
KENDALI GERAKAN ROBOT OPENMANIPULATOR DALAM

OPERASI PEMINDAHAN OBJEK BERBASIS

ROBOT OPERATING SYSTEM 2

PRAKTIK KERJA LAPANGAN

IVAN LIE NAGASENA

NIM: 312210011

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2026

LEMBAR PENGESAHAN

PRAKTIK KERJA LAPANGAN

KENDALI GERAKAN ROBOT OPENMANIPULATOR DALAM OPERASI

PEMINDAHAN OBJEK BERBASIS

ROBOT OPERATING SYSTEM 2

Oleh:

IVAN LIE NAGASENA

NIM. 312210011

dari:

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

Dosen Pembimbing,

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd.

NIP. 20070035

Dekan Fakultas Teknologi dan Desain,

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd.

NIP. 20070035

i

Kata Pengantar

Puji syukur penulis panjatkan ke hadirat Tuhan Yang Maha Esa. Atas rahmat

dan karunia-Nya, penulis dapat menyelesaikan laporan Praktik Kerja Lapangan

(PKL) ini tepat pada waktunya. Laporan ini disusun untuk memenuhi mata kuliah

PKL bagi mahasiswa Program Studi Teknik Informatika Universitas Ma Chung.

Penulis menyadari bahwa keberhasilan penelitian ini bergantung pada

dukungan berbagai pihak. Oleh karena itu, penulis menyampaikan apresiasi dan

terima kasih sebesar-besarnya kepada:

1. Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd, selaku Dekan Fakultas

Teknologi dan Desain, Kepala Peneliti sekaligus Dosen Pembimbing.

Penulis berterima kasih atas arahan, transfer ilmu, dan bimbingan teknis

yang sangat berharga selama proses pembuatan program hingga

penyusunan laporan ini.

2. Teman-teman yang telah ikut membantu penelitian ini.

3. Orang tua dan keluarga yang terus memberikan dukungan moral serta doa

selama penulis menjalankan tugas ini.

Penulis meyakini bahwa pengalaman penelitian ini memberikan kontribusi

nyata bagi pengembangan ilmu pengetahuan. Penelitian lapangan merupakan

instrumen penting untuk memvalidasi teori, sebagaimana sering ditekankan dalam

berbagai jurnal ilmiah mengenai metodologi penelitian terapan.

Penulis menyadari bahwa laporan ini masih memiliki kekurangan. Oleh

karena itu, penulis mengharapkan kritik dan saran yang membangun dari pembaca

untuk perbaikan di masa mendatang. Semoga laporan ini memberikan manfaat bagi

pengembangan akademik di lingkungan Fakultas.

Malang, 11 Januari 2026

Ivan Lie Nagasena

ii

Daftar Isi

Kata Pengantar .. i

Daftar Isi ... ii

Daftar Gambar .. iv

Daftar Tabel ..vi

Bab I Pendahuluan ... 1

1.1 Latar Belakang .. 1

1.2 Batasan Masalah ... 2

1.3 Rumusan Masalah ... 3

1.4 Tujuan ... 3

1.5 Manfaat ... 3

Bab II Gambaran Umum Perusahaan ... 4

2.1 Universitas Ma Chung .. 4

2.2 Program Studi Teknik Informatika ... 5

2.3 Pusat Studi Human-Machine Interaction Ma Chung 5

Bab III Tinjauan Pustaka .. 7

3.1 Ubuntu 22.04 .. 7

3.2 Robot Operating System 2 ... 8

3.2.1 Fundamental Arsitektur ROS2 dan Integrasi DDS 9

3.2.2 Primitif Komunikasi: Node, Topic, Service, dan Action 12

3.2.3 Manajemen Eksekusi dan Analisis Waktu (Timing Analysis) 14

3.2.4 Optimalisasi Sistem Operasi untuk Real-Time ROS2 17

3.3 VMware Workstation.. 20

3.4 U2D2 Communication Interface .. 22

3.5 Robot OpenMANIPULATOR-X ... 22

iii

Bab IV Deskripsi Data dan Hasil Praktik Kerja Lapangan 25

4.1 Persiapan Environment Kerja .. 25

4.2 Pengoperasian Robot Menggunakan Simulator Gazebo 30

4.3 Pengoperasian Robot Fisik Secara Real-Time .. 31

4.4 Pengujian Gerakan Robot Pada Simulator Gazebo 33

4.4.1 Pengujian Gerak Point to Point ... 34

4.4.2 Pengujian Gerak Multi Point ... 35

4.5 Pengujian Gerakan Robot Fisik Secara Real-time 36

4.5.1 Pengujian Gerak Point to Point ... 36

4.5.2 Pengujian Gerak Multi Point ... 38

Bab V Penutup ... 41

5.1 Kesimpulan .. 41

5.2 Saran .. 41

Daftar Pustaka ... 42

Lampiran .. 44

iv

Daftar Gambar

Gambar 2.1 Diagram bidang fokus riset pusat studi HMI .. 6

Gambar 3.1 Halaman utama Ubuntu 22.04 ... 7

Gambar 3.2 Arsitektur DDS dengan protokol DCPS (Deng dkk., 2022) 10

Gambar 3.3 Halaman utama VMware ... 21

Gambar 3.4 Board U2D2 ... 22

Gambar 3.5 Robot OpenManipulator-X .. 23

Gambar 3.6 Motor servo Dynamixel ... 24

Gambar 4.1 Instalasi Ubuntu pada VMware ... 25

Gambar 4.2 Instalasi OS Ubuntu ... 26

Gambar 4.3 Instalasi ROS2 .. 26

Gambar 4.4 Instalasi paket OpenManipulator-X .. 27

Gambar 4.5 Pembuatan folder workspace dan instalasi paket independen 27

Gambar 4.6 Tampilan paket independen yang telah di instalasi 27

Gambar 4.7 Output dari ros2 topic list .. 28

Gambar 4.8 Ilustrasi koneksi PC dengan robot OpenManipulator-X 28

Gambar 4.9 Ilustrasi posisi robot arm dan titik tujuan ... 29

Gambar 4.10 Keterangan joint dan Init pose ... 29

Gambar 4.11 Tampilan model robot arm pada simulator Gazebo 30

Gambar 4.12 Perintah MoveIt servo secara real-time ... 31

Gambar 4.13 Verifikasi port USB ... 32

Gambar 4.14 Perintah launch torsi ke hardware ... 32

Gambar 4.15 Perintah MoveIt servo secara real-time ... 33

Gambar 4.16 Init pose dari robot OpenManipulator-X .. 34

Gambar 4.17 Ilustrasi gerak point-to-point pada simulator 35

v

Gamar 4.18 Ilustrasi gerak multi-point pada simulator ... 36

Gambar 4.19 Ilustrasi Gerak point-to-point ... 37

Gambar 4.20 Ilustrasi gerak multi-point .. 39

vi

Daftar Tabel

Tabel 3.1 Perbandingan Native-Linux & Preempt_RT Linux (Ye dkk., 2023) 19

Tabel 3.2 Spesifikasi Robot OpenManipulator-X ... 24

Tabel 4.1 Koordinat joint titik tujuan .. 30

Tabel 4.2 Hasil pengujian point-to-point simulator .. 35

Tabel 4.3 Hasil pengujian multi-point simulator ... 36

Tabel 4.4 Hasil pengujian poin-to-point robot fisik .. 38

Tabel 4.5 Waktu Respon robot ... 38

Tabel 4.6 Hasil pengujian multi-point robot fisik ... 39

Tabel 4.7 Waktu respon robot... 40

1

1.1 Latar Belakang

Bab I

Pendahuluan

Sektor manufaktur saat ini sangat mengandalkan teknologi otomasi untuk

menjamin konsistensi kualitas dan produktivitas hasil produksi (Adzeman dkk.,

2020). Robot lengan menjadi komponen vital dalam ekosistem industri modern

karena mampu bekerja tanpa henti dengan tingkat presisi yang stabil. Penggunaan

robot ini meliputi berbagai tugas berulang yang menuntut ketelitian tinggi, seperti

perakitan komponen elektronik, pengelasan plat logam, hingga operasi pemindahan

barang atau pick and place (Zhong Ting dkk., 2021). Efisiensi waktu menjadi alasan

utama industri mengadopsi teknologi ini agar tetap kompetitif di era industri 4.0.

Komunitas peneliti global saat ini memilih Robot Operating System (ROS) sebagai

kerangka kerja utama untuk membangun logika kontrol yang kompleks dan

modular (Deng dkk., 2022).

Interaksi waktu nyata dengan lingkungan yang dinamis sangat penting bagi

sistem robotika untuk menjalankan fungsi persepsi visual dan perencanaan gerak

secara akurat (Ye dkk., 2023). Meskipun ROS menyediakan ekosistem

pengembangan yang kaya, implementasi pada robot fisik sering kali terbentur pada

keterbatasan penjadwalan sistem operasi. Kernel standar pada Linux menggunakan

prinsip Completely Fair Scheduler (CFS) yang fokus pada pembagian sumber daya

CPU secara adil kepada seluruh proses aplikasi. Namun, prinsip keadilan ini justru

menjadi kendala bagi aplikasi robotika yang membutuhkan prioritas waktu mutlak

untuk pengiriman setiap perintah gerak (Ye dkk., 2023). Tanpa optimasi khusus,

sistem operasi cenderung menunda proses kendali robot demi menjalankan proses

latar belakang lainnya.

Penundaan proses ini menyebabkan lonjakan latensi yang membuat gerakan

robot menjadi tersendat (jitter) dan tidak mulus. Ketidakpastian waktu eksekusi

end-to-end meningkatkan risiko kegagalan manuver robot saat beroperasi di

lingkungan dinamis yang kritis terhadap keselamatan (Teper dkk., 2022). Sistem

robotika membutuhkan jaminan waktu eksekusi dari awal hingga akhir untuk

memastikan perilaku robot yang aman dan dapat diprediksi (Teper dkk., 2022).

Kendala latensi ini sering muncul pada pengendalian robot manipulator yang

2

menuntut presisi tinggi saat memindahkan objek. Oleh karena itu, penggunaan

sistem operasi yang mendukung komputasi waktu nyata menjadi kebutuhan

mendesak dalam pengembangan robotika industri.

Di lingkungan Universitas Ma Chung, penelitian mengenai pengendalian

robot OpenManipulator sebelumnya telah dilakukan menggunakan platform

MATLAB (Alif, 2025; Kelvin, 2024). Penggunaan MATLAB mempermudah

analisis kinematika melalui simulasi, namun memiliki keterbatasan dalam hal

skalabilitas aplikasi dan keamanan distribusi data pada jaringan yang luas. Langkah

pengembangan selanjutnya beralih menggunakan ROS 2 karena versi terbaru ini

mengadopsi standar Data Distribution Service (DDS) untuk mendistribusikan data

secara terdesentralisasi (Deng dkk., 2022). Arsitektur DDS ini menghilangkan titik

kegagalan tunggal (single point of failure) dan meningkatkan keamanan data

melalui enkripsi bawaan yang tidak tersedia secara maksimal pada platform

sebelumnya.

