
APLIKASI COMPUTER VISION DALAM PEMBUATAN PROTOTIPE

DETEKSI KENDARAAN DAN LAHAN PARKIR MENGGUNAKAN

LIBRARY YOLOv8

TUGAS AKHIR

STEVEN NATA

NIM : 312010011

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

 UNIVERSITAS MA CHUNG

MALANG

2024

2

v

DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIR ... i

PERNYATAAN KEASLIAN TUGAS AKHIR ii

ABSTRAK ... iii

ABSTRACT ... iv

DAFTAR ISI ... v

DAFTAR GAMBAR .. vii

DAFTAR TABEL .. ix

Bab I Pendahuluan .. 1

1.1 Latar Belakang .. 1

1.2 Identifikasi Masalah .. 2

1.3 Batasan Masalah.. 2

1.4 Rumusan Masalah ... 2

1.5 Tujuan Penelitian .. 3

1.6 Manfaat Penelitian .. 3

1.7 Luaran Penelitian .. 3

1.8 Jadwal Penelitian ... 3

Bab II Tinjauan Pustaka .. 5

2.1 Computer Vision ... 5

2.1.1 Deep Learning ... 5

2.1.2 Artificial Neural Network 5

2.1.3 Convolutional Neural Network 7

2.1.4 Pemrosesan Data .. 8

2.1.5 Smart City .. 10

2.2 Arduino ... 11

2.2.1 Mikrokontroler ... 11

2.2.2 Pin .. 12

2.2.3 Konektor .. 13

2.3 YOLOv8 .. 13

2.4 RoboFlow .. 15

2.5 Google Colaboratory ... 16

vi

Bab III Analisis Dan Perancangan Sistem .. 17

3.1 Analisis Kebutuhan ... 17

3.1.1 Perangkat Keras ... 18

3.1.2 Perangkat Lunak .. 19

3.2 Pengumpulan Data .. 19

3.3 Desain dan Perancangan Sistem ... 20

3.3.1 Preprocessing .. 20

3.3.2 Model Training .. 21

3.3.3 Integrasi Arduino ... 21

3.3.4 Integrasi pada Prototipe 22

3.4 Uji Coba Sistem .. 23

3.4.1 Pengujian Model .. 23

3.4.2 Pengujian Fungsi Perangkat Arduino 25

Bab IV Hasil dan Pembahasan .. 26

4.1 Pembuatas Data Set... 26

4.1.1 Pengambilan Citra .. 26

4.1.2 Anotation .. 28

4.1.3 Data Filtering .. 30

4.1.4 Data Splitting ... 30

4.2 Training Model ... 31

4.3 Pembuatan Program Python .. 37

4.4 Pembuatan Program Arduino .. 45

4.5 Pengujian Sistem ... 48

4.5.1 Pencatatan loss dan mAP 54

tPengujian data set baru 55

Bab V Kesimpulan dan Saran ... 61

5.1 Simpulan ... 61

5.2 Saran .. 61

Daftar Pustaka ... 62

Lampiran ... 64

A. File YOLOimage ... 64

B. File takeImageInterval ... 73

vii

DAFTAR GAMBAR

Gambar 2.1 Arsitektur ANN ...7

Gambar 2.2 Arsitektur CNN ...7

Gambar 2.3 Penyesuaian citra ...9

Gambar 2.4 Thresholding ...9

Gambar 2.5 Papan Arduino uno R3 ..11

Gambar 2.6 Chip mikrokontroler ..12

Gambar 2.7 Diagram Pin Arduino ..12

Gambar 2.8 Pin digital Arduino ..13

Gambar 2.9 Pin analog Arduino..13

Gambar 2.10 Arsitektur YOLOv8 ..14

Gambar 3.1 Tahapan proses penelitian ...17

Gambar 3.2 Miniatur kendaraan ...19

Gambar 3.3 Tahap preprocessing ...20

Gambar 3.4 Diagram koneksi arduino, servo, dan laptop22

Gambar 3.5 Rancangan prototipe ..22

Gambar 4.1 Citra kendaraan ...27

Gambar 4.2 Interface penambahan nama kelas 28

Gambar 4.3 Interface tool roboflow..29

Gambar 4.4 Hasil anotasi citra ..29

Gambar 4.5 Proses penghapusan citra ..30

Gambar 4.6 Folder data set ..32

Gambar 4.7 Isi file data.yaml ..32

Gambar 4.8 File data.yaml setelah penyesuaian33

Gambar 4.9 Folder data set ..33

Gambar 4.10 File tag pada citra ..34

Gambar 4.11 Jenis runtime ...34

Gambar 4.12 Spesifikasi T4 GPU ...35

Gambar 4.13 Kode error GPU ..35

Gambar 4.14 Path folder model ..36

Gambar 4.15 Objek terdeteksi...38

viii

Gambar 4.16 Area polygons ...39

Gambar 4.17 Area yang telah digambar ...40

Gambar 4.18 Polygons tanpa objek ..44

Gambar 4.19 Polygons dengan objek..44

Gambar 4.20 Confusion matrix ...48

Gambar 4.21 Precision – confidence curve ..49

Gambar 4.22 Precision per epoch ...50

Gambar 4.23 Recall – confidence curve ...51

Gambar 4.24 Recall per epoch ..51

Gambar 4.25 Precision – recall curve ..52

Gambar 4.26 F1 – score curve ..53

Gambar 4.27 Grafik loss ...54

Gambar 4.28 Grafik mAP50 dan mAP50-9555

Gambar 4.29 Citra baru ...56

Gambar 4.30 Data splitting dari data set baru56

Gambar 4.31 Confusion matrix data set baru57

Gambar 4.32 Precision-Confidence Curve data baru58

Gambar 4.33 Recall-Confidence Curve data baru...............................59

Gambar 4.34 F1-Curve data baru..59

ix

DAFTAR TABEL

Tabel 3.1 Contoh Confusion Matrix ... 23

Tabel 3.2 Confusion Matrix tiga klasifikasi .. 24

62

DAFTAR PUSTAKA

Zadeh, N. R. N., & Cruz, J. C. D. (2016). Smart urban parking detection system.

https://doi.org/10.1109/iccsce.2016.7893601

Angelidou, M. (2014). Smart city policies: A spatial approach. Cities, 41, S3–S11.

https://doi.org/10.1016/j.cities.2014.06.007

Shinde, P. P., & Shah, S. (2018). A Review of Machine Learning and Deep

Learning Applications. https://doi.org/10.1109/iccubea.2018.8697857

Weinstein, B. G. (2017). A computer vision for animal ecology. Journal of

Animal Ecology, 87(3), 533–545. https://doi.org/10.1111/1365-2656.12780

Wu, Y. C., & Feng, J. W. (2017). Development and Application of Artificial

Neural Network. Wireless Personal Communications, 102(2), 1645–1656.

https://doi.org/10.1007/s11277-017-5224-x

Andreas, Gidion, et al. "Analisa Dampak Lalu Lintas Akibat Keterbatasan Lahan

pada Ruang Parkir Pasar Tradisional di Kota Semarang." Jurnal Karya Teknik

Sipil S1 Undip, vol. 6, no. 1, 2017, pp. 438-449.

Classification: True vs. False and Positive vs. Negative. (n.d.). Google for

Developers. https://developers.google.com/machine-learning/crash-

course/classification/true-false-positive-negative

Lin, Q., Ye, G., Wang, J., & Liu, H. (2021). RoboFlow: a Data-centric Workflow

Management System for Developing AI-enhanced Robots. In Blue Sky Papers,

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://sites.google.com/u.northwestern.edu/roboflow

Pandey, A. K. (2024, June 13). SiLU (Sigmoid Linear Unit) activation function -

Abhishek Kumar Pandey - Medium. Medium.

https://medium.com/@akp83540/silu-sigmoid-linear-unit-activation-function-

d9b6845f0c81

https://doi.org/10.1109/iccsce.2016.7893601
https://doi.org/10.1016/j.cities.2014.06.007
https://doi.org/10.1109/iccubea.2018.8697857
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1007/s11277-017-5224-x
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://sites.google.com/u.northwestern.edu/roboflow
https://medium.com/@akp83540/silu-sigmoid-linear-unit-activation-function-d9b6845f0c81
https://medium.com/@akp83540/silu-sigmoid-linear-unit-activation-function-d9b6845f0c81

63

Raza, M. (2024, January 8). Yolo V8: A Deep Dive Into Its Advanced Functions

and New Features. Medium. https://medium.com/@mujtabaraza194/yolo-v8-a-

deep-dive-into-its-advanced-functions-and-new-features-f008599fe604

Setiawan, R. (2022, January 18). Apa itu Arduino? Pahami Lebih Mendalam.

Dicoding Blog. https://www.dicoding.com/blog/apa-itu-arduino/

Torres, J. (2024, January 13). What is YOLOv8? Exploring its Cutting-Edge

Features - YOLOv8. YOLOv8. https://yolov8.org/what-is-yolov8/

Ultralytics. (n.d.). Train,val and test sets · Issue #3490 · ultralytics/ultralytics.

GitHub. https://github.com/ultralytics/ultralytics/issues/3490

https://medium.com/@mujtabaraza194/yolo-v8-a-deep-dive-into-its-advanced-functions-and-new-features-f008599fe604
https://medium.com/@mujtabaraza194/yolo-v8-a-deep-dive-into-its-advanced-functions-and-new-features-f008599fe604
https://www.dicoding.com/blog/apa-itu-arduino/
https://yolov8.org/what-is-yolov8/
https://github.com/ultralytics/ultralytics/issues/3490

64

LAMPIRAN

A. File YOLOimage

001 import math

002 import cv2

003 import cvzone

004 import pickle

005 import numpy as np

006 from ultralytics import YOLO

007 import serial

008 import time

009

010 # --------------- Variables -------------------

011 p1 = 0

012 p2 = 3

013 p3 = 2

014 roadCam = 1

015 x, y = 400, 400

016 color = (0, 200, 0)

017 count = 40

018 avanow1 = 6

019 avanow2 = 6

020 avanow3 = 4

021

022 sign = " WAIT ! "

023 polyroad = 'Road.p'

024 obj_road = open(polyroad, 'rb')

025 roi_road = pickle.load(obj_road)

026 obj_road.close()

027

028

029 statusPalang1 = False

030 statusPalang2 = False # assign status palang parkiran

031 statusPalang3 = False

032

033 polygonKeluar1 = 'parkiran1_out.p'

034 polygonKeluar2 = 'parkiran2_out.p' # assign semua polygons

Keluar parkiran

035 polygonKeluar3 = 'parkiran3_out.p'

036

037 polygonParkir1 = 'parkiran1.p'

038 polygonParkir2 = 'parkiran2.p' # assign semua polygons

parkiran

039 polygonParkir3 = 'parkiran3.p'

040

041 model_path = "D:\YOLO TA\model\model very

accurate\\best.pt"

042

043

044 confidence = 0.5

045

046 class_names = ["SEDAN", "SUV", "TRUCK"]

047

048 file_obj_parkir1 = open(polygonParkir1, 'rb')

049 file_obj_parkir2 = open(polygonParkir2, 'rb')

050 file_obj_parkir3 = open(polygonParkir3, 'rb')

65

051

052 roisParkir1 = pickle.load(file_obj_parkir1)

053 roisParkir2 = pickle.load(file_obj_parkir2)

054 roisParkir3 = pickle.load(file_obj_parkir3)

055

056 file_obj_keluar1 = open(polygonKeluar1, 'rb')

057 file_obj_keluar2 = open(polygonKeluar2, 'rb')

058 file_obj_keluar3 = open(polygonKeluar3, 'rb')

059

060 roisKeluar1 = pickle.load(file_obj_keluar1)

061 roisKeluar2 = pickle.load(file_obj_keluar2)

062 roisKeluar3 = pickle.load(file_obj_keluar3) # OPEN POLYGON

FILE

063

064 file_obj_keluar1.close()

065 file_obj_keluar2.close()

066 file_obj_keluar3.close()

067

068 file_obj_parkir1.close()

069 file_obj_parkir2.close()

070 file_obj_parkir3.close()

071

072 arduino = serial.Serial(port='COM8', baudrate=9600,

timeout=.1) # connect to arduino

073

074 cam_width, cam_height = 1280, 720 # CAM RES

075

076 cap1 = cv2.VideoCapture(p1) # WEB CAM ASSIGN

077 cap2 = cv2.VideoCapture(p2)

078 cap3 = cv2.VideoCapture(p3)

079 cap4 = cv2.VideoCapture(roadCam)

080

081 cap2.set(3, cam_width)

082 cap2.set(4, cam_height)

083 cap3.set(3, cam_width)

084 cap3.set(4, cam_height) # SET ALL FRAME SIZE

085 cap1.set(3, cam_width)

086 cap1.set(4, cam_height)

087 cap4.set(3, cam_width)

088 cap4.set(4, cam_height)

089

090

091 model = YOLO(model_path) # SELECT MODEL USED

092

093 def count_Spaces(ava_spaces, _object_list,

_parking_spaces):

094 for parking_space in _parking_spaces:

095 ret = 0

096 empty = True

097

098 # Convert polygon to numpy array and reshape

099 parking_space = np.array(parking_space,

np.int32).reshape((-1, 1, 2))

0100

0101 # Check if any car is present in this polygon

0102 for obj in _object_list:

0103 car_center = obj["center"]

0104 result = cv2.pointPolygonTest(parking_space,

car_center, False)

66

0105 if result > 0:

0106 empty = False

0107 ret += 1

0108 break

0109 if not empty:

0110 ava_spaces -= ret

0111 return ava_spaces

0112

0113 def overlay_polygons(_image, _object_list, _parking_spaces,

_draw_occupied=False):

0114 overlay = _image.copy()

0115 global is_empty

0116 for parking_space in _parking_spaces:

0117 is_empty = True

0118

0119 # Convert polygon to numpy array and reshape

0120 parking_space = np.array(parking_space,

np.int32).reshape((-1, 1, 2))

0121

0122 # Check if any car is present in this polygon

0123 for obj in _object_list:

