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1.1 Latar Belakang 

Bab I 

Pendahuluan 

Sektor manufaktur saat ini sangat mengandalkan teknologi otomasi untuk 

menjamin konsistensi kualitas dan produktivitas hasil produksi (Adzeman dkk., 

2020). Robot lengan menjadi komponen vital dalam ekosistem industri modern 

karena mampu bekerja tanpa henti dengan tingkat presisi yang stabil. Penggunaan 

robot ini meliputi berbagai tugas berulang yang menuntut ketelitian tinggi, seperti 

perakitan komponen elektronik, pengelasan plat logam, hingga operasi pemindahan 

barang atau pick and place (Zhong Ting dkk., 2021). Efisiensi waktu menjadi alasan 

utama industri mengadopsi teknologi ini agar tetap kompetitif di era industri 4.0. 

Komunitas peneliti global saat ini memilih Robot Operating System (ROS) sebagai 

kerangka kerja utama untuk membangun logika kontrol yang kompleks dan 

modular (Deng dkk., 2022). 

Interaksi waktu nyata dengan lingkungan yang dinamis sangat penting bagi 

sistem robotika untuk menjalankan fungsi persepsi visual dan perencanaan gerak 

secara akurat (Ye dkk., 2023). Meskipun ROS menyediakan ekosistem 

pengembangan yang kaya, implementasi pada robot fisik sering kali terbentur pada 

keterbatasan penjadwalan sistem operasi. Kernel standar pada Linux menggunakan 

prinsip Completely Fair Scheduler (CFS) yang fokus pada pembagian sumber daya 

CPU secara adil kepada seluruh proses aplikasi. Namun, prinsip keadilan ini justru 

menjadi kendala bagi aplikasi robotika yang membutuhkan prioritas waktu mutlak 

untuk pengiriman setiap perintah gerak (Ye dkk., 2023). Tanpa optimasi khusus, 

sistem operasi cenderung menunda proses kendali robot demi menjalankan proses 

latar belakang lainnya. 

Penundaan proses ini menyebabkan lonjakan latensi yang membuat gerakan 

robot menjadi tersendat (jitter) dan tidak mulus. Ketidakpastian waktu eksekusi 

end-to-end meningkatkan risiko kegagalan manuver robot saat beroperasi di 

lingkungan dinamis yang kritis terhadap keselamatan (Teper dkk., 2022). Sistem 

robotika membutuhkan jaminan waktu eksekusi dari awal hingga akhir untuk 

memastikan perilaku robot yang aman dan dapat diprediksi (Teper dkk., 2022). 

Kendala latensi ini sering muncul pada pengendalian robot manipulator yang 
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menuntut presisi tinggi saat memindahkan objek. Oleh karena itu, penggunaan 

sistem operasi yang mendukung komputasi waktu nyata menjadi kebutuhan 

mendesak dalam pengembangan robotika industri. 

Di lingkungan Universitas Ma Chung, penelitian mengenai pengendalian 

robot OpenManipulator sebelumnya telah dilakukan menggunakan platform 

MATLAB (Alif, 2025; Kelvin, 2024). Penggunaan MATLAB mempermudah 

analisis kinematika melalui simulasi, namun memiliki keterbatasan dalam hal 

skalabilitas aplikasi dan keamanan distribusi data pada jaringan yang luas. Langkah 

pengembangan selanjutnya beralih menggunakan ROS 2 karena versi terbaru ini 

mengadopsi standar Data Distribution Service (DDS) untuk mendistribusikan data 

secara terdesentralisasi (Deng dkk., 2022). Arsitektur DDS ini menghilangkan titik 

kegagalan tunggal (single point of failure) dan meningkatkan keamanan data 

melalui enkripsi bawaan yang tidak tersedia secara maksimal pada platform 

sebelumnya. 

Laporan ini membahas penelitian tentang penerapan kendali gerakan robot 

OpenManipulator-X berbasis ROS 2 pada versi Humble. Pengerjaan ini juga 

menerapkan optimasi kernel Linux menggunakan patch Preempt_RT untuk 

menjamin determinisme sistem agar robot mampu memindahkan objek dengan 

presisi tinggi secara waktu nyata (Ye dkk., 2023). Integrasi ini bertujuan untuk 

menciptakan sistem kendali yang tidak hanya stabil dalam simulasi Gazebo, tetapi 

juga responsif saat beroperasi pada perangkat keras fisik. Fokus utama pengerjaan 

ini adalah sinkronisasi antara perangkat lunak kendali dengan aktuator motor 

DYNAMIXEL melalui antarmuka komunikasi U2D2. 

 

1.2 Batasan Masalah 

Ruang lingkup praktik kerja lapangan ini mencakup poin-poin berikut: 

1. Perangkat keras utama adalah robot lengan OpenManipulator-X dengan 4 

Degree of Freedom (DOF). 

2. Sistem operasi yang berjalan adalah Ubuntu 22.04 LTS pada lingkungan 

mesin virtual VMware. 

3. Middleware yang digunakan adalah ROS 2 versi Humble sebagai kerangka 

kerja utama komunikasi antar node. 
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4. Fokus pengujian terbatas pada operasi gerak robot terhadap 5 titik tujuan 

yang ada. 

 

1.3 Rumusan Masalah 

Penelitian ini merumuskan konfigurasi lingkungan kerja ROS 2 untuk 

mengendalikan robot OpenManipulator-X secara stabil. Penelitian ini menganalisis 

pengaruh optimasi sistem operasi melalui patch Preempt_RT terhadap kepastian 

gerakan robot. Fokus kajian juga mencakup evaluasi efisiensi komunikasi antara 

perintah perangkat lunak dan respons fisik motor Dynamixel melalui antarmuka 

U2D2. 

 

1.4 Tujuan 

Kegiatan PKL ini memiliki beberapa tujuan utama: 

1. Membangun sistem kendali robot OpenManipulator-X yang handal 

menggunakan arsitektur ROS 2 Humble. 

2. Menguji efisiensi gerakan robot dalam lingkungan simulasi Gazebo dan 

memvalidasi hasilnya pada perangkat keras fisik. 

3. Menganalisis stabilitas distribusi data dan latensi antara komputer 

pengendali dan unit aktuator robot. 

 

1.5 Manfaat 

Hasil dari praktik kerja lapangan ini memberikan manfaat bagi beberapa pihak: 

1. Bagi Mahasiswa: Memperdalam pemahaman teknis mengenai arsitektur 

ROS 2, manajemen kernel Linux, dan kendali aktuator robotika industri.  

2. Bagi Pusat Studi HMI Ma Chung: Menyediakan referensi teknis mengenai 

prosedur migrasi kendali robot dari MATLAB ke ROS 2 yang mendukung 

riset lanjutan. 

3. Bagi Universitas Ma Chung: Memperkaya portofolio penelitian terapan 

dalam bidang sistem cerdas dan interaksi manusia dengan mesin (Human- 

Machine Interaction). 
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Bab II 

Gambaran Umum Perusahaan 

2.1 Universitas Ma Chung 

Universitas Ma Chung berlokasi di Villa Puncak Tidar N-01, Kecamatan 

Dau, Kabupaten Malang, Jawa Timur. Yayasan Harapan Bangsa Sejahtera 

menaungi universitas ini sejak peresmiannya pada tanggal 7 Juli 2007. Universitas 

Ma Chung menetapkan visi dan misi sebagai landasan operasional institusi. 

Visi Memuliakan Tuhan Yang Maha Esa melalui pembentukan karakter, 

pengembangan ilmu pengetahuan, serta memberikan kontribusi nyata sebagai insan 

akademis yang kreatif dan inovatif. 

Misi Universitas Ma Chung menjalankan misi sebagai berikut: 

1. Menyelenggarakan Tri Dharma Perguruan Tinggi (pendidikan, penelitian, 

dan pengabdian masyarakat) dengan standar tinggi, fokus, dan relevan 

dengan perkembangan zaman. 

2. Membentuk dan mengembangkan generasi pemimpin serta penggerak 

masyarakat yang berintegritas, berjiwa kepemimpinan, dan 

berkewirausahaan dengan penekanan pada karakter mulia, kerendahan hati, 

dan semangat pelayanan. 

3. Mendorong sikap serta pemikiran kritis-prinsipil dan kreatif-realistis 

berdasarkan kepekaan hati nurani yang luhur. 

4. Menghasilkan lulusan siap pakai yang berkualitas tinggi dan mampu 

bersaing di pasar global. 

5. Mengambil peran aktif dalam peningkatan peradaban dunia dengan 

menghasilkan lulusan berwawasan global, toleran, dan cinta damai, serta 

produktif dalam menghasilkan karya cipta. 

6. Melaksanakan pengelolaan perguruan tinggi berdasarkan prinsip ekonomis 

dan akuntabilitas. 

Saat ini, Universitas Ma Chung mengelola 11 program studi yang mencakup 

Manajemen Bisnis, Akuntansi, Magister Manajemen Inovasi, Sastra Inggris, 

Pendidikan Bahasa Mandarin, Teknik Informatika, Sistem Informasi, Desain 

Komunikasi Visual, Teknik Industri, Optometri, serta Farmasi dan Profesi 

Apoteker. 
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2.2 Program Studi Teknik Informatika 

Program Studi Teknik Informatika (PSTI) merupakan bagian dari Fakultas 

Teknologi dan Desain Universitas Ma Chung. Program studi ini memiliki akreditasi 

B dari BAN-PT sejak tahun 2016 melalui Surat Keputusan Nomor 

0356/SK/BANPT/Akred/S/IV/2016. Sertifikasi ini membuktikan bahwa PSTI 

memenuhi standar nasional dalam hal tata kelola dan kualitas pengajaran. Tim 

kurikulum menyusun materi pembelajaran agar selalu relevan dengan standar 

industri teknologi informasi global yang berkembang sangat cepat.  

