
 

 

OPTIMASI DETEKSI DINI RETINOPATI DIABETIK MENGGUNAKAN 

PREPROCESSING DAN AUGMENTASI CITRA FUNDUS 

 

 

 

TUGAS AKHIR 

 

 

 

 

 

 

 

ALVIN PRATIKTA WIDAJAT 

NIM: 311910003 

 

 

 

 

 

PROGRAM STUDI TEKNIK INFORMATIKA 

FAKULTAS TEKNOLOGI DAN DESAIN 

UNIVERSITAS MA CHUNG 

MALANG 

2024





ii 

 

OPTIMASI DETEKSI DINI RETINOPATI DIABETIK MENGGUNAKAN 

PREPROCESSING DAN AUGMENTASI CITRA FUNDUS 

 

Alvin Pratikta Widajat, Windra Swastika, Paulus Lucky Tirma Irawan 
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Abstrak 

Retinopati Diabetik (RD) merupakan komplikasi umum pada diabetes 

melitus yang seringkali menyebabkan kebutaan pada usia produktif. Deteksi dini 

RD sangat penting, namun metode manual memakan waktu dan diagnosis para ahli 

dapat berbeda berdasarkan asumsi pribadi. Oleh karena itu, penelitian ini 

mengusulkan metode deep learning guna menghindari kesalahan diagnosis. 

Penelitian ini melibatkan empat arsitektur (Inception-v4, ResNet-50, VGG-19, 

YOLO v5Nano) dengan teknik preprocessing (cropping, histogram equalization) 

dan augmentasi flipping. Dataset diunduh dari laman Kaggle lalu di-sampling untuk 

menciptakan dataset asli. Selanjutnya, dilakukan preprocessing citra dan 

augmentasi data. Empat arsitektur dilatih untuk menghasilkan empat model, 

confusion matrix, dan nilai akurasi yang dievaluasi menggunakan uji normalitas 

dan uji statistik. Selanjutnya, pengaruh preprocessing dan augmentasi data terhadap 

performa model dianalisis dengan melatih model pada berbagai kombinasi dataset. 

Hasil penelitian menunjukkan bahwa YOLO v5Nano unggul, mencapai akurasi 

pelatihan sebesar 0,93 dan akurasi pengujian rata-rata sebesar 0,73. Augmentasi 

flipping terbukti efektif, dengan akurasi pelatihan sebesar 0,91 dan akurasi 

pengujian sebesar 0,93. Secara keseluruhan, penerapan arsitektur deep learning 

dengan preprocessing dan augmentasi data berhasil meningkatkan deteksi dini RD. 

Arsitektur YOLO v5Nano dianggap optimal, sementara augmentasi flipping 

menunjukkan kinerja superior. Temuan ini berkontribusi pada pengurangan risiko 

kebutaan melalui deteksi dini retinopati diabetik. 

 

Kata kunci: Retinopati Diabetik, Deep Learning, Preprocessing Citra, Augmentasi 

Data 
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OPTIMIZATION OF EARLY DETECTION OF DIABETIC 

RETINOPATHY USING FUNDUS IMAGE PREPROCESSING AND 

AUGMENTATION 

 

Alvin Pratikta Widajat, Windra Swastika, Paulus Lucky Tirma Irawan 

Universitas Ma Chung 

Abstract 

Diabetic Retinopathy (DR) is a complication of diabetes mellitus that often 

leads to blindness at a productive age. Early detection of DR is crucial, but manual 

methods are time-consuming, and expert diagnoses can vary based on personal 

assumptions. Therefore, this research proposes a deep learning method to avoid 

diagnostic errors. This study involves four architectures (Inception-v4, ResNet-50, 

VGG-19, YOLO v5Nano) with preprocessing techniques (cropping, histogram 

equalization) and flipping augmentation. The dataset was downloaded from Kaggle 

and then sampled to create an original dataset. Next, image preprocessing and data 

augmentation were performed. Four architectures were trained to produce four 

models, confusion matrices, and accuracy values evaluated using normality tests 

and statistical tests. Furthermore, the influence of preprocessing and data 

augmentation on model performance was analyzed by training models on various 

dataset combinations. The results show that YOLO v5Nano excels, achieving a 

training accuracy of 0.93 and an average testing accuracy of 0.73. Flipping 

augmentation proved effective, with a training accuracy of 0.91 and a testing 

accuracy of 0.93. Overall, the implementation of deep learning architectures with 

preprocessing and data augmentation successfully improves early detection of DR. 

The YOLO v5Nano architecture is considered optimal, while flipping augmentation 

demonstrates superior performance. These findings contribute to reducing the risk 

of blindness through early detection of diabetic retinopathy. 

 

Keywords: Diabetic Retinopathy, Deep Learning, Image Preprocessing, Data 

Augmentation  
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BAB I 

PENDAHULUAN 

 

1.1 Latar Belakang 

Retinopati Diabetik adalah komplikasi dari penyakit diabetes melitus. 

Retinopati Diabetik merupakan salah satu penyebab utama kebutaan pada 

penduduk usia kerja. Retinopati Diabetik terbagi menjadi dua tingkat, yaitu non-

proliferative diabetic retinopathy (NPRD) dan proliferative diabetic retinopathy 

(PRD) (Wang & Lo, 2018). NPRD terbagi menjadi 3 tahap, yaitu NPRD ringan 

(mild), NPRD sedang (moderate), dan NPRD berat (severe) (Fajariyanti, 2017). 

Dalam penelitian yang dilakukan di beberapa daerah di Indonesia, prevalensi 

retinopati diabetik diperkirakan sebesar 42,6%, dari jumlah tersebut, sekitar 10% 

mengalami kebutaan (Bayer, 2019). 

Untuk mencegah kebutaan, diperlukan metode deteksi dini agar penyakit 

retinopati diabetik dapat segera diobati. Namun, cara mengklasifikasi penyakit 

retinopati diabetik saat ini yang biasanya dilakukan adalah secara manual. 

Diagnosis manual membutuhkan waktu yang lama dan memerlukan tenaga ahli 

(Qummar et al., 2019). Selain itu, cara ini dapat menimbulkan pendapat yang 

berbeda-beda dari masing-masing tenaga ahli (Valverde et al., 2016). Oleh karena 

itu, dibutuhkan sebuah metode deteksi penyakit retinopati diabetik untuk 

menghindari kemungkinan diagnosis yang salah. 

Metode deteksi yang dapat dikembangkan menggunakan metode deep 

learning. Pengembangan metode tersebut dapat meningkatkan akurasi deteksi 

retinopati diabetik dalam setiap tahapan. Hal ini disebabkan karena metode deep 

learning membuat sebuah model khusus untuk mengidentifikasi objek tersebut. 

Beberapa penelitian terdahulu terkait dengan deteksi citra menggunakan CNN yang 

menjadi landasan penggunaan CNN adalah, penelitian Lin dan Wu di tahun 2023, 

digunakan arsitektur ResNet-50 untuk mengklasifikasi penyakit retinopati diabetik. 

Akurasi arsitektur ResNet-50 pada penelitian tersebut mencapai 75%  (Lin & Wu, 

2023). Pada tahun 2020, Shankar dkk. berhasil menerapkan Hyper Parameter 

Tuning Inception-v4 dan Contrast Limited Adaptive Histogram Equalization untuk 

mengklasifikasi penyakit retinopati diabetik dengan nilai f1-score 98,72% (Shankar 
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et al., 2020). Pada penelitian Sudha dan Ganeshbabu (2021), preprocessing citra 

digunakan untuk membedakan abnormalitas pada citra fundus penderita retinopati 

diabetik. Metode tersebut diikuti dengan penggunaan arsitektur VGG-19 terbukti 

dapat memberikan tingkat akurasi hingga 96% (Sudha & Ganeshbabu, 2021). 

Beberapa penelitian terdahulu terkait dengan optimasi model deep learning 

menggunakan preprocessing citra dan augmentasi data yang menjadi landasan 

penggunaan preprocessing citra dan augmentasi data adalah, penelitian Mishra 

dkk., (2020) menggunakan cropping untuk mengoptimasi performa model deep 

learning pada kasus pengawasan bencana banjir. Proses cropping meningkatkan 

akurasi training dari 55% menjadi 76% (Mishra et al., 2020). Penelitian yang 

dilakukan Yang dkk., (2022) menerapkan berbagai macam augmentasi data pada 

berbagai macam model dan dataset. Pada penelitian tersebut disimpulkan bahwa 

augmentasi data merupakan solusi efektif meningkatkan akurasi model (Yang et 

al., 2022). 

Oleh karena itu, penelitian ini akan menerapkan preprocessing citra dan 

augmentasi data sebagai upaya meningkatkan akurasi dari empat model CNN, yaitu 

Inception-v4, Resnet-50, VGG-19, dan YOLO v5Nano. Preprocessing citra yang 

akan digunakan pada penelitian ini antara lain cropping dan histogram equalization. 

Augmentasi data yang akan digunakan adalah transformasi flipping. 

 

1.2 Identifikasi Masalah 

Berdasarkan latar belakang masalah yang telah dipaparkan, dapat 

diidentifikasi masalah berupa proses klasifikasi penyakit RD secara manual 

membutuhkan waktu yang lama dan hasil klasifikasi bisa berbeda. Hingga saat ini, 

metode diagnosis menggunakan deep learning yang sudah diciptakan hanya dapat 

mengidentifikasi penyakit RD. Sehingga belum dapat melakukan diagnosis tingkat 

keparahan dari penyakit RD tersebut. 

Penyakit RD Tingkat keparahan berbeda-beda, namun masih belum bisa 

mengklasifikasi Tingkat keparahan RD 
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1.3 Batasan Masalah 

Batasan masalah dalam penelitian ini adalah sebagai berikut. 

a. Dataset yang digunakan diambil dari website Kaggle (Dugas et al., 

2015). 

b. Program dibuat menggunakan Visual Studio Code dan Google Colab. 

c. Arsitektur deep learning yang digunakan adalah Inception-v4, ResNet-

50, VGG-19, dan YOLO V5 Nano. 

d. Preprocessing citra yang digunakan adalah cropping dan histogram 

equalization. 

 

1.4 Rumusan Masalah 

Berdasarkan identifikasi masalah yang dipaparkan, dapat dirumuskan 

masalah dari penelitian ini sebagai berikut. 

a. Apa arsitektur CNN yang optimal untuk mengklasifikasi penyakit 

retinopati diabetik? 

b. Apakah preprocessing citra dan augmentasi data mampu meningkatkan 

akurasi dari model deep learning untuk mengklasifikasi penyakit 

retinopati diabetik?  

 

1.5 Tujuan Penelitian 

Tujuan dari penelitian ini adalah sebagai berikut. 

a. Mengetahui arsitektur CNN yang optimal untuk mengklasifikasi 

penyakit retinopati diabetik. 

b. Mengetahui kemampuan preprocessing citra dan augmentasi data dalam 

meningkatkan akurasi dari model deep learning untuk mengklasifikasi 

penyakit retinopati diabetik. 

 

1.6 Manfaat Penelitian 

Manfaat dari pengerjaan penelitian ini sebagai berikut. 
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a. Bagi penulis, dapat menambah wawasan dan keterampilan baru dalam 

membuat model Deep Learning yang diperuntukkan untuk 

mengklasifikasi penyakit retinopati diabetik. 

b. Bagi Universitas khususnya Program Studi Teknik Informatika, dapat 

membantu mempersiapkan lulusan yang siap kerja dan kompeten 

dengan memberikan bekal kepada mahasiswa berupa proses 

pembelajaran yang intens selama kegiatan penelitian Tugas Akhir. 

c. Bagi Masyarakat khususnya ahli medis, model Deep Learning yang 

dihasilkan pada penelitian Tugas Akhir dapat dimanfaatkan dan 

dipergunakan untuk melakukan klasifikasi penyakit retinopati diabetik. 

 

1.7 Luaran Penelitian 

Luaran hasil penelitian ini berupa model yang optimal untuk 

mengklasifikasi RD melalui citra fundus dan artikel ilmiah yang akan 

dipublikasikan di jurnal. 

 

1.8 Sistematika Penulisan 

Sistematika dalam penulisan proposal Tugas Akhir ini akan dibagi menjadi 

lima bab seperti berikut. 

Bab I  Pendahuluan 

Pada bab pendahuluan ini berisi latar belakang, identifikasi masalah, 

batasan masalah, tujuan penelitian, manfaat penelitian, luaran tugas 

akhir dan sistematika penulisan. 

Bab II  Tinjauan Pustaka 

Bab tinjauan pustaka ini berisi uraian sistematis terkait dengan 

literatur yang digunakan dalam proses penyusunan Tugas Akhir 

sehingga diperoleh landasan teori terkait deep learning, 

preprocessing citra, augmentasi data, dan penyakit retinopati 

diabetik. 

Bab III  Metodologi Penelitian 
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Bab ini menjelaskan tahapan pengerjaan serta analisis perancangan 

awal sistem yang akan dibuat. Tahapan ini sendiri terdiri atas 

identifikasi masalah, studi pustaka, pengumpulan data, desain sistem 

dan pengujian. 

Bab IV  Hasil dan Pembahasan 

Bab ini menyajikan hasil-hasil dari tahapan pengerjaan serta analisis 

sistem yang telah dilakukan. Dalam bab ini, terdapat penjelasan 

mengenai identifikasi masalah, studi pustaka, pengumpulan data, 

profiling, desain sistem, serta pengembangan dan pengujian aplikasi. 

Bab V  Kesimpulan dan Saran 

Bab ini merupakan rangkuman simpulan dari hasil penelitian Tugas 

Akhir yang telah dilakukan, serta menyajikan saran-saran yang dapat 

diterapkan untuk meningkatkan sistem aplikasi dalam penelitian 

selanjutnya. 
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BAB II 

TINJAUAN PUSTAKA 

 

2.1 Diabetes Melitus 

Diabetes melitus adalah sebuah penyakit metabolik yang ditandai dengan 

kadar gula dalam darah yang tinggi. Penderita diabetes melitus tidak dapat 

memproduksi insulin yang cukup atau sel-sel tubuh penderita menjadi tidak 

responsif kepada insulin. Insulin diproduksi di dalam sel-sel pankreas dan berfungsi 

untuk mengatur kadar gula dalam tubuh dan memfasilitasi masuknya glukosa ke 

dalam sel-sel tubuh untuk digunakan sebagai sumber energi. Terdapat tiga jenis 

diabetes melitus, yaitu: 

1. Diabetes Tipe 1 

Diabetes tipe 1 disebabkan karena sel-sel pankreas tidak dapat 

memproduksi insulin. Hal ini dapat disebabkan karena gangguan 

autoimun yang menyebabkan sistem kekebalan tubuh menghancurkan 

sel-sel penghasil insulin di pankreas. 

2. Diabetes Tipe 2 

Diabetes tipe 2 merupakan jenis diabetes yang paling umum terjadi. 

Diabetes tipe ini dapat terjadi ketika tubuh menjadi kurang responsif 

terhadap insulin atau tidak memproduksi insulin dengan cukup. Hal 

tersebut dapat dipengaruhi oleh pola makan yang buruk, berat badan 

berlebih, kurangnya aktivitas fisik, dan faktor genetik. 

3. Diabetes Gestasional 

Diabetes gestasional terjadi pada wanita hamil yang sebelumnya tidak 

terkena penyakit diabetes tipe apapun. Hal ini terjadi karena 

meningkatnya resistensi tubuh terhadap insulin atau kurangnya produksi 

insulin pada masa kehamilan. 

Penderita diabetes melitus perlu menjaga kadar glukosa dalam tubuh agar 

tidak terjadi komplikasi. Komplikasi jangka Panjang dari penyakit diabetes melitus 

adalah retinopati diabetik (mata), nefropati diabetik(ginjal), neuropati diabetik 

(saraf), dan penyakit jantung. Cara menjaga kadar glukosa dalam tubuh dapat 

dilakukan dengan menerapkan pola makan yang sehat, olahraga teratur, tidak stress, 
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dan mengonsumsi obat-obatan antidiabetes. Apabila diperlukan, dapat 

menggunakan suntikan insulin (International Diabetes Federation & The Fred 

Hollows Foundation, 2015). 

 

2.2 Retinopati Diabetik 

Retinopati diabetik adalah salah satu komplikasi jangka panjang dari 

penyakit diabetes melitus. Kondisi ini disebabkan oleh rusaknya pembuluh darah 

pada retina. Pada awalnya, penderita penyakit ini bisa tidak merasakan gejala 

apapun. Namun, seiring waktu penglihatan akan menjadi kabur dan dapat 

menyebabkan kebutaan jika tidak segera diobati dengan benar. Retinopati diabetik 

dapat menyebabkan perubahan-perubahan berikut pada mata penderita 

(International Diabetes Federation & The Fred Hollows Foundation, 2015). 

• Mikroaneurisma, yaitu pembengkakan kecil pada pembuluh darah yang 

berada di mata. Hal ini dapat menyebabkan bocornya cairan ke dalam 

retina. 

• Pendarahan pada retina, disebabkan oleh bocornya darah dari pembuluh 

darah ke dalam retina. 

• Eksudat keras, yaitu lemak yang tersimpan di dalam mata yang menjadi 

keras. 

• Cotton wool spots, yaitu bercak di mata yang disebabkan oleh 

pembengkakan akson iskemik di lapisan saraf. 

• Pelebaran dan perlekatan pembuluh darah vena 

• Intraretinal microvascular abnormalities, percabangan atau pelebaran 

abnormal pembuluh darah dalam retina yang sudah ada. 

• Munculnya pembuluh darah baru pada tempat yang abnormal, 

bergantung pada lokasi munculnya bisa disebut neovascularisation of 

the disc atau neovascularisation elsewhere. 

Penyakit retinopati diabetik terbagi menjadi 2 tahap, yaitu non-proliferative 

diabetic retinopathy dan proliferative diabetic retinopathy. Non-proliferative 

diabetic retinopathy terbagi menjadi 3, yaitu NPRD ringan (mild), NPRD sedang 

(moderate), dan NPRD berat (severe). Pada tahap NPRD ringan, gejala yang 
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dialami terdapat minimal satu mikroaneurisma. Pada tahap NPRD sedang, terdapat 

gejala mikroaneurisma yang meluas, pendarahan di dalam retina, dan cotton wool 

spots. Pada tahap NPRD berat, terdapat intraretinal microvascular abnormalities. 

Pada tahap NPRD ini dapat memengaruhi fungsi visual dari mata penderita. 

Proliferative diabetic retinopathy merupakan komplikasi paling parah dari 

retinopati diabetik. Pada tahap ini, terdapat gejala neovascularisation. Pembuluh 

darah baru yang terbentuk dari neovascularisation rentan bocor. Jika tidak diatasi, 

hal tersebut dapat menyebabkan kebutaan (Kementerian Kesehatan Republik 

Indonesia, 2018). 

Salah satu cara untuk mengklasifikasi penyakit retinopati diabetik adalah 

menggunakan pemeriksaan citra fundus. Citra fundus hanya dapat diambil 

menggunakan kamera khusus yaitu kamera fundus. Kamera fundus dapat 

mengambil citra mata dengan sangat detail. Pemeriksaan ini biasa digunakan untuk 

penderita penyakit retinopati diabetik, glaukoma, degenerasi makula, dan lain-lain. 

Pemeriksaan citra fundus mempermudah dokter untuk melihat kondisi dari mata 

penderita, contohnya adalah seperti berikut: 

a. Ada atau hilangnya pembuluh darah sekitar retina. 

b. Ada atau tidaknya pendarahan di sekitar retina. 

c. Ada atau tidaknya pembuluh darah yang tidak seharusnya ada. 

Berikut adalah contoh dari citra fundus untuk masing-masing tahapan 

penyakit retinopati diabetik. 

   

(A)   (B)   (C) 

  

   (D)   (E) 

Gambar 2.1 Citra Fundus, (A) Mata Normal, (B) Mata NPRD Ringan, (C) Mata 

NPRD Sedang, (D) Mata NPRD Berat, (E) Mata PRD 

(Qummar et al., 2019) 
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Gambar 2.1 (A) merupakan hasil pengambilan citra fundus mata pada 

pasien yang tidak terkena komplikasi retinopati diabetik. Pada gambar 2.1 (A) dapat 

dilihat bahwa belum muncul gejala-gejala awal retinopati diabetik. Gambar 2.1 (B) 

merupakan hasil pengambilan citra fundus mata pada pasien yang baru terkena 

NPRD ringan. Pada gambar 2.1 (B) dapat dilihat mata pasien sudah mulai muncul 

gejala-gejala retinopati diabetik seperti mikroaneurisma. Pada gambar 2.1 (C) 

merupakan hasil pengambilan citra fundus mata pada pasien yang terkena NPRD 

sedang. Pada gambar 2.1 (C) dapat dilihat gejala-gejala pada mata pasien sudah 

bertambah parah. Pada gambar 2.1 (C), cotton wool spots pada mata pasien semakin 

jelas terlihat. 

Gambar 2.1 (D) merupakan hasil pengambilan citra fundus mata pada 

pasien yang terkena NPRD berat. Pada gambar 2.1 (D) terlihat cotton wool spots 

semakin bertambah parah, pembuluh darah juga semakin menebal dan muncul pada 

tempat yang tidak seharusnya. Gambar 2.1 (E) merupakan hasil pengambilan citra 

fundus mata pada pasien yang terkena PRD. Pada gambar 2.1 (E) dapat terlihat 

mata pasien sudah mengalami pendarahan akibat bocornya pembululuh darah. 

Pembuluh darah pada mata pasien juga terlihat lebih banyak dibandingkan tahap-

tahap retinopati diabetik sebelumnya. 

 

2.3 Citra 

Citra digital adalah representasi visual dari sebuah informasi yang disimpan 

dalam format digital, terdiri dari titik-titik yang biasa disebut dengan “piksel”. 

Setiap piksel adalah unit dasar yang digunakan untuk membuat gambar digital, dan 

setiap piksel adalah warna yang terdiri dari tiga saluran warna (merah, hijau, dan 

biru) yang dapat digabungkan untuk menghasilkan berbagai warna. Citra digital 

dapat dibuat dengan berbagai cara, seperti mengambil foto dengan kamera digital, 

memindai dokumen atau gambar menggunakan mesin pemindai, atau menggambar 

atau menggunakan perangkat lunak grafik untuk membuat gambar dari awal. 

Setelah dibuat, gambar digital dapat disimpan dalam berbagai format file, 

seperti JPEG, PNG, atau GIF. Citra digital memiliki beberapa keunggulan 

dibandingkan gambar analog (seperti foto pada film atau kertas). Misalnya, gambar 

digital dapat dengan mudah disalin, dikirim, dan diedit menggunakan komputer. 
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Selain itu, gambar digital juga dapat dengan mudah dicetak kembali dengan kualitas 

yang sama seperti aslinya. Namun citra digital juga memiliki kekurangan, seperti 

kerusakan akibat proses kompresi atau penurunan kualitas jika terus menerus 

disimpan dan dimodifikasi. 