Laporan ini membahas penelitian tentang penerapan kendali gerakan robot

OpenManipulator-X berbasis ROS 2 pada versi Humble. Pengerjaan ini juga

menerapkan optimasi kernel Linux menggunakan patch Preempt_RT untuk

menjamin determinisme sistem agar robot mampu memindahkan objek dengan

presisi tinggi secara waktu nyata (Ye dkk., 2023). Integrasi ini bertujuan untuk

menciptakan sistem kendali yang tidak hanya stabil dalam simulasi Gazebo, tetapi

juga responsif saat beroperasi pada perangkat keras fisik. Fokus utama pengerjaan

ini adalah sinkronisasi antara perangkat lunak kendali dengan aktuator motor

DYNAMIXEL melalui antarmuka komunikasi U2D2.

1.2 Batasan Masalah

Ruang lingkup praktik kerja lapangan ini mencakup poin-poin berikut:

1. Perangkat keras utama adalah robot lengan OpenManipulator-X dengan 4

Degree of Freedom (DOF).

2. Sistem operasi yang berjalan adalah Ubuntu 22.04 LTS pada lingkungan

mesin virtual VMware.

3. Middleware yang digunakan adalah ROS 2 versi Humble sebagai kerangka

kerja utama komunikasi antar node.

3

4. Fokus pengujian terbatas pada operasi gerak robot terhadap 5 titik tujuan

yang ada.

1.3 Rumusan Masalah

Penelitian ini merumuskan konfigurasi lingkungan kerja ROS 2 untuk

mengendalikan robot OpenManipulator-X secara stabil. Penelitian ini menganalisis

pengaruh optimasi sistem operasi melalui patch Preempt_RT terhadap kepastian

gerakan robot. Fokus kajian juga mencakup evaluasi efisiensi komunikasi antara

perintah perangkat lunak dan respons fisik motor Dynamixel melalui antarmuka

U2D2.

1.4 Tujuan

Kegiatan PKL ini memiliki beberapa tujuan utama:

1. Membangun sistem kendali robot OpenManipulator-X yang handal

menggunakan arsitektur ROS 2 Humble.

2. Menguji efisiensi gerakan robot dalam lingkungan simulasi Gazebo dan

memvalidasi hasilnya pada perangkat keras fisik.

3. Menganalisis stabilitas distribusi data dan latensi antara komputer

pengendali dan unit aktuator robot.

1.5 Manfaat

Hasil dari praktik kerja lapangan ini memberikan manfaat bagi beberapa pihak:

1. Bagi Mahasiswa: Memperdalam pemahaman teknis mengenai arsitektur

ROS 2, manajemen kernel Linux, dan kendali aktuator robotika industri.

2. Bagi Pusat Studi HMI Ma Chung: Menyediakan referensi teknis mengenai

prosedur migrasi kendali robot dari MATLAB ke ROS 2 yang mendukung

riset lanjutan.

3. Bagi Universitas Ma Chung: Memperkaya portofolio penelitian terapan

dalam bidang sistem cerdas dan interaksi manusia dengan mesin (Human-

Machine Interaction).

4

Bab II

Gambaran Umum Perusahaan

2.1 Universitas Ma Chung

Universitas Ma Chung berlokasi di Villa Puncak Tidar N-01, Kecamatan

Dau, Kabupaten Malang, Jawa Timur. Yayasan Harapan Bangsa Sejahtera

menaungi universitas ini sejak peresmiannya pada tanggal 7 Juli 2007. Universitas

Ma Chung menetapkan visi dan misi sebagai landasan operasional institusi.

Visi Memuliakan Tuhan Yang Maha Esa melalui pembentukan karakter,

pengembangan ilmu pengetahuan, serta memberikan kontribusi nyata sebagai insan

akademis yang kreatif dan inovatif.

Misi Universitas Ma Chung menjalankan misi sebagai berikut:

1. Menyelenggarakan Tri Dharma Perguruan Tinggi (pendidikan, penelitian,

dan pengabdian masyarakat) dengan standar tinggi, fokus, dan relevan

dengan perkembangan zaman.

2. Membentuk dan mengembangkan generasi pemimpin serta penggerak

masyarakat yang berintegritas, berjiwa kepemimpinan, dan

berkewirausahaan dengan penekanan pada karakter mulia, kerendahan hati,

dan semangat pelayanan.

3. Mendorong sikap serta pemikiran kritis-prinsipil dan kreatif-realistis

berdasarkan kepekaan hati nurani yang luhur.

4. Menghasilkan lulusan siap pakai yang berkualitas tinggi dan mampu

bersaing di pasar global.

5. Mengambil peran aktif dalam peningkatan peradaban dunia dengan

menghasilkan lulusan berwawasan global, toleran, dan cinta damai, serta

produktif dalam menghasilkan karya cipta.

6. Melaksanakan pengelolaan perguruan tinggi berdasarkan prinsip ekonomis

dan akuntabilitas.

Saat ini, Universitas Ma Chung mengelola 11 program studi yang mencakup

Manajemen Bisnis, Akuntansi, Magister Manajemen Inovasi, Sastra Inggris,

Pendidikan Bahasa Mandarin, Teknik Informatika, Sistem Informasi, Desain

Komunikasi Visual, Teknik Industri, Optometri, serta Farmasi dan Profesi

Apoteker.

5

2.2 Program Studi Teknik Informatika

Program Studi Teknik Informatika (PSTI) merupakan bagian dari Fakultas

Teknologi dan Desain Universitas Ma Chung. Program studi ini memiliki akreditasi

B dari BAN-PT sejak tahun 2016 melalui Surat Keputusan Nomor

0356/SK/BANPT/Akred/S/IV/2016. Sertifikasi ini membuktikan bahwa PSTI

memenuhi standar nasional dalam hal tata kelola dan kualitas pengajaran. Tim

kurikulum menyusun materi pembelajaran agar selalu relevan dengan standar

industri teknologi informasi global yang berkembang sangat cepat.

Mahasiswa dapat memilih satu dari dua jalur konsentrasi yang tersedia

untuk mendalami keahlian khusus. Konsentrasi pertama adalah Sistem Cerdas yang

menitikberatkan pada pengembangan algoritma kecerdasan buatan, pemrosesan

bahasa alami, dan analisis data besar. Konsentrasi kedua adalah Sistem Komputer

yang fokus pada integrasi perangkat keras dan lunak, keamanan jaringan, serta

ekosistem Internet of Things (IoT). Pembagian jalur ini bertujuan untuk

memberikan keunggulan kompetitif bagi mahasiswa saat memasuki dunia kerja

profesional.

2.3 Pusat Studi Human-Machine Interaction Ma Chung

Pusat Studi Human-Machine Interaction (HMI) Ma Chung ditempatkan di

bawah naungan Program Studi Teknik Informatika sejak didirikan secara resmi

pada tanggal 11 September 2019. Lantai 6 Gedung Research & Development

(R&D) Universitas Ma Chung digunakan sebagai lokasi operasional utama.

Berbagai fasilitas komputasi dan perangkat keras modern disediakan di tempat ini

guna mendukung kegiatan penelitian yang intensif. Fokus kegiatan diarahkan pada

inovasi teknologi dan implementasinya dalam konteks interaksi antara manusia dan

mesin.

Tiga bidang kajian riset unggulan dikembangkan oleh pusat studi ini,

meliputi:

1. Machine vision for human welfare and human-natural interactions,

teknologi pengolahan citra digital dikaji pada bidang ini untuk menciptakan

6

sistem yang mampu menganalisis informasi visual guna meningkatkan

kesejahteraan dan kualitas hidup manusia.

2. Interaksi Manusia-Komputer (Human-Computer Interaction), penelitian

pada bidang ini dipusatkan pada perancangan Desain Antarmuka (User

Interface) dan Pengalaman Pengguna (User Experience) yang intuitif,

ergonomis, dan mudah digunakan oleh berbagai kalangan pengguna.

3. Teknologi Robotika dan Aplikasi Seluler, sistem robotika cerdas dan

aplikasi seluler dikembangkan pada bidang ini sebagai solusi praktis untuk

membantu aktivitas manusia. Topik penelitian mengenai kendali robot

OpenManipulator dalam laporan ini tercakup dalam lingkup kajian ini.

Gambar 2.1 Diagram bidang fokus riset pusat studi HMI

Dukungan infrastruktur dan bimbingan teknis diberikan oleh pusat studi

untuk memastikan keberhasilan pengembangan sistem yang diteliti. Selain aspek

teknis, eksplorasi potensi sumber daya alam dan inovasi pengelolaan bisnis turut

didukung sebagai bentuk realisasi visi pusat studi dalam memberikan kontribusi

nyata bagi masyarakat.

7

3.1 Ubuntu 22.04

Bab III

Tinjauan Pustaka

Pemilihan Ubuntu 22.04 LTS sebagai basis sistem kendali robot didasarkan

pada efisiensi arsitektur dan manajemen sumber daya yang superior dibandingkan

sistem operasi tertutup seperti Windows 11, dapat dilihat pada gambar 3.1 yang

menampilkan halaman utama dari Ubuntu. Berdasarkan studi komparatif terbaru

oleh (Al Fajar dkk., 2025), Ubuntu menunjukkan keunggulan signifikan dalam

lingkungan dengan sumber daya terbatas, di mana ia mampu beroperasi secara

stabil hanya dengan RAM 2 GB, berbeda dengan Windows 11 yang mewajibkan

minimal 4 GB dan modul TPM 2.0. Efisiensi ini krusial bagi komputer pendamping

(onboard computer) robot, karena meminimalkan beban sistem operasi (overhead)

dan mengalokasikan lebih banyak daya komputasi untuk pemrosesan algoritma

robotika. Selain itu, sifat open-source dari Ubuntu menghilangkan biaya lisensi,

menjadikannya solusi yang lebih ekonomis dan fleksibel untuk pengembangan

skala luas.

Gambar 3.1 Halaman utama Ubuntu 22.04

Dalam konteks pengendalian robot manipulator yang menuntut presisi

waktu, kinerja kernel menjadi faktor penentu utama. (Ye dkk., 2023)dalam evaluasi

kinerja real-time ROS 2 mengungkapkan bahwa kernel Linux standar (Native-

Linux) memiliki kelemahan dalam determinisme, dengan latensi maksimum yang

8

dapat melonjak hingga 6.243µs akibat mekanisme Completely Fair

Scheduler (CFS). Untuk mengatasi hal ini, penggunaan patch PREEMPT_RT pada

kernel Ubuntu 22.04 terbukti mampu menurunkan latensi maksimum secara drastis

menjadi sekitar 82µs , dengan rata-rata latensi stabil di angka 2µs . Optimasi ini

mengubah Ubuntu menjadi sistem yang mampu menangani tugas hard real-time,

memastikan bahwa instruksi gerak dikirim ke aktuator robot dengan jeda waktu

yang sangat minim dan konsisten.

