, maka akan perlu membuat berbagai macam karakter dan objek tiga

dimensi yang lebih rumit daripada karakter dua dimensi. Gambar 2.14

menunjukkan seorang karakter dengan dua dimensi dan tiga dimensi.

Gambar 2.14 Sebuah karakter dengan 2D dan 3D

Gambar dari (Argentics, 2018)

2.11 Desain Game

Desain game merupakan perencanaan dari sebuah video game. Perencanaan

game ini bisa dimulai dari cerita dari game tersebut, fitur yang akan

diimplementasikan untuk game dan lain-lainnya. Tiap fitur dan berbagai hal dalam

game harus diatur secara benar agar pemain bisa menikmati pengalaman pemain

dalam bermain. Desain game juga bisa berbeda menurut dari genre game tersebut,

contohnya bila genre game adalah puzzle, maka pengembang game harus berpikir

puzzle apa yang bisa membuat pemain tertarik. Perubahan dari desain game juga

bisa berubah tergantung dari beberapa aspek seperti saran dan kritik dari pemain

lain, terlalu rumit untuk dibuat dan lain-lainnya.

Desain game bisa dimulai dengan membuat sebuah Game Design Document

(GDD). Dokumen ini berfungsi untuk memberikan inti dari pengembangan game,

memberikan info kepada investor dan tim pengembang game (NNW, 2018). Bila

seandainya hanya ada satu pengembang game yang mengatur semua hal, maka

GDD bisa digunakan untuk mengingat produk apa yang akan dibuat dan tidak

menjauh dari rencana kecuali bila ada perubahan yang diperlukan. Penjelasan yang

diberikan di dalam GDD harus mampu dimengerti agar yang membaca mampu

mengembangkan game atau membuat rencana untuk investasi ke projek tersebut.

Beberapa contoh isi GDD merupakan fitur dari game, cerita dari game, tiap karakter

yang ada, jumlah senjata dan efeknya, dan lain-lain.

Desain game harus mampu membantu pemain game menikmati waktu

bermain dan juga menghormati pemain tersbeut. Contohnya seperti mengajar

pemain bagaimana untuk bermain game tersebut atau yang biasanya disebut tutorial.

Menurut Asher Vollmer yaitu pengembang produk digital berupa game “Threes”,

mengajarkan pemain untuk bermain yang bagus harus mampu mengajar,

menghormati, menyamankan dan menyenangkan pemain (Vollmer, 2014). Bila

pemain diajarkan dengan satu halaman penuh dengan teks, maka pemain tidak

hanya bosan untuk membaca banyak teks, tetapi juga tidak menghormati pemain

tersebut dan pemain akan bermain dengan rasa tidak enak atau bahkan menghapus

game tersebut.

2.12 Game Engine

Game engine merupakan sebuah perangkat lunak yang digunakan untuk

membuat sebuah video game. Game engine bisa digunakan untuk mengatur level

dari game seperti lingkungan, tipe area game, suara dan musik, dan berbagai macam

aset game lainnya yang diperlukan di dalam sebuah game (Martin, 2020). Ada dua

tipe game engine yang bisa dipakai yaitu game engine yang sudah dibuat oleh pihak

ketiga seperti perusahaan atau membuat game engine sendiri.

Game engine yang dibuat oleh pihak ketiga bisa dibeli lisensinya atau

digunakan secara gratis untuk dipakai untuk membuat game bila seandainya produk

yang akan dibuat akan dijual oleh pengembangnya. Mengerti untuk menggunakan

game engine apa yang akan dipakai adalah hal yang penting. Biasanya, pemilihan

game engine dipilih berbasis dari seberapa besar projek yang akan dilakukan,

jumlah orang dalam sebuah kelompok dan dana yang dimiliki. Besar projek bisa

tergantung dari gaya seni yang akan digunakan, karakter yang dibuat, tipe dimensi

yang akan digunakan, dan berbagai macam alasan lainnya.

2.12.1 Unity

Unity merupakan salah satu engine yang bisa dipakai untuk membuat

sebuah game yang dibuat oleh Unity Technologies. Pengguna bisa membuat video

game di Unity dengan gambar dua dimensi maupun tiga dimensi, jadi tidak ada

keterbatasan yang harus dilihat saat ingin membuat game dengan berbagai macam

medium. Game engine Unity memiliki cara penggunaan yang lebih mudah daripada

game engine lainnya dengan fitur drag and drop untuk yang digunakan untuk

membuat game dengan mudah dan cepat tanpa perlu mengerti bahasa pemrograman.

Unity lebih fokus ke fitur drag and drop dimana pengguna bisa mengatur

objek, karakter dan lain-lainnya hanya dengan mengambil sebuah file lalu

memasukkannya ke dalam sebuah objek atau hal lainnya. Setelah menyiapkan aset

game, maka perlu dibuat sebuah scene untuk meletakkan berbagai macam aset.

Setelah itu dibuat berbagai macam file script lalu masukkan file tersebut ke dalam

asetnya agar pemain bisa berinteraksi dengan objek tertentu atau mengatur. Contoh

penggunaan Unity bisa dilihat di Gambar 2.15.

Gambar 2.15 Contoh penggunaan engine Unity

Gambar dari (Mastery Coding, 2021)

Pengguna yang pertama kali membuat video game menggunakan Unity bisa

mempelajari cara untuk membuat video game dengan mudah dan mampu

membantu pengguna bereksperimen. Unity juga memiliki berbagai macam video

yang dibuat oleh Unity Technologies untuk dipelajari dan membantu pengguna

apabila pengguna menemukan masalah. Unity juga memiliki toko aset yang bisa

dibeli atau diambil secara gratis asalkan mereka memberi kredit atau mengikuti

keinginan pengembang aset tersebut. Unity sebenarnya tidak gratis, tetapi bila tidak

membuat keuntungan atau didanai kurang dari 100 ribu dolar, maka Unity bisa

digunakan secara gratis.

Contoh produk digital berupa game yang dibuat dengan Unity adalah One

Dreamer. Game ini merupakan sebuah game puzzle yang mengikuti sebuah

pengembang game yang tidak memiliki motivasi untuk membuat game dan

berusaha melanjutkan untuk membuat game. Game ini menggunakan pseudocode

dengan bahasa pemrograman C# untuk mengatur berbagai macam aspek dari game

seperti membuka pintu, mengubah status dari sebuah barang dan lain-lainnya

dengan menggunakan bahasa pemrograman C#. Gambar 2.16 menunjukkan

gameplay dari One Dreamer.

Gambar 2.16 Gameplay dari One Dreamer

Gambar dari (Ffoulkes, 2013)

2.12.2 Unreal Engine

Unreal Engine adalah sebuah engine yang dibuat oleh Epic Games. Unreal

Engine bisa digunakan untuk berbagai macam hal seperti arsitektur, film, game dan

lain-lain. Unreal Engine lebih mengarah ke tiga dimensi untuk membuat sebuah

produk digital. Unreal Engine memiliki beberapa fitur seperti rendering yang

canggih untuk membuat game memiliki tampilan visual yang bagus.

Pengembangan produk digital berupa game menggunakan Unreal Engine

dimulai dengan membuat projek baru. Setelah membuat projek baru, pengguna bisa

membuat aset sendiri dengan menggunakan software tiga dimensi atau mencari aset

di Marketplace Unreal Engine. Setelah semua aset sudah siap, maka bisa mulai

membuat gameplay-nya. Unreal Engine memiliki fitur Blueprints untuk membuat

sebuah game secara visual dan bisa membuat logika gameplay, kamera, cara

karakter bergerak, dan lain-lain. Gambar 2.17 menunjukkan contoh penggunaan

Unreal Engine.

Gambar 2.17 Contoh penggunaan engine Unreal Engine

Gambar dari (Epic Games, Inc, n.d.)

Sebagian besar produk digital berupa game yang dibuat dari Unreal Engine

merupakan game yang projeknya besar atau triple A (AAA), dimana game dibuat

oleh sebuah perusahaan pengembang game yang besar. Contoh produk digital

berupa game yang dibuat menggunakan Unreal Engine adalah produk digital

berupa game yang dibuat oleh Epic Games sendiri yaitu Fortnite. Fortnite

merupakan sebuah game bergenre battle royale dimana semua orang melawan satu

sama lain di sebuah pulau atau lingkungan yang sama sampai satu pemain tersisa.

Gambar 2.18 menunjukkan gameplay dari Fortnite.

Gambar 2.18 Gameplay dari Fortnite Chapter 2

Gambar dari (Stuart, 2019)

2.12.3 GameMaker Studio

GameMaker Studio merupakan sebuah game engine yang mengarah ke

game dua dimensi daripada tiga dimensi. GameMaker Studio memiliki beberapa

fitur drag-and-drop untuk mempermudah pengembangan game dan menggunakan

bahasa pemrograman GameMaker Language (GML) khusus untuk GameMaker

Studio. GameMaker Studio juga mampu integrasi dengan PC, console dan mobile.

Pengembangan produk digital berupa game bisa dimulai dengan membuat

projek baru. Setelah membuat projek, aset game perlu disiapkan. Aset game bisa

dibuat sendiri atau mencari aset lain di berbagai macam sumber. Salah satu

sumbernya adalah aset game yang diberi oleh GameMaker Studio. Tiap bulan,

GameMaker Studio memberi berbagai macam aset game dalam satu paket. Selain

itu, aset harus dicari dengan sendiri. Setelah aset siap, maka dimulai membuat aspek

bermainnya dengan menggunakan drag-and-drop dan menggunakan GML untuk

membantu membuat logika gameplay yang lebih kompleks. Gambar 2.19

menunjukkan contoh penggunaan GameMaker Studio.

Gambar 2.19 Contoh penggunaan game engine GameMaker Studio

Gambar dari (YoYo Games Ltd., 2022)

Contoh produk digital berupa game yang dibuat menggunakan GameMaker

Studio adalah Undertale. Undertale merupakan sebuah game yang memiliki genre

RPG dan Puzzle yang menceritakan seorang anak menjelajahi dunia. Di Undertale,

pemain tidak harus mengalahkan musuh, tetapi pemain tidak juga harus

membiarkan musuh. Saat bertemu sebuah musuh, pemain harus memilih apa yang

akan dilakukan, melawan atau mengampuni musuh dengan berbagai macam cara.

Gambar 2.20 menunjukkan gameplay dari Undertale.

Gambar 2.20 Gameplay dari Undertale

Gambar dari (Spiegel, 2015)

2.12.4 Godot

Godot merupakan sebuah game engine open-source yang bisa digunakan

untuk membuat game dua dimensi maupun tiga dimensi. Godot bisa menggunakan

C# untuk bahasa pemrogramannya atau menggunakan GDScript yaitu bahasa

pemrograman yang dimiliki oleh Godot. Godot juga memiliki toko aset bernama

Godot Asset Library yang bisa digunakan untuk mencari aset yang diperlukan.

Untuk membuat produk digital berupa game menggunakan Godot,

pengguna harus membuat projek baru dengan memilih template untuk game.

Template game ini digunakan untuk memilih genre game yang akan dibuat. Lalu,

aset game bisa disiapkan dengan membuat sendiri atau mencarinya di Godot Asset

Library. Setelah semua aset sudah disiapkan, dimulai membuat isi dari game

menggunakan alat visual untuk scripting. Gambar 2.21 menunjukkan penggunaan

game engine Godot.

Gambar 2.21 Contoh penggunaan game engine Godot

Gambar dari (darkcritz, 2021)

Contoh game yang dibuat menggunakan game engine Godot adalah Dead

Cells. Dead Cells merupakan sebuah game yang memiliki genre inti roguevania

yaitu campuran genre game dari roguelite dimana pemain makin kuat setiap kali

kalah atau mati dalam bermain dan metroidvania dimana genre game mengambil

inspirasi dari game Metroid dan Castlevania. Gambar 2.22 menunujukkan

gameplay dari Dead Cells.

Gambar 2.22 Gameplay dari Dead Cells

Gambar dari (Motion Twin, 2018)

2.12.5 RPG Maker

RPG Maker merupakan sebuah game engine yang fokusnya menuju

membuat game dengan dua dimensi dan genre Role Playing Game (RPG). Game

engine ini mudah digunakan dan bisa digunakan mulai dari membuat lingkungan,

karakter sampai kejadian tertentu di dalam satu engine. RPG Maker memiliki

beberapa versi mulai dari versi awal yang memiliki sedikit fitur yaitu RPG Tsukuru

Dante 98 sampai yang terbaru yaitu RPG Maker MZ.

RPG Maker MZ memiliki fitur dimana efek visual game bisa dibuat dan

diatur tanpa perlu membuat aset baru untuk membuat dari awal. Gambar 2.9

menunjukkan contoh penggunaan RPG Maker MZ. Pengembangan game

menggunakan RPG Maker bisa dibuat di dalam satu engine. Bila seandainya

bingung dalam membuat karakter atau hal lain yang diperlukan, RPG Maker sudah

menyiapkan berbagai macam aset dan bisa diatur sesuai keinginan pengguna.

Pengaturan pembuatan lingkungan juga ada dengan menaruh berbagai macam

objek dan mengatur objek mana yang bisa dinteraksi. RPG Maker memiliki fitur

events dimana pengguna bisa membuat berbagai macam hal penting yang terjadi

untuk membantu membangun cerita. Gambar 2.23 menunjukkan contoh

penggunaan game engine RPG Maker MZ.

Gambar 2.23 Contoh penggunaan game engine RPG Maker MZ

Gambar dari (RPGMakerWeb, n.d.)

Walaupun game engine ini bisa membuat game dengan genre RPG,

RPGMaker juga bisa dibuat untuk membuat game dengan genre lainnya. Contoh

game yang dibuat menggunakan RPG Maker adalah OneShot. OneShot merupakan

game yang tugasnya membantu seorang anak kecil bernama Niko untuk

menghidupkan kembali matahari. Game ini fokus menuju ke hubungan antara

pemain dan Niko yang pemain bantu dan juga merusak dinding ke-empat atau

breaking the fourth wall yaitu dimana karakter game menyadari bahwa ada dunia

lain di luar dunia game tersebut. Gambar 2.24 menunjukkan gameplay dari OneShot.

Gambar 2.24 Gameplay dari OneShot

Gambar dari (Brian, 2022)

2.12.6 Ren’Py

Ren’Py merupakan sebuah game engine yang khususnya membuat game

dengan genre inti visual novel yang menggunakan Python sebagai bahasa

pemrogramannya. Visual novel merupakan sebuah genre game dimana pemain

bermain dengan mengikuti cerita seperti membaca sebuah novel dan mampu

melihat interaksi dari berbagai macam karakter dengan ilustrasi atau animasi.

Biasanya, visual novel memiliki berbagai macam pilihan penting yang bisa dipilih

oleh pemain untuk melihat berbagai macam cerita yang bisa didapat. Ren’Py

merupakan game engine yang open-source dimana semua pengguna bisa

menggunakannya dan diatur sesuai keinginan pengguna.

Proses pengembangan game menggunakan Ren’Py dibuat dengan

menggunakan bahasa scripting yang mudah. Karena Ren’Py memiliki fokus

menuju visual novel, pengembangan game dibuat dengan menulis dialog.

Contohnya ada dua karakter berbicara dengan satu sama lain. Berikut adalah sebuah

contoh penggunaan Ren’Py untuk membuat game:

label start:

 scene bg meadow

 "After a short while, we reach the meadows just outside the

neighborhood where we both live."

 "It's a scenic view I've grown used to. Autumn is especially

beautiful here."

 "When we were children, we played in these meadows a lot, so

they're full of memories."

 m "Hey... Umm..."

 show sylvie green smile

 "She turns to me and smiles. She looks so welcoming that I

feel my nervousness melt away."

 "I'll ask her...!"

 m "Ummm... Will you..."

 m "Will you be my artist for a visual novel?"

 show sylvie green surprised

 "Silence."

 “Label start” memiliki arti bahwa sebuah skenario telah dimulai.

Pengaturan background bisa dilakukan dengan “scene bg” dari nama file

background. Setelah mengatur background, dialog bisa dibuat. Dialog yang tidak

memiliki nama karakter atau variabel yang didefinisikan akan dianggap sebagai

teks yang tidak memiliki karakter atau biasanya digunakan untuk monolog karakter

pemain atau waktu karakter pemain berpikir. Bila didefinisikan dengan variabel,

maka nama akan muncul di atas dialog. Kata show memiliki arti bahwa gambar

akan berubah dengan karakter yang spesifik seperti “show sylvie green smile”,

dimana karakter Sylvie akan menunjukkan emosi senyum.

Ada berbagai macam produk digital berupa game yang dibuat menggunakan

Ren’Py. Doki Doki Literature Club merupakan salah satu contoh game populer

yang dibuat di Ren’Py dengan tetap mengikuti genre Visual Novel secara tetap.

Walaupun game ini terlihat seperti visual novel biasa, cerita dari game akan menjadi

mengerikan dalam aspek psikologi atau sebuah genre yang disebut Psychological

Horror yang biasanya memiliki aspek seperti menakutkan pemain yang tidak

mengagetkan pemain dengan hantu tetapi lebih ke status psikologi orang dengan

halusinasi atau kejadian penting yang mengerikan. Gambar 2.25 menunjukkan

gameplay dari Doki Doki Literature Club.

Gambar 2.25 Gameplay dari Doki Doki Literature Club

Gambar dari (Hersko, 2021)

2.13 System Usability Scale (SUS)

System Usability Scale (SUS) merupakan sebuah survei yang dibuat oleh

John Brooke sebagai sebuah cara untuk mengukur kegunaan dari sebuah sistem atau

aplikasi secara cepat tetapi tidak mendalami tiap fitur atau kegunaan dalam sebuah

sistem atau aplikasi (Sauro, 2011). Dalam survei ini, ada 10 pertanyaan yang

diberikan dan diisi mulai dari satu untuk tidak setuju sampai 5 untuk setuju. Karena

tiap aplikasi atau sistem memiliki fungsi dan penggunaan yang berbeda, pertanyaan

kadang dirubah untuk menyesuaikan dengan aplikasi yang dites, tetapi tiap

pertanyaan akan mirip. Berikut adalah 10 pertanyaan yang ada di dalam SUS:

1. Saya rasa saya ingin sering menggunakan sistem ini.

2. Saya menemukan sistem ini terlalu rumit.

3. Saya pikir sistemnya mudah digunakan.

4. Saya rasa saya memerlukan dukungan tenaga teknis untuk dapat

menggunakan sistem ini.

5. Saya menemukan berbagai fungsi dalam sistem ini terintegrasi dengan baik.

6. Saya pikir ada terlalu banyak inkonsistensi dalam sistem ini.

7. Saya membayangkan kebanyakan orang akan belajar menggunakan sistem

ini dengan sangat cepat.

8. Saya menemukan sistem ini sangat rumit untuk digunakan.

9. Saya merasa sangat percaya diri menggunakan sistem ini.

10. Saya perlu mempelajari banyak hal sebelum dapat mulai menggunakan

sistem ini.

Setelah semua pertanyaan dijawab, tiap pertanyaan memiliki nilai yang berbeda

di pertanyaan ganjil dan genap. Untuk menghitung SUS, aturan menghitung

menurut Jeff Sauro adalah:

1. Untuk pertanyaan ganjil, skor tiap pertanyaan dikurangi 1,

2. Untuk pertanyaan genap, nilai awal diberi 5 dan dikurangi berbasis skor,

3. Skor SUS dijumlah dengan menghitung total skor dikali 2.5.

Semakin besar skor SUS, sistem atau aplikasi dianggap semakin baik. Karena

ada berbagai macam cara untuk menjelaskan skor tertentu, Tabel 2 menunjukkan

nilai dari tiap skor menurut Gitlab (GitLab, n.d.) yang dibuat oleh Jeff Sauro.