Mahasiswa dapat memilih satu dari dua jalur konsentrasi yang tersedia 

untuk mendalami keahlian khusus. Konsentrasi pertama adalah Sistem Cerdas yang 

menitikberatkan pada pengembangan algoritma kecerdasan buatan, pemrosesan 

bahasa alami, dan analisis data besar. Konsentrasi kedua adalah Sistem Komputer 

yang fokus pada integrasi perangkat keras dan lunak, keamanan jaringan, serta 

ekosistem Internet of Things (IoT). Pembagian jalur ini bertujuan untuk 

memberikan keunggulan kompetitif bagi mahasiswa saat memasuki dunia kerja 

profesional. 

 

2.3 Pusat Studi Human-Machine Interaction Ma Chung 

Pusat Studi Human-Machine Interaction (HMI) Ma Chung ditempatkan di 

bawah naungan Program Studi Teknik Informatika sejak didirikan secara resmi 

pada tanggal 11 September 2019. Lantai 6 Gedung Research & Development 

(R&D) Universitas Ma Chung digunakan sebagai lokasi operasional utama. 

Berbagai fasilitas komputasi dan perangkat keras modern disediakan di tempat ini 

guna mendukung kegiatan penelitian yang intensif. Fokus kegiatan diarahkan pada 

inovasi teknologi dan implementasinya dalam konteks interaksi antara manusia dan 

mesin. 

Tiga bidang kajian riset unggulan dikembangkan oleh pusat studi ini, 

meliputi: 

1. Machine vision for human welfare and human-natural interactions, 

teknologi pengolahan citra digital dikaji pada bidang ini untuk menciptakan 
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sistem yang mampu menganalisis informasi visual guna meningkatkan 

kesejahteraan dan kualitas hidup manusia. 

2. Interaksi Manusia-Komputer (Human-Computer Interaction), penelitian 

pada bidang ini dipusatkan pada perancangan Desain Antarmuka (User 

Interface) dan Pengalaman Pengguna (User Experience) yang intuitif, 

ergonomis, dan mudah digunakan oleh berbagai kalangan pengguna. 

3. Teknologi Robotika dan Aplikasi Seluler, sistem robotika cerdas dan 

aplikasi seluler dikembangkan pada bidang ini sebagai solusi praktis untuk 

membantu aktivitas manusia. Topik penelitian mengenai kendali robot 

OpenManipulator dalam laporan ini tercakup dalam lingkup kajian ini. 

 

Gambar 2.1 Diagram bidang fokus riset pusat studi HMI 

Dukungan infrastruktur dan bimbingan teknis diberikan oleh pusat studi 

untuk memastikan keberhasilan pengembangan sistem yang diteliti. Selain aspek 

teknis, eksplorasi potensi sumber daya alam dan inovasi pengelolaan bisnis turut 

didukung sebagai bentuk realisasi visi pusat studi dalam memberikan kontribusi 

nyata bagi masyarakat. 



7  

 

 

 

3.1 Ubuntu 22.04 

Bab III 

Tinjauan Pustaka 

Pemilihan Ubuntu 22.04 LTS sebagai basis sistem kendali robot didasarkan 

pada efisiensi arsitektur dan manajemen sumber daya yang superior dibandingkan 

sistem operasi tertutup seperti Windows 11, dapat dilihat pada gambar 3.1 yang 

menampilkan halaman utama dari Ubuntu. Berdasarkan studi komparatif terbaru 

oleh (Al Fajar dkk., 2025), Ubuntu menunjukkan keunggulan signifikan dalam 

lingkungan dengan sumber daya terbatas, di mana ia mampu beroperasi secara 

stabil hanya dengan RAM 2 GB, berbeda dengan Windows 11 yang mewajibkan 

minimal 4 GB dan modul TPM 2.0. Efisiensi ini krusial bagi komputer pendamping 

(onboard computer) robot, karena meminimalkan beban sistem operasi (overhead) 

dan mengalokasikan lebih banyak daya komputasi untuk pemrosesan algoritma 

robotika. Selain itu, sifat open-source dari Ubuntu menghilangkan biaya lisensi, 

menjadikannya solusi yang lebih ekonomis dan fleksibel untuk pengembangan 

skala luas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gambar 3.1 Halaman utama Ubuntu 22.04 

Dalam konteks pengendalian robot manipulator yang menuntut presisi 

waktu, kinerja kernel menjadi faktor penentu utama. (Ye dkk., 2023)dalam evaluasi 

kinerja real-time ROS 2 mengungkapkan bahwa kernel Linux standar (Native- 

Linux) memiliki kelemahan dalam determinisme, dengan latensi maksimum yang 
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dapat melonjak hingga 6.243µs akibat mekanisme Completely Fair 

Scheduler (CFS). Untuk mengatasi hal ini, penggunaan patch PREEMPT_RT pada 

kernel Ubuntu 22.04 terbukti mampu menurunkan latensi maksimum secara drastis 

menjadi sekitar 82µs , dengan rata-rata latensi stabil di angka 2µs . Optimasi ini 

mengubah Ubuntu menjadi sistem yang mampu menangani tugas hard real-time, 

memastikan bahwa instruksi gerak dikirim ke aktuator robot dengan jeda waktu 

yang sangat minim dan konsisten. 

Aspek keamanan dan stabilitas Ubuntu juga menjadi landasan kuat untuk 

penerapannya dalam sistem robotika yang terhubung. (Odun-Ayo dkk., 2021) 

menyoroti bahwa arsitektur keamanan Linux, yang menerapkan Mandatory Access 

Control (MAC) dan manajemen izin berkas yang ketat, memberikan perlindungan 

yang lebih baik terhadap malware dibandingkan sistem operasi lain. Keunggulan 

ini diperkuat oleh temuan (Al Fajar dkk., 2025)yang mencatat bahwa struktur 

keamanan default Ubuntu membuatnya lebih jarang menjadi target serangan siber. 

Kombinasi antara stabilitas jangka panjang (LTS), keamanan arsitektural yang 

ketat, dan fleksibilitas portability menjadikan Ubuntu 22.04 lingkungan yang 

paling andal untuk menjalankan middleware ROS 2 dan menjaga integritas 

operasional robot. 

 

3.2 Robot Operating System 2 

Perkembangan teknologi robotika modern telah mengalami pergeseran 

fundamental dari lingkungan laboratorium yang terkendali menuju aplikasi dunia 

nyata yang dinamis, tidak terstruktur, dan seringkali kritis terhadap keselamatan. 

Dalam dekade terakhir, Robot Operating System (ROS) generasi pertama telah 

berfungsi sebagai standar de facto untuk penelitian akademis, menyediakan 

kerangka kerja yang fleksibel untuk pengembangan perangkat lunak robotika. 

Namun, seiring dengan meningkatnya kebutuhan untuk menerjemahkan hasil 

penelitian menjadi produk komersial, keterbatasan arsitektural ROS1 menjadi 

semakin nyata dan menghambat skalabilitas. 

ROS1 awalnya dirancang untuk penelitian akademis dan tidak dibangun 

dengan mempertimbangkan kendala real-time yang ketat, keamanan siber, atau 

keandalan jaringan yang buruk. Ketergantungan pada master node tunggal untuk 
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penemuan (discovery) dan perutean komunikasi menciptakan titik kegagalan 

tunggal (single point of failure) yang kritis. Jika master node mengalami kegagalan, 

seluruh jaringan komunikasi robot akan runtuh. Selain itu, mekanisme transport 

kustom yang digunakan ROS1 (TCPROS/UDPROS) tidak memiliki fitur keamanan 

bawaan, membiarkan sistem terbuka terhadap penyadapan dan injeksi data, serta 

tidak menjamin determinisme waktu yang diperlukan untuk kontrol perangkat keras 

berkecepatan tinggi. 

Menanggapi tantangan ini, komunitas robotika global memperkenalkan 

Robot Operating System 2 (ROS2). ROS2 bukan sekadar pembaruan inkremental, 

melainkan perombakan arsitektur total yang bertujuan untuk memenuhi standar 

industri. Perubahan paling radikal adalah penghapusan master node pusat dan 

adopsi Data Distribution Service (DDS) sebagai lapisan middleware komunikasi 

standar industri. Transisi ini menjanjikan desentralisasi penuh, dukungan keamanan 

asli melalui spesifikasi DDS-Security, dan potensi untuk operasi real-time yang 

deterministik. Laporan ini menyajikan analisis komprehensif dan mendalam 

mengenai arsitektur ROS2, mengevaluasi klaim kinerjanya melalui data empiris, 

membedah postur keamanannya, dan memberikan panduan teknis untuk 

implementasi sistem yang tangguh. 

 

3.2.1 Fundamental Arsitektur ROS2 dan Integrasi DDS 

a) Data Distribution Service (DDS) sebagai Tulang Punggung Komunikasi 

Perbedaan paling mencolok antara ROS1 dan ROS2 terletak pada 

lapisan transportasinya. ROS2 mengadopsi Data Distribution Service 

(DDS), sebuah standar terbuka dari Object Management Group (OMG) 

yang dirancang khusus untuk sistem real-time terdistribusi yang 

memerlukan keandalan tinggi (Teper dkk., 2022; Ye dkk., 2023). DDS 

mengimplementasikan pola komunikasi publish-subscribe yang berpusat 

pada data (Data-Centric Publish-Subscribe - DCPS). Dalam paradigma ini, 

fokus utama bukan pada pengelolaan koneksi antar node atau proses, 

melainkan pada distribusi data itu sendiri dengan jaminan kualitas layanan 

(Quality of Service - QoS) yang spesifik(Deng dkk., 2022). 
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Struktur DCPS dalam DDS menciptakan "Ruang Data Global" 

(Global Data Space), sebuah konsep abstrak di mana semua data yang 

dipertukarkan dalam sistem seolah-olah tersedia secara lokal bagi setiap 

partisipan yang memiliki izin akses (Deng dkk., 2022). Pada gambar 3.2 

dapat kita lihat gambaran ini menghilangkan kebutuhan akan server pusat 

atau broker pesan, memungkinkan setiap node (disebut sebagai Domain 

Participant dalam terminologi DDS) untuk menemukan dan berkomunikasi 

dengan node lain secara peer-to-peer. Mekanisme penemuan otomatis 

(automatic discovery) ini menggunakan multicast UDP untuk mendeteksi 

keberadaan partisipan baru dalam jaringan, menegosiasikan kompatibilitas 

QoS, dan membangun saluran komunikasi unicast untuk pertukaran data 

aktual (Teper dkk., 2022). 

