APLIKASI COMPUTER VISION DALAM PEMBUATAN PROTOTIPE
DETEKSI KENDARAAN DAN LAHAN PARKIR MENGGUNAKAN
LIBRARY YOLOv8

TUGAS AKHIR

= a

UNIVERSITAS

MA CHUNG

STEVEN NATA
NIM : 312010011

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG
MALANG
2024

DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIRccocoiiiiiiiiiieeee 1
PERNYATAAN KEASLIAN TUGAS AKHIR.......cccooeiiiiiiieiiiiieee, il
ABSTRAK ..t il
ABSTRACT ... v
DAFTAR ISL. e \%
DAFTAR GAMBAR ...t vii
DAFTAR TABEL ...ttt s X
Bab I Pendahuluanccoooiiiiiiiiii e 1
1.1 Latar BelaKangcccooiiiiiiiiiiiiiiee e 1

1.2 Identifikasi Masalah..........cccoooiiiiiiiiiiin e 2

1.3 Batasan Masalah.........ccccccoiiiiiiiiiiiiie e 2

1.4 Rumusan Masalahcccocooiiiiiiiiee 2

1.5 Tujuan Penelitiancccooeiiieiiiiiieie e 3

1.6 Manfaat Penelitiancccceveeriiiiiiiiiin e 3

1.7 Luaran Penelitiancccocoeeiiiiiiniiieiie e 3

1.8 Jadwal Penelitian...........ccooiiiiiiiiiiiiiciic e 3
Bab II Tinjauan Pustakaccooiiiiiiiiiiiii e 5
2.1 Computer VISIONccccoccuiiiiieiiiiie e 5
2.1.1 Deep Learningcccccoceveveniciieiiieeniieieeneeas 5

2.1.2 Artificial Neural Networkcccccovvvviiinanins 5

2.13 Convolutional Neural Network.................c......... 7

2.1.4 Pemrosesan Data..........ccccocoeeviiiiiiiiiiieiee, 8

2.1.5 SMATE CILY .o 10

2.2 ATAUINO .ot s 11
2.2.1 MiKroKONtroler......couvveeieiiieiie e 11

222 Pin e 12

223 Konektor ..o 13

2.3 YOLOVS. ..ottt 13

2.4 RODOFLIOWeviiiiiiiiiie s 15

2.5 Google Colaboratorycccvviiiieerieiiiiesie e 16

Bab III Analisis Dan Perancangan Sistemcccocevieiiiiiciicnennnnn 17

3.1 Analisis Kebutuhancccooeiiiiiiiiiiiiccceee 17
3.1.1 Perangkat Kerasccccevvviiiiiiiiii i 18

3.1.2 Perangkat Lunakccccoovviviiniiiiie i 19

3.2 Pengumpulan Dataccoooveiiiiiiiiiiiee e 19

3.3 Desain dan Perancangan SiStemcccccovveiiiiniieiiniinneennns 20
3.3.1 Preprocessingcccccovcviiiiiiiiiiiiiiii e 20

3.3.2 Model Trainingcccovvvieiiiiiiiininiieiiiees 21

3.33 Integrasi Arduinoccoceevveiviiieinciineseenns 21

334 Integrasi pada Prototipeccccevveeiieniiiniinnnne 22

3.4 Uji Coba SiSteMcoiiiiiiiiiiieiicie i 23
34.1 Pengujian Model ..o 23

342 Pengujian Fungsi Perangkat Arduino 25

Bab IV Hasil dan Pembahasanccccceoiiiiniiiinicicc e 26
4.1 Pembuatas Data Set............ccocoeiiiiiiieiiiiiieie e 26
4.1.1 Pengambilan Citra..........ccovvviiiieniiiniinninnn, 26

4.1.2 ANOIALION ...t 28

4.1.3 Data Filteringc.ccccoooiiviiiieniiiiicncneenn 30

4.1.4 Data Splttingcocooovioiiiiiiieeieee e 30

4.2 Training Model ... 31

4.3 Pembuatan Program Python..........cccccvviiiiiiiiii 37
4.4 Pembuatan Program Arduino.........c.cccoeiiieiiiiiiicnicciecnenee 45
4.5 Pengujian SIStEMccceviirriiireereieiee e 48
4.5.1 Pencatatan loss dan mAPcccocoiiiiiiiinnnnn 54

tPengujian data set baru.............cccccvvviiinnnne 55

Bab V Kesimpulan dan Sarancccoooiiiiiiiiiiic e 61
5.1 SIMPUIAN .o 61

5.2 8aran.....cciiiiii 61
Daftar Pustakacccoooviiiiiiiiiic e 62
LamMPITAN ..o 64
AL File YOLOIMAGEcoovviiiieiiiiiieiee e 64

B. File takeImagelnterval............cccoooviiiiiiiiiiiic, 73

vi

DAFTAR GAMBAR

Gambar 2.1 Arsitektur ANNcociiiiiiiie e 7
Gambar 2.2 Arsitektur CNNooiiiiiiiee e 7
Gambar 2.3 Penyesuaian Citra........cc.coocvereeriieiniienesieseeseereseesneenens 9
Gambar 2.4 ThreSholdingcccooveeiiiiiiiiiiiiise s 9
Gambar 2.5 Papan Arduino uno R3ccccoiiiiiiii e 11
Gambar 2.6 Chip mikroKontroler............cccooveiiiiinicnieiiiicscc e 12
Gambar 2.7 Diagram Pin Arduinoccoceevveiininiiieiiiicscc e 12
Gambar 2.8 Pin digital Arduino...........cceevrviniiiiniienieeeeec e 13
Gambar 2.9 Pin analog Arduino...........ccccvvviiiiiininiiiiie, 13
Gambar 2.10 Arsitektur YOLOVScoooiiiiiiiiiiieieee e 14
Gambar 3.1 Tahapan proses penelitianccccvveeriveiinieesisicneennn. 17
Gambar 3.2 Miniatur kendaraancccccooeveeiincnienineneec e 19
Gambar 3.3 Tahap preprocessingccccoccuveiiieiiiiiciie e 20
Gambar 3.4 Diagram koneksi arduino, servo, dan laptop................... 22
Gambar 3.5 Rancangan prototipe.........cccovrvereeirerieeneeieseeseseseennes 22
Gambar 4.1 Citra Kendaraancccvevvereinnencrsineeeeseseeesenens 27
Gambar 4.2 Interface penambahan nama kelascccceeviiiinnnn. 28
Gambar 4.3 Interface tool TObOflOW..........cccoviiiiiiiiiiiii, 29
Gambar 4.4 Hasil anotasi CItracccoevvriieieiiiiene e 29
Gambar 4.5 Proses penghapusan Citracccoooeriiiiieiinniieenienineens 30
Gambar 4.6 Folder data Setcccoovioiiniiiiiieiiiiiie e 32
Gambar 4.7 Isi file data.yamlcccoceviiiiiiiii, 32
Gambar 4.8 File data.yaml setelah penyesuaian..............cccocoeriinnnens 33
Gambar 4.9 Folder data Setcccccooeviiiiniiiiiniiiiiiic e 33
Gambar 4.10 File tag pada Citra...........cccovrvviiiiiiiiieiicneesee e 34
Gambar 4.11 Jenis TUNTIMEeeereriiieiieiiie et 34
Gambar 4.12 Spesifikasi T4 GPU.........cccooiiiiiiiinieeene e 35
Gambar 4.13 Kode error GPUcccooiiiiiiiirceeneeeseee e 35
Gambar 4.14 Path folder model.............cooooiiiiiiiiie, 36
Gambar 4.15 Objek terdetekSi.........ccovveiiiiiiiiiiiiic e 38

vil

Gambar 4.16 Area PolygoNscccoeieieiiiiiineeee e 39

Gambar 4.17 Area yang telah digambarc.ccooeveiiiiiinis 40
Gambar 4.18 Polygons tanpa objekccccevviieiiieiicicceese e 44
Gambar 4.19 Polygons dengan objeK..........cccccvvvevieviiiciiene e 44
Gambar 4.20 Confusion MALFIXccuererieiiene e 48
Gambar 4.21 Precision — confidence CUrVeccocvevvieeneniiesnenee. 49
Gambar 4.22 Precision per epOCh.........cccovvveveiieiiese e 50
Gambar 4.23 Recall — confidence CUrVeccocvvvveneiinc i 51
Gambar 4.24 Recall per epoCh ... 51
Gambar 4.25 Precision —recall CUIVecccccoovvvievveieiiene e 52
Gambar 4.26 F1 — SCOIE CUNVEcoveieierieniesiesiesieeeeie e sie e siesneas 53
Gambar 4.27 Grafik 10SScovuiiiiiriiie e 54
Gambar 4.28 Grafik mAP50 dan mAPS50-95.........ccccevvieiiiiiiiee 55
Gambar 4.29 Citra Daru.........ccoccvveiieiiie e 56
Gambar 4.30 Data splitting dari data set baru..............ccccovevvevernnnnn. 56
Gambar 4.31 Confusion matrix data set barucceceveiereniinnnns 57
Gambar 4.32 Precision-Confidence Curve data barucc.ccoee. 58
Gambar 4.33 Recall-Confidence Curve data baru............cccccoeeviinnene 59
Gambar 4.34 F1-Curve data Daru..........ccccevveveieneene e 59

viil

DAFTAR TABEL

Tabel 3.1 Contoh Confusion Matrix

Tabel 3.2 Confusion Matrix tiga klasifikasi

X

DAFTAR PUSTAKA

Zadeh, N. R. N., & Cruz, J. C. D. (2016). Smart urban parking detection system.
https://doi.org/10.1109/iccsce.2016.7893601

Angelidou, M. (2014). Smart city policies: A spatial approach. Cities, 41, S3—S11.
https://doi.org/10.1016/].cities.2014.06.007

Shinde, P. P., & Shah, S. (2018). 4 Review of Machine Learning and Deep
Learning Applications. https://doi.org/10.1109/iccubea.2018.8697857

Weinstein, B. G. (2017). A computer vision for animal ecology. Journal of

Animal Ecology, 87(3), 533—545. https://doi.org/10.1111/1365-2656.12780

Wu, Y. C., & Feng, J. W. (2017). Development and Application of Artificial
Neural Network. Wireless Personal Communications, 102(2), 1645-1656.
https://doi.org/10.1007/s11277-017-5224-x

Andreas, Gidion, et al. "Analisa Dampak Lalu Lintas Akibat Keterbatasan Lahan
pada Ruang Parkir Pasar Tradisional di Kota Semarang." Jurnal Karya Teknik
Sipil S1 Undip, vol. 6, no. 1, 2017, pp. 438-449.

Classification: True vs. False and Positive vs. Negative. (n.d.). Google for

Developers. https://developers.google.com/machine-learning/crash-

course/classification/true-false-positive-negative

Lin, Q., Ye, G., Wang, J., & Liu, H. (2021). RoboFlow: a Data-centric Workflow
Management System for Developing Al-enhanced Robots. In Blue Sky Papers,
5th Conference on Robot Learning (CoRL 2021), London, UK.

https://sites.google.com/u.northwestern.edu/roboflow

Pandey, A. K. (2024, June 13). SiLU (Sigmoid Linear Unit) activation function -
Abhishek Kumar Pandey - Medium. Medium.
https://medium.com/@akp83540/silu-sigmoid-linear-unit-activation-function-

d9b6845f0c81

62

https://doi.org/10.1109/iccsce.2016.7893601
https://doi.org/10.1016/j.cities.2014.06.007
https://doi.org/10.1109/iccubea.2018.8697857
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1007/s11277-017-5224-x
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://sites.google.com/u.northwestern.edu/roboflow
https://medium.com/@akp83540/silu-sigmoid-linear-unit-activation-function-d9b6845f0c81
https://medium.com/@akp83540/silu-sigmoid-linear-unit-activation-function-d9b6845f0c81

Raza, M. (2024, January 8). Yolo V8: A Deep Dive Into Its Advanced Functions

and New Features. Medium. https://medium.com/(@mujtabarazal 94/yolo-v8-a-

deep-dive-into-its-advanced-functions-and-new-features-f008599fe604

Setiawan, R. (2022, January 18). Apa itu Arduino? Pahami Lebih Mendalam.
Dicoding Blog. https://www.dicoding.com/blog/apa-itu-arduino/

Torres, J. (2024, January 13). What is YOLOvS? Exploring its Cutting-Edge
Features - YOLOvS. YOLOVS. https://volov&.org/what-is-yolov8/

Ultralytics. (n.d.). Train,val and test sets - Issue #3490 - ultralytics/ultralytics.
GitHub. https://github.com/ultralytics/ultralytics/issues/3490

63

https://medium.com/@mujtabaraza194/yolo-v8-a-deep-dive-into-its-advanced-functions-and-new-features-f008599fe604
https://medium.com/@mujtabaraza194/yolo-v8-a-deep-dive-into-its-advanced-functions-and-new-features-f008599fe604
https://www.dicoding.com/blog/apa-itu-arduino/
https://yolov8.org/what-is-yolov8/
https://github.com/ultralytics/ultralytics/issues/3490

A. File YOLOimage

LAMPIRAN

001 import math

002 import cv2

003 import cvzone

004 import pickle

005 import numpy as np

006 from ultralytics import YOLO

007 import serial

008 import time

009

010 - Variables --——=--------—————-

011 pl =0

012 p2 = 3

013 p3 = 2

014 roadCam = 1

015 x, y = 400, 400

0le color = (0, 200, 0)

017 count = 40

018 avanowl = 6

019 avanow2 = 6

020 avanow3 = 4

021

022 sign = " WAIT ! "

023 polyroad = 'Road.p'

024 obj road = open (polyroad, 'rb')

025 roi road = pickle.load(obj road)

026 obj road.close()

027

028

029 statusPalangl = False

030 statusPalang2 = False # assign status palang parkiran

031 statusPalang3 = False

032

033 polygonKeluarl = 'parkiranl out.p'

034 polygonKeluar2 = 'parkiran2 out.p' # assign semua polygons
Keluar parkiran

035 polygonKeluar3 = 'parkiran3 out.p'

036

037 polygonParkirl = 'parkiranl.p'

038 polygonParkir2 = 'parkiran2.p' # assign semua polygons
parkiran

039 polygonParkir3 = 'parkiran3.p'

040

041 model path = "D:\YOLO TA\model\model very

accurate\\best.pt"
042

043
044 confidence = 0.5
045
046 class _names = ["
047
048 file obj parkirl
049 file obj parkir2
050 file obj parkir3

SEDAN", "SUV", "TRUCK"]

= open (polygonParkirl, 'rb')
= open (polygonParkir2, 'rb')
= open (polygonParkir3, 'rb')