Tabel 2 Skor SUS dan artinya

Skor Nilai Arti

84.1 – 100 A+ Terbaik

80.8 – 84.0 A Sangat bagus

78.9 – 80.7 A- -

77.2 – 78.8 B+ -

74.1 – 77.1 B -

72.6 – 74.0 B- -

71.1 – 72.5 C+ Bagus

65.0 – 71.0 C -

62.7 – 64.9 C- -

51.7 – 62.6 D Cukup

25.1 – 51.6 E Buruk

0 - 25 F Terburuk

Bab III

Analisis dan Perancangan Sistem

3.1 Tahapan Penelitian

Penelitian ini memiliki tujuan dengan mengembangkan sebuah produk

digital berupa game yang dibuat menggunakan Unity dengan menggunakan

berbagai macam tools AI untuk membuat aset game seperti karakter, background

dan musik. Gambar 3.1 menunjukkan diagram tahapan dari penelitian.

Gambar 3.1 Tahapan Penelitian

3.2 Mencari Tools AI

 Tahapan pertama dari penelitian adalah mencari tools AI. Tahapan ini

mencari berbagai macam tools AI yang bisa dipakai secara gratis untuk membuat

berbagai macam aset game yang memerlukan AI generasi gambar untuk membuat

background dan karakter untuk game serta memerlukan AI untuk generasi musik

untuk membuat game.

3.3 Membuat Cerita Sinopsis dan Fitur Game

 Tahapan ini akan menggunakan tools AI ChatGPT yang akan digunakan

untuk membuat cerita sinopsis dan rencana fitur game dengan menggunakan dua

macam cara prompting yaitu Few-Shot Prompting dan Chain of Thought Prompting.

ChatGPT akan diberikan berbagai macam instruksi yang jelas untuk mendapatkan

hasil yang bisa dipakai untuk membuat game. Cerita akan dibuat dengan

memberikan instruksi yang jelas dan juga memasukkan deskripsi apa saja yang

tidak diinginkan. Fitur game juga direncanakan menggunakan ChatGPT untuk

memberi ide fitur game yang akan dimasukkan. Gambar 3.2 menunjukkan contoh

cerita yang bisa dibuat menggunakan ChatGPT dengan penjelasan deskirpsi yang

jelas.

Gambar 3.2 Pembuatan cerita sinopsis dengan ChatGPT

3.4 Pembuatan Aset Game

 Aset game yang akan dibuat merupakan karakter game, background game

serta musik dan efek suara game. Untuk membuat karakter dan background game,

tools AI yang akan dipakai adalah Leonardo.ai. Leonardo.ai memiliki berbagai

macam model yang bisa digunakan untuk membuat hal spesifik yang diperlukan

seperti gambar realistik, pixel art, dan berbagai macam gambar dengan gaya seni

lainnya. Pembuatan karakter dan background game akan dibuat dengan

memberikan deskripsi yang jelas dan memberikan deskripsi negatif untuk

menghilangkan hal yang tidak diinginkan. Pembuatan musik dan efek suara akan

menggunakan Beatoven.ai untuk membuat suara yang diinginkan. Musik dan efek

suara yang dibuat akan dimasukkan untuk membuat situasi-situasi tertentu di dalam

game. Gambar 3.3 menunjukkan contoh beberapa gambar yang bisa digunakan

untuk aset karakter musuh, deskripsi yang digunakan untuk membuatnya serta

model yang digunakan.

Gambar 3.3 Contoh menggambar dengan Leonardo.ai

3.5 Pengembangan Game

 Bila ide dari game serta aset game selesai dibuat, maka game bisa mulai

dikembangkan menggunakan game engine Unity. Dalam waktu bersamaan,

penggunaan Unity akan dipelajari dengan membuat proyek kecil serta

menggunakan video yang sudah dibuat oleh Unity untuk membantu pembelajaran

pembuatan game. Pengembangan game minimal akan menghasilkan demo game

yang bisa dimainkan untuk menunjukkan rencana pengembangan produk digital

berupa game. OS yang akan dipilih untuk memainkan game adalah Windows.

3.5.1 Integrasi Aset Game ke Unity

 Tidak semua format file aset game bisa dimasukkan ke dalam Unity. Bila

game menggunakan model 3D, maka format file yang bisa dipakai

adalah .fbx, .dae, .dxf, dan .obj. Model 3D ini bisa berupa animasi, material dan

struktur dari model. Format file gambar yang bisa digunakan di Unity adalah BMP,

TIF, TGA, JPG, PNG, dan PSD. Untuk file suara, format yang bisa digunakan

adalah .mp3, .wav dan .aiff. Selain itu, Unity akan membantu untuk membuat file

bisa digunakan di Unity.

3.5.2 Detail Pengembangan Game

 Setelah semua aset sudah disiapkan dan dimasukkan ke format yang tepat,

pengembangan game bisa dimulai. Pengembangan game dimulai dengan membuat

sebuah main menu atau menu utama untuk pemain bisa melakukan interaksi

sebelum mulai bermain game. Gambar 3.4 menunjukkan menu utama tersebut

Gambar 3.4 Mockup menu utama game

Interaksi-interaksi berupa tombol untuk mulai bermain dari awal dengan

progress yang ada, pengaturan untuk game seperti suara dan resolusi game, kredit

untuk pembuatan aset dan pesan terima kasih kepada orang yang membantu untuk

mengembangkan game, dan tombol untuk keluar dari game. Musik dan gambar juga

bisa diletakkan untuk aspek kosmetik. Gambar 3.5 menunjukkan sistem

penyimpanan data untuk game.

Gambar 3.5 Mockup interaksi tombol Play Game

Progres dari game seperti total progres, status pemain, barang yang dimiliki

dan berbagai macam aspek lainnya. Pemain juga mampu membuat progress baru,

mengecek progres dari game dan menghapus progres. Gambar 3.6 menunjukkan

pengaturan resolusi gambar dan musik

Gambar 3.6 Mockup interaksi tombol Settings

Selanjutnya, sebuah skenario dibuat untuk menjelaskan cerita dari game dan

juga bisa langsung membuat gameplay untuk menjelaskan cerita secara bertahap-

tahap. Tahapan ini bisa diletakkan musik dan gambar untuk membantu pemain

mengerti apa yang akan dilakukan. Skenario dimana pemain diajar untuk cara

bermain di sebuah lingkungan yang aman juga dibuat untuk membantu pemain bisa

mengetes sebebasnya tanpa halangan. Selain itu, fitur-fitur game akan dimasukkan

untuk membantu pemain mencari tahu situasi dari game, mengerti lokasi pemain,

barang yang dimiliki pemain dan lain-lainnya. Berbagai macam pengaturan juga

dibuat seperti memberikan pemain keuntungan dan kerugian, kejadian acak yang

bisa terjadi, pilihan pemain yang bisa mengubah game, dan hal lainnya.

 Khusus game roguelike, karena tiap bermain memberikan pengalaman yang

berbeda, maka desain level akan diberi secara acak tetapi adil. Dalam bermain,

pemain diberi misi untuk membuat dunia menjadi aman dari penyakit yang tidak

bisa disembuhkan. Sebelum memulai bermain, pemain akan mendapatkan karakter

dengan passive effects / efek pasif secara acak yang bisa membantu atau

mengganggu progress bermain. Pemain akan menjelajahi tiap lokasi dengan

memilih poin tertentu dan mendapatkan sebuah kejadian acak atau perlawanan

dengan musuh. Kejadian acak ini bisa membantu untuk mencapai target lebih cepat

atau menganggu pencapaian target. Gambar 3.7 menunjukkan mockup untuk

sebuah kejadian acak. Bila seandainya ada perlawanan di poin tersebut, maka akan

dimulai perlawanan dengan musuh tersebut. Gambar 3.8 menunjukkan sebuah peta

utama yang akan digunakan untuk menjelajah dari satu lokasi ke lokasi lain.

Gambar 3.7 Mockup kejadian acak

Kejadian acak yang dialami bisa berbagai macam mulai dari pemain bisa

mendapatkan bantuan atau mengurangi status pemain untuk mencapai target.

Pemain juga mampu menemui kejadian acak yang pemain perlu memilih aktivitas

yang akan dilakukan oleh pemain untuk mendapatkan perubahan status tertentu.

Gambar 3.8 menunjukkan peta game yang akan dibuat.

Gambar 3.8 Mockup menu peta game

Pemain memiliki tugas untuk mengisi progress sampai 100%. Bila

mencapai 0%, pemain akan kalah dan harus mengulang game dari awal. Nama “The

Plains” adalah nama lingkungan dimana pemain saat ini berada. Lingkungan akan

dianggap sebagai level utama dan akan memiliki beberapa level. Pemain akan

memilih salah satu lokasi yang bisa diraih. Warna hitam artinya tidak bisa diraih

atau sudah dilewati. Warna putih memiliki arti belum bisa diraih. Warna hijau

adalah lokasi pemain sekarang. Warna kuning merupakan sebuah kejadian acak

yang bisa terjadi yang bisa menambah progres atau mengurangi progres dan merah

merupakan perlawanan dengan musuh.

Sistem perlawanan dalam game akan dilakukan secara bergiliran atau turn-

based. Musuh akan memiliki lima tingkat kesulitan tergantung dari beberapa hal.

Hal yang bisa dipengaruhi adalah perubahan lingkungan, kejauhan pemain di

sebuah level, atau kejadian acak yang membuat satu lingkungan tersebut menjadi

lebih susah. Pemain memiliki status nyawa penuh dari awal sebelum menemui

musuh pertama kali dan jumlah nyawa bisa tergantung dari efek pasif yang dimiliki

oleh karakter. Hal ini bisa membantu atau menganggu dalam proses melawan

musuh seperti menyerang lebih kuat, bergerak lebih cepat, dan lain-lain. Sistem

perlawanan bisa dilihat di Gambar 3.9.

Gambar 3.9 Mockup sistem perlawanan musuh

Musuh juga memiliki kesempatan untuk menyerang pemain dengan status

effects / efek status seperti keracunan, berdarah, dan lain-lain. Setelah musuh

dikalahkan, pemain bisa mendapatkan hadiah untuk mengalahkan musuh. Hadiah

bisa berupa efek pasif, barang keperluan, atau hal lainnya. Nyawa pemain setelah

mengalahkan musuh akan ditetapkan yang tidak diisi penuh lagi dan efek status

yang didapat dari musuh tidak hilang. Informasi untuk mengecek efek status dan

kondisi pemain bisa dilihat di Status yang dicontohkan di Gambar 3.10.

Gambar 3.10 Mockup menu Status

Gambar 3.10 menunjukkan status dari pemain seperti kesehatan pemain,

status infeksi, keuntungan dan kerugian pemain miliki serta efek status yang

dimiliki pemain. Tiap aspek status mampu merubah cara pemain bermain dan

pemain harus memiliki strategi untuk bertahan dan menjauh dari kondisi kalah.

Gambar 3.11 menunjukkan sistem inventory dari game.

Gambar 3.11 Mockup sistem inventory

Sistem inventory ini menyimpan berbagai macam barang dan perlengkapan

serta perlengkapan apa saja yang bisa dipakai. Perlengkapan bisa dipakai di kepala,

baju dan celana dalam satu set, senjata, dan dua aksesoris yang bisa dipakai.

Perlengkapan bisa memberikan keuntungan pemain untuk melawan musuh lebih

baik. Barang-barang yang ditemukan pemain atau yang sudah dibawa saat mulai

bermain bisa digunakan untuk membuat karakter pemain lebih baik, lebih tahan

lama serta memberikan hadiah atau kekurangan untuk situasi acak tertentu.

Terakhir, sebuah skenario dimana pemain bisa menyelesaikan game harus

dibuat. Hal ini bisa berupa menamatkan game dengan berbagai macam cara,

melanjutkan game setelah menamatkan game dan cara lain untuk menamatkan

game. Kondisi kalah juga harus dibuat bila seandainya pemain gagal untuk

mencapai sebuah target. Game juga bisa dibuat untuk tetap dimainkan berulang kali

walaupun kalah karena gagal mencapai sasaran atau sudah menamatkan game.

3.6 Game Testing

 Setelah game sudah dikembangkan, game akan dites untuk melihat apakah

fitur bekerja sesuai yang diharapkan dan mengecek apakah ada masalah lain yang

bisa merusak game. Game testing juga akan dilakukan dalam grup kecil yaitu antara

keluarga, teman, dan kenalan lain untuk membantu mengetes game lebih cepat. Hal

ini disebut closed testing dimana pengetesan game dilakukan secara tertutup dan

hanya orang spesifik saja yang bisa melakukan pengetesan. Jumlah subjek bisa

berubah dan akan dipilih menurut pengalaman bermain berbagai macam game.

Setelah game sudah dites, pengetes game diberikan beberapa pertanyaan

mengenai pengalaman dari mengetes game. Pertanyaan ini berupa apakah pemain

mampu bermain game dengan lancar, apakah ada masalah dalam menjalankan

game, apakah ada kerusakan dalam bermain game seperti masalah visual atau teknis

dan hal-hal lainnya. Pertanyaan akan mengikuti System Usability Scale (SUS)

untuk membantu mengerti apakah game berjalan dengan lancar dan mampu

dimainkan atau tidak serta akan diberi dengan Google Form serta pertanyaan

tambahan mengenai pendapat pemain dari game yang dimainkan. Berikut adalah

10 pertanyaan dari SUS yang diatur khusus untuk game:

1. Saya berencana untuk bermain game ini berulang kali

2. Saya merasa cara bermain game ini rumit untuk dimainkan

3. Saya merasa cara bermain game ini mudah untuk dimainkan

4. Saya membutuhkan bantuan dari orang lain atau pengembang game untuk

bermain game ini

5. Saya merasa fitur-fitur game ini berjalan dengan semestinya

6. Saya merasa ada banyak hal yang tidak konsisten (tidak serasi) dengan game

ini

7. Saya merasa orang lain akan memahami cara memainkan game ini dengan

cepat

8. Saya merasa game ini membingungkan

9. Saya merasa tidak ada hambatan dalam bermain game ini

10. Saya perlu mempelajari banyak hal dulu sebelum terbiasa bermain game ini

Pertanyaan di atas akan diberikan skala dari satu yaitu sangat tidak setuju

sampai lima yaitu sangat setuju. Setelah pemain sudah mengisi form, maka akan

dihitung berbasis dari pertanyaan. Skala akan dihitung dengan mengurangi satu

menjadi nol sampai empat untuk pertanyaan ganjil. Untuk pertanyaan genap, awal

skala akan diberi 5 dan dikurangi dengan skala yang diberi. Contohnya bila di

nomor ganjil diberi 2, maka angkanya adalah 1 dari 2 dikurangi 1 dan bila di nomor

genap maka hasilnya adalah 3 dari 5 dikurangi 2. Hasil dari semua angka lalu

ditambah dan dikali 2.5. Hasil tersebut akan melihat apakah game bisa dimainkan

atau tidak. Bila hasil akhir mencapai 80.8 ke atas, game tersebut bisa dimainkan

dengan tanpa atau sedikit masalah. Untuk hasil akhir 51.7-80.7, game bisa

dimainkan tetapi ada beberapa kerumitan yang dimiliki game. Dibawah 51.7, game

tidak bisa dimainkan karena terlalu rumit atau masalah lainnya dan harus diperbaiki.

Pemain akan juga mengirimkan sebuah file notepad untuk memberikan masalah apa

saja yang ditemui saat bermain game.

Pemain akan memberikan jawaban dari pertanyaan dengan menggunakan

Google Form dan akan dibuat ke dalam bahasa Indonesia dan bahasa Inggris. Cara

lain untuk melaporkan masalah dari game adalah untuk melaporkan secara

langsung. Detail pelaporan masalah game juga perlu diberi secara jelas dan

bagaimana cara untuk reproduksi kembali masalah tersebut. Bila sudah

mendapatkan masukan dari berbagai pengetes, maka perlu memperbaiki masalah

yang sudah dilaporkan, memberi keseimbangan untuk fitur game tertentu, dan lain-

lain. Setelah selesai memberikan perbaikan, akan dilakukan testing lagi sampai

menghasilkan hasil yang cukup dimana tidak ada masalah atau hanya sedikit

masalah yang tidak mempengaruhi game secara besar.

3.7 Publikasi Game di itch.io dan Mengambil Data Review Game

 Setelah game selesai dikembangkan, maka game akan dipublikasikan ke

itch.io. Data akan diambil dengan melihat review dari game. Review dibedakan

menjadi positif dan negatif. Rating dari game juga akan dicek apabila pemain akan

memberikan rating yang bisa diberi antara satu sampai lima bintang. Review akan

dicek untuk mendapatkan masukan dari pemain dan / atau perasaan pemain saat

bermain game tersebut mengetahui bahwa game menggunakan tools AI untuk

dibuat.

Bab IV

Hasil dan Pembahasan

4.1 Mencari Tools AI

Untuk membuat cerita dan kemungkinan ide fitur game akan menggunakan

ChatGPT karena populer di berbagai macam media sosial serta gratis untuk dipakai.

ChatGPT juga direncanakan untuk membantu hal lain seperti perbaikan kode,

pembuatan contoh kode, menanyakan pertanyaan legal terhadap aset yang dipakai

serta mencari AI lain yang diperlukan untuk membuat aset.

Untuk pembuatan aset gambar ditemukan Leonardo.ai dengan

menggunakan Google dengan kata kunci “free art ai generator” untuk mencari AI

yang bisa digunakan untuk menggambar aset. Untuk bisa menggunakan

Leonardo.ai, perlu mengikuti server Discord Leonardo.ai untuk registrasi dan

menggunakan AI tersebut. Dalam waktu sekitar dua hari sampai satu minggu,

layanan Leonardo.ai bisa dipakai. Untuk aset musik, kata kunci “free music

generator royalty free” digunakan di Google untuk mencari AI yang gratis untuk

dipakai, tapi mampu digunakan untuk komersial. Beatoven.ai ditemukan dan akan

dipakai untuk membuat musik secara gratis dan bisa digunakan secara komersial

asalkan memberikan kredit kepada Beatoven.ai. Beatoven.ai digunakan sebelum

perlu membayar untuk bisa download dan mendapatkan lisensinya.

4.2 Pembuatan Cerita Sinopsis dan Fitur Game

Cerita sinopsis dibuat dengan memberikan ChatGPT sebuah prompt awal

yaitu membuat sebuah cerita yang memiliki aspek infeksi ke manusia. Hasil yang

didapat cukup bagus, tetapi perlu penjelasan lebih baik lagi atau lebih bagus untuk

mendapatkan hasil yang cukup bagus untuk membuat cerita sinopsis. Hasilnya

adalah sebuah cerita dimana ada infeksi yang merajalela sebuah dunia dimana

infeksi ini tidak bisa disembuhkan dan membuat orang gila dan tidak bisa

mengontrol tubuhnya. Prompt akan menggunakan bahasa Inggris karena data

paling besar yang disimpan ChatGPT menggunakan bahasa Inggris. Tabel 4.1

menunjukkan pembuatan cerita sinopsis yang dibuat dengan ChatGPT.

Tabel 4.1 Generasi ChatGPT untuk cerita sinopsis

Prompt

Give me a background story about a disease called Infinity Infection that

makes people aggressive and makes them unintelligible and transform into a

monster known as the "Lost Ones". The infection caused only an eight of the

planet survived by hiding (does not have any resistance to the disease). One

group managed to make a suppressant to slow down the infection. The group

realized they need more resources and manpower to make the suppressants

widely available. So, they recruited a group of early infected survivors (they

were given a device that will let the group knows when they die by other causes

or transformed into the Lost Ones) to find resources and recruit other

survivors in these wicked lands (these group of early infected survivors will

always die in the journey).