 

Gambar 3.2 Arsitektur DDS dengan protokol DCPS (Deng dkk., 2022) 

 

 

b) Lapisan Abstraksi ROS2 (RCL dan RMW) 

Untuk mencegah pengembang ROS2 terkunci pada satu vendor 

DDS tertentu, arsitektur ROS2 memperkenalkan lapisan abstraksi yang 

canggih. Kode aplikasi pengguna (Userland Code) tidak berinteraksi 

langsung dengan API DDS, melainkan melalui ROS Client Library (RCL) 

(Deng dkk., 2022). RCL menyediakan antarmuka standar (dalam C++) yang 

konsisten, terlepas dari implementasi DDS yang digunakan di bawahnya. 

Di bawah RCL, terdapat lapisan ROS Middleware (RMW). RMW 

berfungsi sebagai jembatan penerjemah yang memetakan konsep ROS 

(seperti Node, Topic, Service, Action) ke dalam primitif DDS (seperti 

Participant, DataWriter, DataReader) (Deng dkk., 2022). Desain ini 

memungkinkan integrasi berbagai implementasi DDS, seperti eProsima 
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Fast DDS, Eclipse Cyclone DDS, atau RTI Connext, yang dapat ditukar 

hanya dengan mengubah konfigurasi lingkungan (environment variable) 

tanpa perlu mengkompilasi ulang kode aplikasi (Ye dkk., 2023). 

 

c) Kebijakan Quality of Service (QoS) 

Salah satu fitur paling kuat yang dibawa DDS ke dalam ekosistem 

ROS2 adalah konfigurasi Quality of Service (QoS). QoS memungkinkan 

pengembang untuk mendefinisikan perilaku komunikasi secara granular 

untuk setiap topik, menyesuaikan dengan kebutuhan aplikasi yang spesifik 

(Deng dkk., 2022). 

Beberapa kebijakan QoS yang paling relevan untuk sistem robotika 

meliputi: 

Reliability (Keandalan): 

o Reliable: Menjamin pengiriman pesan, mirip dengan TCP. Jika 

paket hilang, middleware akan mencoba mengirim ulang. Ini penting 

untuk perintah kontrol kritis atau parameter konfigurasi. 

o Best Effort: Mengirim pesan tanpa jaminan penerimaan, mirip 

dengan UDP. Ini ideal untuk aliran data sensor frekuensi tinggi 

(seperti video atau LiDAR) di mana data terbaru lebih penting 

daripada kelengkapan data historis. 

 

Durability (Daya Tahan): 

o Volatile: Pesan hanya dikirim ke pelanggan yang saat ini terhubung. 

Pesan lama tidak disimpan. 

o Transient Local: Penerbit menyimpan sejumlah pesan terakhir 

(sesuai history depth) dan mengirimkannya ke pelanggan baru yang 

bergabung belakangan ("late-joiners"). Ini sangat berguna untuk 

data statis seperti peta navigasi atau deskripsi robot. 

 

History & Depth: Menentukan berapa banyak pesan yang disimpan dalam 

antrian DDS sebelum pesan lama ditimpa. 
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Deadline: Menetapkan batas waktu maksimum yang diharapkan untuk 

kedatangan pesan baru. Jika batas ini dilanggar, sistem dapat memicu 

kejadian kesalahan (error event), yang krusial untuk pemantauan kesehatan 

sistem real-time. 

 

d) Keunggulan Desain Terdistribusi 

Adopsi arsitektur terdistribusi penuh melalui DDS memberikan 

keuntungan strategis bagi pengembangan sistem Multi-Robot Systems 

(MRS). Dalam arsitektur terpusat ROS1, penskalaan sistem ke banyak robot 

memerlukan konfigurasi jaringan yang rumit dan sangat rentan terhadap 

kegagalan jaringan yang memisahkan robot dari master. Dalam ROS2, 

setiap robot adalah entitas mandiri yang berpartisipasi dalam domain DDS 

yang sama. Hal ini memfasilitasi kolaborasi kawanan (swarm robotics), di 

mana robot dapat masuk dan keluar dari jaringan secara dinamis tanpa 

mengganggu operasi keseluruhan. Selain itu, DDS mendukung mekanisme 

pembagian data yang efisien, memungkinkan robot untuk berbagi persepsi 

lingkungan secara kolaboratif dengan latensi minimal. 

 

3.2.2 Primitif Komunikasi: Node, Topic, Service, dan Action 

Sistem ROS 2 membangun interaksi antar komponen melalui beberapa 

primitif komunikasi utama. Setiap primitif memiliki peran unik dan dipetakan 

secara spesifik ke entitas DDS di bawahnya (Deng dkk., 2022). 

a) Node dan Klasifikasi Fungsional 

Node adalah unit pemrosesan tunggal yang menjalankan algoritma 

tertentu. Di tingkat middleware, setiap node merepresentasikan satu atau 

lebih DDS Domain Participant. Teper dkk. (2022) mengklasifikasikan node 

berdasarkan mekanisme pemicu (trigger) untuk analisis waktu. Sensor 

Node bekerja secara time-triggered (berdasarkan interval waktu). Filter atau 

Actuator Node bekerja secara event-triggered (berdasarkan kedatangan 

pesan). Sementara Fusion Node bekerja secara hibrida untuk 

menggabungkan data dari berbagai sumber. 
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b) Mekanisme Discovery (Penemuan) 

ROS 2 tidak lagi menggunakan master node untuk menghubungkan 

antar node. Sebagai gantinya, sistem menggunakan Simple Discovery 

Protocol (SDP) dari DDS. Proses ini melibatkan dua tahap utama, tahap 

pertama adalah Participant Discovery Protocol (PDP) untuk mendeteksi 

node baru dalam jaringan melalui multicast, tahap kedua adalah Endpoint 

Discovery Protocol (EDP) untuk mencocokkan publisher dan subscriber 

berdasarkan topik dan kebijakan QoS yang sesuai (Deng dkk., 2022). 

 

c) Topic 

Topic memfasilitasi komunikasi asinkron melalui pola publish- 

subscribe. Pengembang menggunakan topik untuk aliran data kontinu. 

Dalam implementasi DDS, sebuah topik terdiri dari DataWriter pada sisi 

penerbit dan DataReader pada sisi pelanggan. ROS 2 mengelola distribusi 

data ini secara desentralisasi, sehingga setiap node mengirimkan data 

langsung ke pelanggan tanpa melalui perantara pusat (Deng dkk., 2022).  

 

d) Service 

Service bekerja dengan pola request-response yang bersifat sinkron. 

Sebuah node klien mengirimkan permintaan dan menunggu balasan dari 

node pelayan (server). Secara teknis, ROS 2 mengimplementasikan service 

menggunakan dua pasang topik internal. Sepasang topik digunakan untuk 

mengirim permintaan dan menerima balasan, sementara sepasang lainnya 

mengelola metadata transaksi. Primitif ini sangat efektif untuk tugas 

transaksional singkat seperti permintaan kalibrasi. 

 

e) Action 

Action  merupakan  primitif  yang  menggabungkan  mekanisme 

service dan topic untuk menangani tugas berdurasi panjang. Action terdiri 

dari tiga bagian: goal (permintaan target), feedback (laporan progres 

asinkron), dan result (hasil akhir). ROS 2 menggunakan lima topik internal 

DDS untuk mendukung siklus hidup sebuah action (Deng dkk., 2022). 
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Mekanisme ini memastikan robot manipulator dapat mengirimkan progres 

gerakan lengan secara berkala ke antarmuka pengguna sambil tetap 

menjalankan kalkulasi lintasan. 

 

f) Interface dan Parameter 

Komunikasi memerlukan definisi struktur data baku melalui file 

.msg, .srv, dan .action. Selain itu, ROS 2 mengelola Parameter sebagai nilai 

konfigurasi di dalam node. Node lain dapat membaca atau memperbarui 

nilai ini secara dinamis melalui service standar yang disediakan oleh RCL. 

Hal ini mempermudah penyesuaian batas kecepatan atau parameter kendali 

robot tanpa memerlukan kompilasi ulang kode. 

 

3.2.3 Manajemen Eksekusi dan Analisis Waktu (Timing Analysis) 

a) Model Eksekutor ROS2: Jantung Determinisme 

Dalam sistem operasi robotika, penerimaan pesan hanyalah langkah 

awal. Langkah kritis berikutnya adalah penjadwalan komputasi: 

menentukan kapan dan dalam urutan apa kode pengguna (callback) 

dieksekusi sebagai respons terhadap pesan atau timer. Dalam ROS2, 

tanggung jawab ini dipegang oleh Executor. 

Executor ROS2 berbeda secara fundamental dari model threading 

tradisional. Alih-alih membiarkan setiap callback berjalan pada thread 

sistem operasi tersendiri, Executor mengelola kumpulan callback di dalam 

satu atau beberapa thread pengguna. Memahami mekanisme internal 

Executor sangat penting untuk menjamin determinisme waktu (Teper dkk., 

2022). 

 

Mekanisme kerja Executor dapat dibagi menjadi dua fase utama: 

• Polling Point (Titik Poling): Pada fase ini, Executor berinteraksi dengan 

lapisan RMW untuk memeriksa ketersediaan data baru. Executor 

mengumpulkan status dari semua timer dan subscription yang terdaftar. Jika 

sebuah timer telah habis waktunya atau pesan baru telah tiba di antrian 

subscription, callback terkait ditandai sebagai "Activated". Executor 
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kemudian mengambil sampel (sampling) dari job (instansiasi tugas) yang 

diaktifkan ini untuk dieksekusi. 

