

OPTIMASI DETEKSI DINI RETINOPATI DIABETIK MENGGUNAKAN

PREPROCESSING DAN AUGMENTASI CITRA FUNDUS

TUGAS AKHIR

ALVIN PRATIKTA WIDAJAT

NIM: 311910003

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2024

ii

OPTIMASI DETEKSI DINI RETINOPATI DIABETIK MENGGUNAKAN

PREPROCESSING DAN AUGMENTASI CITRA FUNDUS

Alvin Pratikta Widajat, Windra Swastika, Paulus Lucky Tirma Irawan

Universitas Ma Chung

Abstrak

Retinopati Diabetik (RD) merupakan komplikasi umum pada diabetes

melitus yang seringkali menyebabkan kebutaan pada usia produktif. Deteksi dini

RD sangat penting, namun metode manual memakan waktu dan diagnosis para ahli

dapat berbeda berdasarkan asumsi pribadi. Oleh karena itu, penelitian ini

mengusulkan metode deep learning guna menghindari kesalahan diagnosis.

Penelitian ini melibatkan empat arsitektur (Inception-v4, ResNet-50, VGG-19,

YOLO v5Nano) dengan teknik preprocessing (cropping, histogram equalization)

dan augmentasi flipping. Dataset diunduh dari laman Kaggle lalu di-sampling untuk

menciptakan dataset asli. Selanjutnya, dilakukan preprocessing citra dan

augmentasi data. Empat arsitektur dilatih untuk menghasilkan empat model,

confusion matrix, dan nilai akurasi yang dievaluasi menggunakan uji normalitas

dan uji statistik. Selanjutnya, pengaruh preprocessing dan augmentasi data terhadap

performa model dianalisis dengan melatih model pada berbagai kombinasi dataset.

Hasil penelitian menunjukkan bahwa YOLO v5Nano unggul, mencapai akurasi

pelatihan sebesar 0,93 dan akurasi pengujian rata-rata sebesar 0,73. Augmentasi

flipping terbukti efektif, dengan akurasi pelatihan sebesar 0,91 dan akurasi

pengujian sebesar 0,93. Secara keseluruhan, penerapan arsitektur deep learning

dengan preprocessing dan augmentasi data berhasil meningkatkan deteksi dini RD.

Arsitektur YOLO v5Nano dianggap optimal, sementara augmentasi flipping

menunjukkan kinerja superior. Temuan ini berkontribusi pada pengurangan risiko

kebutaan melalui deteksi dini retinopati diabetik.

Kata kunci: Retinopati Diabetik, Deep Learning, Preprocessing Citra, Augmentasi

Data

iii

OPTIMIZATION OF EARLY DETECTION OF DIABETIC

RETINOPATHY USING FUNDUS IMAGE PREPROCESSING AND

AUGMENTATION

Alvin Pratikta Widajat, Windra Swastika, Paulus Lucky Tirma Irawan

Universitas Ma Chung

Abstract

Diabetic Retinopathy (DR) is a complication of diabetes mellitus that often

leads to blindness at a productive age. Early detection of DR is crucial, but manual

methods are time-consuming, and expert diagnoses can vary based on personal

assumptions. Therefore, this research proposes a deep learning method to avoid

diagnostic errors. This study involves four architectures (Inception-v4, ResNet-50,

VGG-19, YOLO v5Nano) with preprocessing techniques (cropping, histogram

equalization) and flipping augmentation. The dataset was downloaded from Kaggle

and then sampled to create an original dataset. Next, image preprocessing and data

augmentation were performed. Four architectures were trained to produce four

models, confusion matrices, and accuracy values evaluated using normality tests

and statistical tests. Furthermore, the influence of preprocessing and data

augmentation on model performance was analyzed by training models on various

dataset combinations. The results show that YOLO v5Nano excels, achieving a

training accuracy of 0.93 and an average testing accuracy of 0.73. Flipping

augmentation proved effective, with a training accuracy of 0.91 and a testing

accuracy of 0.93. Overall, the implementation of deep learning architectures with

preprocessing and data augmentation successfully improves early detection of DR.

The YOLO v5Nano architecture is considered optimal, while flipping augmentation

demonstrates superior performance. These findings contribute to reducing the risk

of blindness through early detection of diabetic retinopathy.

Keywords: Diabetic Retinopathy, Deep Learning, Image Preprocessing, Data

Augmentation

iv

KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa atas anugerah-Nya tugas dan

laporan Tugas Akhir ini dapat selesai dengan baik. Laporan ini ditulis untuk

melaporkan hasil pencapaian dari proses pengerjaan Tugas Akhir yang telah

dilaksanakan.

Pada kesempatan ini, penulis ingin berterima kasih kepada seluruh pihak

yang telah membantu penulis dalam menyelesaikan Tugas Akhir ini. Ucapan terima

kasih ini penulis sampaikan kepada:

1. Bapak Windra Swastika, S.Kom., MT., Ph.D., selaku Pembimbing I,

2. Bapak Paulus Lucky Tirma Irawan, S.Kom., MT., selaku Pembimbing II,

3. Orang tua penulis yang memberikan dukungan dan semangat sehingga

proyek Tugas Akhir ini bisa selesai,

4. Teman-teman penulis yang sudah memberikan bantuan dan kontribusinya

dalam pengerjaan proyek Tugas Akhir ini.