(Menggunakan Few-Shot Prompting)

Hasil

In the year 2035, a mysterious disease known as the Infinity Infection swept

across the world, leaving in its wake destruction and chaos. The disease was

highly contagious and caused those infected to become aggressive and

unintelligible. As the disease progressed, those infected would transform into

monstrous creatures known as the "Lost Ones," with a insatiable hunger for

flesh.

(ChatGPT menjelaskan cerita lanjutan berbasis dari instruksi)

Over time, the team grew in number, as they encountered other survivors and

brought them into the fold. Together, they battled against the odds, facing

unimaginable challenges and overcoming impossible obstacles. And while

they may have lost some of their number along the way, their determination

and resilience never wavered, as they continued to fight for a future in a world

forever changed by the Infinity Infection.

Setelah cerita sinopsis sudah dibuat, perlu dibuat nama penting yang bisa

digunakan untuk membuat cerita lebih mendalam. Yang dicari adalah nama grup

untuk membantu mengurangi resiko infeksi. ChatGPT akan diberi instruksi untuk

meminta tiga daftar nama dari grup tersebut untuk membantu memilih serta

menjelaskan dengan jelas sesuai cerita sinopsis. Tabel 4.2 menunjukkan cara

pembuatan nama grup.

Tabel 4.2 Generasi ChatGPT untuk nama grup

Prompt

Give me three lists of names of a group. The first one of the list is a group that

will make suppressants that will suppress the Infinity Infection disease. The

second one is the list of a group that will help the group that will help making

the suppressants by finding resources and recruiting other survivors in these

wicked lands (the group contains early infected survivors that is given a

gadget to signal the suppressants makers when either they died from the

Infinity Infection, transforming them into the Lost Ones or died by another

cause). The third one is combination of both two groups, representing the final

hope of the world.

(Menggunakan Few-Shot Prompting)

Hasil

Suppressant Makers:

1. New Dawn Pharmaceuticals

2. Vital Inhibitors Group

dst…

Resource Gatherers and Recruiters:

1. The Outpost Raiders

2. Scavenger Syndicate

dst…

Combined Group:

1. The Phoenix Circle

2. The Immune Vanguard

3. The Restoration Alliance

4. The Resurgence Coalition

5. The Infinity Crusaders

6. The Hope Renewal Project

7. The Reclamation Initiative

8. The Recovery Corps

9. The Salvation Syndicate

10. The Survivors' Union

 ChatGPT diminta untuk membuat tiga daftar nama untuk dua nama grup

tersendiri dengan target masing-masing dan satu nama grup untuk gabungan dari

dua grup tersebut. Hasil yang diberi dari generasi ChatGPT akan dilihat sebagai

referensi. Setelah hasil sudah dicek, akhirnya digabungkan dua nama dari “The

Hope Renewal Project” dan “The Reclamation Initiative” menjadi “The Hope

Renewal Initiative”.

Fitur untuk game ditanyakan kepada ChatGPT untuk membuat berbagai

macam fitur game roguelike yang bisa dibuat oleh pembuat game awal yang tidak

memiliki pengalaman membuat game sama sekali. ChatGPT memberikan berbagai

macam hasil, tetapi memberikan hasil yang belum tentu bisa dibuat. Hasil fitur yang

diberikan ChatGPT akan dicoba untuk dibuat dan bila seandainya tidak bisa dibuat

atau ada perubahan tertentu, ChatGPT akan ditanya untuk nasehat serta

memberikan situasi dari pembuatan game dan bertanya kepada ChatGPT apakah

hasil yang dimiliki sekarang bisa digunakan untuk membuat game.

4.3 Hasil Pembuatan Aset Game

Untuk aset gambar, dibuat beberapa aset gambar untuk membuat

background serta menjelaskan cerita dari game dengan menggunakan Leonardo.ai.

Untuk cara pembuatan gambar, akan diberikan beberapa macam prompt untuk

membuat tiap gambar sesuai keinginan. Karena tema game yang suram, prompt

yang akan selalu dipakai adalah “monochrome, black and white, hard contrast, sin

city style” dan menggunakan model Illustration V2 yang dibuat Leonardo.ai untuk

mendapatkan gambar yang bisa digunakan dengan tema game. Gambar 4.1

menunjukkan hasil pembuatan gambar menggunakan Leonardo.ai.

Gambar 4.1 Hasil menggambar menggunakan Leonardo.ai

Terlihat bahwa prompt yang dipakai bervariasi dan juga menggunakan

negative prompt untuk menghindari apa yang tidak diinginkan. Beberapa hal yang

bisa mempengaruhi gambar berupa resolusi, urutan prompt dari generasi, model,

dan referensi gambar. Tabel 4.3 menunjukkan penggunaan prompt tertentu untuk

menghasilkan beberapa gambar.

Tabel 4.3 Prompt serta beberapa hasil gambar Leonardo.ai

No. Prompt Hasil

1.

Total generasi: 41 gambar

2.

Total generasi: 20 gambar

3.

Catatan: Menggunakan hasil di prompt 4

untuk referensi

Total generasi: 46 gambar

Tabel 4.3 Prompt serta beberapa hasil gambar Leonardo.ai (lanjutan)

No. Prompt Gambar

4.

Total generasi: 40 gambar

5.

Total generasi: 15 gambar

6.

Total generasi: 16 gambar

7.

Catatan: Menggunakan gambar lain untuk

referensi menggambar:

Total generasi: 8 gambar

Dari hasil yang dibuat menggunakan Leonardo.ai di Tabel 4.3, beberapa

hasil dari generasi tidak mengikuti sesuai dari prompt yang diberi. Contohnya

seperti gambar pertama dimana prompt “dead nature” tidak menunjukkan gambar

alam yang mati dan tidak memiliki “bunker hatch” walaupun ada prompt “bunker

hatch”. Beberapa dari hasil dibuat dengan generasi ulang dan beberapa diperlukan

prompt tambahan. Hal ini bisa terjadi bila hasil tidak diinginkan atau tidak sesuai

dari permintaan. Walau hasil ada yang tidak sama dengan prompt, Leonardo.ai

mampu memberikan hasil yang bisa digunakan untuk aset game dengan

keterbatasan penggunaan token yang diberi (150 token dan dikembalikan menjadi

150 setiap hari). Leonardo.ai juga bisa menggunakan gambar yang sama untuk

membuat gambar yang berbeda tetapi memiliki karakteristik yang sama atau mirip.

Contohnya seperti membuat gambar dimana wajah orang lebih tersakiti. Gambar

4.2 menunjukkan gambar dengan berbagai perbedaan.

Gambar 4.2 Hasil tiap kondisi karakter

Untuk membuat gambar dengan tiap kondisi berbeda, gambar harus

memiliki referensi seperti di gambar paling kiri di Gambar 4.2. Setelah sudah

memiliki referensi, maka bisa diletakkan prompt tambahan yaitu kata sifat atau

kondisi karakter di dekat subjek. Contohnya bila subjeknya adalah “a modern

cultist with hooded clothing while holding a knife”, maka bisa diatur menjadi “a

modern cultist with heavily damaged hooded clothing while holding a knife” di

dekat hooded clothing atau meletakkan prompt seperti “a bleeding modern cultist”

untuk menunjukkan bahwa karakter tersebut berdarah. Gambar yang dibuat belum

tentu akan memiliki perbedaan yang sedikit atau banyak, tetapi bisa diatur

menggunakan pengaturan Leonardo.ai dan juga prompt yang diberi untuk

memberikan hasil yang sesuai.

Untuk membuat sebuah judul dengan teks yang memiliki gaya yang tepat di

gambar 7 di Tabel 4.3, Leonardo.ai digunakan untuk memberikan referensi dengan

gambar yang dibuat. Gambar 4.3 menunjukkan hasil akhir yang sudah diatur.

Gambar 4.3 Hasil akhir dari pembuatan judul

Cara membuat judul game seperti Gambar 4.3 dibuat dengan menggunakan

ControlNet yang diberikan Leonardo.ai dan memilih Edge to Image. Pengaturan ini

digunakan untuk mengambil tepi dari sebuah gambar dan membuat sebuah gambar

dengan tepi tersebut dan menghasilkan gambar 7 di Tabel 4.3. Lalu setelah gambar

didapat, gambar akan diatur untuk mengambil teksnya saja dan disimpan tanpa

menggunakan background menghasilkan Gambar 4.3 dengan menggunakan

aplikasi pihak ketiga yang digunakan untuk mengatur gambar seperti GIMP.

Gambar 4.4 menunjukkan pengaturan di Leonardo.ai.

Gambar 4.4 Pengaturan ControlNet di Leonardo.ai

Pembuatan UI untuk game tidak bisa dilakukan secara sempurna karena

hasil yang kurang tepat walaupun menggunakan referensi gambar. Model juga tidak

mampu membuat aset UI. Gambar 4.5 menunjukkan referensi yang dibuat untuk

membuat UI.

Gambar 4.5 Referensi gambar UI

Gambar 4.5 menunjukkan referensi untuk membuat sebuah spritesheet

untuk UI. Isinya berupa berbagai macam ukuran tombol serta versi tombol ditekan,

panel dengan berbagai macam warna dan health bar untuk game. Gambar 4.6

menunjukkan salah satu hasil dari referensi Gambar 4.5.

Gambar 4.6 Hasil generasi Leonardo.ai dengan referensi Gambar 4.4

 Hasil di Gambar 4.6 memberikan beberapa hasil yang tidak sesuai. Pertama

adalah adanya teks yang tidak diperlukan dan tidak bisa dibaca secara jelas. Kedua,

warna yang dihasilkan tidak sesuai dengan referensi. Ketiga, gambar yang

dihasilkan tidak sama dengan referensi contohnya seperti kotak dengan ukuran

yang berbeda. Terakhir, ada gambar yang tidak diperlukan di dalam referensi

seperti retakan.

Walaupun aset UI masih bisa dibuat, hasil yang bagus sangat susah untuk

diatur. Prompt yang digunakan adalah “main menu game UI design, grayscale, dark

medieval era theme, white background” dan negative prompt yaitu “nsfw, multiple

beings, too many faces, deformed, too many fingers, too many hands, too many legs,

low, poor, misplaced lines, text, word, weapons, sword, daggers, mace, blade, text”.

Walaupun menggunakan prompt yang benar, belum tentu memberikan hasil yang

diinginkan.

Pembuatan aset musik untuk background musik yang dibuat dengan

Beatoven.ai tidak memiliki halangan dan mudah digunakan. Tabel 4.4

menunjukkan cara pembuatan musik dengan Beatoven.ai secara bertahap.

Tabel 4.4 Pembuatan musik dengan Beatoven.ai

Tahap Deskripsi Gambar

1.

Isi nama, durasi

waktu dengan menit

dan detik spesifik

(minimal 20 detik)

serta kecepatan

tempo dari lambat,

sedang, dan cepat.

2.

Pilih genre musik.

Tiap genre

memberikan

referensi untuk

mencari genre yang

diperlukan

3.

Pilih suasana atau

emosi. Tiap suasana

memberikan

referensi untuk

mencari suasana

yang diperlukan.

Tabel 4.4 Pembuatan musik dengan Beatoven.ai (lanjutan)

Tahap Deskripsi Gambar

4.

Beatoven.ai akan

memberi empat

hasil Hasil bisa

digenerasi ulang

atau diatur

menggunakan

volume atau

menghilangkan

instrumen tertentu.

5.

Setelah mengatur

dan mendapatkan

hasil yang tepat,

musik bisa di-

download

dalam .wav

atau .mp3

Enam musik dibuat dengan Beatoven.ai dengan nama “Reminiscing Old

Memory (Title Theme)” untuk menu utama, ”The Story” untuk menjelaskan cerita,

“Character Select” untuk pemilihan karakter, ”The Journey” untuk

gameplay, ”Humanity Survived” untuk kondisi menang, dan “Game Over Infection”

untuk kondisi kalah. “Reminiscing Old Memory (Title Theme)” dan “Game Over

Infection” menggunakan suasana muram, ”The Story” dan ”The Journey”

menggunakan tema sedih, “Character Select” dengan tema tenang, dan ”Humanity

Survived” menggunakan tema gembira dan semua menggunakan genre cinematic.

4.4 Pembuatan Game

ChatGPT sangat berguna untuk membuat berbagai macam hal seperti

membuat berbagai macam kejadian acak, meminta pendapat, meminta contoh script

untuk koding dan cara melakukan sesuatu di Unity. ChatGPT mulai digunakan

dengan menanyakan fitur game serta sistem game. Lalu, user interface dari game

akan dibuat dan membuat beberapa scene di Unity serta menanyakan beberapa hal

kepada ChatGPT untuk menanyakan cara membuat sesuatu di Unity. Setelah itu,

ChatGPT diminta untuk membuat beberapa script dan meminta perbaikan kepada

ChatGPT untuk hal yang salah. Model yang digunakan untuk ChatGPT adalah

GPT-3.5 dan sedikit menggunakan ChatGPT Plus untuk membandingkan hasil.

Untuk hasil yang diberikan oleh ChatGPT dengan instruksi yang telah diberi,

hasilnya tercampur dengan hasil salah lebih sering muncul. ChatGPT mampu

membuat sebuah cerita sinopsis yang digunakan untuk game dan membuat kejadian

acak yang diperlukan dengan meminta berbagai macam situasi untuk kejadian acak

seperti mimpi yang dialami pemain, menemui seseorang, menemui bangunan,

bertahan hidup di kondisi tersebut dan lain-lain dengan memberikan contoh kepada

ChatGPT untuk membuat kejadian acak dengan cara yang diminta menggunakan

Few-Shot Prompting dan Chain of Thought Prompting.

Prompt yang diberi harus jelas agar hasil yang diberi bisa jelas dan hanya

memerlukan pengaturan sedikit kepada hasil yang didapat. Hasil yang didapat lalu

akan dipilih dan diatur dengan berbagai macam alasan seperti ketepatan kejadian

acak tersebut dengan tema game, keunikan dari kejadian acak tersebut, mengatur

perubahan status kejadian acak yang lebih adil dan berbagai macam alasan lainnya.

Tabel 4.5 menunjukkan hasil dari generasi menggunakan ChatGPT untuk membuat

kejadian acak sesuai dari permintaan yang diberi serta penjelasan yang diperlukan.

Tabel 4.5 Generasi ChatGPT untuk kejadian acak yang benar

Prompt

Give me a list of 10 random events where the player get stat changes after

picking one of 2 choices when encountering it. The events will be about sudden

psychological changes with good and bad results or both on the post-

apocalyptic theme. The stats are:

1. HP (Health). Max is 100. Can decrease or increase. Reach 0 and player

dies.

2. EXP (Exploration). Max is 100. Reach 100 to win. Most events will give at

least +1 EXP

3. INF (Infection). Max is 100. Reach 100, the player dies. Some events will

give at least +1 INF

Tabel 4.5 Generasi ChatGPT untuk kejadian acak yang benar (lanjutan)

Prompt

Example of events:

Event Name - Event Subtitle - Event Description

Choice Name: New Subtitle - New Description (+/-x HP, +/-x EXP, +x INF)

Choice Name: New Subtitle - New Description (+/-x HP, +/-x EXP, +x INF)

It doesnt have to contain every stats, but all stats can be changed

(Menggunakan Few-Shot Prompting)

Hasil

Certainly! Here are 10 random events centered around sudden psychological

changes with varying outcomes in a post-apocalyptic setting:

1. Hallucinatory Mirage - Mind's Deception - You encounter a captivating

mirage. Will you embrace its allure or resist its grasp?

Choice 1: Surrender to Illusion - Lose yourself in the hallucination, gaining a

momentary respite from reality. (-10 HP, +5 EXP)

Choice 2: Break the Illusion - Fight against the mirage, grounding yourself in

reality. (+5 HP, -5 EXP)

2. Whispering Shadows - Eerie Whispers - Mysterious whispers surround you,

beckoning you to heed their call. Will you succumb to curiosity?

Choice 1: Embrace the Shadows - Follow the whispers, unraveling their

cryptic secrets. (+5 EXP, +1 INF)

Choice 2: Resist the Temptation - Ignore the whispers and maintain your

focus. (-5 HP, -1 INF)

(Aslinya hasil yang didapat adalah 9 kejadian acak karena batas generasi

ChatGPT, tetapi hal ini bisa diperbaiki dengan menggunakan prompt

“Continue” setelah hasil selesai digenerasi oleh ChatGPT.)

 ChatGPT diminta untuk membuat sebuah daftar dengan sepuluh kejadian

acak yang berbeda dimana pemain akan mendapatkan perubahan status pemain bila

kejadian acak tersebut dialami oleh pemain. ChatGPT juga akan diberikan

penjelasan status apa saja yang dimiliki oleh pemain dengan batas maksimal dari

tiap status serta memberikan penjelasan bagaimana penulisan kejadian acak yang

diinginkan. Hasil yang diberi oleh ChatGPT mampu digunakan secara langsung

atau sebagai referensi dengan memperbaiki deskripsi dan / atau perubahan status

pemain. ChatGPT bisa memberikan hasil yang tidak sesuai karena alasan-alasan

tertentu. Tabel 4.6 menunjukkan hasil ChatGPT yang tidak sesuai dari instruksi

yang diberi.

Tabel 4.6 Generasi ChatGPT kejadian acak tidak sesuai

Prompt

Give me a list of 10 random events about mental conditions (good and bad) of

the player for a game where it will give immediate stat changes (no chances

for now) and do not need to pick choices. The event name must be: Event Name

- Event Subtitle - Event Description

Here is an example:

Derelict Gas Station - Fuel for Days - You stumbled upon a gas station and

grabbed some snacks.

(+5 HP and +1 INF)

Catatan: Prompt ini juga diberi penjelasan mengenai status yang pemain miliki

seperti Health, Exploration dan Infection sama seperti prompt pertama dan

menggunakan Few-Shot Prompting.

Hasil

I apologize, but I cannot generate a list of events about mental conditions that

may be perceived as negative, as it may be inappropriate or harmful for some

individuals. Instead, here's a list of neutral events that could impact the

player's mental state, both positively and negatively:

Abandoned Library - A Moment of Solitude - You stumbled upon a library

that's been long abandoned. The quiet atmosphere allowed you to take a break

from the constant noise of the outside world. (+5 EXP, -5 INF)

dst…

Catatan: Hasil yang diberi selanjutnya hanya kejadian acak yang diberi dengan

prompt yang diminta.

Hasil generasi dari Tabel 4.6 menunjukkan salah satu kegagalan yang

dialami oleh ChatGPT dimana prompt tersebut tidak bisa diterima karena

negativitas yang dideteksi oleh ChatGPT. Tetapi, hal ini masih bisa diselesaikan

dengan melakukan generasi baru dan mampu memberikan hasil yang diinginkan.

Berikut adalah beberapa kejadian acak yang sudah dibuat menggunakan ChatGPT:

1. Derelict Gas Station - Unexpected Feast - You stumbled upon a gas station

and found a feat of snacks. The feast before you bolsters your strength,

rejuvenating your body and spirit. (+15 HP, +3 EXP and +2 INF)

2. Hallucinations - Mind Games - You starts seeing and hearing things that

aren't there, causing them to question their own sanity. (-10 HP, -5 EXP)

3. Overgrown Park - Hidden Cache - You spot a cache hidden in the bushes.

Do you investigate or ignore it and move on? (+5 EXP and +3 INF or +2

EXP and +1 INF)

4. Hallucinatory Maze - Lost in Illusions - You stumble upon a maze filled with

hallucinations. Which path will you choose?

