KENDALI GERAKAN ROBOT OPENMANIPULATOR DALAM
OPERASI PEMINDAHAN OBJEK BERBASIS
ROBOT OPERATING SYSTEM 2

PRAKTIK KERJA LAPANGAN

>

UNIVERSITAS

MA CHUNG

IVAN LIE NAGASENA
NIM: 312210011

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG
MALANG
2026

LEMBAR PENGESAHAN
PRAKTIK KERJA LAPANGAN

KENDALI GERAKAN ROBOT OPENMANIPULATOR DALAM OPERASI
PEMINDAHAN OBJEK BERBASIS
ROBOT OPERATING SYSTEM 2

Oleh:
IVAN LIE NAGASENA
NIM. 312210011

dari:
PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG

Dosen Pembimbing,
2/‘ "

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd.
NIP. 20070035

NIP. 20070035

Kata Pengantar

Puji syukur penulis panjatkan ke hadirat Tuhan Yang Maha Esa. Atas rahmat
dan karunia-Nya, penulis dapat menyelesaikan laporan Praktik Kerja Lapangan
(PKL) ini tepat pada waktunya. Laporan ini disusun untuk memenuhi mata kuliah
PKL bagi mahasiswa Program Studi Teknik Informatika Universitas Ma Chung.

Penulis menyadari bahwa keberhasilan penelitian ini bergantung pada
dukungan berbagai pihak. Oleh karena itu, penulis menyampaikan apresiasi dan
terima kasih sebesar-besarnya kepada:

1. Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd, selaku Dekan Fakultas
Teknologi dan Desain, Kepala Peneliti sekaligus Dosen Pembimbing.
Penulis berterima kasih atas arahan, transfer ilmu, dan bimbingan teknis
yang sangat berharga selama proses pembuatan program hingga
penyusunan laporan ini.

2. Teman-teman yang telah ikut membantu penelitian ini.

3. Orang tua dan keluarga yang terus memberikan dukungan moral serta doa
selama penulis menjalankan tugas ini.

Penulis meyakini bahwa pengalaman penelitian ini memberikan kontribusi
nyata bagi pengembangan ilmu pengetahuan. Penelitian lapangan merupakan
instrumen penting untuk memvalidasi teori, sebagaimana sering ditekankan dalam
berbagai jurnal ilmiah mengenai metodologi penelitian terapan.

Penulis menyadari bahwa laporan ini masih memiliki kekurangan. Oleh
karena itu, penulis mengharapkan kritik dan saran yang membangun dari pembaca
untuk perbaikan di masa mendatang. Semoga laporan ini memberikan manfaat bagi

pengembangan akademik di lingkungan Fakultas.

Malang, 11 Januari 2026

e
7z

Ivan Lie Nagasena

Daftar Isi

Kata PEN@ANTar.........cccvieiiieieieiieeieesie ettt ettt teesae e st e et e e e e saeenaeeseesnneenneens i
Daftar IST.c..eeueeeeieieeee ettt i
Daftar GAMDATcc.coiiiiiiiiiii e v
Daftar Tabel.......cc.ooiiiiiieieeee e e e vi
Bab I Pendahuluan...........cccoooiiiiiiiiiii e 1
1.1 Latar BelaKangooveviiiiiiiiiiiieeeee s 1
1.2 Batasan Masalahcccoiiiiiiiiiiii i 2
1.3 Rumusan Masalah.............cocoiiiiiiiiii e 3
1.4 TUJUAN ...ttt ettt sa et e e e e e b e snne et eneen 3
1.5 IMANTAAL ... et 3
Bab II Gambaran Umum Perusahaan.............cccooiiiiiinininiiniiccceeceee, 4
2.1 Universitas Ma ChUNZ..........cociiiiiiiiiieiee et 4
2.2 Program Studi Teknik Informatika............cccoooeeiiiniiiiniininiiiecceeee, 5
2.3 Pusat Studi Human-Machine Interaction Ma Chung..........c.ccceevevvennennnen. 5
Bab III Tinjauan Pustakacccooiiiiieiienieeeeiire et 7
3.1 UDUNTU 22.04 ...ttt et st e e e rae e 7
32 Robot Operating SyStem 2.........cceerueeiiierieeiieeniieeieeieeneieseeseeenseeseesenseenees 8
3.2.1 Fundamental Arsitektur ROS2 dan Integrasi DDS..........ccc.ccoviiennns 9
32.2 Primitif Komunikasi: Node, Topic, Service, dan Action.................. 12
323 Manajemen Eksekusi dan Analisis Waktu (Timing Analysis) 14
32.4 Optimalisasi Sistem Operasi untuk Real-Time ROS2 17

33 VMware Workstation...........cceecievirieniniinieiiiieienecieneeeeeeeeee e 20
34 U2D2 Communication Interface...........cccccoveeviinieiiniininiininiininicicnes 22
3.5 Robot OpenMANIPULATOR-X......coiiiiiieiieeieecee e 22

i

Bab IV Deskripsi Data dan Hasil Praktik Kerja Lapangan...........ccccccevvvvvvveneennns 25

4.1 Persiapan Environment Kerjacccoeeieiieiieeiiienienieciiesiee e 25
4.2 Pengoperasian Robot Menggunakan Simulator Gazeboc.cccccueenneenn. 30
4.3 Pengoperasian Robot Fisik Secara Real-Time..........ccccceevviviieieeniennnnne 31
4.4 Pengujian Gerakan Robot Pada Simulator Gazeboccccccvvevvverirennnnne 33
4.4.1 Pengujian Gerak Point to Pointcccccceeveieiiiiieeciiecieecee e 34
4472 Pengujian Gerak Multi Point...........cccoeeevieiciiiinieceieeceeeee e 35

4.5 Pengujian Gerakan Robot Fisik Secara Real-time..........cccccoceevenveinnnne 36
4.5.1 Pengujian Gerak Point to Pointccccoooevveeriiiiiniieniicce 36
4.5.2 Pengujian Gerak Multi Pointcccooooviiiniiiiiniiienene e 38

Bab V PeNUUP. ..ottt ettt ettt st sa e b sae e eeeesenatsnbans 41
5.1 KEeSTMPUIAN. ...ttt sttt sb et st 41
5.2 SATATL. ..ottt ettt et sttt ettt et e eaees 41
Daftar PUSTAKAcoviiiiiiiii e 42
| 3E:1 40100 31 BRSPS 44

111

Daftar Gambar

Gambar 2.1 Diagram bidang fokus riset pusat studi HMI.............ccccoeevvviirenveninnnnnns 6
Gambar 3.1 Halaman utama Ubuntu 22.04coceiieiiniiiineeeeeeee e 7
Gambar 3.2 Arsitektur DDS dengan protokol DCPS (Deng dkk., 2022)................ 10
Gambar 3.3 Halaman utama VIMWATE.........ccceeviirieiiinieiieiieieeeeeteeeeseeeee e 21
Gambar 3.4 Board U2D2 ..ottt 22
Gambar 3.5 Robot OpenManipulator-X.......ccccceereeiiiiiiienienieeieeeerie e 23
Gambar 3.6 Motor servo DynamiXel..........ccccoooiiiiiiiiiiiinieieie e 24
Gambar 4.1 Instalasi Ubuntu pada VIMWare.........cccceeceeriereiienienenieniceienieeeenieene 25
Gambar 4.2 Instalasi OS UbUNtU......cccoiiiiiiiiiiiiiiiiiiiiicceitece e 26
Gambar 4.3 Instalasi ROS2.....c..cooiiiiiiiiiii sttt 26
Gambar 4.4 Instalasi paket OpenManipulator-X.......cccoevoeeriirienieninnieeienieeiene 27
Gambar 4.5 Pembuatan folder workspace dan instalasi paket independen............. 27
Gambar 4.6 Tampilan paket independen yang telah di instalasi..........c..cccceeveenneeee. 27
Gambar 4.7 Output dari 10S2 £OPIC LISteeeeeieeeeiieiieiieeeeeeeee e 28
Gambar 4.8 Ilustrasi koneksi PC dengan robot OpenManipulator-X...................... 28
Gambar 4.9 Ilustrasi posisi robot arm dan titik tujuancccceeeevenieienceneneennn. 29
Gambar 4.10 Keterangan joint dan Init POSe.........c...c.oovveeeeeeeieeieesieeieeeieeseesiieenens 29
Gambar 4.11 Tampilan model robot arm pada simulator Gazeboc.............. 30
Gambar 4.12 Perintah Movelt servo secara real-time.............c..ccocceevevceevecneencnnenne. 31
Gambar 4.13 Verifikasi port USBcooociioiiieiieeeeeecee et 32
Gambar 4.14 Perintah /aunch torsi ke hardware..........c..ccocevvieeiiiniiiiiininiceee, 32
Gambar 4.15 Perintah Movelt servo secara real-time.............c.cccceeveveveicneencneenne. 33
Gambar 4.16 Init pose dari robot OpenManipulator-Xccccccevvvieieenienienieennen. 34
Gambar 4.17 Ilustrasi gerak point-to-point pada simulatorccocceeveevieniennnen. 35

v

Gamar 4.18 Ilustrasi gerak multi-point pada simulator.............ccccevveviircienieniieneennnne 36
Gambar 4.19 Tlustrasi Gerak point-t0-point............cccceeerceevesveeieniereeieseeieneeeens 37

Gambar 4.20 Tlustrasi gerak multi-poinecccoeveeeceeeveeiieeieeeeesie e esee e 39

=

UNIVERSITAS

MA CHUNG

Daftar Tabel

Tabel 3.1 Perbandingan Native-Linux & Preempt RT Linux (Ye dkk., 2023) 19
Tabel 3.2 Spesifikasi Robot OpenManipulator-X..........ccccvevveeviienienieiiieenienie s 24
Tabel 4.1 Koordinat joint titik tUJUANcccvieeiiiieiiieeieeciee e 30
Tabel 4.2 Hasil pengujian point-to-point SImulatorcccceevverveecieeneenieeieennen. 35
Tabel 4.3 Hasil pengujian multi-point SImulator.............cccceevveerivenieecieeniesie e 36
Tabel 4.4 Hasil pengujian poin-to-point robot fisiK.............ccceeveerieriienienienieenen. 38
Tabel 4.5 Waktu ReSpOn rODOL ...c...ooviiiiiiiiiiiiiiieesie ettt 38
Tabel 4.6 Hasil pengujian multi-point robot fisiK.........c..coceieniiininiinieiineeenee, 39
Tabel 4.7 Waktu 1€SPON FODOL.........oviiieriieiieeieeitieceeitee e itteteesaeereesneesnnesnneesnees 40

Vi

Bab I
Pendahuluan
1.1 Latar Belakang

Sektor manufaktur saat ini sangat mengandalkan teknologi otomasi untuk
menjamin konsistensi kualitas dan produktivitas hasil produksi (Adzeman dkk.,
2020). Robot lengan menjadi komponen vital dalam ekosistem industri modern
karena mampu bekerja tanpa henti dengan tingkat presisi yang stabil. Penggunaan
robot ini meliputi berbagai tugas berulang yang menuntut ketelitian tinggi, seperti
perakitan komponen elektronik, pengelasan plat logam, hingga operasi pemindahan
barang atau pick and place (Zhong Ting dkk., 2021). Efisiensi waktu menjadi alasan
utama industri mengadopsi teknologi ini agar tetap kompetitif di era industri 4.0.
Komunitas peneliti global saat ini memilih Robot Operating System (ROS) sebagai
kerangka kerja utama untuk membangun logika kontrol yang kompleks dan
modular (Deng dkk., 2022).

Interaksi waktu nyata dengan lingkungan yang dinamis sangat penting bagi
sistem robotika untuk menjalankan fungsi persepsi visual dan perencanaan gerak
secara akurat (Ye dkk., 2023). Meskipun ROS menyediakan ekosistem
pengembangan yang kaya, implementasi pada robot fisik sering kali terbentur pada
keterbatasan penjadwalan sistem operasi. Kernel standar pada Linux menggunakan
prinsip Completely Fair Scheduler (CFS) yang fokus pada pembagian sumber daya
CPU secara adil kepada seluruh proses aplikasi. Namun, prinsip keadilan ini justru
menjadi kendala bagi aplikasi robotika yang membutuhkan prioritas waktu mutlak
untuk pengiriman setiap perintah gerak (Ye dkk., 2023). Tanpa optimasi khusus,
sistem operasi cenderung menunda proses kendali robot demi menjalankan proses
latar belakang lainnya.

Penundaan proses ini menyebabkan lonjakan latensi yang membuat gerakan
robot menjadi tersendat (jitter) dan tidak mulus. Ketidakpastian waktu eksekusi
end-to-end meningkatkan risiko kegagalan manuver robot saat beroperasi di
lingkungan dinamis yang kritis terhadap keselamatan (Teper dkk., 2022). Sistem
robotika membutuhkan jaminan waktu eksekusi dari awal hingga akhir untuk
memastikan perilaku robot yang aman dan dapat diprediksi (Teper dkk., 2022).

Kendala latensi ini sering muncul pada pengendalian robot manipulator yang

menuntut presisi tinggi saat memindahkan objek. Oleh karena itu, penggunaan
sistem operasi yang mendukung komputasi waktu nyata menjadi kebutuhan
mendesak dalam pengembangan robotika industri.