0124 car_center = obj["center"]

0125 result = cv2.pointPolygonTest(parking_space,

car_center, False)

0126 if result > 0:

0127 is_empty = False

0128 break

0129

0130 if is_empty:

0131 cv2.fillPoly(overlay, [parking_space], (0, 255,

0)) # Green for empty space

0132 if not is_empty and _draw_occupied:

0133 cv2.fillPoly(overlay, [parking_space], (0, 0,

255)) # Red for occupied space

0134

0135 cv2.addWeighted(overlay, 0.35, _image, 0.65, 0, _image)

0136 return is_empty

0137

0138 def get_object_list_yolo(_model, _img, _class_names,

_confidence=0.5, draw=True):

0139 _results = _model(_img, stream=False, verbose=False)

0140 _object_list = []

0141 for r in _results:

0142 boxes = r.boxes

0143 for box in boxes:

0144 conf = math.ceil((box.conf[0] * 100)) / 100

0145 if conf > _confidence:

0146 x1, y1, x2, y2 = box.xyxy[0]

0147 x1, y1, x2, y2 = int(x1), int(y1), int(x2),

int(y2)

0148 w, h = x2 - x1, y2 - y1

0149 center = x1 + (w // 2), y1 + (h // 2)

0150 class_name = _class_names[int(box.cls[0])]

0151

0152 _object_list.append({"bbox": (x1, y1, w,

h),

0153 "center": center,

0154 "conf": conf,

0155 "class": class_name})

67

0156

0157 if draw:

0158 cvzone.cornerRect(_img, (x1, y1, w, h))

0159 cvzone.putTextRect(_img, f'{class_name}

{conf}',

0160 (max(0, x1), max(35,

y1)), scale=2, thickness=1)

0161 return _object_list

0162

0163 def write(x):

0164 arduino.write(bytes(x, 'utf-8'))

0165 time.sleep(0.05)

0166

0167

0168 cv2.namedWindow("SUV"), cv2.namedWindow("SEDAN"),

cv2.namedWindow("TRUCK"), cv2.namedWindow("camRoad") # NAMING

ALL WINDOW TO MOVE IT

0169 cv2.moveWindow("SUV", 0, 100), cv2.moveWindow("SEDAN", 482,

100), cv2.moveWindow("TRUCK", 964, 100),

cv2.moveWindow("camRoad", 964, 0) #MOVE ALL WINDOWS TO CERTAIN

COORDINATE

0170

0171

0172 def frameDetectCar():

0173 global center1,center2,center3

0174 global center

0175 global statusPalang1

0176 global statusPalang2

0177 global statusPalang3

0178 global color

0179 global count

0180 global sign

0181 park_spaces = 6

0182 park_spaces_truck = 4

0183 reset = 40

0184 global avanow1

0185 global avanow2

0186 global avanow3

0187 success1, img1 = cap1.read()

0188 success1, img2 = cap2.read() # READING CAMERA ASSIGNED

0189 success1, img3 = cap3.read()

0190 success1, img4 = cap4.read()

0191

0192 object_list1 = get_object_list_yolo(model, img1,

class_names, confidence, draw=True)

0193 object_list2 = get_object_list_yolo(model, img2,

class_names, confidence, draw=True) # CAMERA FRAME GET

DETECTED WITH YOLO

0194 object_list3 = get_object_list_yolo(model, img3,

class_names, confidence, draw=True)

0195 object_list4 = get_object_list_yolo(model, img4,

class_names, confidence, draw=True)

0196

0197 ava1 = count_Spaces(park_spaces, object_list1,

roisParkir1)

0198 ava2 = count_Spaces(park_spaces, object_list2,

roisParkir2)

0199 ava3 = count_Spaces(park_spaces_truck, object_list3,

roisParkir3)

68

0200

0201 # ---------------------------------- PARKIRAN KELUAR --

0202

0203 empty_status1 = overlay_polygons(img1, object_list1,

roisKeluar1, _draw_occupied=True)

0204 empty_status2 = overlay_polygons(img2, object_list2,

roisKeluar2, _draw_occupied=True) # status polygons keluar

0205 empty_status3 = overlay_polygons(img3, object_list3,

roisKeluar3, _draw_occupied=True)

0206

0207 keluar_space1 = np.array(roisKeluar1,

np.int32).reshape(

0208 (-1, 1, 2)) # to detect center point polygon

keluar(convert polygon to array)

0209 keluar_space2 = np.array(roisKeluar2,

np.int32).reshape((-1, 1, 2))

0210 keluar_space3 = np.array(roisKeluar3,

np.int32).reshape((-1, 1, 2))

0211

0212 # ---

0213 # SUV

0214 if ((len(object_list1) != 0) and (empty_status1 ==

False)):

0215 # Check if any car is present in this polygon

0216 for obj in object_list1:

0217 car_center = obj["center"]

0218 result = cv2.pointPolygonTest(keluar_space1,

car_center, False)

0219 if result > 0:

0220 center1 = obj

0221

0222 # Palang 1

0223 if ((center1["class"] == "SUV") and (statusPalang1

== False)):

0224 # print("open")

0225 # print(center1["class"])

0226 write("2")

0227 statusPalang1 = True

0228 avanow1 = ava1

0229 elif((center1["class"] != "SUV") and (statusPalang1

== True)):

0230 write("3")

0231

0232 # ---

0233

0234 # SEDAN

0235 if ((len(object_list2) != 0) and (empty_status2 ==

False)):

0236

0237 # Check if any car is present in this polygon

0238 for obj in object_list2:

0239 car_center = obj["center"]

0240 result = cv2.pointPolygonTest(keluar_space2,

car_center, False)

0241 if result > 0:

69

0242 center2 = obj

0243

0244 # Palang 2

0245 if ((center2["class"] == "SEDAN") and

(statusPalang2 == False)):

0246 # print("open")

0247 # print(center2["class"])

0248 write("4")

0249 statusPalang2 = True

0250 avanow2 = ava2

0251 elif((center2["class"] != "SEDAN") and

(statusPalang2 == True)):

0252 write("5")

0253

0254

0255 # ---

0256 # TRUCK

0257 if ((len(object_list3) != 0) and (empty_status3 ==

False)):

0258 # Check if any car is present in this polygon

0259 for obj in object_list3:

0260 car_center = obj["center"]

0261 result = cv2.pointPolygonTest(keluar_space3,

car_center, False)

0262 if result > 0:

0263 center3 = obj

0264

0265 # Palang 3

0266 if ((center3["class"] == "TRUCK") and

(statusPalang3 == False)):

0267 # print("open")

0268 # print(center3["class"])

0269 write("6")

0270 statusPalang3 = True

0271 avanow3 = ava3

0272 elif((center3["class"] != "TRUCK") and

(statusPalang3 == True)):

0273 write("7")

0274

0275 # ----------------------------------- PARKIRAN --------

0276

0277 overlay_polygons(img1, object_list1, roisParkir1,

_draw_occupied=True) # Parkiran

0278 overlay_polygons(img2, object_list2, roisParkir2,

_draw_occupied=True)

0279 overlay_polygons(img3, object_list3, roisParkir3,

_draw_occupied=True)

0280

0281 # 1 SUV

0282

0283 if ava1 == 0:

0284 color = (0, 0, 255) # Red for no available spaces

0285 else:

0286 color = (0, 200, 0) # Green for available spaces

0287 cvzone.putTextRect(img1, f"Available:

{ava1}/{str(park_spaces)}", (20, 50), colorR=color)

70

0288

0289 # 2 SEDAN

0290

0291 if ava2 == 0:

0292 color = (0, 0, 255) # Red for no available spaces

0293 else:

0294 color = (0, 200, 0) # Green for available spaces

0295 cvzone.putTextRect(img2, f"Available:

{ava2}/{str(park_spaces)}", (20, 50), colorR=color)

0296

0297 # 3 TRUCK

0298

0299 if ava3 == 0:

0300 color = (0, 0, 255) # Red for no available spaces

0301 else:

0302 color = (0, 200, 0) # Green for available spaces

0303 cvzone.putTextRect(img3, f"Available:

{ava3}/{str(park_spaces_truck)}", (20, 50), colorR=color)

0304

0305 # -------------------------------- ROAD ---------------

0306

0307 empty_status_road = overlay_polygons(img4,

object_list4, roi_road, _draw_occupied=True)

0308

0309 parking_space = np.array(roi_road, np.int32).reshape((-

1, 1, 2))

0310

0311

0312 if ((len(object_list4) != 0) and (empty_status_road ==

False)):

0313

0314 # Check if any car is present in this polygon

0315 for obj in object_list4:

0316 car_center = obj["center"]

0317 result = cv2.pointPolygonTest(parking_space,

car_center, False)

0318 if result > 0:

0319 center = obj

0320

0321

0322 #Palang 1

0323 if ((center["class"] == "SUV") and (statusPalang1

== False)):

0324 print("open")

0325 print(center["class"])

0326 write("2")

0327 statusPalang1 = True

0328 count = reset

0329 sign = "Go SUV"

0330 avanow1 = ava1

0331

0332 # Palang 2

0333 if ((center["class"] == "SEDAN") and (statusPalang2

== False)):

0334 # print("open")

0335 # print(center["class"])

0336 write("4")

71

0337 statusPalang2 = True

0338 count = reset

0339 sign = "Go SEDAN"

0340 avanow2 = ava2

0341

0342

0343 # Palang 3

0344 if ((center["class"] == "TRUCK") and (statusPalang3

== False)):

0345 print("open")

0346 print(center["class"])

0347 write("6")

0348 statusPalang3 = True

0349 count = reset

0350 sign = "Go TRUCK"

0351 avanow3 = ava3

0352

0353 cvzone.putTextRect(img4, f" {sign} ", (20, 50),

colorR=(0, 255, 0))

0354

0355 #--------------------------------- CLOSE ALL PALANG AFTER

SPECIFIC AMOUNT OF TIME ---------------------------------------

0356

0357 if(count == 0):

0358 if (statusPalang1 == True):

0359 print("close")

0360 write("3")

0361 statusPalang1 = False

0362 if (statusPalang2 == True):

0363 print("close")

0364 write("5")

0365 statusPalang2 = False

0366 if (statusPalang3 == True):

0367 print("close")

0368 write("7")

0369 statusPalang3 = False

0370 sign = " WAIT ! "

0371 count = reset

0372 count-=1

0373 # --------------------------------- CLOSE ALL PALANG WHEN

CAR GOT IN --

0374 #----- SUV ------

0375

0376 if(statusPalang1 == True):

0377 if (ava1 < avanow1):

0378 write("3")

0379 statusPalang1 = False

0380 sign = "WAIT! ... "

0381 if(statusPalang2 == True):

0382 if (ava2 < avanow2):

0383 write("5")

0384 statusPalang2 = False

0385 sign = "WAIT! ... "

0386 if(statusPalang3 == True):

0387 if (ava3 < avanow3):

0388 write("7")

0389 statusPalang3 = False

0390 sign = "WAIT! ... "

72

0391 print("s1 ",ava1,"dan",avanow1)

0392 print("s2 ", ava2, "dan", avanow2)

0393 print("s3 ", ava3, "dan", avanow3)

0394 #--

0395 # cv2.imshow("camRoad",img4)

0396 # cv2.imshow("Image1", img1)

0397 # cv2.imshow("Image2", img2) # SHOW CAMERA FRAME full

720 p

0398 # cv2.imshow("Image3", img3)

0399

0400 cv2.imshow("camRoad",cv2.resize(img4, (640, 360)))

0401 cv2.imshow("SUV" , cv2.resize(img1, (640, 360)))

0402 cv2.imshow("SEDAN" , cv2.resize(img2, (640, 360))) #

SHOW CAMERA FRAME AND RESIZE TO 480x272

0403 cv2.imshow("TRUCK" , cv2.resize(img3, (640, 360)))

0404

0405 cv2.waitKey(1)

0406

0407

0408 while True:

0409 frameDetectCar()

73

B. File takeImageInterval dan get_roi parking space
001 import cv2

002

003

004

005 CAR_COUNT = "1"

006

007 cam_width, cam_height = 1280, 720

008 path = "D:\\YOLO

TA\\Imagedataset\\NullImage\\"+CAR_COUNT+"_"

009 count = 1

010 cam_port = 0

011 cam = cv2.VideoCapture(cam_port)

012 cam.set(3,cam_width)

013 cam.set(4,cam_height)

014

015 def save(path, varImg):

016

017 cv2.imwrite(path,varImg)

018 while True:

019 result, image = cam.read()

020 cv2.imshow("Image", cv2.resize(image,(854,480)))

021

022 if result:

023 save(path +"_"+ str(count) + ".jpg", image)

024 cv2.waitKey(2000)

025 print(".....SAVED!!")

026 count += 1

001 # Import necessary libraries

002 import cv2 # OpenCV library for computer vision tasks

003 import numpy as np

004 import pickle #

005

006 # Open a connection to the webcam

007 cap = cv2.VideoCapture(3) # For Webcam

008

009 # Set the width and height of the webcam frame

010 width, height = 1280, 720

011 cap.set(3, width)

012 cap.set(4, height)

013

014

015 # Total number of parking spaces to mark

016 totalSpaces = 1

017

018 # List to store all polygons (each representing a parking

space)

019 polygons = []

020

021 # Temporary list to store the four points of the current

polygon being marked

022 current_polygon = []

023

024 # Counter to keep track of how many polygons have been

created

025 counter = 0

74

026

027 # Function to handle mouse events (used to mark points for

polygons)

028 def mousePoints(event, x, y, flags, params):

029 global counter, current_polygon

030

031 # If left mouse button is clicked

032 if event == cv2.EVENT_LBUTTONDOWN:

033 # Append the clicked point (x, y) to the

current_polygon list

034 current_polygon.append((x, y))

035

036 # If we have collected four points for one polygon

037 if len(current_polygon) == 4:

038 polygons.append(current_polygon) # Add the

polygon to the list

039 current_polygon = [] # Reset for the next

polygon

040 counter += 1 # Increment the counter

041 print(polygons) # Print the collected polygons

042

043 # Main loop for capturing video and marking parking spaces

044 while True:

045 # Read a frame from the webcam

046 success, img = cap.read()

047

048 # If we have collected all 12 polygons, then save and

exit the loop

049 if counter == totalSpaces:

050 fileObj = open('Road.p', 'wb')

051 pickle.dump(polygons, fileObj) # Save the polygons

to a file

052 fileObj.close()

053 print("Saved all polygon points.")