Citra digital memiliki banyak aplikasi dalam berbagai bidang, seperti 

fotografi, desain grafis, ilmu komputer, dan lain-lain. Teknologi citra digital juga 

terus berkembang dan memungkinkan penggunaan citra digital dalam berbagai 

aplikasi yang semakin luas, seperti pengenalan wajah, pemrosesan citra satelit, dan 

lainnya. Oleh karena itu, pengetahuan tentang citra digital sangat penting bagi para 

profesional di bidang terkait (Pramunendar et al., 2020). 

 

2.4 Intensitas Citra 

Citra digital pada umumnya memiliki bentuk persegi panjang dengan 

dimensi tinggi x lebar (N x M). N menyatakan jumlah baris sedangkan M 

menyatakan jumlah kolom pada matriks citra. Masing-masing elemen pada baris 

dan kolom tersebut dapat disebut sebagai elemen citra, elemen gambar, atau piksel. 

Informasi dalam piksel bergantung pada tipe data yang digunakan. Nilai piksel 

selalu merupakan bilangan biner dengan panjang k, sehingga piksel dapat mewakili 

nilai beda 2𝑘. Nilai k disebut juga sebagai kedalam bit (bit depth) dari citra. Susunan 

skala bit yang tepat dari sebuah piksel bergantung pada jenis citra seperti citra biner, 

citra aras keabuan (greyscale), atau warna RGB (red green blue). 

 

Gambar 2.2 Contoh Intensitas Citra greyscale pada matriks 2D 

(Sumber: https://yusronrijal.wordpress.com/2012/03/24/pengolahan-citra-digital/) 

Gambar 2.2 merupakan contoh intensitas citra greyscale pada matriks 2D. 

Data citra dalam citra greyscale terdiri dari kanal tunggal yang mewakili intensitas, 
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kecerahan atau densitas citra. Nilainya berupa bilangan bulat positif antara 0 hingga 

2𝑘 − 1. Citra greyscale memiliki nilai kedalaman bit delapan, maka nilai intensitas 

pikselnya bernilai dari 0 hingga 255. Nilai 0 mewakili hitam (kecerahan minimum) 

dan 255 mewakili warna putih (kecerahan maksimum). 

 

 

Gambar 2.3 Contoh Intensitas Citra RGB pada Matriks 2D 

(Sumber: https://yusronrijal.wordpress.com/2012/03/24/pengolahan-citra-digital/) 

Gambar 2.3 memiliki tiga kanal yang dimana masing-masing kanal 

memiliki kedalaman 8 bit. Oleh karena itu, masing-masing piksel dalam citra RGB 

dikodekan dalam 24 bit. Sedangkan dalam citra biner, masing-masing piksel hanya 

memiliki kedalaman 1 bit. Sehingga masing-masing piksel dalam citra biner hanya 

dapat bernilai 0 (berwarna hitam) atau 1 (berwarna putih) (Sulistiyanti et al., 2016).  

 

2.5 Preprocessing Citra 

Preprocessing citra adalah langkah-langkah atau teknik yang digunakan 

untuk mempersiapkan data citra sebelum dilakukan analisis atau pengolahan lebih 

lanjut kepada data citra tersebut. Tujuan dari preprocessing citra adalah 

meningkatkan kualitas citra, menghilangkan gangguan atau noise, meningkatkan 

kontras, mengurangi dimensi data, dan memperjelas fitur penting dalam citra. 

Berikut adalah macam-macam teknik yang umum digunakan dalam preprocessing 

citra: 
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1. Cropping atau pemotongan 

Memotong bagian yang tidak diperlukan dari citra, bertujuan untuk 

memfokuskan perhatian kepada area yang diinginkan. 

2. Normalisasi 

Mengubah rentang nilai piksel dalam citra agar sesuai dengan rentang  

piksel yang diinginkan, bertujuan untuk menghilangkan perbedaan skala 

yang ada di antara citra-citra yang berbeda-beda. 

3. Contrast Adjustment 

Meningkatkan perbedaan intensitas antara piksel-piksel dalam citra, 

dapat dilakukan dengan mengaplikasikan teknik transformasi 

histogram, seperti ekualisasi histogram. 

4. Noise Reduction 

Mengurangi atau menghilangkan noise yang mungkin terdapat dalam 

citra. Salah satu teknik yang biasa digunakan adalah penghalusan citra 

(smoothing) dengan filter median atau filter Gaussian. 

5. Pemisahan Warna 

Jika citra berwarna, citra dapat dipisahkan menjadi saluran warna 

terpisah, seperti merah, hijau, dan biru. Hal ini dapat memungkinkan 

analisis yang lebih spesifik pada masing-masing saluran warna. 

6. Resize atau Resampling 

Mengubah ukuran citra secara proporsional dengan memperbesar atau 

memperkecil resolusi citra. Hal ini sering dilakukan untuk 

menyesuaikan ukuran citra agar sesuai dengan kebutuhan analisis atau 

mempercepat proses pengolahan citra. 

7. Segmentasi 

Memisahkan citra menjadi wilayah-wilayah yang berbeda berdasarkan 

perbedaan intensitas atau fitur-fitur lainnya. Segmentasi dapat 

membantu dalam mengidentifikasi objek atau fitur yang penting dalam 

sebuah citra. 

8. Brightness Adjustment 

Mengubah kecerahan citra menjadi lebih terang atau lebih gelap 

bergantung pada kebutuhan analisis citra tersebut. Biasa digunakan 
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untuk menyesuaikan kecerahan citra untuk membantu mengidentifikasi 

fitur yang penting dalam sebuah citra. 

Preprocessing citra merupakan langkah penting dalam analisis citra dan 

sering kali menjadi langkah awal sebelum melakukan ekstraksi fitur atau 

pengenalan objek dalam citra. Teknik yang digunakan dalam preprocessing citra 

dapat bervariasi bergantung pada jenis citra yang digunakan dan tujuan analisis 

yang ingin dicapai (Sulistiyanti et al., 2016). 

 

2.5.1 Cropping 

Cropping adalah sebuah teknik pemrosesan citra dengan cara menghapus 

bagian-bagian yang tidak diinginkan dari sebuah citra. Teknik ini dilakukan untuk 

memperoleh elemen yang diinginkan dari citra tersebut dan dapat fokus pada 

elemen tersebut. Biasanya, teknik cropping ini dilakukan secara manual melalui 

perangkat lunak pengolah citra seperti Adobe Photoshop, Corel Draw, dan lain-lain. 

Dalam proses cropping, citra dapat dipotong-potong untuk memperbaiki 

komposisi, menyesuaikan ukuran, mengubah rasio aspek, atau menghilangkan 

unsur-unsur yang tidak relevan. Berikut adalah contoh citra yang diterapkan proses 

cropping: 

 

  

(A)       (B) 

Gambar 2.4 Contoh Citra (A) Sebelum Diterapkan Cropping, (B) Setelah 

Diterapkan Cropping 

(Sumber: online pictures di aplikasi Microsoft Word) 
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2.5.2 Contrast Adjustment 

Contrast adjustment adalah proses mengubah tingkat kontras dalam sebuah 

citra untuk meningkatkan perbedaan antara piksel-piksel yang berdekatan. Kontras 

menggambarkan perbadaan kecerahan antara bagian gelap dengan bagian cerah 

dalam sebuah citra. Dalam citra dengan kontras yang rendah, perbedaan antara 

bagian gelap dengan bagian cerah menjadi kurang jelas. Dalam citra dengan kontras 

yang tinggi, perbedaan ini menjadi semakin jelas. 

Terdapat berbagai metode dan teknik yang dapat digunakan untuk 

menyesuaikan kontras dalam citra, termasuk: 

1. Brightness/Contrast Adjustment 

Brightness/Contrast Adjustment merupakan metode sederhana yang 

memungkinkan pengguna untuk mengatur tingkat kecerahan dan 

kontras secara langsung. 

2. Histogram Stretching 

Histogram Stretching merupakan metode yang menggunakan histogram 

citra untuk mengubah rentang intensitas piksel. Dengan merentangkan 

histogram ke seluruh rentang intensitas yang tersedia, perbedaan kontras 

dalam gambar diperbesar. 

3. Histogram Equalization 

Histogram Equalization merupakan metode yang menyetarakan nilai 

rentang intensitas piksel. Hal ini berguna untuk meratakan distribusi 

intensitas piksel citra dan meningkatkan kontras citra secara 

keseluruhan 

4. Tone Mapping 

Tone Mapping biasa digunakan dalam pemrosesan citra High Dynamic 

Range (HDR) untuk mengubah tingkat kontras antara area terang dan 

area gelap dalam citra, sehingga detail dapat dipertahankan dengan baik. 

5. Pengolahan Lokal 

Kontras sebuah citra dapat diatur berdasarkan konteks regional atau 

berdasarkan fitur-fitur tertentu dalam citra. Oleh karena itu, bagian citra 

yang berubah hanya bagian yang diinginkan saja dan tidak seluruh citra. 
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Contrast adjustment biasa dilakukan di perangkat lunak pengedit citra 

seperti Adobe Photoshop, Lightroom, atau GIMP. Pengaturan kontras yang tepat 

akan bergantung pada preferensi pengguna dan sifat citra yang sedang diproses. 

Berikut adalah contoh citra yang diterapkan contrast adjustment: 

 

   

(A)         (B) 

Gambar 2.5 Contoh Citra (A) Sebelum Diterapkan Contrast Adjustment, (B) 

Setelah Diterapkan Contrast Adjustment 

(Sumber: https://www.mathworks.com/help/images/contrast-enhancement-

techniques.html) 

 

Untuk melakukan contrast adjustment, perlu menghitung faktor perubahan 

contrast yang diinginkan. Berikut adalah persamaan operasi contrast adjustment: 

 

𝐹 =
259 ∗ (255 + 𝑐)

255 ∗ (259 − 𝑐)
 (2-1) 

𝐹 = Faktor contrast adjustment 

𝑐 = nilai input kontras 

 

Kemudian langkah selanjutnya adalah menghitung nilai intensitas piksel 

terbaru. 

 

𝑓(𝑥, 𝑦)′ = 𝐹(𝑓(𝑥, 𝑦) − 128) + 128 (2-2) 

𝐹 = Faktor contrast adjustment 

𝑓(𝑥, 𝑦) = nilai intensitas piksel pada koordinat 𝑥, 𝑦 

𝑓(𝑥, 𝑦)′ = nilai intensitas piksel baru pada koordinat 𝑥, 𝑦 
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Nilai intensitas piksel tidak boleh melebihi batas intensitas piksel tersebut. 

Oleh karena itu diperlukan persamaan untuk membatasi nilai intensitas piksel 

tersebut. 

 

𝑓(𝑥, 𝑦) {

255, 𝑓(𝑥, 𝑦) > 255
(𝑥, 𝑦), 0 < 𝑓(𝑥, 𝑦) < 255

0, 𝑓(𝑥, 𝑦) < 0

 (2-3) 

 

Dengan menggunakan persamaan (2-3), nilai intensitas piksel tersebut tidak 

akan melebihi batas atas maupun bawah intensitas piksel tersebut (Sulistiyanti et 

al., 2016). 

 

2.5.3 Histogram Equalization 

Histogram Equalization adalah salah satu teknik preprocessing citra yang 

digunakan untuk meningkatkan kontras citra dengan cara mendistribusikan ulang 

intensitas piksel secara merata di seluruh rentang nilai intensitas yang tersedia. Pada 

dasarnya, teknik histogram equalization memanfaatkan histogram dari sebuah citra. 

Histogram sendiri adalah grafik distribusi frekuensi kemunculan nilai intensitas 

piksel sebuah citra.  

Proses histogram equalization terdiri dari beberapa langkah, yaitu: 

1. Menghitung histogram 

Histogram citra awal dihitung untuk memperoleh informasi mengenai 

distribusi intensitas piksel citra tersebut. 

2. Menghitung Cumulative Distribution Function (CDF) 

Fungsi ini merupakan akumulasi dari histogram dan berfungsi untuk 

menunjukkan jumlah piksel dengan intensitas yang kurang dari atau 

sama dengan nilai intensitas tertentu. 

3. Normalisasi CDF 

Fungsi CDF dinormalisasikan agar rentang nilai dari fungsi CDF adalah 

0 hingga 1. 

4. Transformasi intensitas 
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Setiap piksel dalam citra awal ditransformasikan dengan mengganti 

nilai intensitasnya dengan nilai intensitas baru yang dihasilkan dari 

fungsi CDF yang dinormalisasi. 

5. Pembuatan histogram baru 

Setelah piksel di citra awal ditransformasi, histogram citra baru akan 

dihitung untuk memastikan distribusi intensitas di citra baru sudah 

didistribusikan secara merata di seluruh rentang nilai intensitas yang 

tersedia.  

Hasil dari histogram equalization adalah sebuah citra dengan kontras yang 

lebih baik, di mana piksel intensitas rendah dan tinggi didistribusikan secara merata 

di seluruh rentang nilai intensitas. Teknik histogram equalization akan memperjelas 

detail dan memperbaiki visualisasi citra dengan intensitas yang tidak seimbang 

sebelumnya. Histogram equalization biasa digunakan dalam aplikasi pengolahan 

citra seperti perbaikan gambar, deteksi tepi, segmentasi, dan aplikasi analisis citra 

lainnya. Berikut adalah contoh citra yang diterapkan histogram equalization: 

   

(A)      (B) 

Gambar 2.6 Contoh Citra (A) Sebelum Diterapkan Histogram Equalization, (B) 

Setelah Diterapkan Histogram Equalization 

(Sumber: https://www.mathworks.com/help/images/contrast-enhancement-

techniques.html) 

 

Histogram equalization dilakukan dengan cara meratakan nilai perseberan 

dari histogram sebuah citra. Berikut adalah persamaan matematika dari histogram 

equalization: 

 

𝑝𝑟(𝑟𝑘) =
𝑛𝑘

𝑘
 (2-4) 
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dimana 

 

𝑟𝑘 =
𝑘

𝐿 − 1
, 0 ≤ 𝑘 < 𝐿 − 1 (2-5) 

  

𝑘 = nilai kedalaman bit pada sebuah piksel 

𝑝𝑟 = peluang kemunculan intensitas piksel bernilai r 

𝑟𝑘 = nilai intensitas piksel yang sudah dinormalkan 

𝐿 = nilai kedalaman bit pada sebuah citra 

𝑛𝑘 = jumlah piksel dengan nilai kedalaman bit k 

 

Histogram Equalization merupakan proses transformasi (T) intensitas 

sebuah piksel (r) menjadi intensitas yang baru (s). Persamaan transformasi ini dapat 

dituliskan menjadi persamaan berikut: 

 

𝑆𝑘 = 𝑇(𝑟𝑘) = ∑ 𝑝𝑟(𝑟𝑗)
𝑘

𝑗=0
 (2-6) 

  

Persamaan (2-6) merupakan persamaan yang akan digunakan untuk mencari 

nilai intensitas baru dari sebuah piksel (Sulistiyanti et al., 2016). Berikut adalah 

contoh histogram equalization pada sebuah citra dengan ukuran 10x10 dengan 

intensitas maksimal (L) 8: 

 

Gambar 2.7 Contoh Matriks 2D Nilai Intensitas Citra yang Berukuran 10x10 
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Tabel 2.1 Tabel Intensitas Citra Pada Gambar 2.7 

k 𝑟𝑘 𝑛𝑘 𝑃𝑟(𝑟𝑘) 𝑠𝑘 = 𝑃𝑟(𝑟𝑗) 

0 0/7 = 0 20 0,2 0,2 

1 1/7 = 0,14 25 0,25 0,45 

2 2/7 = 0,29 15 0,15 0,6 

3 3/7 = 0,43 5 0,05 0,65 

4 4/7 = 0,57 15 0,25 0,8 

5 5/7 = 0,71 15 0,25 0,95 

6 6/7 = 0,86 3 0,03 0,98 

7 7/7 = 1 2 0,02 1 

 

Nilai dari 𝑠𝑘 dibulatkan ke nilai 𝑟 terdekat. 

𝑠0 =  0,2 lebih dekat ke nilai 1/7 = 0,14, maka 𝑠0 =
1

7
 

𝑠1 =  0,45 lebih dekat ke nilai 3/7 = 0,43, maka 𝑠1 =
3

7
 

𝑠2 =  0,60 lebih dekat ke nilai 4/7 = 0,57, maka 𝑠2 =
4

7
 

𝑠3 =  0,65 lebih dekat ke nilai 5/7 = 0,71, maka 𝑠3 =
5

7
 

𝑠4 =  0,80 lebih dekat ke nilai 6/7 = 0,86, maka 𝑠4 =
6

7
 

𝑠5 =  0,95 lebih dekat ke nilai 7/7 = 1, maka 𝑠5 =
7

7
 

𝑠6 =  0,98 lebih dekat ke nilai 7/7 = 1, maka 𝑠6 =
7

7
 

𝑠7 =  1 lebih dekat ke nilai 7/7 = 1, maka 𝑠7 =
7

7
 

 

Tabel 2.2 Tabel Hasil Transformasi Intensitas Citra Pada Gambar 2.7 

k 𝑟𝑘 𝑠𝑘 = 𝑃𝑟(𝑟𝑗) s 

0 0/7 = 0 0,2 1 

1 1/7 = 0,14 0,45 3 

2 2/7 = 0,29 0,6 4 

3 3/7 = 0,43 0,65 5 

4 4/7 = 0,57 0,8 6 
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5 5/7 = 0,71 0,95 7 

6 6/7 = 0,86 0,98 7 

7 7/7 = 1 1 7 

 

Berikut adalah matriks 2D nilai intensitas citra yang telah diterapkan 

histogram equalization: 

 

Gambar 2.8 Matriks 2D Intensitas Citra Hasil Histogram Equalization dari 

Gambar 2.7 

 Gambar 2.8 merupakan matriks 2D dari intensitas gambar 2.7 yang telah 

diterapkan histogram equalization. Hasil dari histogram equalization di atas tidak 

terlalu merata disebabkan oleh nilai intensitas dan jumlah piksel yang terbatas. Hal 

ini juga disebabkan oleh hasil perataan adalah pembuatan ke intensitas yang 

terdekat. 

 

2.5.4 Brightness Adjustment 

Brightness adjustment adalah proses mengubah tingkat kecerahan dalam 

citra untuk mengatur kecerahan piksel-piksel dalam citra tersebut. Penyesuaian 

kecerahan memengaruhi sejauh mana citra terlihat terang atau gelap secara 

keseluruhan. Dalam proses brightness adjustment, kecerahan gambar dapat 

ditingkatkan atau dikurangi dengan cara mengubah nilai intensitas piksel secara 

proporsional. Penyesuaian kecerahan ini dapat dilakukan menggunakan perangkat 

lunak pengolahan citra seperti Adobe Photoshop, Lightroom, GIMP, atau alat 

pengolahan citra lainnya. Dalam beberapa aplikasi, brightness adjustment sering 

digunakan bersamaan dengan contrast adjustment untuk mengoptimalkan 

penampilan visual secara keseluruhan. Brightness adjustment dapat membantu 

meningkatkan detail dalam area citra yang terlalu gelap atau terlalu terang, atau 
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untuk mencapai pencahayaan yang lebih baik secara umum. Berikut adalah 

beberapa metode dan alat yang umum digunakan untuk brightness adjustment: 

1. Brightness Slider 

Alat ini memungkinkan pengguna untuk secara langsung menyesuaikan 

tingkat kecerahan dengan cara menggeser slider ke kanan atau ke kiri. 

Geser ke kanan untuk meningkatkan kecerahan dan geser ke kiri untuk 

mengurangi kecerahan. 

2. Levels Adjustment 

Pengaturan ini memungkinkan pengguna untuk secara manual 

menyesuaikan tingkat kecerahan dalam berbagai rentang intensitas 

piksel. Pengguna dapat mengatur titik hitam, putih, dan titik abu-abu 

tengah untuk mencapai pencahayaan yang diinginkan. 

3. Curves Adjustment 

Pengaturan ini memungkinkan pengguna untuk mengubah distribusi 

kecerahan dalam gambar dengan lebih rinci. Pengguna dapat 

menyesuaikan kurva luminositas untuk mengatur kecerahan pada 

berbagai tingkat intensitas. 

4. Histogram Adjustment 

Pengaturan ini menggunakan histogram citra, pengguna dapat melihat 

sebaran intensitas piksel dalam gambar dan menyesuaikan tingkat 

kecerahan berdasarkan informasi histogram tersebut. 

Brightness adjustment harus dilakukan dengan hati-hati, agar penyesuaian 

yang dilakukan tidak berlebihan dan tidak menyebabkan gambar terlihat terlalu 

terang atau terlalu gelap dan kehilangan detailnya. 
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(A)       (B) 

Gambar 2.9 Contoh Citra (A) Sebelum Diterapkan Brightness Adjustment, (B) 

Setelah Diterapkan Brightness Adjustment 

(Sumber: https://www.mathworks.com/help/images/low-light-image-

enhancement.html) 

 

Brightness adjustment dapat dilakukan dengan cara menambah atau 

mengurangkan sebuah konstanta ke intensitas masing-masing piksel di dalam citra. 

Berikut adalah persamaan matematika dari brightness adjustment: 

 

𝑓(𝑥, 𝑦)′ = 𝑓(𝑥, 𝑦) + 𝑐 (2-7) 

𝑓(𝑥, 𝑦) = nilai intensitas piksel pada koordinat 𝑥, 𝑦 

𝑓(𝑥, 𝑦)′ = nilai intensitas piksel pada koordinat 𝑥, 𝑦 

𝑐 = konstanta 

 

Dalam persamaan (2-7) dimungkinkan untuk hasil dari persamaan tersebut 

melebihi batas dari intensitas piksel. Oleh karena itu diperlukan operasi 

pemotongan (clipping) agar hasil dari persamaan (2-7) tidak melebihi batas nilai 

intentsitas piksel. Berikut adalah persamaan operasi pemotongan: 

𝑓(𝑥, 𝑦) {

2𝑘 − 1, 𝑓(𝑥, 𝑦) > 2𝑘 − 1

(𝑥, 𝑦), 0 < 𝑓(𝑥, 𝑦) < 2𝑘 − 1

0, 𝑓(𝑥, 𝑦) < 0

 (2-8) 

k = nilai kedalaman bit 

 

Berikut adalah contoh brightness adjustment pada citra: 
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Gambar 2.10 Contoh Brightness Adjustment Pada Citra Berbentuk Matriks 2D 

(Sulistiyanti et al., 2016) 

 

Gambar 2.10 merupakan contoh brightness adjustment pada citra yang 

berbentuk matriks 2D. Pada piksel (0,0) nilai intensitas citra tersebut adalah 45, 

setelah diterapkan brightness adjustment (+100) nilai intensitas piksel tersebut 

berubah menjadi 145. Begitu juga dengan nilai piksel (8,0) memiliki nilai intensitas 

200, setelah diterapkan brightness adjustment (+100) nilai intensitas piksel tersebut 

berubah menjadi 255. Hal itu disebabkan karena nilai intensitas citra memiliki batas 

atas 255, sehingga nilai intensitas piksel (8,0) tidak dapat melebihi nilai 255 

(Sulistiyanti et al., 2016). 