Di lingkungan Universitas Ma Chung, penelitian mengenai pengendalian
robot OpenManipulator sebelumnya telah dilakukan menggunakan platform
MATLAB (Alif, 2025; Kelvin, 2024). Penggunaan MATLAB mempermudah
analisis kinematika melalui simulasi, namun memiliki keterbatasan dalam hal
skalabilitas aplikasi dan keamanan distribusi data pada jaringan yang luas. Langkah
pengembangan selanjutnya beralih menggunakan ROS 2 karena versi terbaru ini
mengadopsi standar Data Distribution Service (DDS) untuk mendistribusikan data
secara terdesentralisasi (Deng dkk., 2022). Arsitektur DDS ini menghilangkan titik
kegagalan tunggal (single point of failure) dan meningkatkan keamanan data
melalui enkripsi bawaan yang tidak tersedia secara maksimal pada platform
sebelumnya.

Laporan ini membahas penelitian tentang penerapan kendali gerakan robot
OpenManipulator-X berbasis ROS 2 pada versi Humble. Pengerjaan ini juga
menerapkan optimasi kernel Linux menggunakan patch Preempt RT untuk
menjamin determinisme sistem agar robot mampu memindahkan objek dengan
presisi tinggi secara waktu nyata (Ye dkk., 2023). Integrasi ini bertujuan untuk
menciptakan sistem kendali yang tidak hanya stabil dalam simulasi Gazebo, tetapi
juga responsif saat beroperasi pada perangkat keras fisik. Fokus utama pengerjaan
ini adalah sinkronisasi antara perangkat lunak kendali dengan aktuator motor

DYNAMIXEL melalui antarmuka komunikasi U2D2.

1.2 Batasan Masalah
Ruang lingkup praktik kerja lapangan ini mencakup poin-poin berikut:
1. Perangkat keras utama adalah robot lengan OpenManipulator-X dengan 4
Degree of Freedom (DOF).
2. Sistem operasi yang berjalan adalah Ubuntu 22.04 LTS pada lingkungan
mesin virtual VMware.
3. Middleware yang digunakan adalah ROS 2 versi Humble sebagai kerangka

kerja utama komunikasi antar node.

4. Fokus pengujian terbatas pada operasi gerak robot terhadap 5 titik tujuan

yang ada.

1.3 Rumusan Masalah

Penelitian ini merumuskan konfigurasi lingkungan kerja ROS 2 untuk
mengendalikan robot OpenManipulator-X secara stabil. Penelitian ini menganalisis
pengaruh optimasi sistem operasi melalui patch Preempt RT terhadap kepastian
gerakan robot. Fokus kajian juga mencakup evaluasi efisiensi komunikasi antara
perintah perangkat lunak dan respons fisik motor Dynamixel melalui antarmuka

U2D2.

1.4 Tujuan
Kegiatan PKL ini memiliki beberapa tujuan utama:
1. Membangun sistem kendali robot OpenManipulator-X yang handal
menggunakan arsitektur ROS 2 Humble.
2. Menguji efisiensi gerakan robot dalam lingkungan simulasi Gazebo dan
memvalidasi hasilnya pada perangkat keras fisik.
3. Menganalisis stabilitas distribusi data dan latensi antara komputer

pengendali dan unit aktuator robot.

1.5 Manfaat
Hasil dari praktik kerja lapangan ini memberikan manfaat bagi beberapa pihak:

1. Bagi Mahasiswa: Memperdalam pemahaman teknis mengenai arsitektur
ROS 2, manajemen kernel Linux, dan kendali aktuator robotika industri.

2. Bagi Pusat Studi HMI Ma Chung: Menyediakan referensi teknis mengenai
prosedur migrasi kendali robot dari MATLAB ke ROS 2 yang mendukung
riset lanjutan.

3. Bagi Universitas Ma Chung: Memperkaya portofolio penelitian terapan
dalam bidang sistem cerdas dan interaksi manusia dengan mesin (Human-

Machine Interaction).

Bab 11
Gambaran Umum Perusahaan
2.1 Universitas Ma Chung

Universitas Ma Chung berlokasi di Villa Puncak Tidar N-01, Kecamatan
Dau, Kabupaten Malang, Jawa Timur. Yayasan Harapan Bangsa Sejahtera
menaungi universitas ini sejak peresmiannya pada tanggal 7 Juli 2007. Universitas
Ma Chung menetapkan visi dan misi sebagai landasan operasional institusi.

Visi Memuliakan Tuhan Yang Maha Esa melalui pembentukan karakter,
pengembangan ilmu pengetahuan, serta memberikan kontribusi nyata sebagai insan
akademis yang kreatif dan inovatif.

Misi Universitas Ma Chung menjalankan misi sebagai berikut:

1. Menyelenggarakan Tri Dharma Perguruan Tinggi (pendidikan, penelitian,
dan pengabdian masyarakat) dengan standar tinggi, fokus, dan relevan
dengan perkembangan zaman.

2. Membentuk dan mengembangkan generasi pemimpin serta penggerak
masyarakat yang berintegritas, berjiwa kepemimpinan, dan
berkewirausahaan dengan penekanan pada karakter mulia, kerendahan hati,
dan semangat pelayanan.

3. Mendorong sikap serta pemikiran kritis-prinsipil dan kreatif-realistis
berdasarkan kepekaan hati nurani yang luhur.

4. Menghasilkan lulusan siap pakai yang berkualitas tinggi dan mampu
bersaing di pasar global.

5. Mengambil peran aktif dalam peningkatan peradaban dunia dengan
menghasilkan lulusan berwawasan global, toleran, dan cinta damai, serta
produktif dalam menghasilkan karya cipta.

6. Melaksanakan pengelolaan perguruan tinggi berdasarkan prinsip ekonomis
dan akuntabilitas.

Saat ini, Universitas Ma Chung mengelola 11 program studi yang mencakup
Manajemen Bisnis, Akuntansi, Magister Manajemen Inovasi, Sastra Inggris,
Pendidikan Bahasa Mandarin, Teknik Informatika, Sistem Informasi, Desain
Komunikasi Visual, Teknik Industri, Optometri, serta Farmasi dan Profesi

Apoteker.

2.2 Program Studi Teknik Informatika

Program Studi Teknik Informatika (PSTI) merupakan bagian dari Fakultas
Teknologi dan Desain Universitas Ma Chung. Program studi ini memiliki akreditasi
B dari BAN-PT sejak tahun 2016 melalui Surat Keputusan Nomor
0356/SK/BANPT/Akred/S/IV/2016. Sertifikasi ini membuktikan bahwa PSTI
memenuhi standar nasional dalam hal tata kelola dan kualitas pengajaran. Tim
kurikulum menyusun materi pembelajaran agar selalu relevan dengan standar
industri teknologi informasi global yang berkembang sangat cepat.

Mahasiswa dapat memilih satu dari dua jalur konsentrasi yang tersedia
untuk mendalami keahlian khusus. Konsentrasi pertama adalah Sistem Cerdas yang
menitikberatkan pada pengembangan algoritma kecerdasan buatan, pemrosesan
bahasa alami, dan analisis data besar. Konsentrasi kedua adalah Sistem Komputer
yang fokus pada integrasi perangkat keras dan lunak, keamanan jaringan, serta
ekosistem [Internet of Things (loT). Pembagian jalur ini bertujuan untuk
memberikan keunggulan kompetitif bagi mahasiswa saat memasuki dunia kerja

profesional.

2.3 Pusat Studi Human-Machine Interaction Ma Chung

Pusat Studi Human-Machine Interaction (HMI) Ma Chung ditempatkan di
bawah naungan Program Studi Teknik Informatika sejak didirikan secara resmi
pada tanggal 11 September 2019. Lantai 6 Gedung Research & Development
(R&D) Universitas Ma Chung digunakan sebagai lokasi operasional utama.
Berbagai fasilitas komputasi dan perangkat keras modern disediakan di tempat ini
guna mendukung kegiatan penelitian yang intensif. Fokus kegiatan diarahkan pada
inovasi teknologi dan implementasinya dalam konteks interaksi antara manusia dan
mesin.

Tiga bidang kajian riset unggulan dikembangkan oleh pusat studi ini,
meliputi:

1. Machine vision for human welfare and human-natural interactions,

teknologi pengolahan citra digital dikaji pada bidang ini untuk menciptakan

sistem yang mampu menganalisis informasi visual guna meningkatkan
kesejahteraan dan kualitas hidup manusia.

2. Interaksi Manusia-Komputer (Human-Computer Interaction), penelitian
pada bidang ini dipusatkan pada perancangan Desain Antarmuka (User
Interface) dan Pengalaman Pengguna (User Experience) yang intuitif,
ergonomis, dan mudah digunakan oleh berbagai kalangan pengguna.

3. Teknologi Robotika dan Aplikasi Seluler, sistem robotika cerdas dan
aplikasi seluler dikembangkan pada bidang ini sebagai solusi praktis untuk
membantu aktivitas manusia. Topik penelitian mengenai kendali robot

OpenManipulator dalam laporan ini tercakup dalam lingkup kajian ini.

Ma Chung Human-Machine

Interaction Research Center

@ L

Machine vision for human HCI (human- Robotics technology and
welfare and human-natural €% computer mobile apps for human-
interactions =S g r_\tsricflgnj)_ Ui welfare

sl Research focus @ @)
= = = § [nteraction lines)E L
Gambar 2.1 Diagram bidang fokus riset pusat studi HMI

Dukungan infrastruktur dan bimbingan teknis diberikan oleh pusat studi
untuk memastikan keberhasilan pengembangan sistem yang diteliti. Selain aspek
teknis, eksplorasi potensi sumber daya alam dan inovasi pengelolaan bisnis turut
didukung sebagai bentuk realisasi visi pusat studi dalam memberikan kontribusi

nyata bagi masyarakat.

Bab II1
Tinjauan Pustaka

3.1 Ubuntu 22.04

Pemilihan Ubuntu 22.04 LTS sebagai basis sistem kendali robot didasarkan
pada efisiensi arsitektur dan manajemen sumber daya yang superior dibandingkan
sistem operasi tertutup seperti Windows 11, dapat dilihat pada gambar 3.1 yang
menampilkan halaman utama dari Ubuntu. Berdasarkan studi komparatif terbaru
oleh (Al Fajar dkk., 2025), Ubuntu menunjukkan keunggulan signifikan dalam
lingkungan dengan sumber daya terbatas, di mana ia mampu beroperasi secara
stabil hanya dengan RAM 2 GB, berbeda dengan Windows 11 yang mewajibkan
minimal 4 GB dan modul TPM 2.0. Efisiensi ini krusial bagi komputer pendamping
(onboard computer) robot, karena meminimalkan beban sistem operasi (overhead)
dan mengalokasikan lebih banyak daya komputasi untuk pemrosesan algoritma
robotika. Selain itu, sifat open-source dari Ubuntu menghilangkan biaya lisensi,
menjadikannya solusi yang lebih ekonomis dan fleksibel untuk pengembangan

skala luas.

Gambar 3.1 Halaman utama Ubuntu 22.04

Dalam konteks pengendalian robot manipulator yang menuntut presisi
waktu, kinerja kernel menjadi faktor penentu utama. (Ye dkk., 2023)dalam evaluasi
kinerja real-time ROS 2 mengungkapkan bahwa kernel Linux standar (Native-

Linux) memiliki kelemahan dalam determinisme, dengan latensi maksimum yang

dapat melonjak hingga 6.243us akibat mekanisme Completely Fair
Scheduler (CFS). Untuk mengatasi hal ini, penggunaan patch PREEMPT RT pada
kernel Ubuntu 22.04 terbukti mampu menurunkan latensi maksimum secara drastis
menjadi sekitar 82us , dengan rata-rata latensi stabil di angka 2us . Optimasi ini
mengubah Ubuntu menjadi sistem yang mampu menangani tugas hard real-time,
memastikan bahwa instruksi gerak dikirim ke aktuator robot dengan jeda waktu
yang sangat minim dan konsisten.

Aspek keamanan dan stabilitas Ubuntu juga menjadi landasan kuat untuk
penerapannya dalam sistem robotika yang terhubung. (Odun-Ayo dkk., 2021)
menyoroti bahwa arsitektur keamanan Linux, yang menerapkan Mandatory Access
Control (MAC) dan manajemen izin berkas yang ketat, memberikan perlindungan
yang lebih baik terhadap malware dibandingkan sistem operasi lain. Keunggulan
ini diperkuat oleh temuan (Al Fajar dkk., 2025)yang mencatat bahwa struktur
keamanan default Ubuntu membuatnya lebih jarang menjadi target serangan siber.
Kombinasi antara stabilitas jangka panjang (LTS), keamanan arsitektural yang
ketat, dan fleksibilitas portability menjadikan Ubuntu 22.04 lingkungan yang
paling andal untuk menjalankan middleware ROS 2 dan menjaga integritas

operasional robot.