 

• Processing Window (Jendela Pemrosesan): Setelah sampel diambil, 

Executor memasuki fase eksekusi. Dalam implementasi Single-Threaded 

Executor standar, callback dieksekusi secara serial (berurutan) tanpa 

preemption. Urutan eksekusi ditentukan oleh kebijakan prioritas internal 

Executor. Secara default (misalnya pada ROS2 Foxy), timer memiliki 

prioritas lebih tinggi daripada subscription untuk memastikan tugas 

periodik (seperti loop kontrol) didahulukan. 

Implikasi dari desain non-preemptif ini sangat signifikan: jika satu 

callback memakan waktu eksekusi terlalu lama (long-running callback), ia 

akan memblokir eksekusi callback lain yang mungkin lebih kritis, 

menyebabkan fenomena blocking dan meningkatkan latensi sistem secara 

keseluruhan. 

 

b) Analisis Rantai Sebab-Akibat (Cause-Effect Chains) 

Untuk mengevaluasi kinerja end-to-end sebuah sistem robot, kita 

tidak bisa hanya melihat satu node secara isolasi. Sebaliknya, kita harus 

menganalisis "Rantai Sebab-Akibat" (Cause-Effect Chains). Rantai ini 

merepresentasikan jalur propagasi informasi dari stimulus fisik (misalnya, 

deteksi rintangan oleh sensor) melalui serangkaian node pemrosesan (filter, 

fusi sensor, perencana jalur) hingga menghasilkan respons fisik (misalnya, 

perintah berhenti ke motor) (Teper dkk., 2022). 

 

Dua metrik kunci didefinisikan untuk mengukur kinerja rantai ini: 

• Maximum Reaction Time (MRT): Waktu maksimum yang diperlukan 

sistem untuk bereaksi terhadap peristiwa eksternal. Ini mengukur latensi 

terburuk dari saat peristiwa terjadi di lingkungan hingga aktuator mulai 

bergerak. Metrik ini krusial untuk keselamatan, misalnya dalam 

pengereman darurat. 
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• Maximum Data Age (MDA): Usia maksimum data yang digunakan untuk 

menghasilkan output aktuator. Ini mengukur kesegaran informasi. Dalam 

sistem kontrol umpan balik (feedback control), menggunakan data yang 

terlalu tua (MDA tinggi) dapat menyebabkan ketidakstabilan sistem atau 

osilasi. 

 

c) Klasifikasi Node dan Propagasi Data 

Dalam analisis timing, node ROS2 diklasifikasikan berdasarkan mekanisme 

pemicu (trigger) dan peran fungsionalnya: 

• Sensor Node (Time-Triggered): Dipicu oleh timer periodik untuk membaca 

perangkat keras dan menerbitkan data. Node ini adalah awal dari rantai 

sebab-akibat. 

 

• Filter/Actuator Node (Event-Triggered): Dipicu oleh kedatangan pesan 

pada topik subscription. Node ini memproses data dan meneruskannya 

(filter) atau mengonsumsinya (actuator). 

 

• Fusion Node (Hybrid): Menggabungkan data dari beberapa sumber. Bisa 

dipicu oleh timer (mengambil data terbaru dari buffer) atau oleh salah satu 

pesan masuk (mekanisme sinkronisasi pesan). 

 

Propagasi data dalam rantai ini melibatkan dua jenis komunikasi: 

• Inter-Node: Komunikasi antar node melalui topik DDS. Latensi 

dipengaruhi oleh overhead serialisasi, transmisi jaringan, dan antrian DDS. 

 

• Intra-Node: Komunikasi antar callback di dalam node yang sama 

(misalnya, callback sensor menyimpan data ke variabel global yang 

kemudian dibaca oleh callback timer). Latensi di sini didominasi oleh 

jadwal eksekusi Executor. 
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d) Analisis Utilisasi Sistem: Under-Utilized vs Over-Utilized 

Temuan penelitian menyoroti dampak kritis dari tingkat utilisasi 

sistem terhadap kinerja timing. 

• Sistem Under-Utilized: Jika total waktu komputasi semua callback dalam 

satu siklus kurang dari periode timer pemicu, sistem berada dalam kondisi 

stabil. Latensi end-to-end dapat diprediksi dan umumnya linear terhadap 

jumlah node dalam rantai. 

 

• Sistem Over-Utilized: Jika total beban komputasi melebihi periode timer, 

antrian pesan akan mulai menumpuk. Karena sifat Executor yang serial, 

callback yang tertunda akan semakin mundur dalam antrian eksekusi. 

Penelitian menunjukkan bahwa degradasi kinerja dalam kondisi ini tidak 

linear, latensi dapat meledak secara eksponensial dan data lama mungkin 

diproses jauh setelah relevansinya hilang. Sistem robotika real-time harus 

dirancang untuk selalu beroperasi dalam kondisi under-utilized untuk 

menjamin determinisme. 

 

3.2.4 Optimalisasi Sistem Operasi untuk Real-Time ROS2 

a) Tantangan Kernel Linux Standar (Native-Linux) 

Meskipun arsitektur ROS2 dirancang untuk efisiensi, kinerjanya 

pada akhirnya dibatasi oleh sistem operasi tempat ia berjalan. Sebagian 

besar implementasi ROS2 berjalan di atas distribusi Linux standar (seperti 

Ubuntu). Kernel Linux standar ("Native-Linux") dirancang sebagai sistem 

operasi General Purpose (GPOS). Tujuan utamanya adalah 

memaksimalkan throughput rata-rata dan keadilan (fairness) pembagian 

CPU antar proses. 

Dalam desain GPOS, proses real-time tidak selalu mendapatkan 

prioritas mutlak. Ada bagian kode kernel (seperti interrupt handlers dan 

critical sections yang dilindungi oleh spinlock) yang bersifat non-preemptif. 

Artinya, jika kernel sedang mengeksekusi kode ini, ia tidak dapat dihentikan 

bahkan oleh tugas real-time dengan prioritas tertinggi sekalipun. Fenomena 

ini menciptakan unbounded latency (latensi tak terbatas). 
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Data empiris menunjukkan bahwa pada beban CPU tinggi 

(misalnya, saat menjalankan algoritma persepsi berat), Native-Linux dapat 

mengalami lonjakan latensi (latency spikes) hingga 6243 mikrotik (µs) (Ye 

dkk., 2023). Untuk robot industri yang memerlukan siklus kontrol 1 ms 

(1000 µs), lonjakan sebesar 6 ms berarti hilangnya 6 siklus kontrol berturut- 

turut, yang dapat menyebabkan gerakan robot tersendat (jitter) atau 

penyimpangan lintasan. 

 

b) Solusi Real-Time: Patch Preempt_RT 

Untuk mengatasi masalah ini tanpa meninggalkan ekosistem Linux 

yang kaya, solusi standar industri adalah menerapkan patch Preempt_RT 

(Real-Time Preemption) pada kernel Linux (Ye dkk., 2023). Preempt_RT 

secara fundamental mengubah perilaku kernel dengan tujuan membuat 

hampir seluruh kode kernel dapat di-preempt (diinterupsi). 

 

Mekanisme teknis Preempt_RT meliputi: 

• Mengubah Spinlock menjadi Mutex: Dalam Native-Linux, spinlock 

menahan CPU secara aktif (busy-wait) dan mematikan preemption. 

Preempt_RT menggantinya dengan rt_mutex yang memungkinkan thread 

pemegang kunci untuk tidur dan di-preempt oleh tugas prioritas lebih tinggi. 

 

• Threaded Interrupt Handlers: Menjalankan penangan interupsi (interrupt 

handlers) sebagai thread kernel biasa yang memiliki prioritas dan dapat 

dijadwalkan. Ini mencegah interupsi perangkat keras memblokir tugas real- 

time kritis. 

 

• High-Resolution Timers: Mengaktifkan pewaktu presisi tinggi untuk 

penjadwalan yang akurat hingga tingkat mikro detik. 

 

c) Evaluasi Komparatif: Native vs Preempt_RT 

Pengujian ekstensif menggunakan alat cyclictest standar industri 

untuk mengukur latensi kernel menunjukkan perbedaan drastis antara 
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Native-Linux dan Preempt_RT Linux di bawah beban penuh (stress test 

CPU dan memori), data. 

Tabel 3.1 Perbandingan Native-Linux & Preempt_RT Linux (Ye dkk., 2023) 
 

Metrik 

Evaluasi 

Native-Linux 

(Kernel Standar) 

Preempt_RT Linux 

(Kernel Teroptimasi) 
Peningkatan 

Latensi 

Minimum 
2 µs 1 µs Marjinal 

Latensi Rata- 

rata 

 

3 µs 

 

1-2 µs 

 

Signifikan 

Latensi 

Maksimum 

 

6243 µs (6.2 ms) 

 

82 µs (0.08 ms) 
>98% 

Reduksi 

Jitter Siklus > 400 µs < 60 µs Sangat Stabil 

Distribusi 

Jitter 

Fluktuatif, Ekor 

Panjang 

Distribusi Normal 

Sempit 

 

Deterministik 

 

Data ini menegaskan bahwa untuk aplikasi kontrol real-time, 

penggunaan Preempt_RT bukan sekadar opsi, melainkan kebutuhan. Kernel 

standar tidak dapat menjamin tenggat waktu (deadline) yang ketat, 

sementara kernel Preempt_RT menjaga latensi jauh di bawah ambang batas 

100 µs yang umumnya ditoleransi dalam kontrol motor presisi tinggi. 

 

d) Kinerja Komunikasi: ROS1 vs ROS2 

Selain optimalisasi kernel, kinerja komunikasi antar-node juga 

dievaluasi. Perbandingan antara ROS1 (berbasis TCP/UDP kustom) dan 

ROS2 (berbasis DDS) menunjukkan karakteristik yang menarik: 

• Muatan Data Kecil (< 64 KB): Kinerja ROS1 dan ROS2 relatif sebanding. 

Overhead serialisasi dan lapisan abstraksi DDS di ROS2 sedikit terlihat, 

namun tidak signifikan. 