 

2.6 Augmentasi Data 

Augmentasi data atau data augmentation merupakan cara untuk 

mengurangi over-fitting. Augmentasi data akan menghasilkan data baru dengan 

cara melakukan transformasi pada data asli. Augmentasi data memungkinkan untuk 

meningkatkan generalisasi data. Berikut merupakan beberapa alasan utama untuk 

menggunakan augmentasi data: 

1. Data terlalu sedikit 

Ketika data terlalu sedikit dan ingin membuat model machine learning 

yang kompleks, maka model akan cenderung memiliki akurasi yang 

rendah. Oleh karena itu, augmentasi data akan digunakan untuk 

menambah jumlah data agar bisa digunakan dalam model machine 
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learning tersebut. Dengan melakukan augmentasi data, jumlah data 

akan menjadi semakin banyak dan meningkatkan akurasi dari model 

tersebut. 

2. Meningkatkan akurasi model 

Ketika data yang digunakan sudah cukup banyak, namun akurasi dari 

model kurang memuaskan, maka dapat melakukan augmentasi data 

untuk meningkatkan akurasi model tersebut. Augmentasi data dapat 

mencegah model mengalami over-fitting atau under-fitting. 

Pada data citra, tools yang biasa digunakan adalah OpenCV (python 

library), Pillow (python library), dan imgaug (python library). Augmentasi data 

yang dilakukan pada data citra adalah sebagai berikut (Mumuni & Mumuni, 2022). 

1. Transformasi geometri 

Memutar, memotong, membalik, meregangkan, dan memperbesar citra 

secara acak. 

2. Transformasi spasi warna 

Mengubah saluran warna RGB, kontras, dan kecerahan citra secara 

acak. 

3. Penghapusan acak 

Menghapus citra secara acak. 

4. Pencampuran gambar 

Mencampurkan beberapa citra secara acak. 

 

2.7 Artificial Intelligence 

Artificial Intelligence (AI) atau dalam bahasa Indonesia disebut kecerdasan 

buatan merupakan simulasi kecerdasan manusia pada mesin yang diprogram untuk 

melakukan tugas-tugas yang pada umumnya memerlukan kecerdasan manusia. AI 

harus mampu berpikir seperti manusia dan secara rasional, begitu juga berperilaku 

seperti manusia dan secara rasional. Pada tahun 1950, Alan Turing menciptakan 

sebuah tes yang disebut Turing Test. Tes ini digunakan untuk menguji tingkat 

kepintaran dari sebuah komputer. Komputer akan dinilai lulus tes tersebut apabila 

penguji tidak mampu membedakan apakah jawaban tersebut merupakan jawaban 

manusia atau komputer (Russell & Norvig, 2010). 
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AI dapat terbagi menjadi dua jenis seperti berikut. 

1. Machine Learning 

Machine learning merupakan pendekatan artificial intelligence yang 

menggunakan algoritma dan model statistik untuk melatih mesin agar 

dapat belajar dari data dan membuat prediksi atau keputusan. Ini 

termasuk sub-bidang machine learning seperti supervised learning 

(pembelajaran terawasi), unsupervised learning (pembelajaran tanpa 

pengawasan), dan reinforcement learning (pembelajaran dengan 

penguatan). 

2. Deep Learning 

Deep learning merupakan sub-bidang pembelajaran mesin yang 

menggunakan jaringan saraf tiruan dengan banyak lapisan untuk 

menganalisis data dengan representasi hierarkis. Deep learning telah 

berhasil dalam pengenalan gambar, pemrosesan bahasa alami (Natural 

language processing), dan bidang lainnya. 

Artificial Intelligence dapat diterapkan kedalam berbagai bidang kehidupan, 

seperti kesehatan, transportasi, manufaktur, keuangan, sistem layanan, dan lain-

lain. Namun Artificial Intelligence tidak selalu berefek baik, AI dapat 

menggantikan tenaga manusia sehingga menyebabkan berkurangnya lapangan 

pekerjaan dan lain-lain. Oleh karena itu, dalam pengembangan AI perlu 

diperhatikan manfaat dan efek dari AI tersebut agar memberi positif kepada 

manusia dan tidak merugikan manusia (Russell & Norvig, 2010). 

 

2.8 Machine Learning 

Machine Learning (ML) merupakan cabang dari artificial intelligence yang 

berkaitan dengan pengembangan algoritma dan model statistik. Machine Learning 

bertujuan untuk memungkinkan sebuah komputer dapat belajar secara mandiri dari 

data yang ada dan dapat menghasilkan sebuah prediksi tanpa deprogram secara 

eksplisit. Sebuah komputer dapat belajar dengan cara memperbaiki performa dalam 

mengerjakan sebuah tugas berkali-kali melalui pengalaman sebelumnya. 

Pengalaman yang dimaksud merupakan bagaimana hasil dari pengerjaan tugas 



26 

 

tersebut cocok dengan dataset yang digunakan atau biasa disebut fit (Bi et al., 2019). 

Machine Learning terbagi menjadi tiga jenis seperti berikut. 

1. Supervised Learning 

Supervised Learning atau pembelajaran terbimbing ini merupakan jenis 

machine learning yang dilatih menggunakan data yang sudah memiliki 

label atau kelas yang sudah diketahui sebelumnya. Tujuan dari 

supervised learning adalah mengembangkan sebuah model yang dapat 

memelajari pola dari data training dan melakukan prediksi yang akurat 

pada data baru yang belum diketahui. Contoh dari algoritma supervised 

learning adalah regresi linier, Naïve Bayes, decision tree, SVM, dan 

lain-lain. 

2. Unsupervised Learning 

Unspervised Learning atau pembelajaran tanpa pengawasan merupakan 

jenis machine learning yang dilatih menggunakan data yang belum 

memiliki label atau kelas yang sudah diketahui sebelumnya. Tujuan dari 

unsupervised learning adalah mengidentifikasi pola, struktur, atau 

kelompok pada sebuah data. Algoritma unsupervised learning akan 

menemukan hubungan dan pola yang tersembunyi dalam data tersebut 

tanpa memerlukan bimbingan eksternal. Contoh algoritma unsupervised 

learning adalah k-means clustering, analisis faktor, algoritma asosiasi, 

dan lain-lain. 

3. Reinforcement Learning 

Reinforcement Learning atau pembelajaran penguatan merupakan jenis 

machine learning yang dilatih dengan tujuan menemukan tindakan atau 

langkah mencapai tujuan yang paling menguntungkan. Algoritma 

belajar dari tindakan yang diambil dengan tujuan memaksimalkan 

reward yang diterima. Contoh dari algoritma reinforcement learning 

adalah algoritma permainan catur seperti Stockfish, AlphaZero, dan 

lain-lain. 

 

Selain jenis-jenis machine learning di atas, terdapat beberapa sub-bidang 

machine learning lainnya seperti semi-supervised learning atau pembelajaran semi-
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terbimbing. Semi-supervised Learning menggabungkan unsur-unsur dari 

supervised learning dan unsupervised learning (Bi et al., 2019). Cabang dari 

machine learning lainnya adalah deep learning. Deep Learning menggunakan 

arsitektur jaringan saraf tiruan (artificial neural network) yang dalam untuk 

memelajari data yang lebih kompleks. 

 

2.9 Deep Learning 

Deep Learning merupakan salah satu cabang dari machine learning. Deep 

Learning menggunakan arsitektur jaringan saraf tiruan (artificial neural network) 

untuk memroses data yang diberikan. Jaringan saraf tiruan ini terdiri dari banyak 

lapisan (layer). Dengan menggunakan deep learning, mesin dapat belajar dari data 

yang diberikan dan memperbaiki performa seiring dengan proses pembelajaran. 

Deep Learning dapat menganalisis data yang lebih kompleks dan abstrak 

dibandingkan dengan machine learning. Namun, deep learning membutuhkan data 

yang besar untuk mampu memberikan hasil yang akurat dan membutuhkan 

perangkat keras yang bagus untuk memroses data-data tersebut. Selain itu, deep 

learning memerlukan waktu yang lama untuk melatih komputer terhadap dataset 

yang besar dan kompleks (Fan et al., 2021). 

Proses pelatihan deep learning menggunakan pembaruan parameter di 

setiap lapisan berdasarkan perbedaan antara output yang dihasilkan oleh model dan 

output yang diharapkan. Ketika dilatih menggunakan data dengan jumlah yang 

besar, arsitektur jaringan saraf tiruan dalam deep learning dapat mengekstraksi 

fitur-fitur yang berguna secara otomatis dari data yang kompleks tanpa memerlukan 

pemrograman eksplisit. Deep Learning telah mencapai kemajuan yang signifikan 

dalam berbagai bidang kehidupan seperti pengenalan wajah, pengenalan suara, 

natural language processing, pemodelan bahasa, dan lain-lain. Beberapa contoh 

arsitektur jaringan saraf tiruan dalam deep learning adalah jaringan saraf konvolusi 

(convolutional neural networks/CNN) biasa digunakan untuk pengenalan gambar, 

jaringan saraf rekurensi (recurrent neural networks/RNN) biasa digunakan untuk 

pemrosesan urutan data, dan jaringan saraf generatif (generative neural networks) 

seperti jaringan generative berlawanan (generative adversarial networks/GAN) 

untuk menghasilkan data baru yang realistis (Fan et al., 2021).  
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2.10 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) merupakan perkembangan dari 

konsep Multi Layer Perceptron (MLP) yang dikembangkan khusus untuk 

mengolah data dua dimensi yang berbentuk citra. Secara umum, CNN memiliki 

beberapa lapisan (layer) yang memiliki fungsi yang berbeda-beda. Berikut adalah 

contoh arsitektur dari CNN secara umum.  

 

Gambar 2.11 Contoh Arsitektur CNN 

(Sumber: https://developersbreach.com/convolution-neural-network-deep-

learning/) 

Gambar 2.11 merupakan contoh arsitektur CNN secara umum. CNN secara 

umum terbagi menjadi tiga layer, yaitu input layer, hidden layer, dan output layer. 

Input layer merupakan layer dimana citra dimasukkan ke dalam CNN. Dalam 

hidden layer terdapat lapisan konvolusi, lapisan aktivasi, lapisan pooling, dan fully 

connected layer. Lapisan konvolusi berfungsi untuk mengekstrak fitur-fitur yang 

terdapat dalam sebuah citra dengan cara menerapkan filter-filter terhadap citra 

tersebut. Lapisan aktivasi berfungsi untuk mengaktifkan fitur-fitur yang telah 

ditemukan oleh filter-filter tersebut. 

Lapisan pooling berfungsi untuk memperkecil ukuran volume output. 

Lapisan pooling diterapkan diantara lapisan konvolusi dalam arsitektur CNN. 

Lapisan pooling digunakan untuk mengurangi jumlah parameter yang digunakan 

sehingga dapat mempercepat komputasi. Fully connected layer berfungsi untuk 

menggabungkan fitur-fitur yang telah diekstrak dari citra. Kemudian CNN 
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menggunakan algoritma backpropagation untuk memperbarui bobot dan bias pada 

masing-masing layer agar hasil output menjadi lebih akurat (Alzubaidi et al., 2021). 

 

2.11 Inception-v4 

Inception atau yang bernama lain GoogleNet, merupakan sebuah model 

jaringan saraf yang dikembangkan oleh peneliti-peneliti di Google. Versi terbaru 

dari arsitektur tersebut adalah Inception-v4. Inception-v4 merupakan 

pengembangan lanjutan dari model-model Inception sebelumnya, yaitu Inception-

v1, Inception-v2, dan Inception-v3. Model arsitektur Inception dikembangkan 

dengan tujuan mengoptimalkan efisiensi komputasi dan meningkatkan akurasi 

dalam pengenalan citra. Arsitektur ini menggunakan konsep yang dikenal sebagai 

"Inception module" atau "Inception block" yang dirancang untuk mengekstraksi 

fitur-fitur dengan berbagai ukuran dan tingkat kompleksitas dari citra (Al Husaini 

et al., 2022). Berikut adalah beberapa fitur utama dari arsitektur Inception-v4, 

antara lain: 

1. Inception Module 

Inception-v4 menggunakan beberapa modul Inception yang berisi 

beberapa jalur paralel untuk melakukan ekstraksi fitur. Inception 

module menggabungkan konvolusi dengan kernel yang memiliki ukuran 

berbeda, yaitu 1x1, 3x3, dan 5x5, serta pooling berukuran 3x3, untuk 

menangkap fitur-fitur pada berbagai skala spasial. 

2. Residual Connections 

Arsitektur Inception-v4 juga menggunakan koneksi residu. Hal ini 

memungkinkan aliran informasi langsung melalui lapisan-lapisan dalam 

jaringan. Koneksi residu dapat membantu mencegah terjadinya masalah 

penurunan gradien dan membuat waktu pelatihan menjadi lebih cepat. 

3. Factorization into smaller convolutions 

Arsitektur Inception-v4 menggunakan faktorisasi konvolusi yang lebih 

kecil untuk mengurangi tingginya kompleksitas komputasi. Contohnya, 

konvolusi 5x5 dapat digantikan dengan menggunakan dua konvolusi 

3x3 berturut-turut. 

4. Average Pooling 
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Sebagai pengganti fully connected layers di bagian akhir jaringan saraf, 

Inception-v4 menggunakan average pooling global untuk menghasilkan 

vektor fitur akhir. Pendekatan ini membantu mengurangi jumlah 

parameter dalam jaringan saraf dan dapat mencegah terjadinya 

overfitting 

Berikut merupakan gambar contoh arsitektur Inception-v4. 

 

Gambar 2.12 Contoh Arsitektur Inception-v4 

(Shankar et al., 2020) 

 

2.12 ResNet-50 

Residual Network-50 atau biasa disebut ResNet-50 merupakan salah satu 

macam model arsitektur dari Convolutional Neural Network (CNN) yang populer 

digunakan dalam deep learning. ResNet-50 dikembangkan oleh tim Microsoft 

Research pada tahun 2015. Model arsitektur ini diberikan nama ResNet-50 

dikarenakan model ini menambahkan 50 layer tambahan pada CNN. 

Pada model arsitektur ResNet-50, terdapat konsep baru yaitu shortcut 

connection atau skip connection. Hal ini menyebabkan model arsitektur tersebut 

dapat melakukan skip atau melompati beberapa layer dalam pemrosesan citra dan 

menggabungkan informasi yang didapat dari layer sebelumnya dengan layer saat 

ini. Skip connection ini dikembangkan untuk menjadi solusi atas permasalahan 
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menghilangnya gradien (vanishing gradient) yang sering terjadi pada model 

arsitektur CNN yang berukuran besar. Hal ini diakibatkan karena adanya kekeliruan 

dalam stabilitas nilai parameter yang digunakan. Dengan menggunakan konsep skip 

connection, ResNet-50 dapat mempelajari fitur-fitur yang lebih kompleks dan 

abstrak pada citra. Hal ini menyebabkan meningkatnya kinerja dan akurasi pada 

tugas-tugas seperti klasifikasi gambar, segmentasi objek, deteksi objek dan lain-

lain.  

ResNet50 terdiri dari beberapa blok, di mana setiap blok terdiri dari 

beberapa layer konvolusi dan aktivasi, diikuti dengan sebuah skip connection. 

Blok-blok tersebut dapat diulang beberapa kali untuk meningkatkan kedalaman 

jaringan. Selain itu, ResNet-50 juga menggunakan lapisan pooling dan lapisan fully 

connected pada bagian akhir jaringan. Berikut merupakan gambar contoh arsitektur 

dari ResNet-50. 

 

 

Gambar 2.13 Arsitektur ResNet-50 

(Sumber: https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758) 

 

2.13 VGG-19 

VGG-19 merupakan pengembangan dari VGGNet (Visual Geometry Group 

Network) adalah sebuah arsitektur jaringan saraf konvolusi (convolutional neural 

network) atau biasa disebut CNN. VGGNet dikembangkan oleh tim Visual 

Geometry Group di Universitas Oxford. Arsitektur VGGNet pertama kali 

diperkenalkan oleh Karen Simonyan dan Andrew Zisserman pada tahun 2014 

dalam sebuah makalah yang berjudul "Very Deep Convolutional Networks for 

Large-Scale Image Recognition"(Simonyan & Zisserman, 2014). VGGNet 

dikembangkan untuk meningkatkan performa dari arsitektur CNN dengan cara 

https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758
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menambah kedalaman dari arsitektur tersebut. VGG-19 merupakan arsitektur 

VGGnet yang menggunakan lapisan konvolusi sejumlah 19. Arsitektur ini 

memanfaatkan konvolusi dengan jarak langkah (stride) dan penyaring konvolusi 

kecil dengan ukuran 3x3 yang dijalankan secara berulang-ulang. Arsitektur VGG-

19 juga menggunakan max pooling dengan jarak langkah (stride) 2 untuk 

mengurangi dimensi dari fitur yang akan dihasilkan. Secara keseluruhan, VGG-19 

memberikan representasi fitur yang lebih jelas dan akurat dengan beban komputasi 

yang lebih tinggi jika dibandingkan dengan arsitektur-arsitektur CNN lainnya yang 

lebih dangkal (Simonyan & Zisserman, 2014). 

 

 

Gambar 2.14 Contoh Arsitektur VGG-19 

(Kamal et al., 2023) 

 

2.14 YOLO V5 

Memiliki kepanjangan You Only Look Once, YOLO merupakan sistem 

deteksi objek yang memproses citra dan mengidentifikasi objek yang berada di 

dalamnya. Arsitektur ini diperkenalkan oleh Joseph Radmon, Santosh Divvala, 

Ross Girshick, dan Ali Farhadi dalam jurnal berjudul “You Only Look Once: 

Unified, Real-Time Object Detection” yang diterbitkan pada tahun 2016. Arsitektur 

YOLO telah mencapai versi ke-8, namun untuk penelitian ini yang akan digunakan 

adalah YOLO V5. YOLO V5 merupakan arsitektur YOLO pertama yang 

diterapkan di Pytorch. Kelebihan dari arsitektur YOLO V5 adalah cepatnya proses 
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training dan ringannya proses komputasi. Arsitektur YOLO V5 memiliki 5 ukuran 

yaitu nano (n), small (s), medium (m), large (l), dan extra large (x). Semakin besar 

ukuran arsitektur yang digunakan, maka semakin lama dan semakin membutuhkan 

memori yang lebih besar untuk menjalankan proses training dan prediksi. Berikut 

merupakan contoh gambar arsitektur YOLO. 

 

Gambar 2.15 Contoh Arsitektur YOLO 

(Redmon et al., 2015) 

 

2.15 Confusion Matrix 

Confusion matrix adalah sebuah tabel yang digunakan untuk menampilkan 

visualisasi dari performa sebuah algoritma supervised machine learning atau deep 

learning. Kolom dari tabel confusion matrix menampilkan label kelas yang 

diprediksi, sedangkan baris menampilkan label kelas yang sebenarnya. Ukuran dari 

confusion matrix beragam menyesuaikan dengan jumlah label. Berikut adalah 

contoh confusion matrix berukuran 2x2: 

 

Gambar 2.16 Contoh Confusion Matrix Ukuran 2x2 
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(Sumber: https://pub.towardsai.net/deep-understanding-of-confusion-matrix-

6ab1f88a267e) 

Pada Gambar 2.16 terdapat kelas hasil prediksi dan kelas sebenarnya. True 

Negative (TN) merupakan jumlah kelas negatif yang berhasil diklasifikasi sebagai 

negatif. True Positive (TP) merupakan jumlah kelas positif yang berhasil 

diklasifikasi sebagai positif. False Positive (FP) merupakan jumlah kelas negatif 

yang diklasifikasi sebagai positif. Sedangkan False Negative (FN) merupakan 

jumlah kelas positif yang diklasifikasi sebagai negatif. Dari empat elemen tersebut, 

dapat digunakan untuk menghitung nilai accuracy. 

Accuracy adalah rasio prediksi benar terhadap total prediksi. Accuracy 

menunjukkan seberapa baik model dalam melakukan prediksi dengan benar secara 

keseluruhan. Berikut persamaan untuk menghitung nilai accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2-9) 

𝑇𝑃 = True Positive 

𝑇𝑁 = True Negative 

𝐹𝑃 = False Positive 

𝐹𝑁 = False Negative 

 

2.16 Python 

Python merupakan bahasa pemrograman tingkat tinggi bersifat open source 

yang dapat digunakan untuk banyak kasus (general purpose). Python diciptakan 

oleh Guido van Rosum dan pertama kali dirilis pada 20 Februari 1991. Nama 

python terinspirasi dari acara favorit Guido yang tayang di BBC dengan nama 

Monty Python’s Flying Circus. Pada tahun 2021 berdasarkan survey pada website 

stack overflow, python digunakan oleh 48.24% developer di seluruh dunia dari 

83,052 responden. 

 

2.17 Kaggle 

Kaggle adalah sebuah platform online berbasis website yang menyediakan 

data, sumber daya, dan kompetisi untuk pengembang, peneliti, dan ilmuwan data 

untuk berpartisipasi dalam menyelesaikan sebuah tantangan data. Kaggle juga 
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menyediakan berbagai sumber daya seperti dataset, forum diskusi, dan tutorial 

pemrosesan data dan machine learning.  

Pada platform Kaggle, pengguna dapat mengikuti kompetisi data yang 

diadakan oleh perusahaan-perusahaan atau organisasi yang membutuhkan bantuan 

dalam menyelesaikan sebuah permasalahan terkait dengan machine learning atau 

data science. Kompetisi ini dapat memberikan penghargaan berupa uang maupun 

kesempatan kerja pada perusahaan yang mengadakan kompetisi tersebut. Akibat 

adanya kompetisi-kompetisi ini, Kaggle menjadi platform yang populer dan telah 

membantu memecahkan banyak permasalahan di bidang kesehatan, keuangan, 

teknologi, dan lain-lain. 