3.2 Robot Operating System 2

Perkembangan teknologi robotika modern telah mengalami pergeseran
fundamental dari lingkungan laboratorium yang terkendali menuju aplikasi dunia
nyata yang dinamis, tidak terstruktur, dan seringkali kritis terhadap keselamatan.
Dalam dekade terakhir, Robot Operating System (ROS) generasi pertama telah
berfungsi sebagai standar de facto untuk penelitian akademis, menyediakan
kerangka kerja yang fleksibel untuk pengembangan perangkat lunak robotika.
Namun, seiring dengan meningkatnya kebutuhan untuk menerjemahkan hasil
penelitian menjadi produk komersial, keterbatasan arsitektural ROS1 menjadi
semakin nyata dan menghambat skalabilitas.

ROS1 awalnya dirancang untuk penelitian akademis dan tidak dibangun
dengan mempertimbangkan kendala real-time yang ketat, keamanan siber, atau

keandalan jaringan yang buruk. Ketergantungan pada master node tunggal untuk

penemuan (discovery) dan perutean komunikasi menciptakan titik kegagalan
tunggal (single point of failure) yang kritis. Jika master node mengalami kegagalan,
seluruh jaringan komunikasi robot akan runtuh. Selain itu, mekanisme transport
kustom yang digunakan ROS1 (TCPROS/UDPROS) tidak memiliki fitur keamanan
bawaan, membiarkan sistem terbuka terhadap penyadapan dan injeksi data, serta
tidak menjamin determinisme waktu yang diperlukan untuk kontrol perangkat keras
berkecepatan tinggi.

Menanggapi tantangan ini, komunitas robotika global memperkenalkan
Robot Operating System 2 (ROS2). ROS2 bukan sekadar pembaruan inkremental,
melainkan perombakan arsitektur total yang bertujuan untuk memenuhi standar
industri. Perubahan paling radikal adalah penghapusan master node pusat dan
adopsi Data Distribution Service (DDS) sebagai lapisan middleware komunikasi
standar industri. Transisi ini menjanjikan desentralisasi penuh, dukungan keamanan
asli melalui spesifikasi DDS-Security, dan potensi untuk operasi real-time yang
deterministik. Laporan ini menyajikan analisis komprehensif dan mendalam
mengenai arsitektur ROS2, mengevaluasi klaim kinerjanya melalui data empiris,
membedah postur keamanannya, dan memberikan panduan teknis untuk

implementasi sistem yang tangguh.

3.2.1 Fundamental Arsitektur ROS2 dan Integrasi DDS

a) Data Distribution Service (DDS) sebagai Tulang Punggung Komunikasi

Perbedaan paling mencolok antara ROS1 dan ROS2 terletak pada
lapisan transportasinya. ROS2 mengadopsi Data Distribution Service
(DDS), sebuah standar terbuka dari Object Management Group (OMG)
yang dirancang khusus untuk sistem real-time terdistribusi yang
memerlukan keandalan tinggi (Teper dkk., 2022; Ye dkk., 2023). DDS
mengimplementasikan pola komunikasi publish-subscribe yang berpusat
pada data (Data-Centric Publish-Subscribe - DCPS). Dalam paradigma ini,
fokus utama bukan pada pengelolaan koneksi antar node atau proses,
melainkan pada distribusi data itu sendiri dengan jaminan kualitas layanan

(Quality of Service - QoS) yang spesifik(Deng dkk., 2022).

Struktur DCPS dalam DDS menciptakan "Ruang Data Global"
(Global Data Space), sebuah konsep abstrak di mana semua data yang
dipertukarkan dalam sistem seolah-olah tersedia secara lokal bagi setiap
partisipan yang memiliki izin akses (Deng dkk., 2022). Pada gambar 3.2
dapat kita lihat gambaran ini menghilangkan kebutuhan akan server pusat
atau broker pesan, memungkinkan setiap node (disebut sebagai Domain
Participant dalam terminologi DDS) untuk menemukan dan berkomunikasi
dengan node lain secara peer-to-peer. Mekanisme penemuan otomatis
(automatic discovery) ini menggunakan multicast UDP untuk mendeteksi
keberadaan partisipan baru dalam jaringan, menegosiasikan kompatibilitas
QoS, dan membangun saluran komunikasi unicast untuk pertukaran data
aktual (Teper dkk., 2022).

ROS2 System Structure

.
Userland Code - : publish @ subscribe
= , LNode2 | oinin @ subseribe

|}
|
|}
1
|}
ROS2 Client Library ::::::::::::::::::::::::::::::
—— T T

¢~ Global Data Space '} |
|}

s |

|

]

|

|}

|

ROS2 DDS I
Middleware

[Publisher | [Subs:ribuJ [Publisher | [Suhs:ribn}
Participant 1 | | Participant 2 | | Participant 3 | | Participant 4

|}
|}
|}
|}
' . <
)
'
4
|}

DDs |---

DDS System Structure

Gambar 3.2 Arsitektur DDS dengan protokol DCPS (Deng dkk., 2022)

b) Lapisan Abstraksi ROS2 (RCL dan RMW)

Untuk mencegah pengembang ROS2 terkunci pada satu vendor
DDS tertentu, arsitektur ROS2 memperkenalkan lapisan abstraksi yang
canggih. Kode aplikasi pengguna (Userland Code) tidak berinteraksi
langsung dengan API DDS, melainkan melalui ROS Client Library (RCL)
(Deng dkk., 2022). RCL menyediakan antarmuka standar (dalam C++) yang
konsisten, terlepas dari implementasi DDS yang digunakan di bawahnya.

Di bawah RCL, terdapat lapisan ROS Middleware (RMW). RMW
berfungsi sebagai jembatan penerjemah yang memetakan konsep ROS
(seperti Node, Topic, Service, Action) ke dalam primitif DDS (seperti
Participant, DataWriter, DataReader) (Deng dkk., 2022). Desain ini

memungkinkan integrasi berbagai implementasi DDS, seperti eProsima

10

Fast DDS, Eclipse Cyclone DDS, atau RTI Connext, yang dapat ditukar
hanya dengan mengubah konfigurasi lingkungan (environment variable)

tanpa perlu mengkompilasi ulang kode aplikasi (Ye dkk., 2023).

Kebijakan Quality of Service (QoS)

Salah satu fitur paling kuat yang dibawa DDS ke dalam ekosistem
ROS2 adalah konfigurasi Quality of Service (QoS). QoS memungkinkan
pengembang untuk mendefinisikan perilaku komunikasi secara granular
untuk setiap topik, menyesuaikan dengan kebutuhan aplikasi yang spesifik
(Deng dkk., 2022).

Beberapa kebijakan QoS yang paling relevan untuk sistem robotika
meliputi:
Reliability (Keandalan):

o Reliable: Menjamin pengiriman pesan, mirip dengan TCP. Jika
paket hilang, middleware akan mencoba mengirim ulang. Ini penting
untuk perintah kontrol kritis atau parameter konfigurasi.

o Best Effort: Mengirim pesan tanpa jaminan penerimaan, mirip
dengan UDP. Ini ideal untuk aliran data sensor frekuensi tinggi
(seperti video atau LiDAR) di mana data terbaru lebih penting
daripada kelengkapan data historis.

Durability (Daya Tahan):
o Volatile: Pesan hanya dikirim ke pelanggan yang saat ini terhubung.
Pesan lama tidak disimpan.
o Transient Local: Penerbit menyimpan sejumlah pesan terakhir
(sesuai history depth) dan mengirimkannya ke pelanggan baru yang
bergabung belakangan ("late-joiners"). Ini sangat berguna untuk

data statis seperti peta navigasi atau deskripsi robot.

History & Depth: Menentukan berapa banyak pesan yang disimpan dalam

antrian DDS sebelum pesan lama ditimpa.

11

Deadline: Menetapkan batas waktu maksimum yang diharapkan untuk
kedatangan pesan baru. Jika batas ini dilanggar, sistem dapat memicu
kejadian kesalahan (error event), yang krusial untuk pemantauan kesehatan

sistem real-time.

d) Keunggulan Desain Terdistribusi

Adopsi arsitektur terdistribusi penuh melalui DDS memberikan
keuntungan strategis bagi pengembangan sistem Multi-Robot Systems
(MRS). Dalam arsitektur terpusat ROS1, penskalaan sistem ke banyak robot
memerlukan konfigurasi jaringan yang rumit dan sangat rentan terhadap
kegagalan jaringan yang memisahkan robot dari master. Dalam ROS2,
setiap robot adalah entitas mandiri yang berpartisipasi dalam domain DDS
yang sama. Hal ini memfasilitasi kolaborasi kawanan (swarm robotics), di
mana robot dapat masuk dan keluar dari jaringan secara dinamis tanpa
mengganggu operasi keseluruhan. Selain itu, DDS mendukung mekanisme
pembagian data yang efisien, memungkinkan robot untuk berbagi persepsi

lingkungan secara kolaboratif dengan latensi minimal.

3.2.2 Primitif Komunikasi: Node, Topic, Service, dan Action
Sistem ROS 2 membangun interaksi antar komponen melalui beberapa
primitif komunikasi utama. Setiap primitif memiliki peran unik dan dipetakan
secara spesifik ke entitas DDS di bawahnya (Deng dkk., 2022).
a) Node dan Klasifikasi Fungsional
Node adalah unit pemrosesan tunggal yang menjalankan algoritma
tertentu. Di tingkat middleware, setiap node merepresentasikan satu atau
lebih DDS Domain Participant. Teper dkk. (2022) mengklasifikasikan node
berdasarkan mekanisme pemicu (zrigger) untuk analisis waktu. Sensor
Node bekerja secara time-triggered (berdasarkan interval waktu). Filter atau
Actuator Node bekerja secara event-triggered (berdasarkan kedatangan
pesan). Sementara Fusion Node bekerja secara hibrida untuk

menggabungkan data dari berbagai sumber.

12

b) Mekanisme Discovery (Penemuan)

ROS 2 tidak lagi menggunakan master node untuk menghubungkan
antar node. Sebagai gantinya, sistem menggunakan Simple Discovery
Protocol (SDP) dari DDS. Proses ini melibatkan dua tahap utama, tahap
pertama adalah Participant Discovery Protocol (PDP) untuk mendeteksi
node baru dalam jaringan melalui multicast, tahap kedua adalah Endpoint
Discovery Protocol (EDP) untuk mencocokkan publisher dan subscriber

berdasarkan topik dan kebijakan QoS yang sesuai (Deng dkk., 2022).

Topic

Topic memfasilitasi komunikasi asinkron melalui pola publish-
subscribe. Pengembang menggunakan topik untuk aliran data kontinu.
Dalam implementasi DDS, sebuah topik terdiri dari DataWriter pada sisi
penerbit dan DataReader pada sisi pelanggan. ROS 2 mengelola distribusi
data ini secara desentralisasi, sehingga setiap node mengirimkan data

langsung ke pelanggan tanpa melalui perantara pusat (Deng dkk., 2022).

d) Service

Service bekerja dengan pola request-response yang bersifat sinkron.
Sebuah node klien mengirimkan permintaan dan menunggu balasan dari
node pelayan (server). Secara teknis, ROS 2 mengimplementasikan service
menggunakan dua pasang topik internal. Sepasang topik digunakan untuk
mengirim permintaan dan menerima balasan, sementara sepasang lainnya
mengelola metadata transaksi. Primitif ini sangat efektif untuk tugas

transaksional singkat seperti permintaan kalibrasi.

e) Action

Action merupakan primitif yang menggabungkan mekanisme
service dan topic untuk menangani tugas berdurasi panjang. Action terdiri
dari tiga bagian: goal (permintaan target), feedback (laporan progres
asinkron), dan resul/t (hasil akhir). ROS 2 menggunakan lima topik internal

DDS untuk mendukung siklus hidup sebuah action (Deng dkk., 2022).

13

Mekanisme ini memastikan robot manipulator dapat mengirimkan progres
gerakan lengan secara berkala ke antarmuka pengguna sambil tetap

menjalankan kalkulasi lintasan.

f) Interface dan Parameter
Komunikasi memerlukan definisi struktur data baku melalui file
.msg, .srv, dan .action. Selain itu, ROS 2 mengelola Parameter sebagai nilai
konfigurasi di dalam node. Node lain dapat membaca atau memperbarui
nilai ini secara dinamis melalui service standar yang disediakan oleh RCL.
Hal ini mempermudah penyesuaian batas kecepatan atau parameter kendali

robot tanpa memerlukan kompilasi ulang kode.

3.2.3 Manajemen Eksekusi dan Analisis Waktu (Timing Analysis)

a) Model Eksekutor ROS2: Jantung Determinisme

Dalam sistem operasi robotika, penerimaan pesan hanyalah langkah
awal. Langkah kritis berikutnya adalah penjadwalan komputasi:
menentukan kapan dan dalam urutan apa kode pengguna (callback)
dieksekusi sebagai respons terhadap pesan atau timer. Dalam ROS2,
tanggung jawab ini dipegang oleh Executor.

Executor ROS2 berbeda secara fundamental dari model threading
tradisional. Alih-alih membiarkan setiap callback berjalan pada thread
sistem operasi tersendiri, Executor mengelola kumpulan callback di dalam
satu atau beberapa thread pengguna. Memahami mekanisme internal
Executor sangat penting untuk menjamin determinisme waktu (Teper dkk.,

2022).