64

051
052
053
054
055
056
057
058
059
060
061
062

063
064
065
066
067
068
069
070
071
072

073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

094
095
096
097
098
099

010
010
010
010
010

roisParkirl = pickle.load(file obj parkirl)
roisParkir2 = pickle.load(file obj parkir2)
roisParkir3 = pickle.load(file obj parkir3)
file obj keluarl = open(polygonKeluarl, 'rb')
file obj keluar2 = open (polygonKeluar2, 'rb')
file obj keluar3 = open (polygonKeluar3, 'rb')
roisKeluarl = pickle.load(file obj keluarl)
roisKeluar2 = pickle.load(file obj keluar2)
roisKeluar3 = pickle.load(file obj keluar3) # OPEN POLYGON
FILE
file obj keluarl.close()
file obj keluar2.close()
file obj keluar3.close()
file obj parkirl.close()
file obj parkir2.close()
file obj parkir3.close()
arduino = serial.Serial (port='COM8', baudrate=9600,
timeout=.1) # connect to arduino
cam width, cam height = 1280, 720 # CAM RES
capl = cv2.VideoCapture(pl) # WEB CAM ASSIGN
cap?2 = cv2.VideoCapture (p2)
cap3 = cv2.VideoCapture (p3)
cap4 = cv2.VideoCapture (roadCam)
cap2.set (3, cam width)
cap2.set (4, cam height)
cap3.set (3, cam width)
cap3.set (4, cam height) # SET ALL FRAME SIZE
capl.set (3, cam width)
capl.set (4, cam height)
capd4.set (3, cam width)
cap4.set (4, cam height)
model = YOLO (model path) # SELECT MODEL USED
def count Spaces(ava_ spaces, _object list,
_parking spaces) :
for parking space in parking spaces:
ret = 0
empty = True
Convert polygon to numpy array and reshape
parking space = np.array(parking space,
np.int32) .reshape((-1, 1, 2))
0
1 # Check if any car is present in this polygon
2 for obj in object list:
3 car_center = obj["center"]
4 result = cv2.pointPolygonTest (parking space,

car center, False)

65

0105
0106
0107
0108
0109
0110
0111
0112

if result > 0:
empty = False

ret +=1
break
if not empty:
ava_ spaces -= ret

return ava_ spaces

0113 def overlay polygons(image, object list, parking spaces,
_draw_occupied=False) :

0114
0115
0116
0117
0118
0119
0120

0121
0122
0123
0124
0125

overlay = image.copy ()

global is empty

for parking space in parking spaces:
is _empty = True

Convert polygon to numpy array and

reshape

parking space = np.array(parking space,
np.int32) .reshape ((-1, 1, 2))

Check if any car is present in this polygon

for obj in object list:
car center = obj["center"]

result = cv2.pointPolygonTest (parking space,
car_center, False)

65, 0, _image)

0126 if result > 0:

0127 is _empty = False

0128 break

0129

0130 if is_empty:

0131 cv2.fillPoly(overlay, [parking space], (0, 255,
0)) # Green for empty space

0132 if not is_empty and draw_occupied:

0133 cv2.fillPoly (overlay, [parking space], (0, O,
255)) # Red for occupied space

0134

0135 cv2.addWeighted (overlay, 0.35, image, O.

0136 return is_empty

0137

0138 def get object list yolo(model, img, _class names,
_confidence=0.5, draw=True) :
_results = model(img, stream=False, verbose=False)

0139
0140
0141
0142
0143
0144
0145
0146
0147
int (y2)
0148
0149
0150
0151
0152
h),
0153
0154
0155

_object list = []

for r in results:
boxes = r.boxes
for box in boxes:

conf = math.ceil ((box.conf[0] * 100)) / 100

if conf > confidence:
x1l, yl, x2, y2 = box.xyxyl[0]

x1l, yl, x2, y2 = int(x1l), int(yl), int(x2),

w, h =x2 - x1, y2 - vyl

center = x1 + (w // 2), y1l + (h // 2)

class name = class names[int (box.cls[0])]

_object list.append({"bbox": (x1, yl, w,
"center": center,
"conf": conf,
"class": class name})

66

0156

0157 if draw:

0158 cvzone.cornerRect (_img, (x1, yl, w, h))

0159 cvzone.putTextRect (img, f'{class name}
{conf}',

0160 (max (0, x1), max (35,
yl)), scale=2, thickness=1)

0161l return object list

0162

0163 def write(x):

0164 arduino.write (bytes(x, 'utf-8"))

0165 time.sleep(0.05)

0166

0167

0168 cv2.namedWindow ("SUV"), cv2.namedWindow ("SEDAN"),
cv2.namedWindow ("TRUCK"), cv2.namedWindow ("camRoad") # NAMING

ALL WINDOW TO MOVE IT

0169 cv?2.moveWindow ("SUV", 0, 100), cv2.moveWindow ("SEDAN", 482,
100), cv2.moveWindow ("TRUCK", 964, 100),
cv2.moveWindow ("camRoad", 964, 0) #MOVE ALL WINDOWS TO CERTAIN
COORDINATE

0170

0171

0172 def frameDetectCar():

0173 global centerl,center2,center3

0174 global center

0175 global statusPalangl

0176 global statusPalang2

0177 global statusPalang3

0178 global color

0179 global count

0180 global sign

0181 park spaces = 6

0182 park spaces truck = 4

0183 reset = 40

0184 global avanowl

0185 global avanow?2

0186 global avanow3

0187 successl, imgl = capl.read()

0188 successl, img2 = cap2.read() # READING CAMERA ASSIGNED

0189 successl, img3 = cap3.read()

0190 successl, img4 = cap4éd.read()

0191

0192 object listl = get object list yolo(model, imgl,
class_names, confidence, draw=True)

0193 object list2 = get object list yolo(model, img2,

class_names, confidence, draw=True) # CAMERA FRAME GET
DETECTED WITH YOLO

0194 object 1list3 = get object list yolo(model, img3,
class_names, confidence, draw=True)

0195 object list4 = get object list yolo(model, img4,
class_names, confidence, draw=True)

0196

0197 aval = count Spaces (park spaces, object listl,
roisParkirl)

0198 avaz = count_ Spaces (park spaces, object list2,
roisParkir?2)

0199 ava3 = count Spaces (park spaces truck, object 1list3,
roisParkir3)

67

0201 o PARKIRAN KELUAR --

0202

0203 empty statusl = overlay polygons (imgl, object listl,
roisKeluarl, draw occupied=True)

0204 empty status2 = overlay polygons (img2, object list2,
roisKeluar2, draw_occupied=True) # status polygons keluar

0205 empty status3 = overlay polygons (img3, object 1list3,
roisKeluar3, draw occupied=True)

0206

0207 keluar spacel = np.array(roisKeluarl,
np.int32) .reshape (

0208 (-1, 1, 2)) # to detect center point polygon
keluar (convert polygon to array)

0209 keluar space2 = np.array(roisKeluarZ2,
np.int32) .reshape ((-1, 1, 2))

0210 keluar space3 = np.array(roisKeluar3,
np.int32) .reshape((-1, 1, 2))

0211

0212 oo

0213 # Suv

0214 if ((len(object listl) != 0) and (empty statusl ==
False))

0215 # Check if any car is present in this polygon

0216 for obj in object listl:

0217 car center = obj["center"]

0218 result = cv2Z.pointPolygonTest (keluar spacel,
car center, False)

0219 if result > 0:

0220 centerl = obj

0221

0222 # Palang 1

0223 if ((centerl["class"] == "SUV") and (statusPalangl
== False)):

0224 # print ("open")

0225 # print (centerl["class"])

0226 write("2")

0227 statusPalangl = True

0228 avanowl = aval

0229 elif ((centerl["class"] != "SUV") and (statusPalangl
== True)) :

0230 write ("3")

0231

0232 oo -

0233

0234 # SEDAN

0235 if ((len(object list2) != 0) and (empty status2 ==
False))

0236

0237 # Check if any car is present in this polygon

0238 for obj in object list2:

0239 car_center = obj["center"]

0240 result = cv2.pointPolygonTest (keluar spacez,
car center, False)

0241 if result > 0:

68

0242 center2 = obj

0243

0244 # Palang 2

0245 if ((center2["class"] == "SEDAN") and
(statusPalang?2 == False)):

0246 # print ("open™)

0247 # print (center2(["class"])

0248 write ("4")

0249 statusPalang2 = True

0250 avanow2 = ava?2

0251 elif ((center2["class"] != "SEDAN") and
(statusPalang?2 == True)):

0252 write ("5")

0253

0254

0255 $f -

0256 # TRUCK

0257 if ((len(object list3) != 0) and (empty status3 ==
False))

0258 # Check if any car is present in this polygon

0259 for obj in object 1list3:

0260 car center = obj["center"]

0261 result = cv2.pointPolygonTest (keluar space3,

car center, False)

0262 if result > 0:

0263 center3 = obj

0264

0265 # Palang 3

0266 if ((center3["class"] == "TRUCK") and
(statusPalang3 == False)):

0267 # print ("open")

0268 # print (center3["class"])

0269 write("6")

0270 statusPalang3 = True

0271 avanow3 = avad3

0272 elif ((center3["class"] != "TRUCK") and
(statusPalang3 == True)):

0273 write ("7")

0274

0275 $ - PARKIRAN - ——————-—

0276

0277 overlay polygons(imgl, object listl, roisParkirl,

_draw_occupied=True) # Parkiran

0278

overlay polygons (img2, object list2, roisParkirz,

_draw_occupied=True)

0279

overlay polygons (img3, object list3, roisParkir3,

_draw_occupied=True)

0280
0281
0282
0283
0284
0285
0286
0287

1 suv
if aval ==

color = (0, 0, 255) # Red for no available spaces
else:

color = (0, 200, 0) # Green for available spaces

cvzone.putTextRect (imgl, f"Available:

{aval}/{str (park spaces)}", (20, 50), colorR=color)

69

0288

0289 # 2 SEDAN

0290

0291 if ava2 ==

0292 color = (0, 0, 255) # Red for no available spaces
0293 else:

0294 color = (0, 200, 0) # Green for available spaces
0295 cvzone.putTextRect (img2, f"Available:

{ava2}/{str (park spaces)}", (20, 50), colorR=color)
0296

0297 # 3 TRUCK

0298

0299 if ava3 ==

0300 color = (0, 0, 255) # Red for no available spaces
0301 else:

0302 color = (0, 200, 0) # Green for available spaces
0303 cvzone.putTextRect (img3, f"Available:

{ava3}/{str(park_spaces_truck)}", (20, 50), colorR=color)
0304

0305 oo ROAD - =-==-==—————————

0306

0307 empty status_road = overlay polygons (img4,
object list4, roi road, _draw occupied=True)

0308

0309 parking space = np.array(roi road, np.int32) .reshape ((-
1, 1, 2))

0310

0311

0312 if ((len(object list4) != 0) and (empty status road ==
False)) :

0313

0314 # Check if any car is present in this polygon

0315 for obj in object list4:

0316 car center = obj["center"]

0317 result = cv2.pointPolygonTest (parking space,
car center, False)

0318 if result > 0:

0319 center = obj

0320

0321

0322 #Palang 1

0323 if ((center["class"] == "SUV") and (statusPalangl
== False)):

0324 print ("open")

0325 print (center["class"])

0326 write ("2")

0327 statusPalangl = True

0328 count = reset

0329 sign = "Go SUV"

0330 avanowl = aval

0331

0332 # Palang 2

0333 if ((center["class"] == "SEDAN") and (statusPalang?2
== False)):

0334 # print ("open™)

0335 # print (center(["class"])

0336 write ("4")

70

0337 statusPalang2 = True

0338 count = reset

0339 sign = "Go SEDAN"

0340 avanow2 = ava?z

0341

0342

0343 # Palang 3

0344 if ((center["class"] == "TRUCK") and (statusPalang3
== False)):

0345 print ("open")

0346 print (center["class"])

0347 write("6")

0348 statusPalang3 = True

0349 count = reset

0350 sign = "Go TRUCK"

0351 avanow3 = ava3

0352

0353 cvzone.putTextRect (img4, f" {sign} ", (20, 50),
colorR=(0, 255, 0))

0354

0355 f——m - - - CLOSE ALL PALANG AFTER

0356

0357 if (count == 0):

0358 if (statusPalangl == True) :

0359 print ("close")

0360 write ("3")

0361 statusPalangl = False

0362 if (statusPalang2 == True) :

0363 print ("close")

0364 write ("5")

0365 statusPalang2 = False

0366 if (statusPalang3 == True):

0367 print ("close")

0368 write ("7")

0369 statusPalang3 = False

0370 sign = " WAIT ! "

0371 count = reset

0372 count-=

0373 o—————_— CLOSE ALL PALANG WHEN
CAR GOT IN —-—-——————— e —

0374 - SUV —————-

0375

0376 if (statusPalangl == True) :

0377 if (aval < avanowl) :

0378 write ("3")

0379 statusPalangl = False

0380 sign = "WAIT! ... "

0381 if (statusPalang?2 == True) :

0382 if (ava2 < avanow?2) :

0383 write ("5")

0384 statusPalang2 = False

0385 sign = "WAIT! ... "

0386 if (statusPalang3 == True) :

0387 if (ava3 < avanow3) :

0388 write ("7")

0389 statusPalang3 = False

0390 sign = "WAIT! ... "

71

0391 print ("sl ",aval,"dan",avanowl)

0392 print ("s2 ", ava2, "dan", avanow?2)

0393 print ("s3 ", ava3, "dan", avanow3)

0394 e

0395 # cv2.imshow ("camRoad", img4)

0396 # cv2.imshow ("Imagel"™, imgl)

0397 # cv2.imshow ("Image2", img2) # SHOW CAMERA FRAME full
720 p

0398 # cv2.imshow ("Image3", img3)

0399

0400 cv2.imshow ("camRoad",cv2.resize (img4, (640, 360)))

0401 cv2.imshow ("SUV" , cv2.resize(imgl, (640, 360)))

0402 cv2.imshow ("SEDAN" , cv2.resize(img2, (640, 360))) #
SHOW CAMERA FRAME AND RESIZE TO 480x272

0403 cv2.imshow ("TRUCK" , cv2.resize(img3, (640, 360)))

0404

0405 cv2.waitKey (1)

0406

0407

0408 while True:

0409 frameDetectCar ()

72

B. File takeImagelnterval dan get roi parking space

001 import cv2

002

003

004

005 CAR _COUNT = "1"

006

007 cam_width, cam height = 1280, 720

008 path = "D:\\YOLO
TA\\Imagedataset\\NullImage\\"+CAR COUNT+" "

009 count = 1

010 cam port = 0

011 cam = cv2.VideoCapture (cam port)

012 cam.set (3, cam width)

013 cam.set (4,cam _height)

014

015 def save(path, varImg):

016

017 cv2.imwrite (path, varImg)

018 while True:

019 result, image = cam.read()

020 cv2.imshow ("Image", cv2.resize (image, (854,480)))
021

022 if result:

023 save (path +" "+ str(count) + ".jpg", image)
024 cv2.waitKey (2000)

025 print("..... SAVED!!™)

026 count += 1

001 # Import necessary libraries

002 import cv2 # OpenCV library for computer vision tasks

003 import numpy as np
004 import pickle #

005

006 # Open a connection to the webcam

007 cap = cv2.VideoCapture(3) # For Webcam
008

009 # Set the width and height of the webcam frame
010 width, height = 1280, 720

011 cap.set (3, width)

012 cap.set (4, height)

013

014

015 # Total number of parking spaces to mark

016 totalSpaces = 1

017

018 # List to store all polygons (each representing a parking
space)

019 polygons = []

020

021 # Temporary list to store the four points of the current
polygon being marked

022 current polygon = []

023

024 # Counter to keep track of how many polygons have been
created

025 counter = 0

73

026

027 # Function to handle mouse events (used to mark points for
polygons)

028 def mousePoints (event, x, y, flags, params):

029 global counter, current polygon

030

031 # If left mouse button is clicked

032 if event == cv2.EVENT LBUTTONDOWN:

033 # Append the clicked point (x, y) to the
current polygon list

034 current polygon.append((x, y))

035

036 # If we have collected four points for one polygon

037 if len(current polygon) ==

038 polygons.append(current polygon) # Add the
polygon to the list

039 current polygon = [] # Reset for the next
polygon

040 counter += 1 # Increment the counter

041 print (polygons) # Print the collected polygons

042

043 # Main loop for capturing video and marking parking spaces

044 while True:

045 # Read a frame from the webcam

046 success, img = cap.read()

047

048 # If we have collected all 12 polygons, then save and
exit the loop

049 if counter == totalSpaces:

050 fileObj = open('Road.p', 'wb')

051 pickle.dump (polygons, fileObj) # Save the polygons
to a file

052 fileObj.close()

053 print ("Saved all polygon points.")