054 break

055

056 # Draw the collected polygons on the image

057 for polygon in polygons:

058 cv2.polylines(img, [np.array(polygon)],

isClosed=True, color=(0, 255, 0), thickness=2)

059

060 # Display the image with marked polygons

061 cv2.imshow("Original Image", img)

062

063 # Set the mouse callback function for marking points

064 cv2.setMouseCallback("Original Image", mousePoints)

065

066 # Wait for a key press (1 ms delay)

067 cv2.waitKey(1)

iii

APLIKASI COMPUTER VISION DALAM PEMBUATAN

PROTOTIPE DETEKSI KENDARAAN DAN LAHAN PARKIR

MENGGUNAKAN LIBRARY YOLOv8

Steven Nata1, Windra Swastika2, Romy B. Widodo3

Universitas Ma Chung

Abstrak

 Peningkatan penggunaan kendaraan pribadi yang pesat telah memperburuk

tantangan dalam mengelola ketersediaan lahan parkir. Fasilitas parkir yang dikelola

dengan buruk sering kali menyebabkan kesulitan bagi pemilik kendaraan, yang

berdampak pada kemacetan lalu lintas dan parkir yang tidak teratur.

Untuk mengatasi masalah ini, studi ini mengeksplorasi penerapan teknik

Computer Vision, khususnya menggunakan model You Only Look Once (YOLO),

untuk meningkatkan manajemen lahan parkir dengan mendeteksi jenis kendaraan

dan mengidentifikasi tempat parkir yang tersedia secara akurat. Model YOLO

dilatih dan diintegrasikan dengan sistem yang terdiri dari empat kamera, masing-

masing memantau area tertentu.

Model ini menunjukkan kinerja yang kuat, mencapai nilai F1-score antara

0,6 hingga 0,83, dengan nilai kepercayaan antara 0,7 dan 0,8. Pendekatan ini

menawarkan solusi yang menjanjikan untuk meningkatkan efisiensi manajemen

lahan parkir, yang berpotensi mengurangi masalah terkait lalu lintas di daerah

perkotaan.

Kata kunci: Computer Vision, Deep Learning, Lahan parkir, YOLO

iv

APPLICATION OF COMPUTER VISION IN DEVELOPING A

PROTOTYPE FOR VEHICLE AND PARKING SPACE

DETECTION USING THE YOLOv8 LIBRARY

Steven Nata1, Windra Swastika2, Romy B. Widodo3

Universitas Ma Chung

Abstract

The rapid increase in private vehicle usage has exacerbated the challenge of

managing available parking spaces. Poorly managed parking facilities often result

in difficulties for vehicle owners, contributing to traffic congestion and

disorganized parking.

To address these issues, this study explores the application of Computer

Vision techniques, specifically utilizing the You Only Look Once (YOLO) model,

to enhance parking space management by accurately detecting vehicle types and

identifying available parking spots. The YOLO model was trained and integrated

with a system of four cameras, each monitoring a designated area.

 The model demonstrated robust performance, achieving an F1-score

ranging from 0.6 to 0.83, with confidence values between 0.7 and 0.8. This

approach presents a promising solution for improving the efficiency of parking

space management, potentially alleviating traffic-related problems in urban areas.

Keywords: Computer Vision, Deep Learning, Parking Spaces , YOLO

1

BAB I

PENDAHULUAN

1.1 Latar Belakang

Pada era modern ini, penggunaan kendaraan pribadi meningkat sangat pesat.

Faktor utama terjadinya hal ini adalah mobilitas masyarakat yang semakin tinggi

serta semakin mudah nya memiliki kendaraan pribadi. Namun, peningkatan jumlah

kendaraan yang besar ini memunculkan masalah baru yang cukup signifikan, yaitu

ketersediaan lahan parkir yang memadai.

Lahan parkir yang ada, sering kali tidak dikelola dengan baik, hal ini

menyebabkan para pengendaraan mengalami kesulitan dalam mencari lahan parkir

yang kosong, sehingga masalah – masalah seperti banyaknya parkir liar dan

kemacetan lalu lintas sering terjadi. Kondisi ini sangat mengganggu kelancaran lalu

lintas serta mengurangi kenyamanan dan keamanan bagi pengendara.

Menurut Andre dan Ismiyanti (2017), peran parkir dalam sistem transportasi

kota adalah bahwa tempat parkir menjadi suatu rangkaian kompleks yang saling

mendukung dengan pola jaringan jalan dan karakteristik guna lahan tertentu,

dimana tempat inilah yang akan membedakan antara tempat bergerak dan

tempat untuk pemberhenti.

Penelitian oleh Zadeh dan Dela (2016) berusaha untuk memecahkan

masalah tersebut dengan membangun sistem deteksi parkir dengan menggunakan

sensor ultrasonik untuk mendeteksi banyaknya kendaraan yang ada di dalam lahan

parkir. Dalam artikel tersebut, sistem digunakan pada beberapa lahan parkir dimana

sistem ini hanya menghitung jumlah kendaraan yang masuk dan keluar, sehingga

pada sistem ini informasi mengenai ketersediaan lahan parkir hanya terbatas pada

jumlah kendaraan yang ada di dalam, sehingga pengoprasian lahan parkir masih

sama seperti lahan parkir konvensional dimana pengendara tetap harus mencari

sendiri lahan parkir yang masih kosong.

Untuk mengatasi masalah dari pengelolaan lahan parkir, penelitian kali ini

akan membantu para pengendara dalam mencari lahan parkir dengan efisien, letak

tempat parkir yang tersedia akan ditunjukan, sehingga meningkatkan mobilitas

penduduk dan kelancaran lalu lintas. Sistem ini memanfaatkan machine learning

2

dan computer vision dalam mengidentifikasi data – data yang diperlukan untuk

menyediakan informasi yang akurat kepada pengguna mulai dari jumlah tempat

yang tersedia serta lokasi tempat yang dapat digunakan.

Pada penelitian ini prototipe yang dibuat akan menggunakan Computer

Vision dan arsitektur YOLOv8, arsitektur ini sering digunakan untuk melakukan

Object Detection. Arsitektur ini dapat melakukan deteksi objek dengan jumlah data

training yang relatif tidak banyak.

1.2 Identifikasi Masalah

Hampir seluruh lahan parkir yang tersedia tidak dikelola dengan baik.

Susahnya mencari lahan parkir menyebabkan para pengendara harus menghabiskan

banyak waktu, sehingga lahan parkir seperti ini sangat tidak efisien dan

menyebabkan berbagai masalah lalu lintas.

1.3 Batasan Masalah

Batasan masalah dalam pengerjaan sistem deteksi lahan parkir:

1. Pembuatan sistem prototipe berbasis Python dengan memanfaatkan

YOLO sebagai arsitekturnya

2. Lahan parkir yang digunakan berupa prototipe / maket

3. Menggunakan 3 klasifikasi kendaraan (SEDAN, SUV, TRUCK (mini

truck))

4. Penyediaan informasi berupa teks

5. Prototipe dapat diintegrasikan ke dalam 3 lahan parkir

1.4 Rumusan Masalah

Berdasarkan pemaparan pada latar belakang dan batasan masalah, dapat

disimpulkan bahwa dalam penelitian ini, pembuatan sistem pada prototipe akan

berbasis python dengan memanfaatkan YOLO untuk menjadi model neural

network dalam mendeteksi dan mengklasifikasi miniatur kendaraan dengan akurat.

Program python juga akan mengakomodir untuk fungsi dari arduino dan

penyediaan informasi untuk pengguna

3

1.5 Tujuan Penelitian

Tujuan dari pembuatan prototipe ini untuk menjadi sistem yang bisa

diandalkan dalam pengelolaan lahan parkir dengan memanfaatkan model neural

network untuk mendeteksi kendaraan dan mengklasifikasikanya sehingga lahan

parkir mampu untuk bekerja secara otonom dengan mendeteksi tiap kendaraan yang

ada dengan akurat, serta memberikan informasi mengenai ketersediaan lahan parkir

kepada pengguna.

1.6 Manfaat Pengenelitian

1. Manfaat bagi prodi yaitu:

a. Sebagai bahan pembelajaran bagi mahasiswa lain yang sedang

melakukan studi dengan materi yang serupa

b. Bahan banding bagi studi yang serupa

2. Manfaat bagi peneliti yaitu:

a. Publikasi ilmiah pada jurnal

b. Syarat kelulusan

1.7 Luaran Penelitian

Luaran dari penelitian ini adalah sebuah model Neural Network yang telah

dikembangkan serta prototipe dari lahan parkir yang memanfaatkan model tersebut

sebagai fungsi deteksi objeknya. Model ini akan menentukan lahan parkir mana

yang sesuai dengan klasifikasi dari objek.

1.8 Sistematika Penulisan

 Sistematika penulisan ini adalah sebagai berikut:

Bab I : Pendahuluan

Bab pendahuluan terdiri dari latar belakang, identifikasi masalah, batasan

masalah, rumusan masalah, tujuan penelitian, luaran penelitian, dan

sistematika penulisan.

4

Bab II : Tinjauan Pustaka

Bab tinjauan pustaka terdiri dari penguraian teori tentang computer vision,

deep learning, artificial neural network, convolutional neural network,

pemrosesan data, smart city, arduino, mikrokontroler, pin, konektor,

yolov8, roboflow, dan google colaboratory.

Bab III : Analisis dan Perancangan Sistem

Bab analisis dan perancangan sistem terdiri dari penguraian detail mengenai

analisis kebutuhan dari perangkat keras dan perangkat lunak, pengumpulan

data, desain dan perancangan sistem, preprocessing, anotation, data

filtering, data splitting, model training, integrasi arduino, integrasi pada

prototipe, uji coba sistem, pengujian model, dan pengujian fungsi perangkat

arduino.

Bab IV : Hasil dan Pembahasan

Bab hasil dan pembagasan berisi penguraian dari hasil pembuatan data set,

hasil training model, pembuatan program python dan arduino, dan

pengujian model.

Bab V : Kesimpulan dan Saran

Bab kesimpulan dan saran berisi kesimpulan dari penelitian yang telah

dilakukan dan saran untuk sistem dan model dapat lebih akurat dalam

mengklasifikasikan kendaraan

5

BAB II

TINJAUAN PUSTAKA

2.1 Computer Vision

 Computer vision is a form of image-based computer science that uses pixel

values to infer image content (Weinstein dalam LeCun, 2015). Computer vision

adalah suatu bidang kecerdasan buatan yang menggunakan machine learning untuk

mengajarkan sebuah komputer untuk mendapatkan informasi yang berguna dari

citra digital. Jenis machine learning yang digunakan dalam computer vision yaitu

deep learning dengan jenis model convolutional neural network (CNN)

 2.1.1 Deep Learning

Deep Learning merupakan suatu bagian dari Machine Learning.

Deep learning menggunakan Artificial Neural Network sebagai metodenya

untuk mengekstraksi dan mempelajari fitur pada data, sehingga

memungkinkan sebuah mesin untuk bisa melakukan tugas yang biasanya

hanya bisa dilakukan oleh manusia, seperti pengenalan dan pemrosesan

citra, pemrosesan bahasa dan sistem otomisasi (Self-Driving Cars).

Deep Learning uses a cascade of multiple layers of nonlinear

processing units for feature extraction and transformation. The lower layers

close to the data input learn simple features, while higher layers learn more

complex features derived from lower layer features. (Shinde, P. P., & Shah,

S., 2018)

 2.1.2 Artificial Neural Network

Artificial Neural network merupakan suatu model komputasi yang

menyerupai otak manusia. Artificial Neural network adalah suatu model

komputasi yang terdiri dari jumlah nodes (Neurons) yang besar yang

terhubung satu dengan yang lain (Wu dan Feng, 2017).

6

Arsitektur Artificial Neural Network terdiri dari tiga lapisan utama

yaitu lapisan input (input layer), lapisan tersembunyi (hidden layer), dan

lapisan output (output layer).

1. Lapisan input (input layer)

Lapisan ini merupakan tahap awal dimana fitur dari data akan

diambil dan diberikan nilai (value) yang nantinya akan

diteruskan ke lapisan tersembunyi (hidden layer).

2. Lapisan tersembunyi (hidden layer)

Selanjutnya fitur dengan nilai nya akan diteruskan ke lapisan

tersembunyi (hidden layer). Lapisan ini merupakan lapisan

dengan jumlah node yang banyak, tiap node-nya memiliki bobot

nya (weight) masing – masing. Setiap data yang melewati node

dalam lapisan tersembunyi, akan melalui komputasi yang

mengalikan nilai dari data dengan bobot pada tiap node tersebut.

Selanjutnya nilai luaran akan diterapkan bias dan fungsi aktifasi

sebelum diteruskan ke lapisan output.

3. Lapisan output (output layer)

Terakhir, pada lapisan ini semua nilai yang telah melalui

komputasi akan diteruskan ke lapisan output. Lapisan ini akan

menampung hasil dari nilai tersebut dan akan menjadi hasil akhir

dari pemrosesan data.

Contoh arsitektur dari Artificial Neural Network dapat dilihat pada

gambar 2.1. Dari contoh tersebut dapat terlihat bahwa tiap lapisan dari ANN

tidak terbatas satu node melainkan tiap lapisan dapat terdiri dari banyak

nodes

7

Gambar 2.1 Arsitektur ANN

 2.1.3 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) adalah suatu jenis neural

network yang didesain untuk melakukan proses data dengan struktur grid

seperti citra digital (citra digital terdiri dari struktur pixel yang membentuk

grid). Arsitektur ini menggantikan lapisan input pada arsitektur ANN

konvensional dengan lapisan convolution, sehingga pada arsitektur ini

ekstraksi fitur pada data tidak perlu dilakukan secara manual.