 

• Muatan Data Besar (> 512 KB): ROS2 mulai menunjukkan keunggulan 

kinerja yang jelas. Mekanisme fragmentasi dan penyusunan ulang data yang 
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efisien dalam DDS menangani bandwidth tinggi lebih baik daripada 

tumpukan jaringan ROS1. 

 

• Stabilitas Latensi: Pada kernel Native-Linux, ROS2 menunjukkan 

fluktuasi latensi yang lebih besar seiring bertambahnya ukuran data 

dibandingkan ROS1. Namun, ketika dijalankan di atas Preempt_RT Linux, 

fluktuasi ini hilang, dan ROS2 memberikan latensi yang sangat rendah dan 

stabil, bahkan untuk data besar. 

 

e) Optimalisasi Intra-Process (Zero-Copy) 

Salah satu fitur kinerja terpenting di ROS2 adalah komunikasi intra- 

process. Ketika dua node berjalan dalam satu proses sistem operasi yang 

sama, ROS2 dapat melewati tumpukan jaringan DDS sepenuhnya. Alih-alih 

melakukan serialisasi data, pengiriman ke soket jaringan, dan deserialisasi, 

ROS2 hanya mengirimkan pointer ke lokasi memori data tersebut. 

Metode "Zero-Copy" ini memberikan pengurangan latensi yang 

masif, terutama untuk data sensor besar seperti gambar kamera 4K atau 

awan poin LiDAR. Evaluasi menunjukkan bahwa latensi intra-process tetap 

datar dan hampir nol, tidak peduli seberapa besar ukuran datanya, berbeda 

jauh dengan komunikasi inter-process yang latensinya naik secara linear 

terhadap ukuran data. 

 

3.3 VMware Workstation 

VMware berfungsi sebagai platform virtualisasi yang memisahkan 

perangkat keras fisik dari sistem operasi sehingga satu server fisik dapat 

menjalankan banyak mesin virtual secara bersamaan. Tesis Savola menjelaskan 

bahwa hypervisor VMware, seperti ESXi, membuat lapisan virtual terpisah yang 

mengelola alokasi CPU, memori, penyimpanan, dan jaringan untuk setiap VM 

secara efisien (Savola, 2021). Dengan struktur ini, VMware meningkatkan utilisasi 

perangkat keras sehingga perusahaan tidak perlu menyediakan satu server fisik 

untuk satu aplikasi. Pendekatan ini menurunkan biaya Capex dan Opex serta 
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mendukung tren datacenter modern dan cloud computing. Gambar 3.3 dibawah ini 

adalah tampilan halaman utama dari VMware. 

 

Gambar 3.3 Halaman utama VMware 

VMware memiliki ekosistem produk virtualisasi server yang luas. ESXi 

berfungsi sebagai hypervisor tipe-1 yang langsung berjalan di atas perangkat keras. 

vCenter menyediakan manajemen terpusat untuk banyak host ESXi, termasuk 

pengaturan kluster, distribusi beban, hingga automasi migrasi VM melalui vMotion 

atau Storage vMotion. Savola menekankan bahwa sejak rilis VMware Workstation 

pada 1999 dan peluncuran vSphere tahun 2009, VMware berkembang menjadi 

platform virtualisasi komersial yang dominan berkat inovasi berkelanjutan dan 

stabilitas produknya (Savola, 2021). Kombinasi ESXi dan vCenter menjadi dasar 

arsitektur virtualisasi di berbagai perusahaan, ISP, dan pusat data. 

VMware juga menyediakan mekanisme migrasi dan pengelolaan 

infrastruktur berskala besar. Tesis tersebut menunjukkan proses migrasi VM dari 

satu platform ke platform VMware lain melalui perencanaan kapasitas, konfigurasi 

jaringan, pembuatan datastore migrasi, hingga pemindahan VM tanpa mengganggu 

layanan produksi pelanggan (Savola, 2021). Setelah migrasi selesai, host lama 

dapat dihapus, diamankan, dan digunakan kembali. Proses ini menggambarkan 

kekuatan VMware dalam menyediakan infrastruktur virtual yang fleksibel, mudah 

dikelola, dan mampu mendukung operasi tingkat perusahaan. 
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3.4 U2D2 Communication Interface 

Sistem Robotic Arm System menggunakan arsitektur perangkat keras 

terpusat untuk mengelola komunikasi antara unit komputasi dan aktuator. 

Pengembang menempatkan seluruh komponen kontrol utama dalam satu kotak 

kontrol tunggal. Kotak kontrol ini berisi catu daya, komputer pengendali, tombol 

darurat, dan adaptor komunikasi U2D2 (Kim dkk., 2023). Gambar 3.4 adalah 

bentuk dari board U2D2 yang digunakan untuk komunikasi antara komputer 

dengan robot OpenManipulator. 

 

Gambar 3.4 Board U2D2 

Komputer pengendali terhubung ke adaptor U2D2 melalui sambungan 

USB. Adaptor ini berfungsi mengubah sinyal USB dari komputer menjadi sinyal 

serial RS-485 yang diperlukan oleh motor (Kim dkk., 2023). Sifat serial dari 

protokol ini memungkinkan sistem menghubungkan beberapa dudukan (mount) 

secara paralel hanya dengan menggunakan satu unit U2D2 (Kim dkk., 2023). 

Desain ini menyederhanakan pengkabelan dan mendukung modularitas sistem 

tanpa menambah perangkat keras antarmuka yang berlebihan. 

 

3.5 Robot OpenMANIPULATOR-X 

OpenManipulator-X dirancang sebagai manipulator serial, sebuah 

konfigurasi di mana serangkaian link (ekstensi mekanis) dihubungkan secara 

berurutan oleh sambungan (joint) revolute yang digerakkan oleh motor. Struktur 
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topologi robot ini terdiri dari tujuh segmen utama: basis (base), pinggang (waist), 

bahu (shoulder), lengan atas (upper arm), siku (elbow), lengan bawah (lower arm), 

dan pergelangan (wrist) atau end-effector (Adzeman dkk., 2020). Gambar 3.5 

dibawah ini adalah bentuk dari robot OpenManipulator-X. 

 

Gambar 3.5 Robot OpenManipulator-X 

Salah satu fitur paling distingtif dari OpenManipulator-X adalah 

penggunaan aktuator seri DYNAMIXEL-X seperti pada gambar 3.6. Motor pintar 

ini mengadopsi teknologi komunikasi daisy chain, yang memungkinkan kabel data 

dan daya dihubungkan secara seri dari satu motor ke motor berikutnya. Arsitektur 

ini secara drastis mengurangi kompleksitas pengkabelan yang biasanya menjadi 

masalah pada robot artikulasi, serta memungkinkan modularitas tinggi di mana 

pengguna dapat menambah atau mengurangi jumlah sambungan (DOF) sesuai 

kebutuhan aplikasi spesifik. Selain itu, sebagian besar komponen struktural robot 

ini dirancang agar dapat diproduksi menggunakan teknologi pencetakan 3D (3D 

printing), dengan fail desain yang disediakan secara terbuka oleh Robotis, 

menjadikannya platform yang sangat adaptif untuk modifikasi riset (Adzeman dkk., 

2020). 
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Gambar 3.6 Motor servo Dynamixel 

OpenManipulator-X memiliki spesifikasi operasional yang dioptimalkan 

untuk beban kerja ringan dan presisi moderat. Tabel 3.2 dibawah ini akan 

merangkum parameter teknis utama perangkat keras ini. 

Tabel 3.2 Spesifikasi Robot OpenManipulator-X 
 

Parameter Satuan Nilai spesiikasi 

Derajat Kebebasan (DOF) - 4 

Beban Maksimum (Payload) gram 500 

Berat Total kg 0,7 

Rentang Gripper mm 20-75 

Kecepatan Sambungan RPM 46 

Repeatability mm <0,2 

Kontroler Utama - PC, OpenCR 
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Bab IV 

Deskripsi Data dan Hasil Praktik Kerja Lapangan 

 

 

4.1 Persiapan Environment Kerja 

Tahap awal pengembangan sistem kendali robot dimulai dengan 

mempersiapkan lingkungan kerja perangkat lunak (software environment). Instalasi 

sistem operasi Ubuntu 22.04 LTS dilakukan pada komputer pengendali (PC) di 

dalam virtual machine VMware seperti pada gambar 4.1. Setelah instalasi pada 

VMware selesai, maka akan dilanjutkan dengan instalasi OS Ubuntu yang bisa kita 

lihat pada gambar 4.2. Pemilihan sistem operasi ini didasarkan pada efisiensi 

arsitektur dan manajemen sumber daya yang lebih unggul dibandingkan sistem 

operasi lain, terutama pada perangkat dengan spesifikasi terbatas (Al Fajar dkk., 

2025). 

 

Gambar 4.1 Instalasi Ubuntu pada VMware 
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Gambar 4.2 Instalasi OS Ubuntu 

Selanjutnya, pada gambar 4.3 dilakukan instalasi Robot Operating System 

2 (ROS 2) dikonfigurasi sebagai kerangka kerja utama untuk komunikasi antar node 

robot. Perintah yang digunakan adalah sudo apt install ros-humble-desktop. 

Password: <masukkan password OS> 
 

Gambar 4.3 Instalasi ROS2 

Workspace ROS 2 dibuat dan diatur, serta paket-paket driver yang 

diperlukan untuk OpenManipulator-X dikompilasi seperti pada gambar 4.4 dan 4.5. 

setelah berhasil maka akan file akan tertata seperti pada gambar 4.6. 



27  

 

Gambar 4.4 Instalasi paket OpenManipulator-X 
 

Gambar 4.5 Pembuatan folder workspace dan instalasi paket independen 
 

Gambar 4.6 Tampilan paket independen yang telah di instalasi 

Setelah proses instalasi selesai, pada gambar 4.7 dapat kita lihat cara untuk 

memverifikasi keberhasilan konfigurasi dilakukan dengan memeriksa daftar topik 

yang aktif pada sistem ROS 2 melalui terminal dengan perintah ros2 topic list. 