054 break

055

056 # Draw the collected polygons on the image

057 for polygon in polygons:

058 cv2.polylines (img, [np.array(polygon)],
isClosed=True, color=(0, 255, 0), thickness=2)

059

060 # Display the image with marked polygons

06l cv2.imshow ("Original Image", img)

062

063 # Set the mouse callback function for marking points

Ooc4 cv2.setMouseCallback ("Original Image", mousePoints)

065

066 # Wait for a key press (1 ms delay)

067 cv2.waitKey (1)

74

APLIKASI COMPUTER VISION DALAM PEMBUATAN
PROTOTIPE DETEKSI KENDARAAN DAN LAHAN PARKIR
MENGGUNAKAN LIBRARY YOLOvVS

Steven Nata!, Windra Swastika?, Romy B. Widodo?

Universitas Ma Chung

Abstrak

Peningkatan penggunaan kendaraan pribadi yang pesat telah memperburuk
tantangan dalam mengelola ketersediaan lahan parkir. Fasilitas parkir yang dikelola
dengan buruk sering kali menyebabkan kesulitan bagi pemilik kendaraan, yang
berdampak pada kemacetan lalu lintas dan parkir yang tidak teratur.

Untuk mengatasi masalah ini, studi ini mengeksplorasi penerapan teknik
Computer Vision, khususnya menggunakan model You Only Look Once (YOLO),
untuk meningkatkan manajemen lahan parkir dengan mendeteksi jenis kendaraan
dan mengidentifikasi tempat parkir yang tersedia secara akurat. Model YOLO
dilatih dan diintegrasikan dengan sistem yang terdiri dari empat kamera, masing-
masing memantau area tertentu.

Model ini menunjukkan kinerja yang kuat, mencapai nilai F1-score antara
0,6 hingga 0,83, dengan nilai kepercayaan antara 0,7 dan 0,8. Pendekatan ini
menawarkan solusi yang menjanjikan untuk meningkatkan efisiensi manajemen
lahan parkir, yang berpotensi mengurangi masalah terkait lalu lintas di daerah
perkotaan.

Kata kunci: Computer Vision, Deep Learning, Lahan parkir, YOLO

il

APPLICATION OF COMPUTER VISION IN DEVELOPING A
PROTOTYPE FOR VEHICLE AND PARKING SPACE
DETECTION USING THE YOLOvV8 LIBRARY

Steven Nata!, Windra Swastika?, Romy B. Widodo?

Universitas Ma Chung

Abstract

The rapid increase in private vehicle usage has exacerbated the challenge of
managing available parking spaces. Poorly managed parking facilities often result
in difficulties for vehicle owners, contributing to traffic congestion and
disorganized parking.

To address these issues, this study explores the application of Computer
Vision techniques, specifically utilizing the You Only Look Once (YOLO) model,
to enhance parking space management by accurately detecting vehicle types and
identifying available parking spots. The YOLO model was trained and integrated
with a system of four cameras, each monitoring a designated area.

The model demonstrated robust performance, achieving an Fl-score
ranging from 0.6 to 0.83, with confidence values between 0.7 and 0.8. This
approach presents a promising solution for improving the efficiency of parking
space management, potentially alleviating traffic-related problems in urban areas.

Keywords: Computer Vision, Deep Learning, Parking Spaces , YOLO

v

BAB |
PENDAHULUAN

1.1 Latar Belakang

Pada era modern ini, penggunaan kendaraan pribadi meningkat sangat pesat.
Faktor utama terjadinya hal ini adalah mobilitas masyarakat yang semakin tinggi
serta semakin mudah nya memiliki kendaraan pribadi. Namun, peningkatan jumlah
kendaraan yang besar ini memunculkan masalah baru yang cukup signifikan, yaitu
ketersediaan lahan parkir yang memadai.

Lahan parkir yang ada, sering kali tidak dikelola dengan baik, hal ini
menyebabkan para pengendaraan mengalami kesulitan dalam mencari lahan parkir
yang kosong, sehingga masalah — masalah seperti banyaknya parkir liar dan
kemacetan lalu lintas sering terjadi. Kondisi ini sangat mengganggu kelancaran lalu
lintas serta mengurangi kenyamanan dan keamanan bagi pengendara.

Menurut Andre dan Ismiyanti (2017), peran parkir dalam sistem transportasi
kota adalah bahwa tempat parkir menjadi suatu rangkaian kompleks yang saling
mendukung dengan pola jaringan jalan dan karakteristik guna lahan tertentu,
dimana tempat inilah yang akan membedakan antara tempat bergerak dan
tempat untuk pemberhenti.

Penelitian olen Zadeh dan Dela (2016) berusaha untuk memecahkan
masalah tersebut dengan membangun sistem deteksi parkir dengan menggunakan
sensor ultrasonik untuk mendeteksi banyaknya kendaraan yang ada di dalam lahan
parkir. Dalam artikel tersebut, sistem digunakan pada beberapa lahan parkir dimana
sistem ini hanya menghitung jumlah kendaraan yang masuk dan keluar, sehingga
pada sistem ini informasi mengenai ketersediaan lahan parkir hanya terbatas pada
jumlah kendaraan yang ada di dalam, sehingga pengoprasian lahan parkir masih
sama seperti lahan parkir konvensional dimana pengendara tetap harus mencari
sendiri lahan parkir yang masih kosong.

Untuk mengatasi masalah dari pengelolaan lahan parkir, penelitian kali ini
akan membantu para pengendara dalam mencari lahan parkir dengan efisien, letak
tempat parkir yang tersedia akan ditunjukan, sehingga meningkatkan mobilitas

penduduk dan kelancaran lalu lintas. Sistem ini memanfaatkan machine learning

dan computer vision dalam mengidentifikasi data — data yang diperlukan untuk
menyediakan informasi yang akurat kepada pengguna mulai dari jumlah tempat
yang tersedia serta lokasi tempat yang dapat digunakan.

Pada penelitian ini prototipe yang dibuat akan menggunakan Computer
Vision dan arsitektur YOLOVS, arsitektur ini sering digunakan untuk melakukan
Object Detection. Arsitektur ini dapat melakukan deteksi objek dengan jumlah data

training yang relatif tidak banyak.

1.2 Identifikasi Masalah

Hampir seluruh lahan parkir yang tersedia tidak dikelola dengan baik.
Susahnya mencari lahan parkir menyebabkan para pengendara harus menghabiskan
banyak waktu, sehingga lahan parkir seperti ini sangat tidak efisien dan

menyebabkan berbagai masalah lalu lintas.

1.3 Batasan Masalah

Batasan masalah dalam pengerjaan sistem deteksi lahan parkir:

1. Pembuatan sistem prototipe berbasis Python dengan memanfaatkan
YOLO sebagai arsitekturnya

2. Lahan parkir yang digunakan berupa prototipe / maket

3. Menggunakan 3 klasifikasi kendaraan (SEDAN, SUV, TRUCK (mini
truck))

4. Penyediaan informasi berupa teks

5. Prototipe dapat diintegrasikan ke dalam 3 lahan parkir

1.4 Rumusan Masalah

Berdasarkan pemaparan pada latar belakang dan batasan masalah, dapat
disimpulkan bahwa dalam penelitian ini, pembuatan sistem pada prototipe akan
berbasis python dengan memanfaatkan YOLO untuk menjadi model neural
network dalam mendeteksi dan mengklasifikasi miniatur kendaraan dengan akurat.
Program python juga akan mengakomodir untuk fungsi dari arduino dan

penyediaan informasi untuk pengguna

1.5 Tujuan Penelitian

Tujuan dari pembuatan prototipe ini untuk menjadi sistem yang bisa
diandalkan dalam pengelolaan lahan parkir dengan memanfaatkan model neural
network untuk mendeteksi kendaraan dan mengklasifikasikanya sehingga lahan
parkir mampu untuk bekerja secara otonom dengan mendeteksi tiap kendaraan yang
ada dengan akurat, serta memberikan informasi mengenai ketersediaan lahan parkir

kepada pengguna.

1.6 Manfaat Pengenelitian

1. Manfaat bagi prodi yaitu:

a. Sebagai bahan pembelajaran bagi mahasiswa lain yang sedang
melakukan studi dengan materi yang serupa

b. Bahan banding bagi studi yang serupa

2. Manfaat bagi peneliti yaitu:
a. Publikasi ilmiah pada jurnal
b. Syarat kelulusan

1.7 Luaran Penelitian

Luaran dari penelitian ini adalah sebuah model Neural Network yang telah
dikembangkan serta prototipe dari lahan parkir yang memanfaatkan model tersebut
sebagai fungsi deteksi objeknya. Model ini akan menentukan lahan parkir mana

yang sesuai dengan klasifikasi dari objek.

1.8 Sistematika Penulisan
Sistematika penulisan ini adalah sebagai berikut:
Bab | : Pendahuluan

Bab pendahuluan terdiri dari latar belakang, identifikasi masalah, batasan
masalah, rumusan masalah, tujuan penelitian, luaran penelitian, dan

sistematika penulisan.

Bab Il : Tinjauan Pustaka

Bab tinjauan pustaka terdiri dari penguraian teori tentang computer vision,
deep learning, artificial neural network, convolutional neural network,
pemrosesan data, smart city, arduino, mikrokontroler, pin, konektor,

yolov8, roboflow, dan google colaboratory.
Bab 111 : Analisis dan Perancangan Sistem

Bab analisis dan perancangan sistem terdiri dari penguraian detail mengenai
analisis kebutuhan dari perangkat keras dan perangkat lunak, pengumpulan
data, desain dan perancangan sistem, preprocessing, anotation, data
filtering, data splitting, model training, integrasi arduino, integrasi pada
prototipe, uji coba sistem, pengujian model, dan pengujian fungsi perangkat
arduino.

Bab 1V : Hasil dan Pembahasan

Bab hasil dan pembagasan berisi penguraian dari hasil pembuatan data set,
hasil training model, pembuatan program python dan arduino, dan

pengujian model.
Bab V : Kesimpulan dan Saran

Bab kesimpulan dan saran berisi kesimpulan dari penelitian yang telah
dilakukan dan saran untuk sistem dan model dapat lebih akurat dalam

mengklasifikasikan kendaraan

BAB Il
TINJAUAN PUSTAKA

2.1 Computer Vision

Computer vision is a form of image-based computer science that uses pixel
values to infer image content (Weinstein dalam LeCun, 2015). Computer vision
adalah suatu bidang kecerdasan buatan yang menggunakan machine learning untuk
mengajarkan sebuah komputer untuk mendapatkan informasi yang berguna dari
citra digital. Jenis machine learning yang digunakan dalam computer vision yaitu

deep learning dengan jenis model convolutional neural network (CNN)
2.1.1 Deep Learning

Deep Learning merupakan suatu bagian dari Machine Learning.
Deep learning menggunakan Artificial Neural Network sebagai metodenya
untuk mengekstraksi dan mempelajari fitur pada data, sehingga
memungkinkan sebuah mesin untuk bisa melakukan tugas yang biasanya
hanya bisa dilakukan oleh manusia, seperti pengenalan dan pemrosesan
citra, pemrosesan bahasa dan sistem otomisasi (Self-Driving Cars).

Deep Learning uses a cascade of multiple layers of nonlinear
processing units for feature extraction and transformation. The lower layers
close to the data input learn simple features, while higher layers learn more
complex features derived from lower layer features. (Shinde, P. P., & Shah,
S., 2018)

2.1.2 Artificial Neural Network

Artificial Neural network merupakan suatu model komputasi yang
menyerupai otak manusia. Artificial Neural network adalah suatu model
komputasi yang terdiri dari jumlah nodes (Neurons) yang besar yang
terhubung satu dengan yang lain (Wu dan Feng, 2017).

Arsitektur Artificial Neural Network terdiri dari tiga lapisan utama
yaitu lapisan input (input layer), lapisan tersembunyi (hidden layer), dan

lapisan output (output layer).
1. Lapisan input (input layer)

Lapisan ini merupakan tahap awal dimana fitur dari data akan
diambil dan diberikan nilai (value) yang nantinya akan

diteruskan ke lapisan tersembunyi (hidden layer).
2. Lapisan tersembunyi (hidden layer)

Selanjutnya fitur dengan nilai nya akan diteruskan ke lapisan
tersembunyi (hidden layer). Lapisan ini merupakan lapisan
dengan jumlah node yang banyak, tiap node-nya memiliki bobot
nya (weight) masing — masing. Setiap data yang melewati node
dalam lapisan tersembunyi, akan melalui komputasi yang
mengalikan nilai dari data dengan bobot pada tiap node tersebut.
Selanjutnya nilai luaran akan diterapkan bias dan fungsi aktifasi

sebelum diteruskan ke lapisan output.
3. Lapisan output (output layer)

Terakhir, pada lapisan ini semua nilai yang telah melalui
komputasi akan diteruskan ke lapisan output. Lapisan ini akan
menampung hasil dari nilai tersebut dan akan menjadi hasil akhir

dari pemrosesan data.

Contoh arsitektur dari Artificial Neural Network dapat dilihat pada
gambar 2.1. Dari contoh tersebut dapat terlihat bahwa tiap lapisan dari ANN
tidak terbatas satu node melainkan tiap lapisan dapat terdiri dari banyak

nodes

Input Layer Hidden Layer 1 Hidden Layer2 Output Layer
784 128 64 10
(relu) (relu) (softmax)

()

N> O
}m&.«%okwé @ §
SEBL RS IXRL =
RNOEEETS0

IXOERH O
A

-/
Gambar 2.1 Arsitektur ANN

2.1.3 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) adalah suatu jenis neural
network yang didesain untuk melakukan proses data dengan struktur grid
seperti citra digital (citra digital terdiri dari struktur pixel yang membentuk
grid). Arsitektur ini menggantikan lapisan input pada arsitektur ANN
konvensional dengan lapisan convolution, sehingga pada arsitektur ini

ekstraksi fitur pada data tidak perlu dilakukan secara manual.

Fully
Connected

Convolution

Input

Feature Extraction Classification

Gambar 2.2 Arsitektur CNN

Gambar 2.2 merupakan arsitektur dari CNN. Arsitektur CNN dibagi

menjadi dua bagian yaitu feature extraction dan classification.