Gambar 2.2 Arsitektur CNN

 Gambar 2.2 merupakan arsitektur dari CNN. Arsitektur CNN dibagi

menjadi dua bagian yaitu feature extraction dan classification.

8

1. Feature Extraction

Bagian ini merupakan bagian dari input dan terdiri dari dua

lapisan, yaitu convolutional layer dan pooling layer. Lapisan

pertama yaitu convolutional layer merupakan lapisan

dimana fitur dari data yang berupa gambar akan diekstrak.

Data gambar akan melalui komputasi yang akan membagi

gambar menjadi grid, data ini akan menjadi feature map.

Data yang telah melalui komputasi akan diterapkan filter.

Jumlah filter yang digunakan akan menentukan kedalaman

vektor input. output dari lapisan ini adalah vektor 3D yang

menampung seluruh fitur dari data. Lapisan kedua yaitu

pooling layer atau downsampling merupakan bagian dimana

jumlah dimensi dari lapisan convolution akan dikurangi.

Terdapat dua pooling yang digunakan pada lapisan ini yaitu

max pooling dimana nilai tertinggi dari feature map akan

dipilih, dan average pooling dimana jumlah dari nilai rata –

rata bidang reseptif akan dipilih.

2. Classification

Bagian kedua merupakan bagian yang sama dengan

arsitektur ANN konvensional, namun bagian ini dimulai

dengan hidden layer (fully connected) dan dilanjutkan

dengan output.

 2.1.4 Pemrosesan Data

Dalam pengenelan objek model memiliki beberapa kriteria untuk

mempermudah proses ekstraksi fitur. Untuk memenuhi kriteria ini model

akan menyesuaikan data yang digunakan. Beberapa contoh penyesuaian

yang dilakukan adalah dengan menyesuaikan ukuran gambar ke ukuran

yang diinginkan dan melakukan thresholding.

9

Gambar 2.3 Penyesuaian citra

Gambar 2.3 merupakan contoh data berupa citra yang melalui proses

penyesuaian ukuran. Ukuran asli dari citra akan disesuaikan dengan

kebutuhan dari model, seluruh resolusi akan diperkecil menjadi 736 x 736.

Proses ini dilukakan ke seluruh data yang digunakan agar tidak ada

perbedaan format antara satu data dan data lainya.

Gambar 2.4 Thresholding

Gambar 2.4 merupakan citra yang telah melalui proses thresholding.

Proses thresholding merupakan proses yang bertujuan untuk memisahkan

Thresholding to zero

Binary thresholding Adaptive thresholding

10

antara objek dan background. Proses ini mengubah citra menjadi grayscale

dari citra grayscale tersebut akan diubah kembali menjadi citra biner.

Adaptive thresholding merupakan teknik thresholding dengan

mensegmentasi citra menjadi area – area kecil yang tidak overlapping.

Masing – masing area mendapat nilai yang berbeda beda. Metode ini

berguna untuk gambar dengan kondisi pencahayaan yang bervariasi atau

latar belakang yang tidak seragam.

Binary thresholding merupakan teknik thresholding dengan

mengubah gambar menjadi hitam putih dengan cara menghitamkan pixel

dengan warna yang ada di bawah nilai threshold dan memutihkan pixel

dengan warna yang ada di atas nilai threshold. Teknik ini sederhana, efisien,

dan sering digunakan dalam segmentasi gambar, analisis dokumen, dan

pengenalan pola. Namun, teknik ini kurang cocok untuk gambar dengan

kondisi pencahayaan yang bervariasi, di mana thresholding adaptif lebih

sesuai.

Threshold to zero merupakan teknik thresholding dengan

menghitamkan area jika warna pixel di bawah nilai threshold. Jika warna

pixel berada di atas nilai threshold maka warna akan dipertahankan. Metode

ini membantu menunjukan fitur penting tanpa mengubah gambar menjadi

bentuk biner. Teknik ini berguna dalam peningkatan gambar,

preprocessing, dan pencitraan medis, karena mempertahankan informasi

intensitas untuk piksel di atas ambang dan meningkatkan kontras. Namun,

pemilihan nilai ambang yang tepat sangat penting untuk hasil yang optimal.

Kemudian data akan masuk ke tahap filtering tahap ini merupakan tahap

dimana data yang dapat dideteksi oleh model akan dipisahkan dengan data

yang tidak dapat dideteksi.

11

2.1.5 Smart City

 Smart City merupakan sebuah konsep dari pengembangan konsep

kota urban dengan pemanfaatan manusia, kolektif, dan teknologi untuk

meningkatkan pembangunan dan kemakmuran pada kota (Angelidou,

2014). Konsep ini biasanya terfokus pada infrastruktur kota yang

memanfaatkan komputasi digital, pemanfaatan yang dimaksud seperti,

implementasi dari cashless payment, pemanfaatan computer vision untuk

mengatur lampu lalu lintas berdasarkan tingkat kepadatan kendaraan pada

lalu lintas, integrasi kamera pada jalan raya untuk melakukan tilang online,

dan lainya. Konsep ini bertunjuan untuk meningkatkan efisiensi dari

pengelolaan kota dan meningkatkan produktivitas masyarakat.

Dari penjelasan ini, penelitian akan menekankan pada pemanfaatan

teknologi berupa computer vision dalam melakukan peningkatan efisiensi

dari pengelolaan lahan parkir untuk mempermudah pengendara dalam

mencari lahan parkir.

2.2 Arduino

 Arduino merupakan sebuah perangkat elektronik yang bersifat open source

dan sering digunakan untuk merancang dan membuat perangkat elektronik serta

software yang mudah untuk digunakan (Setiawan, 2022). Arduino sering kali

digunakan dalam pembuatan perangkat elektronik sebagai otak dari perangkat

tersebut.

Gambar 2.5 Papan Arduino uno R3

12

Arduino sendiri merupakan suatu perangkat yang bertugas untuk melakukan

proses pada input yang diberikan sesuai dengan software yang telah dituliskan data

yang telah diproses nantinya dapat dikeluarkan dalam bentuk teks pada terminal

ataupun berupa sinyal pada perangkat yang terhubung dengan papan arduino.

Arduino memiliki beberapa komponen yang penting di dalamnya:

 2.2.1 Mikrokontroler

Mikrokontroler adalah chip yang memungkinkan untuk

memprogram arduino sehingga mampu untuk memproses output

berdasarkan input yang diberikan. Hal ini memungkinkan arduino untuk

memproses data untuk memberikan perintah kepada perangkat lain untuk

melakukan sebuah perintah. Gambar 2.6 merupakan gambar dari chip mikro

kontroller pada arduino.

Gambar 2.6 Chip mikrokontroler

 2.2.2 Pin

Pin merupakan bagian dari arduino yang penting sebagai

penghubung antara perangkat lain dengan arduino. Setiap pin pada arduino

memiliki fungsinya masing – masing.

Gambar 2.7 Diagram Pin Arduino

13

Gambar 2.7 merupakan diagram pin yang terdapat pada arduino, pin

dalam arduino dibagi menjadi dua yaitu:

• Pin digital (Dapat menerima dan mengirim sinyal digital),

gambar 2.8 merupakan gambar dari pin digital pada arduino

• Pin analog (Hanya dapat menerima sinyal analog), gambar

2.9 merupakan gambar dari pin analog pada Arduino

Gambar 2.8 Pin digital Arduino

Gambar 2.9 Pin analog Arduino

2.2.3 Konektor

 Arduino memiliki dua jenis konektor yaitu:

• Power konektor (Untuk menyalurkan daya ke

Arduino)

• Serial konektor (Untuk menghubungkan perangkat

dengan port USB)

Pada penelitian ini arduino digunakan dalam mengontrol servo yang

nantinya akan menjadi pintu portal dari lahan parkir.

14

2.3 YOLOv8

 YOLOv8 merupakan real-time object detection and image segmentation

model. Model YOLO mampu untuk menyeimbangkan antara kecepatan dan akurasi

pada arsitekturnya, hal ini menjadikan YOLO sangat cocok dalam pengaplikasian

yang membutuhkan deteksi dalam waktu yang cepat, seperti autonomous driving,

surveillance, dan robotik.

 YOLO memiliki kemampuan untuk menghasilkan model yang relatif cepat

dan akurat berkat arsitekturnya. Arsitektur pada YOLO terbagi menjadi tiga bagian

yaitu backbone, neck, dan head . Arsitektur YOLO dapat dilihat pada gambar 2.10

(VK, 2023)

Gambar 2.10 Arsitektur YOLOv8

1. Backbone

Bagian pertama dari arsitektur YOLO adalah Backbone. Bagian ini

merupakan bagian dari YOLO yang menerima dan mengekstrak fitur

dari gambar untuk menghasilkan feature map. Pada bagian ini gambar

akan terbagi menjadi beberapa bagian, dari yang paling besar hingga

yang paling detail. Dalam ekstraksi fitur YOLO menggunakan fungsi

aktivasi SiLU (Sigmoid Linear Unit). Fungsi ini berguna untuk

15

menambahkan non-linearity pada data yang dapat membantu dalam

mengenali pattern dari data yang kompleks. Formula untuk SiLU

sebagai berikut.

𝑓(𝑥) = 𝜎(𝑧) =
1

1 + 𝑒−𝑧

(2-1)

2. Neck

Bagian ini merupakan bagian yang bertugas untuk menggabungkan

feature map dari yang terbesar (kurang detail) hingga yang paling detail

dan melakukan feature enhancement. Komponen utama pada bagian

Neck adalah FPN (Feature Pyramid Network). FPN bertugas untuk

menghasilkan feature map atau up-samples feature map yang lebih

detail untuk nantinya akan digabungkan. Bagian ini juga menambahkan

fitur berupa spatial attention mechanisms yang memberikan bobot ke

seluruh bagian feature map dengan bobot yang berbeda – beda untuk

meningkatkan fitur yang penting agar memudahkan proses deteksi objek

dan klasifikasinya.

3. Head

Bagian paling akhir dari YOLO merupakan bagian dimana proses

deteksi terjadi. Bagian ini memiliki kemampuan untuk meningkatkan

lagi feature maps dari bagian sebelumnya namun fungsi utama dari

bagian ini adalah melakukan deteksi, memprediksi bouding box,

memprediksi class (classification), dan memberikan confidence score.

Bagian ini biasannya terdiri dari beberapa blok CNN. Dalam proses

training bounding box yang memiliki Iou (Intersection over Union) atau

koordinat bounding box terdekat dengan tag bounding box yang

diberikan akan dipilih.

16

Pada penelitian ini YOLO akan menjadi arsitektur yang akan digunakan dalam

melakukan training data set untuk melakukan deteksi objek dan klasifikasi dari

miniatur kendaraan.

2.4 RoboFlow

 RoboFlow merupakan cloud-based workflow management system untuk

pengembangan yang terfokus pada data dan AI (Lin, et al., 2022). Sistem ini

digunakan untuk membagi tugas kepada tim pengembang untuk melakukan proses

pembuatan data set dengan memberikan tag berupa bounding box.

 Dalam penelitian ini RoboFlow digunakan untuk membuat data set sebagai

bahan untuk training dari model. RoboFlow memberikan tools yang sangat

mempermudah untuk menggambar bounding box pada gambar, tools ini juga secara

otomatis memberikan tag berupa koordinat dari bounding box yang telah digambar

pada gambar input. Pada tahap terakhir RoboFlow menawarkan untuk

memanfaatkan platform-nya untuk melakukan training, namun pengguna juga

dapat membuat kode snippet yang akan mendownload data set yang telah dibuat

jika pengguna ingin melakukan training sendiri.

2.5 Google Colaboratory

 Colab is a hosted Jupyter Notebook service that requires no setup to use

and provides free of charge access to computing resources, including GPUs and

TPUs (Google, 2024). Penggunaan google colaboratory atau google colab tidak

jauh berbeda dengan penggunaan IDE pada umumnya, namun google colab

memiliki fitur untuk dapat menjalankan kode per segmen, sehingga cocok untuk

pengembangan machine learning.

 Dalam pengembangan machine learning, google colab menyediakan

resource berupa berbagai macam GPU (Graphic Processing Unit) dan TPU (Tensor

Processing Unit). GPU dan TPU memiliki performa yang tidak jauh berbeda namun

17

TPU lebih dioptimasi untuk melakukan komputasi, namun, GPU yang disediakan

pada google colab memiliki tensor core sehingga pada dasarnya keduanya sangat

efisien dalam melakukan komputasi dalam pengembangan machine learning.

Google colab membatasi para penggunanya untuk mengakses GPU dan TPU yang

tersedia tanpa membeli kuota pemakaian. Namun untuk pilihan tidak berbayar

google colab menawarkan NVIDIA T4 GPU sebagai pilihan terbaik.

17

BAB III

ANALISIS DAN PERANCANGAN SISTEM

Penelitian ini dilakukan untuk pengembangan sistem parkir dalam prototipe

kota yang akan dibuat dengan memanfaatkan computer vision untuk melakukan

deteksi dan klasifikasi dari kendaraan. Proses penelitian dibagi menjadi beberapa

tahapan seperti yang terlihat pada gambar 3.1

Gambar 3.1 Tahapan proses penelitian

3.1 Analisis Kebutuhan

 Analisis kebutuhan merupakan tahapan yang penting untuk kelancaran

proses pengembangan. Proses ini berguna untuk menganalisis kebutuhan peneliti

18

selama proses penelitian. Proses ini meneliti kebutuhan dalam bentuk perangkat

keras dan perangkat lunak yang digunakan. Proses ini dimulai dengan menganalisis

detail mengenai penelitian, analisa didapatkan dengan melakukan riset terlebih

dahulu dengan tinjauan pustaka dari penelitian ini. Analisis yang didapatkan

sebagai berikut.