Mekanisme kerja Executor dapat dibagi menjadi dua fase utama:

e Polling Point (Titik Poling): Pada fase ini, Executor berinteraksi dengan
lapisan RMW untuk memeriksa ketersediaan data baru. Executor
mengumpulkan status dari semua timer dan subscription yang terdaftar. Jika
sebuah timer telah habis waktunya atau pesan baru telah tiba di antrian

subscription, callback terkait ditandai sebagai "Activated". Executor

14

b)

kemudian mengambil sampel (sampling) dari job (instansiasi tugas) yang

diaktifkan ini untuk dieksekusi.

Processing Window (Jendela Pemrosesan): Setelah sampel diambil,
Executor memasuki fase eksekusi. Dalam implementasi Single-Threaded
Executor standar, callback dieksekusi secara serial (berurutan) tanpa
preemption. Urutan eksekusi ditentukan oleh kebijakan prioritas internal
Executor. Secara default (misalnya pada ROS2 Foxy), timer memiliki
prioritas lebih tinggi daripada subscription untuk memastikan tugas
periodik (seperti loop kontrol) didahulukan.

Implikasi dari desain non-preemptif ini sangat signifikan: jika satu
callback memakan waktu eksekusi terlalu lama (long-running callback), ia
akan memblokir eksekusi callback lain yang mungkin lebih kritis,
menyebabkan fenomena blocking dan meningkatkan latensi sistem secara

keseluruhan.

Analisis Rantai Sebab-Akibat (Cause-Effect Chains)

Untuk mengevaluasi kinerja end-fo-end sebuah sistem robot, kita
tidak bisa hanya melihat satu node secara isolasi. Sebaliknya, kita harus
menganalisis "Rantai Sebab-Akibat" (Cause-Effect Chains). Rantai ini
merepresentasikan jalur propagasi informasi dari stimulus fisik (misalnya,
deteksi rintangan oleh sensor) melalui serangkaian node pemrosesan (filter,
fusi sensor, perencana jalur) hingga menghasilkan respons fisik (misalnya,

perintah berhenti ke motor) (Teper dkk., 2022).

Dua metrik kunci didefinisikan untuk mengukur kinerja rantai ini:

Maximum Reaction Time (MRT): Waktu maksimum yang diperlukan
sistem untuk bereaksi terhadap peristiwa eksternal. Ini mengukur latensi
terburuk dari saat peristiwa terjadi di lingkungan hingga aktuator mulai
bergerak. Metrik ini krusial untuk keselamatan, misalnya dalam

pengereman darurat.

15

Maximum Data Age (MDA): Usia maksimum data yang digunakan untuk
menghasilkan output aktuator. Ini mengukur kesegaran informasi. Dalam
sistem kontrol umpan balik (feedback control), menggunakan data yang
terlalu tua (MDA tinggi) dapat menyebabkan ketidakstabilan sistem atau

osilasi.

Klasifikasi Node dan Propagasi Data

Dalam analisis timing, node ROS2 diklasifikasikan berdasarkan mekanisme
pemicu (trigger) dan peran fungsionalnya:

Sensor Node (Time-Triggered): Dipicu oleh timer periodik untuk membaca

perangkat keras dan menerbitkan data. Node ini adalah awal dari rantai

sebab-akibat.

Filter/Actuator Node (Event-Triggered): Dipicu oleh kedatangan pesan
pada topik subscription. Node ini memproses data dan meneruskannya

(filter) atau mengonsumsinya (actuator).

Fusion Node (Hybrid): Menggabungkan data dari beberapa sumber. Bisa
dipicu oleh timer (mengambil data terbaru dari buffer) atau oleh salah satu

pesan masuk (mekanisme sinkronisasi pesan).

Propagasi data dalam rantai ini melibatkan dua jenis komunikasi:
Inter-Node: Komunikasi antar node melalui topik DDS. Latensi

dipengaruhi oleh overhead serialisasi, transmisi jaringan, dan antrian DDS.

Intra-Node: Komunikasi antar callback di dalam node yang sama
(misalnya, callback sensor menyimpan data ke variabel global yang
kemudian dibaca oleh callback timer). Latensi di sini didominasi oleh

jadwal eksekusi Executor.

16

d) Analisis Utilisasi Sistem: Under-Utilized vs Over-Utilized
Temuan penelitian menyoroti dampak kritis dari tingkat utilisasi
sistem terhadap kinerja timing.
e Sistem Under-Utilized: Jika total waktu komputasi semua callback dalam
satu siklus kurang dari periode timer pemicu, sistem berada dalam kondisi
stabil. Latensi end-to-end dapat diprediksi dan umumnya linear terhadap

jumlah node dalam rantai.

o Sistem Over-Utilized: Jika total beban komputasi melebihi periode timer,
antrian pesan akan mulai menumpuk. Karena sifat Executor yang serial,
callback yang tertunda akan semakin mundur dalam antrian eksekusi.
Penelitian menunjukkan bahwa degradasi kinerja dalam kondisi ini tidak
linear, latensi dapat meledak secara eksponensial dan data lama mungkin
diproses jauh setelah relevansinya hilang. Sistem robotika real-time harus
dirancang untuk selalu beroperasi dalam kondisi under-utilized untuk

menjamin determinisme.

3.2.4 Optimalisasi Sistem Operasi untuk Real-Time ROS2

a) Tantangan Kernel Linux Standar (Native-Linux)

Meskipun arsitektur ROS2 dirancang untuk efisiensi, kinerjanya
pada akhirnya dibatasi oleh sistem operasi tempat ia berjalan. Sebagian
besar implementasi ROS2 berjalan di atas distribusi Linux standar (seperti
Ubuntu). Kernel Linux standar ("Native-Linux") dirancang sebagai sistem
operasi General Purpose (GPOS). Tujuan utamanya adalah
memaksimalkan throughput rata-rata dan keadilan (fairness) pembagian
CPU antar proses.

Dalam desain GPOS, proses real-time tidak selalu mendapatkan
prioritas mutlak. Ada bagian kode kernel (seperti interrupt handlers dan
critical sections yang dilindungi oleh spinlock) yang bersifat non-preemptif.
Artinya, jika kernel sedang mengeksekusi kode ini, ia tidak dapat dihentikan
bahkan oleh tugas real-time dengan prioritas tertinggi sekalipun. Fenomena

ini menciptakan unbounded latency (latensi tak terbatas).

17

b)

Data empiris menunjukkan bahwa pada beban CPU tinggi
(misalnya, saat menjalankan algoritma persepsi berat), Native-Linux dapat
mengalami lonjakan latensi (latency spikes) hingga 6243 mikrotik (us) (Ye
dkk., 2023). Untuk robot industri yang memerlukan siklus kontrol 1 ms
(1000 ps), lonjakan sebesar 6 ms berarti hilangnya 6 siklus kontrol berturut-
turut, yang dapat menyebabkan gerakan robot tersendat (jitter) atau

penyimpangan lintasan.

Solusi Real-Time: Patch Preempt RT

Untuk mengatasi masalah ini tanpa meninggalkan ekosistem Linux
yang kaya, solusi standar industri adalah menerapkan pafch Preempt RT
(Real-Time Preemption) pada kernel Linux (Ye dkk., 2023). Preempt RT
secara fundamental mengubah perilaku kernel dengan tujuan membuat

hampir seluruh kode kernel dapat di-preempt (diinterupsi).

Mekanisme teknis Preempt RT meliputi:

Mengubah Spinlock menjadi Mutex: Dalam Native-Linux, spinlock
menahan CPU secara aktif (busy-waif) dan mematikan preemption.
Preempt RT menggantinya dengan rt_mutex yang memungkinkan thread

pemegang kunci untuk tidur dan di-preempt oleh tugas prioritas lebih tinggi.

Threaded Interrupt Handlers: Menjalankan penangan interupsi (interrupt
handlers) sebagai thread kernel biasa yang memiliki prioritas dan dapat
dijadwalkan. Ini mencegah interupsi perangkat keras memblokir tugas real-

time kritis.

High-Resolution Timers: Mengaktifkan pewaktu presisi tinggi untuk

penjadwalan yang akurat hingga tingkat mikro detik.

Evaluasi Komparatif: Native vs Preempt RT
Pengujian ekstensif menggunakan alat cyclictest standar industri

untuk mengukur latensi kernel menunjukkan perbedaan drastis antara

18

Native-Linux dan Preempt RT Linux di bawah beban penuh (stress fest
CPU dan memori), data.

Tabel 3.1 Perbandingan Native-Linux & Preempt RT Linux (Ye dkk., 2023)

Metrik Native-Linux Preempt RT Linux
Peningkatan
Evaluasi (Kernel Standar) (Kernel Teroptimasi)
Latensi
2 us 1 ps Marjinal
Minimum
Latensi Rata-
3 us 1-2 us Signifikan
rata
Latensi >98%
6243 s (6.2 ms) 82 us (0.08 ms)
Maksimum Reduksi
Jitter Siklus > 400 ps <60 ps Sangat Stabil
Distribusi Fluktuatif, Ekor Distribusi Normal
Deterministik
Jitter Panjang Sempit

Data ini menegaskan bahwa untuk aplikasi kontrol real-time,
penggunaan Preempt RT bukan sekadar opsi, melainkan kebutuhan. Kernel
standar tidak dapat menjamin tenggat waktu (deadline) yang ketat,
sementara kernel Preempt RT menjaga latensi jauh di bawah ambang batas

100 ps yang umumnya ditoleransi dalam kontrol motor presisi tinggi.

d) Kinerja Komunikasi: ROS1 vs ROS2
Selain optimalisasi kernel, kinerja komunikasi antar-node juga
dievaluasi. Perbandingan antara ROS1 (berbasis TCP/UDP kustom) dan
ROS2 (berbasis DDS) menunjukkan karakteristik yang menarik:
e Muatan Data Kecil (< 64 KB): Kinerja ROS1 dan ROS2 relatif sebanding.
Overhead serialisasi dan lapisan abstraksi DDS di ROS2 sedikit terlihat,

namun tidak signifikan.

e Muatan Data Besar (> 512 KB): ROS2 mulai menunjukkan keunggulan

kinerja yang jelas. Mekanisme fragmentasi dan penyusunan ulang data yang

19

efisien dalam DDS menangani bandwidth tinggi lebih baik daripada
tumpukan jaringan ROSI.

e Stabilitas Latensi: Pada kernel Native-Linux, ROS2 menunjukkan
fluktuasi latensi yang lebih besar seiring bertambahnya ukuran data
dibandingkan ROS1. Namun, ketika dijalankan di atas Preempt RT Linux,
fluktuasi ini hilang, dan ROS2 memberikan latensi yang sangat rendah dan

stabil, bahkan untuk data besar.

e) Optimalisasi Intra-Process (Zero-Copy)

Salah satu fitur kinerja terpenting di ROS2 adalah komunikasi intra-
process. Ketika dua node berjalan dalam satu proses sistem operasi yang
sama, ROS2 dapat melewati tumpukan jaringan DDS sepenuhnya. Alih-alih
melakukan serialisasi data, pengiriman ke soket jaringan, dan deserialisasi,
ROS2 hanya mengirimkan pointer ke lokasi memori data tersebut.

Metode "Zero-Copy" ini memberikan pengurangan latensi yang
masif, terutama untuk data sensor besar seperti gambar kamera 4K atau
awan poin LiDAR. Evaluasi menunjukkan bahwa latensi intra-process tetap
datar dan hampir nol, tidak peduli seberapa besar ukuran datanya, berbeda
jauh dengan komunikasi infer-process yang latensinya naik secara linear

terhadap ukuran data.

3.3 VMware Workstation

VMware berfungsi sebagai platform virtualisasi yang memisahkan
perangkat keras fisik dari sistem operasi sehingga satu server fisik dapat
menjalankan banyak mesin virtual secara bersamaan. Tesis Savola menjelaskan
bahwa hypervisor VMware, seperti ESXi, membuat lapisan virtual terpisah yang
mengelola alokasi CPU, memori, penyimpanan, dan jaringan untuk setiap VM
secara efisien (Savola, 2021). Dengan struktur ini, VMware meningkatkan utilisasi
perangkat keras sehingga perusahaan tidak perlu menyediakan satu server fisik

untuk satu aplikasi. Pendekatan ini menurunkan biaya Capex dan Opex serta

20

mendukung tren datacenter modern dan cloud computing. Gambar 3.3 dibawah ini

adalah tampilan halaman utama dari VMware.

WORKSTATION PRO 17

® | P

Gambar 3.3 Halaman utama VMware

VMware memiliki ekosistem produk virtualisasi server yang luas. ESXi
berfungsi sebagai hypervisor tipe-1 yang langsung berjalan di atas perangkat keras.
vCenter menyediakan manajemen terpusat untuk banyak host ESXi, termasuk
pengaturan kluster, distribusi beban, hingga automasi migrasi VM melalui vMotion
atau Storage vMotion. Savola menekankan bahwa sejak rilis VMware Workstation
pada 1999 dan peluncuran vSphere tahun 2009, VMware berkembang menjadi
platform virtualisasi komersial yang dominan berkat inovasi berkelanjutan dan
stabilitas produknya (Savola, 2021). Kombinasi ESXi dan vCenter menjadi dasar
arsitektur virtualisasi di berbagai perusahaan, ISP, dan pusat data.