1. Feature Extraction
Bagian ini merupakan bagian dari input dan terdiri dari dua
lapisan, yaitu convolutional layer dan pooling layer. Lapisan
pertama yaitu convolutional layer merupakan lapisan
dimana fitur dari data yang berupa gambar akan diekstrak.
Data gambar akan melalui komputasi yang akan membagi
gambar menjadi grid, data ini akan menjadi feature map.
Data yang telah melalui komputasi akan diterapkan filter.
Jumlah filter yang digunakan akan menentukan kedalaman
vektor input. output dari lapisan ini adalah vektor 3D yang
menampung seluruh fitur dari data. Lapisan kedua yaitu
pooling layer atau downsampling merupakan bagian dimana
jumlah dimensi dari lapisan convolution akan dikurangi.
Terdapat dua pooling yang digunakan pada lapisan ini yaitu
max pooling dimana nilai tertinggi dari feature map akan
dipilih, dan average pooling dimana jumlah dari nilai rata —
rata bidang reseptif akan dipilih.
2. Classification

Bagian kedua merupakan bagian yang sama dengan
arsitektur ANN konvensional, namun bagian ini dimulai
dengan hidden layer (fully connected) dan dilanjutkan

dengan output.
2.1.4 Pemrosesan Data

Dalam pengenelan objek model memiliki beberapa kriteria untuk
mempermudah proses ekstraksi fitur. Untuk memenuhi Kkriteria ini model
akan menyesuaikan data yang digunakan. Beberapa contoh penyesuaian
yang dilakukan adalah dengan menyesuaikan ukuran gambar ke ukuran

yang diinginkan dan melakukan thresholding.

1_SUV_25 jpg.rf.b7ec2bb72@EHE (688154 6e6923R3B30d6EDIAGET b9a956bFDEIdVIBT G bE5728a6 1

Gambar 2.3 Penyesuaian citra

Gambar 2.3 merupakan contoh data berupa citra yang melalui proses
penyesuaian ukuran. Ukuran asli dari citra akan disesuaikan dengan
kebutuhan dari model, seluruh resolusi akan diperkecil menjadi 736 x 736.
Proses ini dilukakan ke seluruh data yang digunakan agar tidak ada

perbedaan format antara satu data dan data lainya.

Adaptive thresholding Binary thresholding

Thresholding to zero

Gambar 2.4 Thresholding

Gambar 2.4 merupakan citra yang telah melalui proses thresholding.

Proses thresholding merupakan proses yang bertujuan untuk memisahkan

antara objek dan background. Proses ini mengubah citra menjadi grayscale

dari citra grayscale tersebut akan diubah kembali menjadi citra biner.

Adaptive thresholding merupakan teknik thresholding dengan
mensegmentasi citra menjadi area — area kecil yang tidak overlapping.
Masing — masing area mendapat nilai yang berbeda beda. Metode ini
berguna untuk gambar dengan kondisi pencahayaan yang bervariasi atau
latar belakang yang tidak seragam.

Binary thresholding merupakan teknik thresholding dengan
mengubah gambar menjadi hitam putih dengan cara menghitamkan pixel
dengan warna yang ada di bawah nilai threshold dan memutihkan pixel
dengan warna yang ada di atas nilai threshold. Teknik ini sederhana, efisien,
dan sering digunakan dalam segmentasi gambar, analisis dokumen, dan
pengenalan pola. Namun, teknik ini kurang cocok untuk gambar dengan
kondisi pencahayaan yang bervariasi, di mana thresholding adaptif lebih

sesuai.

Threshold to zero merupakan teknik thresholding dengan
menghitamkan area jika warna pixel di bawah nilai threshold. Jika warna
pixel berada di atas nilai threshold maka warna akan dipertahankan. Metode
ini membantu menunjukan fitur penting tanpa mengubah gambar menjadi
bentuk biner. Teknik ini berguna dalam peningkatan gambar,
preprocessing, dan pencitraan medis, karena mempertahankan informasi
intensitas untuk piksel di atas ambang dan meningkatkan kontras. Namun,
pemilihan nilai ambang yang tepat sangat penting untuk hasil yang optimal.
Kemudian data akan masuk ke tahap filtering tahap ini merupakan tahap
dimana data yang dapat dideteksi oleh model akan dipisahkan dengan data

yang tidak dapat dideteksi.

10

2.2

2.1.5 Smart City

Smart City merupakan sebuah konsep dari pengembangan konsep
kota urban dengan pemanfaatan manusia, kolektif, dan teknologi untuk
meningkatkan pembangunan dan kemakmuran pada kota (Angelidou,
2014). Konsep ini biasanya terfokus pada infrastruktur kota yang
memanfaatkan komputasi digital, pemanfaatan yang dimaksud seperti,
implementasi dari cashless payment, pemanfaatan computer vision untuk
mengatur lampu lalu lintas berdasarkan tingkat kepadatan kendaraan pada
lalu lintas, integrasi kamera pada jalan raya untuk melakukan tilang online,
dan lainya. Konsep ini bertunjuan untuk meningkatkan efisiensi dari

pengelolaan kota dan meningkatkan produktivitas masyarakat.

Dari penjelasan ini, penelitian akan menekankan pada pemanfaatan
teknologi berupa computer vision dalam melakukan peningkatan efisiensi
dari pengelolaan lahan parkir untuk mempermudah pengendara dalam

mencari lahan parkir.

Arduino

Arduino merupakan sebuah perangkat elektronik yang bersifat open source

dan sering digunakan untuk merancang dan membuat perangkat elektronik serta

software yang mudah untuk digunakan (Setiawan, 2022). Arduino sering kali

digunakan dalam pembuatan perangkat elektronik sebagai otak dari perangkat

tersebut.

Gambar 2.5 Papan Arduino uno R3

11

Arduino sendiri merupakan suatu perangkat yang bertugas untuk melakukan
proses pada input yang diberikan sesuai dengan software yang telah dituliskan data
yang telah diproses nantinya dapat dikeluarkan dalam bentuk teks pada terminal
ataupun berupa sinyal pada perangkat yang terhubung dengan papan arduino.

Arduino memiliki beberapa komponen yang penting di dalamnya:
2.2.1 Mikrokontroler

Mikrokontroler adalah chip yang memungkinkan untuk
memprogram arduino sehingga mampu untuk memproses output
berdasarkan input yang diberikan. Hal ini memungkinkan arduino untuk
memproses data untuk memberikan perintah kepada perangkat lain untuk
melakukan sebuah perintah. Gambar 2.6 merupakan gambar dari chip mikro

kontroller pada arduino.

Gambar 2.6 Chip mikrokontroler
2.2.2 Pin

Pin merupakan bagian dari arduino yang penting sebagai
penghubung antara perangkat lain dengan arduino. Setiap pin pada arduino

memiliki fungsinya masing — masing.

- -

Gambar 2.7 Diagram Pin. Ardumo

12

Gambar 2.7 merupakan diagram pin yang terdapat pada arduino, pin

dalam arduino dibagi menjadi dua yaitu:

e Pin digital (Dapat menerima dan mengirim sinyal digital),
gambar 2.8 merupakan gambar dari pin digital pada arduino
e Pin analog (Hanya dapat menerima sinyal analog), gambar

2.9 merupakan gambar dari pin analog pada Arduino

(12C) SDA
(SPI) SCK
(SPI) MISO
(SPI) MOSI
(SPI) SS

Interrupt 0

[}
2
&

(12C) SCL

DIGITAL (PWM~) E ¥

R ——

e EEON

0 -3

Gambar 2.8 Pin digital Arduino

108 (021
vas (o21)

,,,,,,

nnnnnnn

bov -

Gambar 2.9 Pin analog Arduino

2.2.3 Konektor
Arduino memiliki dua jenis konektor yaitu:

e Power konektor (Untuk menyalurkan daya ke
Arduino)

e Serial konektor (Untuk menghubungkan perangkat
dengan port USB)

Pada penelitian ini arduino digunakan dalam mengontrol servo yang

nantinya akan menjadi pintu portal dari lahan parkir.

13

23 YOLOvS

YOLOvV8 merupakan real-time object detection and image segmentation
model. Model YOLO mampu untuk menyeimbangkan antara kecepatan dan akurasi
pada arsitekturnya, hal ini menjadikan YOLO sangat cocok dalam pengaplikasian
yang membutuhkan deteksi dalam waktu yang cepat, seperti autonomous driving,

surveillance, dan robotik.

YOLO memiliki kemampuan untuk menghasilkan model yang relatif cepat
dan akurat berkat arsitekturnya. Arsitektur pada YOLO terbagi menjadi tiga bagian
yaitu backbone, neck, dan head . Arsitektur YOLO dapat dilihat pada gambar 2.10
(VK, 2023)

........

nnnnnnnn

Gambar 2.10 Arsitektur YOLOvVS

1. Backbone
Bagian pertama dari arsitektur YOLO adalah Backbone. Bagian ini
merupakan bagian dari YOLO yang menerima dan mengekstrak fitur
dari gambar untuk menghasilkan feature map. Pada bagian ini gambar
akan terbagi menjadi beberapa bagian, dari yang paling besar hingga
yang paling detail. Dalam ekstraksi fitur YOLO menggunakan fungsi

aktivasi SiLU (Sigmoid Linear Unit). Fungsi ini berguna untuk

14

menambahkan non-linearity pada data yang dapat membantu dalam
mengenali pattern dari data yang kompleks. Formula untuk SiLU

sebagai berikut.

(2-1)

) =0(2) = 155

. Neck

Bagian ini merupakan bagian yang bertugas untuk menggabungkan
feature map dari yang terbesar (kurang detail) hingga yang paling detail
dan melakukan feature enhancement. Komponen utama pada bagian
Neck adalah FPN (Feature Pyramid Network). FPN bertugas untuk
menghasilkan feature map atau up-samples feature map yang lebih
detail untuk nantinya akan digabungkan. Bagian ini juga menambahkan
fitur berupa spatial attention mechanisms yang memberikan bobot ke
seluruh bagian feature map dengan bobot yang berbeda — beda untuk
meningkatkan fitur yang penting agar memudahkan proses deteksi objek

dan klasifikasinya.

. Head

Bagian paling akhir dari YOLO merupakan bagian dimana proses
deteksi terjadi. Bagian ini memiliki kemampuan untuk meningkatkan
lagi feature maps dari bagian sebelumnya namun fungsi utama dari
bagian ini adalah melakukan deteksi, memprediksi bouding box,
memprediksi class (classification), dan memberikan confidence score.
Bagian ini biasannya terdiri dari beberapa blok CNN. Dalam proses
training bounding box yang memiliki lou (Intersection over Union) atau
koordinat bounding box terdekat dengan tag bounding box yang
diberikan akan dipilih.

15

Pada penelitian ini YOLO akan menjadi arsitektur yang akan digunakan dalam
melakukan training data set untuk melakukan deteksi objek dan klasifikasi dari

miniatur kendaraan.

2.4 RoboFlow

RoboFlow merupakan cloud-based workflow management system untuk
pengembangan yang terfokus pada data dan Al (Lin, et al., 2022). Sistem ini
digunakan untuk membagi tugas kepada tim pengembang untuk melakukan proses

pembuatan data set dengan memberikan tag berupa bounding box.

Dalam penelitian ini RoboFlow digunakan untuk membuat data set sebagai
bahan untuk training dari model. RoboFlow memberikan tools yang sangat
mempermudah untuk menggambar bounding box pada gambar, tools ini juga secara
otomatis memberikan tag berupa koordinat dari bounding box yang telah digambar
pada gambar input. Pada tahap terakhir RoboFlow menawarkan untuk
memanfaatkan platform-nya untuk melakukan training, namun pengguna juga
dapat membuat kode snippet yang akan mendownload data set yang telah dibuat

jika pengguna ingin melakukan training sendiri.

2.5 Google Colaboratory

Colab is a hosted Jupyter Notebook service that requires no setup to use
and provides free of charge access to computing resources, including GPUs and
TPUs (Google, 2024). Penggunaan google colaboratory atau google colab tidak
jauh berbeda dengan penggunaan IDE pada umumnya, namun google colab
memiliki fitur untuk dapat menjalankan kode per segmen, sehingga cocok untuk

pengembangan machine learning.

Dalam pengembangan machine learning, google colab menyediakan
resource berupa berbagai macam GPU (Graphic Processing Unit) dan TPU (Tensor

Processing Unit). GPU dan TPU memiliki performa yang tidak jauh berbeda namun

16

TPU lebih dioptimasi untuk melakukan komputasi, namun, GPU yang disediakan
pada google colab memiliki tensor core sehingga pada dasarnya keduanya sangat
efisien dalam melakukan komputasi dalam pengembangan machine learning.
Google colab membatasi para penggunanya untuk mengakses GPU dan TPU yang
tersedia tanpa membeli kuota pemakaian. Namun untuk pilihan tidak berbayar

google colab menawarkan NVIDIA T4 GPU sebagai pilihan terbaik.

17

BAB Il
ANALISIS DAN PERANCANGAN SISTEM

Penelitian ini dilakukan untuk pengembangan sistem parkir dalam prototipe
kota yang akan dibuat dengan memanfaatkan computer vision untuk melakukan
deteksi dan Klasifikasi dari kendaraan. Proses penelitian dibagi menjadi beberapa

tahapan seperti yang terlihat pada gambar 3.1

()

¥

Anah=s Kebutuhan

¥

Pengumpulan Diata

v

Dezain dan Perancangan
Sistem

r

Uji Coba Sistem

h 4

s)

Gambar 3.1 Tahapan proses penelitian
3.1 Analisis Kebutuhan

Analisis kebutuhan merupakan tahapan yang penting untuk kelancaran

proses pengembangan. Proses ini berguna untuk menganalisis kebutuhan peneliti

17

selama proses penelitian. Proses ini meneliti kebutuhan dalam bentuk perangkat
keras dan perangkat lunak yang digunakan. Proses ini dimulai dengan menganalisis
detail mengenai penelitian, analisa didapatkan dengan melakukan riset terlebih
dahulu dengan tinjauan pustaka dari penelitian ini. Analisis yang didapatkan
sebagai berikut.
3.3.1 Perangkat Keras
a. Laptop ASUS VivoBook A416FA-FHD324
i. CPU :Intel Corei3—-10110U
ii. RAM :4GBDDR4
iii. SSD :256 GB
iv. Sistem Operasi : Windows 11 Home
v. GPU :Integrated Intel Graphics
b. Personal Computer Laboratorium KRPA
i. CPU :Intel Corei7 — 12700F
ii. RAM :16 GB DDR4
iii. SSD :500GB
iv. Sistem Operasi : Windows 11 Pro
v. GPU : Nvidia RTX 3060
c. Arduino UNO R3
I. ATMega328P processor
a. Memory
i. 32 KB Flash
ii. 2KB SRAM
iii. 1KB EEPROM
ii. ATMegal6U?2 Processor (Mikro kontroller)
a. Memory
i. 16 KB ISP Flash
ii. 512 B EEPROM
iii. 512 B EEPROM
d. AKASO V50X (Kamera)
e. OBS BOT (Kamera)
f. Miniatur Kota

18

3.3.2 Perangkat Lunak

a. PyCharm
b. Python 3
c. CVv2
d. CVZone
i. OpenCV
e. Ultralytics (YOLO)
f. Math
g. Arduino IDE
h. RoboFlow
i. Pickle

3.2 Pengumpulan Data

Tahap pengumpulan data merupakan tahap pembuatan data set berupa citra
miniatur kendaraan. Miniatur kendaraan yang digunakan dibagi menjadi tiga jenis
yaitu sedan, suv, dan mini truck atau mobil bak terbuka. Pengumpulan data
dilakukan dengan menggunakan script berbasis python dan menggunakan kamera
AKASO V50X.