3.3.1 Perangkat Keras

a. Laptop ASUS VivoBook A416FA-FHD324

i. CPU : Intel Core i3 – 10110U

ii. RAM : 4 GB DDR4

iii. SSD : 256 GB

iv. Sistem Operasi : Windows 11 Home

v. GPU : Integrated Intel Graphics

b. Personal Computer Laboratorium KRPA

i. CPU : Intel Core i7 – 12700F

ii. RAM : 16 GB DDR4

iii. SSD : 500 GB

iv. Sistem Operasi : Windows 11 Pro

v. GPU : Nvidia RTX 3060

c. Arduino UNO R3

i. ATMega328P processor

a. Memory

i. 32 KB Flash

ii. 2 KB SRAM

iii. 1KB EEPROM

ii. ATMega16U2 Processor (Mikro kontroller)

a. Memory

i. 16 KB ISP Flash

ii. 512 B EEPROM

iii. 512 B EEPROM

d. AKASO V50X (Kamera)

e. OBS BOT (Kamera)

f. Miniatur Kota

19

3.3.2 Perangkat Lunak

a. PyCharm

b. Python 3

c. CV2

d. CVZone

i. Open CV

e. Ultralytics (YOLO)

f. Math

g. Arduino IDE

h. RoboFlow

i. Pickle

3.2 Pengumpulan Data

 Tahap pengumpulan data merupakan tahap pembuatan data set berupa citra

miniatur kendaraan. Miniatur kendaraan yang digunakan dibagi menjadi tiga jenis

yaitu sedan, suv, dan mini truck atau mobil bak terbuka. Pengumpulan data

dilakukan dengan menggunakan script berbasis python dan menggunakan kamera

AKASO V50X.

 Script yang dijalankan berfungsi untuk mengambil citra dalam interval

waktu 1.5 detik. Dalam pengambilan citra posisi miniatur akan selalu diubah setiap

interval waktu agar model AI yang dihasilkan lebih akurat. Terdapat tujuh miniatur

kendaraan yang digunakan dan diklasifikasikan menjadi tiga jenis, miniatur

kendaraan yang digunakan dapat dilihat pada gambar 3.2.

Gambar 3.2 Miniatur kendaraan

20

3.3 Desain dan Perancangan Sistem

 Tahapan ini merupakan tahap proses dari pembuatan sistem. Tahapan ini

meliputi proses pembuatan model AI, rangkaian arduino, dan integrasi prototipe

atau miniatur perkotaan. Tahap ini terdiri dari empat bagian yaitu preprocessing,

model training, rangkaian arduino, dan integrasi antara prototipe kota dengan

model AI dan rangkaian arduino.

3.3.1 Preprocessing

Gambar 3.3 Tahap preprocessing

Sebelum citra yang diambil dapat dijadikan data set, terdapat proses

yang akan dilalui proses ini dinamakan preprocessing. Dalam proses ini

data melewati tiga jenis tahap yaitu annotation, data filtering dan data

splitting. Diagram mengenai tahapan preprocessing dapat dilihat pada

gambar 3.3. Penjelasan mengenai kedua proses dalam preprocessing

sebagai berikut.

a. Anotation

Proses ini merupakan proses awal dari pembuatan data set

dengan memberikan tag pada citra yang sudah ditangkap. Tag yang

diberikan berupa bounding box pada area yang ingin dideteksi

dengan tambahan koordinat dari bounding box , klasifikasi dari

objek dan jumlah objek. Proses ini memanfaatkan tools yang

disediakan oleh RoboFlow.

b. Data filtering

Proses ini merupakan proses yang terjadi bersamaan dengan

proses anotation. Proses ini menghapus citra yang dianggap dapat

menurunkan akurasi dari model. Citra yang dimaksud adalah, citra

yang mengandung objek yang akan dideteksi namun sebagian besar

dari objek tersebut terhalang oleh objek lain atau hanya sebagian

kecil dari objek yang terlihat pada citra.

21

c. Data splitting

Proses ini merupakan proses terakhir pada preprocessing.

Pada tahap ini data akan dibagi menjadi tiga bagian yaitu train set,

validation set, dan test set dengan pembagian sebagai berikut train

set 70%, validation set 20%, dan test set 10%. Pembagian data ke

validation set berfungsi untuk meningkatkan akurasi dari model

dengan memberikan data yang tidak bias dan tidak pernah dilihat

sebelumnya selama proses training agar model dapat menyesuaikan

parameternya. Test set berfungsi untuk melakukan tes akurasi pada

model dengan data yang tidak terdapat pada proses training

3.3.2 Model Training

Tahap ini merupakan tahap selanjutnya dimana data set

sudah siap untuk digunakan dalam training model. Training model

dilakukan menggunakan google colaboratory dengan menggunakan

runtime T4 GPU. Penggunaan google colaboratory dapat

mempercepat proses training karena akses terhadap T4 GPU. Proses

training dilakukan dengan epoch sebanyak 50 dan model YOLOv8n.

Varian YOLOv8n merupakan varian dari YOLOv8 yang paling

kecil dan cepat, penggunaan varian YOLOv8 yang lebih besar tidak

diperlukan karena klasifikasi yang digunakan relatif tidak banyak

dan performa dengan perangkat keras yang digunakan akan

menurun.

3.3.3 Integrasi Arduino

Untuk mengontrol servo, maka arduino harus dikoneksikan

dahulu dengan servo melalui beberapa pin. Dalam mengoneksikan

servo terdapat beberapa pin yang digunakan yaitu:

• GND : Merupakan pin yang bertanggung jawab untuk

ground.

• 5V : 5V adalah pin yang akan memberikan power pada

papan Arduino.

• Digital ~ 5 , 6 , 9 : Pin ini merupakan pin yang akan menjadi

tempat untuk mengirimkan sinyal pada servo.

22

Selanjutnya arduino akan terkoneksi dengan laptop melalui

port USB. Gambar 3.4 adalah gambar diagram koneksi antara

arduino, servo, dan laptop.

Gambar 3.4 Diagram koneksi arduino, servo, dan laptop

3.3.4 Integrasi pada Prototipe

Tahap ini merupakan tahap terakhir dari perancangan sistem.

Integrasi antara arduino, webcam, servo, dan model Computer

Vision akan dilakukan pada prototipe. Gambar 3.5 merupakan

rancangan prototipe yang akan digunakan.

Gambar 3.5 Rancangan prototipe

Pada rancangan prototipe, webcam akan diletakkan di atas

lahan parkir menghadap bawah melihat lahan parkir dan kendaraan

dari atas agar kendaraan dan lahan parkir dapat terlihat dengan jelas,

webcam akan terhubung dengan laptop melalui port USB, sama

halnya dengan arduino juga akan terhubung dengan laptop melalui

port USB. Servo akan menjadi palang dari lahan parkir yang akan

dihubungkan dengan arduino untuk menerima perintah.

23

Terdapat empat kamera yang diletakkan pada posisi yang

berbeda – beda. Tiga kamera pertama diletakkan tepat di atas masing

– masing lahan parkir menghadap ke lahan parkir. Untuk satu

kamera lainya akan diletakkan di atas jalan di luar lahan parkir

menghadap ke ruas jalan, untuk mendeteksi kendaraan yang akan

memasuki lahan parkir.

Citra dari kamera akan dikirimkan ke laptop, jika terdeteksi

adanya kendaraan yang akan memasuki lahan parkir maka laptop

mengirimkan perintah menuju arduino untuk membuka palang.

Deteksi pada kendaraan dilakukan pada area yang telah

ditandai dengan polygons. Polygons ini dibuat dengan menyimpan

koordinat di titik – titik yang ditentukan.

3.4 Uji Coba Sistem

 Tahap terakhir adalah tahap uji coba, tahap ini merupakan tahap dimana

hasil dari penelitian akan diuji coba, beberapa pengujian yang dilakukan adalah

pengujian model dan pengujian fungsi perangkat arduino.

3.4.1 Pengujian Model

Pengujian pada model yang akan dilakukan adalah precision, recall

dan F1 – Score dari model yang sudah melalui proses training. Terdapat

empat kemunkinan luaran dari model, yaitu True Positive (TP), False

Positive (FP), False Negative (FN),dan True Negative (TN). Keempat

luaran ini dapat dirangkum menggunakan confusion matrix.

Tabel 3.1 Contoh Confusion Matrix

Jumlah

Sesungguhnya

Jumlah terdeteksi

1 0

1 TP FN

0 FP TN

24

Tabel di atas merupakan contoh confusion matrix sederhana dengan

satu variabel positif dan satu variabel negatif yang dilambangkan dengan

nilai 1 sebagai positif atau terdapat objek yang akan dideteksi dan 0 sebagai

negatif atau tidak ada objek yang akan dideteksi. Pada contoh tersebut true

positive (TP) merupakan bagian yang melambangkan bahwa model

mendeteksi objek yang sesuai dengan kenyataan. True negative (TN) adalah

bagian yang melambangkan jika model tidak mendeteksi apapun dan

sesungguhnya tidak ada objek yang harus dideteksi. False negative (FN)

adalah bagian yang melambangkan bahwa model tidak mendeteksi dapat

objek meskipun kenyataannya terdapat objek yang ingin dideteksi. False

positive (FP) merupakan bagian yang melambangkan bahwa model

mendeteksi objek walau pada kenyataannya tidak terdapat objek yang akan

dideteksi. Namun karena terdapat 3 klasifikasi dari luaran model maka

confusion matrix yang dihasilkan juga akan berubah. confusion matrix

untuk tiga klasifikasi dapat dilihat pada tabel 3.2.

Tabel 3.2 Confusion Matrix tiga klasifikasi

Jumlah

Sesungguhnya

Jumlah Terdeteksi

SEDAN SUV TRUCK BACKGROUND

SEDAN TP FN FN FN

SUV FN TP FN FN

TRUCK FN FN TP FN

BACKGROUND FP FP FP TN

Penambahan variabel background pada confusion matrix berfungsi

menjadi variabel negative pada matrix. Variabel tersebut penting untuk

menentukan nilai yang akan digunakan untuk melakukan pengujian model.

Selanjutnya perhitungan precision dan recall akan dilakukan untuk

melihat proporsi kemampuan dari model untuk melakukan deteksi TP pada

objek. Precision merupakan perhitungan yang menggambarkan

perbandingan deteksi positive yang dibandingkan dengan seluruh data

25

positive. Sedangkan Recall merupakan perhitungan yang menggambarkan

perbandingan deteksi positive jika dibandingkan dengan seluruh data yang

ada. Perhitungan precision dan recall didefinisikan sebagai berikut

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(3-1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3-2)

F1- score merupakan metrics yang menggabungkan precision dan

recall. F1 – score akan menguji banyaknya jumlah deteksi benar yang dapat

dilakukan oleh model. F1- score diperoleh dengan menghitung harmonic

mean dari perhitungan precision dan recall. Perhitungan F1 – score dapat

dilakukan dengan definisi sebagai berikut.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(3-3)

Perhitungan F1 – score akan memberikan gambaran mengenai

performa model yang digunakan. Nilai F1 – score berkisar antara 0 hingga

1.0 dimana nilai 0 berarti bahwa model selalu salah dalam mendeteksi

objek dan nilai 1.0 berarti model selalu benar dalam mendeteksi objek.

3.4.2 Pengujian Fungsi Perangkat Arduino

Pengujian pada perangkat arduino merupakan pengujian yang cukup

simpel dan mudah. Pengujian ini ditujukan untuk mengetahui apakah

program yang ada pada laptop mampu untuk mengirimkan perintah serial

menuju arduino dan apakah arduino mampu untuk mengirimkan perintah

menuju ketiga servo. Pengujian dilakukan dengan mengirimkan string

menuju arduino yang selanjutnya arduino akan memerintahkan servo untuk

bergerak sesuai dengan string yang dikirimkan.

26

BAB IV

HASIL DAN PEMBAHASAN

 Pada bab ini akan membahas perancangan yang sudah ditetapkan

sebelumnya. Bab ini juga akan membahas tentang hasil pengujian dari penelitian

ini. Bab ini akan dibagi menjadi enam bagian yaitu pembuatan data set, training

model, pembuatan program python, pembuatan program arduino, pengujian

model serta fungsionalitas dari arduino, dan pembuatan protipe kota.

4.1 Pembuatan Data Set

 Dalam pembuatan data set terdapat empat tahap yaitu pengambilan citra

dari miniatur kendaraan, annotation, data filtering, dan data splitting. Keempat

tahapan ini penting untuk menghasilkan data set yang baik. Pada penelitian ini

posisi bounding box, jumlah citra, dan kejelasan dari citra yang diambil sangat

penting. Penjelasan mendetail mengenai tahapan pembuatan data set sebagai

berikut.

4.1.1 Pengambilan Citra

Pada tahapan pertama pengambilan citra dilakukan

menggunakan kamera AKASO V50X dengan bantuan script

berbasis python. Script tersebut berfungsi untuk mengambil citra

dalam interval waktu yang ditentukan.

001 import cv2

002

003 CAR_COUNT = "1"

004

005 cam_width, cam_height = 1280, 720

006 path = "D:\\YOLO TA\\Imagedataset\\NullImage\\"+CAR_COUNT+"_"

007 count = 1

008 cam_port = 0

009 cam = cv2.VideoCapture(cam_port)

010 cam.set(3,cam_width)

011 cam.set(4,cam_height)

012

013 def save(path, varImg):

014

015 cv2.imwrite(path,varImg)

016 while True:

017 result, image = cam.read()

018 cv2.imshow("Image", cv2.resize(image,(854,480)))

019

27

020 if result:

021 save(path +"_"+ str(count) + ".jpg", image)

022 cv2.waitKey(2000)

023 print(".....SAVED!!")

024 count += 1

Potongan kode di atas merupakan kode yang bertugas untuk

menangkap citra. Potongan kode cv2.waitKey(2000) berfungsi

untuk menentukan waktu dalam satuan ms (mili second), dalam

kode ini citra akan diambil dalam interval 2000 ms atau 2 detik.

Bagian kode save(path +"_"+ str(count) + ".jpg", image)

merupakan bagian yang bertujuan untuk menyimpan citra pada

tempat yang sudah ditempatkan pada variabel “path” dan dengan

nama sesuai dengan variabel str(count), pada potongan kode

yang sama variabel “image” merupakan variabel yang menampung

citra yang ditangkap oleh kamera. Kamera yang digunakan

didefinisikan dengan variabel cam_port.