Aspek keamanan dan stabilitas Ubuntu juga menjadi landasan kuat untuk

penerapannya dalam sistem robotika yang terhubung. (Odun-Ayo dkk., 2021)

menyoroti bahwa arsitektur keamanan Linux, yang menerapkan Mandatory Access

Control (MAC) dan manajemen izin berkas yang ketat, memberikan perlindungan

yang lebih baik terhadap malware dibandingkan sistem operasi lain. Keunggulan

ini diperkuat oleh temuan (Al Fajar dkk., 2025)yang mencatat bahwa struktur

keamanan default Ubuntu membuatnya lebih jarang menjadi target serangan siber.

Kombinasi antara stabilitas jangka panjang (LTS), keamanan arsitektural yang

ketat, dan fleksibilitas portability menjadikan Ubuntu 22.04 lingkungan yang

paling andal untuk menjalankan middleware ROS 2 dan menjaga integritas

operasional robot.

3.2 Robot Operating System 2

Perkembangan teknologi robotika modern telah mengalami pergeseran

fundamental dari lingkungan laboratorium yang terkendali menuju aplikasi dunia

nyata yang dinamis, tidak terstruktur, dan seringkali kritis terhadap keselamatan.

Dalam dekade terakhir, Robot Operating System (ROS) generasi pertama telah

berfungsi sebagai standar de facto untuk penelitian akademis, menyediakan

kerangka kerja yang fleksibel untuk pengembangan perangkat lunak robotika.

Namun, seiring dengan meningkatnya kebutuhan untuk menerjemahkan hasil

penelitian menjadi produk komersial, keterbatasan arsitektural ROS1 menjadi

semakin nyata dan menghambat skalabilitas.

ROS1 awalnya dirancang untuk penelitian akademis dan tidak dibangun

dengan mempertimbangkan kendala real-time yang ketat, keamanan siber, atau

keandalan jaringan yang buruk. Ketergantungan pada master node tunggal untuk

9

penemuan (discovery) dan perutean komunikasi menciptakan titik kegagalan

tunggal (single point of failure) yang kritis. Jika master node mengalami kegagalan,

seluruh jaringan komunikasi robot akan runtuh. Selain itu, mekanisme transport

kustom yang digunakan ROS1 (TCPROS/UDPROS) tidak memiliki fitur keamanan

bawaan, membiarkan sistem terbuka terhadap penyadapan dan injeksi data, serta

tidak menjamin determinisme waktu yang diperlukan untuk kontrol perangkat keras

berkecepatan tinggi.

Menanggapi tantangan ini, komunitas robotika global memperkenalkan

Robot Operating System 2 (ROS2). ROS2 bukan sekadar pembaruan inkremental,

melainkan perombakan arsitektur total yang bertujuan untuk memenuhi standar

industri. Perubahan paling radikal adalah penghapusan master node pusat dan

adopsi Data Distribution Service (DDS) sebagai lapisan middleware komunikasi

standar industri. Transisi ini menjanjikan desentralisasi penuh, dukungan keamanan

asli melalui spesifikasi DDS-Security, dan potensi untuk operasi real-time yang

deterministik. Laporan ini menyajikan analisis komprehensif dan mendalam

mengenai arsitektur ROS2, mengevaluasi klaim kinerjanya melalui data empiris,

membedah postur keamanannya, dan memberikan panduan teknis untuk

implementasi sistem yang tangguh.

3.2.1 Fundamental Arsitektur ROS2 dan Integrasi DDS

a) Data Distribution Service (DDS) sebagai Tulang Punggung Komunikasi

Perbedaan paling mencolok antara ROS1 dan ROS2 terletak pada

lapisan transportasinya. ROS2 mengadopsi Data Distribution Service

(DDS), sebuah standar terbuka dari Object Management Group (OMG)

yang dirancang khusus untuk sistem real-time terdistribusi yang

memerlukan keandalan tinggi (Teper dkk., 2022; Ye dkk., 2023). DDS

mengimplementasikan pola komunikasi publish-subscribe yang berpusat

pada data (Data-Centric Publish-Subscribe - DCPS). Dalam paradigma ini,

fokus utama bukan pada pengelolaan koneksi antar node atau proses,

melainkan pada distribusi data itu sendiri dengan jaminan kualitas layanan

(Quality of Service - QoS) yang spesifik(Deng dkk., 2022).

10

Struktur DCPS dalam DDS menciptakan "Ruang Data Global"

(Global Data Space), sebuah konsep abstrak di mana semua data yang

dipertukarkan dalam sistem seolah-olah tersedia secara lokal bagi setiap

partisipan yang memiliki izin akses (Deng dkk., 2022). Pada gambar 3.2

dapat kita lihat gambaran ini menghilangkan kebutuhan akan server pusat

atau broker pesan, memungkinkan setiap node (disebut sebagai Domain

Participant dalam terminologi DDS) untuk menemukan dan berkomunikasi

dengan node lain secara peer-to-peer. Mekanisme penemuan otomatis

(automatic discovery) ini menggunakan multicast UDP untuk mendeteksi

keberadaan partisipan baru dalam jaringan, menegosiasikan kompatibilitas

QoS, dan membangun saluran komunikasi unicast untuk pertukaran data

aktual (Teper dkk., 2022).

Gambar 3.2 Arsitektur DDS dengan protokol DCPS (Deng dkk., 2022)

b) Lapisan Abstraksi ROS2 (RCL dan RMW)

Untuk mencegah pengembang ROS2 terkunci pada satu vendor

DDS tertentu, arsitektur ROS2 memperkenalkan lapisan abstraksi yang

canggih. Kode aplikasi pengguna (Userland Code) tidak berinteraksi

langsung dengan API DDS, melainkan melalui ROS Client Library (RCL)

(Deng dkk., 2022). RCL menyediakan antarmuka standar (dalam C++) yang

konsisten, terlepas dari implementasi DDS yang digunakan di bawahnya.

Di bawah RCL, terdapat lapisan ROS Middleware (RMW). RMW

berfungsi sebagai jembatan penerjemah yang memetakan konsep ROS

(seperti Node, Topic, Service, Action) ke dalam primitif DDS (seperti

Participant, DataWriter, DataReader) (Deng dkk., 2022). Desain ini

memungkinkan integrasi berbagai implementasi DDS, seperti eProsima

11

Fast DDS, Eclipse Cyclone DDS, atau RTI Connext, yang dapat ditukar

hanya dengan mengubah konfigurasi lingkungan (environment variable)

tanpa perlu mengkompilasi ulang kode aplikasi (Ye dkk., 2023).

c) Kebijakan Quality of Service (QoS)

Salah satu fitur paling kuat yang dibawa DDS ke dalam ekosistem

ROS2 adalah konfigurasi Quality of Service (QoS). QoS memungkinkan

pengembang untuk mendefinisikan perilaku komunikasi secara granular

untuk setiap topik, menyesuaikan dengan kebutuhan aplikasi yang spesifik

(Deng dkk., 2022).

Beberapa kebijakan QoS yang paling relevan untuk sistem robotika

meliputi:

Reliability (Keandalan):

o Reliable: Menjamin pengiriman pesan, mirip dengan TCP. Jika

paket hilang, middleware akan mencoba mengirim ulang. Ini penting

untuk perintah kontrol kritis atau parameter konfigurasi.

o Best Effort: Mengirim pesan tanpa jaminan penerimaan, mirip

dengan UDP. Ini ideal untuk aliran data sensor frekuensi tinggi

(seperti video atau LiDAR) di mana data terbaru lebih penting

daripada kelengkapan data historis.

Durability (Daya Tahan):

o Volatile: Pesan hanya dikirim ke pelanggan yang saat ini terhubung.

Pesan lama tidak disimpan.

o Transient Local: Penerbit menyimpan sejumlah pesan terakhir

(sesuai history depth) dan mengirimkannya ke pelanggan baru yang

bergabung belakangan ("late-joiners"). Ini sangat berguna untuk

data statis seperti peta navigasi atau deskripsi robot.

History & Depth: Menentukan berapa banyak pesan yang disimpan dalam

antrian DDS sebelum pesan lama ditimpa.

12

Deadline: Menetapkan batas waktu maksimum yang diharapkan untuk

kedatangan pesan baru. Jika batas ini dilanggar, sistem dapat memicu

kejadian kesalahan (error event), yang krusial untuk pemantauan kesehatan

sistem real-time.

d) Keunggulan Desain Terdistribusi

Adopsi arsitektur terdistribusi penuh melalui DDS memberikan

keuntungan strategis bagi pengembangan sistem Multi-Robot Systems

(MRS). Dalam arsitektur terpusat ROS1, penskalaan sistem ke banyak robot

memerlukan konfigurasi jaringan yang rumit dan sangat rentan terhadap

kegagalan jaringan yang memisahkan robot dari master. Dalam ROS2,

setiap robot adalah entitas mandiri yang berpartisipasi dalam domain DDS

yang sama. Hal ini memfasilitasi kolaborasi kawanan (swarm robotics), di

mana robot dapat masuk dan keluar dari jaringan secara dinamis tanpa

mengganggu operasi keseluruhan. Selain itu, DDS mendukung mekanisme

pembagian data yang efisien, memungkinkan robot untuk berbagi persepsi

lingkungan secara kolaboratif dengan latensi minimal.

3.2.2 Primitif Komunikasi: Node, Topic, Service, dan Action

Sistem ROS 2 membangun interaksi antar komponen melalui beberapa

primitif komunikasi utama. Setiap primitif memiliki peran unik dan dipetakan

secara spesifik ke entitas DDS di bawahnya (Deng dkk., 2022).

a) Node dan Klasifikasi Fungsional

Node adalah unit pemrosesan tunggal yang menjalankan algoritma

tertentu. Di tingkat middleware, setiap node merepresentasikan satu atau

lebih DDS Domain Participant. Teper dkk. (2022) mengklasifikasikan node

berdasarkan mekanisme pemicu (trigger) untuk analisis waktu. Sensor

Node bekerja secara time-triggered (berdasarkan interval waktu). Filter atau

Actuator Node bekerja secara event-triggered (berdasarkan kedatangan

pesan). Sementara Fusion Node bekerja secara hibrida untuk

menggabungkan data dari berbagai sumber.

13

b) Mekanisme Discovery (Penemuan)

ROS 2 tidak lagi menggunakan master node untuk menghubungkan

antar node. Sebagai gantinya, sistem menggunakan Simple Discovery

Protocol (SDP) dari DDS. Proses ini melibatkan dua tahap utama, tahap

pertama adalah Participant Discovery Protocol (PDP) untuk mendeteksi

node baru dalam jaringan melalui multicast, tahap kedua adalah Endpoint

Discovery Protocol (EDP) untuk mencocokkan publisher dan subscriber

berdasarkan topik dan kebijakan QoS yang sesuai (Deng dkk., 2022).

c) Topic

Topic memfasilitasi komunikasi asinkron melalui pola publish-

subscribe. Pengembang menggunakan topik untuk aliran data kontinu.