Script yang dijalankan berfungsi untuk mengambil citra dalam interval
waktu 1.5 detik. Dalam pengambilan citra posisi miniatur akan selalu diubah setiap
interval waktu agar model Al yang dihasilkan lebih akurat. Terdapat tujuh miniatur
kendaraan yang digunakan dan diklasifikasikan menjadi tiga jenis, miniatur

kendaraan yang digunakan dapat dilihat pada gambar 3.2.

Gambar 3.2 Miniatur kendaraan

19

3.3 Desain dan Perancangan Sistem

Tahapan ini merupakan tahap proses dari pembuatan sistem. Tahapan ini
meliputi proses pembuatan model Al, rangkaian arduino, dan integrasi prototipe
atau miniatur perkotaan. Tahap ini terdiri dari empat bagian yaitu preprocessing,
model training, rangkaian arduino, dan integrasi antara prototipe kota dengan
model Al dan rangkaian arduino.

3.3.1 Preprocessing

Data Data

Amnotation — o
Filtering Splitting

h
hJ

Gambar 3.3 Tahap preprocessing
Sebelum citra yang diambil dapat dijadikan data set, terdapat proses
yang akan dilalui proses ini dinamakan preprocessing. Dalam proses ini
data melewati tiga jenis tahap yaitu annotation, data filtering dan data
splitting. Diagram mengenai tahapan preprocessing dapat dilihat pada
gambar 3.3. Penjelasan mengenai kedua proses dalam preprocessing
sebagai berikut.
a. Anotation
Proses ini merupakan proses awal dari pembuatan data set
dengan memberikan tag pada citra yang sudah ditangkap. Tag yang
diberikan berupa bounding box pada area yang ingin dideteksi
dengan tambahan koordinat dari bounding box , klasifikasi dari
objek dan jumlah objek. Proses ini memanfaatkan tools yang
disediakan oleh RoboFlow.
b. Data filtering
Proses ini merupakan proses yang terjadi bersamaan dengan
proses anotation. Proses ini menghapus citra yang dianggap dapat
menurunkan akurasi dari model. Citra yang dimaksud adalah, citra
yang mengandung objek yang akan dideteksi namun sebagian besar
dari objek tersebut terhalang oleh objek lain atau hanya sebagian

kecil dari objek yang terlihat pada citra.

20

C.

Data splitting
Proses ini merupakan proses terakhir pada preprocessing.
Pada tahap ini data akan dibagi menjadi tiga bagian yaitu train set,
validation set, dan test set dengan pembagian sebagai berikut train
set 70%, validation set 20%, dan test set 10%. Pembagian data ke
validation set berfungsi untuk meningkatkan akurasi dari model
dengan memberikan data yang tidak bias dan tidak pernah dilihat
sebelumnya selama proses training agar model dapat menyesuaikan
parameternya. Test set berfungsi untuk melakukan tes akurasi pada
model dengan data yang tidak terdapat pada proses training
3.3.2 Model Training
Tahap ini merupakan tahap selanjutnya dimana data set
sudah siap untuk digunakan dalam training model. Training model
dilakukan menggunakan google colaboratory dengan menggunakan
runtime T4 GPU. Penggunaan google colaboratory dapat
mempercepat proses training karena akses terhadap T4 GPU. Proses
training dilakukan dengan epoch sebanyak 50 dan model YOLOv8n.
Varian YOLOv8n merupakan varian dari YOLOvV8 yang paling
kecil dan cepat, penggunaan varian YOLOVS8 yang lebih besar tidak
diperlukan karena klasifikasi yang digunakan relatif tidak banyak
dan performa dengan perangkat keras yang digunakan akan
menurun.
3.3.3 Integrasi Arduino
Untuk mengontrol servo, maka arduino harus dikoneksikan
dahulu dengan servo melalui beberapa pin. Dalam mengoneksikan
servo terdapat beberapa pin yang digunakan yaitu:
e GND : Merupakan pin yang bertanggung jawab untuk
ground.
e 5V 5V adalah pin yang akan memberikan power pada
papan Arduino.
e Digital ~5, 6, 9: Pin ini merupakan pin yang akan menjadi

tempat untuk mengirimkan sinyal pada servo.

21

Selanjutnya arduino akan terkoneksi dengan laptop melalui
port USB. Gambar 3.4 adalah gambar diagram koneksi antara

arduino, servo, dan laptop.

Gambar 3.4 Diagram koneksi arduino, servo, dan laptop
3.3.4 Integrasi pada Prototipe
Tahap ini merupakan tahap terakhir dari perancangan sistem.
Integrasi antara arduino, webcam, servo, dan model Computer
Vision akan dilakukan pada prototipe. Gambar 3.5 merupakan

rancangan prototipe yang akan digunakan.

Gambar 3.5 Rancangan prototipe

Pada rancangan prototipe, webcam akan diletakkan di atas
lahan parkir menghadap bawah melihat lahan parkir dan kendaraan
dari atas agar kendaraan dan lahan parkir dapat terlihat dengan jelas,
webcam akan terhubung dengan laptop melalui port USB, sama
halnya dengan arduino juga akan terhubung dengan laptop melalui
port USB. Servo akan menjadi palang dari lahan parkir yang akan

dihubungkan dengan arduino untuk menerima perintah.

22

Terdapat empat kamera yang diletakkan pada posisi yang
berbeda — beda. Tiga kamera pertama diletakkan tepat di atas masing
— masing lahan parkir menghadap ke lahan parkir. Untuk satu
kamera lainya akan diletakkan di atas jalan di luar lahan parkir
menghadap ke ruas jalan, untuk mendeteksi kendaraan yang akan
memasuki lahan parkir.

Citra dari kamera akan dikirimkan ke laptop, jika terdeteksi
adanya kendaraan yang akan memasuki lahan parkir maka laptop
mengirimkan perintah menuju arduino untuk membuka palang.

Deteksi pada kendaraan dilakukan pada area yang telah
ditandai dengan polygons. Polygons ini dibuat dengan menyimpan
koordinat di titik — titik yang ditentukan.

3.4 Uji Coba Sistem
Tahap terakhir adalah tahap uji coba, tahap ini merupakan tahap dimana
hasil dari penelitian akan diuji coba, beberapa pengujian yang dilakukan adalah
pengujian model dan pengujian fungsi perangkat arduino.
3.4.1 Pengujian Model
Pengujian pada model yang akan dilakukan adalah precision, recall
dan F1 — Score dari model yang sudah melalui proses training. Terdapat
empat kemunkinan luaran dari model, yaitu True Positive (TP), False
Positive (FP), False Negative (FN),dan True Negative (TN). Keempat

luaran ini dapat dirangkum menggunakan confusion matrix.

Tabel 3.1 Contoh Confusion Matrix

Jumlah terdeteksi
Jumlah
Sesungguhnya 1 0
1 TP FN
0 FP TN

23

Tabel di atas merupakan contoh confusion matrix sederhana dengan
satu variabel positif dan satu variabel negatif yang dilambangkan dengan
nilai 1 sebagai positif atau terdapat objek yang akan dideteksi dan 0 sebagai
negatif atau tidak ada objek yang akan dideteksi. Pada contoh tersebut true
positive (TP) merupakan bagian yang melambangkan bahwa model
mendeteksi objek yang sesuai dengan kenyataan. True negative (TN) adalah
bagian yang melambangkan jika model tidak mendeteksi apapun dan
sesungguhnya tidak ada objek yang harus dideteksi. False negative (FN)
adalah bagian yang melambangkan bahwa model tidak mendeteksi dapat
objek meskipun kenyataannya terdapat objek yang ingin dideteksi. False
positive (FP) merupakan bagian yang melambangkan bahwa model
mendeteksi objek walau pada kenyataannya tidak terdapat objek yang akan
dideteksi. Namun karena terdapat 3 klasifikasi dari luaran model maka
confusion matrix yang dihasilkan juga akan berubah. confusion matrix

untuk tiga klasifikasi dapat dilihat pada tabel 3.2.

Tabel 3.2 Confusion Matrix tiga klasifikasi

Jumlah Jumlah Terdeteksi
Sesungguhnya | SEDAN SUvV TRUCK | BACKGROUND
SEDAN TP FN FN FN
SUvV FN TP FN FN
TRUCK FN FN TP FN
BACKGROUND FP FP FP TN

Penambahan variabel background pada confusion matrix berfungsi
menjadi variabel negative pada matrix. Variabel tersebut penting untuk
menentukan nilai yang akan digunakan untuk melakukan pengujian model.

Selanjutnya perhitungan precision dan recall akan dilakukan untuk
melihat proporsi kemampuan dari model untuk melakukan deteksi TP pada
objek. Precision merupakan perhitungan yang menggambarkan

perbandingan deteksi positive yang dibandingkan dengan seluruh data

24

positive. Sedangkan Recall merupakan perhitungan yang menggambarkan
perbandingan deteksi positive jika dibandingkan dengan seluruh data yang

ada. Perhitungan precision dan recall didefinisikan sebagai berikut

.. TP (3-1)
Precision = W
TP (3-2)
Recall = TP-F—F]V

F1- score merupakan metrics yang menggabungkan precision dan
recall. F1 — score akan menguji banyaknya jumlah deteksi benar yang dapat
dilakukan oleh model. F1- score diperoleh dengan menghitung harmonic
mean dari perhitungan precision dan recall. Perhitungan F1 — score dapat

dilakukan dengan definisi sebagai berikut.

Precision X Recall (3-3)
Precision X Recall

F1 score =2 X

Perhitungan F1 — score akan memberikan gambaran mengenai
performa model yang digunakan. Nilai F1 — score berkisar antara 0 hingga
1.0 dimana nilai O berarti bahwa model selalu salah dalam mendeteksi
objek dan nilai 1.0 berarti model selalu benar dalam mendeteksi objek.

3.4.2 Pengujian Fungsi Perangkat Arduino

Pengujian pada perangkat arduino merupakan pengujian yang cukup
simpel dan mudah. Pengujian ini ditujukan untuk mengetahui apakah
program yang ada pada laptop mampu untuk mengirimkan perintah serial
menuju arduino dan apakah arduino mampu untuk mengirimkan perintah
menuju ketiga servo. Pengujian dilakukan dengan mengirimkan string
menuju arduino yang selanjutnya arduino akan memerintahkan servo untuk

bergerak sesuai dengan string yang dikirimkan.

25

BAB IV
HASIL DAN PEMBAHASAN

Pada bab ini akan membahas perancangan yang sudah ditetapkan
sebelumnya. Bab ini juga akan membahas tentang hasil pengujian dari penelitian
ini. Bab ini akan dibagi menjadi enam bagian yaitu pembuatan data set, training
model, pembuatan program python, pembuatan program arduino, pengujian

model serta fungsionalitas dari arduino, dan pembuatan protipe kota.

4.1 Pembuatan Data Set
Dalam pembuatan data set terdapat empat tahap yaitu pengambilan citra
dari miniatur kendaraan, annotation, data filtering, dan data splitting. Keempat
tahapan ini penting untuk menghasilkan data set yang baik. Pada penelitian ini
posisi bounding box, jumlah citra, dan kejelasan dari citra yang diambil sangat
penting. Penjelasan mendetail mengenai tahapan pembuatan data set sebagai
berikut.
4.1.1 Pengambilan Citra
Pada tahapan pertama pengambilan citra dilakukan
menggunakan kamera AKASO V50X dengan bantuan script
berbasis python. Script tersebut berfungsi untuk mengambil citra

dalam interval waktu yang ditentukan.

001 import cv2

002

003 CAR COUNT = "1"

004

005 cam width, cam height = 1280, 720

006 path = "D:\\YOLO TA\\Imagedataset\\NullImage\\"+CAR COUNT+" "

007 count =1

008 cam port = 0

009 cam = cv2.VideoCapture (cam port)
010 cam.set(3,cam width)

011 cam.set(4,cam _height)

012

013 def save(path, varImg):

014

015 cv2.imwrite (path,varImg)

0l while True:

017 result, image = cam.read()

018 cv2.imshow ("Image", cv2.resize(image, (854,480)))
019

26

020
021
022
023
024

if result:

save (path +" "+ str(count) + ".jpg", image)
cv2.waitKey (2000)

print("..... SAVED!!")

count += 1

Potongan kode di atas merupakan kode yang bertugas untuk
menangkap citra. Potongan kode cv2.waitKey (2000) berfungsi
untuk menentukan waktu dalam satuan ms (mili second), dalam
kode ini citra akan diambil dalam interval 2000 ms atau 2 detik.
Bagian kode save (path +" "+ str(count) + ".jpg", image)
merupakan bagian yang bertujuan untuk menyimpan citra pada
tempat yang sudah ditempatkan pada variabel “path” dan dengan
nama sesuai dengan variabel str(count), pada potongan kode
yang sama variabel “image” merupakan variabel yang menampung
citra yang ditangkap oleh kamera. Kamera yang digunakan

didefinisikan dengan variabel cam_port.

Gambar 4.1 Citra kendaraan

Gambar 4.1 merupakan beberapa citra yang telah diambil.
Citra yang diambil mencakup ketiga Klasifikasi yang akan
digunakan yaitu SEDAN, SUV, dan TRUCK. Total pengambilan

citra keseluruhan adalah 504 citra. Peletakan kamera akan

27

disesuaikan dengan peletakan pada prototipe kota yaitu dari atas
mengarah ke bawah.
4.1.2 Anotation

Tahapan ini merupakan tahap penambahan tag berupa
bounding box, dan koordinat dari bounding box. Tahapan ini
dilakukan secara manual menggunakan tools yang disediakan oleh
roboflow. Pada tahap ini sangat penting untuk memperhatikan area
bounding box yang diberikan, bounding box yang diberikan akan
meliputi seluruh objek yang akan dideteksi namun tidak terlalu

besar.

= Classes 18 Lock Class Add Classos Modiy Classes

MODELS

Gambar 4.2 Interface penambahan nama kelas

Sebelum proses annotation, nama dari kelas yang akan
dicantumkan pada objek akan ditambahkan terlebih dulu.
Penambahan nama kelas dapat dilihan pada gambar 4.2. Terdapat

tiga klasifikasi yang ditambahkan.

28

2215
@ Annotation Editer § %

TRUCK

Sov ke

No Tags Applied

Gambar 4.3 Interface tool roboflow

Gambar 4.3 merupakan interface tool dari roboflow yang
digunakan untuk menggambar bounding box pada citra. Dalam
melakukan anotasi, klasifikasi objek perlu diperhatikan. Setiap
warna dari bounding box melambangkan klasifikasi yang telah
ditentukan sebelumnya. 7ag berupa koordinat, klasifikasi, dan
jumlah objek akan secara otomatis di-generate oleh roboflow

dalam file tersendiri.