VMware juga menyediakan mekanisme migrasi dan pengelolaan
infrastruktur berskala besar. Tesis tersebut menunjukkan proses migrasi VM dari
satu platform ke platform VMware lain melalui perencanaan kapasitas, konfigurasi
jaringan, pembuatan datastore migrasi, hingga pemindahan VM tanpa mengganggu
layanan produksi pelanggan (Savola, 2021). Setelah migrasi selesai, #ost lama
dapat dihapus, diamankan, dan digunakan kembali. Proses ini menggambarkan
kekuatan VMware dalam menyediakan infrastruktur virtual yang fleksibel, mudah

dikelola, dan mampu mendukung operasi tingkat perusahaan.

21

3.4 U2D2 Communication Interface

Sistem Robotic Arm System menggunakan arsitektur perangkat keras
terpusat untuk mengelola komunikasi antara unit komputasi dan aktuator.
Pengembang menempatkan seluruh komponen kontrol utama dalam satu kotak
kontrol tunggal. Kotak kontrol ini berisi catu daya, komputer pengendali, tombol
darurat, dan adaptor komunikasi U2D2 (Kim dkk., 2023). Gambar 3.4 adalah
bentuk dari board U2D2 yang digunakan untuk komunikasi antara komputer

dengan robot OpenManipulator.

Gambar 3.4 Board U2D2

Komputer pengendali terhubung ke adaptor U2D2 melalui sambungan
USB. Adaptor ini berfungsi mengubah sinyal USB dari komputer menjadi sinyal
serial RS-485 yang diperlukan oleh motor (Kim dkk., 2023). Sifat serial dari
protokol ini memungkinkan sistem menghubungkan beberapa dudukan (mount)
secara paralel hanya dengan menggunakan satu unit U2D2 (Kim dkk., 2023).
Desain ini menyederhanakan pengkabelan dan mendukung modularitas sistem

tanpa menambah perangkat keras antarmuka yang berlebihan.

3.5 Robot OpenMANIPULATOR-X
OpenManipulator-X dirancang sebagai manipulator serial, sebuah
konfigurasi di mana serangkaian /ink (ekstensi mekanis) dihubungkan secara

berurutan oleh sambungan (joint) revolute yang digerakkan oleh motor. Struktur

22

topologi robot ini terdiri dari tujuh segmen utama: basis (base), pinggang (waist),
bahu (shoulder), lengan atas (upper arm), siku (elbow), lengan bawah (lower arm),
dan pergelangan (wrist) atau end-effector (Adzeman dkk., 2020). Gambar 3.5
dibawah ini adalah bentuk dari robot OpenManipulator-X.

Gambar 3.5 Robot OpenManipulator-X

Salah satu fitur paling distingtif dari OpenManipulator-X adalah
penggunaan aktuator seri DYNAMIXEL-X seperti pada gambar 3.6. Motor pintar
ini mengadopsi teknologi komunikasi daisy chain, yang memungkinkan kabel data
dan daya dihubungkan secara seri dari satu motor ke motor berikutnya. Arsitektur
ini secara drastis mengurangi kompleksitas pengkabelan yang biasanya menjadi
masalah pada robot artikulasi, serta memungkinkan modularitas tinggi di mana
pengguna dapat menambah atau mengurangi jumlah sambungan (DOF) sesuai
kebutuhan aplikasi spesifik. Selain itu, sebagian besar komponen struktural robot
ini dirancang agar dapat diproduksi menggunakan teknologi pencetakan 3D (3D
printing), dengan fail desain yang disediakan secara terbuka oleh Robotis,
menjadikannya platform yang sangat adaptif untuk modifikasi riset (Adzeman dkk.,

2020).

23

Gambar 3.6 Motor servo Dynamixel

OpenManipulator-X memiliki spesifikasi operasional yang dioptimalkan
untuk beban kerja ringan dan presisi moderat. Tabel 3.2 dibawah ini akan
merangkum parameter teknis utama perangkat keras ini.

Tabel 3.2 Spesifikasi Robot OpenManipulator-X

Parameter Satuan Nilai spesiikasi
Derajat Kebebasan (DOF) - 4
Beban Maksimum (Payload) gram 500
Berat Total kg 0,7
Rentang Gripper mm 20-75
Kecepatan Sambungan RPM 46
Repeatability mm <0,2
Kontroler Utama - PC, OpenCR

24

Bab IV
Deskripsi Data dan Hasil Praktik Kerja Lapangan

4.1 Persiapan Environment Kerja

Tahap awal pengembangan sistem kendali

mempersiapkan lingkungan kerja perangkat lunak (software environment). Instalasi
sistem operasi Ubuntu 22.04 LTS dilakukan pada komputer pengendali (PC) di
dalam virtual machine VMware seperti pada gambar 4.1. Setelah instalasi pada
VMware selesai, maka akan dilanjutkan dengan instalasi OS Ubuntu yang bisa kita
lihat pada gambar 4.2. Pemilihan sistem operasi ini didasarkan pada efisiensi
arsitektur dan manajemen sumber daya yang lebih unggul dibandingkan sistem

operasi lain, terutama pada perangkat dengan spesifikasi terbatas (Al Fajar dkk.,

New Virtual Machine Wizard

Guest Operating System Installation

A virtual machine is like a physical computer; it needs an operating
system. How will you install the guest operating system?

Install from:
Installer disc:

Mo drives available

© mstaller disc image file (iso):

| D:\Ubuntu File\ubuntu-22.04.5-desktop-amde4 (1).is: v| Browse...

[i] Ubuntu 64-bit 22.04.5 detected.
This operating system will use Easy Install. (What's this?)

() Twill install the operating system later.

The virtual machine will be created with a blank hard disk.

Help < Back Cancel

Gambar 4.1 Instalasi Ubuntu pada VMware

25

robot dimulai

[Ubuntu 64-bit - VMware Workstation

File Edit View VM Tabs Help) D fuj

Ubuntu 64-bit
Jan’s 18:37
My Computer
Ubuntu 22.04

Ubuntu 64-bit

Install

Installation type

This computer currently has no detected operating systems. What would you like to do?

© Erase disk and install Ubuntu
Warning: This will delete allyour programs, documents, photos, music, and any other files in all operating systems.

Advanced features... = None selected

something else
You can create or resize partitions yourself,or choose multiple partitions For Ubuntu

Install Now

s Verifying the installation configuration...

To direct input to this VM, click inside or press Ctrl+G.

Gambar 4.2 Instalasi OS Ubuntu

Selanjutnya, pada gambar 4.3 dilakukan instalasi Robot Operating System
2 (ROS 2) dikonfigurasi sebagai kerangka kerja utama untuk komunikasi antar node
robot. Perintah yang digunakan adalah sudo apt install ros-humble-desktop.

Password: <masukkan password OS>

:$ sudo apt install ros-humble-desktop

[sudo] password for lie:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

The following additional packages will be installed:
autoconf automake autotools-dev binutils binutils-common
binutils-x86-64-1inux-gnu blt build-essential ca-certificates-java catch2
cmake cmake-data cppcheck default-jdk default-jdk-headless default-jre
default-jre-headless default-libmysqlclient-dev dh-elpa-helper
docutils-common dpkg-dev fakeroot fonts-dejavu-extra fonts-lyx freeglut3 g++
g++-11 gcc gcec-11 gdal-data gfortran gfortran-11 google-mock googletest
graphviz hdf5-helpers 1965-va-driver ibverbs-providers icu-devtools
intel-media-va-driver java-common javascript-common libaacs® libaec-dev
libaec@® libalgorithm-diff-perl libalgorithm-diff-xs-perl
libalgorithm-merge-perl libann® libaom-dev libaom3 libarmadillo-dev
libarmadilloi® libarpack2 libarpack2-dev libasané libasound2-dev
libassimp-dev libassimp5 libatk-wrapper-java libatk-wrapper-java-jni
libavcodec-dev libavcodec58 libavformat-dev libavformat58 libavutil-dev
libavutil56 libbdplus® libbinutils libblas-dev libblas3 Llibblkid-dev

Gambar 4.3 Instalasi ROS2

Workspace ROS 2 dibuat dan diatur, serta paket-paket driver yang
diperlukan untuk OpenManipulator-X dikompilasi seperti pada gambar 4.4 dan 4.5.
setelah berhasil maka akan file akan tertata seperti pada gambar 4.6.

26

:-S$ sudo apt install \

ros-humble-ros2-control

ros-humble-moveit* \

ros-humble-gazebo-ros2-control \

ros-humble-ros2-controllers \

ros-humble-controller-manager \

ros-humble-position-controllers \

ros-humble-joint-state-broadcaster

ros-humble-joint-trajectory-controller \

ros-humble-gripper-controllers \

ros-humble-hardware-interface \

ros-humble-xacro
[sudo] password for lie:
Reading package lists. Done
Building dependency tree... Done
Reading state information... Done
Note, selecting 'ros-humble-moveit-msgs-dbgsym' for gleb 'ros-humble-moveit*'
Note, selecting 'ros-humble-moveit-simple-controller-manager' for glob 'ros-humble-moveit®'
Note, selecting 'ros-humble-moveit-ros-warehouse-dbgsym' for gleb 'ros-humble-moveit®'
Note, selecting 'ros-humble-moveit-ros-benchmarks-dbgsym' for glob 'ros-humble-moveit*'

Gambar 4.4 Instalasi paket OpenManipulator-X

-p colcon_ws/src
~fcolcon_ws/src/
% git clone -b humble https://github.com/ROBOTIS-GIT/DynamixelSDK.git
t git clone -b humble https://github.com/ROBOTIS-GIT/open_manipulator.git
¢ git clone -b humble https://github.com/ROBOTIS-GIT/dynamixel hardware_interface.git
% git clone -b humble https://github.com/ROBOTIS-GIT/dynamixel interfaces.git

~fcolcon_ws && colcon build --syml

{»t Home / ope...2_ws Src

0 Recent

* Starred dynamixel_ dynamixel DynamixelS open_
hardware_ interfaces DK manipulato
{st Home interface r

Gambar 4.6 Tampilan paket independen yang telah di instalasi

Setelah proses instalasi selesai, pada gambar 4.7 dapat kita lihat cara untuk
memverifikasi keberhasilan konfigurasi dilakukan dengan memeriksa daftar topik
yang aktif pada sistem ROS 2 melalui terminal dengan perintah ros2 topic list.
Langkah ini krusial untuk memastikan bahwa lingkungan pengembangan telah siap
digunakan untuk tahap simulasi maupun eksekusi real-time. Topic yang digunakan
pada penelitian ini ada 3, yaitu:

a. /arm_controller/joint_trajectory
b. /rosout

c. /clock

27

5% ros2 topic list
arm_controller/controller_state
arm_controller/joint_trajectory
arm_controller/state
arm_controller/transition_event
attached_collision_object
clock
collision_object
display_contacts
display_planned_path
dynamic_joint_states
dynamixel_hardware_interface/dx1_state
gripper_controller/transition_event
joint_state_broadcaster/transition_event
joint_states
monitored_planning_scene
motion_plan_request
parameter_events
planning_scene
planning_scene_world
recognized_object_array
robot_description
robot_description_semantic
rosout
servo_node/collision_wvelocity_scale
servo_node/delta_joint_cmds
servo_node/delta_twist_cmds
servo_node/publish_planning_scene
servo_node/status
tf
tf_static
trajectory_execution_eventl

1S

Gambar 4.7 Output dari ros2 topic list

Gambar 4.8 menunjukkan bagaimana cara distribusi data dari Komputer
menuju robot OpenManipulator-X. Data pada komputer akan dikirimkan kepada
U2D2, kemudian data akan di terjemahkan oleh U2D2 menjadi protokol
komunikasi serial TTL(Transistor-Transistor Logic), sinyal data ini kemudian
dikirim ke U2D2 Power Hub Board menggunakan kabel TTL, yang juga menerima
daya listrik stabil 12V SA. Kemudian Power Hub menyatukan jalur data dan sumber
listrik ke dalam satu jalur distribusi. Akhirnya, kabel TTL mentransmisikan paket
gabungan tersebut ke robot, dimana setiap aktuator Dynamixel membaca data,

memvalidasi ID, dan menggerakkan sendi robot sesuai perintah.

TTL Cable

Power switch
USB Cable OpenManipulator

RM-X52-TNM

We Provide Creativity

PC

Power Cable J2D2 Power
Hub Board

TTL Cable

Gambar 4.8 Ilustrasi koneksi PC dengan robot OpenManipulator-X

28

Dapat dilihat pada gambar 4.9, ini adalah ilustrasi dari posisi robot arm dan
titik tujuan yang digunakan untuk pengujian. Robot akan berada pada titik A, dan

berdiri dengan posisi init pose seperti pada gambar 4.10.

o _—
joint1l joint 2
Gambar 4.10 Keterangan joint dan Init pose

Pengambilan data dari setiap titik tujuan robot dilakukan dengan cara
manual, yaitu dengan cara mengambil data sensor dari setiap joint yang pada robot
arm. Untuk satuan koordinat sudut yang digunakan untuk setiap joint dari robot
arm ini adalah radian, pada tabel 4.1 bisa kita lihat untuk koordinat setiap titik yang

digunakan pada penelitian ini.