Dalam implementasi DDS, sebuah topik terdiri dari DataWriter pada sisi

penerbit dan DataReader pada sisi pelanggan. ROS 2 mengelola distribusi

data ini secara desentralisasi, sehingga setiap node mengirimkan data

langsung ke pelanggan tanpa melalui perantara pusat (Deng dkk., 2022).

d) Service

Service bekerja dengan pola request-response yang bersifat sinkron.

Sebuah node klien mengirimkan permintaan dan menunggu balasan dari

node pelayan (server). Secara teknis, ROS 2 mengimplementasikan service

menggunakan dua pasang topik internal. Sepasang topik digunakan untuk

mengirim permintaan dan menerima balasan, sementara sepasang lainnya

mengelola metadata transaksi. Primitif ini sangat efektif untuk tugas

transaksional singkat seperti permintaan kalibrasi.

e) Action

Action merupakan primitif yang menggabungkan mekanisme

service dan topic untuk menangani tugas berdurasi panjang. Action terdiri

dari tiga bagian: goal (permintaan target), feedback (laporan progres

asinkron), dan result (hasil akhir). ROS 2 menggunakan lima topik internal

DDS untuk mendukung siklus hidup sebuah action (Deng dkk., 2022).

14

Mekanisme ini memastikan robot manipulator dapat mengirimkan progres

gerakan lengan secara berkala ke antarmuka pengguna sambil tetap

menjalankan kalkulasi lintasan.

f) Interface dan Parameter

Komunikasi memerlukan definisi struktur data baku melalui file

.msg, .srv, dan .action. Selain itu, ROS 2 mengelola Parameter sebagai nilai

konfigurasi di dalam node. Node lain dapat membaca atau memperbarui

nilai ini secara dinamis melalui service standar yang disediakan oleh RCL.

Hal ini mempermudah penyesuaian batas kecepatan atau parameter kendali

robot tanpa memerlukan kompilasi ulang kode.

3.2.3 Manajemen Eksekusi dan Analisis Waktu (Timing Analysis)

a) Model Eksekutor ROS2: Jantung Determinisme

Dalam sistem operasi robotika, penerimaan pesan hanyalah langkah

awal. Langkah kritis berikutnya adalah penjadwalan komputasi:

menentukan kapan dan dalam urutan apa kode pengguna (callback)

dieksekusi sebagai respons terhadap pesan atau timer. Dalam ROS2,

tanggung jawab ini dipegang oleh Executor.

Executor ROS2 berbeda secara fundamental dari model threading

tradisional. Alih-alih membiarkan setiap callback berjalan pada thread

sistem operasi tersendiri, Executor mengelola kumpulan callback di dalam

satu atau beberapa thread pengguna. Memahami mekanisme internal

Executor sangat penting untuk menjamin determinisme waktu (Teper dkk.,

2022).

Mekanisme kerja Executor dapat dibagi menjadi dua fase utama:

• Polling Point (Titik Poling): Pada fase ini, Executor berinteraksi dengan

lapisan RMW untuk memeriksa ketersediaan data baru. Executor

mengumpulkan status dari semua timer dan subscription yang terdaftar. Jika

sebuah timer telah habis waktunya atau pesan baru telah tiba di antrian

subscription, callback terkait ditandai sebagai "Activated". Executor

15

kemudian mengambil sampel (sampling) dari job (instansiasi tugas) yang

diaktifkan ini untuk dieksekusi.

• Processing Window (Jendela Pemrosesan): Setelah sampel diambil,

Executor memasuki fase eksekusi. Dalam implementasi Single-Threaded

Executor standar, callback dieksekusi secara serial (berurutan) tanpa

preemption. Urutan eksekusi ditentukan oleh kebijakan prioritas internal

Executor. Secara default (misalnya pada ROS2 Foxy), timer memiliki

prioritas lebih tinggi daripada subscription untuk memastikan tugas

periodik (seperti loop kontrol) didahulukan.

Implikasi dari desain non-preemptif ini sangat signifikan: jika satu

callback memakan waktu eksekusi terlalu lama (long-running callback), ia

akan memblokir eksekusi callback lain yang mungkin lebih kritis,

menyebabkan fenomena blocking dan meningkatkan latensi sistem secara

keseluruhan.

b) Analisis Rantai Sebab-Akibat (Cause-Effect Chains)

Untuk mengevaluasi kinerja end-to-end sebuah sistem robot, kita

tidak bisa hanya melihat satu node secara isolasi. Sebaliknya, kita harus

menganalisis "Rantai Sebab-Akibat" (Cause-Effect Chains). Rantai ini

merepresentasikan jalur propagasi informasi dari stimulus fisik (misalnya,

deteksi rintangan oleh sensor) melalui serangkaian node pemrosesan (filter,

fusi sensor, perencana jalur) hingga menghasilkan respons fisik (misalnya,

perintah berhenti ke motor) (Teper dkk., 2022).

Dua metrik kunci didefinisikan untuk mengukur kinerja rantai ini:

• Maximum Reaction Time (MRT): Waktu maksimum yang diperlukan

sistem untuk bereaksi terhadap peristiwa eksternal. Ini mengukur latensi

terburuk dari saat peristiwa terjadi di lingkungan hingga aktuator mulai

bergerak. Metrik ini krusial untuk keselamatan, misalnya dalam

pengereman darurat.

16

• Maximum Data Age (MDA): Usia maksimum data yang digunakan untuk

menghasilkan output aktuator. Ini mengukur kesegaran informasi. Dalam

sistem kontrol umpan balik (feedback control), menggunakan data yang

terlalu tua (MDA tinggi) dapat menyebabkan ketidakstabilan sistem atau

osilasi.

c) Klasifikasi Node dan Propagasi Data

Dalam analisis timing, node ROS2 diklasifikasikan berdasarkan mekanisme

pemicu (trigger) dan peran fungsionalnya:

• Sensor Node (Time-Triggered): Dipicu oleh timer periodik untuk membaca

perangkat keras dan menerbitkan data. Node ini adalah awal dari rantai

sebab-akibat.

• Filter/Actuator Node (Event-Triggered): Dipicu oleh kedatangan pesan

pada topik subscription. Node ini memproses data dan meneruskannya

(filter) atau mengonsumsinya (actuator).

• Fusion Node (Hybrid): Menggabungkan data dari beberapa sumber. Bisa

dipicu oleh timer (mengambil data terbaru dari buffer) atau oleh salah satu

pesan masuk (mekanisme sinkronisasi pesan).

Propagasi data dalam rantai ini melibatkan dua jenis komunikasi:

• Inter-Node: Komunikasi antar node melalui topik DDS. Latensi

dipengaruhi oleh overhead serialisasi, transmisi jaringan, dan antrian DDS.

• Intra-Node: Komunikasi antar callback di dalam node yang sama

(misalnya, callback sensor menyimpan data ke variabel global yang

kemudian dibaca oleh callback timer). Latensi di sini didominasi oleh

jadwal eksekusi Executor.

17

d) Analisis Utilisasi Sistem: Under-Utilized vs Over-Utilized

Temuan penelitian menyoroti dampak kritis dari tingkat utilisasi

sistem terhadap kinerja timing.

• Sistem Under-Utilized: Jika total waktu komputasi semua callback dalam

satu siklus kurang dari periode timer pemicu, sistem berada dalam kondisi

stabil. Latensi end-to-end dapat diprediksi dan umumnya linear terhadap

jumlah node dalam rantai.

• Sistem Over-Utilized: Jika total beban komputasi melebihi periode timer,

antrian pesan akan mulai menumpuk. Karena sifat Executor yang serial,

callback yang tertunda akan semakin mundur dalam antrian eksekusi.

Penelitian menunjukkan bahwa degradasi kinerja dalam kondisi ini tidak

linear, latensi dapat meledak secara eksponensial dan data lama mungkin

diproses jauh setelah relevansinya hilang. Sistem robotika real-time harus

dirancang untuk selalu beroperasi dalam kondisi under-utilized untuk

menjamin determinisme.

3.2.4 Optimalisasi Sistem Operasi untuk Real-Time ROS2

a) Tantangan Kernel Linux Standar (Native-Linux)

Meskipun arsitektur ROS2 dirancang untuk efisiensi, kinerjanya

pada akhirnya dibatasi oleh sistem operasi tempat ia berjalan. Sebagian

besar implementasi ROS2 berjalan di atas distribusi Linux standar (seperti

Ubuntu). Kernel Linux standar ("Native-Linux") dirancang sebagai sistem

operasi General Purpose (GPOS). Tujuan utamanya adalah

memaksimalkan throughput rata-rata dan keadilan (fairness) pembagian

CPU antar proses.

Dalam desain GPOS, proses real-time tidak selalu mendapatkan

prioritas mutlak. Ada bagian kode kernel (seperti interrupt handlers dan

critical sections yang dilindungi oleh spinlock) yang bersifat non-preemptif.

Artinya, jika kernel sedang mengeksekusi kode ini, ia tidak dapat dihentikan

bahkan oleh tugas real-time dengan prioritas tertinggi sekalipun. Fenomena

ini menciptakan unbounded latency (latensi tak terbatas).

18

Data empiris menunjukkan bahwa pada beban CPU tinggi

(misalnya, saat menjalankan algoritma persepsi berat), Native-Linux dapat

mengalami lonjakan latensi (latency spikes) hingga 6243 mikrotik (µs) (Ye

dkk., 2023). Untuk robot industri yang memerlukan siklus kontrol 1 ms

(1000 µs), lonjakan sebesar 6 ms berarti hilangnya 6 siklus kontrol berturut-

turut, yang dapat menyebabkan gerakan robot tersendat (jitter) atau

penyimpangan lintasan.

b) Solusi Real-Time: Patch Preempt_RT

Untuk mengatasi masalah ini tanpa meninggalkan ekosistem Linux

yang kaya, solusi standar industri adalah menerapkan patch Preempt_RT

(Real-Time Preemption) pada kernel Linux (Ye dkk., 2023). Preempt_RT

secara fundamental mengubah perilaku kernel dengan tujuan membuat

hampir seluruh kode kernel dapat di-preempt (diinterupsi).

Mekanisme teknis Preempt_RT meliputi:

• Mengubah Spinlock menjadi Mutex: Dalam Native-Linux, spinlock

menahan CPU secara aktif (busy-wait) dan mematikan preemption.

Preempt_RT menggantinya dengan rt_mutex yang memungkinkan thread

pemegang kunci untuk tidur dan di-preempt oleh tugas prioritas lebih tinggi.