Gambar 4.4 Hasil anotasi citra

Gambar 4.4 adalah hasil dari citra yang telah melalui
anotasi. Bounding box yang diberikan sesuai dengan besar dari

objek.

29

4.1.3

4.1.4

Data Filtering

Tahapan ini merupakan tahapan yang dilakukan untuk
membersihkan data set dari citra yang tidak baik. Citra yang tidak
baik merupakan citra yang mengandung objek yang ingin dideteksi
namun, objek tersebut tidak jelas atau bagian dari objek hanya
terlihat sedikit. Tahapan data filtering ini dilakukan bersamaan
dengan tahapan annotation. Proses pembersihan dilakukan dengan

cara menghapus citra yang tidak baik.

Remove Image

Dataset: TA
Image: 1_SUV_112.jpg

Gambar 4.5 Proses penghapusan citra

Gambar 4.5 merupakan proses penghapusan yang
dilakukan dengan menggunakan foo/ yang sama pada halaman
yang sama. Pada saat proses annotation dilakukan jika ada citra
yang dianggap tidak baik maka citra tersebut dapat segera dihapus.
Data citra yang tersisa setelah melewati tahapan ini adalah

sebanyak 475 citra.

Data Splitting
Data splitting merupakan tahap terakhir dalam pembuatan
data set. Pada tahap ini data yang sudah dibersihkan dan diberi fag

akan dibagi menjadi tiga bagian yaitu train set, validation set, dan

30

test set. Perbandingan dari pembagian ketiga bagian ini adalah 70%
train set, 20% validation set, dan 10% test set. Dari pembagian ini
didapatkan jumlah citra pada train set sebanyak 333 citra,
validation set sebanyak 95 citra, dan fest set sebanyak 47 citra.
Data splitting penting untuk dilakukan untuk meningkatkan
akurasi deteksi dari model yang dihasilkan. 7rain set merupakan
data yang akan menjadi data utama yang digunakan dalam proses
training dengan jumlah citra terbanyak. Validation set merupakan
data yang digunakan sebagai pembanding dalam proses training.
Pada proses training tiap epoch yang selesai maka model akan
menggunakan validation set untuk mengatur parameter modelnya,
dengan begitu model dihadapkan dengan data baru. Hal ini sangat
membantu untuk menghindari overfitting pada model. Overfitting
merupakan keadaan dimana data set terdiri dari data yang terlalu
bagus sehingga jika model dihadapkan pada keadaan dengan
keberadaan noise maka model tidak mampu untuk mendeteksi
objek. Train set merupakan data yang digunakan untuk mengukur
keakuratan pada model. Train set merupakan data yang akan

diproses ketika seluruh proses training telah selesai.

4.2 Training Model

Pada tahap ini data set yang siap untuk digunakan akan melalui tahap
training. Sebelum data set dapat digunakan, data set harus di-download terlebih
dahulu ke google colab. Roboflow menyediakan fitur untuk meng-generate
snippet kode yang dapat dijalankan dalam google colab untuk men-download data

set dari platform roboflow dengan format yang diinginkan.

001 !'pip install roboflow

002

003 from roboflow import Roboflow

004 rf = Roboflow(api key="1KMj2udzZfi3fzg2cS3K2")

005 project = rf.workspace ("suvsedantruck") .project ("ta-jhoha")
006 version = project.version (5)

007 dataset = version.download("yolov8")

31

Potongan kode diatas merupakan kode smippet yang dihasilkan oleh
roboflow dengan format yolov8. Kode snippet ini mengakses data set dari akun

roboflow dengan nama workspace “suvsedantruck” dan kode projek “ta-jhoha”.

~ B A5
» B test
» I train

» I valid

. README.roboflow.txt

. data.yam|

Gambar 4.6 Folder data set

Gambar 4.6 merupakan folder yang telah di-download. Folder yang di-
download berisi seluruh data set yang telah terbagi dengan tambahan file
“data.yaml”. File tersebut merupakan data yang mengatur konfigurasi dari letak

test set, validation set, dan train set serta nama klasifikasi dari objek.

data.yaml X

names:
2 - SEDAN
- Suv
4 - TRUCK
nc: 3
roboflow:
license: Private

project: ta-jhoha
url: https://app.roboflow.com/suvsedantruck/ta-jhoha/5
version: 5

workspace: suvsedantruck
12 test: ../test/images
13 train: TA-5/train/images
14 val: TA-5/valid/images
15

Gambar 4.7 Isi file data.yaml
Pada gambar 4.7 menunjukan isi dari file data.yaml. Dapat terlihat pada

empat baris pertama merupakan nama dari klasifikasi yang telah ditentukan

sebelumnya. Pada file ini terdapat bagian yang berisi path untuk folder test (zest

32

set), train (train set), dan val (validation set). Path yang tercantum akan sedikit

disesuaikan dengan path yang ada pada google colab.

names:
- SEDAN
- SuV
- TRUCK
nc: 3
roboflow:
license: Private
project: ta-jhoha
url: https://app.roboflow.com/suvsedantruck/ta-jhoha/5

1
3
4
5
6
7
8
9

version: 5

[
H ®

workspace: suvsedantruck
2 test: /content/TA-5/test
train: /content/TA-5/train
val: /content/TA-5/valid

e
u b wN

Gambar 4.8 File data.yaml setelah penyesuaian

Gambar 4.8 merupakan isi dari file data.yaml yang telah disesuaikan

dengan path folder data set pada google colab.

—
» B .config
B a5
v [test
» I images
» I labels
v [train
» I images
» I labels
~ B valid
» I images

» BB labels

. README.roboflow.txt

Gambar 4.9 Folder data set
Gambar 4.9 merupakan isi dari Folder data set. Setiap folder dari data set

berisi dua jenis folder yaitu images dan labels. Images merupakan folder yang

berisi citra yang ditangkap sebelumnya sedangkan labels berisi file tag.

33

1_SUV_132_jpg.rf.dc5f740dc05¢c50d8d19fddb2f7b5Sedad.txt X 1_SUV_132_ eee

1 2 ©.5889296875000001 ©.23194444444444445 ©.21796875 ©.2111111111111111
2 © 0.365234375 0.45416666666666666 ©.21796875 ©.18333333333333332

Gambar 4.10 File tag pada citra

Gambar 4.10 merupakan isi dari file tag yang diberikan pada citra. Pada
baris pertama, “2” merupakan kode klasifikasi objek yang diikuti oleh 4 baris
koordinat. Terdapat dua baris dengan kode klasifikasi yang berbeda, menunjukkan
pada citra tersebut terdapat dua objek berbeda.

Sebelum proses berlangsung terdapat satu /ibrary yang diperlukan untuk
mengakses model YOLO. Ultralytics merupakan /ibrary yang dapat digunakan
untuk mengakses model YOLO.

001 !pip install ultralytics
002 From ultralytics import YOLO

Potongan kode di atas berfungsi untuk meng-install library ultralytics dan
mengambil komponen YOLO dari library tersebut.

Sebelum proses training dijalankan jenis perangkat keras yang digunakan
pada runtime google colab akan dipastikan terlebih dahulu. Perangkat keras
terbaik yang dapat dipilih tanpa melakukan pembelian adalah T4 GPU, seperti
pada gambar 4.11.

Change runtime type Change runtime type
Runtime type Runtime type

Python 3 Python 3

celerator (7)

Q TRPUwz

Want access to premium GPUs? Purchase additional compute uni

Gambar 4.11 Jenis runtime
Untuk menguji apakah perangkat keras T4 GPU telah terhubung, potongan
kode !'nvidia-smi digunakan untuk melihat spesifikasi dari perangkat keras T4

34

GPU. Spesifikasi dari T4 GPU dapat dilihat pada gambar 4.12. Jika perangkat
keras T4 GPU belum terhubung maka potongan kode !nvidia-smi akan

mengeluarkan error code seperti yang terlihat pada gambar 4.13.

| NVIDIA-SMI 535.184.85 Driver Version: 535.184.85 CUDA Version:
I ___
| GPU Name Persistence-M
| Fan Temp Perf Pwr:Usage/Cap

|
W
c 1
n o
[
H
a
1
1
|
|
1
1
|
|
1
1
1
|
1
1
1
+
I
1
1
1
|
1
1
1
|
|
1
1
1
|
|
1
1
'
1
1
1
1
+

Disp.A | Volatile Uncorr. ECC |
Memory-Usage | GPU-Util Compute M. |

@ Tesla T4
| Nn7A - 45C

©0000000:00:04.0 Off
eMiB / 1536@MiB

-
I
I
I
o
I
I
I
-

| Processes:
GPU GI

Gambar 4.12 Spesifikasi T4 GPU

/bin/bash: line 1: nvidia-smi: command not found

Gambar 4.13 Kode error GPU

Setelah seluruh persiapan data set dan perangkat keras telah siap maka
proses training dapat dilakukan. Proses training dapat dilakukan dengan

menggunakan potongan kode sebagai berikut.

001 Yolo task=detect mode=train data=/content/TA-5/data.yaml
epochs=50 imgsz=730

Pada potongan kode diatas terdapat beberapa parameter yang digunakan
oleh model untuk menetapkan alur training dan path dari data set. Parameter task

merupakan parameter yang menetapkan tugas pada YOLO. Pada potongan kode

35

di atas parameter “task’ berisi perintah untuk “detect”, perintah ini bertugas untuk
menetapkan bahwa model YOLO akan melakukan tugas deteksi objek.
Selanjutnya parameter “mode” berisi perintah “train”. Perintah train bertugas
untuk menetapkan bahwa model YOLO akan melakukan training pada model.
Parameter “data” merupakan parameter yang berisi path yang menuju file
konfigurasi yang telah dijelaskan sebelumnya. Paramater “epochs” merupakan
jumlah siklus training yang akan dilakukan, tiap epoch yang selesai model akan
melakukan validasi menggunakan validation set. Parameter terakhir yaitu “imgsz”

merupaka parameter yang berisi ukuran dari citra.

Luaran dari proses training adalah folder berisi model yang telah
disesuaikan dengan klasifikasi dan objek yang telah ditentukan sebelumnya serta

beberapa file testing dari model.

50 epochs completed in ©.160 hours.

Optimizer stripped from runs/detect/train2/weights/last.pt, 6.2MB
Optimizer stripped from runs/detect/train2/weights/best.pt, 6.2MB

Gambar 4.14 Path folder model

Gambar 4.14 menunjukan path folder tempat model disimpan. Model
“last.pt” merupakan model yang telah melalui proses validation dan testing,

sedangkan “last.pt” merupakan model yang hanya melalui proses training.

Proses training menggunakan GPU merupakan hal yang penting untuk
dilakukan. GPU yang telah disediakan oleh google colab merupakan perangkat
yang sangat optimal untuk melakukan proses training. Perbedaan waktu yang
digunakan sangat signifikan dimana training menggunakan GPU membutuhkan
waktu 9.6 menit, sebaliknya penggunaan CPU dalam proses training
menghabiskan waktu sebanyak 5 jam dengan jumlah serta jenis data set dan

parameter yang sama.

36

4.3 Pembuatan Program Python

Program python yang dibuat akan meliputi beberapa tugas, beberapa tugas
yang akan diliputi adalah mengkoneksikan serta menangkap citra dari keempat
kamera yang digunakan, mengirimkan kode pada arduino berupa string untuk

memerintah servo untuk bergerak sesuai dengan posisi miniatur kendaraan.

Dalam pembuatan program python terdapat beberapa library yang akan
digunakan, yaitu math, cv2, cvzone, pickle, numpy, ultralytics, serial, dan time.
Program python diawali dengan pembuatan bagian yang akan mengakses keempat
kamera yang digunakan. Bagian ini memanfaatkan library cv2 untuk

menghubungkan keempat kamera menuju komputer.

001 cam width, cam height = 1280, 720 # CAM RES
002

003 capl = cv2.VideoCapture(pl) # WEB CAM ASSIGN
004 cap2 = cv2.VideoCapture (p2)

005 cap3 = cv2.VideoCapture (p3)

006 cap4 = cv2.VideoCapture (roadCam)

007

008 cap2.set
009 cap2.set
010 cap3.set
011 cap3.set

(cam_width)
(
(
(
012 capl.set (
(
(
(

3,
4, cam_height)
3, cam _width)
4, cam _height) # SET ALL FRAME SIZE
3, cam _width)
013 capl.set (4,
014 capéd.set (3,
015 cap4.set (4,

cam_height)
cam_width)
cam height)

Potongan kode di atas merupakan bagian yang menginisialisasi kamera.
Kamera yang akan diinisialisasi dilambangkan dengan angka dari 0 hingga 3 yang
ditampung dalam variabel pl1,p2,p3, dan roadcam. Selanjutnya pada baris 008
hingga 015 merupakan bagian inisialisasi resolusi dari citra kamera yang nanti
akan ditampilkan.

Bagian selanjutnya adalah bagian yang membaca citra kamera yang sudah
diinisialisasi dan melakukan proses citra menggunakan model YOLO. Bagian ini
dapat dilihat pada potongan kode di bawah ini.

37

001 successl, imgl = capl.read()

002 success2, img2 cap2.read() # READING CAMERA ASSIGNED
()
()

003 success3, img3 cap3.read

004 success4, img4 = cap4.read

005

006

007 object listl = get object list yolo(model, imgl,
class names, confidence, draw=True)

008 object list2 = get object list yolo(model, imgZ2,
class_names, confidence, draw=True)

009 object 1list3 = get object list yolo(model, img3,
class_names, confidence, draw=True)

010 object list4 = get object list yolo(model, img4,
class names, confidence, draw=True)

Pada potongan kode di atas, pada baris 001 hingga 004 merupakan bagian
yang membaca citra dari kamera. Baris 007 hingga 010 merupakan bagian yang
memberikan citra kamera pada model untuk dideteksi oleh model YOLO
menggunakan fungsi get_object list yolo. Objek vyang terdeteksi akan
ditampilkan dalam citra kamera dengan bounding box pada objek tersebut dan
disimpan dalam format list ke dalam variabel penyimpan object_list1, object_list2,
object_list3, dan object_list4. Masing — masing variabel penyimpan bertanggung
jawab untuk menyimpan objek yang terdeteksi dari citra pada img1, img2, img3,

dan img4. Objek yang telah terdeteksi dapat dilihat pada gambar 4.15.

Gambar 4.15 Objek terdeteksi

38

Bagian selanjutnya adalah bagian yang mengatur arduino untuk mengirim
perintah menuju ketiga servo. Dalam bagian ini posisi kendaraan akan memicu
arduino jika sudah berada pada area yang ditentukan. Dapat dilihat pada gambar
4.16 bahwa terdapat empat area yang akan digunakan. Area pertama yaitu “Road”
akan memicu arduino untuk menggerakan servo tertentu sesuai dengan jenis
klasifikasi miniatur kendaraan yang ada di dalam area tersebut. Area selanjutnya
adalah “P1”. Area tersebut akan memicu arduino untuk menggerakan servo yang
ada pada lahan parkir P1. Sama halnya dengan area “P2” dan “P3” keduanya
hanya akan menggerakan servo pada lahan parkirnya masing masing. Servo yang
dibuka dengan memicu area “Road”, akan menutup setelah miniatur telah masuk
ke lahan parkir, sedangkan servo yang dibuka dengan memicu area lain akan
langsung menutup 500ms setelah miniatur kendaraan tidak lagi di dalam area

tersebut.