29

Tabel 4.1 Koordinat joint titik tujuan

Titik Joint 1 Joint 2 Joint 3 Joint 4

Home 1.65 -0.89 0.82 1.03
B1 -0.5 0.23 0.15 0.22
B2 -0.02 -0.75 0.71 1.03
B3 -1.62 -0.93 1.04 0.73
B4 0.45 0.23 0.15 0.22

4.2 Pengoperasian Robot Menggunakan Simulator Gazebo

Sebelum pengujian dilakukan pada perangkat keras fisik, simulasi
dijalankan menggunakan Gazebo. Hal ini bertujuan untuk memvalidasi logika
pergerakan dan algoritma kendali tanpa risiko kerusakan pada perangkat keras.
Model robot yang dideskripsikan dalam format URDF (Unified Robot Description
Format) dimuat ke dalam lingkungan simulasi kosong di Gazebo seperti pada

gambar 4.11.

Gazebo

[XX IEEE

Property Value

Sim Time:

Gambar 4.11 Tampilan model robot arm pada simulator Gazebo

30

Kemudian perintah ros2 launch open_manipulator_x_moveit_config
servo.launch.py pada gambar 4.12 harus dijalankan terlebih dahulu agar robot arm

pada simulator dapat berjalan.

;-6 ros2 launch open_manipulater_x moveilt_config servo.launch.py

[INFO] [launch]: All log files can be found below /fhome/lie/.ros/log/2026-01-08-13-02-14-088880-lie-virtual-machine-43
70

[INFO] [launch]: Default logging verbosity is set to INFO

[INFO] [servo_node_main-1]: process started with pid [4371]

[servo_node_main-1] [WARN] [1767852135.271162664] [moveit_servo.servo_node]: Intra-process communication is disabled,
consider enabling it by adding:

[servo_node_main-1] extra_arguments=[{'use_intra_process_comms' : True}]

[servo_node_main-1] to the Servo composable node in the launch file

[servo_node_main-1] [INFO] [1767852135.325960633] [moveit_rdf_loader.rdf_loader]: Loaded robot model in ©.043668 secon
ds

[servo_node_main-1] [INFO] [1767852135.326039756] [moveit_robot_model.robot_model]: Loading robot model 'open_manipula
tor_x'...

[servo_node_main-1] [WARN] [1767852135.714117315] [moveit_robot_model.robot_model]: Link end_effector_link has visual
geometry but no collision geometry. Collision geometry will be left empty. Fix your URDF file by explicitly specifying
collision geometry.

[servo_node_main-1] [INFO] [1767852136.309673517] [moveit_ros.current_state_monitor]: Listening to joint states on top
ic '/joint_states'

[servo_node main-1] [INFO] [1767852136.352840520] [moveit_ros.planning_scene_monitor.planning_scene_monitor]: Listenin
g to '/fattached_collision_object' for attached collision objects

[servo_node_main-1] [INFO] [1767852136.353580158] [moveit_ros.planning_scene_monitor.planning_scene_monitor]: Starting
planning scene monitor

[servo_node_main-1] [INFO] [1767852136.355379501] [moveit_ros.planning_scene_monitor.planning_scene_monitor]:
g to '/planning_scene’

[servo_node main-1] [INFO] [1767852136.355901305] [moveit_ros.planning_scene_monitor.planning_scene_monitor]:

world geometry update monitor for collision objects, attached objects, octomap updates.

[servo_node_main-1] [INFO] [1767852136.356576295] [moveit_ros.planning_scene_monitor.planning_scene_monitor]:
g to 'collision_object’

[servo_node_main-1] [INFO] [1767852136.357280635] [moveit_ros.planning_scene_monitor.planning_scene_monitor]:
g to 'planning_scene_world' for planning scene world geometry

[servo_node_main-1] [WARN] [1767852136.368464836] [moveit.ros.occupancy_map_monitor.middleware_handle]: Resolution not
specified for Octomap. Assuming resolution = ©.1 instead

[servo_node_main-1] [ERROR] [1767852136.368938388] [moveit.ros.occupancy map_monitor.middleware_handle]: No 3D sensor
plugin(s) defined for octomap updates

[servo_node_main-1] [INFO] [1767852136.628692507] [moveit_ros.planning_scene_monitor.planning_scene_monitor]: Publishi
ng maintained planning scene on '/servo_node/publish_planning_scene’

Gambar 4.12 Perintah Movelt servo secara real-time

Perintah kecepatan dan posisi dikirimkan melalui terminal ROS 2 untuk
menggerakkan sendi-sendi robot virtual. Respons visual robot dalam simulator
diamati untuk memastikan kinematika gerak berjalan sesuai dengan logika yang
diharapkan. Simulasi ini membuktikan bahwa node pengendali berhasil
menerjemahkan perintah topik menjadi aksi gerak pada joint robot, sebagaimana
ditunjukkan pada visualisasi simulasi. Keberhasilan pada tahap ini menjadi

indikator bahwa algoritma siap diterapkan pada robot fisik.

4.3 Pengoperasian Robot Fisik Secara Real-Time

Pada tahap ini, robot fisik OpenManipulator-X dihubungkan ke komputer
pengendali menggunakan adaptor U2D2. Adaptor ini berfungsi mengubah sinyal
data dari USB komputer menjadi sinyal serial RS-485 yang digunakan oleh aktuator
DYNAMIXEL (Kim dkk., 2023). Hak akses (permission) diberikan pada port USB
ttyUSBO agar ROS 2 dapat berkomunikasi secara langsung dengan motor servo.
Seperti pada gambar 4.13 dapat kita lihat hasil dari perintah Is -1 /dev/ttyUSB0 yang

menghasilkan erw-rw-rw berarti port telah memiliki izin untuk baca/tulis.

31

1% ls /dev/ttyusB*

:-% ls -1 jdev/ttyUSBO

crw-rw-rw- 1 root dialout 188, @ Jan 6 17:04

Gambar 4.13 Verifikasi port USB

Launch file utama dijalankan untuk mengaktifkan seluruh node pengendali

perangkat keras. Dapat di lihat pada gambar 4.14 dan 4.15 terdapat dua perintah
file,

hardware.launch.py

yang digunakan sebagai launch yaitu ros2 launch

open_manipulator_x_ bringup dan ros2 launch

open_manipulator_x_moveit_config servo.launch.py, kedua perintah ini harus
berjalan secara bersamaan di dua terminal yang berbeda saat akan melakukan

pengoperasian robot fisik secara real-time.

:-$ ros2 launch open_manipulator_x_bringup hardware.launch.py

[INFO] [launch]: All log files can be found below /home/lie/.ros/log/2026-01-088-12-58-01-213997-1lie-virtual-machine-4244
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [ros2_control_node-1]: process started with pid [4247]
[INFO] [robot_state_publisher-2]: process started with pid [4249]
[INFO] [spawner-3]: process started with pid [4251]
[ros2_control_node-1] [WARN] [1767851882.316082314] [controller_manager]: [Deprecated] Passing the robot description parame
ter directly to the control_manager node is deprecated. Use '~/robot_description' topic from 'robot_state publisher' instea
d.
[ros2_control_node-1] [INFO] [1767851882.317291794] [resource_manager]: Loading hardware 'OpenManipulatorXSystem

state_publisher-2] [INFO] [1767851882.395121646] [robot_state_publisher]: got segment dummy_mimic_fix

state_publis [INFO] [1767851882.3953448086] [robot_state_publisher]: got segment end_effector_link

state_publis [INFO] [1767851882.395389782] [robot_state_publisher]: got segment gripper_left_link

state_publis [INFO] [1767851882.395401176] [robot_state_publisher]: got segment gripper_right_link

state_publis [INFO] [1767851882.395418775] [robot_state_publisher]: got segment linkl

state_publis [INFO] [1767851882.395420490] [robot_state_publisher]: got segment link2

state_publis [INFO] [1767851882.395430045] [robot_state_publisher]: got segment link3

state_publis [INFO] [1767851882.395439299] [robot_state_publisher]: got segment link4
[robot_state_publis [INFO] [1767851882.395448570] [robot_state_publisher]: got segment links
[robot_state_publisher-2] [INFO] [1767851882.395457768] [robot_state_publisher]: got segment world
[ros2_control_node-1] [INFO] [1767851882.419412377] [resource_manager]: Initialize hardware 'OpenManipulatorXSystem'
[ros2_control_node-1] transmission_to_joint_matrix_
[ros2_control_node-1] [0][@] 1.eeeeee, [0][1] ©.000080,
[ros2_control_node-1] [1][@] ©.808000, [1][1] 1.800000,
[ros2_control_node-1]

robot
robot

[0][2] ©.ee000,
[1][2] o.eee000,
[2][2] 1.eee000,

0 [0][3] o.e00000,
0
1

[3][2] o.eee000,
0
0

[1][3] o.eee000,

0 [0][4] ©.000000,
0

[2][3] o.eee000,
1
0
0

0
[1][4] ©.000000,
[2][4] ©.000000,

[3][3] 1.e00000, 0

[4][3] o.e00000, 1

[51[3] o.eee000, 0

[3][4] o.000000,
[4][4] 1.000000,
[5][4] ©.000000,

[4][2] o.e0e000,

0)

0 0
[3][e] o.@08080, [3][1] ©.000000,

[ros2_control_node-1] (6]]
i} [5][2] ©.008080,

[4][@] o.008000, [4][1] ©.000000,
[ros2_control_node-1] [5][@] ©.800000, [5][1] ©0.000000,
joint_to_transmission_matrix_

[ros2_control_node-1]

X [2][e] o.@08000, [2][1] ©.000000,
[ros2_control_node-1]

[ros2_control_node-
[ros2_control_node-
[ros2_control_node-

[ros2_control_node-

[ros2_control_node-

1]

[el[e] 1.e00000,
[1]1[e] ©.8ee000,
[2][e] ©.800000,
[3]1[e] ©.e00000,

[4][0] ©.000000,

[e]1[1] ©.eeee00,
[1]1[1] 1.ee0000,
[2][1] ©.eeee00,
[31[1] ©.eeee0e,

[4][1] ©.000000,

[e1[2] ©.
[1][2] ©.
[21[2] 1.
[31[2] ©.
[41[2]

000000, [0][3]
[11[3]
[21[3]
[31[3]

[4]1[3]

900000,
900000,
900000,

0.000000,

5]

5]

.600000,
.600000,
.600000,
.600000,

.000000,

[e104]
[11[4]
[21[4]
[31[4]
[4]1[4]

.000000, [0][5]
[11[5]
[21[5]
[31[5]

[4]1[5]

.000000,
.000000,
.000000,

.000000,

Gambar 4.14 Perintah launch torsi ke hardware

32

.000000,
.000000,
.000000,

.000000,

.000000,

:-5 ros2 launch open_manipulator_x_moveit_config servo.launch.py
[INFO] [launch]: All log files can be found below /home/lie/.ros/log/2026-01-08-13-02-14-088880-lie-virtual-machine-43
70
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [servo_node_main-1]: process started with pid [4371]
[servo_node_main-1] [WARN] [1767852135.271162664] [moveit_servo.servo_node]: Intra-process communication is disabled,
consider enabling it by adding:
[servo_node_main-1] extra_arguments=[{'use_intra_process_comms' : True}]
[servo_node_main-1] to the Servo composable node in the launch file
[servo_node_main-1] [INFO] [1767852135.325960633] [movelt_rdf_loader.rdf_loader]: Loaded robot model in ©.043668 secon
ds
[servo_node_main-1] [INFO] [1767852135.326039756] [moveit_robot_model.robot_model]: Loading robot model 'open_manipula
tor_x'...
[servo_node_main-1] [WARN] [1767852135.714117315] [moveit_robot_model.robot_model]: Link end_effector_link has visual
geometry but no collision geometry. Collision geometry will be left empty. Fix your URDF file by explicitly specifying
collision geometry.
[servo_node_main-1] [INFO] [1767852136.309673517] [moveit_ros.current_state_monitor]: Listening to joint states on top
ic '/joint_states'
[servo_node_main-1] [INFO] [1767852136.352840520] [moveilt_ros.planning_scene_monitor.planning_scene_monitor]: Listenin
g to '/fattached_collision_object' for attached collision objects
[servo_node_main-1] [INFO] [1767852136.353580158] [moveit_ros.planning_scene_monitor.planning_scene_monitor]: Starting
planning sce monitor
[servo_node_main-1] [INFO] [1767852136.355379501] [moveit_ros.planning_scene_monitor.planning_scene_monitor]: tenin
g to '/planning_scene'
[servo_node in-1] [INFO] [1767852136.355901305] [moveit_ros.planning_scene_monitor.planning_scene_monitor]: Starting
world geometry update monitor for collision objects, attached objects, octomap updates.
[servo_node_main-1] [INFO] [1767852136.356576295] [moveilt_ros.planning_scene_monitor.planning_scene_monitor]: Listenin
g to 'collision_object’
[servo_node_main-1] [INFO] [1767852136.357280635] [moveit_ros.planning_scene_monitor.planning_scene_monitor]: tenin
g to 'planning_scene_world' for planning scene world geometry
[servo_node_main-1] [WARN] [1767852136.368464836] [moveit.ros.occupancy_map_monitor.middleware_handle]: Resolution not
specified for Octomap. Assuming resolution = ©.1 instead
[servo_node_main-1] [ERROR] [1767852136.368938300] [moveit.ros.occupancy map_meonitor.middleware_handle]: No 3D sensor
plugin(s) defined for octomap updates
[servo_node_main-1] [INFO] [1767852136.628692587] [movelt_ros.planning_scene_monitor.planning_scene_monitor]: Publishi
ng maintained planning scene on '/servo_node/publish_planning_scene'

Gambar 4.15 Perintah Movelt servo secara real-time

4.4 Pengujian Gerakan Robot Pada Simulator Gazebo

Pengujian pada simulator gazebo digunakan untuk memastikan koordinat
sudut yang digunakan sudah benar dan tidak akan melewati batas kemampuan dari
robot. Pengujian fungsionalitas gerak robot dibagi menjadi dua skenario utama
untuk mengevaluasi presisi posisi dan fleksibilitas lintasan, yaitu pengujian point-
to-point dan multi-point. Pengujian ini dimulai dengan robot arm berada pada init
pose dimana semua koordinat sudut joint dimulai dari nilai 0.00 radian seperti yang

bisa kita lihat pada gambar 4.16.