• Threaded Interrupt Handlers: Menjalankan penangan interupsi (interrupt

handlers) sebagai thread kernel biasa yang memiliki prioritas dan dapat

dijadwalkan. Ini mencegah interupsi perangkat keras memblokir tugas real-

time kritis.

• High-Resolution Timers: Mengaktifkan pewaktu presisi tinggi untuk

penjadwalan yang akurat hingga tingkat mikro detik.

c) Evaluasi Komparatif: Native vs Preempt_RT

Pengujian ekstensif menggunakan alat cyclictest standar industri

untuk mengukur latensi kernel menunjukkan perbedaan drastis antara

19

Native-Linux dan Preempt_RT Linux di bawah beban penuh (stress test

CPU dan memori), data.

Tabel 3.1 Perbandingan Native-Linux & Preempt_RT Linux (Ye dkk., 2023)

Metrik

Evaluasi

Native-Linux

(Kernel Standar)

Preempt_RT Linux

(Kernel Teroptimasi)
Peningkatan

Latensi

Minimum
2 µs 1 µs Marjinal

Latensi Rata-

rata

3 µs

1-2 µs

Signifikan

Latensi

Maksimum

6243 µs (6.2 ms)

82 µs (0.08 ms)
>98%

Reduksi

Jitter Siklus > 400 µs < 60 µs Sangat Stabil

Distribusi

Jitter

Fluktuatif, Ekor

Panjang

Distribusi Normal

Sempit

Deterministik

Data ini menegaskan bahwa untuk aplikasi kontrol real-time,

penggunaan Preempt_RT bukan sekadar opsi, melainkan kebutuhan. Kernel

standar tidak dapat menjamin tenggat waktu (deadline) yang ketat,

sementara kernel Preempt_RT menjaga latensi jauh di bawah ambang batas

100 µs yang umumnya ditoleransi dalam kontrol motor presisi tinggi.

d) Kinerja Komunikasi: ROS1 vs ROS2

Selain optimalisasi kernel, kinerja komunikasi antar-node juga

dievaluasi. Perbandingan antara ROS1 (berbasis TCP/UDP kustom) dan

ROS2 (berbasis DDS) menunjukkan karakteristik yang menarik:

• Muatan Data Kecil (< 64 KB): Kinerja ROS1 dan ROS2 relatif sebanding.

Overhead serialisasi dan lapisan abstraksi DDS di ROS2 sedikit terlihat,

namun tidak signifikan.

• Muatan Data Besar (> 512 KB): ROS2 mulai menunjukkan keunggulan

kinerja yang jelas. Mekanisme fragmentasi dan penyusunan ulang data yang

20

efisien dalam DDS menangani bandwidth tinggi lebih baik daripada

tumpukan jaringan ROS1.

• Stabilitas Latensi: Pada kernel Native-Linux, ROS2 menunjukkan

fluktuasi latensi yang lebih besar seiring bertambahnya ukuran data

dibandingkan ROS1. Namun, ketika dijalankan di atas Preempt_RT Linux,

fluktuasi ini hilang, dan ROS2 memberikan latensi yang sangat rendah dan

stabil, bahkan untuk data besar.

e) Optimalisasi Intra-Process (Zero-Copy)

Salah satu fitur kinerja terpenting di ROS2 adalah komunikasi intra-

process. Ketika dua node berjalan dalam satu proses sistem operasi yang

sama, ROS2 dapat melewati tumpukan jaringan DDS sepenuhnya. Alih-alih

melakukan serialisasi data, pengiriman ke soket jaringan, dan deserialisasi,

ROS2 hanya mengirimkan pointer ke lokasi memori data tersebut.

Metode "Zero-Copy" ini memberikan pengurangan latensi yang

masif, terutama untuk data sensor besar seperti gambar kamera 4K atau

awan poin LiDAR. Evaluasi menunjukkan bahwa latensi intra-process tetap

datar dan hampir nol, tidak peduli seberapa besar ukuran datanya, berbeda

jauh dengan komunikasi inter-process yang latensinya naik secara linear

terhadap ukuran data.

3.3 VMware Workstation

VMware berfungsi sebagai platform virtualisasi yang memisahkan

perangkat keras fisik dari sistem operasi sehingga satu server fisik dapat

menjalankan banyak mesin virtual secara bersamaan. Tesis Savola menjelaskan

bahwa hypervisor VMware, seperti ESXi, membuat lapisan virtual terpisah yang

mengelola alokasi CPU, memori, penyimpanan, dan jaringan untuk setiap VM

secara efisien (Savola, 2021). Dengan struktur ini, VMware meningkatkan utilisasi

perangkat keras sehingga perusahaan tidak perlu menyediakan satu server fisik

untuk satu aplikasi. Pendekatan ini menurunkan biaya Capex dan Opex serta

21

mendukung tren datacenter modern dan cloud computing. Gambar 3.3 dibawah ini

adalah tampilan halaman utama dari VMware.

Gambar 3.3 Halaman utama VMware

VMware memiliki ekosistem produk virtualisasi server yang luas. ESXi

berfungsi sebagai hypervisor tipe-1 yang langsung berjalan di atas perangkat keras.

vCenter menyediakan manajemen terpusat untuk banyak host ESXi, termasuk

pengaturan kluster, distribusi beban, hingga automasi migrasi VM melalui vMotion

atau Storage vMotion. Savola menekankan bahwa sejak rilis VMware Workstation

pada 1999 dan peluncuran vSphere tahun 2009, VMware berkembang menjadi

platform virtualisasi komersial yang dominan berkat inovasi berkelanjutan dan

stabilitas produknya (Savola, 2021). Kombinasi ESXi dan vCenter menjadi dasar

arsitektur virtualisasi di berbagai perusahaan, ISP, dan pusat data.

VMware juga menyediakan mekanisme migrasi dan pengelolaan

infrastruktur berskala besar. Tesis tersebut menunjukkan proses migrasi VM dari

satu platform ke platform VMware lain melalui perencanaan kapasitas, konfigurasi

jaringan, pembuatan datastore migrasi, hingga pemindahan VM tanpa mengganggu

layanan produksi pelanggan (Savola, 2021). Setelah migrasi selesai, host lama

dapat dihapus, diamankan, dan digunakan kembali. Proses ini menggambarkan

kekuatan VMware dalam menyediakan infrastruktur virtual yang fleksibel, mudah

dikelola, dan mampu mendukung operasi tingkat perusahaan.

22

3.4 U2D2 Communication Interface

Sistem Robotic Arm System menggunakan arsitektur perangkat keras

terpusat untuk mengelola komunikasi antara unit komputasi dan aktuator.

Pengembang menempatkan seluruh komponen kontrol utama dalam satu kotak

kontrol tunggal. Kotak kontrol ini berisi catu daya, komputer pengendali, tombol

darurat, dan adaptor komunikasi U2D2 (Kim dkk., 2023). Gambar 3.4 adalah

bentuk dari board U2D2 yang digunakan untuk komunikasi antara komputer

dengan robot OpenManipulator.

Gambar 3.4 Board U2D2

Komputer pengendali terhubung ke adaptor U2D2 melalui sambungan

USB. Adaptor ini berfungsi mengubah sinyal USB dari komputer menjadi sinyal

serial RS-485 yang diperlukan oleh motor (Kim dkk., 2023). Sifat serial dari

protokol ini memungkinkan sistem menghubungkan beberapa dudukan (mount)

secara paralel hanya dengan menggunakan satu unit U2D2 (Kim dkk., 2023).

Desain ini menyederhanakan pengkabelan dan mendukung modularitas sistem

tanpa menambah perangkat keras antarmuka yang berlebihan.

3.5 Robot OpenMANIPULATOR-X

OpenManipulator-X dirancang sebagai manipulator serial, sebuah

konfigurasi di mana serangkaian link (ekstensi mekanis) dihubungkan secara

berurutan oleh sambungan (joint) revolute yang digerakkan oleh motor. Struktur

23

topologi robot ini terdiri dari tujuh segmen utama: basis (base), pinggang (waist),

bahu (shoulder), lengan atas (upper arm), siku (elbow), lengan bawah (lower arm),

dan pergelangan (wrist) atau end-effector (Adzeman dkk., 2020). Gambar 3.5

dibawah ini adalah bentuk dari robot OpenManipulator-X.

Gambar 3.5 Robot OpenManipulator-X

Salah satu fitur paling distingtif dari OpenManipulator-X adalah

penggunaan aktuator seri DYNAMIXEL-X seperti pada gambar 3.6. Motor pintar

ini mengadopsi teknologi komunikasi daisy chain, yang memungkinkan kabel data

dan daya dihubungkan secara seri dari satu motor ke motor berikutnya. Arsitektur

ini secara drastis mengurangi kompleksitas pengkabelan yang biasanya menjadi

masalah pada robot artikulasi, serta memungkinkan modularitas tinggi di mana

pengguna dapat menambah atau mengurangi jumlah sambungan (DOF) sesuai

kebutuhan aplikasi spesifik. Selain itu, sebagian besar komponen struktural robot

ini dirancang agar dapat diproduksi menggunakan teknologi pencetakan 3D (3D

printing), dengan fail desain yang disediakan secara terbuka oleh Robotis,

menjadikannya platform yang sangat adaptif untuk modifikasi riset (Adzeman dkk.,

2020).

24

Gambar 3.6 Motor servo Dynamixel

OpenManipulator-X memiliki spesifikasi operasional yang dioptimalkan

untuk beban kerja ringan dan presisi moderat. Tabel 3.2 dibawah ini akan

merangkum parameter teknis utama perangkat keras ini.

Tabel 3.2 Spesifikasi Robot OpenManipulator-X

Parameter Satuan Nilai spesiikasi

Derajat Kebebasan (DOF) - 4

Beban Maksimum (Payload) gram 500

Berat Total kg 0,7

Rentang Gripper mm 20-75

Kecepatan Sambungan RPM 46

Repeatability mm <0,2

Kontroler Utama - PC, OpenCR

25

Bab IV

Deskripsi Data dan Hasil Praktik Kerja Lapangan

4.1 Persiapan Environment Kerja

Tahap awal pengembangan sistem kendali robot dimulai dengan

mempersiapkan lingkungan kerja perangkat lunak (software environment). Instalasi

sistem operasi Ubuntu 22.04 LTS dilakukan pada komputer pengendali (PC) di

dalam virtual machine VMware seperti pada gambar 4.1. Setelah instalasi pada

VMware selesai, maka akan dilanjutkan dengan instalasi OS Ubuntu yang bisa kita

lihat pada gambar 4.2. Pemilihan sistem operasi ini didasarkan pada efisiensi

arsitektur dan manajemen sumber daya yang lebih unggul dibandingkan sistem

operasi lain, terutama pada perangkat dengan spesifikasi terbatas (Al Fajar dkk.,

2025).