Gambar 4.1 Citra kendaraan

Gambar 4.1 merupakan beberapa citra yang telah diambil.

Citra yang diambil mencakup ketiga klasifikasi yang akan

digunakan yaitu SEDAN, SUV, dan TRUCK. Total pengambilan

citra keseluruhan adalah 504 citra. Peletakan kamera akan

28

disesuaikan dengan peletakan pada prototipe kota yaitu dari atas

mengarah ke bawah.

4.1.2 Anotation

Tahapan ini merupakan tahap penambahan tag berupa

bounding box, dan koordinat dari bounding box. Tahapan ini

dilakukan secara manual menggunakan tools yang disediakan oleh

roboflow. Pada tahap ini sangat penting untuk memperhatikan area

bounding box yang diberikan, bounding box yang diberikan akan

meliputi seluruh objek yang akan dideteksi namun tidak terlalu

besar.

Gambar 4.2 Interface penambahan nama kelas

 Sebelum proses annotation, nama dari kelas yang akan

dicantumkan pada objek akan ditambahkan terlebih dulu.

Penambahan nama kelas dapat dilihan pada gambar 4.2. Terdapat

tiga klasifikasi yang ditambahkan.

29

Gambar 4.3 Interface tool roboflow

Gambar 4.3 merupakan interface tool dari roboflow yang

digunakan untuk menggambar bounding box pada citra. Dalam

melakukan anotasi, klasifikasi objek perlu diperhatikan. Setiap

warna dari bounding box melambangkan klasifikasi yang telah

ditentukan sebelumnya. Tag berupa koordinat, klasifikasi, dan

jumlah objek akan secara otomatis di-generate oleh roboflow

dalam file tersendiri.

Gambar 4.4 Hasil anotasi citra

Gambar 4.4 adalah hasil dari citra yang telah melalui

anotasi. Bounding box yang diberikan sesuai dengan besar dari

objek.

30

4.1.3 Data Filtering

Tahapan ini merupakan tahapan yang dilakukan untuk

membersihkan data set dari citra yang tidak baik. Citra yang tidak

baik merupakan citra yang mengandung objek yang ingin dideteksi

namun, objek tersebut tidak jelas atau bagian dari objek hanya

terlihat sedikit. Tahapan data filtering ini dilakukan bersamaan

dengan tahapan annotation. Proses pembersihan dilakukan dengan

cara menghapus citra yang tidak baik.

Gambar 4.5 Proses penghapusan citra

Gambar 4.5 merupakan proses penghapusan yang

dilakukan dengan menggunakan tool yang sama pada halaman

yang sama. Pada saat proses annotation dilakukan jika ada citra

yang dianggap tidak baik maka citra tersebut dapat segera dihapus.

Data citra yang tersisa setelah melewati tahapan ini adalah

sebanyak 475 citra.

4.1.4 Data Splitting

Data splitting merupakan tahap terakhir dalam pembuatan

data set. Pada tahap ini data yang sudah dibersihkan dan diberi tag

akan dibagi menjadi tiga bagian yaitu train set, validation set, dan

31

test set. Perbandingan dari pembagian ketiga bagian ini adalah 70%

train set, 20% validation set, dan 10% test set. Dari pembagian ini

didapatkan jumlah citra pada train set sebanyak 333 citra,

validation set sebanyak 95 citra, dan test set sebanyak 47 citra.

Data splitting penting untuk dilakukan untuk meningkatkan

akurasi deteksi dari model yang dihasilkan. Train set merupakan

data yang akan menjadi data utama yang digunakan dalam proses

training dengan jumlah citra terbanyak. Validation set merupakan

data yang digunakan sebagai pembanding dalam proses training.

Pada proses training tiap epoch yang selesai maka model akan

menggunakan validation set untuk mengatur parameter modelnya,

dengan begitu model dihadapkan dengan data baru. Hal ini sangat

membantu untuk menghindari overfitting pada model. Overfitting

merupakan keadaan dimana data set terdiri dari data yang terlalu

bagus sehingga jika model dihadapkan pada keadaan dengan

keberadaan noise maka model tidak mampu untuk mendeteksi

objek. Train set merupakan data yang digunakan untuk mengukur

keakuratan pada model. Train set merupakan data yang akan

diproses ketika seluruh proses training telah selesai.

4.2 Training Model

 Pada tahap ini data set yang siap untuk digunakan akan melalui tahap

training. Sebelum data set dapat digunakan, data set harus di-download terlebih

dahulu ke google colab. Roboflow menyediakan fitur untuk meng-generate

snippet kode yang dapat dijalankan dalam google colab untuk men-download data

set dari platform roboflow dengan format yang diinginkan.

001 !pip install roboflow

002

003 from roboflow import Roboflow

004 rf = Roboflow(api_key="lKMj2udZfi3fzg2cS3K2")

005 project = rf.workspace("suvsedantruck").project("ta-jhoha")

006 version = project.version(5)

007 dataset = version.download("yolov8")

32

Potongan kode diatas merupakan kode snippet yang dihasilkan oleh

roboflow dengan format yolov8. Kode snippet ini mengakses data set dari akun

roboflow dengan nama workspace “suvsedantruck” dan kode projek “ta-jhoha”.

Gambar 4.6 Folder data set

 Gambar 4.6 merupakan folder yang telah di-download. Folder yang di-

download berisi seluruh data set yang telah terbagi dengan tambahan file

“data.yaml”. File tersebut merupakan data yang mengatur konfigurasi dari letak

test set, validation set, dan train set serta nama klasifikasi dari objek.

Gambar 4.7 Isi file data.yaml

 Pada gambar 4.7 menunjukan isi dari file data.yaml. Dapat terlihat pada

empat baris pertama merupakan nama dari klasifikasi yang telah ditentukan

sebelumnya. Pada file ini terdapat bagian yang berisi path untuk folder test (test

33

set), train (train set), dan val (validation set). Path yang tercantum akan sedikit

disesuaikan dengan path yang ada pada google colab.

Gambar 4.8 File data.yaml setelah penyesuaian

 Gambar 4.8 merupakan isi dari file data.yaml yang telah disesuaikan

dengan path folder data set pada google colab.

Gambar 4.9 Folder data set

 Gambar 4.9 merupakan isi dari Folder data set. Setiap folder dari data set

berisi dua jenis folder yaitu images dan labels. Images merupakan folder yang

berisi citra yang ditangkap sebelumnya sedangkan labels berisi file tag.

34

Gambar 4.10 File tag pada citra

Gambar 4.10 merupakan isi dari file tag yang diberikan pada citra. Pada

baris pertama, “2” merupakan kode klasifikasi objek yang diikuti oleh 4 baris

koordinat. Terdapat dua baris dengan kode klasifikasi yang berbeda, menunjukkan

pada citra tersebut terdapat dua objek berbeda.

Sebelum proses berlangsung terdapat satu library yang diperlukan untuk

mengakses model YOLO. Ultralytics merupakan library yang dapat digunakan

untuk mengakses model YOLO.

001 !pip install ultralytics

002 From ultralytics import YOLO

Potongan kode di atas berfungsi untuk meng-install library ultralytics dan

mengambil komponen YOLO dari library tersebut.

Sebelum proses training dijalankan jenis perangkat keras yang digunakan

pada runtime google colab akan dipastikan terlebih dahulu. Perangkat keras

terbaik yang dapat dipilih tanpa melakukan pembelian adalah T4 GPU, seperti

pada gambar 4.11.

Gambar 4.11 Jenis runtime

 Untuk menguji apakah perangkat keras T4 GPU telah terhubung, potongan

kode !nvidia-smi digunakan untuk melihat spesifikasi dari perangkat keras T4

35

GPU. Spesifikasi dari T4 GPU dapat dilihat pada gambar 4.12. Jika perangkat

keras T4 GPU belum terhubung maka potongan kode !nvidia-smi akan

mengeluarkan error code seperti yang terlihat pada gambar 4.13.

Gambar 4.12 Spesifikasi T4 GPU

Gambar 4.13 Kode error GPU

 Setelah seluruh persiapan data set dan perangkat keras telah siap maka

proses training dapat dilakukan. Proses training dapat dilakukan dengan

menggunakan potongan kode sebagai berikut.

001 Yolo task=detect mode=train data=/content/TA-5/data.yaml

epochs=50 imgsz=730

 Pada potongan kode diatas terdapat beberapa parameter yang digunakan

oleh model untuk menetapkan alur training dan path dari data set. Parameter task

merupakan parameter yang menetapkan tugas pada YOLO. Pada potongan kode

36

di atas parameter “task” berisi perintah untuk “detect”, perintah ini bertugas untuk

menetapkan bahwa model YOLO akan melakukan tugas deteksi objek.

Selanjutnya parameter “mode” berisi perintah “train”. Perintah train bertugas

untuk menetapkan bahwa model YOLO akan melakukan training pada model.

Parameter “data” merupakan parameter yang berisi path yang menuju file

konfigurasi yang telah dijelaskan sebelumnya. Paramater “epochs” merupakan

jumlah siklus training yang akan dilakukan, tiap epoch yang selesai model akan

melakukan validasi menggunakan validation set. Parameter terakhir yaitu “imgsz”

merupaka parameter yang berisi ukuran dari citra.

 Luaran dari proses training adalah folder berisi model yang telah

disesuaikan dengan klasifikasi dan objek yang telah ditentukan sebelumnya serta

beberapa file testing dari model.

Gambar 4.14 Path folder model

 Gambar 4.14 menunjukan path folder tempat model disimpan. Model

“last.pt” merupakan model yang telah melalui proses validation dan testing,

sedangkan “last.pt” merupakan model yang hanya melalui proses training.

 Proses training menggunakan GPU merupakan hal yang penting untuk

dilakukan. GPU yang telah disediakan oleh google colab merupakan perangkat

yang sangat optimal untuk melakukan proses training. Perbedaan waktu yang

digunakan sangat signifikan dimana training menggunakan GPU membutuhkan

waktu 9.6 menit, sebaliknya penggunaan CPU dalam proses training

menghabiskan waktu sebanyak 5 jam dengan jumlah serta jenis data set dan

parameter yang sama.

37

4.3 Pembuatan Program Python

 Program python yang dibuat akan meliputi beberapa tugas, beberapa tugas

yang akan diliputi adalah mengkoneksikan serta menangkap citra dari keempat

kamera yang digunakan, mengirimkan kode pada arduino berupa string untuk

memerintah servo untuk bergerak sesuai dengan posisi miniatur kendaraan.

 Dalam pembuatan program python terdapat beberapa library yang akan

digunakan, yaitu math, cv2, cvzone, pickle, numpy, ultralytics, serial, dan time.

Program python diawali dengan pembuatan bagian yang akan mengakses keempat

kamera yang digunakan. Bagian ini memanfaatkan library cv2 untuk

menghubungkan keempat kamera menuju komputer.

001 cam_width, cam_height = 1280, 720 # CAM RES

002

003 cap1 = cv2.VideoCapture(p1) # WEB CAM ASSIGN

004 cap2 = cv2.VideoCapture(p2)

005 cap3 = cv2.VideoCapture(p3)

006 cap4 = cv2.VideoCapture(roadCam)

007

008 cap2.set(3, cam_width)

009 cap2.set(4, cam_height)

010 cap3.set(3, cam_width)

011 cap3.set(4, cam_height) # SET ALL FRAME SIZE

012 cap1.set(3, cam_width)

013 cap1.set(4, cam_height)

014 cap4.set(3, cam_width)

015 cap4.set(4, cam_height)

 Potongan kode di atas merupakan bagian yang menginisialisasi kamera.

Kamera yang akan diinisialisasi dilambangkan dengan angka dari 0 hingga 3 yang

ditampung dalam variabel p1,p2,p3, dan roadcam. Selanjutnya pada baris 008

hingga 015 merupakan bagian inisialisasi resolusi dari citra kamera yang nanti

akan ditampilkan.

 Bagian selanjutnya adalah bagian yang membaca citra kamera yang sudah

diinisialisasi dan melakukan proses citra menggunakan model YOLO. Bagian ini

dapat dilihat pada potongan kode di bawah ini.

38

001 success1, img1 = cap1.read()

002 success2, img2 = cap2.read() # READING CAMERA ASSIGNED

003 success3, img3 = cap3.read()

004 success4, img4 = cap4.read()

005

006

007 object_list1 = get_object_list_yolo(model, img1,

class_names, confidence, draw=True)

008 object_list2 = get_object_list_yolo(model, img2,

class_names, confidence, draw=True)

009 object_list3 = get_object_list_yolo(model, img3,

class_names, confidence, draw=True)

010 object_list4 = get_object_list_yolo(model, img4,

class_names, confidence, draw=True)

 Pada potongan kode di atas, pada baris 001 hingga 004 merupakan bagian

yang membaca citra dari kamera. Baris 007 hingga 010 merupakan bagian yang

memberikan citra kamera pada model untuk dideteksi oleh model YOLO

menggunakan fungsi get_object_list_yolo. Objek yang terdeteksi akan

ditampilkan dalam citra kamera dengan bounding box pada objek tersebut dan

disimpan dalam format list ke dalam variabel penyimpan object_list1, object_list2,

object_list3, dan object_list4. Masing – masing variabel penyimpan bertanggung

jawab untuk menyimpan objek yang terdeteksi dari citra pada img1, img2, img3,

dan img4. Objek yang telah terdeteksi dapat dilihat pada gambar 4.15.