 

2.18 Google Colaboratory 

Google Colaboratory atau yang biasa disebut Colab adalah sebuah platform 

gratis berbasis cloud yang dikembangkan oleh tim Google Research untuk 

mempermudah pekerjaan yang berkaitan dengan data science dan machine 

learning. Colab menyediakan lingkungan (environment) pengembangan interaktif 

yang memungkinkan pengguna untuk membuat, menjalankan, dan membagikan 

kode python melalui web. Colab memiliki format notebook layaknya Jupyter 

Notebook, sehingga memungkinkan kita untuk menulis kode per bagian. Selain itu 

Colab juga menyediakan akses ke mesin virtual google yang dilengkapi dengan 

GPU dan TPU, yang memungkinkan pengguna untuk memproses data dengan lebih 

cepat. 

 

2.19 Microsoft Visual Studio Code 

Microsoft Visual Studio Code (VS Code) adalah salah satu editor kode teks 

yang dikembangkan oleh Microsoft. VS Code dapat digunakan pada berbagai 

sistem operasi seperti Windows, Linux, dan macOS. Dirilis pada 29 April 2015, VS 

Code mampu digunakan untuk 15 bahasa pemrograman. Beberapa fitur yang 

disediakan oleh VS Code adalah debugging, pengeditan kode cerdas, integrasi 

terminal, dan lain-lain. 
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2.20 Uji Normalitas 

Uji Normalitas merupakan sebuah metode untuk mengevaluasi apakah data 

dalam suatu kelompok atau variabel mengikuti distribusi normal atau tidak. 

Tujuannya adalah untuk menentukan apakah data yang telah dikumpulkan berasal 

dari populasi yang memiliki distribusi normal. Meskipun secara empiris banyak ahli 

statistik menyatakan bahwa data dengan jumlah sampel lebih dari 30 dapat 

diasumsikan mengikuti distribusi normal, namun untuk memastikan, disarankan 

untuk menggunakan uji normalitas. Hal ini karena jumlah sampel yang besar tidak 

selalu menjamin distribusi normal, begitu pula sebaliknya untuk jumlah sampel 

yang kurang dari 30. Beberapa uji statistik yang umum digunakan untuk menguji 

normalitas antara lain Uji Chi-Square, Kolmogorov Smirnov, Lilliefors, Shapiro 

Wilk, dan Jarque Bera. 

 

2.20.1 Uji Shapiro Wilk 

Uji Shapiro Wilk adalah sebuah teknik atau formula untuk mengukur 

sebaran data yang dikembangkan oleh Shapiro dan Wilk. Metode ini efektif dan 

dapat diandalkan untuk menguji normalitas pada sampel dengan jumlah yang relatif 

kecil. Dalam praktiknya, para peneliti dapat menggunakan perangkat lunak statistik 

seperti SPSS dan STATA untuk menerapkan uji ini. Berikut adalah persamaan dari 

uji Shapiro Wilk. 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

𝑚
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

 (2-10) 

𝑊 = Koefisien Uji Shapiro Wilk 

𝑋̅ = Rata-rata sampel 

𝑋𝑖 = Angka ke i pada sampel 

𝑚 = jika genap 
𝑛

2
, jika ganjil 

𝑛−1

2
 

 

Setelah menemukan nilai W, cari nilai W pada tabel Uji Shapiro Wilk untuk 

menemukan p-value. Nilai p-value akan dibandingkan dengan nilai alpha (α) untuk 

pengambilan kesimpulan. 
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2.21 Uji Rata-Rata (Mean) 

Uji rata-rata (mean) adalah metode statistik yang digunakan untuk menguji 

rata-rata populasi atau kelompok data terdapat perbedaan secara signifikan. Uji 

rata-rata berguna untuk membandingkan rata-rata sampel dengan nilai teoritis atau 

referensi yang diberikan.  

 

2.21.1 Uji Anova 

Uji Anova (Analysis of Variance) adalah sebuah analisis statistik yang 

digunakan untuk menguji perbedaan rata-rata dari lebih dari dua populasi atau 

kelompok yang berbeda. Uji ini berfungsi untuk mengidentifikasi apakah ada 

perbedaan signifikan antar rata-rata populasi yang dibandingkan. Uji Anova 

mengukur varian (variance) data dalam populasi dan varian (variance) antar 

populasi. Jika varian antar populasi lebih besar dibandingkan varian dalam 

populasi, maka dapat dinyatakan bahwa terdapat perbedaan signifikan antara rata-

rata populasi tersebut. Uji ANOVA digunakan jika data yang digunakan 

berdistribusi normal. Berikut merupakan contoh macam uji ANOVA yang sering 

digunakan, seperti: 

a. One-Way ANOVA: Digunakan ketika ada satu faktor atau variabel bebas 

yang mempengaruhi satu variabel dependen. Berikut adalah persamaan 

One-Way ANOVA. 

 

𝑆𝑆𝑇 = ∑(𝑋𝑖𝑗 − 𝑋̅)2 (2-11) 

𝑆𝑆𝑇 = Jumlah Kuadrat Total 

𝑋̅ = Rata-rata seluruh kelompok 

𝑋𝑖𝑗 = Angka ke I pada kelompok j  

 

𝑆𝑆𝐵 = ∑ 𝑛𝑗(𝑋̅𝑗 − 𝑋̅)2 (2-12) 

𝑆𝑆𝐵 = Jumlah Kuadrat Antara 

𝑋̅𝑗 = Rata-rata kelompok j  
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𝑆𝑆𝑊 = ∑ ∑(𝑋𝑖𝑗 − 𝑋̅𝑗)2 (2-13) 

𝑆𝑆𝑊 = Jumlah Kuadrat Dalam  

 

𝑑𝑓𝑎 = 𝑗 − 1 (2-14) 

𝑑𝑓𝑎 = degree of freedom (derajat kebebasan) kelompok 

 

𝑑𝑓𝑟 = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑗 (2-15) 

𝑑𝑓𝑟 = degree of freedom (derajat kebebasan) residual 

 

𝑀𝑆𝑎 =
𝑆𝑆𝑊

𝑑𝑓𝑎
 (2-16) 

𝑀𝑆𝑎 = mean square (rata-rata Kuadrat) kelompok 

 

𝑀𝑆𝑟 =
𝑆𝑆𝐵

𝑑𝑓𝑟
 (2-16) 

𝑀𝑆𝑟 = mean square (rata-rata Kuadrat) residual 

 

𝐹 =
𝑀𝑆𝑎

𝑀𝑆𝑟
 (2-16) 

𝐹 = F statistik 

 

Setelah mendapatkan nilai F statistik, bandingkan nilai F statistik dengan 

nilai kritis menggunakan tabel distribusi F dengan alpha dan derajat kebebasan yang 

sesuai. Hasil perbandingan tersebut digunakan untuk pengambilan kesimpulan dari 

hipotesis yang telah ditetapkan. 

 

b. Two-Way ANOVA: Digunakan ketika ada dua faktor atau variabel bebas 

yang mempengaruhi satu variabel dependen. 

c. Repeated Measures ANOVA: Digunakan ketika mengukur data pada 

kelompok yang sama pada waktu yang berbeda.  
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2.21.2 Uji Tukey HSD 

Uji Tukey HSD (Honestly Significant Difference) adalah metode statistik 

yang digunakan untuk membandingkan rata-rata antara dua kelompok atau lebih 

dalam analisis varians (ANOVA). Uji ini dirancang untuk mengidentifikasi 

perbedaan signifikan di antara kelompok-kelompok tersebut setelah dilakukan uji 

ANOVA. Hasil dari Uji Tukey HSD menunjukkan bahwa terdapat perbedaan 

secara keseluruhan di antara kelompok-kelompok tersebut. Berikut adalah 

persamaan uji Tukey HSD. 

 

𝑄 =
𝑋̅𝑖 − 𝑋̅𝑗

√𝑀𝑆𝑎

𝑛

 
(2-16) 

𝑄 = Hasil uji Tukey HSD 

𝑋̅𝑖 = Rata-rata kelompok i 

𝑋̅𝑗 = Rata-rata kelompok j 

𝑀𝑆𝑎 = mean square (rata-rata Kuadrat) kelompok 

𝑛 = Jumlah sampel setiap kelompok 

 

Setelah mendapatkan nilai Q, bandingkan nilai Q dengan nilai kritis 

menggunakan tabel distribusi q dengan alpha dan derajat kebebasan yang sesuai. 

Hasil perbandingan tersebut digunakan untuk pengambilan kesimpulan dari 

hipotesis yang telah ditetapkan. 

 

2.21.3 Uji Kruskal-Wallis 

Uji Kruskal-Wallis adalah metode statistik non-parametrik yang digunakan 

untuk menguji apakah terdapat perbedaan signifikan antara tiga atau lebih 

kelompok. Dalam uji ini, hipotesis nol menyatakan bahwa tidak ada perbedaan 

signifikan antara median kelompok-kelompok tersebut. Uji ini sering digunakan 

sebagai alternatif ketika asumsi dari uji ANOVA tidak terpenuhi. Salah satunya 

adalah ketika data yang digunakan tidak berdistribusi normal. Metode ini dinamai 

sesuai dengan nama dua statistikawan, Maurice Kruskal dan William Wallis, yang 
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mengembangkannya pada tahun 1952. Berikut adalah persamaan uji Kruskal-

Wallis. 

 

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1)

𝑘

𝑖=1
 (2-17) 

𝐻 = Hasil uji Kruskal-Wallis 

𝑁 = Jumlah sampel semua kelompok 

𝑘 = Jumlah kelompok 

𝑅𝑖 = Jumlah peringkat dalam kelompok i 

𝑛𝑖 = Jumlah sampel kelompok i 

 

Setelah mendapatkan nilai H, bandingkan nilai H dengan nilai kritis 

menggunakan tabel distribusi chi-square dengan alpha dan derajat kebebasan yang 

sesuai. Hasil perbandingan tersebut digunakan untuk pengambilan kesimpulan dari 

hipotesis yang telah ditetapkan. 

 

2.21.4 Uji Mann-Whitney U 

Uji Mann-Whitney U adalah uji statistik non-parametrik yang digunakan 

untuk membandingkan median dari dua sampel independen. Metode ini menjadi 

pilihan alternatif untuk uji T jika data tidak terdistribusi normal. Uji ini didasarkan 

pada peringkat observasi dalam dua sampel, bukan pada nilai aktualnya. Hipotesis 

nol dari uji ini menyatakan bahwa kedua sampel berasal dari populasi yang sama, 

sementara hipotesis alternatifnya menyatakan bahwa keduanya berasal dari 

populasi yang berbeda. Uji dapat dilakukan secara manual atau menggunakan 

perangkat lunak statistik, seperti SPSS. Berikut adalah persamaan uji Mann-

Whitney U. 

 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 (2-18) 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 (2-19) 
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𝐻 = Hasil uji Mann-Whitney U 

𝑛1 = Jumlah sampel pertama 

𝑛2 = Jumlah sampel kedua 

𝑅1 = Total peringkat dari sampel pertama 

𝑅2 = Total peringkat dari sampel kedua 

 

Nilai U yang lebih kecil akan digunakan sebagai nilai statistik uji. Jika nilai 

statistik uji bernilai lebih kecil dari alpha yang ditentukan, maka dianggap terdapat 

perbedaan signifikan diantara dua kelompok tersebut. 

 

2.22 Formulasi Hipotesis 

Sebelum menggunakan uji normalitas dan uji statistik, diperlukan 

penentuan hipotesis yang akan digunakan untuk pengambilan kesimpulan nantinya. 

Terdapat dua macam hipotesis yang akan digunakan dalam uji statistik, yaitu 

hipotesis nol (H0) dan hipotesis alternatif (H1). Hipotesis nol merupakan asumsi 

bahwa tidak terdapat perbedaan signifikan antara dua populasi atau variabel. 

Hipotesis satu merupakan asumsi bahwa terdapat perbedaan signifikan antara dua 

populasi atau variabel. 

Proses pengambilan kesimpulan ditentukan oleh nilai p-value dan nilai 

alpha (α). P-value adalah ukuran probabilitas apakah hipotesis nol dapat diterima 

atau ditolak. Nilai alpha atau yang biasa dilambangkan dengan α adalah tingkat 

kesalahan maksimal yang akan ditentukan sendiri oleh peneliti. Pada umumnya 

nilai α yang digunakan adalah 1% (0.01), 5% (0.05), atau 10% (0.1). Kriteria 

penerimaan atau penolakan H0 adalah H0 diterima jika nilai P-value lebih besar 

dari nilai α, H0 ditolak jika nilai P-value lebih kecil dari nilai α.  

 

Berikut merupakan penyusunan hipotesis untuk uji normalitas: 

H0 : data berasal dari populasi yang berdistribusi normal 

H1 : data berasal dari populasi yang tidak berdistribusi normal 

 

Berikut merupakan penyusunan hipotesis untuk uji ANOVA: 

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih. 
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H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih. 

 

Berikut merupakan penyusunan hipotesis untuk uji Tukey HSD: 

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi. 

H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi. 

Berikut merupakan penyusunan hipotesis untuk uji Kruskal-Wallis: 

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih. 

H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih. 

 

Berikut merupakan penyusunan hipotesis untuk uji Mann-Whitney U: 

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi. 

H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi. 

 

2.23 Penelitian Terdahulu 

Beberapa penelitian terdahulu terkait deteksi penyakit retinopati diabetik 

digunakan untuk menjadi referensi dalam melaksanakan penelitian ini. 

Shankar dkk., (2020) melakukan penelitian mengembangkan Hyper 

Parameter Tuning Inception-v4 (HPTI-v4) untuk mengklasifikasi penyakit 

retinopati diabetik. Pada penelitian tersebut, digunakan preprocessing citra berupa 

contrast limited adaptive histogram equalization (CLAHE). Dataset yang 

digunakan berisi 1200 citra yang terdiri dari 542 citra mata normal, 154 citra mata 

RD ringan, 248 citra mata RD sedang dan berat, dan 255 citra mata PRD. Arsitektur 

HPTI-v4 berhasil mencapai tingkat akurasi 99,49%. 

Penelitian yang dilakukan oleh Sudha dan Ganeshbabu (2021) berfokus 

pada lesion detection and grading pada penyakit retinopati diabetik. Penelitian ini 

menggunakan arsitektur VGG-19. Penelitian ini juga menggunakan saliency map 

dan gradient descent method untuk proses preprocessing citra. Dataset yang 

digunakan berisi 35.126 citra, dengan 25.810 citra mata normal, 2.443 citra RD 

ringan, 5.292 citra RD sedang, 873 citra RD berat, dan 708 citra PRD. Akurasi 

arsitektur VGG-19 pada penelitian ini mencapai 96%. 

Lin dan Wu (2023) melakukan penelitian mengembangkan ResNet-50 

untuk deteksi retinopati diabetik. Penelitian ini membandingkan performa dari 
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ResNet-50 dengan revised ResNet-50 yang menggunakan adaptive learning rate. 

Dataset yang digunakan berisi 35.126 citra, dengan 25.810 citra mata normal, 2.443 

citra RD ringan, 5.292 citra RD sedang, 873 citra RD berat, dan 708 citra PRD. 

Akurasi dari model ResNet-50 mencapai 89%, sedangkan model revised ResNet-

50 mencapai 83,95%. 

Mishra dkk., (2020) melakukan penelitian menerapkan preprocessing citra 

cropping untuk mengoptimasi model deep learning dalam melakukan pengawasan 

bencana banjir. Pada penelitian ini, cropping digunakan untuk hanya menunjukkan 

RDainase pada citra tersebut dan diklasifikasi menjadi 3 kelompok, yaitu fully 

blocked, partially blocked, dan no blockage. Cropping berhasil meningkatkan 

akurasi model deep learning dari 55% menjadi 76%. 

 Penelitian yang dilakukan Yang dkk., (2022) menerapkan berbagai macam 

augmentasi data pada berbagai macam model dan dataset. Jenis-jenis augmentasi 

yang dilakukan berupa image manipulation seperti rotation, flipping, dan lain-lain, 

image erasing, image mix, dan lain-lain. Pada penelitian tersebut disimpulkan 

bahwa augmentasi data merupakan solusi efektif apabila mengalami kekurangan 

data. 
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BAB III 

RANCANGAN PENELITIAN 

 

3.1 Tahapan Penelitian 

Penelitian ini bertujuan untuk mengetahui apakah preprocessing citra dan 

augmentasi data yang dilakukan pada sistem deteksi penyakit retinopati diabetik 

dapat memengaruhi tingkat akurasi model. Tahapan penelitian dari proyek tugas 

akhir ini adalah sebagai berikut. 

 

 

Gambar 3.1 Tahapan Penelitian 

 

3.2 Analisis Kebutuhan Penelitian  

Tahapan pertama dari penelitian tugas akhir ini adalah analisis kebutuhan 

penelitian. Analisis yang dilakukan untuk mengetahui pengaruh preprocessing citra 

dan augmentasi data pada sistem deteksi retinopati diabetik mencakup kebutuhan 

perangkat keras dan perangkat lunak. 

A. Perangkat Keras 

1. Laptop Ideapad 3 Slim 3 14inch 

i. Processor : AMD Ryzen 5 5500U 

ii. GPU  : AMD Radeon™ Graphics 

iii. Memory  : RAM 8 GB, 512 GB SSD 
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iv. OS  : Windows 11 Home Single Language 64-bit 

B. Perangkat Lunak 

1. Python 3 

2. Google Colab 

3. Microsoft Studio Code 

C. Dataset 

1. Citra Fundus Retinopati Diabetik Seluruh Kelas 

 

3.3 Desain Penelitian 

 

Gambar 3.2 Desain Penelitian 
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Penelitian ini dimulai dari melakukan pengunduhan data. Data retinopati 

diabetik diunduh dari website Kaggle dengan judul “Diabetic Retinopathy 

Detection”. Setelah diunduh, dataset akan di-sampling untuk membuat dataset asli. 

Lalu dataset asli diterapkan preprocessing citra dan augmentasi data untuk 

membuat dataset setelah preprocessing dan augmentasi citra. Preprocessing citra 

yang digunakan merupakan cropping dan histogram equalization. Augmentasi data 

yang dilakukan merupakan transformasi flipping. Masing-masing dataset akan 

dibagi menjadi data train, test, dan validation dengan rasio pembagian 70%, 20%, 

dan 10%. 

Tahap pelatihan model akan dilakukan dengan menggunakan dataset setelah 

preprocessing dan augmentasi citra untuk menentukan arsitektur terbaik untuk 

mengklasifikasi penyakit RD. Arsitektur deep learning yang digunakan adalah 

Inception-v4, ResNet-50, VGG-19, dan YOLO v5Nano. Output dari proses 

pelatihan ini adalah empat buah model, confusion matrix, dan nilai accuracy yang 

akan dievaluasi. Output tersebut akan dievaluasi menggunakan uji statistik untuk 

mengetahui perbandingan performa dari empat model tersebut.  

Selanjutnya adalah tahap pelatihan model analisis preprocessing dan 

augmentasi data. Pada tahap ini akan dilakukan pelatihan arsitektur terbaik terhadap 

dataset asli, dataset cropping, dataset histeq, dataset flipping, dataset cropping dan 

histeq, dataset cropping dan flipping, dataset histeq dan flipping, dan dataset setelah 

preprocessing dan augmentasi citra. Hal ini dilakukan agar dapat mengetahui 

pengaruh dari masing-masing preprocessing citra atau augmentasi citra terhadap 

performa dari model. Output dari proses pelatihan ini adalah delapan buah model, 

confusion matrix, dan nilai accuracy yang akan dievaluasi. Output tersebut akan 

dievaluasi menggunakan uji statistik untuk mengetahui perbandingan performa dari 

delapan model tersebut. 

 

3.3.1 Pengunduhan Data 

Dataset retinopati diabetik diunduh dari website Kaggle dengan judul 

“Diabetic Retinopathy Detection”. Dataset ini berisi lima belas files dengan ukuran 

files tersebut mencapai 88,29 GB. Dari lima belas files yang ada, hanya files 

train.zip, dan trainLabels.csv.zip yang akan digunakan. 
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Berikut adalah rincian dari files tersebut: 

1. Lima set data latih (train.zip) 

Total data berjumlah 35.126 citra, dengan 25.810 citra di kelas mata 

normal, 2.443 citra di kelas RD ringan, 5.292 citra di kelas RD sedang, 

873 citra di kelas RD berat, dan 708 citra di kelas RD proliferatif. 

2. Label dari data latih dalam format .csv (trainLabels.csv.zip) 

Berisi label citra dari data latih. 

Masing-masing citra retina dalam dataset tersebut memiliki resolusi dan 

ukuran yang berbeda-beda. Setiap citra tersebut diberi label dengan format id, 

subjek, dan keterangan mata dari subjek tersebut. Contoh pelabelan citra-citra 

tersebut adalah “1_left.jpeg” yang berarti citra tersebut diambil dari mata kiri subjek 

dengan id satu. Citra retina diklasifikasikan ke dalam lima tingkatan retinopati 

diabetik dengan label 0 hingga 4. Label 0 merupakan citra fundus mata normal, 

label 1 merupakan citra fundus RD ringan, label 2 merupakan citra fundus RD 

sedang, label 3 merupakan citra fundus RD berat, dan label 4 merupakan citra 

fundus RD proliferatif. Berikut adalah contoh sampel gambar dari dataset tersebut: 

 

     

(A)     (B)      (C)         (D)        (E) 

Gambar 3.3 Contoh Citra Fundus (A) Normal, (B) RD Ringan, (C) RD Sedang, 

(D) RD Berat, (E) RD Proliferatif 

 

Pada penelitian ini, terdapat delapan dataset yang akan digunakan, yaitu 

dataset asli, cropping, histeq, flipping, cropping dan histeq, cropping dan flipping, 

histeq dan flipping, dan setelah preprocessing dan augmentasi citra. Dataset 

tersebut kemudian akan dibagi untuk proses training, testing, dan validation. 

Berikut adalah pembagian citra pada masing-masing dataset. 

 

Jumlah data citra pada tabel 4.1 dihitung berdasarkan pembagian dataset 

yaitu 70% untuk data train, 20% untuk data test, dan 10% untuk data validation. 

Dataset sebelum preprocessing akan langsung digunakan untuk proses training dan 
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diterapkan preprocessing dan augmentasi citra untuk membuat dataset setelah 

preprocessing. 

 

3.3.2 Sampling Data 

Sebelum diterapkan preprocessing dan augmentasi citra, dataset akan di-

sampling agar jumlah citra untuk setiap kelas menjadi sama. Hal ini dilakukan 

untuk mengurangi waktu dan sumber daya yang diperlukan untuk melakukan 

pelatihan model. Sampling data juga dilakukan untuk mencegah terjadinya 

overfitting saat pengujian model. Jumlah citra untuk tiap kelas yang akan digunakan 

merupakan 500 citra per kelas. Sehingga jumlah citra untuk dataset asli adalah 2500 

citra. 