33

Gazebo

COLERD

Il Real Time Factor

Gambar 4.16 Init pose dari robot OpenManipulator-X

4.4.1 Pengujian Gerak Point to Point

Pengujian ini memfokuskan validasi pada akurasi pencapaian satu koordinat
target dalam ruang simulasi. Sistem simulator menerima input koordinat tujuan dan
menghitung perpindahan sudut sendi yang diperlukan secara otomatis. Lingkungan
Gazebo kemudian memvisualisasikan respons pergerakan sendi robot dari posisi
awal menuju posisi akhir tanpa hambatan fisik.

Sistem pemantau mencatat deviasi antara posisi yang diperintahkan dan
posisi aktual yang dicapai oleh model robot dalam simulasi. Hasil pengamatan
menunjukkan bahwa controller virtual mampu mengarahkan end-effector ke titik
sasaran dengan presisi tinggi. Validasi ini memastikan bahwa parameter kinematika
yang didefinisikan dalam file URDF telah sesuai dengan spesifikasi teknis robot,
sehingga aman untuk diterapkan pada robot fisik.

[lustrasi pergerakan robot pada simulator akan ditampilkan pada gambar
4.17, dimana bagian sebelah kiri adalah init pose dan sebelah kanan adalah ketika
robot telah sampai pada koordinat titik B1. Hasil dari pengujian dapat dilihat pada
tabel 4.2. Kode program dapat dilihat pada Lampiran 1.

34

Gambar 4.17 Ilustrasi gerak point-to-point pada simulator

Tabel 4.2 Hasil pengujian point-to-point simulator

Gerakan Keberhasilan
Init pose >Home v
Init pose 2> Bl v
Init pose 2> B2 v
Init pose 2> B3 v
Init pose = B4 4

4.4.2 Pengujian Gerak Multi Point

Pengujian gerak multi-point dalam simulasi bertujuan untuk mengevaluasi
kelancaran interpolasi lintasan yang kompleks. Sistem mengirimkan serangkaian
titik koordinat berurutan yang membentuk lintasan melengkung atau berpola
tertentu ke dalam simulator. Physics engine Gazebo menyimulasikan dinamika
gerakan, termasuk inersia dan gravitasi, saat robot berpindah antar titik.

Simulator memvisualisasikan bagaimana kontroler menangani transisi
kecepatan dan akselerasi di setiap titik singgah. Pengamatan difokuskan pada
deteksi gerakan yang tersendat atau overshoot yang mungkin terjadi akibat
kesalahan parameter PID virtual. Hasil simulasi mengonfirmasi bahwa robot virtual
dapat mengikuti lintasan yang telah ditentukan secara mulus, membuktikan bahwa
algoritma pembentukan jalur berfungsi dengan baik sebelum diuji pada beban kerja

nyata.

35

Ilutrasi pergerakan robot pada simulator akan ditampilkan pada gambar
4.18, dimana bagian sebelah kiri adalah init pose, tengah adalah ketika robot sampai
pada koordinat titik B1 dan sebelah kanan adalah ketika robot telah sampai pada
koordinat titik B2. Hasil dari pengujian dapat dilihat pada tabel 4.3. Kode program
dapat dilihat pada Lampiran 2.

Gamar 4.18 Ilustrasi gerak multi-point pada simulator

Tabel 4.3 Hasil pengujian multi-point simulator

Gerakan Keberhasilan
Init pose 2 B1 — B2 4
Init pose = B3 — B2 4
Init pose = B2 — B4 4
Init pose > B1 — B3 4
Init pose > B4 — B3 4
Init pose = Home — B1 v

4.5 Pengujian Gerakan Robot Fisik Secara Real-time
Pengujian gerakan robot fisik dilakukan dengan menggunakan robot
OpenManipulator-X dimana posisi awal dan koordinat sudut yang digunakan sama

dengan pengujian menggunakan simulator.

4.5.1 Pengujian Gerak Point to Point

Sistem mengawali operasi dengan membangkitkan node ROS 2 sebagai
pusat kendali. Node ini segera membangun jalur komunikasi publisher ke topik
perintah robot. Kode program kemudian mengaktifkan mekanisme penghitung
waktu mundur (timer) sebelum transmisi data bermula. Langkah ini memberi jeda

krusial bagi sistem untuk mematangkan stabilitas koneksi jaringan.

36

Setelah koneksi stabil, fungsi penyusun pesan mulai merakit paket instruksi
gerak. Paket ini memuat identitas setiap sendi beserta koordinat sudut tujuan dalam
satuan radian. Kode juga menetapkan batas durasi eksekusi agar kontroler robot
dapat menghitung interpolasi kecepatan secara otomatis. Mekanisme pengirim
lantas melontarkan paket data tersebut menuju aktuator robot dalam satu kali
pengiriman.

Sistem tidak langsung mematikan proses setelah pengiriman data terjadi.

Program sengaja menahan siklus eksekusi tetap hidup selama beberapa detik hingga
robot tuntas mencapai target. Penahanan ini mencegah pemutusan koneksi prematur
yang dapat menghentikan robot di tengah jalan. Akhirnya, fungsi utama menutup
node secara bersih dan mengakhiri program tanpa memicu pesan kesalahan sistem.

Ilustrasi gerakan robot dapat dilihat pada gambar 4.19, dimana gambar

sebelah kiri adalah init pose dan sebelah kanan adalah ketika robot telah sampai
pada titik some. Hasil dari pengujian dapat dilihat pada tabel 4.4, waktu eksekusi
diperoleh dari stopwatch yang dinyalakan pada saat program dijalankan pada
komputer dan dihentikan ketika komputer telah menyatakan program selesai. Pada
tabel 4.5 dapat dilihat berapa lama waktu respon robot saat perintah dijalankan,
kolom waktu respon diperoleh dari pengurangan nilai kolom waktu eksekusi di
tabel 4.4 dengan empat detik sebagai waktu operasi pada program. Empat detik
tersebut diperoleh dari satu detik untuk delay pada program kemudian tiga detik
untuk operasi robot (lampiran 3 line kode nomor 19 dan 47). Kode program dapat

dilihat pada Lampiran 3.

Gambar 4.19 Ilustrasi Gerak point-to-point

37

Tabel 4.4 Hasil pengujian poin-to-point robot fisik

Gerakan Keberhasilan Waktu Eksekusi
Init pose >Home v 4,97 detik
Init pose = Bl v 4,35 detik
Init pose > B2 v 4,79 detik
Init pose > B3 v 4,75 detik
Init pose = B4 v 4,88 detik
Tabel 4.5 Waktu Respon robot
Gerakan Waktu Respon

Init pose >Home 0,97 detik

Init pose 2 Bl 0,35 detik

Init pose = B2 0,79 detik

Init pose = B3 0,75 detik

Init pose > B4 0,88 detik

4.5.2 Pengujian Gerak Multi Point

Sistem memulai rangkaian pengujian ini dengan menginisialisasi node
pengendali yang terhubung ke topik lintasan standar antarmuka ROS 2. Kontroler
pada topik ini bertugas menerima daftar koordinat dan melakukan perhitungan
interpolasi menggunakan metode Spline agar transisi gerakan antar motor berjalan
mulus.

Fungsi utama kemudian menyusun struktur pesan yang memuat tiga elemen
vital yaitu penanda waktu aktual, daftar nama sendi yang terlibat, dan rangkaian
titik tujuan. Kecerdasan sistem terlihat pada logika manipulasi waktu untuk
menciptakan efek "jeda" tanpa mematikan motor. Sistem mengirimkan dua titik
kembar dengan posisi yang sama persis namun memiliki cap waktu berbeda—
misalnya titik A pada detik ke-3 dan titik A yang sama pada detik ke-6.

Kontroler merespons data "titik kembar" ini dengan mempertahankan torsi
motor pada posisi tersebut selama interval waktu yang ditentukan, sehingga robot

berhenti sejenak sebelum melanjutkan perjalanan ke titik B pada detik ke-9. Setelah

38

pesan terkirim, sistem membatalkan pemanggilan ulang fungsi dan menahan proses
tetap aktif selama durasi penuh lintasan. Langkah ini menjamin program tidak
berhenti di tengah jalan sebelum robot menyelesaikan seluruh manuvernya dengan
sempurna.

Ilustrasi pergerakan robot akan ditampilkan pada gambar 4.20, dimana
bagian sebelah kiri adalah init pose, tengah adalah ketika robot sampai pada
koordinat titik Home dan sebelah kanan adalah ketika robot telah sampai pada
koordinat titik B1. Hasil dari pengujian dapat dilihat pada tabel 4.6, pada tabel 4.7
dapat dilihat berapa lama waktu respon robot saat perintah dijalankan, kolom waktu
respon diperoleh dari pengurangan nilai kolom waktu eksekusi di tabel 4.6 dengan
sepuluh detik sebagai waktu operasi pada program. Sepuluh detik tersebut diperoleh
dari satu detik untuk delay pada program kemudian sembilan detik untuk operasi
robot (lampiran 4 line kode nomor 18 dan 56). Kode program dapat dilihat pada

Lampiran 4.

Gambar 4.20 [lustrasi gerak multi-point

Tabel 4.6 Hasil pengujian multi-point robot fisik

Gerakan Keberhasilan Waktu Eksekusi
Init pose > B1 — B2 v 10,51 detik
Init pose > B3 — B2 4 10,88 detik
Init pose = B2 — B4 4 10,93 detik
Init pose > B1 — B3 4 10,58 detik
Init pose = B4 — B3 4 10,69 detik
Init pose = Home — B1 4 10,93 detik

39

Tabel 4.7 Waktu respon robot

Gerakan Waktu Respon
Init pose > B1 — B2 0,51 detik
Init pose > B3 — B2 0,88 detik
Init pose > B2 — B4 0,93 detik
Init pose > B1 — B3 0,58 detik
Init pose = B4 — B3 0,69 detik
Init pose > Home — B1 0,93 detik

40

BabV
Penutup
5.1 Kesimpulan

Implementasi sistem kendali robot OpenMANIPULATOR-X menggunakan
arsitektur ROS 2 Humble telah berhasil dan berjalan secara stabil. Penggunaan
middleware ROS 2 yang berbasis Data Distribution Service atau DDS
meningkatkan fleksibilitas dan desentralisasi data sistem.

Pengujian memvalidasi akurasi gerakan robot dalam lingkungan simulasi
Gazebo maupun pada perangkat keras fisik. Robot mampu mencapai target
koordinat dengan presisi pada skenario gerak point-to-point dengan rata-rata waktu
eksekusi 4,74 detik pada perangkat fisik. Validasi gerak multi-point juga
menunjukkan hasil yang konsisten dengan rata-rata waktu penyelesaian lintasan
sebesar 10,76 detik tanpa penyimpangan jalur.

Penerapan patch Preempt RT pada kernel Linux menjadi faktor kunci
dalam menjaga determinisme gerakan robot. Sesuai data penelitian Ye dkk. (2023),
optimasi ini mereduksi latensi maksimum dari 6.243 ps menjadi 82 ps. Latensi
tidak dapat di lihat karena penggunaan PREEMPT RT sudah menekan latensi di
bawah 10 ps.

5.2 Saran

Pusat Studi HMI sebaiknya mengintegrasikan sistem machine vision untuk
mendukung deteksi objek secara otomatis dan dinamis. Pengembang selanjutnya
perlu melakukan pengujian pada perangkat keras secara langsung tanpa melalui
mesin virtual atau VMware. Langkah ini akan meminimalkan beban sistem atau
overhead dan meningkatkan performa komputasi. Peneliti selanjutnya dapat
mengembangkan variasi model gerak dari robot OpenManipulator supaya lebih
bervariasi. Peneliti selanjutnya dapat juga membuat GUI sistem supaya lebih user-

friendly.