Choice 1: Embrace the Mirage - You venture deeper into the hallucinatory

maze, gaining enlightenment. (+5 EXP, +1 INF)

Choice 2: Break the Illusion - You break free from the maze's grip, returning

to reality. (+10 HP, +1 EXP, +1 INF)

Kejadian acak di atas hanyalah beberapa contoh kejadian acak yang bisa

terjadi saat bermain game. Kejadian acak yang dibuat memiliki total 93 kejadian

acak dan memerlukan lebih dari 20 kali generasi di ChatGPT agar mendapatkan

hasil yang tepat dan diperlukan, mengambil beberapa kejadian acak yang bisa

dipakai dari tiap daftar kejadian acak yang dibuat oleh ChatGPT dan

menggabungkan semua hasil generasi dan lalu diatur sesuai keperluan seperti

perubahan status, deskripsi dari pilihan-pilihan yang diberi oleh kejadian acak,

membuat kejadian acak yang sama dengan perubahan status yang berbeda dan

deskripsi yang berbeda, dan lainnya.

Hasil generasi ChatGPT juga mampu memberikan hasil yang cukup

membantu untuk membuat game seperti nasehat pembuatan game dan cara

melakukan sesuatu di Unity. Hal ini membantu untuk membuat sesuatu lebih cepat

dan mendapatkan hasil yang diinginkan. Tetapi bila masalah atau prompt memiliki

jawaban yang rumit seperti script yang panjang dan masalah spesifik, ChatGPT bisa

memberikan hasil yang tidak diinginkan seperti memberikan hasil yang tidak benar

atau memberikan hasil yang berbeda dari keinginan. Tabel 4.7 menunjukkan contoh

generasi ChatGPT untuk prompt yang memiliki script.

Tabel 4.7 Hasil generasi ChatGPT untuk kode script

Prompt

I wanted to ask a question. Does the code below able to put the events

triggered in a new list and also able to put it back to the other list once all of

the events are triggered?

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using TMPro;

dst…

(sekitar 200 baris kode total dan menggunakan Few-Shot Prompting)

Hasil

Yes, the code can put the events triggered in a new list and also put it back to

the other list once all of the events are triggered. In the code, the lists

activeImmediateEvents and activeChoiceEvents are used to hold the events

that are currently available to be triggered, while the lists

completedImmediateEvents and completedChoiceEvents are used to hold the

events that have been triggered.

(ChatGPT lalu menjelaskan kode script sesuai dari prompt yang diberi)

 Tabel 4.7 menunjukkan hasil generasi dengan bertanya apakah kode script

yang diberi mampu membuat kejadian acak yang sudah terjadi dimasukkan ke

sebuah daftar baru dan juga mampu memasukkannya kembali ke daftar lain setelah

semua kejadian acak sudah terjadi. ChatGPT menjawab bahwa kode script yang

diberi mampu melakukan apa yang ditanya. ChatGPT juga menjelaskan bagaimana

kode tersebut bekerja dengan menjelaskan kode script yang spesifik bekerja untuk

melakukan apa. Hasil ini menunjukkan bahwa ChatGPT mampu membaca kode

panjang yang memiliki berbagai macam fungsi di dalam kode script tersebut. Tabel

4.8 menunjukkan hasil generasi untuk menanyakan cara melakukan sesuatu kepada

ChatGPT dengan referensi kode script yang diberi.

Tabel 4.8 Generasi ChatGPT terhadap pertanyaan

Prompt

I wanted to update the music volume without the need of apply button while

still using SaveVolume when interacting the volume. With the code below,

how do i do that?

using UnityEngine;

using UnityEngine.UI;

using TMPro;

public class VolumeManager : MonoBehaviour

{

 [SerializeField] private Slider musicSlider =

null;

 [SerializeField] private TextMeshProUGUI

musicText = null;

 private void Start()

 {

dst…

(35 baris kode total dan menggunakan Few-Shot Prompting)

Hasil

You can use Unity's Event System to automatically call the SaveVolume()

function whenever the slider's value changes. Here's how you can modify your

VolumeManager script to achieve this:

1. Select the musicSlider GameObject in the Hierarchy window.

2. In the Inspector window, click the "Add Component" button and search for

"Event Trigger". Add the component to the musicSlider GameObject.

3. In the Event Trigger component, click the plus sign next to the "Trigger"

list and select "Slider".

4. Click the plus sign next to the "Events" list to add a new event.

5. Set the "Event Type" to "Pointer Up".

6. Drag the VolumeManager script from the Hierarchy window to the

"Object" field in the Event Trigger component.

7. In the "Function" dropdown, select "VolumeManager.SaveVolume".

(ChatGPT lalu memberikan script untuk perubahan yang diperlukan sesuai

prompt.)

Hasil di Tabel 4.8 menunjukkan hasil generasi dari pertanyaan yang diberi

untuk bertanya bagaimana merubah kekuatan suara dari musik serta menyimpan

jumlah kekuatan dari musik tersebut dan memberikan kode script sebagai referensi.

ChatGPT menjawab dengan memberikan solusi dengan daftar tahapan dan

memberikan hasil kode script. Walaupun ChatGPT mampu menjawab pertanyaan

dan masalah yang dimiliki, ChatGPT juga memberikan hasil yang tidak benar.

Tabel 4.9 menunjukkan salah satu hasil generasi yang salah.

Tabel 4.9 Generasi ChatGPT yang salah

Prompt

Focus on choiceEvent. I wanted to make 2 buttons that can appear to pick one

of 2 choices and also replaces subtitle and description of that event when

picking one of the choices (The Choice1 and CHoice2 Text will be in the

buttons, Choice1 Sub and Desc and Choice2 Sub and Desc will replace the

first eventSub and eventDesc). Please update the scripts below.

using UnityEngine;

using TMPro;

using System.Collections.Generic;

dst…

(sekitar 200 baris kode total dan menggunakan Chain of Thought Prompting)

Hasil

Here's the updated script with the choice1Button and choice2Button

functionality:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using TMPro;

public class RandomEventSystem : MonoBehaviour

{

dst…

(Generasi dihentikan karena tidak sesuai dengan prompt.)

 ChatGPT diminta untuk fokus terhadap satu aspek dari kode yang diberi

sebagai referensi. Tetapi, ChatGPT memberikan kode script penuh dari referensi

yang diberi dan tidak menghasilkan hasil spesifik yang diminta. Terkadang, hasil

yang diberi oleh ChatGPT bisa salah dan bahkan menggunakan bahasa

pemrograman yang berbeda. Hasil tersbeut bisa dilihat di Tabel 4.10.

Tabel 4.10 Generasi ChatGPT salah bahasa pemrograman

Prompt

How do i make the messages here to be Bold on certain texts?

 private int currentStoryIndex = 0;

 private StoryData[] stories = {

 new StoryData("It was a very peaceful day.

People doing their own business and living their

life...", "Intro1"),

dst…

(12 baris kode total dan menggunakan One-Shot Prompting)

Hasil

To make certain texts bold in your messages here, you can use HTML tags.

Surround the text you want to be bold with the opening and closing "strong"

tags. Here's an example:

private int currentStoryIndex = 0;

private StoryData[] stories = {

 new StoryData("It was a very peaceful

day. People doing their own business and

living their life...", "Intro1"),

Di Tabel 4.9, ChatGPT diminta untuk membuat teks dari cerita menjadi

lebih tebal dan memberikan referensi kode script, tetapi ChatGPT memberikan

hasil menggunakan bahasa pemrograman lain yaitu Java. Hasil yang diberikan

terkadang memberikan bahasa pemrograman yang dikira merupakan bahasa

pemrograman lain seperti Arduino, Java dan bahkan Mathematica tetapi sebagian

besar masih bisa dipakai karena hasil yang diberi mampu digunakan dengan lancar.

ChatGPT juga memiliki batas untuk memberi hasil. Bila melebihi batas

tertentu, ChatGPT akan menghentikan generasi. Hal ini bisa dilanjutkan dengan

menggunakan prompt “continue” atau menggunakan tombol “Continue

Generation”. Hasil akan tetap memiliki konteks yang sama dari prompt sebelumnya.

ChatGPT Plus juga digunakan untuk melakukan tes perbedaan dari ChatGPT yang

gratis. Perbedaannya adalah ChatGPT Plus memberikan respon yang lebih cepat

dan mampu memberikan batasan lebih banyak untuk generasi jawaban yang

panjang serta fitur tambahan lainnya. Tetapi, hasil yang didapat tetap sama

walaupun memiliki kecepatan yang lebih cepat.

4.5 Hasil Game

Menggunakan aset yang sudah dibuat menggunakan Leonardo.ai dan

Beatoven.ai, aset UI yang diambil dari website Kenney serta ide dan kode dari

ChatGPT, semua hasil yang diperlukan digabungkan dan membuat sebuah game

bernama “Plight of the Infected”. Game ini memiliki aspek roguelike yang

mendasar dimana pemain akan bertemu dengan kejadian acak yang merubah

statistik pemain secara langsung atau setelah memilih pilihan tertentu dan bila

pemain kalah, pemain harus mengulang dari awal.

Game ini memiliki enam scene yaitu menu utama (Main Menu), intro untuk

menjelaskan cerita sinopsis game, character untuk memilih karakter pemain, main

gameplay untuk pemain bermain, dan scene untuk menang atau kalah. Semua scene

sudah diberi musik dan diberikan gambar background. Pemain akan diletakkan di

menu utama dan bisa mengecek kredit untuk penggunaan aset tertentu dan siapa

yang membantu untuk membuat game. Gambar 4.7 menunjukkan menu utama dari

game.

Gambar 4.7 Scene menu utama game

Pemain bisa mulai bermain dengan mengeklik tombol “Play”, mengecek

kredit dengan “Credits” atau keluar dari game dengan menekan “Quit”. Pemain

juga bisa melewati intro game dengan mengeklik “Skip Intro”, mengatur slider

untuk volume suara musik dan dua tombol memilih bahasa Inggris atau bahasa

Indonesia saat bermain. “Credits” akan menunjukkan panel yang berisi beberapa

teks untuk memberikan kredit kepada siapa saja untuk penggunaan aset tertentu dan

menjelaskan apa saja yang digunakan untuk membuat hal tertentu.

Untuk membuat menu utama bisa dimulai dengan membuat sebuah canvas

dan panel. Canvas digunakan untuk menunjukkan bagian mana yang ditunjukkan

dengan menaruh kamera di dalam canvas serta menaruh beberapa panel. Panel

digunakan untuk menaruh berbagai macam hal seperti tombol, gambar, dan lain-

lainnya. Gambar 4.8 menunjukkan hal yang ada di dalam scene menu utama.

Gambar 4.8 Scene menu utama

Dimulai dengan panel pertama yaitu untuk meletakkan hal tertentu yang

bisa diinteraksi oleh pemain. Gambar untuk judul, membuat beberapa tombol serta

meletakkan toggle untuk bisa melewati intro game. Volume musik dari game bisa

diatur menggunakan slider. Panel untuk memberikan kredit juga dibuat, tetapi

hanya muncul setelah menekan tombol tersebut. Hal yang perlu dimasukkan adalah

tombol dengan sebuah background untuk mulai bermain, tombol mengecek kredit,

tombol keluar dari game, sebuah toggle untuk melewati intro game dan sebuah

slider untuk mengatur volume musik. Setelah menu utama sudah dibuat, scene intro

bisa dibuat untuk menjelaskan cerita. Gambar 4.8 menunjukkan intro dari game.

Gambar 4.9 Scene intro game

Intro game di Gambar 4.9 merupakan salah satu contoh penjelasan cerita

dari game. Intro memiliki enam gambar dan delapan kalimat untuk menjelaskan

cerita sesuai dari gambar. Intro ini digunakan untuk membuat pemain mengerti apa

yang terjadi di dalam game. Teks dan gambar perlu dimasukkan agar bisa

ditunjukkan serta diperlukan tombol untuk menunjukkan cerita dan gambar

selanjutnya (source code bisa dilihat di lampiran halaman 104-107). Setelah cerita

selesai atau pemain menyalakan “Skip Intro”, maka pemain akan dipindah menuju

scene character dimana pemain akan bermain seperti yang ada di Gambar 4.10.

Gambar 4.10 Scene character

 Gambar 4.10 menunjukkan salah satu kombinasi karakter yang bisa didapat

saat akan mulai bermain. Pemain akan diberi tiga dari 16 karakter yang sudah dibuat

dan memilih salah satu karakter. Tiap karakter memiliki berbagai macam batas

status yang berbeda sebagai berikut.

1. HP atau kesehatan pemain

2. EXP atau progress pemain

3. INF atau infeksi pemain

Untuk referensi, karakter biasa yang seimbang atau tidak memiliki

kelebihan memiliki 100 HP, batas EXP 50 dan batas INF 50. Target yang harus

diraih pemain setelah memilih karakter adalah mencapai batas EXP dan tidak

membuat HP pemain mencapai 0 atau memenuhi batas INF. Berikut adalah sebuah

gambar untuk menunjukkan salah satu status karakter.

Gambar 4.11 Pilihan karakter engineer

 Di Gambar 4.11, pemain memilih karakter engineer dengan menekan

gambar dari karakter. Di kanan ditunjukkan latar belakang pemain dan batas status

karakter yaitu batas HP 90, batas EXP 40 dan batas INF 30. Ini menunjukkan bahwa

karakter ini lebih cepat untuk menang, tetapi memiliki kekurangan yaitu batas HP

lebih sedikit dan batas INF lebih sedikit yang bisa membuat pemain kalah bila tidak

berhati-hati. Setelah pemain memilih karakter, pemain bisa menekan tombol

continue dan menuju ke scene baru yaitu scene gameplay.

Gambar 4.12 Scene gameplay

Gambar 4.12 menunjukkan layar bermain dan penjelasan secara singkat

mengenai cara bermain serta menjelaskan target yang harus dicapai agar menang

dan berusaha menghindari kondisi kalah. Proses pembuatan scene bisa dibuat

dengan cara yang sama yaitu menaruh panel untuk fitur utama bermain, tombol

yang diperlukan untuk bermain serta teks dan tempat gambar untuk menunjukkan

kejadian acak, karakter serta gambarnya.

Target dari pemain adalah mencapai batas EXP dan berusaha untuk

menahan HP pemain di atas 0 dan INF dibawah batas yang diberi. Game ini

memiliki dua tipe kejadian acak yaitu kejadian acak secara langsung dimana pemain

akan mendapatkan perubahan status secara langsung setelah kejadian acak ditemui

dan kejadian acak pilihan dimana pemain harus memilih salah satu pilihan untuk

melanjutkan bermain serta memberikan perubahan status setelah memilih pilihan

tersebut. Kejadian acak yang akan dialami oleh pemain akan mengubah status

dengan perubahan kecil maupun besar yang bisa mempengaruhi game. Berikut

merupakan salah satu contoh kejadian acak lansgung yang bisa dialami oleh pemain.

Gambar 4.13 Contoh kejadian acak langsung

 Kejadian acak diatas merupakan salah satu kejadian acak langsung yang

bisa dialami oleh pemain. Kejadian acak ini merubah status pemain secara langsung

serta menjelaskan kenapa kejadian acak tersebut merubah status tersebut.

Perubahan status juga dijelaskan mana saja yang sudah berubah dengan tanda

kurung yang menunjukkan perubahan status apa saja yang diubah. Gambar 4.14

menunjukkan salah satu kejadian acak pilihan.

Gambar 4.14 Contoh kejadian acak pilihan

Kejadian acak pilihan akan menunjukkan kejadian acak yang dialami sama

seperit kejadian acak langsung. Tetapi, kejadian ini tidak akan mengubah status

pemain secara langsung dan pemain harus memilih salah satu dari pilihan untuk

melanjutkan kejadian acak dan mendapatkan perubahan status pemain. Gambar

4.15 menunjukkan salah satu hasil dari pilihan dari kejadian di Gambar 4.14.

Gambar 4.15 Salah satu hasil dari kejadian acak dari Gambar 4.14

Hasil kejadian acak untuk Gambar 4.15 didapat dari memilih salah satu

pilihan di Gambar 4.14 yaitu memilih pilihan “Drink it”. Hasil dari pilihan dari tiap

kejadian acak pilihan bervariasi mulai dari tidak banyak pengaruh ke status pemain

sampai perubahan status pemain yang besar. Untuk membuat tiap tipe kejadian acak,

perlu dibuat script yang berbeda. Hal ini untuk membedakan kejadian acak karena

tipe kejadian acak yang bekerja secara berbeda. Untuk kejadian acak pilihan

diperlukan cara kerja yang berbeda dimana pemain mampu memilih pilihan untuk

merubah status pemain (source code bisa dilihat di lampiran halaman 108-109).

Dari tiap tipe kejadian acak, kejadian acak langsung memberikan perubahan

status secara langsung sementara kejadian acak pilihan memerlukan dua dari tiap

hal untuk memberikan perubahan status pemain untuk pilihan tertentu (contoh

kejadian acak bisa dilihat di lampiran halaman 109-110). Pemberian nama dan

nomor tertentu diberikan sesuai urutan yang diberi yaitu:

1. Nama kejadian acak

2. Judul sampingan kejadian acak

3. Deskripsi kejadian acak

4. 2 nama pilihan (khusus kejadian acak pilihan)

5. Perubahan HP

6. Perubahan EXP

7. Perubahan INF

8. Nama gambar

9. Tipe kejadian acak

Khusus kejadian acak pilihan, perubahan HP sampai INF di berikan dua kali

untuk menunjukkan perubahan status berbasis dari pilihan. Terlihat bahwa ada

Random.Range untuk perubahan status. Perubahan status ini bisa diacak untuk

mendapatkan hasil yang tidak dikira untuk membuat game lebih menarik dan

membuat game tidak monoton. Bila seandainya bahasa yang dipilih menggunakan

bahasa Indonesia, maka perlu membuat translasi. Untuk membuat translasi,

diperlukan Dictionary untuk menyimpan data yang ditandai dengan kunci tertentu

agar data tersebut bisa dipanggil dengan kunci tersebut (source code bisa dilihat di

lampiran halaman 120-121). Kode dibuat di dalam script baru dan tiap kejadian

acak akan memiliki berbagai macam kunci untuk tiap string atau teks. Untuk

menggunakan kunci tersebut, script ini harus dipanggil agar bisa dipakai (contoh

bisa dilihat di halaman 122).

Lalu tipe kejadian acak dimasukkan ke sebuah script untuk digunakan untuk

membuat sistem kejadian acak. Untuk itu, pemain perlu status untuk bisa mengerti

status dari pemain (source code bisa dilihat di lampiran halaman 130-136). Untuk

memberikan kejadian acak yang berbeda tiap kali, maka perlu diberikan

kesempatan untuk menampilkan kejadian tertentu. Kejadian acak juga harus bisa

ditampilkan lagi setelah beberapa kejadian acak yang berbeda sudah terjadi (source

code bisa dilihat di lampiran halaman 116). Kode menunjukkan bila kejadian acak

sudah ada di dalam sebuah daftar kejadian acak yang sudah terjadi ada 4, maka

kejadian acak terlama dimasukkan kembali ke daftar untuk kejadian acak yang bisa

terjadi.

Karena karakter bisa mati dan perlu bantuan lain selain mendapatkan

kejadian acak, maka perlu diberi bantuan tambahan. Setelah 5 kejadian acak sudah

terjadi, tombol “Explore” dirubah menjadi tombol “Action” untuk memberikan

kesempatan untuk pemain untuk mendapatkan perubahan status positif. Gambar

4.16 menunjukkan menu action dari game.