 

3.3.3 Preprocessing dan Augmentasi Data 

Dataset asli akan diterapkan preprocessing citra dan augmentasi data untuk 

menghasilkan dataset yang baru. Preprocessing citra yang dilakukan terhadap 

dataset asli adalah cropping dan histogram equalization. Masing-masing citra 

fundus akan diterapkan preprocessing citra yang telah disebutkan sebelumnya. 

Pada langkah pertama, citra fundus akan diterapkan cropping untuk menghilangkan 

bagian dari citra fundus yang tidak diinginkan. Berikut adalah contoh citra fundus 

yang telah diterapkan proses cropping: 

 

  

(A)   (B) 

Gambar 3.4 Contoh Citra Fundus (A) Sebelum Cropping, (B) Setelah Cropping 

 

Setelah cropping, langkah yang diterapkan berikutnya adalah histogram 

equalization. Hal ini dilakukan dengan menerapkan histogram equalization pada 
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citra fundus. Berikut adalah contoh citra fundus yang telah diterapkan proses 

histogram equalization: 

 

  

(A)   (B) 

Gambar 3.5 Contoh Citra Fundus (A) Sebelum Histogram Equalization, (B) 

Setelah Histogram Equalization 

 

Setelah dilakukan preprocessing citra akan dilakukan augmentasi citra 

untuk menambah jumlah citra dalam dataset, meningkatkan akurasi, dan mencegah 

overfitting. Augmentasi citra yang dilakukan adalah flipping, yaitu horizontal 

flipping dan vertical flipping. Masing-masing citra fundus akan diterapkan 

horizontal flipping menjadi citra yang baru, vertical flipping menjadi citra yang 

baru, dan horizontal dan vertical flipping menjadi citra yang baru. Jumlah citra 

dalam masing-masing kelas akan diterapkan augmentasi citra agar jumlah citra tiap 

kelas bertambah dari 500 citra menjadi 2000 citra. Sehingga jumlah citra dalam 

dataset setelah preprocessing citra dan augmentasi adalah 10000 citra.  

Berikut adalah contoh citra fundus yang telah diterapkan augmentasi data 

berupa flipping: 

 

    

(A)  (B)  (C)  (D) 

Gambar 3.6 Contoh Citra (A) Sebelum Flipping, (B) Setelah Horizontal Flipping, 

(C) Setelah Vertical Flipping, (D) Setelah Horizontal dan Vertical Flipping 

  

Pada gambar 3.6 (A) merupakan contoh citra fundus sebelum diterapkan 

augmentasi citra. Gambar 3.6 (B) merupakan hasil horizontal flipping dari gambar 
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3.6 (A). Gambar 3.6 (C) merupakan hasil vertical flipping dari gambar 3.6 (A). 

Gambar 3.6 (D) merupakan hasil horizontal dan vertical flipping dari gambar 3.6 

(A). 

 

3.3.4 Pelatihan Model 

Setelah tercipta dataset hasil preprocessing dan augmentasi citra, hal yang 

dilakukan selanjutnya adalah melatih arsitektur untuk klasifikasi penyakit diabetik 

retinopati. Arsitektur deep learning yang digunakan dalam penelitian tugas akhir 

ini adalah Inception-v4, ResNet-50, VGG-19, dan YOLO v5 Nano. Ukuran citra 

input yang digunakan adalah 224x224. Seluruh arsitektur dilatih dengan 

menggunakan dataset setelah preprocessing dan augmentasi citra. Dataset tersebut 

akan dibagi menjadi data train, test, dan validation dengan rasio 70%, 20%, dan 

10%. Hasil dari proses pelatihan ini adalah empat buah model, confusion matrix, 

dan nilai accuracy yang akan dievaluasi untuk menentukan arsitektur terbaik.  

 

3.3.5 Pengujian Model 

 

Gambar 3.7 Flowchart Pengujian Model 
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Setelah proses pelatihan model selesai, akan dilakukan pengujian model 

yang sudah terbentuk. Pada penelitian ini, digunakan confusion matrix untuk 

melakukan evaluasi model. Confusion matrix yang digunakan berukuran 5x5 

dengan label 0 (mata normal), 1 (RD ringan), 2 (RD sedang), 3 (RD berat), dan 4 

(RD proliferatif). Jumlah model yang diuji berjumlah empat, yaitu hasil empat 

arsitektur untuk dataset setelah preprocessing dan augmentasi citra. Masing-masing 

model akan dilakukan testing dengan data testing masing-masing sebanyak lima 

kali. Berikut contoh confusion matrix yang akan dihasilkan dari model: 

 

Tabel 3.1 Contoh Confusion Matrix Multiclass 

 
Kelas Prediksi 

0 1 2 3 4 

Kelas 

Asli 

0 A B C D E 

1 F G H I J 

2 K L M N O 

3 P Q R S T 

4 U V W X Y 

 

Selain confusion matrix, model juga akan dievaluasi dengan menggunakan 

nilai tes accuracy. Nilai tes akurasi akan diuji normalitas untuk menentukan apakah 

data berdistribusi normal atau tidak. Hal ini perlu dilakukan untuk mengetahui uji 

statistik yang akan digunakan. Apabila data berdistribusi normal, maka akan 

menggunakan uji ANOVA untuk mengetahui apakah terdapat perbedaan nilai 

akurasi tes yang signifikan antara masing-masing model. Jika terdapat perbedaan 

signifikan, dilakukan uji Tukey HSD untuk mencari pasangan model yang terdapat 

perbedaan signifikan nilai akurasi tes.  

Apabila data tidak berdistribusi normal, maka akan menggunakan uji 

Kruskal-Wallis untuk mengetahui apakah terdapat perbedaan nilai akurasi tes yang 

signifikan antara masing-masing model. Jika terdapat perbedaan signifikan, 

dilakukan uji Mann-Whitney U untuk mencari pasangan model yang terdapat 

perbedaan signifikan nilai akurasi tes. Pengujian model ini dilakukan untuk mencari 

arsitektur terbaik untuk mengklasifikasi penyakit RD. 
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3.3.5.1 Testing Model 

Model yang merupakan hasil dari pelatihan model akan disimpan untuk 

dilakukan testing model. Data testing dibuat dengan cara menggunakan train test 

split pada dataset yang digunakan. Setelah itu model akan dites dengan data test 

yang telah dibuat. Testing model ini dilakukan sebanyak lima kali. Random state 

yang digunakan pada train test split akan berbeda-beda pada setiap tes. Hal ini 

dilakukan untuk menciptakan data tes yang berbeda-beda. 

 

3.3.5.2 Uji Normalitas 

Uji normalitas yang digunakan untuk penelitian ini adalah uji Shapiro-Wilk. 

Untuk melakukan uji Shapiro-Wilk, diperlukan hipotesis yang akan digunakan 

sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan contoh 

hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Shapiro-Wilk: 

 

H0: data berasal dari populasi yang berdistribusi normal. 

H1: data berasal dari populasi yang tidak berdistribusi normal. 

 

3.3.5.3 Uji ANOVA 

Apabila data berdistribusi normal, maka uji statistik yang digunakan adalah 

uji ANOVA. Untuk melakukan uji ANOVA, diperlukan hipotesis yang akan 

digunakan sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan 

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji 

ANOVA: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model. 

H1: terdapat perbedaan signifikan antara akurasi tes model-model. 

 

3.3.5.4 Uji Tukey HSD 

Jika terdapat perbedaan signifikan pada tahap uji ANOVA, maka akan 

dilanjutkan dengan melakukan uji Tukey HSD untuk mencari pasangan model yang 
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terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan contoh hipotesis 

nol dan hipotesis alternatif yang akan digunakan dalam uji Tukey HSD: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan 

model B. 

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B. 

 

3.3.5.5 Uji Kruskal-Wallis 

Apabila data tidak berdistribusi normal, maka uji statistik yang digunakan 

adalah uji Kruskal-Wallis. Untuk melakukan uji Kruskal-Wallis, diperlukan 

hipotesis yang akan digunakan sebagai panduan untuk pengambilan kesimpulan. 

Berikut merupakan contoh hipotesis nol dan hipotesis alternatif yang akan 

digunakan dalam uji Kruskal-Wallis: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model. 

H1: terdapat perbedaan signifikan antara akurasi tes model-model. 

 

3.3.5.6 Uji Mann-Whitney U 

Jika terdapat perbedaan signifikan pada tahap uji Kruskal-Wallis, maka 

akan dilanjutkan dengan melakukan uji Mann-Whitney U untuk mencari pasangan 

model yang terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan 

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Mann-

Whitney U: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan 

model B. 

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B. 

 

3.3.6 Pelatihan Model Analisis Preprocessing dan Augmentasi Data 

Setelah menentukan arsitektur terbaik, arsitektur tersebut akan dilatih 

menggunakan dataset asli, dataset cropping, dataset histeq, dataset flipping, dataset 
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cropping dan histeq, dataset cropping dan flipping, dataset histeq dan flipping, dan 

dataset setelah preprocessing dan augmentasi data. Berikut adalah rincian dataset 

tersebut. 

 

Tabel 3.2 Rincian Dataset RD Untuk Analisis Pengaruh Preprocessing dan 

Augmentasi Data 

Nama Dataset Train Test Validation Total 

Asli 1750 500 250 2.500 

Cropping 1750 500 250 2.500 

Histeq 1750 500 250 2.500 

Flipping 7000 2000 1000 10.000 

Cropping dan 

Histeq 
1750 500 250 2.500 

Cropping dan 

Flipping 
7000 2000 1000 10.000 

Histeq dan 

Flipping 
7000 2000 1000 10.000 

Setelah 

Preprocessing 

dan Augmentasi 

7000 2000 1000 10.000 

 

Seluruh dataset pada tabel 3.2 akan dibagi menjadi data train, test, dan 

validation dengan rasio 70%, 20%, dan 10%. Hasil dari proses pelatihan ini adalah 

delapan buah model, confusion matrix, dan nilai accuracy yang akan dievaluasi 

untuk menentukan preprocessing atau augmentasi data yang memiliki pengaruh 

paling signifikan terhadap performa arsitektur.  
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3.3.7 Pengujian Model Analisis Preprocessing dan Augmentasi Data 

 

Gambar 3.8 Flowchart Pengujian Model Analisis Preprocessing dan Augmentasi 

Data 

 

Setelah proses pelatihan model analisis preprocessing dan augmentasi data 

selesai, akan dilakukan pengujian terhadap model yang sudah terbentuk. Pada tahap 

ini, confusion matrix yang digunakan untuk melakukan evaluasi model sesuai 

dengan Tabel 3.1. Jumlah model yang diuji berjumlah delapan, yaitu model untuk 

dataset asli, dataset cropping, dataset histeq, dataset flipping, dataset cropping dan 

histeq, dataset cropping dan flipping, dataset histeq dan flipping, dan dataset setelah 

preprocessing dan augmentasi citra. Masing-masing model akan dilakukan testing 

dengan data testing masing-masing sebanyak lima kali.  

 

3.3.7.1 Testing Model  

Model yang merupakan hasil dari pelatihan model akan disimpan untuk 

dilakukan testing model. Data testing dibuat dengan cara menggunakan train test 

split pada dataset yang digunakan. Setelah itu model akan dites dengan data test 

yang telah dibuat. Testing model ini dilakukan sebanyak lima kali. Random state 
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yang digunakan pada train test split akan berbeda-beda pada setiap tes. Hal ini 

dilakukan untuk menciptakan data tes yang berbeda-beda. 

 

3.3.7.2 Uji Normalitas 

Uji normalitas yang digunakan untuk penelitian ini adalah uji Shapiro-Wilk. 

Untuk melakukan uji Shapiro-Wilk, diperlukan hipotesis yang akan digunakan 

sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan contoh 

hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Shapiro-Wilk: 

 

H0: data berasal dari populasi yang berdistribusi normal. 

H1: data berasal dari populasi yang tidak berdistribusi normal. 

 

3.3.7.3 Uji ANOVA 

Apabila data berdistribusi normal, maka uji statistik yang digunakan adalah 

uji ANOVA. Untuk melakukan uji ANOVA, diperlukan hipotesis yang akan 

digunakan sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan 

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji 

ANOVA: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model. 

H1: terdapat perbedaan signifikan antara akurasi tes model-model. 

 

3.3.7.4 Uji Tukey HSD 

Jika terdapat perbedaan signifikan pada tahap uji ANOVA, maka akan 

dilanjutkan dengan melakukan uji Tukey HSD untuk mencari pasangan model yang 

terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan contoh hipotesis 

nol dan hipotesis alternatif yang akan digunakan dalam uji Tukey HSD: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan 

model B. 

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B. 
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3.3.7.5 Uji Kruskal-Wallis 

Apabila data tidak berdistribusi normal, maka uji statistik yang digunakan 

adalah uji Kruskal-Wallis. Untuk melakukan uji Kruskal-Wallis, diperlukan 

hipotesis yang akan digunakan sebagai panduan untuk pengambilan kesimpulan. 

Berikut merupakan contoh hipotesis nol dan hipotesis alternatif yang akan 

digunakan dalam uji Kruskal-Wallis: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model. 

H1: terdapat perbedaan signifikan antara akurasi tes model-model. 

 

3.3.7.6 Uji Mann-Whitney U 

Jika terdapat perbedaan signifikan pada tahap uji Kruskal-Wallis, maka 

akan dilanjutkan dengan melakukan uji Mann-Whitney U untuk mencari pasangan 

model yang terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan 

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Mann-

Whitney U: 

 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan 

model B. 

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B. 

 

3.4 Interpretasi Hasil Penelitian 

Tahapan terakhir setelah analisis preprocessing dan augmentasi data adalah 

pengambilan kesimpulan atau interpretasi hasil penelitian. Tahap interpretasi hasil 

penelitian akan menggunakan uji hipotesis yang telah dilakukan pada tahap 

evaluasi model. Pengambilan kesimpulan akan berdasar pada rumusan masalah 

yang telah ditetapkan, dalam hal ini pencarian arsitektur CNN yang optimal untuk 

mengklasifikasi penyakit retinopati diabetik dan pencarian preprocessing citra dan 

augmentasi data terbaik yang mampu meningkatkan akurasi model dalam 

mengklasifikasi penyakit retinopati diabetik. 
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BAB IV 

HASIL DAN PEMBAHASAN 

 

4.1 Hasil Pelatihan Model 

Seperti yang dijelaskan pada bab sebelumnya, penelitian ini diawali dengan 

mencari arsitektur terbaik untuk mengklasifikasi penyakit RD. Arsitektur ResNet-

50, Inception-v4, VGG-19, dan YOLO v5Nano akan dilatih menggunakan dataset 

setelah preprocessing dan augmentasi. Masing-masing model hasil training akan 

disimpan dan diuji sebanyak lima kali. Pengujian model akan dilakukan terhadap 

model yang telah disimpan dan menggunakan dataset yang sama. Untuk masing-

masing pengujian, dataset tersebut akan diterapkan train test split untuk 

menciptakan dataset train dan dataset test. Masing-masing train test split akan 

menggunakan random state yang berbeda untuk menciptakan dataset test yang 

berbeda-beda. 

 

Tabel 4.1 Hasil Training dan Testing Model 

Arsitektur 
Akurasi 

Training 

Akurasi Tes 

Tes 1 Tes 2 Tes 3 Tes 4 Tes 5 

ResNet-50 0.41 0.41 0.41 0.41 0.42 0.41 

Inception-

v4 
0.21 0.45 0.44 0.44 0.45 0.44 

VGG-19 0.82 0.72 0.22 0.21 0.19 0.19 

YOLO 

v5Nano 
0.93 0.74 0.71 0.73 0.73 0.73 

 

Tabel 4.1 merupakan hasil akurasi training dan testing masing-masing 

model. Akurasi hasil tes masing-masing model akan diuji dengan uji ANOVA dan 

dilanjutkan dengan uji Tukey HSD untuk menentukan arsitektur terbaik dalam 

mengklasifikasi penyakit RD.  
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4.1.1 Hasil Pelatihan ResNet-50 

Model ResNet-50 tidak menunjukkan adanya overfitting maupun 

underfitting pada hasil testing. Nilai akurasi training dan testing dari model ResNet-

50 berkisar pada angka 0.41. Berikut adalah grafik loss dan akurasi hasil training 

dari model ResNet-50. 

 

Gambar 4.1 Grafik Akurasi Training dan Validasi ResNet-50 

 

Gambar 4.2 Grafik Loss Training dan Validasi ResNet-50 
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Pada gambar 4.1 dapat dilihat terjadi peningkatan akurasi dari model 

ResNet-50, walaupun terdapat fluktuasi didalamnya. Nilai akurasi training model 

ResNet-50 adalah 0.41, sedangkan nilai akurasi validasi adalah 0.33. Pada gambar 

4.2 juga dapat dilihat bahwa terdapat fluktuasi di penurunan loss dari model 

ResNet-50. Nilai loss training model ResNet-50 adalah 1.31, sedangkan loss 

validasi adalah 1.4566. Setelah itu dilakukan testing model menggunakan model 

yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix dari 

testing model ResNet-50. 

 

 

Gambar 4.3 Confusion Matrix Testing ResNet-50 

 

Berdasarkan gambar 4.3, model ResNet-50 berhasil mengklasifikasikan RD 

dengan akurasi 0.41. Model ini masih belum dapat mengklasifikasi kelas 0 dan 

kelas 2 dengan baik, dimana kelas-kelas ini diprediksi menjadi kelas 1. Untuk kelas 

3 mampu diklasifikasi oleh model dengan lebih baik. Hal ini dapat dilihat dari 

jumlah TP dari kelas 3 mencapai setengah dari total kelas. Sedangkan untuk kelas 

1 dan 4 dapat diklasifikasi dengan baik oleh model ResNet-50. Hal ini ditunjukkan 

dengan angka TP paling tinggi terdapat pada kelas 1 dan 4. 
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4.1.2 Hasil Pelatihan Inception-v4 

Model Inception-v4 menunjukkan adanya underfitting. Nilai akurasi 

training jauh lebih kecil dibandingkan dengan nilai akurasi testing. Nilai akurasi 

training model Inception-v4 hanya mencapai 0.21, sedangkan nilai akurasi testing 

model Inception-v4 rata-rata mencapai 0.44. Berikut adalah grafik loss dan akurasi 

hasil training dari model Inception-v4. 

 

Gambar 4.4 Grafik Akurasi Training dan Validasi Inception-v4 

 

Gambar 4.5 Grafik Loss Training dan Validasi Inception-v4 
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Pada gambar 4.4 terlihat terjadi peningkatan nilai akurasi training dari 

model Inception-v4, namun peningkatan nilai tersebut hanya berubah sedikit saja. 

Sedangkan nilai akurasi validasi tidak mengalami perubahan. Nilai akurasi training 

model Inception-v4 adalah 0.21, sedangkan nilai akurasi validasi adalah 0.17. Pada 

gambar 4.5 juga terlihat bahwa terdapat penurunan loss training dan terjadi 

peningkatan loss validation dari model Inception-v4, namun nilai tersebut hanya 

berubah sedikit saja. Nilai loss training model Inception-v4 adalah 1.61, sedangkan 

nilai loss validasi adalah 1.61. Setelah itu dilakukan testing model menggunakan 

model yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix 

dari testing model Inception-v4. 

 

 

Gambar 4.6 Confusion Matrix Testing Inception-v4 

 

Berdasarkan gambar 4.6, model Inception-v4 berhasil mengklasifikasikan 

RD dengan akurasi 0.45. Model ini masih belum dapat mengklasifikasi kelas 0 dan 

2 dengan baik. Hal ini dapat dilihat dengan nilai TP dari kelas 0 dan 2 kecil. Untuk 

kelas 1 dapat diklasifikasi oleh model dengan lebih baik. Hal ini dapat dilihat dari 

nilai TP dari kelas 1 cukup tinggi. Sedangkan untuk kelas 3 dan 4 dapat diklasifikasi 

dengan baik oleh model Inception-v4. Hal ini ditunjukkan dengan angka TP paling 

tinggi terdapat pada kelas 3 dan 4. 
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4.1.3 Hasil Pelatihan VGG-19 

Model VGG-19 menunjukkan adanya overfitting. Nilai akurasi training 

jauh lebih tinggi dibandingkan dengan nilai akurasi testing. Nilai akurasi training 

model VGG-19 mencapai 0.82, sedangkan nilai akurasi testing model VGG-19 

banyak yang hanya mencapai 0.20. Berikut adalah grafik loss dan accuracy hasil 

training dari model VGG-19. 

 

Gambar 4.7 Grafik Akurasi Training dan Validasi VGG-19 

 

Gambar 4.8 Grafik Loss Training dan Validasi VGG-19 
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Pada gambar 4.7 dapat dilihat terjadi peningkatan akurasi training yang 

signifikan dari model VGG-19, namun hal tersebut tidak terjadi pada akurasi 

validasi. Nilai akurasi training model VGG-19 adalah 0.82, sedangkan nilai akurasi 

validasi hanya mencapai 0.40. Pada gambar 4.8 juga dapat dilihat bahwa terdapat 

penurunan loss training yang signifikan dan terjadi peningkatan loss validasi yang 

signifikan dari model VGG-19. Nilai loss training model VGG-19 adalah 0.45, 

sedangkan loss validasi adalah 2.51. Setelah itu dilakukan testing model 

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu 

confusion matrix dari testing model VGG-19. 

 

 

Gambar 4.9 Confusion Matrix Testing VGG-19 

 

Berdasarkan gambar 4.9, model VGG-19 belum dapat mengklasifikasikan 

penyakit RD dengan benar dan terjadi overfitting. Hal ini dapat dilihat dari hasil 

confusion matrix dimana predicted label seluruhnya mengarah ke kelas 1, 

sedangkan kelas-kelas lainnya masih tidak dapat diklasifikasi. Overfitting dapat 

terjadi karena model terlalu cocok dengan data pelatihan atau kompleksitas model 

VGG-19 tidak sesuai.  
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4.1.4 Hasil Pelatihan YOLO v5Nano 

Model YOLO v5Nano menunjukkan adanya overfitting. Nilai akurasi 

training lebih tinggi dibandingkan dengan akurasi testing. Nilai akurasi training 

model YOLO v5Nano mencapai 0.93, sedangkan nilai akurasi testing model YOLO 

v5Nano rata-rata hanya mencapai 0.73. Berikut adalah grafik loss dan accuracy dari 

training model YOLO v5Nano. 

 

  

Gambar 4.10 Grafik Akurasi Training dan Validasi YOLO v5Nano 

 

Gambar 4.11 Grafik Loss Training dan Validasi YOLO v5Nano 

 

Pada gambar 4.10 dapat dilihat model YOLO v5Nano mengalami 

peningkatan akurasi training yang signifikan. Nilai akurasi training model ini 
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mencapai 0.93. Pada gambar 4.11 juga dapat dilihat model YOLO v5Nano 

mengalami penurunan loss yang signifikan. Nilai loss training model YOLO 

v5Nano adalah 0.56, sedangkan nilai loss validasi adalah 0.58. Setelah itu dilakukan 

testing model menggunakan model yang telah disimpan sebelumnya. Berikut 

adalah salah satu confusion matrix dari model YOLO v5Nano. 