41

Daftar Pustaka

Adzeman, M. A. M., Zaman, M. H. M., Nasir, M. F., Ibrahim, M. F., & Mustaza, S.
M. (2020). Kinematic Modeling of A Low Cost 4 DOF Robot Arm System.
International Journal of Emerging Trends in Engineering Research, 8(10),
6828—6834. https://doi.org/10.30534/ijeter/2020/328102020

Al Fajar, R., Lestari, A., & Teknologi Informasi, J. (2025). Analisis Perbandingan
Sistem Operasi Windows 11 dan Linux Ubuntu Menggunakan Metode Studi
Literatur (Studi Kasus: Kinerja Sistem, Keamanan dan Biaya). Dalam Jurnal
Bitwise ISSN xxxx-xxxx (Vol. 1, Nomor 2). https://jurnal-bitwise.org/

Alif, M. (2025). Pengendalian Gerakan Robot Openmanipulator Untuk Operasi
Pemindahan Barang Berbasis MATLAB.

Deng, G., Xu, G., Zhou, Y., Zhang, T., & Liu, Y. (2022). On the (In)Security of
Secure ROS2. Proceedings of the ACM Conference on Computer and
Communications Security, 739-753.
https://doi.org/10.1145/3548606.3560681

Kelvin, D. (2024). 2024- Daniel Kelvin-Laporan Final(sudah kompre).

Kim, J., Mathur, D. C., Shin, K., & Taylor, S. (2023). PAPRAS: Plug-And-Play
Robotic Arm System. http://arxiv.org/abs/2302.09655

Odun-Ayo, I., Okokpujie, K., Oputa, K., Ogbu, H., Emmanuel, F., Shofadekan, A.,
& Okuazun, G. (2021). Comparative Study of Operating System Quality
Attributes. [OP Conference Series: Materials Science and Engineering,
1107(1),012061. https://doi.org/10.1088/1757-899x/1107/1/012061

Savola, A. (2021). Antti Savola Server Virtualization with VMware.

Teper, H., Unzel, M. G. ", Ueter, N., Von Der Briiggen, G., Briiggen, B., Chen, J.-
J., & Giinzel, M. (2022). End-To-End Timing Analysis in ROS2 computer
science 12 End-To-End Timing Analysis in ROS2.

Ye, Y., Nie, Z., Liu, X., Xie, F., Li, Z., & Li, P. (2023). ROS2 Real-time Performance
Optimization and Evaluation. Chinese Journal of Mechanical Engineering
(English Edition), 36(1). https://doi.org/10.1186/s10033-023-00976-5

Zhong Ting, H., Hairi Mohd Zaman, M., Faisal Ibrahim, M., & Mohamed Moubark,
A. (2021). Kinematic Analysis for Trajectory Planning of Open-Source 4-DoF

42

http://arxiv.org/abs/2302.09655

Robot Arm. Dalam IJACSA) International Journal of Advanced Computer

Science and Applications (Vol. 12, Nomor 6). www.ijacsa.thesai.org

=

UNIVERSITAS

MA CHUNG

43

http://www.ijacsa.thesai.org/

Lampiran

Lampiran 1. Kode pengoperasian simulator Point-to-Point

move_bl.py

1.

© ©® =N vk WD

—_ = =
w = O

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

#!/usr/bin/env python3

import rclpy

from rclpy.node import Node

from rclpy.parameter import Parameter

from trajectory msgs.msg import JointTrajectory, JointTrajectoryPoint
import time

import sys

class MoveOpenManipulatorSinglePointGazebo(Node):
def __init__(self):

super().__init_ (‘move openmanipulator_single point gazebo')

Mengaktifkan waktu simulasi (Sim Time) agar sinkron dengan
Gazebo
self.set_parameters([

Parameter(‘use_sim_time', Parameter.Type.BOOL, True)

D

Topik disesuaikan ke controller Gazebo

self.publisher = self.create publisher(
JointTrajectory,
'/arm_controller/joint_trajectory’,

10

self.timer = self.create_timer(1.0, self.timer callback)
self.get_logger().info('Mode Gazebo Aktif. Siap mengirim 1 titik

gerakan.")

44

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
38.
59.

def timer_callback(self):

self.timer.cancel()

self.send trajectory()

self.get logger().info("Perintah ke Gazebo dikirim.")

Waktu tunggu 4 detik (3 detik gerak + 1 detik buffer)

time.sleep(4.0)

self.destroy _node()
sys.exit(0)

def send_trajectory(self):

traj = JointTrajectory()

Mengambil waktu dari Clock Simulasi
traj.header.stamp = self.get_clock().now().to_msg()
traj.joint_names = ['joint1', 'joint2', joint3', 'joint4']
--- TITIK TUIJUAN TUNGGAL ---

point = JointTrajectoryPoint()

Koordinat tujuan (Posisi B1)
point.positions = [-0.5, 0.23, 0.15, 0.22]

Durasi gerakan ditetapkan 3 detik

point.time from_start.sec = 3

Memasukkan satu titik saja ke dalam daftar

traj.points = [point]

self.publisher .publish(traj)

45

60. def main(args=None):

61. rclpy.init(args=args)

62. node = MoveOpenManipulatorSinglePointGazebo()

63. try:

64. rclpy.spin(node)

65. except SystemExit:

66. rclpy.logging.get logger("root").info("Program selesai.")
67. rclpy.shutdown()

68.
69.if _ name =='_main_ "
70. main()

Lampiran 2. Kode pengoperasian simulator Multi Points
move blb2.py
1. #!/usr/bin/env python3
import rclpy
from rclpy.node import Node
from rclpy.parameter import Parameter
from trajectory _msgs.msg import JointTrajectory, JointTrajectoryPoint
import time

import sys

. N 0 kWD

class MoveOpenManipulatorPause(Node):
def __ init__ (self):

,_,_
— NS

super().__init__('move_ openmanipulator pause')

—_— =
wonN

Mengaktifkan waktu simulasi (Sim Time) agar sinkron dengan
Gazebo
14. self.set parameters(][
15. Parameter('use_sim_time', Parameter.Type.BOOL, True)
16.),
17.

46

18.
19.
20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

self.publisher = self.create publisher(
JointTrajectory,
'Yfarm_controller/joint_trajectory’,

10

self.timer = self.create_timer(1.0, self.timer callback)
self.get logger().info('Mode Gazebo Aktif. Menunggu clock

simulasi...")

def timer_callback(self):
self.timer.cancel()

self.send_trajectory()

self.get logger().info("Perintah ke Gazebo dikirim.")

waktu tunggu 10 detik
time.sleep(10.0)

self.destroy node()
sys.exit(0)

def send_trajectory(self):
traj = JointTrajectory()
Mengambil waktu dari Clock Simulasi (bukan waktu komputer)
traj.header.stamp = self.get clock().now().to_msg()

traj.joint_names = ['joint1", 'joint2', joint3', 'joint4']
#--- DEFINISI WAKTU ---

move_time = 3

pause_time =3

47

49. # --- TITIK 1: Bergerak ke Posisi B1 ---

50. pointl = JointTrajectoryPoint()

51. pointl.positions = [-0.5, 0.23, 0.15, 0.22]

52. pointl.time from_start.sec = move time

53.

54. # --- TITIK 1 (HOLD): Diam di Posisi B1 ---

55. pointl _hold = JointTrajectoryPoint()

56. pointl_hold.positions = [-0.5, 0.23, 0.15, 0.22]

57. pointl hold.time from_start.sec = move time + pause time
58.

59. # --- TITIK 2: Bergerak ke Posisi B2 ---

60. point2 = JointTrajectoryPoint()

61. point2.positions = [-0.02, -0.75, 0.71, 1.03]

62. point2.time from_start.sec =move time + pause_time + move_time
63.

64. traj.points = [point1, pointl hold, point2]

65.

66. self.publisher .publish(traj)

67.

68. def main(args=None):

69. rclpy.init(args=args)

70. node = MoveOpenManipulatorPause()

71. try:

72. rclpy.spin(node)

73. except SystemEXxit:

74. rclpy.logging.get logger("root").info("Program selesai.")
75. rclpy.shutdown()

76.

' '

77.if _name__=='_main_ "

78. main()

48

Lampiran 3. Kode pengoperasian robot fisik Point-to-Point
Move to H.py
1. #!/usr/bin/env python3
import rclpy
from rclpy.node import Node

from trajectory msgs.msg import JointTrajectory, JointTrajectoryPoint
import sys

2

3

4

5. import time
6

7

8. class MoveOpenManipulatorSinglePoint(Node):
9

def __init__ (self):

10. super().__init__('move openmanipulator single point')
11.
12. # Publisher ke topik controller robot asli

13. self.publisher = self.create publisher(

14. JointTrajectory,

15. '/arm_controller/joint_trajectory’,

16. 10

17.)

18.

19. self.timer = self.create timer(1.0, self.timer callback)

20. self.get logger().info('lRobot Terhubung. Siap mengirim 1 titik
gerakan.")

21.

22. def timer_callback(self):

23. self.timer.cancel()

24, self.send _trajectory()

25.

26. # Waktu tunggu 4 detik agar skrip tidak mati sebelum robot selesai
bergerak

49

27.

28.
29.
30.
31.
32.
33.
34,
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.

53

self.get logger().info("Perintah dikirim. Robot bergerak ke Titik

Tujuan.")

time.sleep(4.0)

self.destroy node()
sys.exit(0)

def send_trajectory(self):

traj = JointTrajectory()

traj.header.stamp = self.get_clock().now().to_msg()

Pastikan nama joint sesuai dengan konfigurasi robot

traj.joint_names = ['joint1', joint2', "joint3’, 'joint4']

--- TITIK TUJUAN TUNGGAL ---

point = JointTrajectoryPoint()

Masukkan koordinat tujuan
point.positions = [1.65, -0.89, 0.82, 1.03]

Robot akan sampai di titik ini dalam waktu 3 detik

point.time_from_start.sec = 3

traj.points = [point]

self.publisher .publish(traj)

. def main(args=None):
54.
55.
56.
57.

rclpy.init(args=args)
node = MoveOpenManipulatorSinglePoint()
try:

rclpy.spin(node)

50

58. except SystemExit:

59. # Menangkap sinyal keluar dari sys.exit(0) agar tidak error
60. rclpy.logging.get logger("root").info("Program selesai.")
61. rclpy.shutdown()

62.
63.if _ _name =='_main_ "
64. main()

Lampiran 4. Kode pengoperasian robot fisik Multi Points

multi_point_hbl.py

1. #!/usr/bin/env python3
import rclpy
from rclpy.node import Node

from trajectory msgs.msg import JointTrajectory, JointTrajectoryPoint

import sys

2

3

4

5. import time
6

7

8. class MoveOpenManipulatorPause(Node):
9

def __init__(self):

10. super().__init__(‘move_openmanipulator pause')

11.

12. self.publisher = self.create publisher(

13. JointTrajectory,

14. 'Yfarm_controller/joint_trajectory’,

15. 10

16.)

17.

18. self.timer = self.create_timer(1.0, self.timer callback)

19. self.get logger().info('Robot Terhubung. Siap mengirim lintasan

dengan jeda...")
20.
21. def timer callback(self):

51

22.
23.
24.
25.

26.

27.
28.
29.
30.
31.
32.
33.
34,
35,
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.

48.
49.

self.timer.cancel()

self.send _trajectory()

Waktu tunggu 10 detik agar skrip tidak mati sebelum robot selesai

bergerak

self.get logger().info("Perintah dikirim. Robot bergerak: Titik 1 ->

Jeda -> Titik 2.")

time.sleep(10.0)

self.destroy _node()
sys.exit(0)

def send _trajectory(self):

jeda

traj = JointTrajectory()
traj.header.stamp = self.get clock().now().to_msg()

traj.joint_names = ['joint1, joint2', 'joint3', 'joint4']

--- DEFINISI WAKTU ---
move_time =3 # Waktu untuk bergerak

pause_time = 3 # Durasi jeda (diam)

--- TITIK 1: Bergerak ke Posisi Home ---
pointl = JointTrajectoryPoint()
pointl.positions = [1.65, -0.89, 0.82, 1.03]

pointl.time from_ start.sec =move time # T=3

--- TITIK 1 (HOLD): Diam di Posisi Home ---

Kita kirim posisi yang SAMA persis, tapi waktunya ditambah durasi

pointl hold = JointTrajectoryPoint()
pointl_hold.positions =[1.65, -0.89, 0.82, 1.03] # Posisi sama dengan

pointl

52

50.

51.
52.
53.
54.
55.
56.

57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

pointl hold.time from start.sec = move time + pause time # T=6

(3+3)

--- TITIK 2: Bergerak ke Posisi B1 ---

point2 = JointTrajectoryPoint()

point2.positions = [-0.5, 0.23, 0.15, 0.22]

Waktu tempuh dihitung dari akhir jeda

point2.time from_start.sec = move time + pause time + move_time #

T=9 (6+3)

Masukkan urutan titik ke dalam list
Urutan: Gerak ke Home -> Diam di Home -> Gerak ke B1
traj.points = [pointl, pointl hold, point2]

self.publisher .publish(traj)

def main(args=None):

rclpy.init(args=args)

node = MoveOpenManipulatorPause()

try:
rclpy.spin(node)

except SystemEXxit:
Menangkap sinyal keluar dari sys.exit(0) agar tidak error
rclpy.logging.get logger(""root").info("Program selesai.")

rclpy.shutdown()

' '

if _name ==' main_ "

main()

53