Langkah ini krusial untuk memastikan bahwa lingkungan pengembangan telah siap 

digunakan untuk tahap simulasi maupun eksekusi real-time. Topic yang digunakan 

pada penelitian ini ada 3, yaitu: 

a. /arm_controller/joint_trajectory 

b. /rosout 

c. /clock 
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Gambar 4.7 Output dari ros2 topic list 

Gambar 4.8 menunjukkan bagaimana cara distribusi data dari Komputer 

menuju robot OpenManipulator-X. Data pada komputer akan dikirimkan kepada 

U2D2, kemudian data akan di terjemahkan oleh U2D2 menjadi protokol 

komunikasi serial TTL(Transistor-Transistor Logic), sinyal data ini kemudian 

dikirim ke U2D2 Power Hub Board menggunakan kabel TTL, yang juga menerima 

daya listrik stabil 12V 5A. Kemudian Power Hub menyatukan jalur data dan sumber 

listrik ke dalam satu jalur distribusi. Akhirnya, kabel TTL mentransmisikan paket 

gabungan tersebut ke robot, dimana setiap aktuator Dynamixel membaca data, 

memvalidasi ID, dan menggerakkan sendi robot sesuai perintah. 

 

Gambar 4.8 Ilustrasi koneksi PC dengan robot OpenManipulator-X 
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Dapat dilihat pada gambar 4.9, ini adalah ilustrasi dari posisi robot arm dan 

titik tujuan yang digunakan untuk pengujian. Robot akan berada pada titik A, dan 

berdiri dengan posisi init pose seperti pada gambar 4.10. 

 

Gambar 4.9 Ilustrasi posisi robot arm dan titik tujuan 
 

 

Gambar 4.10 Keterangan joint dan Init pose 

Pengambilan data dari setiap titik tujuan robot dilakukan dengan cara 

manual, yaitu dengan cara mengambil data sensor dari setiap joint yang pada robot 

arm. Untuk satuan koordinat sudut yang digunakan untuk setiap joint dari robot 

arm ini adalah radian, pada tabel 4.1 bisa kita lihat untuk koordinat setiap titik yang 

digunakan pada penelitian ini. 
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Tabel 4.1 Koordinat joint titik tujuan 
 

Titik Joint 1 Joint 2 Joint 3 Joint 4 

Home 1.65 -0.89 0.82 1.03 

B1 -0.5 0.23 0.15 0.22 

B2 -0.02 -0.75 0.71 1.03 

B3 -1.62 -0.93 1.04 0.73 

B4 0.45 0.23 0.15 0.22 

 

4.2 Pengoperasian Robot Menggunakan Simulator Gazebo 

Sebelum pengujian dilakukan pada perangkat keras fisik, simulasi 

dijalankan menggunakan Gazebo. Hal ini bertujuan untuk memvalidasi logika 

pergerakan dan algoritma kendali tanpa risiko kerusakan pada perangkat keras. 

Model robot yang dideskripsikan dalam format URDF (Unified Robot Description 

Format) dimuat ke dalam lingkungan simulasi kosong di Gazebo seperti pada 

gambar 4.11. 

 

Gambar 4.11 Tampilan model robot arm pada simulator Gazebo 
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Kemudian perintah ros2 launch open_manipulator_x_moveit_config 

servo.launch.py pada gambar 4.12 harus dijalankan terlebih dahulu agar robot arm 

pada simulator dapat berjalan. 

 

Gambar 4.12 Perintah MoveIt servo secara real-time 

Perintah kecepatan dan posisi dikirimkan melalui terminal ROS 2 untuk 

menggerakkan sendi-sendi robot virtual. Respons visual robot dalam simulator 

diamati untuk memastikan kinematika gerak berjalan sesuai dengan logika yang 

diharapkan. Simulasi ini membuktikan bahwa node pengendali berhasil 

menerjemahkan perintah topik menjadi aksi gerak pada joint robot, sebagaimana 

ditunjukkan pada visualisasi simulasi. Keberhasilan pada tahap ini menjadi 

indikator bahwa algoritma siap diterapkan pada robot fisik. 

 

4.3 Pengoperasian Robot Fisik Secara Real-Time 

Pada tahap ini, robot fisik OpenManipulator-X dihubungkan ke komputer 

pengendali menggunakan adaptor U2D2. Adaptor ini berfungsi mengubah sinyal 

data dari USB komputer menjadi sinyal serial RS-485 yang digunakan oleh aktuator 

DYNAMIXEL (Kim dkk., 2023). Hak akses (permission) diberikan pada port USB 

ttyUSB0 agar ROS 2 dapat berkomunikasi secara langsung dengan motor servo. 

Seperti pada gambar 4.13 dapat kita lihat hasil dari perintah ls -l /dev/ttyUSB0 yang 

menghasilkan crw-rw-rw berarti port telah memiliki izin untuk baca/tulis. 
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Gambar 4.13 Verifikasi port USB 

Launch file utama dijalankan untuk mengaktifkan seluruh node pengendali 

perangkat keras. Dapat di lihat pada gambar 4.14 dan 4.15 terdapat dua perintah 

yang digunakan sebagai launch file, yaitu ros2 launch 

open_manipulator_x_bringup hardware.launch.py dan ros2 launch 

open_manipulator_x_moveit_config servo.launch.py, kedua perintah ini harus 

berjalan secara bersamaan di dua terminal yang berbeda saat akan melakukan 

pengoperasian robot fisik secara real-time. 

 

Gambar 4.14 Perintah launch torsi ke hardware 
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Gambar 4.15 Perintah MoveIt servo secara real-time 

4.4 Pengujian Gerakan Robot Pada Simulator Gazebo 

Pengujian pada simulator gazebo digunakan untuk memastikan koordinat 

sudut yang digunakan sudah benar dan tidak akan melewati batas kemampuan dari 

robot. Pengujian fungsionalitas gerak robot dibagi menjadi dua skenario utama 

untuk mengevaluasi presisi posisi dan fleksibilitas lintasan, yaitu pengujian point- 

to-point dan multi-point. Pengujian ini dimulai dengan robot arm berada pada init 

pose dimana semua koordinat sudut joint dimulai dari nilai 0.00 radian seperti yang 

bisa kita lihat pada gambar 4.16. 
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Gambar 4.16 Init pose dari robot OpenManipulator-X 

4.4.1 Pengujian Gerak Point to Point 

Pengujian ini memfokuskan validasi pada akurasi pencapaian satu koordinat 

target dalam ruang simulasi. Sistem simulator menerima input koordinat tujuan dan 

menghitung perpindahan sudut sendi yang diperlukan secara otomatis. Lingkungan 

Gazebo kemudian memvisualisasikan respons pergerakan sendi robot dari posisi 

awal menuju posisi akhir tanpa hambatan fisik. 

Sistem pemantau mencatat deviasi antara posisi yang diperintahkan dan 

posisi aktual yang dicapai oleh model robot dalam simulasi. Hasil pengamatan 

menunjukkan bahwa controller virtual mampu mengarahkan end-effector ke titik 

sasaran dengan presisi tinggi. Validasi ini memastikan bahwa parameter kinematika 

yang didefinisikan dalam file URDF telah sesuai dengan spesifikasi teknis robot, 

sehingga aman untuk diterapkan pada robot fisik. 

Ilustrasi pergerakan robot pada simulator akan ditampilkan pada gambar 

4.17, dimana bagian sebelah kiri adalah init pose dan sebelah kanan adalah ketika 

robot telah sampai pada koordinat titik B1. Hasil dari pengujian dapat dilihat pada 

tabel 4.2. Kode program dapat dilihat pada Lampiran 1. 
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Gambar 4.17 Ilustrasi gerak point-to-point pada simulator 

Tabel 4.2 Hasil pengujian point-to-point simulator 

Gerakan Keberhasilan 

Init pose →Home ✓ 

Init pose → B1 ✓ 

Init pose → B2 ✓ 

Init pose → B3 ✓ 

Init pose → B4 ✓ 

 

4.4.2 Pengujian Gerak Multi Point 

Pengujian gerak multi-point dalam simulasi bertujuan untuk mengevaluasi 

kelancaran interpolasi lintasan yang kompleks. Sistem mengirimkan serangkaian 

titik koordinat berurutan yang membentuk lintasan melengkung atau berpola 

tertentu ke dalam simulator. Physics engine Gazebo menyimulasikan dinamika 

gerakan, termasuk inersia dan gravitasi, saat robot berpindah antar titik. 

Simulator memvisualisasikan bagaimana kontroler menangani transisi 

kecepatan dan akselerasi di setiap titik singgah. Pengamatan difokuskan pada 

deteksi gerakan yang tersendat atau overshoot yang mungkin terjadi akibat 

kesalahan parameter PID virtual. Hasil simulasi mengonfirmasi bahwa robot virtual 

dapat mengikuti lintasan yang telah ditentukan secara mulus, membuktikan bahwa 

algoritma pembentukan jalur berfungsi dengan baik sebelum diuji pada beban kerja 

nyata. 
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Ilutrasi pergerakan robot pada simulator akan ditampilkan pada gambar 

4.18, dimana bagian sebelah kiri adalah init pose, tengah adalah ketika robot sampai 

pada koordinat titik B1 dan sebelah kanan adalah ketika robot telah sampai pada 

koordinat titik B2. Hasil dari pengujian dapat dilihat pada tabel 4.3. Kode program 

dapat dilihat pada Lampiran 2. 

 

Gamar 4.18 Ilustrasi gerak multi-point pada simulator 

Tabel 4.3 Hasil pengujian multi-point simulator 

Gerakan Keberhasilan 

Init pose → B1 – B2 ✓ 

Init pose → B3 – B2 ✓ 

Init pose → B2 – B4 ✓ 

Init pose → B1 – B3 ✓ 

Init pose → B4 – B3 ✓ 

Init pose → Home – B1 ✓ 

 

4.5 Pengujian Gerakan Robot Fisik Secara Real-time 

Pengujian gerakan robot fisik dilakukan dengan menggunakan robot 

OpenManipulator-X dimana posisi awal dan koordinat sudut yang digunakan sama 

dengan pengujian menggunakan simulator. 