 

 

Gambar 4.12 Confusion Matrix YOLO v5Nano 

 

Berdasarkan gambar 4.12, model YOLO v5Nano berhasil 

mengklasifikasikan penyakit RD dengan akurasi 0.924. Model YOLO v5Nano 

dapat mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat dilihat dari 

hasil confusion matrix dimana predicted label masing-masing kelas hampir 

seluruhnya telah sesuai dengan actual label.  

 

4.2 Hasil Pengujian Model 

Empat model hasil pelatihan model dengan dataset setelah preprocessing 

dan augmentasi data akan diuji untuk menentukan arsitektur terbaik untuk 

mengklasifikasi penyakit RD. Dalam tahap pengujian model, digunakan uji 

normalitas dan uji statistik. Uji normalitas yang digunakan pada tahap ini adalah uji 

Shapiro-Wilk. Uji statistik yang digunakan pada tahap ini adalah uji ANOVA dan 

uji Tukey HSD atau uji Kruskal-Wallis dan uji Mann-Whitney U. Berikut adalah 

hasil dari uji normalitas dan uji statistik dari empat model tersebut. 
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4.2.1 Hasil Uji Shapiro-Wilk Pengujian Model 

Pada tahap ini menggunakan uji Shapiro-Wilk untuk menentukan apakah 

sampel akurasi tes berdistribusi normal atau tidak. Nilai alpha yang ditentukan 

untuk uji Sapiro-Wilk adalah 0.05. Berikut adalah hipotesis nol dan hipotesis 

alternatif yang digunakan dalam uji Shapiro-Wilk: 

 

H0: data berdistribusi normal. 

H1: data tidak berdistribusi normal. 

 

Contoh perhitungan uji Shapiro-Wilk pada VGG-19: 

 

Data VGG-19: 

𝑋(1) = 0.1875, 𝑋(2) = 0.1915, 𝑋(3) = 0.2135, 𝑋(4) = 0.2165, 𝑋(5) = 0.72 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.1875 + 0.1915 + 0.2135 + 0.2165 + 0.72

5
 

= 0.3058 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.2151148 

 

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5: 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

 

=
(0.3538995 + 0.0060325)2

0.2151148
 

= 0.602 

 

Karena nilai W lebih kecil dari nilai W untuk p-value 0.01 pada tabel nilai 

kritis uji Shapiro-Wilk, maka nilai p-value dianggap lebih rendah dari 0.01. Karena 
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p-value lebih kecil dibandingkan alpha, maka H0 ditolak, maka dapat disimpulkan 

sampel tidak terdistribusi normal. 

 

Contoh perhitungan uji Shapiro-Wilk pada ResNet-50: 

 

Data ResNet-50: 

𝑋(1) = 0.407, 𝑋(2) = 0.4085, 𝑋(3) = 0.409, 𝑋(4) = 0.41, 𝑋(5) = 0.418 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.407 + 0.4085 + 0.409 + 0.41 + 0.418

5
 

= 0.4105 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
= 0.000075 

 

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5: 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

 

=
(0.0073106 + 0.00036195)2

0.000075
 

= 0.784 

 

 

Karena nilai W lebih besar dari nilai W untuk alpha 0.05, maka nilai p-value 

dianggap lebih tinggi dari 0.05. Karena nilai p-value lebih tinggi dibandingkan 

alpha, maka H0 diterima, maka dapat disimpulkan bahwa sampel terdistribusi 

normal. Berikut adalah tabel hasil uji Shapiro-Wilk dari empat model yang 

digunakan. 
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Tabel 4.2 Hasil Uji Shapiro-Wilk Pengujian Model 

Arsitektur p-value Hipotesis 

ResNet-50 0.06 H0 diterima 

Inception-v4 0.98 H0 diterima 

VGG-19 0.00 H0 ditolak 

YOLO v5Nano 0.37 H0 diterima 

 

Dari tabel 4.2, dapat dilihat bahwa terdapat data yang tidak terdistribusi 

normal, yaitu hasil tes VGG-19. Oleh karena itu, uji statistik yang digunakan pada 

tahap selanjutnya adalah uji Kruskal-Wallis. 

 

4.2.2 Hasil Uji Kruskal-Wallis Pengujian Model 

Pada tahap ini menggunakan uji Kruskal-Wallis untuk menentukan apakah 

terdapat perbedaan signifikan antara akurasi tes dari model-model tersebut. Nilai 

alpha yang ditentukan untuk uji Kruskal-Wallis adalah 0.05. Berikut adalah 

hipotesis nol dan hipotesis alternatif yang digunakan dalam uji Kruskal-Wallis: 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model. 

H1: terdapat perbedaan signifikan antara akurasi tes model-model. 

 

Perhitungan uji Kruskal-Wallis Pengujian Model: 

 

Data model: 

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418 

Inception-v4: 0.4355, 0.4395, 0.4435, 0.4465, 0.452 

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72 

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739 

 

Peringkat Sampel Model: 

ResNet-50: 8, 7, 5, 9, 6 

Inception-v4: 14, 12, 11, 13, 10 

VGG-19: 16, 4, 3, 2, 1 
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YOLO v5Nano: 20, 15, 19, 18, 17 

 

Total Peringkat masing-masing kelompok: 

ResNet-50: 35 

Inception-v4: 60 

VGG-19: 26 

YOLO v5Nano: 89 

 

𝐻 =
12

20(20 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(20 + 1)

𝑘

𝑖=1
 

 

𝐻 =
12

420
× (

352

5
+

602

5
+

262

5
+

892

5
) − 63 

 

𝐻 = 13.69 

 

𝑑𝑓 = 𝑁 − 1 = 4 − 1 = 3 

 

Nilai p-value jika 𝑑𝑓 = 3 adalah 0.0035. Karena nilai p-value lebih kecil 

dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat 

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model-model. 

Untuk mengetahui model-model yang terdapat perbedaan signifikan, dilakukan uji 

Mann-Whitney U.  

 

4.2.3 Hasil Uji Mann-Whitney U Pengujian Model 

Sebagai kelanjutan dari uji Kruskal-Wallis, digunakan uji Mann-Whitney U 

untuk mengetahui model yang terdapat perbedaan signifikan. Nilai alpha yang 

ditentukan untuk uji Mann-Whitney U adalah 0.05. Berikut adalah hipotesis nol dan 

hipotesis alternatif yang digunakan dalam uji Mann-Whitney U: 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan 

model B. 

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B. 
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Perhitungan uji Mann-Whitney U Pengujian Model antara ResNet-50 dan 

VGG-19: 

 

Data model: 

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418 

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72 

 

Peringkat Sampel Model: 

ResNet-50: 5, 6, 7, 8, 9 

VGG-19: 1, 2, 3, 4, 10 

 

Total Peringkat masing-masing kelompok: 

ResNet-50: 35 

VGG-19: 20 

 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 35 = 5 

 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 20 = 20 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 20 = 5 

 

Nilai U jika menggunakan alpha 0.05 adalah 2. Karena nilai p-value lebih 

besar dibandingkan nilai alpha, maka hipotesis nol diterima. Oleh karena itu, dapat 

disimpulkan bahwa tidak terdapat perbedaan signifikan antara akurasi tes model 

ResNet-50 dengan model VGG-19.  
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Perhitungan uji Mann-Whitney U Pengujian Model antara ResNet-50 dan 

YOLO v5Nano: 

 

Data model: 

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418 

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739 

 

Peringkat Sampel Model: 

ResNet-50: 1, 2, 3, 4, 5 

YOLO v5Nano: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

ResNet-50: 15 

YOLO v5Nano: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 

 

Nilai U jika menggunakan alpha 0.05 adalah 2. Karena nilai p-value lebih 

kecil dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat 

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model ResNet-

50 dengan model YOLO v5Nano.  

 



73 

 

Tabel 4.3 Hasil Uji Mann-Whitney U Pengujian Model 

Arsitektur 1 Arsitektur 2 p-value Hipotesis 

ResNet-50 Inception-v4 0.97 H0 ditolak 

ResNet-50 VGG-19 0.50 H0 diterima 

ResNet-50 YOLO v5Nano 0.00 H0 ditolak 

Inception-v4 VGG-19 0.28 H0 diterima 

Inception-v4 YOLO v5Nano 0.01 H0 Ditolak 

VGG-19 YOLO v5Nano 0.00 H0 Ditolak 

 

Dari tabel 4.2 dapat dilihat bahwa pada model ResNet-50, Inception-v4, dan 

VGG-19 terdapat perbedaan signifikan dari nilai akurasi tes dengan model YOLO 

v5Nano. Karena arsitektur YOLO v5Nano merupakan arsitektur terbaik untuk 

mengklasifikasi penyakit RD, maka pada tahap analisis preprocessing dan 

augmentasi akan menggunakan arsitektur YOLO v5Nano. 

 

4.3 Hasil Pelatihan Model Analisis Preprocessing dan Augmentasi Data 

Pada tahap analisis preprocessing dan augmentasi data, arsitektur terbaik 

yaitu YOLO v5Nano dilatih dengan delapan dataset untuk menentukan 

preprocessing atau augmentasi yang terbaik untuk meningkatkan performa model. 

Berikut adalah hasil training arsitektur YOLO v5Nano terhadap delapan dataset 

tersebut. 

 

Tabel 4.4 Akurasi Tes Analisis Preprocessing dan Augmentasi Data 

Model 
Akurasi 

Training 

Akurasi Tes 

Tes 1 Tes 2 Tes 3 Tes 4 Tes 5 

Asli 0.46 0.69 0.67 0.67 0.59 0.58 

Cropping 0.46 0.57 0.54 0.54 0.54 0.55 

Histeq 0.43 0.45 0.46 0.44 0.46 0.47 

Flipping 0.91 0.91 0.94 0.94 0.94 0.93 

Cropping dan Histeq 0.40 0.46 0.54 0.54 0.56 0.57 
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Tabel 4.4 Lanjutan 

Cropping dan Flipping 0.93 0.82 0.81 0.81 0.81 0.82 

Histeq dan Flipping 0.92 0.69 0.70 0.68 0.70 0.69 

Setelah Preprocessing 

dan Augmentasi 
0.93 0.74 0.71 0.73 0.73 0.73 

 

Tabel 4.3 merupakan hasil akurasi model dengan menggunakan dataset asli, 

cropping, histeq, flipping, cropping dan histeq, cropping dan flipping, histeq dan 

flipping, dan setelah preprocessing dan augmentasi data untuk menentukan 

preprocessing atau augmentasi data yang terbaik untuk meningkatkan performa 

model. Model hasil pelatihan akan disimpan dengan format h5 untuk dilakukan test 

model. Masing-masing model dites sebanyak lima kali.  

 

4.3.1 Hasil Pelatihan Dataset Asli 

Model dataset asli menunjukkan adanya underfitting. Nilai akurasi training 

jauh lebih rendah dibandingkan nilai akurasi testing. Nilai akurasi training model 

dataset asli hanya mencapai 0.46, sedangkan rata-rata nilai akurasi testing model 

dataset asli adalah 0.64. Berikut adalah grafik loss dan akurasi dari training model 

dataset asli. 

 

 

Gambar 4.13 Grafik Akurasi Training Dataset Asli 
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Gambar 4.14 Grafik Loss Training dan Validasi Dataset Asli 

 

Pada gambar 4.13 dapat dilihat grafik model dataset asli mengalami sedikit 

peningkatan akurasi training dari 0.33 menjadi 0.46. Pada gambar 4.14 juga dapat 

dilihat grafik model dataset asli mengalami penurunan loss training yang signifikan 

dari 1.58 menjadi 0.65, sedangkan nilai loss validasi mengalami sedikit peningkatan 

dari 1.53 menjadi 1.57. Setelah itu dilakukan testing model menggunakan model 

yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix dari 

model dataset asli. 

 

 

Gambar 4.15 Confusion Matrix Dataset Asli 
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Berdasarkan gambar 4.15, model dataset asli berhasil mengklasifikasikan 

RD dengan akurasi 0.46. Model ini masih belum dapat mengklasifikasi kelas 0, 1, 

dan kelas 2 dengan baik, dimana prediksi kelas-kelas ini masih banyak yang 

tertukar satu sama lain. Untuk kelas 3 dan 4 mampu diklasifikasi oleh model dengan 

lebih baik. Hal ini dapat dilihat dari jumlah TP dari kelas 3 dan 4 lebih banyak 

dibandingkan kelas yang lain. 

 

4.3.2 Hasil Pelatihan Dataset Cropping 

Model dataset cropping menunjukkan adanya underfitting. Nilai akurasi 

training jauh lebih rendah dibandingkan nilai akurasi testing. Nilai akurasi training 

model dataset cropping hanya mencapai 0.46, sedangkan rata-rata nilai akurasi 

testing model dataset cropping adalah 0.55. Berikut adalah grafik loss dan akurasi 

dari training model dataset cropping. 

 

 

Gambar 4.16 Grafik Akurasi Training Dataset Cropping 
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Gambar 4.17 Grafik Loss Training dan Validasi Dataset Cropping 

 

Pada gambar 4.16 dapat dilihat grafik model dataset cropping mengalami 

sedikit peningkatan akurasi training dari 0.26 menjadi 0.46. Pada gambar 4.17 juga 

dapat dilihat grafik model dataset cropping mengalami penurunan loss training dari 

1.57 menjadi 0.65, sedangkan nilai loss validasi hanya mengalami sedikit 

perubahan dari 1.54 menjadi 1.56. Setelah itu dilakukan testing model 

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu 

confusion matrix dari model dataset cropping. 

 

 

Gambar 4.18 Confusion Matrix Dataset Cropping 
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Berdasarkan gambar 4.18, model dataset cropping berhasil 

mengklasifikasikan RD dengan akurasi 0.49. Model ini masih belum dapat 

mengklasifikasi kelas 1 dan 2 dengan baik, dimana TP kelas ini tidak mencapai 

setengah dari total citra tes kelas tersebut. Untuk kelas 0 dan kelas 3 mampu 

diklasifikasi oleh model dengan lebih baik. Hal ini dapat dilihat dari jumlah TP dari 

kelas 0 dan kelas 3 mencapai setengah dari total kelas. Sedangkan untuk kelas 4 

dapat diklasifikasi dengan baik oleh model dataset cropping. Hal ini ditunjukkan 

dengan angka TP paling tinggi terdapat pada kelas 4. 

 

4.3.3 Hasil Pelatihan Dataset Histeq 

Model dataset histeq tidak menunjukkan adanya underfitting atau 

overfitting. Hal ini dapat dilihat dari nilai akurasi training dan nilai akurasi testing 

yang tidak berbeda jauh. Nilai akurasi training model dataset histeq mencapai 0.43, 

sedangkan rata-rata nilai akurasi testing model dataset histeq mencapai 0.46. 

Berikut adalah grafik loss dan akurasi dari training model dataset histeq. 

 

 

Gambar 4.19 Grafik Akurasi Training Dataset Histeq 
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Gambar 4.20 Grafik Loss Training dan Validasi Dataset Histeq 

 

Pada gambar 4.19 dapat dilihat grafik model dataset histeq mengalami 

sedikit peningkatan akurasi training dari 0.36 menjadi 0.43. Pada gambar 4.20 juga 

dapat dilihat grafik model dataset histeq mengalami penurunan loss training yang 

signifikan dari 1.50 menjadi 0.61, sedangkan nilai loss validasi mengalami sedikit 

peningkatan dari 1.51 menjadi 1.60. Setelah itu dilakukan testing model 

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu 

confusion matrix dari model dataset histeq. 

 

Gambar 4.21 Confusion Matrix Dataset Histeq 

 

Berdasarkan gambar 4.18, model dataset histeq berhasil mengklasifikasikan 

RD dengan akurasi 0.45. Model ini masih belum dapat mengklasifikasi kelas 0 dan 
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2 dengan baik, dimana TP kelas ini tidak mencapai setengah dari total citra tes kelas 

tersebut. Untuk kelas 1, 3, dan 4 mampu diklasifikasi oleh model dengan lebih baik. 

Hal ini dapat dilihat dari jumlah TP dari kelas 1, 3, dan 4 mencapai setengah dari 

total kelas.  

 

4.3.4 Hasil Pelatihan Dataset Flipping 

Model dataset flipping tidak menunjukkan adanya underfitting atau 

overfitting. Hal ini dapat dilihat dari nilai akurasi training dan nilai akurasi testing 

yang tidak berbeda jauh. Nilai akurasi training model dataset flipping mencapai 

0.91, sedangkan rata-rata nilai akurasi testing model dataset flipping mencapai 0.93. 

Berikut adalah grafik loss dan akurasi dari training model dataset flipping. 

 

 

Gambar 4.22 Grafik Akurasi Training Dataset Flipping 
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Gambar 4.23 Grafik Loss Training dan Validasi Dataset Flipping 

 

Pada gambar 4.22 dapat dilihat grafik model dataset flipping mengalami 

peningkatan akurasi training yang signifikan dari 0.35 menjadi 0.91. Pada gambar 

4.23 juga dapat dilihat grafik model dataset flipping mengalami penurunan loss 

training dari 1.51 menjadi 0.59, sedangkan nilai loss validasi mengalami penurunan 

dari 1.48 menjadi 0.63. Setelah itu dilakukan testing model menggunakan model 

yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix dari 

model dataset flipping. 

 

 

Gambar 4.24 Confusion Matrix Dataset Flipping 
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Berdasarkan gambar 4.12, model dataset flipping berhasil 

mengklasifikasikan penyakit RD dengan akurasi 0.92. Model dataset flipping dapat 

mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat dilihat dari hasil 

confusion matrix dimana predicted label masing-masing kelas hampir seluruhnya 

telah sesuai dengan actual label. 

 

4.3.5 Hasil Pelatihan Dataset Cropping dan Histeq 

Model dataset cropping dan histeq menunjukkan adanya underfitting. Hal 

ini dapat dilihat dari nilai akurasi training lebih rendah dibandingkan nilai akurasi 

testing. Nilai akurasi training model dataset cropping dan histeq hanya mencapai 

0.40, sedangkan rata-rata nilai akurasi testing model dataset cropping dan histeq 

adalah 0.53. Berikut adalah grafik loss dan akurasi dari training model dataset 

cropping dan histeq. 

 

 

Gambar 4.25 Grafik Akurasi Training Dataset Cropping dan Histeq 
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Gambar 4.26 Grafik Loss Training dan Validasi Dataset Cropping dan Histeq 

 

Pada gambar 4.25 dapat dilihat grafik model dataset cropping dan histeq 

mengalami peningkatan akurasi training dari 0.19 menjadi 0.40. Pada gambar 4.26 

juga dapat dilihat grafik model dataset cropping dan histeq mengalami penurunan 

loss training dari 1.50 menjadi 0.62, sedangkan nilai loss validasi mengalami 

penurunan dari 2.10 menjadi 1.65. Setelah itu dilakukan testing model 

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu 

confusion matrix dari model dataset cropping dan histeq. 

 

 

Gambar 4.27 Confusion Matrix Dataset Cropping dan Histeq 
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Berdasarkan gambar 4.27, model dataset cropping dan histeq berhasil 

mengklasifikasikan RD dengan akurasi 0.57. Model ini masih belum dapat 

mengklasifikasi kelas 0 dengan baik, dimana TP kelas ini tidak mencapai setengah 

dari total citra tes kelas tersebut. Untuk kelas 1 dan kelas 2 mampu diklasifikasi 

oleh model dengan lebih baik. Hal ini dapat dilihat dari jumlah TP dari kelas 1 dan 

kelas 2 mencapai setengah dari total kelas. Sedangkan untuk kelas 3 dan kelas 4 

mampu diklasifikasi dengan baik, hal ini dapat dilihat dari jumlah TP kelas 3 dan 

kelas 4 hampir mencapai total citra tes kelas tersebut. 

 

4.3.6 Hasil Pelatihan Dataset Cropping dan Flipping 

Model dataset cropping dan flipping menunjukkan adanya overfitting. Hal 

ini dapat dilihat dari nilai akurasi training lebih tinggi dari nilai akurasi testing. 

Nilai akurasi training model dataset cropping dan flipping mencapai 0.93, 

sedangkan rata-rata nilai akurasi testing model dataset cropping dan flipping 

mencapai 0.82. Berikut adalah grafik loss dan akurasi dari training model dataset 

cropping dan flipping. 

 

 

Gambar 4.28 Grafik Akurasi Training Dataset Cropping dan Flipping 
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Gambar 4.29 Grafik Loss Training dan Validasi Dataset Cropping dan Flipping 

 

Pada gambar 4.28 dapat dilihat grafik model dataset cropping dan flipping 

mengalami peningkatan akurasi training dari 0.41 menjadi 0.93. Pada gambar 4.29 

juga dapat dilihat grafik model dataset cropping dan flipping mengalami penurunan 

loss training dari 1.50 menjadi 0.59, sedangkan nilai loss validasi mengalami 

penurunan dari 1.40 menjadi 0.60. Setelah itu dilakukan testing model 

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu 

confusion matrix dari model dataset cropping dan flipping. 

 

Gambar 4.30 Confusion Matrix Dataset Cropping dan Flipping 
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Berdasarkan gambar 4.30, model dataset cropping dan flipping berhasil 

mengklasifikasikan penyakit RD dengan akurasi 0.92. Model dataset cropping dan 

flipping dapat mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat 

dilihat dari hasil confusion matrix dimana predicted label masing-masing kelas 

hampir seluruhnya telah sesuai dengan actual label. 

 

4.3.7 Hasil Pelatihan Dataset Histeq dan Flipping 

Model dataset histeq dan flipping menunjukkan adanya overfitting. Hal ini 

dapat dilihat dari nilai akurasi training jauh lebih tinggi dari nilai akurasi testing. 

Nilai akurasi training model dataset histeq dan flipping mencapai 0.92, sedangkan 

rata-rata nilai akurasi testing model dataset histeq dan flipping mencapai 0.69. 

Berikut adalah grafik loss dan akurasi dari training model dataset histeq dan 

flipping. 

 

 

Gambar 4.31 Grafik Akurasi Training Dataset Histeq dan Flipping 
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Gambar 4.32 Grafik Loss Training dan Validasi Dataset Histeq dan Flipping 

 

Pada gambar 4.31 dapat dilihat grafik model dataset histeq dan flipping 

mengalami peningkatan akurasi training dari 0.41 menjadi 0.92. Pada gambar 4.32 

juga dapat dilihat grafik model dataset histeq dan flipping mengalami penurunan 

loss training dari 1.40 menjadi 0.56, sedangkan nilai loss validasi mengalami 

penurunan dari 1.40 menjadi 0.58. Setelah itu dilakukan testing model 

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu 

confusion matrix dari model dataset histeq dan flipping. 