Gambar 4.1 Instalasi Ubuntu pada VMware

26

Gambar 4.2 Instalasi OS Ubuntu

Selanjutnya, pada gambar 4.3 dilakukan instalasi Robot Operating System

2 (ROS 2) dikonfigurasi sebagai kerangka kerja utama untuk komunikasi antar node

robot. Perintah yang digunakan adalah sudo apt install ros-humble-desktop.

Password: <masukkan password OS>

Gambar 4.3 Instalasi ROS2

Workspace ROS 2 dibuat dan diatur, serta paket-paket driver yang

diperlukan untuk OpenManipulator-X dikompilasi seperti pada gambar 4.4 dan 4.5.

setelah berhasil maka akan file akan tertata seperti pada gambar 4.6.

27

Gambar 4.4 Instalasi paket OpenManipulator-X

Gambar 4.5 Pembuatan folder workspace dan instalasi paket independen

Gambar 4.6 Tampilan paket independen yang telah di instalasi

Setelah proses instalasi selesai, pada gambar 4.7 dapat kita lihat cara untuk

memverifikasi keberhasilan konfigurasi dilakukan dengan memeriksa daftar topik

yang aktif pada sistem ROS 2 melalui terminal dengan perintah ros2 topic list.

Langkah ini krusial untuk memastikan bahwa lingkungan pengembangan telah siap

digunakan untuk tahap simulasi maupun eksekusi real-time. Topic yang digunakan

pada penelitian ini ada 3, yaitu:

a. /arm_controller/joint_trajectory

b. /rosout

c. /clock

28

Gambar 4.7 Output dari ros2 topic list

Gambar 4.8 menunjukkan bagaimana cara distribusi data dari Komputer

menuju robot OpenManipulator-X. Data pada komputer akan dikirimkan kepada

U2D2, kemudian data akan di terjemahkan oleh U2D2 menjadi protokol

komunikasi serial TTL(Transistor-Transistor Logic), sinyal data ini kemudian

dikirim ke U2D2 Power Hub Board menggunakan kabel TTL, yang juga menerima

daya listrik stabil 12V 5A. Kemudian Power Hub menyatukan jalur data dan sumber

listrik ke dalam satu jalur distribusi. Akhirnya, kabel TTL mentransmisikan paket

gabungan tersebut ke robot, dimana setiap aktuator Dynamixel membaca data,

memvalidasi ID, dan menggerakkan sendi robot sesuai perintah.

Gambar 4.8 Ilustrasi koneksi PC dengan robot OpenManipulator-X

29

Dapat dilihat pada gambar 4.9, ini adalah ilustrasi dari posisi robot arm dan

titik tujuan yang digunakan untuk pengujian. Robot akan berada pada titik A, dan

berdiri dengan posisi init pose seperti pada gambar 4.10.

Gambar 4.9 Ilustrasi posisi robot arm dan titik tujuan

Gambar 4.10 Keterangan joint dan Init pose

Pengambilan data dari setiap titik tujuan robot dilakukan dengan cara

manual, yaitu dengan cara mengambil data sensor dari setiap joint yang pada robot

arm. Untuk satuan koordinat sudut yang digunakan untuk setiap joint dari robot

arm ini adalah radian, pada tabel 4.1 bisa kita lihat untuk koordinat setiap titik yang

digunakan pada penelitian ini.

30

Tabel 4.1 Koordinat joint titik tujuan

Titik Joint 1 Joint 2 Joint 3 Joint 4

Home 1.65 -0.89 0.82 1.03

B1 -0.5 0.23 0.15 0.22

B2 -0.02 -0.75 0.71 1.03

B3 -1.62 -0.93 1.04 0.73

B4 0.45 0.23 0.15 0.22

4.2 Pengoperasian Robot Menggunakan Simulator Gazebo

Sebelum pengujian dilakukan pada perangkat keras fisik, simulasi

dijalankan menggunakan Gazebo. Hal ini bertujuan untuk memvalidasi logika

pergerakan dan algoritma kendali tanpa risiko kerusakan pada perangkat keras.

Model robot yang dideskripsikan dalam format URDF (Unified Robot Description

Format) dimuat ke dalam lingkungan simulasi kosong di Gazebo seperti pada

gambar 4.11.

Gambar 4.11 Tampilan model robot arm pada simulator Gazebo

31

Kemudian perintah ros2 launch open_manipulator_x_moveit_config

servo.launch.py pada gambar 4.12 harus dijalankan terlebih dahulu agar robot arm

pada simulator dapat berjalan.

Gambar 4.12 Perintah MoveIt servo secara real-time

Perintah kecepatan dan posisi dikirimkan melalui terminal ROS 2 untuk

menggerakkan sendi-sendi robot virtual. Respons visual robot dalam simulator

diamati untuk memastikan kinematika gerak berjalan sesuai dengan logika yang

diharapkan. Simulasi ini membuktikan bahwa node pengendali berhasil

menerjemahkan perintah topik menjadi aksi gerak pada joint robot, sebagaimana

ditunjukkan pada visualisasi simulasi. Keberhasilan pada tahap ini menjadi

indikator bahwa algoritma siap diterapkan pada robot fisik.

4.3 Pengoperasian Robot Fisik Secara Real-Time

Pada tahap ini, robot fisik OpenManipulator-X dihubungkan ke komputer

pengendali menggunakan adaptor U2D2. Adaptor ini berfungsi mengubah sinyal

data dari USB komputer menjadi sinyal serial RS-485 yang digunakan oleh aktuator

DYNAMIXEL (Kim dkk., 2023). Hak akses (permission) diberikan pada port USB

ttyUSB0 agar ROS 2 dapat berkomunikasi secara langsung dengan motor servo.

Seperti pada gambar 4.13 dapat kita lihat hasil dari perintah ls -l /dev/ttyUSB0 yang

menghasilkan crw-rw-rw berarti port telah memiliki izin untuk baca/tulis.

32

Gambar 4.13 Verifikasi port USB

Launch file utama dijalankan untuk mengaktifkan seluruh node pengendali

perangkat keras. Dapat di lihat pada gambar 4.14 dan 4.15 terdapat dua perintah

yang digunakan sebagai launch file, yaitu ros2 launch

open_manipulator_x_bringup hardware.launch.py dan ros2 launch

open_manipulator_x_moveit_config servo.launch.py, kedua perintah ini harus

berjalan secara bersamaan di dua terminal yang berbeda saat akan melakukan

pengoperasian robot fisik secara real-time.

Gambar 4.14 Perintah launch torsi ke hardware

33

Gambar 4.15 Perintah MoveIt servo secara real-time

4.4 Pengujian Gerakan Robot Pada Simulator Gazebo

Pengujian pada simulator gazebo digunakan untuk memastikan koordinat

sudut yang digunakan sudah benar dan tidak akan melewati batas kemampuan dari

robot. Pengujian fungsionalitas gerak robot dibagi menjadi dua skenario utama

untuk mengevaluasi presisi posisi dan fleksibilitas lintasan, yaitu pengujian point-

to-point dan multi-point. Pengujian ini dimulai dengan robot arm berada pada init

pose dimana semua koordinat sudut joint dimulai dari nilai 0.00 radian seperti yang

bisa kita lihat pada gambar 4.16.

34

Gambar 4.16 Init pose dari robot OpenManipulator-X

4.4.1 Pengujian Gerak Point to Point

Pengujian ini memfokuskan validasi pada akurasi pencapaian satu koordinat

target dalam ruang simulasi. Sistem simulator menerima input koordinat tujuan dan

menghitung perpindahan sudut sendi yang diperlukan secara otomatis. Lingkungan

Gazebo kemudian memvisualisasikan respons pergerakan sendi robot dari posisi

awal menuju posisi akhir tanpa hambatan fisik.

Sistem pemantau mencatat deviasi antara posisi yang diperintahkan dan

posisi aktual yang dicapai oleh model robot dalam simulasi. Hasil pengamatan

menunjukkan bahwa controller virtual mampu mengarahkan end-effector ke titik

sasaran dengan presisi tinggi. Validasi ini memastikan bahwa parameter kinematika

yang didefinisikan dalam file URDF telah sesuai dengan spesifikasi teknis robot,

sehingga aman untuk diterapkan pada robot fisik.

Ilustrasi pergerakan robot pada simulator akan ditampilkan pada gambar

4.17, dimana bagian sebelah kiri adalah init pose dan sebelah kanan adalah ketika

robot telah sampai pada koordinat titik B1. Hasil dari pengujian dapat dilihat pada

tabel 4.2. Kode program dapat dilihat pada Lampiran 1.

35

Gambar 4.17 Ilustrasi gerak point-to-point pada simulator

Tabel 4.2 Hasil pengujian point-to-point simulator

Gerakan Keberhasilan

Init pose →Home ✓

Init pose → B1 ✓

Init pose → B2 ✓

Init pose → B3 ✓

Init pose → B4 ✓

4.4.2 Pengujian Gerak Multi Point

Pengujian gerak multi-point dalam simulasi bertujuan untuk mengevaluasi

kelancaran interpolasi lintasan yang kompleks. Sistem mengirimkan serangkaian

titik koordinat berurutan yang membentuk lintasan melengkung atau berpola

tertentu ke dalam simulator. Physics engine Gazebo menyimulasikan dinamika

gerakan, termasuk inersia dan gravitasi, saat robot berpindah antar titik.

Simulator memvisualisasikan bagaimana kontroler menangani transisi

kecepatan dan akselerasi di setiap titik singgah. Pengamatan difokuskan pada

deteksi gerakan yang tersendat atau overshoot yang mungkin terjadi akibat

kesalahan parameter PID virtual. Hasil simulasi mengonfirmasi bahwa robot virtual

dapat mengikuti lintasan yang telah ditentukan secara mulus, membuktikan bahwa

algoritma pembentukan jalur berfungsi dengan baik sebelum diuji pada beban kerja

nyata.

36

Ilutrasi pergerakan robot pada simulator akan ditampilkan pada gambar

4.18, dimana bagian sebelah kiri adalah init pose, tengah adalah ketika robot sampai

pada koordinat titik B1 dan sebelah kanan adalah ketika robot telah sampai pada

koordinat titik B2. Hasil dari pengujian dapat dilihat pada tabel 4.3. Kode program

dapat dilihat pada Lampiran 2.

Gamar 4.18 Ilustrasi gerak multi-point pada simulator

Tabel 4.3 Hasil pengujian multi-point simulator

Gerakan Keberhasilan

Init pose → B1 – B2 ✓

Init pose → B3 – B2 ✓

Init pose → B2 – B4 ✓

Init pose → B1 – B3 ✓

Init pose → B4 – B3 ✓

Init pose → Home – B1 ✓

4.5 Pengujian Gerakan Robot Fisik Secara Real-time

Pengujian gerakan robot fisik dilakukan dengan menggunakan robot

OpenManipulator-X dimana posisi awal dan koordinat sudut yang digunakan sama

dengan pengujian menggunakan simulator.