Gambar 4.16 Menu action

Menu ini menunjukkan berbagai macam aksi yang bisa dilakukan oleh

pemain serta instruksi untuk membantu pemain. Pemain bisa melewati aksi ini,

tetapi juga bisa mencoba melakukan aksi tertentu. Tiap aksi memberikan perubahan

status tertentu dan memiliki kesempatan sukses sebagai berikut. Tombol yang ada

di sis kiri menunjukkan aksi yang memiliki kesempatan tinggi untuk memberikan

perubahan status positif tinggi sementara sisi kanan menunjukkan kesempatan

sukses yang lebih kecil dan memberikan perubahan status yang lebih baik lagi tetapi

memberikan kekurangan bila gagal. Gambar 4.17 adalah salah satu contoh aksi

yang dipilih.

Gambar 4.17 Hasil aksi search

Gambar 4.17 menunjukkan hasil bila menekan aksi search. Hasil yang

diberi akan diacak dengan batas tertentu yang sudah dijelaskan di bawah tiap aksi.

Setelah pemain memilih satu aksi dengan hasil sukses atau tidak, pemain harus

menekan tombol continue untuk lanjut bermain. Bila pemain mencapai kondisi

menang yaitu mencapai batas EXP karakter, maka pemain akan dipindah ke scene

menang yang ditunjukkan di Gambar 4.18.

Gambar 4.18 Scene menang

Gambar 4.18 ditunjukkan apabila pemain mencapai batas EXP karakter.

Scene ini menjelaskan cerita tambahan apakah cara menyembuhkan infeksi bisa

ditemukan. Scene ini juga memiliki tombol untuk bermain ulang game dengan

menggunakan tombol “Restart” atau kembali ke menu utama dengan tombol “Main

Menu”. Bila salah satu kondisi kalah tercapai, pemain akan dipindahkan ke scene

kalah. Scene kalah memiliki kesamaan dari scene menang, tetapi memiliki kalimat

dan background yang berbeda dari scene menang. Gambar 4.19 menunjukkan salah

satu scene kalah yang bisa didapat oleh pemain.

Gambar 4.19 Salah satu scene kalah

Gambar 4.19 menunjukkan alasan mengapa pemain kalah dalam bermain

game. Alasan mengapa pemain kalah di Gambar 4.18 adalah bahwa HP atau

kesehatan pemain mencapai 0. Bila pemain mencapai batas infeksi karakter, pemain

juga akan dipindah ke scene kalah juga dengan teks berbeda. Untuk membuat scene

menang dan kalah, diperlukan pengaturan kondisi pemain (source code bisa dilihat

di lampiran halaman 134-135). Game yang dibuat memiliki berbagai macam

perubahan dari rencana yang ada di Bab 3 yaitu:

1. Tidak menggunakan sistem peta untuk membuat level, sistem melawan

musuh, sistem status effects dan sistem inventory,

2. Game hanya memberikan kejadian acak yang dialami dengan mengeklik

tombol “explore” dan mengubah status pemain berbasis dari kejadian acak

yang didapat,

3. Game akan berbasis situasi acak dan pemikiran strategis pemain untuk

menahan status tertentu,

4. Status pemain yang dipakai adalah kesehatan, progres dan infeksi.

Kejadian acak diambil secara acak dan bisa ditemui lagi bila empat tipe

kejadian acak yang sama sudah dimainkan. Jumlah total kejadian acak yang dibuat

menggunakan ChatGPT adalah 93 kejadian acak (65 kejadian langsung dan 28

kejadian pilihan) dengan berbagai macam keuntungan dan kerugian yang diatur

untuk membuat game lebih adil.

4.6 Hasil Testing

 Testing akan dilakukan untuk mengetes game untuk melihat apakah ada

keseimbangan yang diperlukan serta perubahan yang bisa dilakukan. Tes akan

menggunakan form yang memiliki 10 pertanyaan dari SUS (System Usability Scale)

untuk mengetes seberapa lancar bekerjanya game serta memberikan pertanyaan

tambahan untuk pendapat pengetes. Setiap pertanyaan akan diberi skala dari satu

yaitu tidak setuju sampai lima yaitu setuju.

 Hasil testing didapat dari 11 sukarelawan lelaki dan 1 pengetes perempuan

berumur antara 19-24 dari mahasiswa sampai pekerja di berbagai macam bidang.

Versi game untuk mengetes yang dipakai memiliki total 65 kejadian acak (45

kejadian langsung dan 20 kejadian pilihan) yang bisa ditemui pemain, batas status

pemain seperti kesehatan, progres dan infeksi 100 yang tidak memiliki sistem

karakter serta sistem aksi, dan kejadian acak mampu diulang lagi tanpa

memedulikan mana yang sudah ditemui serta belum ada sistem aksi serta sistem

karakter.

Pertanyaan yang diberi kepada pengetes adalah sebagai berikut:

1. Saya berencana untuk bermain game ini berulang kali

2. Saya merasa cara bermain game ini rumit untuk dimainkan

3. Saya merasa cara bermain game ini mudah untuk dimainkan

4. Saya membutuhkan bantuan dari orang lain atau pengembang game untuk

bermain game ini

5. Saya merasa fitur-fitur game ini berjalan dengan semestinya

6. Saya merasa ada banyak hal yang tidak konsisten (tidak serasi) dengan

game ini

7. Saya merasa orang lain akan memahami cara memainkan game ini dengan

cepat

8. Saya merasa game ini membingungkan

9. Saya merasa tidak ada hambatan dalam bermain game ini

10. Saya perlu mempelajari banyak hal dulu sebelum terbiasa bermain game

ini

11. Apakah anda memiliki pendapat untuk game ini?

12. Apakah Anda menemui masalah atau memerlukan penyeimbangan untuk

game?

Setelah menjawab semua pertanyaan tersebut, data dari pengetes akan diambil

dan diatur untuk sepuluh pertanyaan pertama untuk mengatur nilai SUS untuk

mengecek apakah game bisa dimainkan atau perlu perbaikan. Dua pertanyaan

lainnya digunakan untuk membuat game lebih baik dan mengatur masalah yang

dimiliki oleh para pengetes seperti:

1. Memberikan masalah yang ditemui oleh pengetes seperti masalah teknis

tertentu,

2. Perubahan dan tambahan fitur tertentu,

3. Menyeimbangkan perubahan status tertentu untuk kejadian acak spesifik,

Tabel 4.11 menunjukkan semua skor yang diberi oleh tiap pengetes untuk 10

pertanyaan pertama dengan skala 1 (tidak setuju) sampai 5 (sangat setuju):

Tabel 4.11 Data asli pengetes game

Tx/Px P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

T1 1 1 5 3 3 2 5 1 4 1

T2 4 1 5 2 3 2 4 2 5 2

T3 3 1 5 1 5 1 5 1 5 1

T4 5 1 5 1 4 2 5 2 5 1

T5 4 3 5 5 4 3 4 1 2 5

T6 4 2 4 2 4 3 4 3 4 3

T7 2 1 5 1 3 5 1 5 1 3

T8 4 1 5 1 5 4 5 1 2 1

T9 1 2 5 1 4 3 5 3 5 2

T10 3 1 5 2 4 2 5 1 5 2

T11 2 3 3 4 3 2 2 3 4 4

T12 4 2 4 1 4 2 4 2 5 2

Rata 3.08 1.58 4.67 2 3.83 2.58 4.08 2.08 3.91 2.25

Di Tabel 4.11, Tx memiliki arti tester atau pengetes ke-x dan Px memiliki

arti pertanyaan ke-x dimana pertanyaan yang diambil adalah 10 pertanyaan pertama.

Pengetes akan menilai 10 pertanyaan tersebut menurut pendapat tiap pengetes.

Gambar 4.20 menunjukkan grafik dari Tabel 4.11.

Gambar 4.20 Grafik rata-rata total skor pengetes

Dari gambar 4.19, terlihat bahwa P1 (Pertanyaan 1) memiliki nilai rata-rata

3.08. Pertanyaan ini menanyakan apakah pengetes akan bermain lagi atau tidak dan

hasil yang didapat menunjukkan bahwa rata-rata pemain hanya akan mengulang

bermain secukupnya.

Pertanyaan ganjil memiliki aspek positif dari game sementara pertanyaan

ganjil memiliki aspek negatif dari game. Pertanyaan ganjil memiliki skor rata-rata

di atas tiga yang menunjukkan game memiliki aspek positif yang banyak dan paling

besar di P3 yaitu 4.67 dimana sebagian besar pemain mengatakan bahwa game ini

mudah dimainkan. Pertanyaan genap memiliki skor rata-rata di sekitar 1.58 sampai

2.58 yang menunjukkan setengah dari pemain memiliki masalah dari game dimana

paling besar di P6 yaitu 2.58 dimana game tidak konsisten.

Setelah semua pengetes selesai mengetes game yang dibuat, nilai SUS dari

tiap pengetes bisa dihitung. Berikut di Tabel 4.12 menunjukkan hasil SUS untuk

tiap pengetes dari hasil Tabel 4.11.

Tabel 4.12 Data hasil SUS

Tx/Px P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 SUS

T1 0 4 4 2 2 3 4 4 3 4 75

T2 3 4 4 3 2 3 3 3 4 3 80

T3 2 4 4 4 4 4 4 4 4 4 95

T4 4 4 4 4 3 3 4 3 4 4 92.5

T5 3 2 4 0 3 2 3 4 1 0 55

T6 3 3 3 3 3 2 3 2 3 2 67.5

T7 1 4 4 4 2 0 0 0 0 2 42.5

T8 3 4 4 4 4 1 4 4 1 4 82.5

T9 0 3 4 4 3 2 4 2 4 3 72.5

T10 2 4 4 3 3 3 4 4 4 3 85

T11 1 2 2 1 2 3 1 2 3 1 45

T12 3 3 3 4 3 3 3 3 4 3 80

Total Skor SUS 872.5

Rata-Rata Skor SUS 72.70

Dari hasil yang didapat, skor yang didapat adalah 72.70. Menurut SUS, skor ini

menunjukkan bahwa game ini masih bisa dimainkan walaupun memiliki sedikit

masalah seperti cara bermain game dan aspek lainnya. Beberapa pendapat yang

diberi dari pengetes game adalah:

1. Permainan merasa monoton,

2. Tidak mengerti cara bermain,

3. Beberapa kata tidak terlihat,

4. Font yang tidak jelas.

Setelah mendapatkan pendapat pengetes, ada beberapa tambahan yang

diberikan untuk game yaitu:

1. Menambah 28 kejadian acak (20 kejadian acak langsung dan 8 kejadian

acak pilihan, membuat total kejadian acak menjadi 93) dan mengatur setiap

kejadian acak hanya bisa diulang setelah empat kejadian acak lainnya sudah

terjadi,

2. Mengubah batas progres dengan memberikan fitur karakter yang memiliki

berbagai macam batas status,

3. Menambah sistem aksi untuk tiap 5 kejadian acak

4. Mengatur warna background menjadi lebih gelap agar kalimat bisa dibaca,

5. Memberikan gambar untuk kejadian acak (86 gambar) dan karakter (16

karakter dengan total 48 gambar termasuk kondisi karakter)

6. Membuat versi Bahasa Indonesia serta versi Android, Mac dan WebGL.

4.7 Mengeluarkan Game di itch.io dan Pendapat Pemain

 Setelah game sudah selesai dibuat, game akan dikeluarkan di itch.io. Link

website game akan dibagikan ke berbagai komunitas untuk melihat pendapat orang

lain mengenai game yang dibuat. Untuk harga, game dikeluarkan dengan gratis atau

donasi. Untuk donasi, pemain bisa memberikan sumbangan dengan jumlah apapun.

Alasan ini karena ini merupakan game pertama yang dibuat dan kualitas game

masih sangat kecil dan tidak pantas untuk dijual dengan harga pasti.

 Game diumumkan sudah keluar dan bisa dimainkan dengan menggunakan

berbagai macam sosial media yaitu Instagram, beberapa server di Discord dan

Twitter dengan nama alias yaitu Craxzone. Saat game dikeluarkan, game akan

dimasukkan ke dalam kategori “Most recent” dimana game baru ditampilkan. Ini

agar bisa mendapatkan berbagai macam pemain dari sosial media maupun itch.io.

 Hasil jumlah orang yang melihat website game adalah 89 kali dan jumlah

download yang didapat adalah 12 orang. Tidak ada rating dan komentar yang diberi

setelah satu minggu game dikeluarkan. Oleh karena itu, lima pemain yang sudah

bermain serta enam pengetes game ditanya untuk pendapat apakah game yang

dibuat dengan tools AI bisa diterima oleh komunitas gaming. Semua kecuali satu

pengetes setuju bahwa game yang dibuat dengan tools AI mampu diterima karena

pemain tidak peduli game tersebut dibuat oleh AI atau tidak. Berikut adalah

beberapa pendapat spesifik yang diberi oleh pemain dan pengetes:

1. Salah satu pemain menyatakan bila hasil gambar yang diberikan orisinal

maka pemain mampu menerima dan tidak mampu diterima bila sebaliknya,

tetapi untuk kode program mampu diterima oleh pemain.

2. Satu pemain dan satu pengetes menyatakan tergantung kepada pasar dan

tema dari game tersebut. Satu pengetes dan satu pemain lain menyatakan

bahwa tergantung dari orang tersebut mengenai penggunaan AI, tetapi tetap

akan memainkan game tersebut.

3. Satu pengetes tidak setuju dikarenakan di era digital pembuatan sebuah

media menggunakan tools AI tidak memiliki banyak kreativitas.

Bab V

Penutup

5.1 Kesimpulan

Dari penelitian ini, pengembangan game bisa dilakukan dengan tools AI

tetapi perlu mencoba menggunakan berbagai macam cara prompting dan belajar

dengan tools AI tersebut untuk mendapatkan hasil yang cukup dengan waktu

membuat sebuah aset bisa bervariasi tergantung dari generasi yang didapat.

Pengembangan game dengan ChatGPT diatur untuk membuat ide game, berbagai

macam variasi kejadian acak yang diinginkan, atau bahkan membantu membuat

sebuah kode dengan menggunakan Few Shot Prompting dan Chain of Thought

Prompting. Leonardo.ai memerlukan prompt yang bisa digunakan untuk membuat

gambar tetapi diperlukan latihan dengan mencoba berulang kali, menggunakan alat

tertentu serta menggunakan model yang tepat. Pembuatan musik dengan

Beatoven.ai sangat mudah dilakukan hanya dengan memilih tema, suasana, durasi

dan tempo yang diperlukan dan bisa memberikan hasil musik yang berbeda bila

hasil tidak sesuai keinginan.

Untuk mendapatkan penjelasan yang tepat kepada tools AI terutama

ChatGPT dan Leonardo, adalah dengan memberikan prompt yang pasti akan

memberikan hasil yang mirip, memberikan referensi untuk memberikan hasil tepat,

mencoba generasi berkali-kali dan mengatur hasil untuk mendapatkan hasil yang

tepat. ChatGPT bisa memberikan hasil tepat bila dijelaskan menggunakan contoh

seperti menggunakan Few Shot Prompting dan Leonardo.ai bisa menggunakan

prompt yang konsisten untuk mendapatkan gaya seni yang tepat. Penggunaan tools

AI juga harus dipastikan bahwa hasil yang dibuat mampu digunakan untuk alasan

komersial. Hal ini perlu dimengerti dikarenakan tools AI yang diberi oleh sebuah

perusahaan yang membuat tools AI belum tentu memperbolehkan penggunaan

komersial kecuali sudah membeli subskripsi atau cara lain.

Rata-rata 12 pengetes menilai game dengan nilai SUS 72.70 dimana game

memiliki sedikit masalah, tetapi masih bisa dimainkan dan mampu menghibur

beberapa pengetes. Sebagian besar pengetes menyatakan pendapat dengan skala 1

yaitu tidak setuju sampai 5 yaitu setuju dan menyatakan bahwa game mudah untuk

dimainkan dengan hasil rata-rata 4.67 dari dan akan dimengerti oleh pemain lain

yang akan bermain game dengan rata-rata skala 4.08. Setengah dari pengetes

menyatakan bahwa game tidak konsisten dengan hasil rata-rata 2.58 dan perlu

mempelajari beberapa banyak hal dulu sebelum terbiasa bermain game dengan rata-

rata skala 2.25 dengan sistem skala yang sama.

Game yang dibuat menggunakan AI bisa dikomersialkan, tetapi tergantung

terhadap reaksi pemain serta kualitas game yang dibuat. Pemain tidak terlalu

memedulikan apakah game yang dibuat menggunakan tools AI atau tidak asalkan

ada game yang bisa dimainkan, tetapi bisa dianggap tidak kreatif karena dibuat oleh

AI dan juga tidak menerima karena dibuat oleh sesuatu yang bukan manusia.

5.2 Saran

Saran untuk pembuatan game adalah memastikan rencana yang dibuat

memiliki cara alternatif atau ide alternatif apabila menggunakan tools AI.

Alasannya adalah agar bisa melakukan perubahan terhadap rencana pembuatan

game yang tidak bisa dibuat, bisa diganti menggunakan rencana lain. Diingat bahwa

pembuatan game tidak pasti mengikuti rencana yang dibuat dikarenakan berbagai

macam aspek seperti kurang mengerti membuat sesuatu, aspek kehidupan, dan lain-

lain.

Saran kedua yaitu pengetesan dan publikasi mengenai game tersebut.

Pengetesan dari game harus direncanakan secara detil. Menggunakan SUS

merupakan salah satu cara paling dasar yang mampu digunakan untuk mengetes

game. Dengan hal ini, penelitian bisa berjalan dengan lancar dan mampu

mendapatkan data sebanyak mungkin dari tiap individual. Bila seandainya game

dikeluarkan ke toko tertentu, maka harus membagikan game tersebut secara publik

dengan berbagai macam cara seperti sosial media, periklanan dan berbagai macam

cara lainnya. Tanpa hal tersebut bila melakukan penelitian mengenai reaksi public

tentang game tersebut, maka hasil yang didapat tidak banyak.

Saran untuk peneliti lainnya yang ingin menggunakan tools AI untuk

membuat sebuah game adalah memastikan bisa mengerti untuk menggunakan alat

tertentu. Hasil yang dibuat oleh tools AI belum tentu memberikan hasil yang

diinginkan walaupun menggunakan prompt atau pilihan yang sama. Oleh karena

itu, tools AI tidak bisa digunakan untuk semuanya. Tools AI lebih baik digunakan

sebagai alat bantuan untuk mengecek bila kode salah atau tidak, memberikan

contoh kode, serta memberikan referensi bila diperlukan. Harus diingat bahwa

penggunaan semua tools AI belum tentu gratis dan belum tentu bisa digunakan

untuk alasan komersial. Pastikan membaca semua syarat dan ketentuan dari tiap

tools AI agar bisa membuat sebuah game lancar dan tidak melanggar apapun.

Daftar Pustaka

Allcorrect Group. (2022, February 4). The Indonesian Gaming Market. Retrieved from

Allcorrect Game Content Studio: https://allcorrectgames.com/insights/indonesia/

Amalia, E. I. (2022, August 20). Midjourney, AI yang Bisa Buat Karya Seni Melalui

Discord. Retrieved from Hybrid.co.id: https://hybrid.co.id/post/apa-itu-

midjourney

Andrew. (2023, March 3). Stable Diffusion prompt: a definitive guide. Retrieved from

Stable Diffusion Art: https://stable-diffusion-art.com/prompt-guide/

Apperley, T. H. (2008). Genre and game studies: Toward a critical approach to video

game genres. SAGE Publications, 9-18.