P} ¢&—F— J

> P2

——F— > Pl

— Road

Gambar 4.16 Area polygons

Area akan dibuat membaca empat titik koordinat pada citra kamera.
Setelah keempat koordinat telah tersimpan maka berdasarkan koordinat —
koordinat tersebut akan dijadikan acuan sudut dari kotak yang akan digambarkan
pada citra, sehingga pada tampilanya area tersebut dapat terlihat seperti pada
gambar 4.17. Setelah area telah digambar maka selanjutnya akan disimpan dengan
menggunakan pickle. Format file yang disimpan akan berubah menjadi format

13 2

pickle yaitu “.p

39

Gambar 4.17 Area yang telah digambar

001
002
003
004
005
006
007
008
009
010
011
012
013
014

def mousePoints (event, x, y, flags, params):
global counter, current polygon

If left mouse button is clicked
if event == cv2.EVENT LBUTTONDOWN:

current polygon.append((x, y))

If we have collected four points for one polygon
if len(current polygon) ==
polygons.append (current polygon)
current polygon = []
counter += 1 # Increment the counter
print (polygons) # Print the collected polygons

Potongan kode di atas merupakan fungsi yang digunakan untuk

mengambil koordinat pada citra kamera. Baris 005 bertugas untuk mengambil

koordinat jika mouse diklik. Koordinat yang telah diambil akan disimpan pada

sebuah array. Fungsi tersebut akan diulang hingga array yang menampung

koordinat tersebut sudah berisi empat.

001
002
003
004

if counter == totalSpaces:
fileObj = open('Polygons.p', 'wb')
pickle.dump (polygons, fileObj)
fileObj.close ()

40

005 print ("Saved all polygon points.")

006 Break

007 cv2.imshow ("Original Image", img)

008 cv2.setMouseCallback ("Original Image", mousePoints)

Potongan kode di atas pada baris 008 adalah baris kode yang memanggil
fungsi mousePoints sebanyak variabel totalSpaces. Total spaces dapat diatur
sesuai dengan kebutuhan. Ketika variabel totalSpaces sudah terpenuhi maka array
yang menampung semua koordinat akan disimpan menggunakan library pickle
dengan nama Road.p ke folder yang sama dengan lokasi folder kode tersebut. File
tersebut dapat disebut dengan file polygons. Selanjutnya file Road.p akan
digunakan untuk menentukan area yang akan memicu arduino untuk menggerakan

Servo.

001 polygonKeluarl = 'Polygons.p'

002 file obj keluarl = open(polygonKeluarl, 'rb')
003 roisKeluarl = pickle.load(file obj keluarl)
004 file obj keluarl.close()

Potongan kode di atas merupakan kode yang akan menginisialisasi file
polygons yang telah dibuat sebelumnya. Baris 002 berfungsi untuk membuka file
dengan nama yang telah ditampung pada variabel polygonParkirl yaitu
Polygons.p. Selanjutnya isi dari file polygons akan ditampung pada variabel

“roisParkirl”, lalu file polygons akan ditutup kembali pada baris 004.

Tahap selanjutnya adalah menggunakan polygons yang telah diambil
untuk menjadi polygons yang dapat memicu arduino untuk mengirimkan perintah.
Untuk memenuhi tugas itu program membandingkan titik tengah polygons dengan
titik tengah dari bounding box pada objek yang terdeteksi. Kode di bawah ini
merupakan kode yang berfungsi untuk membandingkan titik tengah dari polygons
dan bounding box dari objek.

001 empty statusl = overlay polygons(imgl, object listl,
roisKeluarl, draw occupied=True)

41

Pada potongan kode di atas terdapat beberapa parameter yang digunakan.
Parameter “imgl” merupakan citra kamera yang digunakan. Parameter
“object_list1” merupakan parameter yang menampung klasifikasi dari objek, dan
titik tengah bounding box dari objek yang terdeteksi. Parameter roisKeluarl
merupakan polygons yang akan digunakan untuk pembanding. Luaran dari
potongan kode di atas adalah boolean yang menyatakan tidak ada objek di dalam
polygons dengan boolean true dan false jika ada objek di dalam polygons. Dari
luaran ini program akan mengambil klasifikasi objek yang ada di dalam polygons

menggunakan potongan kode di bawah ini.

001 if ((len(object 1listl) != 0) and (empty statusl == False)):

002 # Check if any car is present in this polygon

003 for obj in object listl:

004 car center = obj[“center”]

005 result = cv2.pointPolygonTest (keluar spacel,
car_center, False)

006 if result > 0:

007 centerl = obj

Jenis objek yang ada di dalam polygons akan disimpan di dalam variabel
“centerl”. Dari informasi mengenai ada atau tidaknya objek di dalam polygons
dan Klasifikasi objek di dalam polygons maka program dapat memberikan kondisi

yang cukup untuk menggerakan servo.

001 if ((centerl["class"] == "SUV") and (statusPalangl ==
False)) :

002 write ("2"™)

003 statusPalangl = True

004 elif ((centerl["class"] != "SUV") and (statusPalangl ==
True)) :

005 write("3")

Potongan kode di atas berfungsi untuk mengirimkan string menuju arduino
berdasarkan kondisi yang telah ditentukan. Kondisi yang digunakan adalah jika
objek yang tedeteksi dengan klasifikasi SUV dan palang dalam kondisi tertutup
(False), maka program akan mengirimkan string 2 ke arduino dan jika tidak

klasifikasi objek yang ada di dalam polygons bukan SUV makan program akan

42

mengirimkan string 3. Terdapat beberapa string yang digunakan pada program.
Masing — masing string melambangkan servo dan fungsi yang berbeda. string
yang digunakan adalah 2,3,4,5,6,7. Program mengirimkan string menggunakan
koneksi serial melalui port USB. Fungsi “write” pada program merupakan cara

program untuk mengirim string menuju arduino.

001 arduino = serial.Serial (port='COM7', baudrate=9600,
timeout=.1)

002 def write(x):

003 arduino.write (bytes(x, 'utf-8'))

004 time.sleep (0.05)

Potongan kode diatas merupakan fungsi “write” pada program. Potongan
kode di atas pada baris 001 merupakan bagian yang memulai koneksi dengan
arduino dengan koneksi menggunakan port COM7, dan baudrate 9600. Di dalam
fungsi “write” pada baris 003 merupakan bagian yang mengirimkan string dengan

variabel x menuju ke arduino.

Selain polygons yang memicu arduino untuk menggerakan servo terdapat
polygons yang digunakan untuk menghitung jumlah lahan parkir yang tersedia.
Polygons pada lahan parkir tidak membutuhkan jenis objek yang diklasifikasi
karena hanya kode hanya pertujuan untuk menghitung miniatur kendaraan yang
terparkir. Gambar 4.18 menunjukan jika tidak ada objek di dalam polygons.
Gambar 4.19 menunjukan jika terdeteksi ada objek di dalam polygons.

43

Available: 6/6

Gambar 4.18 Polygons tanpa objek

INVENETICHE YA

Gambar 4.19 Polygons dengan objek

001 aval = count Spaces (4, object listl, roisParkirl)

002 if aval ==

003 color = (0, 0, 255) # Red for no available spaces

004 else:

005 color = (0, 200, 0) # Green for available spaces

006 cvzone.putTextRect (imgl, f"Available: {aval}/4", (20, 50),
colorR=color)

44

Potongan kode di atas merupakan kode yang menghitung jumlah objek di
dalam polygons. Kode tersebut menghitung jumlah objek menggunakan fungsi
count_Spaces. Pada baris 003 merupakan warna yang digunakan jika ada objek
pada polygons, dan baris 005 adalah warna yang digunakan jika tidak ada objek
pada polygons.

4.4 Pembuatan Program Arduino

Program arduino memiliki tugas utama yaitu untuk memulai koneksi
dengan ketiga servo dan memerintah servo untuk bergerak sesuai dengan string
yang diterima dari program python. Masing — masing perintah pada servo

memiliki stringnya sendiri.

001 #include <Servo.h>

002

003 Servo servol; // create servo object to control a servo
004 Servo servo2;

005 Servo servo3;

006

007 void setup () {

008 Serial.begin (9600) ;
009 Serial.setTimeout (1) ;
010 servol.attach (9);

011 servo2.attach (6);

012 servo3.attach(5);

013 }

Potongan kode di atas merupakan kode yang diggunakan untuk setup
koneksi dan memulai koneksi dengan ketiga servo. Setup dimulai dengan baris
001 dengan memanggil library servo. Selanjutnya pada baris 003 hingga 005
variabel servo akan diinisialisasi dengan servol, servo2, dan servo3. Setup
selanjutnya adalah menetapkan baudrate dari koneksi serial yaitu 9600 pada baris
008. Untuk mengakses servo maka servo akan di hubungkan dengan digital pin 5,
6, dan 9, pin yang terhubung dengan servo akan diinisialisasi pada baris 010
hingga 012.

45

001 void loop () {

002 if (Serial.available() > 0){

003 code = Serial.readString() .toInt();
004 }

005 }

Potongan kode diatas adalah kode yang bertugas untuk membaca string
yang dikirim oleh program python dengan koneksi serial dan mengirim perintah
kepada servo untuk bergerak. Pada baris 002 adalah bagian yang menunggu
koneksi serial untuk menerima data. Pada baris 003 adalah bagian yang membaca
data yang telah dikirim melalui koneksi serial serta mengubah data yang dikirim
dalam format string ke format integer. Data tersebut akan ditampung dalam

variabel “code” untuk nantinya menjadi kondisi untuk menggerakan servo.

Selanjutnya merupakan bagian kode yang akan bertugas untuk
menggerakan servo, namun terdapat perbedaan pada salah satu servo dari tiga
servo yang digunakan. Pada umumnya mini servo dengan jenis SG90 merupakan
continuous servo, yang berarti bahwa servo tidak memiliki sensor yang
mendeteksi sudut putaran servo, sehingga pada servo jenis ini jika kode pada
arduino mengirimkan integer 0 hingga 89 servo akan bergerak berlawanan arah
dengan jarum jam dan integer 91 hingga 180 servo akan bergerak searah jarum
jam. Semakin jauh integer yang dikirimkan dengan nilai 90 maka semakin cepat
servo berputar. Integer 90 akan memerintahkan servo untuk berhenti berputar.
Pada satu servo yang berbeda ini, servo memiliki sensor yang mendeteksi sudut
putaran servo sehingga integer yang dikirimkan ke arduino merupakan sudut putar

yang akan dituju oleh servo.

001 if (code == 2){

002 servol.write (180)

003 }

004 else if (code == 3){ //Pin 9
005 delay (500) ;

006 servol.write (0);

007

008 }

46

Potongan kode di atas merupakan kode yang bertugas untuk mengatur
servo dengan sensor sudut putar yang terhubung dengan pin 9. Pada baris 001 dan
002 adalah bagian yang akan membuka palang dengan memutar servo dengan
sudut 180 jika isi dari variabel “code” adalah “2”. Pada baris 004 hingga 006
adalah bagian yang akan menutup palang dengan memutar servo dengan sudut 0
atau kembali ke sudut awal setelah 500ms terlewati. Delay 500ms digunakan

untuk kebutuhan demo.

001 if (code == 4) {

002 servo2.write (81);
003 delay (500);

004 servo2.write (90); //Pin 6
005 }

006 else 1f (code == 5){
007 delay (500);

008 servo2.write (104) ;
009 delay (491);

010 servo2.write (90);
011 }

012 if (code == 6) {

013 servo3.write (81);
014 delay (500) ;

015 servo3.write (90); //Pin 5
016 }

017 else 1f (code == 7){
018 delay (500) ;

019 servo3.write (104);
020 delay (491);

021 servo3.write (90);
022 }

Kode diatas merupakan kode yang bertugas untuk menggerakkan servo
lainya yang merupakan servo continuous yang terhubung pada pin 5 dan 6. Baris
001 hingga 004 bertugas untuk membuka palang pada servo yang terhubung pada
pin 6 jika isi variabel “code” adalah 4 dengan mengirimkan integer 81 ke servo,
yang berarti servo akan bergerak berlawanan arah dengan jarum jam selama
500ms. Selanjutnya kode akan mengirimkan integer 90 untuk menghentikan servo
untuk berputar. Selanjutnya pada baris 006 hingga 010 memiliki tugas untuk
menutup palang pada servo yang terhubung dengan pin 6. Kode akan menutup
palang dengan mengirimkan integer 104 setelah delay 500ms di awal untuk

keperluan demo, yang berarti setelah delay 500ms servo akan berputar searah

47

jarum jam. Selanjutnya kode akan menghentikan kode dengan mengirimkan
integer 90 setelah delay 491ms. Delay dan kecepatan pada servo continuous
terlihat bukan merupakan angka bulat untuk meningkatkan konsistensi sudut putar

Servo.

45 Pengujian Sistem

Bagian ini merupakan bagian terakhir dalam pembuatan program yaitu
pengujian pada model YOLO dan pengujian arduino. Pengujian dilakukan untuk
mengetahui performa dari model YOLO yang telah melalui proses training
dengan data set dan Kklasifikasi khusus. Pengujian yang dilakukan adalah
precision, recall, dan F1 — score serta terdapat confusion matrix yang akan
merangkum hasil deteksi dari model.

Pengujian yang dilakukan telah secara otomatis dilakukan saat training
berlangsung. Setiap epoch yang selesai maka model akan melalui pengujian
menggunakan test set yang telah disiapkan. Untuk melihat kemampuan deteksi

secara general pada model, confusion matrix dapat digunakan.

Confusion Matrix Normalized

SEDAN

Suv

Predicted

- 0.4

TRUCK

- 03

-0.2

1 |0.18 | |0.32 | ‘0.17] L o1

background

' v 0 ' - 0.0
SEDAN Suv TRUCK background
e

Gambar 4.20 Confusion matrix

48

Pada gambar 4.20 di atas deteksi yang dilakukan oleh model tersebar ke
seluruh bagian, namun sebagian besar objek yang terdeteksi terdapat pada area
yang menunjukan TP (True Positive). Matrix pada gambar 4.20 menunjukan
persentase dari kemampuan model untuk mendeteksi objek. Bagian horizontal
merupakan keadaan sesungguhnya dari objek sedangkan bagian vertical adalah
luaran deteksi dari model. Dari confusion matrix di atas objek yang terdeteksi
dengan benar oleh model ada pada angka 0.67 hingga 0.83 hal ini menunjukan
lebih dari 50% citra dapat terdeteksi dengan akurat. Nilai lainya tersebar ke

bagian lain yaitu false negative (FN) dan false positive (FP)

Selanjutnya adalah pengujian precision dan recall. Pengujian precision
dilakukan untuk mengetahui seberapa sering model mendeteksi klasifikasi yang
benar dari objek, precision memberi gambaran dari kemampuan model untuk
menghindari deteksi false positive dengan nilai 0 jika model tidak pernah
mengklasifikasikan objek dengan benar dan nilai 1 jika model selalu benar dalam
mengklasifikasikan objek.