4.5.1 Pengujian Gerak Point to Point

Sistem mengawali operasi dengan membangkitkan node ROS 2 sebagai

pusat kendali. Node ini segera membangun jalur komunikasi publisher ke topik

perintah robot. Kode program kemudian mengaktifkan mekanisme penghitung

waktu mundur (timer) sebelum transmisi data bermula. Langkah ini memberi jeda

krusial bagi sistem untuk mematangkan stabilitas koneksi jaringan.

37

Setelah koneksi stabil, fungsi penyusun pesan mulai merakit paket instruksi

gerak. Paket ini memuat identitas setiap sendi beserta koordinat sudut tujuan dalam

satuan radian. Kode juga menetapkan batas durasi eksekusi agar kontroler robot

dapat menghitung interpolasi kecepatan secara otomatis. Mekanisme pengirim

lantas melontarkan paket data tersebut menuju aktuator robot dalam satu kali

pengiriman.

Sistem tidak langsung mematikan proses setelah pengiriman data terjadi.

Program sengaja menahan siklus eksekusi tetap hidup selama beberapa detik hingga

robot tuntas mencapai target. Penahanan ini mencegah pemutusan koneksi prematur

yang dapat menghentikan robot di tengah jalan. Akhirnya, fungsi utama menutup

node secara bersih dan mengakhiri program tanpa memicu pesan kesalahan sistem.

Ilustrasi gerakan robot dapat dilihat pada gambar 4.19, dimana gambar

sebelah kiri adalah init pose dan sebelah kanan adalah ketika robot telah sampai

pada titik home. Hasil dari pengujian dapat dilihat pada tabel 4.4, waktu eksekusi

diperoleh dari stopwatch yang dinyalakan pada saat program dijalankan pada

komputer dan dihentikan ketika komputer telah menyatakan program selesai. Pada

tabel 4.5 dapat dilihat berapa lama waktu respon robot saat perintah dijalankan,

kolom waktu respon diperoleh dari pengurangan nilai kolom waktu eksekusi di

tabel 4.4 dengan empat detik sebagai waktu operasi pada program. Empat detik

tersebut diperoleh dari satu detik untuk delay pada program kemudian tiga detik

untuk operasi robot (lampiran 3 line kode nomor 19 dan 47). Kode program dapat

dilihat pada Lampiran 3.

Gambar 4.19 Ilustrasi Gerak point-to-point

38

Tabel 4.4 Hasil pengujian poin-to-point robot fisik

Gerakan Keberhasilan Waktu Eksekusi

Init pose →Home ✓ 4,97 detik

Init pose → B1 ✓ 4,35 detik

Init pose → B2 ✓ 4,79 detik

Init pose → B3 ✓ 4,75 detik

Init pose → B4 ✓ 4,88 detik

Tabel 4.5 Waktu Respon robot

Gerakan Waktu Respon

Init pose →Home 0,97 detik

Init pose → B1 0,35 detik

Init pose → B2 0,79 detik

Init pose → B3 0,75 detik

Init pose → B4 0,88 detik

4.5.2 Pengujian Gerak Multi Point

Sistem memulai rangkaian pengujian ini dengan menginisialisasi node

pengendali yang terhubung ke topik lintasan standar antarmuka ROS 2. Kontroler

pada topik ini bertugas menerima daftar koordinat dan melakukan perhitungan

interpolasi menggunakan metode Spline agar transisi gerakan antar motor berjalan

mulus.

Fungsi utama kemudian menyusun struktur pesan yang memuat tiga elemen

vital yaitu penanda waktu aktual, daftar nama sendi yang terlibat, dan rangkaian

titik tujuan. Kecerdasan sistem terlihat pada logika manipulasi waktu untuk

menciptakan efek "jeda" tanpa mematikan motor. Sistem mengirimkan dua titik

kembar dengan posisi yang sama persis namun memiliki cap waktu berbeda—

misalnya titik A pada detik ke-3 dan titik A yang sama pada detik ke-6.

Kontroler merespons data "titik kembar" ini dengan mempertahankan torsi

motor pada posisi tersebut selama interval waktu yang ditentukan, sehingga robot

berhenti sejenak sebelum melanjutkan perjalanan ke titik B pada detik ke-9. Setelah

39

pesan terkirim, sistem membatalkan pemanggilan ulang fungsi dan menahan proses

tetap aktif selama durasi penuh lintasan. Langkah ini menjamin program tidak

berhenti di tengah jalan sebelum robot menyelesaikan seluruh manuvernya dengan

sempurna.

Ilustrasi pergerakan robot akan ditampilkan pada gambar 4.20, dimana

bagian sebelah kiri adalah init pose, tengah adalah ketika robot sampai pada

koordinat titik Home dan sebelah kanan adalah ketika robot telah sampai pada

koordinat titik B1. Hasil dari pengujian dapat dilihat pada tabel 4.6, pada tabel 4.7

dapat dilihat berapa lama waktu respon robot saat perintah dijalankan, kolom waktu

respon diperoleh dari pengurangan nilai kolom waktu eksekusi di tabel 4.6 dengan

sepuluh detik sebagai waktu operasi pada program. Sepuluh detik tersebut diperoleh

dari satu detik untuk delay pada program kemudian sembilan detik untuk operasi

robot (lampiran 4 line kode nomor 18 dan 56). Kode program dapat dilihat pada

Lampiran 4.

Gambar 4.20 Ilustrasi gerak multi-point

Tabel 4.6 Hasil pengujian multi-point robot fisik

Gerakan Keberhasilan Waktu Eksekusi

Init pose → B1 – B2 ✓ 10,51 detik

Init pose → B3 – B2 ✓ 10,88 detik

Init pose → B2 – B4 ✓ 10,93 detik

Init pose → B1 – B3 ✓ 10,58 detik

Init pose → B4 – B3 ✓ 10,69 detik

Init pose → Home – B1 ✓ 10,93 detik

40

Tabel 4.7 Waktu respon robot

Gerakan Waktu Respon

Init pose → B1 – B2 0,51 detik

Init pose → B3 – B2 0,88 detik

Init pose → B2 – B4 0,93 detik

Init pose → B1 – B3 0,58 detik

Init pose → B4 – B3 0,69 detik

Init pose → Home – B1 0,93 detik

41

5.1 Kesimpulan

Bab V

Penutup

Implementasi sistem kendali robot OpenMANIPULATOR-X menggunakan

arsitektur ROS 2 Humble telah berhasil dan berjalan secara stabil. Penggunaan

middleware ROS 2 yang berbasis Data Distribution Service atau DDS

meningkatkan fleksibilitas dan desentralisasi data sistem.

Pengujian memvalidasi akurasi gerakan robot dalam lingkungan simulasi

Gazebo maupun pada perangkat keras fisik. Robot mampu mencapai target

koordinat dengan presisi pada skenario gerak point-to-point dengan rata-rata waktu

eksekusi 4,74 detik pada perangkat fisik. Validasi gerak multi-point juga

menunjukkan hasil yang konsisten dengan rata-rata waktu penyelesaian lintasan

sebesar 10,76 detik tanpa penyimpangan jalur.

Penerapan patch Preempt_RT pada kernel Linux menjadi faktor kunci

dalam menjaga determinisme gerakan robot. Sesuai data penelitian Ye dkk. (2023),

optimasi ini mereduksi latensi maksimum dari 6.243 µs menjadi 82 µs. Latensi

tidak dapat di lihat karena penggunaan PREEMPT_RT sudah menekan latensi di

bawah 10 µs.

5.2 Saran

Pusat Studi HMI sebaiknya mengintegrasikan sistem machine vision untuk

mendukung deteksi objek secara otomatis dan dinamis. Pengembang selanjutnya

perlu melakukan pengujian pada perangkat keras secara langsung tanpa melalui

mesin virtual atau VMware. Langkah ini akan meminimalkan beban sistem atau

overhead dan meningkatkan performa komputasi. Peneliti selanjutnya dapat

mengembangkan variasi model gerak dari robot OpenManipulator supaya lebih

bervariasi. Peneliti selanjutnya dapat juga membuat GUI sistem supaya lebih user-

friendly.

42

Daftar Pustaka

Adzeman, M. A. M., Zaman, M. H. M., Nasir, M. F., Ibrahim, M. F., & Mustaza, S.

M. (2020). Kinematic Modeling of A Low Cost 4 DOF Robot Arm System.

International Journal of Emerging Trends in Engineering Research, 8(10),

6828–6834. https://doi.org/10.30534/ijeter/2020/328102020

Al Fajar, R., Lestari, A., & Teknologi Informasi, J. (2025). Analisis Perbandingan

Sistem Operasi Windows 11 dan Linux Ubuntu Menggunakan Metode Studi

Literatur (Studi Kasus: Kinerja Sistem, Keamanan dan Biaya). Dalam Jurnal

Bitwise ISSN xxxx-xxxx (Vol. 1, Nomor 2). https://jurnal-bitwise.org/

Alif, M. (2025). Pengendalian Gerakan Robot Openmanipulator Untuk Operasi

Pemindahan Barang Berbasis MATLAB.

Deng, G., Xu, G., Zhou, Y., Zhang, T., & Liu, Y. (2022). On the (In)Security of

Secure ROS2. Proceedings of the ACM Conference on Computer and

Communications Security, 739–753.

https://doi.org/10.1145/3548606.3560681

Kelvin, D. (2024). 2024- Daniel Kelvin-Laporan Final(sudah kompre).

Kim, J., Mathur, D. C., Shin, K., & Taylor, S. (2023). PAPRAS: Plug-And-Play

Robotic Arm System. http://arxiv.org/abs/2302.09655

Odun-Ayo, I., Okokpujie, K., Oputa, K., Ogbu, H., Emmanuel, F., Shofadekan, A.,

& Okuazun, G. (2021). Comparative Study of Operating System Quality

Attributes. IOP Conference Series: Materials Science and Engineering,

1107(1), 012061. https://doi.org/10.1088/1757-899x/1107/1/012061

Savola, A. (2021). Antti Savola Server Virtualization with VMware.

Teper, H., Unzel, M. G. ¨, Ueter, N., Von Der Brüggen, G., Brüggen, B., Chen, J.-

J., & Günzel, M. (2022). End-To-End Timing Analysis in ROS2 computer

science 12 End-To-End Timing Analysis in ROS2.