 

 

Gambar 4.33 Confusion Matrix Dataset Histeq dan Flipping 
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Berdasarkan gambar 4.33, model dataset histeq dan flipping berhasil 

mengklasifikasikan penyakit RD dengan akurasi 0.91. Model dataset histeq dan 

flipping dapat mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat 

dilihat dari hasil confusion matrix dimana predicted label masing-masing kelas 

hampir seluruhnya telah sesuai dengan actual label. 

 

4.3.8 Hasil Pelatihan Dataset Setelah Preprocessing dan Augmentasi 

Model setelah preprocessing dan augmentasi menunjukkan adanya 

overfitting. Nilai akurasi training lebih tinggi dibandingkan dengan akurasi testing. 

Nilai akurasi training model setelah preprocessing dan augmentasi mencapai 0.93, 

sedangkan nilai akurasi testing model setelah preprocessing dan augmentasi rata-

rata hanya mencapai 0.73. Berikut adalah grafik loss dan akurasi dari training 

model setelah preprocessing dan augmentasi. 

 

 

Gambar 4.34 Grafik Akurasi Training Dataset Setelah Preprocessing dan 

Augmentasi 
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Gambar 4.35 Grafik Loss Training dan Validasi Dataset Setelah Preprocessing 

dan Augmentasi 

 

Pada gambar 4.34 dapat dilihat grafik model dataset setelah preprocessing 

dan augmentasi mengalami peningkatan akurasi training dari 0.38 menjadi 0.93. 

Pada gambar 4.35 juga dapat dilihat grafik model dataset setelah preprocessing dan 

augmentasi mengalami penurunan loss training dari 1.50 menjadi 0.56, sedangkan 

nilai loss validasi mengalami penurunan dari 1.40 menjadi 0.58. Setelah itu 

dilakukan testing model menggunakan model yang telah disimpan sebelumnya. 

Berikut adalah salah satu confusion matrix dari model dataset setelah preprocessing 

dan augmentasi. 
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Gambar 4.36 Confusion Matrix Dataset Setelah Preprocessing dan Augmentasi 

 

Berdasarkan gambar 4.36, model dataset setelah preprocessing dan 

augmentasi berhasil mengklasifikasikan penyakit RD dengan akurasi 0.92. Model 

dataset setelah preprocessing dan augmentasi dapat mengklasifikasikan seluruh 

kelas RD dengan baik. Hal ini dapat dilihat dari hasil confusion matrix dimana 

predicted label masing-masing kelas hampir seluruhnya telah sesuai dengan actual 

label.  

 

4.4 Hasil Pengujian Model Analisis Preprocessing dan Augmentasi Data 

Delapan model di atas akan diuji untuk menentukan preprocessing dan 

augmentasi data yang memiliki pengaruh terbaik terhadap akurasi model. Dalam 

tahap ini, digunakan uji normalitas dan uji statistik. Uji normalitas yang digunakan 

pada tahap ini adalah uji Shapiro-Wilk. Uji statistik yang digunakan pada tahap ini 

adalah uji ANOVA dan uji Tukey HSD atau uji Kruskal-Wallis dan uji Mann-

Whitney U. Berikut adalah hasil dari uji normalitas dan uji statistik dari delapan 

model tersebut. 
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4.4.1 Hasil Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data 

Pada tahap ini menggunakan uji Shapiro-Wilk untuk menentukan apakah 

sampel akurasi tes berdistribusi normal atau tidak. Nilai alpha yang ditentukan 

untuk uji Sapiro-Wilk adalah 0.05. Berikut adalah hipotesis nol dan hipotesis 

alternatif yang digunakan dalam uji Shapiro-Wilk: 

 

H0: data berdistribusi normal. 

H1: data tidak berdistribusi normal. 

 

Contoh perhitungan uji Shapiro-Wilk pada model flipping: 

 

Data model flipping: 

𝑋(1) = 0.913, 𝑋(2) = 0.934, 𝑋(3) = 0.935, 𝑋(4) = 0.935, 𝑋(5) = 0.935 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.913 + 0.934 +  0.935 +  0.935 +  0.935

5
 

= 0.9304 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.0003792 

 

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5: 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)25
𝑖=1

 

=
(0.0146212 + 0.0002413)2

0.0003792
 

= 0.582 
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Karena nilai W lebih kecil dari nilai W untuk p-value 0.01 pada tabel nilai 

kritis uji Shapiro-Wilk, maka dianggap nilai p-value lebih kecil dari 0.01. Karena 

p-value lebih kecil dibandingkan alpha, maka H0 ditolak, maka dapat disimpulkan 

data tidak terdistribusi normal. 

 

Contoh perhitungan uji Shapiro-Wilk pada model asli: 

 

Data model asli: 

𝑋(1) = 0.578, 𝑋(2) = 0.589, 𝑋(3) = 0.666, 𝑋(4) = 0.674, 𝑋(5) = 0.694 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.578 + 0.589 + 0.666 + 0.674 + 0.694

5
 

= 0.6402 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.0111928 

 

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5: 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)25
𝑖=1

 

=
0.00952656033681

0.0111928
 

= 0.851132 

 

Karena nilai W lebih besar dari nilai W untuk p-value 0.10 pada tabel nilai 

kritis uji Shapiro-Wilk, maka dianggap p-value lebih tinggi dari 0.10. Karena p-

value lebih besar dibandingkan alpha, maka H0 diterima, maka dapat disimpulkan 

bahwa data terdistribusi normal. 
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Tabel 4.5 Hasil Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data 

Model p-value Hipotesis 

Asli 0.19 H0 diterima 

Cropping 0.05 H0 ditolak 

Histeq 0.50 H0 diterima 

Flipping 0.00 H0 ditolak 

Cropping dan Histeq 0.08 H0 diterima 

Cropping dan Flipping 0.54 H0 diterima 

Histeq dan Flipping 0.73 H0 diterima 

Setelah Preprocessing 

dan Augmentasi Data 
0.37 H0 diterima 

 

Dari tabel 4.5 dapat dilihat bahwa terdapat data yang tidak terdistribusi 

normal, yaitu model cropping dan model flipping. Oleh karena itu, pada tahap 

selanjutnya akan digunakan uji Kruskal-Wallis. 

 

4.4.2 Hasil Uji Kruskall-Wallis Pengujian Model Analisis Preprocessing dan 

Augmentasi Data 

Pada tahap ini digunakan uji Kruskal-Wallis untuk menentukan apakah 

terdapat perbedaan signifikan antara akurasi tes dari model-model tersebut. Nilai 

alpha yang ditentukan untuk uji Kruskal-Wallis adalah 0.05.  Berikut adalah 

hipotesis nol dan hipotesis alternatif yang digunakan dalam uji ANOVA: 

H0: tidak terdapat perbedaan signifikan antara akurasi tes masing-masing 

model. 

H1: terdapat perbedaan signifikan antara akurasi tes masing-masing model. 

 

Perhitungan uji Kruskal-Wallis Pengujian Model: 

 

Data model: 

Asli = 0.694, 0.666, 0.674, 0.589, 0.578 
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Cropping = 0.57, 0.536, 0.536, 0.54, 0.546 

Histeq = 0.45, 0.462, 0.442, 0.462, 0.468 

Flipping = 0.913, 0.935, 0.935, 0.935, 0.934 

Cropping dan histeq = 0.456, 0.54, 0.538, 0.56, 0.568 

Cropping dan flipping = 0.823, 0.813, 0.813, 0.81, 0.818 

Histeq dan flipping = 0.687, 0.697, 0.682, 0.695, 0.692 

Setelah preprocessing dan augmentasi = 0.739, 0.708, 0.731, 0.728, 0.727 

 

Peringkat Sampel Model: 

Asli = 23, 18, 19, 17, 16 

Cropping = 15, 7, 8, 10.5, 12 

Histeq = 2, 4, 1, 5, 6 

Flipping = 35, 38, 39, 40, 37 

Cropping dan histeq = 3, 10.5, 9, 13, 14 

Cropping dan flipping = 35, 33, 32, 31, 34 

Histeq dan flipping = 21, 25, 20, 24, 22 

Setelah preprocessing dan augmentasi = 30, 26, 29, 27, 28 

 

Total Peringkat masing-masing kelompok: 

Asli = 93 

Cropping =52.5 

Histeq = 18 

Flipping = 190 

Cropping dan histeq = 49.5 

Cropping dan flipping = 165 

Histeq dan flipping = 112 

Setelah preprocessing dan augmentasi = 140 

 

𝐻 =
12

40(40 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(40 + 1)

𝑘

𝑖=1
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𝐻 =
12

1640
× (

932

5
+

52.52

5
+

182

5
+

1902

5
+

49.52

5
+

1652

5
+

1122

5
+

1402

5
)

− 123 

𝐻 = 37.49 

 

𝑑𝑓 = 𝑁 − 1 = 8 − 1 = 7 

 

Nilai p-value jika 𝑑𝑓 = 7 adalah 0.00. Karena nilai p-value lebih kecil 

dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat 

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model-model. 

Untuk mengetahui model-model yang terdapat perbedaan signifikan, dilakukan uji 

Mann-Whitney U.  

 

4.4.3 Hasil Uji Mann-Whitney U Pengujian Model Analisis Preprocessing 

dan Augmentasi Data 

Sebagai kelanjutan dari uji Kruskal-Wallis, digunakan uji Mann-Whitney U 

untuk mengetahui model yang terdapat perbedaan signifikan. Nilai alpha yang 

ditentukan untuk uji Mann-Whitney U adalah 0.05. Berikut adalah hipotesis nol dan 

hipotesis alternatif yang digunakan dalam uji Mann-Whitney U: 

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan 

model B. 

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B. 

 

Perhitungan uji Mann-Whitney U Pengujian Model Analisis Preprocessing 

dan Augmentasi Data antara model asli dan model cropping: 

 

Data model: 

Asli: 0.578, 0.589, 0.666, 0.674, 0.694 

Cropping: 0.536, 0.536, 0.54, 0.546, 0.57 

 

Peringkat Sampel Model: 

Asli: 6, 7, 8, 9, 10 
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Cropping: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

Asli: 40 

Cropping: 15 

 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

atau 

 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 

 

Nilai U jika menggunakan alpha 0.05 adalah 2. Karena nilai p-value lebih 

kecil dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat 

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model asli 

dengan model cropping.  

 

Perhitungan uji Mann-Whitney U Pengujian Model Analisis Preprocessing 

dan Augmentasi Data antara model asli dan model histeq flipping: 

 

Data model: 

asli: 0.578, 0.589, 0.666, 0.674, 0.694 

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697 
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Peringkat Sampel Model: 

asli: 1, 2, 3, 4, 8 

histeq flipping: 5, 6, 7, 9, 10 

 

Total Peringkat masing-masing kelompok: 

asli: 18 

histeq flipping: 37 

 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

 

𝑈 = 25 +
5(5 + 1)

2
− 18 = 22 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

 

𝑈 = 25 +
5(5 + 1)

2
− 37 = 3 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 22 = 3 

 

Nilai U jika menggunakan alpha 0.05 adalah 3. Karena nilai p-value lebih 

besar dibandingkan nilai alpha, maka hipotesis nol diterim. Oleh karena itu, dapat 

disimpulkan bahwa tidak terdapat perbedaan signifikan antara akurasi tes model 

asli dengan model histeq flipping.  

 

Tabel 4.6 Hasil Uji Mann-Whitney U Pengujian Model Analisis Preprocessing 

dan Augmentasi Data  

Model A Model B p-value Hipotesis 

Asli Cropping 0.01 H0 Ditolak 

Asli Histeq 0.01 H0 Ditolak 

Asli Flipping 0.01 H0 Ditolak 
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Tabel 4.6 Lanjutan 

Asli Cropping dan Histeq 0.01 H0 Ditolak 

Asli Cropping dan Flipping 0.01 H0 Ditolak 

Asli Histeq dan Flipping 0.06 H0 Diterima 

Asli 
Setelah Preprocessing 

dan Augmentasi Data 
0.01 H0 Ditolak 

Cropping Histeq 0.01 H0 Ditolak 

Cropping Flipping 0.01 H0 Ditolak 

Cropping Cropping dan Histeq 1.00 H0 Diterima 

Cropping Cropping dan Flipping 0.01 H0 Ditolak 

Cropping Histeq dan Flipping 0.01 H0 Ditolak 

Cropping 
Setelah Preprocessing 

dan Augmentasi Data 
0.01 H0 Ditolak 

Histeq Flipping 0.01 H0 Ditolak 

Histeq Cropping dan Histeq 0.06 H0 Diterima 

Histeq Cropping dan Flipping 0.01 H0 Ditolak 

Histeq Histeq dan Flipping 0.01 H0 Ditolak 

Histeq 
Setelah Preprocessing 

dan Augmentasi Data 
0.00 H0 Ditolak 

Flipping Cropping dan Histeq 0.01 H0 Ditolak 

Flipping Cropping dan Flipping 0.01 H0 Ditolak 

Flipping Histeq dan Flipping 0.01 H0 Ditolak 

Flipping 
Setelah Preprocessing 

dan Augmentasi Data 
0.01 H0 Ditolak 

Cropping dan Histeq Cropping dan Flipping 0.01 H0 Ditolak 

Cropping dan Histeq Histeq dan Flipping 0.00 H0 Ditolak 

Cropping dan Histeq 
Setelah Preprocessing 

dan Augmentasi Data 
0.00 H0 Ditolak 

Cropping dan Flipping Histeq dan Flipping 0.01 H0 Ditolak 

Cropping dan Flipping 
Setelah Preprocessing 

dan Augmentasi Data 
0.01 H0 Ditolak 
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Tabel 4.6 Lanjutan 

Histeq dan Flipping 
Setelah Preprocessing 

dan Augmentasi Data 
0.00 H0 Ditolak 

 

Dari tabel 4.6 dapat dilihat bahwa terdapat perbedaan signifikan di hampir 

seluruh dataset. Dimana hanya dataset asli dengan histeq dan flipping, cropping 

dengan cropping dan histeq, dan histeq dengan cropping dan histeq yang tidak 

berbeda signifikan. Merujuk pada tabel 4.3, model dataset flipping memiliki akurasi 

training dan testing yang paling baik, maka preprocessing atau augmentasi yang 

terbaik untuk meningkatkan performa model adalah augmentasi flipping tanpa 

preprocessing. 
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BAB V 

KESIMPULAN DAN SARAN 

 

5.1 Kesimpulan 

Berikut kesimpulan dari penelitian ini. 

1. Pada penelitian ini telah berhasil dikembangkan model CNN untuk 

mengklasifikasi penyakit retinopati diabetik (RR). Model CNN terbaik 

untuk mengklasifikasi penyakit RD adalah model YOLO v5Nano, 

dengan akurasi train 0.93 dan rata-rata akurasi tes mencapai 0.73. 

2. Pada penelitian ini berhasil diterapkan preprocessing dan augmentasi 

data untuk meningkatkan performa dari model CNN yang digunakan. 

Preprocessing dan augmentasi data terbaik untuk meningkatkan 

performa model CNN adalah augmentasi flipping tanpa preprocessing. 

Augmentasi flipping mampu meningkatkan akurasi train model YOLO 

v5Nano menjadi 0.91 dan akurasi tes mencapai 0.93. 

 

5.2 Saran 

Adapun saran dan masukan yang dapat dilakukan sebagai referensi untuk 

penelitian selanjutnya yang berkaitan dengan topik penelitian ini adalah sebagai 

berikut: 

1. Menggunakan dataset yang menunjukkan perbedaan antar kelas dengan 

lebih jelas. 

2. Menggunakan arsitektur yang berbeda. 

3. Menggunakan augmentasi data lebih beragam. 
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LAMPIRAN 

 

Lampiran nomor 1: 

Kode Arsitektur ResNet-50 

import tensorflow as tf 

from tensorflow.keras.applications import ResNet50 

from tensorflow.keras.models import Model 

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D 

 

# Load pre-trained ResNet-50 model 

base_model = ResNet50(input_shape= (224,224,3), 

                      include_top = False, 

                      weights = 'imagenet') 

 

# Freeze the layers in the base model (optional) 

for layer in base_model.layers: 

    layer.trainable = False 

 

last_layer = base_model.get_layer('conv5_block3_out') 

print('last layer output shape: ', last_layer.output_shape) 

last_output = last_layer.output 

 

from tensorflow.keras.optimizers import Adam 

# Flatten the output layer to 1 dimension 

x = layers.Flatten()(last_output) 

x = layers.Dense(512, activation='relu')(x) 

x = layers.Dense(512, activation='relu')(x) 

x = layers.Dropout(0.4)(x) 

x = layers.Dense(5, activation='softmax')(x) 

 

# Append the dense network to the base model 

model = Model(base_model.input, x) 

 

# Compile the model 

model.compile(optimizer=Adam(learning_rate=0.0001), 

loss='sparse_categorical_crossentropy', metrics=['accuracy']) 
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Lampiran nomor 2: 

Kode Arsitektur Inception-v4 

def inception_v4_block(x, num1x1, num3x3red, num3x3, num3x3dblred, 

num3x3dbl, poolproj, name=None): 

    if name is not None: 

        conv1_1 = layers.Conv2D(num1x1, (1, 1), padding='same', 

activation='relu', name=name + '_1x1')(x) 

 

        conv3_3_reduce = layers.Conv2D(num3x3red, (1, 1), 

padding='same', activation='relu', name=name + '_3x3_reduce')(x) 

        conv3_3 = layers.Conv2D(num3x3, (3, 3), padding='same', 

activation='relu', name=name + '_3x3')(conv3_3_reduce) 

 

        conv3_3dbl_reduce = layers.Conv2D(num3x3dblred, (1, 1), 

padding='same', activation='relu', name=name + 

'_3x3dbl_reduce')(x) 

        conv3_3dbl = layers.Conv2D(num3x3dbl, (3, 3), 

padding='same', activation='relu', name=name + 

'_3x3dbl')(conv3_3dbl_reduce) 

        conv3_3dbl = layers.Conv2D(num3x3dbl, (3, 3), 

padding='same', activation='relu', name=name + 

'_3x3dbl_2')(conv3_3dbl) 

 

        pool_proj = layers.AveragePooling2D((3, 3), strides=(1, 

1), padding='same', name=name + '_pool_proj')(x) 

        pool_proj = layers.Conv2D(poolproj, (1, 1), 

padding='same', activation='relu', name=name + 

'_pool_proj_1x1')(pool_proj) 

 

        output = layers.concatenate([conv1_1, conv3_3, conv3_3dbl, 

pool_proj], axis=-1, name=name + '_output') 

    else: 

        raise ValueError('Blok Inception harus memiliki nama.') 

 

    return output 

 

def inception_v4_model(input_shape=(224, 224, 3), num_classes=5): 

    input_layer = layers.Input(shape=input_shape, 

name='input_layer') 
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    x = layers.Conv2D(32, (3, 3), strides=(2, 2), padding='valid', 

activation='relu', name='conv1_3x3/2')(input_layer) 

    x = layers.Conv2D(32, (3, 3), padding='valid', 

activation='relu', name='conv2_3x3/1')(x) 

    x = layers.Conv2D(64, (3, 3), padding='same', 

activation='relu', name='conv3_3x3/1')(x) 

    x = layers.MaxPooling2D((3, 3), strides=(2, 2), 

name='maxpool1_3x3/2')(x) 

 

    x = layers.Conv2D(80, (1, 1), padding='same', 

activation='relu', name='conv4_1x1/1')(x) 

    x = layers.Conv2D(192, (3, 3), padding='valid', 

activation='relu', name='conv5_3x3/1')(x) 

    x = layers.MaxPooling2D((3, 3), strides=(2, 2), 

name='maxpool2_3x3/2')(x) 

 

    x = inception_v4_block(x, 64, 96, 128, 16, 32, 32, 

name='inception_a') 

    x = inception_v4_block(x, 64, 96, 128, 16, 32, 32, 

name='inception_b') 

    x = inception_v4_block(x, 64, 96, 128, 16, 32, 32, 

name='inception_c') 

 

    x = inception_v4_block(x, 384, 192, 448, 512, 256, 256, 

name='inception_d') 

 

    x = layers.GlobalAveragePooling2D(name='avg_pool')(x) 

    x = layers.Dense(num_classes, activation='softmax', 

name='output')(x) 

 

    model = Model(inputs=input_layer, outputs=x, 

name='inception_v4') 

    return model 

 

# Buat model Inception-v4 dengan ukuran input 224x224 

model = inception_v4_model(input_shape=(224, 224, 3)) 

 

# Compile the model 
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model.compile(optimizer=Adam(lr=0.0001), 

loss='sparse_categorical_crossentropy', metrics=['accuracy'])
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Lampiran nomor 3: 

Kode Arsitektur VGG-19 

from tensorflow.keras.applications import VGG19 

from tensorflow.keras.layers import Input, Flatten, Dense, Dropout 

from tensorflow.keras.models import Model 

from tensorflow.keras.optimizers import Adam 

 

# Create an Input layer for your data 

input_layer = Input(shape=(224, 224, 3)) 

 

# Instantiate the VGG19 model with weights pre-trained on ImageNet 

base_model = VGG19(weights='imagenet',  

                   include_top=False,  

                   input_tensor=input_layer) 

 

# Freeze the layers in the pre-trained model 

for layer in base_model.layers: 

    layer.trainable = False 

 

# Get the output of the desired layer from the InceptionV4 model 

last_layer = base_model.get_layer('block5_pool') 

print('last layer output shape: ', last_layer.output_shape) 

last_output = last_layer.output 

 

# Get the output of the last layer from the VGG19 model 

last_layer = base_model.get_layer('block5_pool') 

 

# Flatten the output layer to 1 dimension 

x = Flatten()(last_layer.output) 

x = Dense(512, activation='relu')(x) 

x = Dense(512, activation='relu')(x) 

x = Dropout(0.4)(x) 

output = Dense(5, activation='softmax')(x) 

 

# Create the custom model by specifying the input and output 

layers 

model = Model(inputs=input_layer, outputs=output) 

 

# Print the model summary 
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model.summary() 

 

# Compile the model 

model.compile(optimizer=Adam(lr=0.0001), 

loss='sparse_categorical_crossentropy', metrics=['accuracy']) 
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Lampiran nomor 4: 

Kode Arsitektur YOLO v5Nano 

def train(opt, device): 

    """Trains a YOLOv5 model, managing datasets, model 

optimization, logging, and saving checkpoints.""" 