 

4.5.1 Pengujian Gerak Point to Point 

Sistem mengawali operasi dengan membangkitkan node ROS 2 sebagai 

pusat kendali. Node ini segera membangun jalur komunikasi publisher ke topik 

perintah robot. Kode program kemudian mengaktifkan mekanisme penghitung 

waktu mundur (timer) sebelum transmisi data bermula. Langkah ini memberi jeda 

krusial bagi sistem untuk mematangkan stabilitas koneksi jaringan. 
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Setelah koneksi stabil, fungsi penyusun pesan mulai merakit paket instruksi 

gerak. Paket ini memuat identitas setiap sendi beserta koordinat sudut tujuan dalam 

satuan radian. Kode juga menetapkan batas durasi eksekusi agar kontroler robot 

dapat menghitung interpolasi kecepatan secara otomatis. Mekanisme pengirim 

lantas melontarkan paket data tersebut menuju aktuator robot dalam satu kali 

pengiriman. 

Sistem tidak langsung mematikan proses setelah pengiriman data terjadi. 

Program sengaja menahan siklus eksekusi tetap hidup selama beberapa detik hingga 

robot tuntas mencapai target. Penahanan ini mencegah pemutusan koneksi prematur 

yang dapat menghentikan robot di tengah jalan. Akhirnya, fungsi utama menutup 

node secara bersih dan mengakhiri program tanpa memicu pesan kesalahan sistem. 

Ilustrasi gerakan robot dapat dilihat pada gambar 4.19, dimana gambar 

sebelah kiri adalah init pose dan sebelah kanan adalah ketika robot telah sampai 

pada titik home. Hasil dari pengujian dapat dilihat pada tabel 4.4, waktu eksekusi 

diperoleh dari stopwatch yang dinyalakan pada saat program dijalankan pada 

komputer dan dihentikan ketika komputer telah menyatakan program selesai. Pada 

tabel 4.5 dapat dilihat berapa lama waktu respon robot saat perintah dijalankan, 

kolom waktu respon diperoleh dari pengurangan nilai kolom waktu eksekusi di 

tabel 4.4 dengan empat detik sebagai waktu operasi pada program. Empat detik 

tersebut diperoleh dari satu detik untuk delay pada program kemudian tiga detik 

untuk operasi robot (lampiran 3 line kode nomor 19 dan 47). Kode program dapat 

dilihat pada Lampiran 3. 
 

Gambar 4.19 Ilustrasi Gerak point-to-point 
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Tabel 4.4 Hasil pengujian poin-to-point robot fisik 
 

Gerakan Keberhasilan Waktu Eksekusi 

Init pose →Home ✓ 4,97 detik 

Init pose → B1 ✓ 4,35 detik 

Init pose → B2 ✓ 4,79 detik 

Init pose → B3 ✓ 4,75 detik 

Init pose → B4 ✓ 4,88 detik 

 

Tabel 4.5 Waktu Respon robot 
 

Gerakan Waktu Respon 

Init pose →Home 0,97 detik 

Init pose → B1 0,35 detik 

Init pose → B2 0,79 detik 

Init pose → B3 0,75 detik 

Init pose → B4 0,88 detik 

 

4.5.2 Pengujian Gerak Multi Point 

Sistem memulai rangkaian pengujian ini dengan menginisialisasi node 

pengendali yang terhubung ke topik lintasan standar antarmuka ROS 2. Kontroler 

pada topik ini bertugas menerima daftar koordinat dan melakukan perhitungan 

interpolasi menggunakan metode Spline agar transisi gerakan antar motor berjalan 

mulus. 

Fungsi utama kemudian menyusun struktur pesan yang memuat tiga elemen 

vital yaitu penanda waktu aktual, daftar nama sendi yang terlibat, dan rangkaian 

titik tujuan. Kecerdasan sistem terlihat pada logika manipulasi waktu untuk 

menciptakan efek "jeda" tanpa mematikan motor. Sistem mengirimkan dua titik 

kembar dengan posisi yang sama persis namun memiliki cap waktu berbeda— 

misalnya titik A pada detik ke-3 dan titik A yang sama pada detik ke-6. 

Kontroler merespons data "titik kembar" ini dengan mempertahankan torsi 

motor pada posisi tersebut selama interval waktu yang ditentukan, sehingga robot 

berhenti sejenak sebelum melanjutkan perjalanan ke titik B pada detik ke-9. Setelah 
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pesan terkirim, sistem membatalkan pemanggilan ulang fungsi dan menahan proses 

tetap aktif selama durasi penuh lintasan. Langkah ini menjamin program tidak 

berhenti di tengah jalan sebelum robot menyelesaikan seluruh manuvernya dengan 

sempurna. 

Ilustrasi pergerakan robot akan ditampilkan pada gambar 4.20, dimana 

bagian sebelah kiri adalah init pose, tengah adalah ketika robot sampai pada 

koordinat titik Home dan sebelah kanan adalah ketika robot telah sampai pada 

koordinat titik B1. Hasil dari pengujian dapat dilihat pada tabel 4.6, pada tabel 4.7 

dapat dilihat berapa lama waktu respon robot saat perintah dijalankan, kolom waktu 

respon diperoleh dari pengurangan nilai kolom waktu eksekusi di tabel 4.6 dengan 

sepuluh detik sebagai waktu operasi pada program. Sepuluh detik tersebut diperoleh 

dari satu detik untuk delay pada program kemudian sembilan detik untuk operasi 

robot (lampiran 4 line kode nomor 18 dan 56). Kode program dapat dilihat pada 

Lampiran 4. 

 

Gambar 4.20 Ilustrasi gerak multi-point 

Tabel 4.6 Hasil pengujian multi-point robot fisik 
 

Gerakan Keberhasilan Waktu Eksekusi 

Init pose → B1 – B2 ✓ 10,51 detik 

Init pose → B3 – B2 ✓ 10,88 detik 

Init pose → B2 – B4 ✓ 10,93 detik 

Init pose → B1 – B3 ✓ 10,58 detik 

Init pose → B4 – B3 ✓ 10,69 detik 

Init pose → Home – B1 ✓ 10,93 detik 
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Tabel 4.7 Waktu respon robot 
 

Gerakan Waktu Respon 

Init pose → B1 – B2 0,51 detik 

Init pose → B3 – B2 0,88 detik 

Init pose → B2 – B4 0,93 detik 

Init pose → B1 – B3 0,58 detik 

Init pose → B4 – B3 0,69 detik 

Init pose → Home – B1 0,93 detik 
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5.1 Kesimpulan 

Bab V 

Penutup 

Implementasi sistem kendali robot OpenMANIPULATOR-X menggunakan 

arsitektur ROS 2 Humble telah berhasil dan berjalan secara stabil. Penggunaan 

middleware ROS 2 yang berbasis Data Distribution Service atau DDS 

meningkatkan fleksibilitas dan desentralisasi data sistem. 

Pengujian memvalidasi akurasi gerakan robot dalam lingkungan simulasi 

Gazebo maupun pada perangkat keras fisik. Robot mampu mencapai target 

koordinat dengan presisi pada skenario gerak point-to-point dengan rata-rata waktu 

eksekusi 4,74 detik pada perangkat fisik. Validasi gerak multi-point juga 

menunjukkan hasil yang konsisten dengan rata-rata waktu penyelesaian lintasan 

sebesar 10,76 detik tanpa penyimpangan jalur. 

Penerapan patch Preempt_RT pada kernel Linux menjadi faktor kunci 

dalam menjaga determinisme gerakan robot. Sesuai data penelitian Ye dkk. (2023), 

optimasi ini mereduksi latensi maksimum dari 6.243 µs menjadi 82 µs. Latensi 

tidak dapat di lihat karena penggunaan PREEMPT_RT sudah menekan latensi di 

bawah 10 µs. 

 

5.2 Saran 

Pusat Studi HMI sebaiknya mengintegrasikan sistem machine vision untuk 

mendukung deteksi objek secara otomatis dan dinamis. Pengembang selanjutnya 

perlu melakukan pengujian pada perangkat keras secara langsung tanpa melalui 

mesin virtual atau VMware. Langkah ini akan meminimalkan beban sistem atau 

overhead dan meningkatkan performa komputasi. Peneliti selanjutnya dapat 

mengembangkan variasi model gerak dari robot OpenManipulator supaya lebih 

bervariasi. Peneliti selanjutnya dapat juga membuat GUI sistem supaya lebih user- 

friendly. 
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Lampiran 

Lampiran 1. Kode pengoperasian simulator Point-to-Point 

move_b1.py 

1. #!/usr/bin/env python3 

2. import rclpy 

3. from rclpy.node import Node 

4. from rclpy.parameter import Parameter 

5. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint 

6. import time 

7. import sys 

8.  

9. class MoveOpenManipulatorSinglePointGazebo(Node): 

10. def   init  (self): 

11. super().  init  ('move_openmanipulator_single_point_gazebo') 

12.  

13.  # Mengaktifkan waktu simulasi (Sim Time) agar sinkron dengan 

Gazebo 

14. self.set_parameters([ 

15. Parameter('use_sim_time', Parameter.Type.BOOL, True) 

16. ]) 

17. 

18. # Topik disesuaikan ke controller Gazebo 

19. self.publisher_ = self.create_publisher( 

20. JointTrajectory, 

21. '/arm_controller/joint_trajectory', 

22. 10 

23. ) 

24. 

25. self.timer = self.create_timer(1.0, self.timer_callback) 

26.  self.get_logger().info('Mode Gazebo Aktif. Siap mengirim 1 titik 

gerakan.') 

27.  
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28. def timer_callback(self): 

29. self.timer.cancel() 

30. self.send_trajectory() 

31.  

32. self.get_logger().info("Perintah ke Gazebo dikirim.") 

33. 

34. # Waktu tunggu 4 detik (3 detik gerak + 1 detik buffer) 

35. time.sleep(4.0) 

36.  

37. self.destroy_node() 

38. sys.exit(0) 

39.  