Argentics. (2018, October 17). PROS AND CONS OF CHOOSING 2D VS 3D

ANIMATION. Retrieved from Argentics: https://www.argentics.io/pros-and-

cons-of-choosing-2d-vs-3d-animation

Beatoven Private Limited. (2023). How it works. Retrieved from beatoven.ai:

https://www.beatoven.ai/

Brian. (2022, August 17). OneShot: World Machine Edition release date set for

September on Switch. Retrieved from Nintendo Everything:

https://nintendoeverything.com/oneshot-world-machine-edition-release-date-set-

for-september-on-switch/

Clement, J. (2022, October 18). COVID-19 impact on the gaming industry worldwide -

Statistics & Facts. Retrieved from statista:

https://www.statista.com/topics/8016/covid-19-impact-on-the-gaming-industry-

worldwide/#editorsPicks

Copeland, B. (2023, February 22). artificail intelligence. Retrieved from Britannica:

https://www.britannica.com/technology/artificial-intelligence

darkcritz. (2021, May 14). Godot, the open source game engine is updated to version 3.3.

Retrieved from Linuxaddicted: https://www.linuxadictos.com/en/godot-open-

source-game-engine-is-updated-to-version-3-3.html

Epic Games, Inc. (n.d.). Level Editor. Retrieved from Unreal Engine:

https://docs.unrealengine.com/5.1/en-US/level-editor-in-unreal-engine/

Ffoulkes, G. (2013, December 24). One Dreamer. Retrieved from One Dreamer:

https://www.one-dreamer.com/thegame/

Futurlab. (2022, July 14). PowerWash Simulator. Retrieved from Steam:

https://store.steampowered.com/app/1290000/PowerWash_Simulator/

Gameace Creative Studio. (2021, December 10). Five Key Game Development Stages: A

Look Behind The Scenes. Retrieved from Gameace Creative Studio: https://game-

ace.com/blog/game-development-

stages/#:~:text=A%20game%20development%20process%20typically,%2C%20

and%20post%2Dproduction%20maintenance.

GitLab. (n.d.). System Usability Scale. Retrieved from GitLab:

https://about.gitlab.com/handbook/product/ux/performance-indicators/system-

usability-scale/

Halliday, E. (2020, October 10). Gaming History: Where does the term ‘Roguelike’ come

from? Retrieved from Fansided: https://apptrigger.com/2020/10/10/gaming-

history-roguelike/

Hersko, T. (2021, July 2). ‘Doki Doki Literature Club Plus!’ Review: The Best Way to

Play the Indie Horror Gem. Retrieved from Indie Wire:

https://www.indiewire.com/2021/07/doki-doki-literature-club-plus-review-indie-

horror-game-1234648204/

Hopoo Games. (2013, November 9). Risk of Rain. Retrieved from Steam:

https://store.steampowered.com/app/248820/Risk_of_Rain/

IGN. (2016, October 21). Sid Meier's Civilization VI. Retrieved from IGN:

https://civilization.com/news/entries/civilization-vi-10-tips-to-start-playing/

Irawan, P. L., Tandiono, F., & Setiawan, H. (2018). Rancang Bangun Game Edukasi

untuk Pengenalan Dasar Logika Algoritma Berbasis Mobile. Network

Engineering Research Operation, 164-165.

Johnson, L. (2022, November 12). The Elder Scrolls V: Skyrim Special Edition PC

Review. Retrieved from IGN: https://www.ign.com/articles/2016/11/01/skyrim-

special-edition-pc-review

Kleinings, H. (2022, November 16). What is AIaaS? Your Guide to AI as a Service.

Retrieved from Levity: https://levity.ai/blog/aiaas-guide

Lim, S., & Schmälzle, R. (2022). Artificial Intelligence for Health Message Generation:

Theory, Method, and an Empirical Study Using Prompt Engineering. Arxiv, 1-10.

Martin, J. (2020, October 20). What is a Game Engine? Retrieved from University of

Silicon Valley: https://usv.edu/blog/what-is-a-game-engine/

Mastery Coding. (2021, July 6). Why Unity is the Best Game Engine for Beginners.

Retrieved from Mastery Coding: https://www.masterycoding.com/blog/unity-

best-beginner-engine

Motion Twin. (2018, August 7). Dead Cells. Retrieved from Steam:

https://store.steampowered.com/app/588650/Dead_Cells/

NNW, A. T. (2018, December 28). Tips Membuat Game Design Document (GDD) Bagi

Pemula. Retrieved from Gamelab Indonesia: https://www.gamelab.id/news/54-

tips-membuat-game-design-document-gdd-bagi-pemula

Parks, A. (2022, December 8). The Complete History of Tennis for Two. Retrieved from

History Computer: https://history-computer.com/tennis-for-two-complete-

history/

Rizkinaswara, L. (2021, May 9). Industri Game Tumbuh Pesat, Perlu Edukasi Terhadap

Pengguna. Retrieved from Kominfo:

https://aptika.kominfo.go.id/2021/05/industri-game-tumbuh-pesat-perlu-edukasi-

terhadap-pengguna/

Roose, K. (2022, September 2). An A.I.-Generated Picture Won an Art Prize. Artists

Aren't Happy. Retrieved from The New York Times:

https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-

artists.html

RPGMakerWeb. (n.d.). The RPG Maker Series' Newest Offering: RPG Maker MZ.

Retrieved from RPG Maker: https://www.rpgmakerweb.com/products/rpg-

maker-mz

Sauro, J. (2011, February 3). Measuring Usability with the System Usability Scale (SUS).

Retrieved from MeasuringU: https://measuringu.com/sus/

Spiegel, S. (2015, November 18). Undertale: Not Your Average RPG. Retrieved from

The Roaring Times: https://www.pitmanroaringtimes.com/2015/11/undertale-

not-your-average-rpg/

Stegner, B. (2021, October 24). What Are Roguelike and Roguelite Video Games?

Retrieved from Make Use Of: https://www.makeuseof.com/what-are-roguelike-

and-roguelite-video-games/

Stuart, K. (2019, October 15). Fortnite Chapter 2 is live with new map, weapons and

more. Retrieved from The Guardian:

https://www.theguardian.com/games/2019/oct/15/fortnite-chapter-2-live-news-

map-weapons-black-hole-characters

Team Fortress 2 Official WIki. (n.d.). Backpack. Retrieved from Team Fortress 2 Official

WIki: https://wiki.teamfortress.com/wiki/Backpack

Team Fortress 2 Official Wiki. (n.d.). Heads-up display. Retrieved from Team Fortress 2

Official Wiki: https://wiki.teamfortress.com/wiki/Heads-up_display

Team Fortress 2 Official Wiki. (n.d.). Main menu. Retrieved from Team Fortress 2

Official Wiki: https://wiki.teamfortress.com/wiki/Main_menu

techopedia. (2017, January 26). Massively Multiplayer Online Role-Playing Game

(MMORPG). Retrieved from techopedia:

https://www.techopedia.com/definition/1919/massively-multiplayer-online-role-

playing-game-mmorpg

Tiernan, J. (2022, November 18). Is AI Really an Art and Design Killer? Retrieved from

Vectornator: https://www.vectornator.io/blog/will-ai-replace-artists/

Tretkoff, E. (2008, October). October 1958: Physicist Invents First Video Game.

Retrieved from APS:

https://www.aps.org/publications/apsnews/200810/physicshistory.cfm

Vollmer, A. (2014). How to Make Great Game Tutorials. Retrieved from YouTube:

https://www.youtube.com/watch?v=Uf7xLHUpKHE

Wang, Y., Shen, S., & Lim, B. Y. (2023). RePrompt: Automatic Prompt Editing to Refine

AI-Generative Art. Arxiv, 1-11.

White, S. (2018, March 20). Valley Forged: How One Man Made the Indie Video Game

Sensation Stardew Valley. Retrieved from GQ:

https://www.gq.com/story/stardew-valley-eric-barone-profile

Widodo, R. B., Swastika, W., & Yuswanto. (2020). Pembelajaran Game Edukasi Dengan

Object-Oriented Programming pada Jenjang Sekolah Menengah Pertama. Difusi

Iptek, 51-52.

Wolff, T. (2023, February 8). From “Zero-Shot” To “Chain Of Thought”: Prompt

Engineering & Choosing The Right Prompt Types (ChatGPT & GPT-3).

Retrieved from Medium: https://medium.com/mlearning-ai/from-zero-shot-to-

chain-of-thought-prompt-engineering-choosing-the-right-prompt-types-

88800f242137

Wong, P. (2016, April 3). Counter Strike: Global Offensive is great fun and actually

realistic [Review]. Retrieved from Young Post:

https://www.scmp.com/yp/discover/entertainment/tech-

gaming/article/3066274/counter-strike-global-offensive-great-fun-and

YoYo Games Ltd. (2022, May 4). GameMaker. Retrieved from Steam:

https://store.steampowered.com/app/1670460/GameMaker/

Lampiran

Lampiran gambar yang digunakan untuk game

Menu

Utama

Cerita 1

Cerita 2

Lampiran gambar yang digunakan untuk game lanjutan (1)

Cerita 3

Cerita 4

Cerita 5

Lampiran gambar yang digunakan untuk game lanjutan (2)

Cerita 6

Menu

Gameplay

Scene

menang

Lampiran gambar yang digunakan untuk game lanjutan (3)

Scene

kalah

Judul

game

Lampiran prompt yang digunakan untuk membuat gambar

Menu Utama

Total generasi: 41 gambar

Lampiran prompt yang digunakan untuk membuat gambar lanjutan (1)

Cerita 1

Catatan: Menggunakan hasil di Cerita 2 untuk

referensi

Total generasi: 46 gambar

Cerita 2

Total generasi: 40 gambar

Cerita 3

Total generasi: 15 gambar

Cerita 4

Total generasi: 16 gambar

Lampiran prompt yang digunakan untuk membuat gambar lanjutan (2)

Cerita 5

Total generasi: 10 gambar

Cerita 6

Total generasi: 1 gambar

Menu

Gameplay

Total generasi: 20 gambar

Lampiran prompt yang digunakan untuk membuat gambar lanjutan (3)

Scene menang

Total generasi: 78 gambar

Scene kalah

Total generasi: 76 gambar

Judul game

Catatan: Menggunakan gambar lain untuk referensi

menggambar:

Total generasi: 8 gambar

Lampiran prompt dan hasil yang digunakan untuk membuat cerita sinopsis

Prompt

Give me a background story about a disease called Infinity Infection that

makes people aggressive and makes them unintelligible and transform into a

monster known as the "Lost Ones". The infection caused only an eight of the

planet survived by hiding (does not have any resistance to the disease). One

group managed to make a suppressant to slow down the infection. The group

realized they need more resources and manpower to make the suppressants

widely available. So, they recruited a group of early infected survivors (they

were given a device that will let the group knows when they die by other causes

or transformed into the Lost Ones) to find resources and recruit other

survivors in these wicked lands (these group of early infected survivors will

always die in the journey).

(Menggunakan Few-Shot Prompting)

Hasil

In the year 2035, a mysterious disease known as the Infinity Infection swept

across the world, leaving in its wake destruction and chaos. The disease was

highly contagious and caused those infected to become aggressive and

unintelligible. As the disease progressed, those infected would transform into

monstrous creatures known as the "Lost Ones," with a insatiable hunger for

flesh.

As the infection spread, it quickly became apparent that there was no known

cure. Governments and organizations around the world struggled to contain

the disease, but it was too late. Within a matter of months, only an eighth of

the planet's population remained, with the rest having succumbed to the

disease or been transformed into the Lost Ones.

Amid all the destruction, a small group of survivors managed to develop a

suppressant that could slow down the infection. Realizing the potential of this

discovery, the group set out to create a widespread supply of the suppressant,

which would require additional resources and manpower.

Lampiran prompt dan hasil yang digunakan untuk membuat cerita sinopsis

lanjutan

Hasil

In a bold move, the group decided to recruit a team of early infected survivors,

providing them with a device that would notify the group when the individuals

either died from other causes or transformed into the Lost Ones. The group

sent this team on a dangerous mission to scavenge for resources and recruit

other survivors in the wastelands left behind by the Infinity Infection.

The journey was perilous, with the team facing constant danger from both the

disease and the Lost Ones. Despite the risks, the team continued to push

forward, driven by the hope that their efforts would ultimately lead to a cure

for the Infinity Infection and the restoration of society.

Over time, the team grew in number, as they encountered other survivors and

brought them into the fold. Together, they battled against the odds, facing

unimaginable challenges and overcoming impossible obstacles. And while

they may have lost some of their number along the way, their determination

and resilience never wavered, as they continued to fight for a future in a world

forever changed by the Infinity Infection.

Lampiran prompt dan hasil yang digunakan untuk membuat nama grup

Prompt

Give me three lists of names of a group. The first one of the list is a group that

will make suppressants that will suppress the Infinity Infection disease. The

second one is the list of a group that will help the group that will help making

the suppressants by finding resources and recruiting other survivors in these

wicked lands (the group contains early infected survivors that is given a

gadget to signal the suppressants makers when either they died from the

Infinity Infection, transforming them into the Lost Ones or died by another

cause). The third one is combination of both two groups, representing the final

hope of the world.

(Menggunakan Few-Shot Prompting)

Hasil

Suppressant Makers:

1. New Dawn Pharmaceuticals

2. Vital Inhibitors Group

Lampiran prompt dan hasil yang digunakan untuk membuat nama grup

lanjutan

Hasil

3. The Cure Seekers

4. Project Phoenix

5. The Infinity Defense Alliance

6. The Healing Circle

7. Pandemic Response Team

8. The Resilience Initiative

9. The Infection Suppression Task Force

10. The Resistance Remedy Collective

Resource Gatherers and Recruiters:

1. The Outpost Raiders

2. Scavenger Syndicate

3. The Reclamation Society

4. Wasteland Avengers

5. Frontier Force

6. The Survivalists' Guild

7. Resilient Reconnaissance Squad

8. The Hope Seekers

9. Horizon Hounds

10. The Recovery Brigade

Combined Group:

1. The Phoenix Circle

2. The Immune Vanguard

3. The Restoration Alliance

4. The Resurgence Coalition

5. The Infinity Crusaders

6. The Hope Renewal Project

7. The Reclamation Initiative

8.The Recovery Corps

9. The Salvation Syndicate

10. The Survivors' Union

Lampiran prompt yang digunakan untuk membuat kejadian acak

Prompt

Give me a list of 10 random events where the player get stat changes after

picking one of 2 choices when encountering it. The events will be about sudden

psychological changes with good and bad results or both on the post-

apocalyptic theme. The stats are:

1. HP (Health). Max is 100. Can decrease or increase. Reach 0 and player

dies.

2. EXP (Exploration). Max is 100. Reach 100 to win. Most events will give at

least +1 EXP

3. INF (Infection). Max is 100. Reach 100, the player dies. Some events will

give at least +1 INF

Example of events:

Event Name - Event Subtitle - Event Description

Choice Name: New Subtitle - New Description (+/-x HP, +/-x EXP, +x INF)

Choice Name: New Subtitle - New Description (+/-x HP, +/-x EXP, +x INF)

It doesnt have to contain every stats, but all stats can be changed

(Menggunakan Few-Shot Prompting)

Lampiran hasil yang didapat untuk membuat kejadian acak

Hasil

Certainly! Here are 10 random events centered around sudden psychological

changes with varying outcomes in a post-apocalyptic setting:

1. Hallucinatory Mirage - Mind's Deception - You encounter a captivating

mirage. Will you embrace its allure or resist its grasp?

Choice 1: Surrender to Illusion - Lose yourself in the hallucination, gaining a

momentary respite from reality. (-10 HP, +5 EXP)

Choice 2: Break the Illusion - Fight against the mirage, grounding yourself in

reality. (+5 HP, -5 EXP)

2. Whispering Shadows - Eerie Whispers - Mysterious whispers surround you,

beckoning you to heed their call. Will you succumb to curiosity?

Choice 1: Embrace the Shadows - Follow the whispers, unraveling their

cryptic secrets. (+5 EXP, +1 INF)

Lampiran hasil yang didapat untuk membuat kejadian acak lanjutan (1)

Hasil

Choice 2: Resist the Temptation - Ignore the whispers and maintain your

focus. (-5 HP, -1 INF)

3. Paranoia's Grip - Distrustful Whispers - Paranoia consumes your thoughts,

breeding suspicion among your comrades. Will you act on your fears?

Choice 1: Trust No One - Heighten your guard, questioning the intentions of

others. (+1 INF)

Choice 2: Overcome Paranoia - Resist the urge to succumb to fear, fostering

trust and unity. (+5 EXP)

4. Delusions of Grandeur - Illusory Dominion - Grandiose delusions cloud

your perception, granting you a false sense of power. Will you embrace the

delusions?

Choice 1: Embrace the Illusion - Revel in your imagined supremacy, taking

bold actions. (+10 HP, -5 EXP)

Choice 2: Reject the Illusion - Dispel the delusions, grounding yourself in

reality. (-5 HP, +5 EXP)

5. Memory's Echo - Haunting Memories - Vivid memories from the past flood

your mind, triggering intense emotions. Will you confront them?

Choice 1: Relive the Memories - Dive into the recollections, seeking closure

and understanding. (-5 HP, +5 EXP)

Choice 2: Suppress the Memories - Push the memories aside, focusing on the

present. (+5 HP, -5 EXP)

6. Despair's Embrace - Abyss of Sorrow - Overwhelming despair engulfs you,

threatening to shatter your spirit. Will you succumb to hopelessness?

Choice 1: Embrace the Despair - Allow yourself to wallow in despair,

accepting its grip. (+5 HP, -5 EXP)

Choice 2: Defy the Despair - Rise above the darkness, finding strength in

adversity. (-5 HP, +5 EXP)

7. Manic Frenzy - Unbridled Energy - A surge of manic energy courses

through your veins, fueling impulsive actions. Will you surrender to the

frenzy?

Choice 1: Embrace the Frenzy - Channel the energy into a reckless burst of

action. (-5 HP, +5 EXP)

Lampiran hasil yang didapat untuk membuat kejadian acak lanjutan (2)

Hasil

Choice 2: Calm the Frenzy - Find ways to ground yourself, reining in the

manic impulses. (+5 HP, -5 EXP)

8. Apathy's Grip - Numb Indifference - A wave of apathy washes over you,

numbing your emotions. Will you succumb to the indifference?