    init_seeds(opt.seed + 1 + RANK, deterministic=True) 

    save_dir, data, bs, epochs, nw, imgsz, pretrained = ( 

        opt.save_dir, 

        Path(opt.data), 

        opt.batch_size, 

        opt.epochs, 

        min(os.cpu_count() - 1, opt.workers), 

        opt.imgsz, 

        str(opt.pretrained).lower() == "true", 

    ) 

    cuda = device.type != "cpu" 

 

    # Directories 

    wdir = save_dir / "weights" 

    wdir.mkdir(parents=True, exist_ok=True)  # make dir 

    last, best = wdir / "last.pt", wdir / "best.pt" 

 

    # Save run settings 

    yaml_save(save_dir / "opt.yaml", vars(opt)) 

 

    # Logger 

    logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK 

in {-1, 0} else None 

 

    # Download Dataset 

    with torch_distributed_zero_first(LOCAL_RANK), 

WorkingDirectory(ROOT): 

        data_dir = data if data.is_dir() else (DATASETS_DIR / 

data) 

        if not data_dir.is_dir(): 

            LOGGER.info(f"\nDataset not found    , missing path 

{data_dir}, attempting download...") 

            t = time.time() 

            if str(data) == "imagenet": 
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                subprocess.run(["bash", str(ROOT / 

"data/scripts/get_imagenet.sh")], shell=True, check=True) 

            else: 

                url = 

f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{da

ta}.zip" 

                download(url, dir=data_dir.parent) 

            s = f"Dataset download success    ({time.time() - 

t:.1f}s), saved to {colorstr('bold', data_dir)}\n" 

            LOGGER.info(s) 

 

    # Dataloaders 

    nc = len([x for x in (data_dir / "train").glob("*") if 

x.is_dir()])  # number of classes 

    trainloader = create_classification_dataloader( 

        path=data_dir / "train", 

        imgsz=imgsz, 

        batch_size=bs // WORLD_SIZE, 

        augment=True, 

        cache=opt.cache, 

        rank=LOCAL_RANK, 

        workers=nw, 

    ) 

 

    test_dir = data_dir / "test" if (data_dir / "test").exists() 

else data_dir / "val"  # data/test or data/val 

    if RANK in {-1, 0}: 

        testloader = create_classification_dataloader( 

            path=test_dir, 

            imgsz=imgsz, 

            batch_size=bs // WORLD_SIZE * 2, 

            augment=False, 

            cache=opt.cache, 

            rank=-1, 

            workers=nw, 

        ) 

 

    # Model 
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    with torch_distributed_zero_first(LOCAL_RANK), 

WorkingDirectory(ROOT): 

        if Path(opt.model).is_file() or opt.model.endswith(".pt"): 

            model = attempt_load(opt.model, device="cpu", 

fuse=False) 

        elif opt.model in torchvision.models.__dict__:  # 

TorchVision models i.e. resnet50, efficientnet_b0 

            model = 

torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if 

pretrained else None) 

        else: 

            m = hub.list("ultralytics/yolov5")  # + 

hub.list('pytorch/vision')  # models 

            raise ModuleNotFoundError(f"--model {opt.model} not 

found. Available models are: \n" + "\n".join(m)) 

        if isinstance(model, DetectionModel): 

            LOGGER.warning("WARNING     pass YOLOv5 classifier 

model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'") 

            model = ClassificationModel(model=model, nc=nc, 

cutoff=opt.cutoff or 10)  # convert to classification model 

        reshape_classifier_output(model, nc)  # update class count 

    for m in model.modules(): 

        if not pretrained and hasattr(m, "reset_parameters"): 

            m.reset_parameters() 

        if isinstance(m, torch.nn.Dropout) and opt.Dropout is not 

None: 

            m.p = opt.Dropout  # set Dropout 

    for p in model.parameters(): 

        p.requires_grad = True  # for training 

    model = model.to(device) 

 

    # Info 

    if RANK in {-1, 0}: 

        model.names = trainloader.dataset.classes  # attach class 

names 

        model.transforms = testloader.dataset.torch_transforms  # 

attach inference transforms 

        model_info(model) 

        if opt.verbose: 
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            LOGGER.info(model) 

        images, labels = next(iter(trainloader)) 

        file = imshow_cls(images[:25], labels[:25], 

names=model.names, f=save_dir / "train_images.jpg") 

        logger.log_images(file, name="Train Examples") 

        logger.log_graph(model, imgsz)  # log model 

 

    # Optimizer 

    optimizer = smart_optimizer(model, opt.optimizer, opt.lr0, 

momentum=0.9, decay=opt.decay) 

 

    # Scheduler 

    lrf = 0.01  # final lr (fraction of lr0) 

    # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * 

(1 - lrf) + lrf  # cosine 

    lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf  # linear 

    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) 

    # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, 

total_steps=epochs, pct_start=0.1, 

    #                                    final_div_factor=1 / 25 / 

lrf) 

 

    # EMA 

    ema = ModelEMA(model) if RANK in {-1, 0} else None 

 

    # DDP mode 

    if cuda and RANK != -1: 

        model = smart_DDP(model) 

 

    # Train 

    t0 = time.time() 

    criterion = 

smartCrossEntropyLoss(label_smoothing=opt.label_smoothing)  # loss 

function 

    best_fitness = 0.0 

    scaler = amp.GradScaler(enabled=cuda) 

    val = test_dir.stem  # 'val' or 'test' 

    LOGGER.info( 

        f'Image sizes {imgsz} train, {imgsz} test\n' 
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        f'Using {nw * WORLD_SIZE} dataloader workers\n' 

        f"Logging results to {colorstr('bold', save_dir)}\n" 

        f'Starting {opt.model} training on {data} dataset with 

{nc} classes for {epochs} epochs...\n\n' 

        

f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12

}{'top1_acc':>12}{'top5_acc':>12}" 

    ) 

    for epoch in range(epochs):  # loop over the dataset multiple 

times 

        tloss, vloss, fitness = 0.0, 0.0, 0.0  # train loss, val 

loss, fitness 

        model.train() 

        if RANK != -1: 

            trainloader.sampler.set_epoch(epoch) 

        pbar = enumerate(trainloader) 

        if RANK in {-1, 0}: 

            pbar = tqdm(enumerate(trainloader), 

total=len(trainloader), bar_format=TQDM_BAR_FORMAT) 

        for i, (images, labels) in pbar:  # progress bar 

            images, labels = images.to(device, non_blocking=True), 

labels.to(device) 

 

            # Forward 

            with amp.autocast(enabled=cuda):  # stability issues 

when enabled 

                loss = criterion(model(images), labels) 

 

            # Backward 

            scaler.scale(loss).backward() 

 

            # Optimize 

            scaler.unscale_(optimizer)  # unscale gradients 

            torch.nn.utils.clip_grad_norm_(model.parameters(), 

max_norm=10.0)  # clip gradients 

            scaler.step(optimizer) 

            scaler.update() 

            optimizer.zero_grad() 

            if ema: 
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                ema.update(model) 

 

            if RANK in {-1, 0}: 

                # Print 

                tloss = (tloss * i + loss.item()) / (i + 1)  # 

update mean losses 

                mem = "%.3gG" % (torch.cuda.memory_reserved() / 

1e9 if torch.cuda.is_available() else 0)  # (GB) 

                pbar.desc = f"{f'{epoch + 

1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36 

 

                # Test 

                if i == len(pbar) - 1:  # last batch 

                    top1, top5, vloss = validate.run( 

                        model=ema.ema, dataloader=testloader, 

criterion=criterion, pbar=pbar 

                    )  # test accuracy, loss 

                    fitness = top1  # define fitness as top1 

accuracy 

 

        # Scheduler 

        scheduler.step() 

 

        # Log metrics 

        if RANK in {-1, 0}: 

            # Best fitness 

            if fitness > best_fitness: 

                best_fitness = fitness 

 

            # Log 

            metrics = { 

                "train/loss": tloss, 

                f"{val}/loss": vloss, 

                "metrics/accuracy_top1": top1, 

                "metrics/accuracy_top5": top5, 

                "lr/0": optimizer.param_groups[0]["lr"], 

            }  # learning rate 

            logger.log_metrics(metrics, epoch) 
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            # Save model 

            final_epoch = epoch + 1 == epochs 

            if (not opt.nosave) or final_epoch: 

                ckpt = { 

                    "epoch": epoch, 

                    "best_fitness": best_fitness, 

                    "model": deepcopy(ema.ema).half(),  # 

deepcopy(de_parallel(model)).half(), 

                    "ema": None,  # deepcopy(ema.ema).half(), 

                    "updates": ema.updates, 

                    "optimizer": None,  # optimizer.state_dict(), 

                    "opt": vars(opt), 

                    "git": GIT_INFO,  # {remote, branch, commit} 

if a git repo 

                    "date": datetime.now().isoformat(), 

                } 

 

                # Save last, best and delete 

                torch.save(ckpt, last) 

                if best_fitness == fitness: 

                    torch.save(ckpt, best) 

                del ckpt 

 

    # Train complete 

    if RANK in {-1, 0} and final_epoch: 

        LOGGER.info( 

            f'\nTraining complete ({(time.time() - t0) / 3600:.3f} 

hours)' 

            f"\nResults saved to {colorstr('bold', save_dir)}" 

            f'\nPredict:         python classify/predict.py --

weights {best} --source im.jpg' 

            f'\nValidate:        python classify/val.py --weights 

{best} --data {data_dir}' 

            f'\nExport:          python export.py --weights {best} 

--include onnx' 

            f"\nPyTorch Hub:     model = 

torch.hub.load('ultralytics/yolov5', 'custom', '{best}')" 

            f'\nVisualize:       https://netron.app\n' 

        ) 
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        # Plot examples 

        images, labels = (x[:25] for x in next(iter(testloader)))  

# first 25 images and labels 

        pred = torch.max(ema.ema(images.to(device)), 1)[1] 

        file = imshow_cls(images, labels, pred, 

de_parallel(model).names, verbose=False, f=save_dir / 

"test_images.jpg") 

 

        # Log results 

        meta = {"epochs": epochs, "top1_acc": best_fitness, 

"date": datetime.now().isoformat()} 

        logger.log_images(file, name="Test Examples (true-

predicted)", epoch=epoch) 

        logger.log_model(best, epochs, metadata=meta) 
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Lampiran nomor 5: 

Perhitungan Uji Shapiro Wilk Pengujian Model Inception-v4 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.4525 +  0.4435 +  0.4395 +  0.4465 +  0.4355

5
 

= 0.44 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.00017 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

 

=
(0.0112982 + 0.0016891)2

0.00017
 

= 0.992
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Lampiran nomor 6: 

Perhitungan Uji Shapiro Wilk Pengujian Model YOLO v5Nano 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.739, +0.708 +  0.731 +  0.728 +  0.727

5
 

= 0.7266 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.0005212 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

 

=
(0.0206026 + 0.0009652)2

0.0005212
 

= 0.892498 
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Lampiran Nomor 7: 

Perhitungan Uji Mann-Whitney U Pengujian Model ResNet-50 dan Inception-v4 

Data model: 

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418 

Inception-v4:  0.4355, 0.4395, 0.4435, 0.4465, 0.4525 

 

Peringkat Sampel Model: 

ResNet-50: 1, 2, 3, 4, 5  

Inception-v4: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

ResNet-50: 15 

Inception-v4: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 8: 

Perhitungan Uji Mann-Whitney U Pengujian Model Inception-v4 dan VGG-19 

Data model: 

Inception-v4:  0.4355, 0.4395, 0.4435, 0.4465, 0.4525 

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72 

 

Peringkat Sampel Model: 

Inception: 5, 6, 7, 8, 9  

VGG-19: 1, 2, 3, 4, 10 

 

Total Peringkat masing-masing kelompok: 

Inception-v4: 35 

VGG-19: 20 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 35 = 5 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 20 = 20 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 20 = 5 
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Lampiran Nomor 9: 

Perhitungan Uji Mann-Whitney U Pengujian Model Inception-v4 dan YOLO 

v5Nano 

Data model: 

Inception-v4:  0.4355, 0.4395, 0.4435, 0.4465, 0.4525 

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739 

 

Peringkat Sampel Model: 

Inception-v4: 1, 2, 3, 4, 5  

YOLO v5Nano: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

Inception-v4: 15 

YOLO v5Nano: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 10: 

Perhitungan Uji Mann-Whitney U Pengujian Model VGG-19 dan YOLO v5Nano 

Data model: 

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72 

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739 

 

Peringkat Sampel Model: 

VGG-19: 1, 2, 3, 4, 6  

YOLO v5Nano: 5, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

VGG-19: 16 

YOLO v5Nano: 39 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 16 = 24 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 39 = 1 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 24 = 1 
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Lampiran Nomor 11: 

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.57 + 0.536 + 0.536 + 0.54 + 0.546

5
 

= 0.5456 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.000811 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

 

=
(0.022596 + 0.002413)2

0.000811
 

= 0.77
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Lampiran Nomor 12: 

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.442 + 0.45 + 0.462 + 0.462 + 0.468

5
 

= 0.4568 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.000445 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

 

=
(0.01728 + 0.002896)2

0.000455
 

= 0.92 
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Lampiran Nomor 13: 

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Histeq 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.456 + 0.538 + 0.54 + 0.56 + 0.568

5
 

= 0.5324 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.007955 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

 

=
(0.074435 + 0.005309)2

0.007955
 

= 0.799361 
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Lampiran Nomor 14: 

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Flipping 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.81 + 0.813 + 0.813 + 0.818 + 0.823

5
 

= 0.8154 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.000105 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

 

=
(0.00864 + 0.001207)2

0.000105
 

= 0.921574 
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Lampiran Nomor 15: 

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq dan Flipping 

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.682 + 0.687 + 0.692 + 0.695 + 0.697

5
 

= 0.6906 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.000149 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

 

=
(0.009969 + 0.00193)2

0.000105
 

= 0.949033 
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Lampiran Nomor 16: 

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Setelah Preprocessing dan Augmentasi  

 

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.708 + 0.727 + 0.728 + 0.731 + 0.739

5
 

= 0.7266 

 

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
 

= 0.000521 

 

𝑎1 = 0.6646, 𝑎2 = 0.2413 

 

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1 )2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

 

=
(0.020603 + 0.000965)2

0.000521
 

= 0.892498 
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Lampiran Nomor 17: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Asli dan Model Histeq  

Data model: 

asli: 0.578, 0.589, 0.666, 0.674, 0.694 

histeq: 0.536, 0.536, 0.54, 0.546, 0.57 

 

Peringkat Sampel Model: 

asli: 6, 7, 8, 9, 10 

histeq: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

asli: 40 

histeq: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 18: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Asli dan Model Flipping  

Data model: 

asli: 0.578, 0.589, 0.666, 0.674, 0.694 

flipping: 0.913, 0.934, 0.935, 0.935, 0.935 

 

Peringkat Sampel Model: 

asli: 1, 2, 3, 4, 5 

flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

asli: 15 

flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 19: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Asli dan Model Cropping dan Histeq  

Data model: 

asli: 0.578, 0.589, 0.666, 0.674, 0.694 

cropping dan histeq: 0.456, 0.538, 0.54, 0.56, 0.568 

 

Peringkat Sampel Model: 

asli: 6, 7, 8, 9, 10 

flipping: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

asli: 40 

flipping: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 20: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Asli dan Model Cropping dan Flipping  

Data model: 

asli: 0.578, 0.589, 0.666, 0.674, 0.694 

cropping dan histeq: 0.81, 0.813, 0.813, 0.818, 0.823 

 

Peringkat Sampel Model: 

asli: 1, 2, 3, 4, 5 

flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

asli: 15 

flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 20: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Asli dan Model Setelah Preprocessing dan Augmentasi  

Data model: 

asli: 0.578, 0.589, 0.666, 0.674, 0.694 

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739 

 

Peringkat Sampel Model: 

asli: 1, 2, 3, 4, 5 

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

asli: 15 

setelah preprocessing dan augmentasi: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 21: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Model Histeq 

Data model: 

cropping: 0.536, 0.536, 0.54, 0.546, 0.57 

histeq: 0.442, 0.45, 0.462, 0.462, 0.468 

 

Peringkat Sampel Model: 

cropping: 6, 7, 8, 9, 10 

histeq: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

cropping: 40 

histeq: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 22: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Model Flipping 

Data model: 

cropping: 0.536, 0.536, 0.54, 0.546, 0.57 

flipping: 0.913, 0.934, 0.935, 0.935, 0.935 

 

Peringkat Sampel Model: 

cropping: 1, 2, 3, 4, 5 

flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

cropping: 15 

flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 

 



137 

 

Lampiran Nomor 23: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Model Cropping Histeq 

Data model: 

cropping: 0.536, 0.536, 0.54, 0.546, 0.57 

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568 

 

Peringkat Sampel Model: 

cropping: 2, 3, 5.5, 7, 10 

cropping histeq: 1, 4, 5.5, 8, 9 

 

Total Peringkat masing-masing kelompok: 

cropping: 27.5 

histeq: 27.5 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 27.5 = 12.5 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 12.5 = 12.5 
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Lampiran Nomor 24: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Model Cropping Flipping 

Data model: 

cropping: 0.536, 0.536, 0.54, 0.546, 0.57 

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823 

 

Peringkat Sampel Model: 

cropping: 1, 2, 3, 4, 5 

cropping flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

cropping: 15 

cropping flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 25: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Model Histeq Flipping 

Data model: 

cropping: 0.536, 0.536, 0.54, 0.546, 0.57 

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697 

 

Peringkat Sampel Model: 

cropping: 1, 2, 3, 4, 5 

histeq flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

cropping: 15 

histeq flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 26: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping dan Model Setelah Preprocessing dan 

Augmentasi  

Data model: 

cropping: 0.536, 0.536, 0.54, 0.546, 0.57 

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739 

 

Peringkat Sampel Model: 

cropping: 1, 2, 3, 4, 5 

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

cropping: 15 

setelah preprocessing dan augmentasi: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 

 



141 

 

Lampiran Nomor 27: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq dan Model Flipping  

Data model: 

histeq: 0.442, 0.45, 0.462, 0.462, 0.468 

flipping: 0.913, 0.934, 0.935, 0.935, 0.935 

 

Peringkat Sampel Model: 

histeq: 1, 2, 3, 4, 5 

flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

histeq: 15 

flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 28: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq dan Model Cropping Histeq 

Data model: 

histeq: 0.442, 0.45, 0.462, 0.462, 0.468 

flipping: 0.456, 0.538, 0.54, 0.56, 0.568 

 

Peringkat Sampel Model: 

histeq: 1, 2, 4, 5, 6 

flipping: 3, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

histeq: 20 

flipping: 35 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 20 = 20 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 35 = 5 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 20 = 5 
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Lampiran Nomor 29: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq dan Model Cropping Flipping  

Data model: 

histeq: 0.442, 0.45, 0.462, 0.462, 0.468 

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823 

 

Peringkat Sampel Model: 

histeq: 1, 2, 3, 4, 5 

cropping flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

histeq: 15 

cropping flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 30: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq dan Model Histeq Flipping  

Data model: 

histeq: 0.442, 0.45, 0.462, 0.462, 0.468 

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697 

 

Peringkat Sampel Model: 

histeq: 1, 2, 3, 4, 5 

histeq flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

histeq: 15 

histeq flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 31: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq dan Model Setelah Preprocessing dan 

Augmentasi  

Data model: 

histeq: 0.442, 0.45, 0.462, 0.462, 0.468 

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739 

 

Peringkat Sampel Model: 

histeq: 1, 2, 3, 4, 5 

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

histeq: 15 

setelah preprocessing dan augmentasi: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 32: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Flipping dan Model Cropping Histeq  

Data model: 

flipping: 0.913, 0.934, 0.935, 0.935, 0.935 

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568 

 

Peringkat Sampel Model: 

flipping: 6, 7, 8, 9, 10 

cropping histeq: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

flipping: 40 

cropping histeq: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 33: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Flipping dan Model Cropping Flipping  

Data model: 

flipping: 0.913, 0.934, 0.935, 0.935, 0.935 

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823 

 

Peringkat Sampel Model: 

flipping: 6, 7, 8, 9, 10 

cropping flipping: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

flipping: 40 

cropping flipping: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 34: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Flipping dan Model Histeq Flipping  

Data model: 

flipping: 0.913, 0.934, 0.935, 0.935, 0.935 

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697 

 

Peringkat Sampel Model: 

flipping: 6, 7, 8, 9, 10 

histeq flipping: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

flipping: 40 

histeq flipping: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 35: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Flipping dan Model Setelah Preprocessing dan 

Augmentasi  

Data model: 

flipping: 0.913, 0.934, 0.935, 0.935, 0.935 

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739 

 

Peringkat Sampel Model: 

flipping: 6, 7, 8, 9, 10 

setelah preprocessing dan augmentasi: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

flipping: 40 

setelah preprocessing dan augmentasi: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 36: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping Histeq dan Model Cropping Flipping 

Data model: 

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568 

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823 

 

Peringkat Sampel Model: 

cropping histeq: 1, 2, 3, 4, 5 

cropping flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

cropping histeq: 15 

cropping flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 37: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping Histeq dan Model Histeq Flipping 

Data model: 

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568 

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697 

 

Peringkat Sampel Model: 

cropping histeq: 1, 2, 3, 4, 5 

histeq flipping: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

cropping histeq: 15 

histeq flipping: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 38: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping Histeq dan Model Setelah Preprocessing dan 

Augmentasi  

Data model: 

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568 

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739 

 

Peringkat Sampel Model: 

cropping histeq: 1, 2, 3, 4, 5 

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

cropping histeq: 15 

setelah preprocessing dan augmentasi: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 39: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping Flipping dan Model Histeq Flipping 

Data model: 

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823 

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697 

 

Peringkat Sampel Model: 

cropping flipping: 6, 7, 8, 9, 10 

histeq flipping: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

cropping flipping: 40 

histeq flipping: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 
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Lampiran Nomor 40: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Cropping Flipping dan Model Setelah Preprocessing 

dan Augmentasi  

Data model: 

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823 

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739 

 

Peringkat Sampel Model: 

cropping flipping: 6, 7, 8, 9, 10 

setelah preprocessing dan augmentasi: 1, 2, 3, 4, 5 

 

Total Peringkat masing-masing kelompok: 

cropping flipping: 40 

setelah preprocessing dan augmentasi: 15 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 

 

 



155 

 

Lampiran Nomor 40: 

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan 

Augmentasi Data Model Histeq Flipping dan Model Setelah Preprocessing dan 

Augmentasi  

Data model: 

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697 

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739 

 

Peringkat Sampel Model: 

histeq flipping: 1, 2, 3, 4, 5 

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10 

 

Total Peringkat masing-masing kelompok: 

histeq flipping: 15 

setelah preprocessing dan augmentasi: 40 

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25 

atau 

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0 

 

 