10 Precision-Confidence Curve

—— SEDAN
Suv
—— TRUCK

= all classes 1.00 at 0.882
0.8

Precision
o
[+)]

©
»
1

0.2 1

0.0 T T : :
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Gambar 4.21 Precision — confidence curve

49

metrics/precision(B)

0.8 1

0.6 1

0.4 4

0.2 1

0.0 A

0 20 40
Gambar 4.22 Precision per epoch

Pada gambar 4.21 merupakan grafik yang menunjukan hubungan
precision jika dibandingkan dengan confidence. Grafik tersebut memberikan nilai
precision pada nilai confidence tertentu. Dari grafik pada gambar 4.21
menunjukan bahwa precision pada model meningkat seiring dengan semakin
tingginya confidence atau model akan semakin presisi dalam menentukan
klasifikasi seiring dengan meningkatnya confidence saat mendeteksi klasifikasi
objek, hingga pada confidence 0.9 dapat dipastikan bahwa semua objek yang

terdeteksi maka akan dengan benar diklasifikasikan.

Gambar 4.22 merupakan grafik yang menunjukan pengujian precision
pada model tiap epoch yang selesai saat proses training dilakukan. Pada grafik
tersebut nilai precision meningkat pada beberapa epoch pertama lalu nilai
precision bertahan pada 0.6 hingga 0.8.

Selanjutnya merupakan pengujian recall. Pengujian ini dilakukan untuk
mengetahui kemampuan dari model untuk dapat mendeteksi semua objek yang
ada pada klasifikasi objek. Pengujian ini memberikan gambaran tentang model

untuk mengabaikan objek selain objek yang ada pada klasifikasi.

50

Recall

1.0

0.8

0.6 1

0.4

0.2

0.0
0.0

Recall-Confidence Curve

—— SEDAN
SUv
—— TRUCK
= all classes 0.93 at 0.000

Gambar 4.23 merupakan grafik yang menunjukan hubungan antara nilai

0.2 0.4 06 08 1.0
Confidence

Gambar 4.23 Recall — confidence curve

metrics/recall(B)

LO_V

Gambar 4.24 Recall per epoch

recall dan confidence. Nilai recall akan sangat tinggi pada nilai confidence 0
karena dengan nilai confidence 0 makan semua objek akan terdeteksi sebagai
objek di dalam klasifikasi. Hal sebaliknya terjadi saat nilai confidence 1 maka
nilai dari recall akan sangat rendah karena model hanya akan mendeteksi objek

jika model memiliki confidence dengan nilai 1 atau pasti benar.

51

Gambar 4.24 adalah grafik yang menunjukan pengujian recall tiap epoch
yang selesai dalam proses training model. Nilai recall pada epoch pertama yang
didapat sangat tinggi dikarenakan model belum memiliki akurasi yang dibutuhkan
untuk mendeteksi objek dengan benar sehingga pada tahap epoch pertama model
mendeteksi semua objek termasuk ke dalam objek dalam klasifikasi. Selanjutnya

nilai dari recall bertahan pada nilai 0.6 hingga 0.8.

Precision-Recall Curve

1.0

—— SEDAN 0.862
SUV 0.844

—— TRUCK 0.907

0.8 = 3|l classes 0.871 MAP@0.5

0.6 1

Precision

0.4 1

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Gambar 4.25 Precision — recall curve

Gambar 4.25 adalah grafik yang menunjukan hubungan antara precision
dan recall untuk lebih menggambarkan kemampuan dari model. Pada grafik di
atas nilai precision stabil pada nilai 1 pada recall dengan nilai 0 hingga 0.4, yang
berarti model dapat mengklasifikasi dengan sangat akurat namun objek tidak
selalu terdeteksi hanya kurang dari setengah dari seluruh data set yang terdeteksi.
Sebaliknya saat recall bernilai 1 maka precision ada pada kisaran nilai 0.1 hingga
0.3 yang berarti hampir semua objek terdeteksi sebagai objek di dalam klasifikasi

namun objek yang terdeteksi belum tentu objek yang seharusnya. Titik paling

52

stabil adalah pada nilai recall dan precision 0.8 dimana 80% objek akan terdeteksi

dan terklasifikasi dengan cukup akurat.

10 F1-Confidence Curve

—— SEDAN
SuUvV
—— TRUCK

= all classes 0.83 at 0.149
0.8

0.6 1

F1

0.4 1

0.2 1

0.0 T T v T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Gambar 4.26 F1 — score curve

Pengujian f1 — score merupakan cara untuk mengetahui performa dari
model. Pengujian ini adalah perhitungan harmonic mean dari precision dan recall
yang memberikan nilai performa dari model. Semakin dengan nilai f1 ke 1 makan
semakin tinggi keseimbangan antara recall dan precision tercapai yang berarti
semakin tinggi performa dari model. Performa yang dimaksud adalah kemampuan

model untuk mendeteksi objek dan mengklasifikasikannya dengan benar

Gambar 4.26 merupakan grafik yang menunjukan hubungan nilai f1 dan
confidence. Pada grafik tersebut menunjukan model kesusahan untuk melakukan
pendeteksian jika confidence yang diminta adalah 1. Pada pengujian ini hal yang
sama terjadi saat confidence pada nilai 0 model tidak memberikan deteksi yang
akurat dikarenakan saat nilai confidence 0 semua objek dapat dideteksi sebagai
objek di dalam klasifikasi. Titik paling seimbang adalah dengan melimit

confidence pada 0.5 hingga 1 sehingga performa yang didapat dari model ada

53

pada titik tertinggi namun nilai confidence tetap tinggi. Pengujian juga dilakukan
dengan data set yang baru dengan jenis kendaraan yang tidak ada pada data set

untuk training, validation, dan test.
45.1 Pencatatan loss dan mAP

Loss merupakan suatu nilai yang yang mengukur seberapa dekat
nilai prediksi dari model dengan nilai dari target yang didapat dari data set,
dengan kata lain nilai loss dapat dijadikan acuan untuk mengetahui nilai
error dari model dalam melakukan prediksi selama proses training.
Semakin dekat nilai prediksi model dengan 0.0 maka semakin kecil error
dari model atau semakin akurat model melakukan prediksi. mAP (mean
Average Precision) adalah nilai rata-rata dari precision pada tiap tahapan
nilai recall di dalam loU (Intersection over Union) yang dihasilkan oleh
model dan bounding box yang telah di tetapkan. Nilai ini dapat dijadikan

acuan untuk akurasi dari model dalam melakukan deteksi dalam loU

tertentu.
train/box_loss train/cls_loss
0.5 1 —e— results
2.5 smooth
0.4 1 “ 2.0 1

1.5

0.3 1
1.0 A

0.21
Lk% 0.51

0 20 40 0 20 40

Gambar 4.27 Grafik loss

Gambar 4.27 merupakan gambar yang menunjukan nilai loss dari
prediksi model untuk bounding box di sebelah kiri dan Klasifikasi di

sebelah kanan pada saat proses training yang diambil tiap epoch-nya. Dari

54

kedua grafik terdapat tren menurun yang berarti dalam proses training, tiap
epoch-nya model semakin akurat dalam melakukan prediksi untuk
bounding box dan klasifikasi, namun pada grafik klasifikasi model lebih
cepat untuk belajar.

metrics/mAP50(B) metrics/mAP50-95(B)
0.40 A
0.35 A1
0.30 A
0.25 -
0.20 A
0 20 40 0 20 40

Gambar 4.28 Grafik mAP50 dan mAP50-95

Gambar 4.28 menunjukan nilai dari mAP pada model yang diambil
tiap epoch-nya yaitu sebanyak 50 epoch. mAP50 merupakan perhintungan
nilai mAP dengan loU sebesar 50%, sedangkan mAP50-95 adalah
perhitungan nilai mAP dengan loU sebesar 50% hingga 95% dengan
loncatan sebanyak 5%. Kedua grafik mengalami peningkatan pada tiap
epoch-nya selama proses training. Dari kedua grafik ini dapat disimpulkan
bahwa akurasi dari model pada mAP50 berada pada nilai 0.7 hingga 0.8
pada epoch terakhir, sedangkan mAP50-95 berada pada nilai 0.35 hingga
0.40 pada epoch terakhir.

4.5.2 Pengujian data set baru

Pengujian ini dilakukan dengan menggunakan data set baru. Data
set baru yang digunakan adalah data set yang tidak pernah digunakan

dalam proses training. Data set baru yang digunakan, melalui tahap yang

55

sama dengan data sebelumnya yang digunakan untuk training model

namun tidak melalui tahapan training.

Gambar 4.29 Citra baru

Gambar 4.29 merupakan beberapa citra yang ditangkap untuk
dijadikan data set baru. Selanjutnya citra yang ditangkap dengan objek
baru ini, akan melalui tahap preprocessing dengan tools yang sama, yaitu
menggunakan roboflow. Jumlah citra yang ditangkap sebanyak 60 namun
setelah melalui tahap data filtering jumlah citra yang dapat digunakan
adalah sebesar 54. Citra akan diberikan tag berupa bounding box,
koordinat, dan klasifikasi dari objek. Perbedaan dari pembuatan data set
ini adalah bagian terakhir yaitu data splitting, dimana data hanya

dialokasikan untuk validation set seperti pada gambar 4.30.

54 Total Images View All Images -

a s i o

TRAIN SET VALID SET TEST SET °

0 Images 54 Images 0 Images

Dataset Split

Gambar 4.30 Data splitting dari data set baru

56

Selanjutnya data set akan melewati tahap validasi dengan
menggunakan google colab dan model yang telah di-training sebelumnya,
untuk mendapatkan hasil pengujian dari model tersebut dengan data set
yang berbeda. Potongan kode di bawah merupakan potongan kode yang
digunakan untuk melakukan proses validation.

001 !yolo val model=/content/drive/MyDrive/best.pt
data=/content/Unknown-data-1/data.yaml

Confusion Matnix Normalzed

il o032 0.78

: | 010

a.: o4
§ 0.57 0.22

-0.0

Gambar 4.31 Confusion matrix data set baru

Pada gambar 4.31 merupakan confusion matrix yang dihasilkan
dari data set dengan objek baru. Dari confusion matrix tersebut dapat
disimpulkan bahwa sebagian besar dari objek tidak dapat terdeteksi oleh
model. Terdapat 32% kemungkinan untuk objek dengan Klasifikasi
SEDAN dapat terdeteksi dengan benar, namun untuk objek lainya dengan
klasifikasi SUV dan TRUCK tidak dapat terdeteksi.

57

10 Precision-Confidence Curve

—— SEDAN
SUV
— TRUCK

= all classes 1.00 at 0.963
0.8

o
o

Precision

o
=

02 rﬂ)\/\’/
0.0

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Gambar 4.32 Precision-Confidence Curve data baru

Gambar 4.32 merupakan grafik precision yang dihasilkan dengan
data set baru. Dari grafik tersebut objek dengan klasifikasi SEDAN dapat
terdeteksi dengan mudah dengan nilai precision yang selalu di atas nilai
0.6 di seluruh nilai confidence. Untuk klasifikasi TRUCK dan SUV
terdapat lonjakan yang sangat signifikan pada nilai confidence, dimana
nilai precision dari klasifikasi TRUCK melonjak dari 0 hingga 1.0 pada
nilai confidence di atas 0.2. Sama halnya dengan klasifikasi SUV terdapat
lonjakan nilai confidence dari 0 hingga 1.0 pada nilai confidence di atas
0.9. Dapat disimpulkan bahwa model dapat mengklasifikasikan objek
dengan sangat akurat saat nilai confidence di atas 0.8.

58

10 Recall-Confidence Curve

—— SEDAN
Suv
—— TRUCK

=== all classes 0.70 at 0.000
0.8

0.6

Recall

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Gambar 4.33 Recall-Confidence Curve data baru

Gambar 4.33 merupakan grafik recall yang dihasilkan dengan data
set baru. Dari grafik tersebut objek dengan klasifikasi SEDAN dapat
memiliki nilai recall yang relatif rendah yaitu di bawah 0.4 pada nilai
confidence 0.5 hingga 1.0. Untuk objek dengan klasifikasi SUV dan
TRUCK nilai recall turun ke nilai 0 dengan pada nilai confidence di
bawah 0.2. Dapat disimpulkan bahwa pada nilai confidence 0.5 hingga 1.0
objek dengan Klasifikasi sedan dapat dideteksi dengan kemungkinan di
bawah 40%. Sedangkan untuk objek dengan klasifikasi TRUCK dan SUV

tidak dapat terdeteksi dengan nilai confidence 0.5.

10 F1-Confidence Curve

—— SEDAN
Suv
—— TRUCK

= all classes 0.28 at 0.000
08

06
0.4 S—

21 e

4]
0.0 0z 0.4 0.6 08 10

Gambar 4.34 F1-Curve data baru

59

Gambar 4.34 adalah grafik F1 yang dihubungkan dengan nilai
confidence. Dari grafik tersebut dapat terlihat bahwa performa dari model
relatif rendah dengan nilai F1 di bawah 0.5 pada nilai confidence 0.5
hingga 1.0 untuk objek dengan klasifikasi SEDAN. Untuk nilai F1 objek
dengan klasifikasi SUV dan TRUCK di bawah 0.4 pada nilai confidence
0.0 hingga 0.2. Dari grafik tersebut dapat disimpulkan bahwa model tidak
dapat menghasilkan performa yang baik jika dihadapkan pada data set
baru yang tidak ada pada data set saat proses training, hanya objek dengan
klasifikasi SEDAN yang dapat terdeteksi. Sebaliknya objek dengan
klasifikasi SUV dan TRUCK tidak dapat terdeteksi .

60

Bab V

Kesimpulan dan Saran

5.1 Simpulan

Penelitian menghasilkan model yang mampu untuk mendeteksi dan
mengklasifikasikan objek dengan nilai F1 — score tertinggi pada 0.83 pada
confidence 0.149. Penggunaan model untuk melakukan klasifikasi objek dengan
reliable maka tingkat confidence dapat dibatasi pada nilai minimum 0.7 sehingga
dengan nilai confidence yang tinggi tetap mendapatkan nilai F1 — score yang cukup
tinggi. Waktu yang dibutuhkan untuk menjalankan training dengan menggunakan
CPU adalah 5 jam sedangkan training menggunakan GPU adalah 9.6 menit.

Program dapat berjalan dengan mengintegrasikan empat kamera dengan
proses citranya masing — masing, seluruh objek yang ingin dideteksi dapat dengan

baik dideteksi oleh keempat kamera.

5.2 Saran

Untuk penelitian selanjutnya, peningkatan jumlah data set merupakan tahap
yang dapat diambil untuk meningkatkan akurasi dan jenis klasifikasi dari objek.
Jika peneliti ingin lebih jauh meningkatkan akurasi dari model maka jenis model
YOLO yang lebih besar dapat digunakan untuk proses training, namun harus
dipastikan perangkat keras yang digunakan untuk melakukan deteksi objek dapat

menangani proses deteksi dengan performa yang tinggi.

61