Gambar 4.15 Objek terdeteksi

39

 Bagian selanjutnya adalah bagian yang mengatur arduino untuk mengirim

perintah menuju ketiga servo. Dalam bagian ini posisi kendaraan akan memicu

arduino jika sudah berada pada area yang ditentukan. Dapat dilihat pada gambar

4.16 bahwa terdapat empat area yang akan digunakan. Area pertama yaitu “Road”

akan memicu arduino untuk menggerakan servo tertentu sesuai dengan jenis

klasifikasi miniatur kendaraan yang ada di dalam area tersebut. Area selanjutnya

adalah “P1”. Area tersebut akan memicu arduino untuk menggerakan servo yang

ada pada lahan parkir P1. Sama halnya dengan area “P2” dan “P3” keduanya

hanya akan menggerakan servo pada lahan parkirnya masing masing. Servo yang

dibuka dengan memicu area “Road”, akan menutup setelah miniatur telah masuk

ke lahan parkir, sedangkan servo yang dibuka dengan memicu area lain akan

langsung menutup 500ms setelah miniatur kendaraan tidak lagi di dalam area

tersebut.

Gambar 4.16 Area polygons

 Area akan dibuat membaca empat titik koordinat pada citra kamera.

Setelah keempat koordinat telah tersimpan maka berdasarkan koordinat –

koordinat tersebut akan dijadikan acuan sudut dari kotak yang akan digambarkan

pada citra, sehingga pada tampilanya area tersebut dapat terlihat seperti pada

gambar 4.17. Setelah area telah digambar maka selanjutnya akan disimpan dengan

menggunakan pickle. Format file yang disimpan akan berubah menjadi format

pickle yaitu “.p”

40

Gambar 4.17 Area yang telah digambar

001 def mousePoints(event, x, y, flags, params):

002 global counter, current_polygon

003

004 # If left mouse button is clicked

005 if event == cv2.EVENT_LBUTTONDOWN:

006

007 current_polygon.append((x, y))

008

009 # If we have collected four points for one polygon

010 if len(current_polygon) == 4:

011 polygons.append(current_polygon)

012 current_polygon = []

013 counter += 1 # Increment the counter

014 print(polygons) # Print the collected polygons

 Potongan kode di atas merupakan fungsi yang digunakan untuk

mengambil koordinat pada citra kamera. Baris 005 bertugas untuk mengambil

koordinat jika mouse diklik. Koordinat yang telah diambil akan disimpan pada

sebuah array. Fungsi tersebut akan diulang hingga array yang menampung

koordinat tersebut sudah berisi empat.

001 if counter == totalSpaces:

002 fileObj = open('Polygons.p', 'wb')

003 pickle.dump(polygons, fileObj)

004 fileObj.close()

41

005 print("Saved all polygon points.")

006 Break

007 cv2.imshow("Original Image", img)

008 cv2.setMouseCallback("Original Image", mousePoints)

 Potongan kode di atas pada baris 008 adalah baris kode yang memanggil

fungsi mousePoints sebanyak variabel totalSpaces. Total spaces dapat diatur

sesuai dengan kebutuhan. Ketika variabel totalSpaces sudah terpenuhi maka array

yang menampung semua koordinat akan disimpan menggunakan library pickle

dengan nama Road.p ke folder yang sama dengan lokasi folder kode tersebut. File

tersebut dapat disebut dengan file polygons. Selanjutnya file Road.p akan

digunakan untuk menentukan area yang akan memicu arduino untuk menggerakan

servo.

001 polygonKeluar1 = 'Polygons.p'

002 file_obj_keluar1 = open(polygonKeluar1, 'rb')

003 roisKeluar1 = pickle.load(file_obj_keluar1)

004 file_obj_keluar1.close()

 Potongan kode di atas merupakan kode yang akan menginisialisasi file

polygons yang telah dibuat sebelumnya. Baris 002 berfungsi untuk membuka file

dengan nama yang telah ditampung pada variabel polygonParkir1 yaitu

Polygons.p. Selanjutnya isi dari file polygons akan ditampung pada variabel

“roisParkir1”, lalu file polygons akan ditutup kembali pada baris 004.

 Tahap selanjutnya adalah menggunakan polygons yang telah diambil

untuk menjadi polygons yang dapat memicu arduino untuk mengirimkan perintah.

Untuk memenuhi tugas itu program membandingkan titik tengah polygons dengan

titik tengah dari bounding box pada objek yang terdeteksi. Kode di bawah ini

merupakan kode yang berfungsi untuk membandingkan titik tengah dari polygons

dan bounding box dari objek.

001 empty_status1 = overlay_polygons(img1, object_list1,

roisKeluar1, _draw_occupied=True)

42

 Pada potongan kode di atas terdapat beberapa parameter yang digunakan.

Parameter “img1” merupakan citra kamera yang digunakan. Parameter

“object_list1” merupakan parameter yang menampung klasifikasi dari objek, dan

titik tengah bounding box dari objek yang terdeteksi. Parameter roisKeluar1

merupakan polygons yang akan digunakan untuk pembanding. Luaran dari

potongan kode di atas adalah boolean yang menyatakan tidak ada objek di dalam

polygons dengan boolean true dan false jika ada objek di dalam polygons. Dari

luaran ini program akan mengambil klasifikasi objek yang ada di dalam polygons

menggunakan potongan kode di bawah ini.

001 if ((len(object_list1) != 0) and (empty_status1 == False)):

002 # Check if any car is present in this polygon

003 for obj in object_list1:

004 car_center = obj[“center”]

005 result = cv2.pointPolygonTest(keluar_space1,

car_center, False)

006 if result > 0:

007 center1 = obj

 Jenis objek yang ada di dalam polygons akan disimpan di dalam variabel

“center1”. Dari informasi mengenai ada atau tidaknya objek di dalam polygons

dan klasifikasi objek di dalam polygons maka program dapat memberikan kondisi

yang cukup untuk menggerakan servo.

001 if ((center1["class"] == "SUV") and (statusPalang1 ==

False)):

002 write("2")

003 statusPalang1 = True

004 elif((center1["class"] != "SUV") and (statusPalang1 ==

True)):

005 write("3")

 Potongan kode di atas berfungsi untuk mengirimkan string menuju arduino

berdasarkan kondisi yang telah ditentukan. Kondisi yang digunakan adalah jika

objek yang tedeteksi dengan klasifikasi SUV dan palang dalam kondisi tertutup

(False), maka program akan mengirimkan string 2 ke arduino dan jika tidak

klasifikasi objek yang ada di dalam polygons bukan SUV makan program akan

43

mengirimkan string 3. Terdapat beberapa string yang digunakan pada program.

Masing – masing string melambangkan servo dan fungsi yang berbeda. string

yang digunakan adalah 2,3,4,5,6,7. Program mengirimkan string menggunakan

koneksi serial melalui port USB. Fungsi “write” pada program merupakan cara

program untuk mengirim string menuju arduino.

001 arduino = serial.Serial(port='COM7', baudrate=9600,

timeout=.1)

002 def write(x):

003 arduino.write(bytes(x, 'utf-8'))

004 time.sleep(0.05)

 Potongan kode diatas merupakan fungsi “write” pada program. Potongan

kode di atas pada baris 001 merupakan bagian yang memulai koneksi dengan

arduino dengan koneksi menggunakan port COM7, dan baudrate 9600. Di dalam

fungsi “write” pada baris 003 merupakan bagian yang mengirimkan string dengan

variabel x menuju ke arduino.

 Selain polygons yang memicu arduino untuk menggerakan servo terdapat

polygons yang digunakan untuk menghitung jumlah lahan parkir yang tersedia.

Polygons pada lahan parkir tidak membutuhkan jenis objek yang diklasifikasi

karena hanya kode hanya pertujuan untuk menghitung miniatur kendaraan yang

terparkir. Gambar 4.18 menunjukan jika tidak ada objek di dalam polygons.

Gambar 4.19 menunjukan jika terdeteksi ada objek di dalam polygons.

44

Gambar 4.18 Polygons tanpa objek

Gambar 4.19 Polygons dengan objek

001 ava1 = count_Spaces(4, object_list1, roisParkir1)

002 if ava1 == 0:

003 color = (0, 0, 255) # Red for no available spaces

004 else:

005 color = (0, 200, 0) # Green for available spaces

006 cvzone.putTextRect(img1, f"Available: {ava1}/4", (20, 50),

colorR=color)

45

 Potongan kode di atas merupakan kode yang menghitung jumlah objek di

dalam polygons. Kode tersebut menghitung jumlah objek menggunakan fungsi

count_Spaces. Pada baris 003 merupakan warna yang digunakan jika ada objek

pada polygons, dan baris 005 adalah warna yang digunakan jika tidak ada objek

pada polygons.

4.4 Pembuatan Program Arduino

 Program arduino memiliki tugas utama yaitu untuk memulai koneksi

dengan ketiga servo dan memerintah servo untuk bergerak sesuai dengan string

yang diterima dari program python. Masing – masing perintah pada servo

memiliki stringnya sendiri.

001 #include <Servo.h>

002

003 Servo servo1; // create servo object to control a servo

004 Servo servo2;

005 Servo servo3;

006

007 void setup() {

008 Serial.begin(9600);

009 Serial.setTimeout(1);

010 servo1.attach(9);

011 servo2.attach(6);

012 servo3.attach(5);

013 }

 Potongan kode di atas merupakan kode yang diggunakan untuk setup

koneksi dan memulai koneksi dengan ketiga servo. Setup dimulai dengan baris

001 dengan memanggil library servo. Selanjutnya pada baris 003 hingga 005

variabel servo akan diinisialisasi dengan servo1, servo2, dan servo3. Setup

selanjutnya adalah menetapkan baudrate dari koneksi serial yaitu 9600 pada baris

008. Untuk mengakses servo maka servo akan di hubungkan dengan digital pin 5,

6, dan 9, pin yang terhubung dengan servo akan diinisialisasi pada baris 010

hingga 012.

46

001 void loop() {
002 if (Serial.available() > 0){
003 code = Serial.readString().toInt();
004 }
005 }

 Potongan kode diatas adalah kode yang bertugas untuk membaca string

yang dikirim oleh program python dengan koneksi serial dan mengirim perintah

kepada servo untuk bergerak. Pada baris 002 adalah bagian yang menunggu

koneksi serial untuk menerima data. Pada baris 003 adalah bagian yang membaca

data yang telah dikirim melalui koneksi serial serta mengubah data yang dikirim

dalam format string ke format integer. Data tersebut akan ditampung dalam

variabel “code” untuk nantinya menjadi kondisi untuk menggerakan servo.

 Selanjutnya merupakan bagian kode yang akan bertugas untuk

menggerakan servo, namun terdapat perbedaan pada salah satu servo dari tiga

servo yang digunakan. Pada umumnya mini servo dengan jenis SG90 merupakan

continuous servo, yang berarti bahwa servo tidak memiliki sensor yang

mendeteksi sudut putaran servo, sehingga pada servo jenis ini jika kode pada

arduino mengirimkan integer 0 hingga 89 servo akan bergerak berlawanan arah

dengan jarum jam dan integer 91 hingga 180 servo akan bergerak searah jarum

jam. Semakin jauh integer yang dikirimkan dengan nilai 90 maka semakin cepat

servo berputar. Integer 90 akan memerintahkan servo untuk berhenti berputar.

Pada satu servo yang berbeda ini, servo memiliki sensor yang mendeteksi sudut

putaran servo sehingga integer yang dikirimkan ke arduino merupakan sudut putar

yang akan dituju oleh servo.

001 if (code == 2){

002 servo1.write(180)

003 }

004 else if (code == 3){ //Pin 9

005 delay(500);

006 servo1.write(0);

007

008 }

47

 Potongan kode di atas merupakan kode yang bertugas untuk mengatur

servo dengan sensor sudut putar yang terhubung dengan pin 9. Pada baris 001 dan

002 adalah bagian yang akan membuka palang dengan memutar servo dengan

sudut 180 jika isi dari variabel “code” adalah “2”. Pada baris 004 hingga 006

adalah bagian yang akan menutup palang dengan memutar servo dengan sudut 0

atau kembali ke sudut awal setelah 500ms terlewati. Delay 500ms digunakan

untuk kebutuhan demo.

001 if (code == 4){

002 servo2.write(81);

003 delay(500);

004 servo2.write(90); //Pin 6

005 }

006 else if (code == 5){

007 delay(500);

008 servo2.write(104);

009 delay(491);

010 servo2.write(90);

011 }

012 if (code == 6){

013 servo3.write(81);

014 delay(500);

015 servo3.write(90); //Pin 5

016 }

017 else if (code == 7){

018 delay(500);

019 servo3.write(104);

020 delay(491);

021 servo3.write(90);

022 }

 Kode diatas merupakan kode yang bertugas untuk menggerakkan servo

lainya yang merupakan servo continuous yang terhubung pada pin 5 dan 6. Baris

001 hingga 004 bertugas untuk membuka palang pada servo yang terhubung pada

pin 6 jika isi variabel “code” adalah 4 dengan mengirimkan integer 81 ke servo,

yang berarti servo akan bergerak berlawanan arah dengan jarum jam selama

500ms. Selanjutnya kode akan mengirimkan integer 90 untuk menghentikan servo

untuk berputar. Selanjutnya pada baris 006 hingga 010 memiliki tugas untuk

menutup palang pada servo yang terhubung dengan pin 6. Kode akan menutup

palang dengan mengirimkan integer 104 setelah delay 500ms di awal untuk

keperluan demo, yang berarti setelah delay 500ms servo akan berputar searah

48

jarum jam. Selanjutnya kode akan menghentikan kode dengan mengirimkan

integer 90 setelah delay 491ms. Delay dan kecepatan pada servo continuous

terlihat bukan merupakan angka bulat untuk meningkatkan konsistensi sudut putar

servo.

4.5 Pengujian Sistem

 Bagian ini merupakan bagian terakhir dalam pembuatan program yaitu

pengujian pada model YOLO dan pengujian arduino. Pengujian dilakukan untuk

mengetahui performa dari model YOLO yang telah melalui proses training

dengan data set dan klasifikasi khusus. Pengujian yang dilakukan adalah

precision, recall, dan F1 – score serta terdapat confusion matrix yang akan

merangkum hasil deteksi dari model.

 Pengujian yang dilakukan telah secara otomatis dilakukan saat training

berlangsung. Setiap epoch yang selesai maka model akan melalui pengujian

menggunakan test set yang telah disiapkan. Untuk melihat kemampuan deteksi

secara general pada model, confusion matrix dapat digunakan.