Ye, Y., Nie, Z., Liu, X., Xie, F., Li, Z., & Li, P. (2023). ROS2 Real-time Performance

Optimization and Evaluation. Chinese Journal of Mechanical Engineering

(English Edition), 36(1). https://doi.org/10.1186/s10033-023-00976-5

Zhong Ting, H., Hairi Mohd Zaman, M., Faisal Ibrahim, M., & Mohamed Moubark,

A. (2021). Kinematic Analysis for Trajectory Planning of Open-Source 4-DoF

http://arxiv.org/abs/2302.09655

43

Robot Arm. Dalam IJACSA) International Journal of Advanced Computer

Science and Applications (Vol. 12, Nomor 6). www.ijacsa.thesai.org

http://www.ijacsa.thesai.org/

44

Lampiran

Lampiran 1. Kode pengoperasian simulator Point-to-Point

move_b1.py

1. #!/usr/bin/env python3

2. import rclpy

3. from rclpy.node import Node

4. from rclpy.parameter import Parameter

5. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint

6. import time

7. import sys

8.

9. class MoveOpenManipulatorSinglePointGazebo(Node):

10. def init (self):

11. super(). init ('move_openmanipulator_single_point_gazebo')

12.

13. # Mengaktifkan waktu simulasi (Sim Time) agar sinkron dengan

Gazebo

14. self.set_parameters([

15. Parameter('use_sim_time', Parameter.Type.BOOL, True)

16.])

17.

18. # Topik disesuaikan ke controller Gazebo

19. self.publisher_ = self.create_publisher(

20. JointTrajectory,

21. '/arm_controller/joint_trajectory',

22. 10

23.)

24.

25. self.timer = self.create_timer(1.0, self.timer_callback)

26. self.get_logger().info('Mode Gazebo Aktif. Siap mengirim 1 titik

gerakan.')

27.

45

28. def timer_callback(self):

29. self.timer.cancel()

30. self.send_trajectory()

31.

32. self.get_logger().info("Perintah ke Gazebo dikirim.")

33.

34. # Waktu tunggu 4 detik (3 detik gerak + 1 detik buffer)

35. time.sleep(4.0)

36.

37. self.destroy_node()

38. sys.exit(0)

39.

40. def send_trajectory(self):

41. traj = JointTrajectory()

42. # Mengambil waktu dari Clock Simulasi

43. traj.header.stamp = self.get_clock().now().to_msg()

44. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4']

45.

46. # --- TITIK TUJUAN TUNGGAL ---

47. point = JointTrajectoryPoint()

48.

49. # Koordinat tujuan (Posisi B1)

50. point.positions = [-0.5, 0.23, 0.15, 0.22]

51.

52. # Durasi gerakan ditetapkan 3 detik

53. point.time_from_start.sec = 3

54.

55. # Memasukkan satu titik saja ke dalam daftar

56. traj.points = [point]

57.

58. self.publisher_.publish(traj)

59.

46

60. def main(args=None):

61. rclpy.init(args=args)

62. node = MoveOpenManipulatorSinglePointGazebo()

63. try:

64. rclpy.spin(node)

65. except SystemExit:

66. rclpy.logging.get_logger("root").info("Program selesai.")

67. rclpy.shutdown()

68.

69. if name == ' main ':

70. main()

Lampiran 2. Kode pengoperasian simulator Multi Points

move_b1b2.py

1. #!/usr/bin/env python3

2. import rclpy

3. from rclpy.node import Node

4. from rclpy.parameter import Parameter

5. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint

6. import time

7. import sys

8.

9. class MoveOpenManipulatorPause(Node):

10. def init (self):

11. super(). init ('move_openmanipulator_pause')

12.

13. # Mengaktifkan waktu simulasi (Sim Time) agar sinkron dengan

Gazebo

14. self.set_parameters([

15. Parameter('use_sim_time', Parameter.Type.BOOL, True)

16.])

17.

47

18. self.publisher_ = self.create_publisher(

19. JointTrajectory,

20. '/arm_controller/joint_trajectory',

21. 10

22.)

23.

24. self.timer = self.create_timer(1.0, self.timer_callback)

25. self.get_logger().info('Mode Gazebo Aktif. Menunggu clock

simulasi...')

26.

27. def timer_callback(self):

28. self.timer.cancel()

29. self.send_trajectory()

30.

31. self.get_logger().info("Perintah ke Gazebo dikirim.")

32.

33. # waktu tunggu 10 detik

34. time.sleep(10.0)

35.

36. self.destroy_node()

37. sys.exit(0)

38.

39. def send_trajectory(self):

40. traj = JointTrajectory()

41. # Mengambil waktu dari Clock Simulasi (bukan waktu komputer)

42. traj.header.stamp = self.get_clock().now().to_msg()

43. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4']

44.

45. # --- DEFINISI WAKTU ---

46. move_time = 3

47. pause_time = 3

48.

48

49. # --- TITIK 1: Bergerak ke Posisi B1 ---

50. point1 = JointTrajectoryPoint()

51. point1.positions = [-0.5, 0.23, 0.15, 0.22]

52. point1.time_from_start.sec = move_time

53.

54. # --- TITIK 1 (HOLD): Diam di Posisi B1 ---

55. point1_hold = JointTrajectoryPoint()

56. point1_hold.positions = [-0.5, 0.23, 0.15, 0.22]

57. point1_hold.time_from_start.sec = move_time + pause_time

58.

59. # --- TITIK 2: Bergerak ke Posisi B2 ---

60. point2 = JointTrajectoryPoint()

61. point2.positions = [-0.02, -0.75, 0.71, 1.03]

62. point2.time_from_start.sec = move_time + pause_time + move_time

63.

64. traj.points = [point1, point1_hold, point2]

65.

66. self.publisher_.publish(traj)

67.

68. def main(args=None):

69. rclpy.init(args=args)

70. node = MoveOpenManipulatorPause()

71. try:

72. rclpy.spin(node)

73. except SystemExit:

74. rclpy.logging.get_logger("root").info("Program selesai.")

75. rclpy.shutdown()

76.

77. if name == ' main ':

78. main()

49

Lampiran 3. Kode pengoperasian robot fisik Point-to-Point

Move_to_H.py

1. #!/usr/bin/env python3

2. import rclpy

3. from rclpy.node import Node

4. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint

5. import time

6. import sys

7.

8. class MoveOpenManipulatorSinglePoint(Node):

9. def init (self):

10. super(). init ('move_openmanipulator_single_point')

11.

12. # Publisher ke topik controller robot asli

13. self.publisher_ = self.create_publisher(

14. JointTrajectory,

15. '/arm_controller/joint_trajectory',

16. 10

17.)

18.

19. self.timer = self.create_timer(1.0, self.timer_callback)

20. self.get_logger().info('Robot Terhubung. Siap mengirim 1 titik

gerakan.')

21.

22. def timer_callback(self):

23. self.timer.cancel()

24. self.send_trajectory()

25.

26. # Waktu tunggu 4 detik agar skrip tidak mati sebelum robot selesai

bergerak

50

27. self.get_logger().info("Perintah dikirim. Robot bergerak ke Titik

Tujuan.")

28. time.sleep(4.0)

29.

30. self.destroy_node()

31. sys.exit(0)

32.

33. def send_trajectory(self):

34. traj = JointTrajectory()

35. traj.header.stamp = self.get_clock().now().to_msg()

36.

37. # Pastikan nama joint sesuai dengan konfigurasi robot

38. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4']

39.

40. # --- TITIK TUJUAN TUNGGAL ---

41. point = JointTrajectoryPoint()

42.

43. # Masukkan koordinat tujuan

44. point.positions = [1.65, -0.89, 0.82, 1.03]

45.

46. # Robot akan sampai di titik ini dalam waktu 3 detik

47. point.time_from_start.sec = 3

48.

49. traj.points = [point]

50.

51. self.publisher_.publish(traj)

52.

53. def main(args=None):

54. rclpy.init(args=args)

55. node = MoveOpenManipulatorSinglePoint()

56. try:

57. rclpy.spin(node)

51

58. except SystemExit:

59. # Menangkap sinyal keluar dari sys.exit(0) agar tidak error

60. rclpy.logging.get_logger("root").info("Program selesai.")

61. rclpy.shutdown()

62.

63. if name == ' main ':

64. main()

Lampiran 4. Kode pengoperasian robot fisik Multi Points

multi_point_hb1.py

1. #!/usr/bin/env python3

2. import rclpy

3. from rclpy.node import Node

4. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint

5. import time

6. import sys

7.

8. class MoveOpenManipulatorPause(Node):

9. def init (self):

10. super(). init ('move_openmanipulator_pause')

11.

12. self.publisher_ = self.create_publisher(

13. JointTrajectory,

14. '/arm_controller/joint_trajectory',

15. 10

16.)

17.

18. self.timer = self.create_timer(1.0, self.timer_callback)

19. self.get_logger().info('Robot Terhubung. Siap mengirim lintasan

dengan jeda...')

20.

21. def timer_callback(self):

52

22. self.timer.cancel()

23. self.send_trajectory()

24.

25. # Waktu tunggu 10 detik agar skrip tidak mati sebelum robot selesai

bergerak

26. self.get_logger().info("Perintah dikirim. Robot bergerak: Titik 1 ->

Jeda -> Titik 2.")

27. time.sleep(10.0)

28.

29. self.destroy_node()

30. sys.exit(0)

31.

32. def send_trajectory(self):

33. traj = JointTrajectory()

34. traj.header.stamp = self.get_clock().now().to_msg()

35. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4']

36.

37. # --- DEFINISI WAKTU ---

38. move_time = 3 # Waktu untuk bergerak

39. pause_time = 3 # Durasi jeda (diam)

40.

41. # --- TITIK 1: Bergerak ke Posisi Home ---

42. point1 = JointTrajectoryPoint()

43. point1.positions = [1.65, -0.89, 0.82, 1.03]

44. point1.time_from_start.sec = move_time # T=3

45.

46. # --- TITIK 1 (HOLD): Diam di Posisi Home ---

47. # Kita kirim posisi yang SAMA persis, tapi waktunya ditambah durasi

jeda

48. point1_hold = JointTrajectoryPoint()

49. point1_hold.positions = [1.65, -0.89, 0.82, 1.03] # Posisi sama dengan

point1

53

50. point1_hold.time_from_start.sec = move_time + pause_time # T=6

(3+3)

51.

52. # --- TITIK 2: Bergerak ke Posisi B1 ---

53. point2 = JointTrajectoryPoint()

54. point2.positions = [-0.5, 0.23, 0.15, 0.22]

55. # Waktu tempuh dihitung dari akhir jeda

56. point2.time_from_start.sec = move_time + pause_time + move_time #

T=9 (6+3)

57.

58. # Masukkan urutan titik ke dalam list

59. # Urutan: Gerak ke Home -> Diam di Home -> Gerak ke B1

60. traj.points = [point1, point1_hold, point2]

61.

62. self.publisher_.publish(traj)

63.

64. def main(args=None):

65. rclpy.init(args=args)

66. node = MoveOpenManipulatorPause()

67. try:

68. rclpy.spin(node)

69. except SystemExit:

70. # Menangkap sinyal keluar dari sys.exit(0) agar tidak error

71. rclpy.logging.get_logger("root").info("Program selesai.")

72. rclpy.shutdown()

73.

74. if name == ' main ':

75. main()