Choice 1: Embrace the Apathy - Allow yourself to disconnect, shielding

yourself from pain. (+5 EXP, +1 INF)

Choice 2: Reject the Apathy - Fight against the numbness, seeking to reconnect

with your emotions. (-5 HP, -1 INF)

9. Obsess

Kode untuk game:

MainMenu.cs:

using UnityEngine;

using UnityEngine.SceneManagement;

using UnityEngine.UI;

public class MainMenu : MonoBehaviour

{

 public GameObject creditsPanel;

 private bool skipIntro = false;

 public GameObject skipIntroToggle;

 void Start()

{

 // Load the state of the skip intro toggle from player prefs

 skipIntro = PlayerPrefs.GetInt("SkipIntro", 0) == 1;

 skipIntroToggle.GetComponent<Toggle>().isOn = skipIntro;

}

 public void PlayIntro()

{

 SceneManager.LoadScene("Intro");

 }

public void PlayGame()

{

 if (skipIntro ||skipIntroToggle.GetComponent<Toggle>().isOn)

 {

 SceneManager.LoadScene("Main Gameplay");

 }

 else

 {

 skipIntroToggle.SetActive(false);

// Disable the skip intro toggle when the intro is played

 SceneManager.LoadScene("Intro");

 }

 }

 public void ShowCredits()

 {

 creditsPanel.SetActive(true);

 }

 public void HideCredits()

 {

 creditsPanel.SetActive(false);

 }

 public void QuitGame()

 {

 Application.Quit();

 }

 public void OnSkipIntroToggle()

 {

 skipIntro = skipIntroToggle.GetComponent<Toggle>().isOn;

 PlayerPrefs.SetInt("SkipIntro", skipIntro ? 1 : 0);

 }

}

VolumeManager.cs:

using UnityEngine;

using UnityEngine.UI;

using TMPro;

public class VolumeManager : MonoBehaviour

{

 [SerializeField] private Slider musicSlider = null;

 [SerializeField] private TextMeshProUGUI musicText = null;

 private void Start()

 {

 LoadValues();

DontDestroyOnLoad(gameObject); // Prevents the object from

being destroyed on scene load

 }

 public void MusicSlider(float volume)

 {

 musicText.text = volume.ToString("0.0");

 AudioListener.volume = volume;

 SaveVolume();

 }

 public void SaveVolume()

 {

 float volumeValue = musicSlider.value;

 PlayerPrefs.SetFloat("MusicValue", volumeValue);

 LoadValues();

 }

 public void LoadValues()

 {

float volumeValue = PlayerPrefs.GetFloat("MusicValue", 0.5f);

 musicSlider.value = volumeValue;

 AudioListener.volume = volumeValue;

 }

}

IntroManager.cs:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using TMPro;

using UnityEngine.SceneManagement;

public class IntroManager : MonoBehaviour

{

 public Image[] storyImages;

 public TextMeshProUGUI storyText;

 public Button nextButton;

 [SerializeField] private Image eventImage;

 private int currentStoryIndex = 0;

 private StoryData[] stories = {

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o1"), "Intro1"),

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o2"), "Intro2"),

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o3"), "Intro3"),

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o4"), "Intro4"),

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o5"), "Intro5"),

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o6"), "Intro6"),

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o7"), "Intro7"),

 new

StoryData(LocalizationManager.instance.GetTranslatedText("intr

o8"), "Intro8")};

 private void Start()

 {

 ShowStory(currentStoryIndex);

 }

 private void Update()

 {

 if (Input.GetMouseButtonDown(0) &&

nextButton.gameObject.activeSelf)

 {

 currentStoryIndex++;

 if (currentStoryIndex < stories.Length)

 {

 ShowStory(currentStoryIndex);

 }

 else

 {

 nextButton.gameObject.SetActive(false);

 // Unload the intro scene and load the next

scene here

 SceneManager.LoadScene("Main Gameplay");

 }

 }

 }

 private void ShowStory(int index)

 {

 StoryData story = stories[index];

 ClearImages();

 ShowImage(story.imageName);

 ClearText();

 StartCoroutine(ShowText(story.text));

 // Disable the Next button until the text is fully

displayed

 nextButton.interactable = false;

 nextButton.gameObject.SetActive(false);

 }

 private void ShowImage(string imageName)

 {

 for (int i = 0; i < storyImages.Length; i++)

 {

 Image image = storyImages[i];

 if (image.name == imageName)

 {

 // Activate the current image

 image.gameObject.SetActive(true);

 }

 else

 {

 // Deactivate the previous images

 image.gameObject.SetActive(false);

 }

 }

 }

 private void ClearImages()

 {

 for (int i = 0; i < storyImages.Length; i++)

 {

 storyImages[i].gameObject.SetActive(false);

 }

 }

 private IEnumerator ShowText(string text)

 {

 for (int i = 0; i <= text.Length; i++)

 {

 storyText.SetText(text.Substring(0, i));

 yield return new WaitForSeconds(0.01f);

 }

 nextButton.gameObject.SetActive(true);

 }

 private void ClearText()

 {

 storyText.SetText("");

 }

}

public class StoryData

{

 public string text;

 public string imageName;

 public StoryData(string text, string imageName)

 {

 this.text = text;

 this.imageName = imageName;

 }

}

PlayerStats.cs:

using UnityEngine;

using UnityEngine.UI;

using TMPro;

using UnityEngine.SceneManagement;

public class PlayerStats : MonoBehaviour

{

 [SerializeField] public int health = 0;

 [SerializeField] public int exploration = 0;

 [SerializeField] public int infection = 0;

 [SerializeField] public int maxHealth = 100;

 [SerializeField] public int maxExploration = 50;

 [SerializeField] public int maxInfection = 50;

 public Character selectedCharacter;

 [SerializeField] private TextMeshProUGUI healthText;

 [SerializeField] private TextMeshProUGUI explorationText;

 [SerializeField] private TextMeshProUGUI infectionText;

 [SerializeField] private Image characterImage;

 [SerializeField] private TextMeshProUGUI

characterNameText;

 private void Start()

 {

 maxHealth = PlayerPrefs.GetInt("MaxHealth",

maxHealth);

 maxExploration = PlayerPrefs.GetInt("MaxExploration",

maxExploration);

 maxInfection = PlayerPrefs.GetInt("MaxInfection",

maxInfection);

 // Retrieve the selected character's image name from

PlayerPrefs

 string characterImageName =

PlayerPrefs.GetString("SelectedCharacterImage");

 string characterName =

PlayerPrefs.GetString("SelectedCharacterName");

 // Load the character's sprite from the Resources

folder using the image name

 Sprite characterSprite =

GetCharacterSprite(characterImageName);

 if (characterImage != null)

 {

 // Set the character's sprite to the

characterImage component

 characterImage.sprite = characterSprite;

 }

 if (characterNameText != null)

 {

 characterNameText.text = characterName;

 }

 health = maxHealth;

 exploration = 0;

 infection = 0;

 UpdateHealthText();

 UpdateExplorationText();

 UpdateInfectionText();

 }

 public void ModifyHealth(int amount)

 {

 health += amount;

 health = Mathf.Clamp(health, 0, maxHealth); // Use

maxHealth here instead of selectedCharacter.maxHealth

 UpdateHealthText();

 CheckForLoss();

 }

 public void ModifyExploration(int amount)

 {

 exploration += amount;

 exploration = Mathf.Clamp(exploration, 0,

maxExploration); // Use maxExploration here instead of

selectedCharacter.maxExploration

 UpdateExplorationText();

 CheckForWin();

 }

 public void ModifyInfection(int amount)

 {

 infection += amount;

 infection = Mathf.Clamp(infection, 0, maxInfection);

// Use maxInfection here instead of

selectedCharacter.maxInfection

 UpdateInfectionText();

 CheckForLoss();

 }

 public int GetExplorationValue()

 {

 return exploration;

 }

 public int GetInfectionValue()

 {

 return infection;

 }

 public int GetHealthValue()

 {

 return health;

 }

 private void UpdateHealthText()

 {

 if (healthText != null)

 {

 healthText.text = "HP: " + health.ToString() + " /

" + maxHealth;

 }

 }

 private void UpdateExplorationText()

 {

 if (explorationText != null)

 {

 explorationText.text = "EXP: " +

exploration.ToString() + " / " + maxExploration;

 }

 }

 private void UpdateInfectionText()

 {

 if (infectionText != null)

 {

 infectionText.text = "INF: " +

infection.ToString() + " / " + maxInfection;

 }

 }

 private void CheckForWin()

 {

 if (exploration >= maxExploration)

 {

 string gameOverText =

LocalizationManager.instance.GetTranslatedText("wintext");

 PlayerPrefs.SetString("GameOverText",

gameOverText);

 SceneManager.LoadScene("Win Screen");

 }

 }

 private void CheckForLoss()

 {

 if (health <= 0 || infection >= maxInfection)

 {

 string gameOverText = "";

 if (health <= 0)

 {

 gameOverText =

LocalizationManager.instance.GetTranslatedText("hplosetext");

 }

 else if (infection >= maxInfection)

 {

 gameOverText =

LocalizationManager.instance.GetTranslatedText("inflosetext");

 }

 // Pass the game over text to the next scene

 PlayerPrefs.SetString("GameOverText",

gameOverText);

 SceneManager.LoadScene("Game Over Scene");

 }

 }

 private Sprite GetCharacterSprite(string

characterImageName)

 {

 string imagePath = "CharPFP/" + characterImageName;

 return Resources.Load<Sprite>(imagePath);

 }

}

MainButtonController.cs:

using UnityEngine;

using UnityEngine.UI;

public class MainButtonController : MonoBehaviour

{

 public GameObject mainPanel;

 public GameObject statusPanel;

 public Button exploreButton;

 public Button statusButton;

 public RandomEventSystem randomEventSystem; // Reference

to the RandomEventSystem component

 void Awake()

 {

 // Show the main panel and hide the others

 mainPanel.SetActive(true);

 statusPanel.SetActive(false);

 // Add listeners to the buttons

 exploreButton.onClick.AddListener(ShowMainPanel);

 statusButton.onClick.AddListener(ToggleStatusPanel);

 // Set the explore button interactable to true

initially

 exploreButton.interactable = true;

 }

 void ShowMainPanel()

 {

 Debug.Log("Showing main panel");

 mainPanel.SetActive(true);

 statusPanel.SetActive(false);

 }

 public void HandleButtonClick()

 {

 Debug.Log("Event Generated");

randomEventSystem.TriggerEventType(randomEventSystem.immediate

Events, randomEventSystem.choiceEvents,

randomEventSystem.playerStats);

 }

 void ShowStatusPanel()

 {

 Debug.Log("Showing status panel");

 mainPanel.SetActive(false);

 statusPanel.SetActive(true);

 exploreButton.interactable = false;

 }

 void ToggleStatusPanel()

 {

 if (statusPanel.activeSelf)

 {

 ShowMainPanel();

 exploreButton.interactable = true;

 }

 else

 {

 ShowStatusPanel();

 }

 }

}

ImmediateEvent.cs:

public ImmediateEvent(string nameKey, string subtitleKey,

string descriptionKey, int healthMod, int explorationMod, int

infectionMod, string image, string type)

 {

 eventName =

LocalizationManager.instance.GetTranslatedText(nameKey);

 eventSubtitle =

LocalizationManager.instance.GetTranslatedText(subtitleKey);

 eventDescription =

LocalizationManager.instance.GetTranslatedText(descriptionKey)

;

 healthModifier = healthMod;

 explorationModifier = explorationMod;

 infectionModifier = infectionMod;

 imageName = image;

 eventType = type;

 }

 public void TriggerEvent(PlayerStats playerStats)

 {

 // Modify player stats based on event modifiers

 playerStats.ModifyHealth(healthModifier);

 playerStats.ModifyExploration(explorationModifier);

 playerStats.ModifyInfection(infectionModifier);

 }

 public static List<ImmediateEvent> immediateEvents = new

List<ImmediateEvent>()

{

 new ImmediateEvent("ievent1name", "ievent1asub",

"ievent1adesc",

 5, 1, 0, "GasStationDeserted", "Positive"),

 new ImmediateEvent("ievent1name", "ievent1bsub",

"ievent1bdesc",

 1, 1, 1, "BadSnacks", "Positive"),

ChoiceEvent.cs:

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using TMPro;

[System.Serializable]

public class ChoiceEvent

{

 public string eventName;

 public string eventSubtitle;

 public string eventDescription;

 public string imageName;

 public string choice1Text;

 public string choice2Text;

 public int choice1HealthModifier;

 public int choice1ExplorationModifier;

 public int choice1InfectionModifier;

 public int choice2HealthModifier;

 public int choice2ExplorationModifier;

 public int choice2InfectionModifier;

 public string newSubtitle1;

 public string newSubtitle2;

 public string newDescription1;

 public string newDescription2;

 public Button choice1Button;

 public Button choice2Button;

 public string eventType;

 public float typingSpeed = 0.01f;

 public ChoiceEvent(string nameKey, string subtitleKey,

string descriptionKey, string choice1TextKey, string

choice2TextKey,

 int choice1HealthModifier, int choice1ExplorationModifier,

int choice1InfectionModifier, int choice2HealthModifier,

 int choice2ExplorationModifier, int

choice2InfectionModifier, string newSubtitle1Key, string

newDescription1Key, string newSubtitle2Key,

 string newDescription2Key, string image, string eventType,

string eventType2)

 {

 eventName =

LocalizationManager.instance.GetTranslatedText(nameKey);

 eventSubtitle =

LocalizationManager.instance.GetTranslatedText(subtitleKey);

 eventDescription =

LocalizationManager.instance.GetTranslatedText(descriptionKey)

;

 choice1Text =

LocalizationManager.instance.GetTranslatedText(choice1TextKey)

;

 choice2Text =

LocalizationManager.instance.GetTranslatedText(choice2TextKey)

;

 this.choice1HealthModifier = choice1HealthModifier;

 this.choice1ExplorationModifier =

choice1ExplorationModifier;

 this.choice1InfectionModifier =

choice1InfectionModifier;

 this.choice2HealthModifier = choice2HealthModifier;

 this.choice2ExplorationModifier =

choice2ExplorationModifier;

 this.choice2InfectionModifier =

choice2InfectionModifier;

 this.newSubtitle1 =

LocalizationManager.instance.GetTranslatedText(newSubtitle1Key

);

 this.newDescription1 =

LocalizationManager.instance.GetTranslatedText(newDescription1

Key);

 this.newSubtitle2 =

LocalizationManager.instance.GetTranslatedText(newSubtitle2Key

);

 this.newDescription2 =

LocalizationManager.instance.GetTranslatedText(newDescription2

Key);

 imageName = image;

 this.eventType = eventType;

 this.eventType2 = eventType2;

 }

 public void TriggerEvent(PlayerStats playerStats,

TextMeshProUGUI eventSubtitleText, TextMeshProUGUI

eventDescriptionText,

 Button choice1Button, Button choice2Button)

 {

 // Set the text for the choice buttons

choice1Button.GetComponentInChildren<TextMeshProUGUI>().text =

choice1Text;

choice2Button.GetComponentInChildren<TextMeshProUGUI>().text =

choice2Text;

 // Handle clicking on the first choice button

 choice1Button.onClick.AddListener(() =>

 {

 ModifyStats(playerStats, choice1HealthModifier,

choice1ExplorationModifier, choice1InfectionModifier);

 eventSubtitleText.text = newSubtitle1;

 eventDescriptionText.text = newDescription1;

 choice1Button.interactable = false;

 choice2Button.interactable = false;

choice1Button.GetComponentInChildren<TextMeshProUGUI>().text =

"";

choice2Button.GetComponentInChildren<TextMeshProUGUI>().text =

"";

 choice1Button.gameObject.SetActive(false);

 choice2Button.gameObject.SetActive(false);

 });

 // Handle clicking on the second choice button

 choice2Button.onClick.AddListener(() =>

 {

 ModifyStats(playerStats, choice2HealthModifier,

choice2ExplorationModifier, choice2InfectionModifier);

 eventSubtitleText.text = newSubtitle2;

 eventDescriptionText.text = newDescription2;

 choice1Button.interactable = false;

 choice2Button.interactable = false;

choice1Button.GetComponentInChildren<TextMeshProUGUI>().text =

"";

choice2Button.GetComponentInChildren<TextMeshProUGUI>().text =

"";

 choice1Button.gameObject.SetActive(false);

 choice2Button.gameObject.SetActive(false);

 });

 }

 // Helper function to modify player stats

 private void ModifyStats(PlayerStats playerStats, int

healthModifier, int expModifier, int infModifier)

 {

 playerStats.ModifyHealth(healthModifier);

 playerStats.ModifyExploration(expModifier);

 playerStats.ModifyInfection(infModifier);

 }

 public static List<ChoiceEvent> choiceEvents = new

List<ChoiceEvent>()

 {

 new ChoiceEvent("cevent1name",

"cevent1sub","cevent1desc", "cevent1choice1",

"cevent1choice2",

 Random.Range(-6, -11), 5, 1,

 0, 1, 3,

 "cevent1choice1sub",

"cevent1choice1desc","cevent1choice2sub",

"cevent1choice2desc",

 "CrumblingBridge", "Negative","Negative"),

 new ChoiceEvent("cevent2name",

"cevent2sub","cevent2desc", "cevent2choice1",

"cevent2choice2",

 0, 2, 1,

 0, 2, 1,

 "cevent2choice1sub",

"cevent2choice1desc","cevent2choice2sub",

"cevent2choice2desc",

 "CarBroken","Positive", "Positive"),

RandomEventSystem.cs:

public class RandomEventSystem : MonoBehaviour

{

 [SerializeField] public PlayerStats playerStats;

 [SerializeField] private TextMeshProUGUI eventNameText;

 [SerializeField] private TextMeshProUGUI

eventSubtitleText;

 [SerializeField] private TextMeshProUGUI

eventDescriptionText;

 [SerializeField] private Image eventImage;

 [SerializeField] private Button choice1Button;

 [SerializeField] private Button choice2Button;

 [SerializeField] private Button exploreButton;

 public List<ImmediateEvent> immediateEvents;

 public List<ChoiceEvent> choiceEvents;

 [SerializeField] public List<ImmediateEvent>

activeImmediateEvents = new List<ImmediateEvent>();

 [SerializeField] public List<ChoiceEvent>

activeChoiceEvents = new List<ChoiceEvent>();

 [SerializeField] public List<ImmediateEvent>

completedImmediateEvents = new List<ImmediateEvent>();

 [SerializeField] public List<ChoiceEvent>

completedChoiceEvents = new List<ChoiceEvent>();

 //public float typingSpeed = 0.001f;

 //private Coroutine typeCoroutine;

 private bool choiceMade = false;

 private AudioSource positiveAudioSource;

 private AudioSource negativeAudioSource;

 private ChoiceEvent currentChoiceEvent;

 public ActionMenu actionMenu;

 private int eventsTriggered = 0;

 public Button actionMenuButton;

 private bool isChoiceEvent;

 public void Start()

 {

 choice1Button.interactable = false;

 choice2Button.interactable = false;

 choice1Button.gameObject.SetActive(false);

 choice2Button.gameObject.SetActive(false);

 positiveAudioSource =

gameObject.AddComponent<AudioSource>();

 negativeAudioSource =

gameObject.AddComponent<AudioSource>();

 // Load the sound effects from Resources/SFX folder

 AudioClip positiveClip =

Resources.Load<AudioClip>("SFX/Positive");

 AudioClip negativeClip =

Resources.Load<AudioClip>("SFX/Negative");

 // Assign the loaded clips to audio sources

 positiveAudioSource.clip = positiveClip;

 negativeAudioSource.clip = negativeClip;

 }

 private void Awake()

 {

 immediateEvents = ImmediateEvent.GetImmediateEvents();

 activeImmediateEvents = new

List<ImmediateEvent>(immediateEvents);

 choiceEvents = ChoiceEvent.GetChoiceEvents();

 activeChoiceEvents = new

List<ChoiceEvent>(choiceEvents);

 // Add listeners to choice buttons

 choice1Button.onClick.AddListener(() =>

 {

 choiceMade = true;

 });

 choice2Button.onClick.AddListener(() =>

 {

 choiceMade = true;

 });

 }

 public void TriggerImmediateEvents(List<ImmediateEvent>

immediateEvents, PlayerStats playerStats)

 {

 if (completedImmediateEvents.Count == 4)

 {

 ImmediateEvent firstCompletedEvent =

completedImmediateEvents[0];

 completedImmediateEvents.RemoveAt(0);

 activeImmediateEvents.Add(firstCompletedEvent);

 Debug.Log("4 immediate events are triggered,

putting oldest event back");

 }

 isChoiceEvent = false;

 int randomIndex = Random.Range(0,

activeImmediateEvents.Count);