Gambar 4.20 Confusion matrix

49

 Pada gambar 4.20 di atas deteksi yang dilakukan oleh model tersebar ke

seluruh bagian, namun sebagian besar objek yang terdeteksi terdapat pada area

yang menunjukan TP (True Positive). Matrix pada gambar 4.20 menunjukan

persentase dari kemampuan model untuk mendeteksi objek. Bagian horizontal

merupakan keadaan sesungguhnya dari objek sedangkan bagian vertical adalah

luaran deteksi dari model. Dari confusion matrix di atas objek yang terdeteksi

dengan benar oleh model ada pada angka 0.67 hingga 0.83 hal ini menunjukan

lebih dari 50% citra dapat terdeteksi dengan akurat. Nilai lainya tersebar ke

bagian lain yaitu false negative (FN) dan false positive (FP)

 Selanjutnya adalah pengujian precision dan recall. Pengujian precision

dilakukan untuk mengetahui seberapa sering model mendeteksi klasifikasi yang

benar dari objek, precision memberi gambaran dari kemampuan model untuk

menghindari deteksi false positive dengan nilai 0 jika model tidak pernah

mengklasifikasikan objek dengan benar dan nilai 1 jika model selalu benar dalam

mengklasifikasikan objek.

Gambar 4.21 Precision – confidence curve

50

Gambar 4.22 Precision per epoch

 Pada gambar 4.21 merupakan grafik yang menunjukan hubungan

precision jika dibandingkan dengan confidence. Grafik tersebut memberikan nilai

precision pada nilai confidence tertentu. Dari grafik pada gambar 4.21

menunjukan bahwa precision pada model meningkat seiring dengan semakin

tingginya confidence atau model akan semakin presisi dalam menentukan

klasifikasi seiring dengan meningkatnya confidence saat mendeteksi klasifikasi

objek, hingga pada confidence 0.9 dapat dipastikan bahwa semua objek yang

terdeteksi maka akan dengan benar diklasifikasikan.

 Gambar 4.22 merupakan grafik yang menunjukan pengujian precision

pada model tiap epoch yang selesai saat proses training dilakukan. Pada grafik

tersebut nilai precision meningkat pada beberapa epoch pertama lalu nilai

precision bertahan pada 0.6 hingga 0.8.

 Selanjutnya merupakan pengujian recall. Pengujian ini dilakukan untuk

mengetahui kemampuan dari model untuk dapat mendeteksi semua objek yang

ada pada klasifikasi objek. Pengujian ini memberikan gambaran tentang model

untuk mengabaikan objek selain objek yang ada pada klasifikasi.

51

Gambar 4.23 Recall – confidence curve

Gambar 4.24 Recall per epoch

 Gambar 4.23 merupakan grafik yang menunjukan hubungan antara nilai

recall dan confidence. Nilai recall akan sangat tinggi pada nilai confidence 0

karena dengan nilai confidence 0 makan semua objek akan terdeteksi sebagai

objek di dalam klasifikasi. Hal sebaliknya terjadi saat nilai confidence 1 maka

nilai dari recall akan sangat rendah karena model hanya akan mendeteksi objek

jika model memiliki confidence dengan nilai 1 atau pasti benar.

52

 Gambar 4.24 adalah grafik yang menunjukan pengujian recall tiap epoch

yang selesai dalam proses training model. Nilai recall pada epoch pertama yang

didapat sangat tinggi dikarenakan model belum memiliki akurasi yang dibutuhkan

untuk mendeteksi objek dengan benar sehingga pada tahap epoch pertama model

mendeteksi semua objek termasuk ke dalam objek dalam klasifikasi. Selanjutnya

nilai dari recall bertahan pada nilai 0.6 hingga 0.8.

Gambar 4.25 Precision – recall curve

 Gambar 4.25 adalah grafik yang menunjukan hubungan antara precision

dan recall untuk lebih menggambarkan kemampuan dari model. Pada grafik di

atas nilai precision stabil pada nilai 1 pada recall dengan nilai 0 hingga 0.4, yang

berarti model dapat mengklasifikasi dengan sangat akurat namun objek tidak

selalu terdeteksi hanya kurang dari setengah dari seluruh data set yang terdeteksi.

Sebaliknya saat recall bernilai 1 maka precision ada pada kisaran nilai 0.1 hingga

0.3 yang berarti hampir semua objek terdeteksi sebagai objek di dalam klasifikasi

namun objek yang terdeteksi belum tentu objek yang seharusnya. Titik paling

53

stabil adalah pada nilai recall dan precision 0.8 dimana 80% objek akan terdeteksi

dan terklasifikasi dengan cukup akurat.

Gambar 4.26 F1 – score curve

 Pengujian f1 – score merupakan cara untuk mengetahui performa dari

model. Pengujian ini adalah perhitungan harmonic mean dari precision dan recall

yang memberikan nilai performa dari model. Semakin dengan nilai f1 ke 1 makan

semakin tinggi keseimbangan antara recall dan precision tercapai yang berarti

semakin tinggi performa dari model. Performa yang dimaksud adalah kemampuan

model untuk mendeteksi objek dan mengklasifikasikannya dengan benar

 Gambar 4.26 merupakan grafik yang menunjukan hubungan nilai f1 dan

confidence. Pada grafik tersebut menunjukan model kesusahan untuk melakukan

pendeteksian jika confidence yang diminta adalah 1. Pada pengujian ini hal yang

sama terjadi saat confidence pada nilai 0 model tidak memberikan deteksi yang

akurat dikarenakan saat nilai confidence 0 semua objek dapat dideteksi sebagai

objek di dalam klasifikasi. Titik paling seimbang adalah dengan melimit

confidence pada 0.5 hingga 1 sehingga performa yang didapat dari model ada

54

pada titik tertinggi namun nilai confidence tetap tinggi. Pengujian juga dilakukan

dengan data set yang baru dengan jenis kendaraan yang tidak ada pada data set

untuk training, validation, dan test.

 4.5.1 Pencatatan loss dan mAP

Loss merupakan suatu nilai yang yang mengukur seberapa dekat

nilai prediksi dari model dengan nilai dari target yang didapat dari data set,

dengan kata lain nilai loss dapat dijadikan acuan untuk mengetahui nilai

error dari model dalam melakukan prediksi selama proses training.

Semakin dekat nilai prediksi model dengan 0.0 maka semakin kecil error

dari model atau semakin akurat model melakukan prediksi. mAP (mean

Average Precision) adalah nilai rata-rata dari precision pada tiap tahapan

nilai recall di dalam IoU (Intersection over Union) yang dihasilkan oleh

model dan bounding box yang telah di tetapkan. Nilai ini dapat dijadikan

acuan untuk akurasi dari model dalam melakukan deteksi dalam IoU

tertentu.

Gambar 4.27 Grafik loss

Gambar 4.27 merupakan gambar yang menunjukan nilai loss dari

prediksi model untuk bounding box di sebelah kiri dan klasifikasi di

sebelah kanan pada saat proses training yang diambil tiap epoch-nya. Dari

55

kedua grafik terdapat tren menurun yang berarti dalam proses training, tiap

epoch-nya model semakin akurat dalam melakukan prediksi untuk

bounding box dan klasifikasi, namun pada grafik klasifikasi model lebih

cepat untuk belajar.

Gambar 4.28 Grafik mAP50 dan mAP50-95

Gambar 4.28 menunjukan nilai dari mAP pada model yang diambil

tiap epoch-nya yaitu sebanyak 50 epoch. mAP50 merupakan perhintungan

nilai mAP dengan IoU sebesar 50%, sedangkan mAP50-95 adalah

perhitungan nilai mAP dengan IoU sebesar 50% hingga 95% dengan

loncatan sebanyak 5%. Kedua grafik mengalami peningkatan pada tiap

epoch-nya selama proses training. Dari kedua grafik ini dapat disimpulkan

bahwa akurasi dari model pada mAP50 berada pada nilai 0.7 hingga 0.8

pada epoch terakhir, sedangkan mAP50-95 berada pada nilai 0.35 hingga

0.40 pada epoch terakhir.

 4.5.2 Pengujian data set baru

Pengujian ini dilakukan dengan menggunakan data set baru. Data

set baru yang digunakan adalah data set yang tidak pernah digunakan

dalam proses training. Data set baru yang digunakan, melalui tahap yang

56

sama dengan data sebelumnya yang digunakan untuk training model

namun tidak melalui tahapan training.

Gambar 4.29 Citra baru

Gambar 4.29 merupakan beberapa citra yang ditangkap untuk

dijadikan data set baru. Selanjutnya citra yang ditangkap dengan objek

baru ini, akan melalui tahap preprocessing dengan tools yang sama, yaitu

menggunakan roboflow. Jumlah citra yang ditangkap sebanyak 60 namun

setelah melalui tahap data filtering jumlah citra yang dapat digunakan

adalah sebesar 54. Citra akan diberikan tag berupa bounding box,

koordinat, dan klasifikasi dari objek. Perbedaan dari pembuatan data set

ini adalah bagian terakhir yaitu data splitting, dimana data hanya

dialokasikan untuk validation set seperti pada gambar 4.30.

Gambar 4.30 Data splitting dari data set baru

57

Selanjutnya data set akan melewati tahap validasi dengan

menggunakan google colab dan model yang telah di-training sebelumnya,

untuk mendapatkan hasil pengujian dari model tersebut dengan data set

yang berbeda. Potongan kode di bawah merupakan potongan kode yang

digunakan untuk melakukan proses validation.

001 !yolo val model=/content/drive/MyDrive/best.pt

data=/content/Unknown-data-1/data.yaml

Gambar 4.31 Confusion matrix data set baru

Pada gambar 4.31 merupakan confusion matrix yang dihasilkan

dari data set dengan objek baru. Dari confusion matrix tersebut dapat

disimpulkan bahwa sebagian besar dari objek tidak dapat terdeteksi oleh

model. Terdapat 32% kemungkinan untuk objek dengan klasifikasi

SEDAN dapat terdeteksi dengan benar, namun untuk objek lainya dengan

klasifikasi SUV dan TRUCK tidak dapat terdeteksi.

58

Gambar 4.32 Precision-Confidence Curve data baru

 Gambar 4.32 merupakan grafik precision yang dihasilkan dengan

data set baru. Dari grafik tersebut objek dengan klasifikasi SEDAN dapat

terdeteksi dengan mudah dengan nilai precision yang selalu di atas nilai

0.6 di seluruh nilai confidence. Untuk klasifikasi TRUCK dan SUV

terdapat lonjakan yang sangat signifikan pada nilai confidence, dimana

nilai precision dari klasifikasi TRUCK melonjak dari 0 hingga 1.0 pada

nilai confidence di atas 0.2. Sama halnya dengan klasifikasi SUV terdapat

lonjakan nilai confidence dari 0 hingga 1.0 pada nilai confidence di atas

0.9. Dapat disimpulkan bahwa model dapat mengklasifikasikan objek

dengan sangat akurat saat nilai confidence di atas 0.8.

59

Gambar 4.33 Recall-Confidence Curve data baru

Gambar 4.33 merupakan grafik recall yang dihasilkan dengan data

set baru. Dari grafik tersebut objek dengan klasifikasi SEDAN dapat

memiliki nilai recall yang relatif rendah yaitu di bawah 0.4 pada nilai

confidence 0.5 hingga 1.0. Untuk objek dengan klasifikasi SUV dan

TRUCK nilai recall turun ke nilai 0 dengan pada nilai confidence di

bawah 0.2. Dapat disimpulkan bahwa pada nilai confidence 0.5 hingga 1.0

objek dengan klasifikasi sedan dapat dideteksi dengan kemungkinan di

bawah 40%. Sedangkan untuk objek dengan klasifikasi TRUCK dan SUV

tidak dapat terdeteksi dengan nilai confidence 0.5.

Gambar 4.34 F1-Curve data baru

60

Gambar 4.34 adalah grafik F1 yang dihubungkan dengan nilai

confidence. Dari grafik tersebut dapat terlihat bahwa performa dari model

relatif rendah dengan nilai F1 di bawah 0.5 pada nilai confidence 0.5

hingga 1.0 untuk objek dengan klasifikasi SEDAN. Untuk nilai F1 objek

dengan klasifikasi SUV dan TRUCK di bawah 0.4 pada nilai confidence

0.0 hingga 0.2. Dari grafik tersebut dapat disimpulkan bahwa model tidak

dapat menghasilkan performa yang baik jika dihadapkan pada data set

baru yang tidak ada pada data set saat proses training, hanya objek dengan

klasifikasi SEDAN yang dapat terdeteksi. Sebaliknya objek dengan

klasifikasi SUV dan TRUCK tidak dapat terdeteksi .

61

Bab V

Kesimpulan dan Saran

5.1 Simpulan

 Penelitian menghasilkan model yang mampu untuk mendeteksi dan

mengklasifikasikan objek dengan nilai F1 – score tertinggi pada 0.83 pada

confidence 0.149. Penggunaan model untuk melakukan klasifikasi objek dengan

reliable maka tingkat confidence dapat dibatasi pada nilai minimum 0.7 sehingga

dengan nilai confidence yang tinggi tetap mendapatkan nilai F1 – score yang cukup

tinggi. Waktu yang dibutuhkan untuk menjalankan training dengan menggunakan

CPU adalah 5 jam sedangkan training menggunakan GPU adalah 9.6 menit.

 Program dapat berjalan dengan mengintegrasikan empat kamera dengan

proses citranya masing – masing, seluruh objek yang ingin dideteksi dapat dengan

baik dideteksi oleh keempat kamera.

5.2 Saran

 Untuk penelitian selanjutnya, peningkatan jumlah data set merupakan tahap

yang dapat diambil untuk meningkatkan akurasi dan jenis klasifikasi dari objek.

Jika peneliti ingin lebih jauh meningkatkan akurasi dari model maka jenis model

YOLO yang lebih besar dapat digunakan untuk proses training, namun harus

dipastikan perangkat keras yang digunakan untuk melakukan deteksi objek dapat

menangani proses deteksi dengan performa yang tinggi.