40. def send_trajectory(self): 

41. traj = JointTrajectory() 

42. # Mengambil waktu dari Clock Simulasi 

43. traj.header.stamp = self.get_clock().now().to_msg() 

44. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4'] 

45. 

46. # --- TITIK TUJUAN TUNGGAL --- 

47. point = JointTrajectoryPoint() 

48. 

49. # Koordinat tujuan (Posisi B1) 

50. point.positions = [-0.5, 0.23, 0.15, 0.22] 

51.  

52. # Durasi gerakan ditetapkan 3 detik 

53. point.time_from_start.sec = 3 

54.  

55. # Memasukkan satu titik saja ke dalam daftar 

56. traj.points = [point] 

57. 

58. self.publisher_.publish(traj) 

59. 
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60. def main(args=None): 

61. rclpy.init(args=args) 

62. node = MoveOpenManipulatorSinglePointGazebo() 

63. try: 

64. rclpy.spin(node) 

65. except SystemExit: 

66. rclpy.logging.get_logger("root").info("Program selesai.") 

67. rclpy.shutdown() 

68.  

69. if   name == '  main  ': 

70. main() 

 

 

Lampiran 2. Kode pengoperasian simulator Multi Points 

move_b1b2.py 

1. #!/usr/bin/env python3 

2. import rclpy 

3. from rclpy.node import Node 

4. from rclpy.parameter import Parameter 

5. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint 

6. import time 

7. import sys 

8.  

9. class MoveOpenManipulatorPause(Node): 

10. def   init  (self): 

11. super().  init  ('move_openmanipulator_pause') 

12.  

13.  # Mengaktifkan waktu simulasi (Sim Time) agar sinkron dengan 

Gazebo 

14. self.set_parameters([ 

15. Parameter('use_sim_time', Parameter.Type.BOOL, True) 

16. ]) 

17. 
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18. self.publisher_ = self.create_publisher( 

19. JointTrajectory, 

20. '/arm_controller/joint_trajectory', 

21. 10 

22. ) 

23. 

24. self.timer = self.create_timer(1.0, self.timer_callback) 

25.  self.get_logger().info('Mode Gazebo Aktif. Menunggu clock 

simulasi...') 

26.  

27. def timer_callback(self): 

28. self.timer.cancel() 

29. self.send_trajectory() 

30.  

31. self.get_logger().info("Perintah ke Gazebo dikirim.") 

32. 

33. # waktu tunggu 10 detik 

34. time.sleep(10.0) 

35.  

36. self.destroy_node() 

37. sys.exit(0) 

38.  

39. def send_trajectory(self): 

40. traj = JointTrajectory() 

41. # Mengambil waktu dari Clock Simulasi (bukan waktu komputer) 

42. traj.header.stamp = self.get_clock().now().to_msg() 

43. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4'] 

44. 

45. # --- DEFINISI WAKTU --- 

46. move_time = 3 

47. pause_time = 3 

48.  
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49. # --- TITIK 1: Bergerak ke Posisi B1 --- 

50. point1 = JointTrajectoryPoint() 

51. point1.positions = [-0.5, 0.23, 0.15, 0.22] 

52. point1.time_from_start.sec = move_time 

53. 

54. # --- TITIK 1 (HOLD): Diam di Posisi B1 --- 

55. point1_hold = JointTrajectoryPoint() 

56. point1_hold.positions = [-0.5, 0.23, 0.15, 0.22] 

57. point1_hold.time_from_start.sec = move_time + pause_time 

58. 

59. # --- TITIK 2: Bergerak ke Posisi B2 --- 

60. point2 = JointTrajectoryPoint() 

61. point2.positions = [-0.02, -0.75, 0.71, 1.03] 

62. point2.time_from_start.sec = move_time + pause_time + move_time 

63. 

64. traj.points = [point1, point1_hold, point2] 

65. 

66. self.publisher_.publish(traj) 

67. 

68. def main(args=None): 

69. rclpy.init(args=args) 

70. node = MoveOpenManipulatorPause() 

71. try: 

72. rclpy.spin(node) 

73. except SystemExit: 

74. rclpy.logging.get_logger("root").info("Program selesai.") 

75. rclpy.shutdown() 

76.  

77. if   name == '  main  ': 

78. main() 
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Lampiran 3. Kode pengoperasian robot fisik Point-to-Point 

Move_to_H.py 

1. #!/usr/bin/env python3 

2. import rclpy 

3. from rclpy.node import Node 

4. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint 

5. import time 

6. import sys 

7.  

8. class MoveOpenManipulatorSinglePoint(Node): 

9. def   init  (self): 

10. super().  init  ('move_openmanipulator_single_point') 

11.  

12. # Publisher ke topik controller robot asli 

13. self.publisher_ = self.create_publisher( 

14. JointTrajectory, 

15. '/arm_controller/joint_trajectory', 

16. 10 

17. ) 

18. 

19. self.timer = self.create_timer(1.0, self.timer_callback) 

20.  self.get_logger().info('Robot Terhubung. Siap mengirim 1 titik 

gerakan.') 

21.  

22. def timer_callback(self): 

23. self.timer.cancel() 

24. self.send_trajectory() 

25.  

26.  # Waktu tunggu 4 detik agar skrip tidak mati sebelum robot selesai 

bergerak 
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27.  self.get_logger().info("Perintah dikirim. Robot bergerak ke Titik 

Tujuan.") 

28. time.sleep(4.0) 

29.  

30. self.destroy_node() 

31. sys.exit(0) 

32.  

33. def send_trajectory(self): 

34. traj = JointTrajectory() 

35. traj.header.stamp = self.get_clock().now().to_msg() 

36. 

37. # Pastikan nama joint sesuai dengan konfigurasi robot 

38. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4'] 

39. 

40. # --- TITIK TUJUAN TUNGGAL --- 

41. point = JointTrajectoryPoint() 

42. 

43. # Masukkan koordinat tujuan 

44. point.positions = [1.65, -0.89, 0.82, 1.03] 

45.  

46. # Robot akan sampai di titik ini dalam waktu 3 detik 

47. point.time_from_start.sec = 3 

48.  

49. traj.points = [point] 

50. 

51. self.publisher_.publish(traj) 

52. 

53. def main(args=None): 

54. rclpy.init(args=args) 

55. node = MoveOpenManipulatorSinglePoint() 

56. try: 

57. rclpy.spin(node) 
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58. except SystemExit: 

59. # Menangkap sinyal keluar dari sys.exit(0) agar tidak error 

60. rclpy.logging.get_logger("root").info("Program selesai.") 

61. rclpy.shutdown() 

62.  

63. if   name == '  main  ': 

64. main() 

 

 

Lampiran 4. Kode pengoperasian robot fisik Multi Points 

multi_point_hb1.py 

1. #!/usr/bin/env python3 

2. import rclpy 

3. from rclpy.node import Node 

4. from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint 

5. import time 

6. import sys 

7.  

8. class MoveOpenManipulatorPause(Node): 

9. def   init  (self): 

10. super().  init  ('move_openmanipulator_pause') 

11.  

12. self.publisher_ = self.create_publisher( 

13. JointTrajectory, 

14. '/arm_controller/joint_trajectory', 

15. 10 

16. ) 

17. 

18. self.timer = self.create_timer(1.0, self.timer_callback) 

19.  self.get_logger().info('Robot Terhubung. Siap mengirim lintasan 

dengan jeda...') 

20.  

21. def timer_callback(self): 
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22. self.timer.cancel() 

23. self.send_trajectory() 

24.  

25.  # Waktu tunggu 10 detik agar skrip tidak mati sebelum robot selesai 

bergerak 

26.  self.get_logger().info("Perintah dikirim. Robot bergerak: Titik 1 -> 

Jeda -> Titik 2.") 

27. time.sleep(10.0) 

28.  

29. self.destroy_node() 

30. sys.exit(0) 

31.  

32. def send_trajectory(self): 

33. traj = JointTrajectory() 

34. traj.header.stamp = self.get_clock().now().to_msg() 

35. traj.joint_names = ['joint1', 'joint2', 'joint3', 'joint4'] 

36. 

37. # --- DEFINISI WAKTU --- 

38. move_time = 3 # Waktu untuk bergerak 

39. pause_time = 3 # Durasi jeda (diam) 

40. 

41. # --- TITIK 1: Bergerak ke Posisi Home --- 

42. point1 = JointTrajectoryPoint() 

43. point1.positions = [1.65, -0.89, 0.82, 1.03] 

44. point1.time_from_start.sec = move_time # T=3 

45. 

46. # --- TITIK 1 (HOLD): Diam di Posisi Home --- 

47.  # Kita kirim posisi yang SAMA persis, tapi waktunya ditambah durasi 

jeda 

48. point1_hold = JointTrajectoryPoint() 

49.  point1_hold.positions = [1.65, -0.89, 0.82, 1.03] # Posisi sama dengan 

point1 
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50.  point1_hold.time_from_start.sec = move_time + pause_time # T=6 

(3+3) 

51.  

52. # --- TITIK 2: Bergerak ke Posisi B1 --- 

53. point2 = JointTrajectoryPoint() 

54. point2.positions = [-0.5, 0.23, 0.15, 0.22] 

55. # Waktu tempuh dihitung dari akhir jeda 

56.  point2.time_from_start.sec = move_time + pause_time + move_time # 

T=9 (6+3) 

57.  

58. # Masukkan urutan titik ke dalam list 

59. # Urutan: Gerak ke Home -> Diam di Home -> Gerak ke B1 

60. traj.points = [point1, point1_hold, point2] 

61. 

62. self.publisher_.publish(traj) 

63. 

64. def main(args=None): 

65. rclpy.init(args=args) 

66. node = MoveOpenManipulatorPause() 

67. try: 

68. rclpy.spin(node) 

69. except SystemExit: 

70. # Menangkap sinyal keluar dari sys.exit(0) agar tidak error 

71. rclpy.logging.get_logger("root").info("Program selesai.") 

72. rclpy.shutdown() 

73.  

74. if   name == '  main  ': 

75. main() 