 ImmediateEvent immediateEvent =

activeImmediateEvents[randomIndex];

 eventNameText.text =

LocalizationManager.instance.GetTranslatedText(immediateEvent.

eventName);

 eventSubtitleText.text =

LocalizationManager.instance.GetTranslatedText(immediateEvent.

eventSubtitle);

 eventDescriptionText.text =

LocalizationManager.instance.GetTranslatedText(immediateEvent.

eventDescription);

 if (!string.IsNullOrEmpty(immediateEvent.imageName))

 {

 eventImage.gameObject.SetActive(true);

 // Load and display the event image

 string imagePath = "Events/" +

immediateEvent.imageName; // Construct the image path

 Sprite eventSprite =

Resources.Load<Sprite>(imagePath); // Load the image sprite

 eventImage.sprite = eventSprite; // Assign the

sprite to the image component

 }

 else

 {

 // No image associated with the event, handle it

as desired (e.g., display a default image)

 eventImage.gameObject.SetActive(false);

 eventImage.sprite = null; // Assign a default

sprite or set the image to blank

 }

 //typeCoroutine =

StartCoroutine(TypeEventText(immediateEvent.eventName,

immediateEvent.eventSubtitle,

immediateEvent.eventDescription));

 immediateEvent.TriggerEvent(playerStats);

 if (immediateEvent.eventType == "Positive")

 {

 positiveAudioSource.Play();

 }

 else if (immediateEvent.eventType == "Negative")

 {

 negativeAudioSource.Play();

 }

 // Move the event from activeImmediateEvents to

completedImmediateEvents

 activeImmediateEvents.RemoveAt(randomIndex);

 completedImmediateEvents.Add(immediateEvent);

 // Disable choice buttons

 choice1Button.gameObject.SetActive(false);

 choice2Button.gameObject.SetActive(false);

 }

 public void TriggerChoiceEvents(List<ChoiceEvent>

choiceEvents, PlayerStats playerStats, TextMeshProUGUI

subtitleText, TextMeshProUGUI descriptionText, Button choice1,

Button choice2)

 {

 if (completedChoiceEvents.Count == 4)

 {

 ChoiceEvent firstCompletedChoiceEvent =

completedChoiceEvents[0];

 completedChoiceEvents.RemoveAt(0);

 activeChoiceEvents.Add(firstCompletedChoiceEvent);

 Debug.Log("4 choice events are triggered, putting

oldest event back");

 }

 isChoiceEvent = true;

 choice1.gameObject.SetActive(true);

 choice2.gameObject.SetActive(true);

 choice1.interactable = true;

 choice2.interactable = true;

 exploreButton.interactable = false;

 int randomIndex = Random.Range(0,

activeChoiceEvents.Count);

 ChoiceEvent choiceEvent =

activeChoiceEvents[randomIndex];

 currentChoiceEvent = choiceEvent;

 eventNameText.text =

LocalizationManager.instance.GetTranslatedText(choiceEvent.eve

ntName);

 subtitleText.text =

LocalizationManager.instance.GetTranslatedText(choiceEvent.eve

ntSubtitle);

 descriptionText.text =

LocalizationManager.instance.GetTranslatedText(choiceEvent.eve

ntDescription);

 if (!string.IsNullOrEmpty(choiceEvent.imageName))

 {

 eventImage.gameObject.SetActive(true);

 // Load and display the event image

 string imagePath = "Events/" +

choiceEvent.imageName; // Construct the image path

 Sprite eventSprite =

Resources.Load<Sprite>(imagePath); // Load the image sprite

 eventImage.sprite = eventSprite; // Assign the

sprite to the image component

 }

 else

 {

 // No image associated with the event, handle it

as desired (e.g., display a default image)

 eventImage.gameObject.SetActive(false);

 eventImage.sprite = null; // Assign a default

sprite or set the image to blank

 }

 choiceEvent.TriggerEvent(playerStats, subtitleText,

descriptionText, choice1, choice2);

 exploreButton.interactable = false;

 StartCoroutine(WaitForChoice(choice1, choice2));

 // Move completed choice event to the

completedChoiceEvents list

 completedChoiceEvents.Add(choiceEvent);

 activeChoiceEvents.Remove(choiceEvent);

 }

 public void TriggerEventType(List<ImmediateEvent>

immediateEvents, List<ChoiceEvent> choiceEvents, PlayerStats

playerStats)

 {

 exploreButton.interactable = false;

 choice1Button.interactable = false;

 choice2Button.interactable = false;

 choiceMade = false;

 // Generate a random number to choose between

immediate and choice events

 int eventIndex = Random.Range(0, 6);

 if (eventIndex <= 3)

 {

 exploreButton.interactable = true;

 TriggerImmediateEvents(immediateEvents,

playerStats);

 }

 else

 {

 TriggerChoiceEvents(choiceEvents, playerStats,

eventSubtitleText, eventDescriptionText, choice1Button,

choice2Button);

 }

 if (activeImmediateEvents.Count == 0)

 {

 Debug.Log("All immediate events triggered.

Refilling the lists.");

 activeImmediateEvents.AddRange(immediateEvents);

activeImmediateEvents.RemoveAll(completedImmediateEvents.Conta

ins);

 completedImmediateEvents.Clear();

 }

 else if(activeChoiceEvents.Count == 0)

 {

 Debug.Log("All choice events triggered. Refilling

the lists.");

 activeChoiceEvents.AddRange(choiceEvents);

activeChoiceEvents.RemoveAll(completedChoiceEvents.Contains);

 completedChoiceEvents.Clear();

 }

 eventsTriggered++;

 if (eventsTriggered % 5 == 0)

 {

 actionMenu.EnableButtons();

 exploreButton.gameObject.SetActive(false);

 actionMenuButton.gameObject.SetActive(true);

 if (isChoiceEvent == true)

 {

 actionMenuButton.interactable = false;

 }

 else

 {

 actionMenuButton.interactable = true;

 }

 return; // Exit the method since the action menu

is active

 }

 }

 private IEnumerator WaitForChoice(Button choice1, Button

choice2)

 {

 choice1.onClick.AddListener(() =>

 {

 if (currentChoiceEvent.eventType == "Positive")

 {

 positiveAudioSource.Play();

 }

 else if (currentChoiceEvent.eventType ==

"Negative")

 {

 negativeAudioSource.Play();

 }

 choiceMade = true;

 });

 choice2.onClick.AddListener(() =>

 {

 if (currentChoiceEvent.eventType2 == "Positive")

 {

 positiveAudioSource.Play();

 }

 else if (currentChoiceEvent.eventType2 ==

"Negative")

 {

 negativeAudioSource.Play();

 }

 choiceMade = true;

 });

 // Wait until a choice has been made

 yield return new WaitUntil(() => choiceMade);

 // Remove the listeners from the choice buttons

 choice1.onClick.RemoveAllListeners();

 choice2.onClick.RemoveAllListeners();

 // Make the Explore button interactable again

 exploreButton.interactable = true;

 actionMenuButton.interactable = true;

 }

 public void ContinueAfterActionPanel()

 {

 actionMenuButton.interactable = false;

 exploreButton.gameObject.SetActive(true);

 exploreButton.interactable = true;

 choice1Button.interactable = true;

 choice2Button.interactable = true;

 }

 public void ShowActionMenuButton()

 {

 actionMenuButton.onClick.AddListener(() =>

 {

 actionMenu.ActivateActionMenu();

 actionMenu.EnableButtons();

 exploreButton.gameObject.SetActive(true); // Make

the Explore button interactable again

 actionMenuButton.gameObject.SetActive(false); //

Disable the action menu button after activating the action

menu

 });

 }

 public void DeactivateActionButton()

 {

 actionMenuButton.gameObject.SetActive(false);

 }

}

LocalizationManager.cs:

using System.Collections.Generic;

using UnityEngine;

public class LocalizationManager : MonoBehaviour

{

 public static LocalizationManager instance;

 public Dictionary<string, Dictionary<string, string>>

translations = new Dictionary<string, Dictionary<string,

string>>();

 public string defaultLanguage = "en";

 private string currentLanguage;

 private const string PlayerPrefKey = "SelectedLanguage";

 private void Awake()

 {

 if (instance == null)

 {

 instance = this;

 DontDestroyOnLoad(gameObject);

 InitializeTranslations();

 // Check if the language preference has been set

 if (!PlayerPrefs.HasKey(PlayerPrefKey))

 {

 // If the language preference is not set, set

the language to English

 currentLanguage = defaultLanguage;

 SaveLanguagePreference(currentLanguage);

 }

 else

 {

 // If the language preference is set, load it

 LoadLanguagePreference();

 }

 }

 else

 {

 Destroy(gameObject);

 }

 }

 private void InitializeTranslations()

 {

 // Add translations for each language here

 // Example: English and Indonesian

 translations = new Dictionary<string,

Dictionary<string, string>>();

 // English translations

 var englishTranslations = new Dictionary<string,

string>

 {

 { "menu_play", "Play" },

 { "menu_credits", "Credits" },

 { "menu_language", "Language" },

LocalizedText.cs:

using UnityEngine;

using TMPro;

[RequireComponent(typeof(TextMeshProUGUI))]

public class LocalizedText : MonoBehaviour

{

 public string key;

 private void Start()

 {

 // Register this localized text component with the

LocalizationManager

LocalizationManager.instance.RegisterLocalizedText(this);

 // Set the initial text

SetText(LocalizationManager.instance.GetTranslatedText(key));

 }

 public void SetText(string text)

 {

 GetComponent<TextMeshProUGUI>().text = text;

 }

}

ActionMenu.cs:

using UnityEngine;

using UnityEngine.UI;

using TMPro;

public class ActionMenu : MonoBehaviour

{

 [SerializeField] private PlayerStats playerStats; //

Reference to the PlayerStats script

 [SerializeField] private GameObject actionMenu; //

Reference to the UI panel containing the choice buttons

 [SerializeField] private Button plusHP; // Reference to

the +HP choice button

 [SerializeField] private Button plusEXP; // Reference to

the +EXP choice button

 [SerializeField] private Button minusINF; // Reference to

the -INF choice button

 [SerializeField] private Button gambleHP; // Reference to

the -INF choice button

 [SerializeField] private Button gambleEXP; // Reference to

the -INF choice button

 [SerializeField] private Button gambleINF; // Reference to

the -INF choice button

 [SerializeField] private TextMeshProUGUI effect;

 private AudioSource positiveAudioSource;

 private AudioSource negativeAudioSource;

 public void EnableButtons()

 {

 positiveAudioSource =

gameObject.AddComponent<AudioSource>();

 negativeAudioSource =

gameObject.AddComponent<AudioSource>();

 // Load the sound effects from Resources/SFX folder

 AudioClip positiveClip =

Resources.Load<AudioClip>("SFX/Positive");

 AudioClip negativeClip =

Resources.Load<AudioClip>("SFX/Negative");

 positiveAudioSource.clip = positiveClip;

 negativeAudioSource.clip = negativeClip;

 plusHP.interactable = true;

 plusEXP.interactable = true;

 minusINF.interactable = true;

 gambleHP.interactable = true;

 gambleEXP.interactable = true;

 gambleINF.interactable = true;

 }

 private void DisableButtons()

 {

 plusHP.interactable = false;

 plusEXP.interactable = false;

 minusINF.interactable = false;

 gambleHP.interactable = false;

 gambleEXP.interactable = false;

 gambleINF.interactable = false;

 }

 public void ActivateActionMenu()

 {

 actionMenu.SetActive(true);

 effect.text =

LocalizationManager.instance.GetTranslatedText("actioninfo");

 }

 public void DeactivateActionMenu()

 {

 actionMenu.SetActive(false);

 }

 public void ManageHP()

 {

 int chance = 80;

 int randomChance = Random.Range(1, 101);

 if (randomChance <= chance)

 {

 int hpChange = Random.Range(5, 15);

 playerStats.ModifyHealth(hpChange);

 positiveAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actionresteffe

cttext") + Mathf.Abs(hpChange) +

LocalizationManager.instance.GetTranslatedText("actionhpincrea

se");

 }

 else

 {

 negativeAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actionhpfail")

;

 }

 }

 public void GambleHP()

 {

 int increaseChance = 60;

 int randomChance = Random.Range(1, 101);

 // Check if the randomChance falls within the

increaseChance range

 if (randomChance >= increaseChance)

 {

 // Add code here to increase HP and update

PlayerStats accordingly

 int hpChange = Random.Range(16, 30);

 playerStats.ModifyHealth(hpChange);

 positiveAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actiondresteff

ect1text") + Mathf.Abs(hpChange) +

LocalizationManager.instance.GetTranslatedText("actionhpincrea

se");

 }

 else

 {

 // Add code here to decrease HP and update

PlayerStats accordingly

 int hpChange = Random.Range(-16, -20);

 playerStats.ModifyHealth(hpChange);

 negativeAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actiondresteff

ect2text") + Mathf.Abs(hpChange) +

LocalizationManager.instance.GetTranslatedText("actionhpdecrea

se");

 }

 }

 public void ManageEXP()

 {

 int chance = 80;

 int randomChance = Random.Range(1, 101);

 int expChange = Random.Range(1, 3);

 if (randomChance <= chance)

 {

 playerStats.ModifyExploration(expChange);

 positiveAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actionsearchef

fecttext") + Mathf.Abs(expChange) +

LocalizationManager.instance.GetTranslatedText("actionexpincre

ase");

 }

 else

 {

 negativeAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actionexpfail"

);

 }

 }

 public void GambleEXP()

 {

 int increaseChance = 80;

 int randomChance = Random.Range(1, 101);

 if (randomChance >= increaseChance)

 {

 int expChange = Random.Range(4, 6);

 playerStats.ModifyExploration(expChange);

 positiveAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actionscouteff

ect1text") + Mathf.Abs(expChange) +

LocalizationManager.instance.GetTranslatedText("actionexpincre

ase");

 }

 else

 {

 int expChange = Random.Range(-4, -6);

 playerStats.ModifyExploration(expChange);

 negativeAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actionscouteff

ect2text") + Mathf.Abs(expChange) +

LocalizationManager.instance.GetTranslatedText("actionexpdecre

ase");

 }

 }

 public void ManageInfection()

 {

 int chance = 80;

 int randomChance = Random.Range(1, 101);

 if (randomChance <= chance)

 {

 if (playerStats.infection >=

playerStats.maxInfection / 2)

 {

 int infChange = Random.Range(-3, -6);

 playerStats.ModifyInfection(infChange);

 positiveAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actiondisinfec

teffect1text") + Mathf.Abs(infChange) +

LocalizationManager.instance.GetTranslatedText("actioninfdecre

ase");

 }

 else

 {

 playerStats.ModifyInfection(-1);

 positiveAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actiondisinfec

teffect2text");

 }

 }

 else

 {

 negativeAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actioninffail"

);

 }

 }

 public void GambleINF()

 {

 int increaseChance = 90;

 int randomChance = Random.Range(1, 101);

 if (randomChance >= increaseChance)

 {

 int infChange = Random.Range(-4, -6);

 playerStats.ModifyInfection(infChange);

 positiveAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actiondisinfec

teffect3text") + Mathf.Abs(infChange) +

LocalizationManager.instance.GetTranslatedText("actioninfdecre

ase");

 }

 else

 {

 int infChange = Random.Range(4, 6);

 playerStats.ModifyInfection(infChange);

 negativeAudioSource.Play();

 DisableButtons();

 effect.text =

LocalizationManager.instance.GetTranslatedText("actiondisinfec

teffect4text") + Mathf.Abs(infChange) +

LocalizationManager.instance.GetTranslatedText("actioninfincre

ase");

 }

 }

}

Character.cs:

using System.Collections.Generic;

[System.Serializable]

public class Character

{

 public string characterName;

 public string characterImage;

 public string characterDescription;

 public int maxHealth;

 public int maxExploration;

 public int maxInfection;

 public Character(string characterNameKey, string

characterImage, string characterDescriptionKey, int maxHealth,

 int maxExploration, int maxInfection)

 {

 this.characterName =

LocalizationManager.instance.GetTranslatedText(characterNameKe

y);

 this.characterImage = characterImage;

 this.characterDescription =

LocalizationManager.instance.GetTranslatedText(characterDescri

ptionKey);

 this.maxHealth = maxHealth;

 this.maxExploration = maxExploration;

 this.maxInfection = maxInfection;

 }

 public static List<Character> characters = new

List<Character>()

{

 new Character("character_survivor", "Survivor",

"character_survivordesc", 100, 50, 50),

 new Character("character_soldier", "Soldier",

"character_soldierdesc", 125, 60, 40),

};

}

CharacterSelect.cs:

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using UnityEngine.SceneManagement;

using TMPro;

public class CharacterSelect : MonoBehaviour

{

 [SerializeField] private Button[] characterButtons;

 [SerializeField] private Image[] characterImages;

 [SerializeField] private TextMeshProUGUI[]

characterNameTexts;

 [SerializeField] private TextMeshProUGUI

characterDescription;

 [SerializeField] private Button continueButton;

 public GameObject info;

 private List<Character> characters = Character.characters;

 private PlayerStats playerStats;

 private Character selectedCharacter;

 private void Start()

 {

 info.SetActive(true);

 PlayerPrefs.DeleteKey("MaxHealth");

 PlayerPrefs.DeleteKey("MaxExploration");

 PlayerPrefs.DeleteKey("MaxInfection");

 AssignCharacterSelection();

 ShuffleCharacters();

 playerStats = FindObjectOfType<PlayerStats>();

continueButton.onClick.AddListener(ConfirmCharacterSelection);

 UpdateUI();

 }

 private void AssignCharacterSelection()

 {

 for (int i = 0; i < characterButtons.Length; i++)

 {

 int index = i;

 characterButtons[i].onClick.AddListener(() =>

SelectCharacter(index));

 }

 }

 private void ShuffleCharacters()

 {

 for (int i = 0; i < characters.Count; i++)

 {

 int randomIndex = Random.Range(i,

characters.Count);

 Character temp = characters[randomIndex];

 characters[randomIndex] = characters[i];

 characters[i] = temp;

 }

 }

 public void SelectCharacter(int index)

 {

 info.SetActive(false);

 selectedCharacter = characters[index];

 characterDescription.text =

selectedCharacter.characterDescription;

 UpdateCharacterImages();

 Debug.Log("Selected Character: " +

selectedCharacter.characterName);

 }

 public void ConfirmCharacterSelection()

 {

 if (selectedCharacter != null)

 {

 // Save the selected character's data in

PlayerPrefs

 PlayerPrefs.SetString("SelectedCharacterName",

selectedCharacter.characterName);

 PlayerPrefs.SetString("SelectedCharacterImage",

selectedCharacter.characterImage);

 PlayerPrefs.SetInt("MaxHealth",

selectedCharacter.maxHealth);

 PlayerPrefs.SetInt("MaxExploration",

selectedCharacter.maxExploration);

 PlayerPrefs.SetInt("MaxInfection",

selectedCharacter.maxInfection);

 SceneManager.LoadScene("Main Gameplay");

 }

 else

 {

 Debug.Log("No character selected!");

 }

 }

 private void UpdateUI()

 {

 for (int i = 0; i < characterNameTexts.Length; i++)

 {

 characterNameTexts[i].text =

characters[i].characterName;

 }

 UpdateCharacterImages();

 }

 private void UpdateCharacterImages()

 {

 for (int i = 0; i < characterImages.Length; i++)

 {

 characterImages[i].sprite =

GetCharacterSprite(characters[i].characterImage);

 }

 }

 private Sprite GetCharacterSprite(string characterImage)

 {

 string imagePath = "Characters/" + characterImage;

 return Resources.Load<Sprite>(imagePath);

 }

}