Laporan ini ditulis berdasarkan hasil dari Tugas Akhir dengan judul

“Optimasi Deteksi Dini Retinopati Diabetik Menggunakan Preprocessing dan

Augmentasi Citra Fundus”. Tugas Akhir ini adalah mata kuliah yang wajib

diselesaikan oleh mahasiswa Teknik Informatika Universitas Ma Chung Malang

sebagai salah satu prasyarat kelulusan.

Malang, 03 Maret 2024

Alvin Pratikta Widajat

311910003

v

DAFTAR ISI

LEMBAR PENGESAHAN i

Abstrak ii

Abstract iii

KATA PENGANTAR iv

DAFTAR ISI v

DAFTAR GAMBAR x

DAFTAR TABEL xiii

BAB I PENDAHULUAN 1

1.1 Latar Belakang 1

1.2 Identifikasi Masalah 2

1.3 Batasan Masalah 3

1.4 Rumusan Masalah 3

1.5 Tujuan Penelitian 3

1.6 Manfaat Penelitian 3

1.7 Luaran Penelitian 4

1.8 Sistematika Penulisan 4

BAB II TINJAUAN PUSTAKA 6

2.1 Diabetes Melitus 6

2.2 Retinopati Diabetik 7

2.3 Citra 9

2.4 Intensitas Citra 10

2.5 Preprocessing Citra 11

2.5.1 Cropping 13

2.5.2 Contrast Adjustment 14

vi

2.5.3 Histogram Equalization 16

2.5.4 Brightness Adjustment 20

2.6 Augmentasi Data 23

2.7 Artificial Intelligence 24

2.8 Machine Learning 25

2.9 Deep Learning 27

2.10 Convolutional Neural Network (CNN) 28

2.11 Inception-v4 29

2.12 ResNet-50 30

2.13 VGG-19 31

2.14 YOLO V5 31

2.15 Confusion Matrix 33

2.16 Python 34

2.17 Kaggle 34

2.18 Google Colaboratory 35

2.19 Microsoft Visual Studio Code 35

2.20 Uji Normalitas 36

2.20.1 Uji Shapiro Wilk 36

2.21 Uji Rata-Rata (Mean) 37

2.21.1 Uji Anova 37

2.21.2 Uji Tukey HSD 39

2.21.3 Uji Kruskal-Wallis 39

2.21.4 Uji Mann-Whitney U 40

2.22 Formulasi Hipotesis 41

2.23 Penelitian Terdahulu 42

BAB III RANCANGAN PENELITIAN 44

vii

3.1 Tahapan Penelitian 44

3.2 Analisis Kebutuhan Penelitian 44

3.3 Desain Penelitian 45

3.3.1 Pengunduhan Data 46

3.3.2 Sampling Data 48

3.3.3 Preprocessing dan Augmentasi Data 48

3.3.4 Pelatihan Model 50

3.3.5 Pengujian Model 50

3.3.5.1 Testing Model 52

3.3.5.2 Uji Normalitas 52

3.3.5.3 Uji ANOVA 52

3.3.5.4 Uji Tukey HSD 52

3.3.5.5 Uji Kruskal-Wallis 53

3.3.5.6 Uji Mann-Whitney U 53

3.3.6 Pelatihan Model Analisis Preprocessing dan Augmentasi

Data 53

3.3.7 Pengujian Model Analisis Preprocessing dan Augmentasi

Data 55

3.3.7.1 Testing Model 55

3.3.7.2 Uji Normalitas 56

3.3.7.3 Uji ANOVA 56

3.3.7.4 Uji Tukey HSD 56

3.3.7.5 Uji Kruskal-Wallis 57

3.3.7.6 Uji Mann-Whitney U 57

3.4 Interpretasi Hasil Penelitian 57

BAB IV HASIL DAN PEMBAHASAN 58

viii

4.1 Hasil Pelatihan Model 58

4.1.1 Hasil Pelatihan ResNet-50 59

4.1.2 Hasil Pelatihan Inception-v4 61

4.1.3 Hasil Pelatihan VGG-19 63

4.1.4 Hasil Pelatihan YOLO v5Nano 65

4.2 Hasil Pengujian Model 66

4.2.1 Hasil Uji Shapiro-Wilk Pengujian Model 67

4.2.2 Hasil Uji Kruskal-Wallis Pengujian Model 69

4.2.3 Hasil Uji Mann-Whitney U Pengujian Model 70

4.3 Hasil Pelatihan Model Analisis Preprocessing dan

Augmentasi Data 73

4.3.1 Hasil Pelatihan Dataset Asli 74

4.3.2 Hasil Pelatihan Dataset Cropping 76

4.3.3 Hasil Pelatihan Dataset Histeq 78

4.3.4 Hasil Pelatihan Dataset Flipping 80

4.3.5 Hasil Pelatihan Dataset Cropping dan Histeq 82

4.3.6 Hasil Pelatihan Dataset Cropping dan Flipping 84

4.3.7 Hasil Pelatihan Dataset Histeq dan Flipping 86

4.3.8 Hasil Pelatihan Dataset Setelah Preprocessing dan

Augmentasi 88

4.4 Hasil Pengujian Model Analisis Preprocessing dan

Augmentasi Data 90

4.4.1 Hasil Uji Shapiro-Wilk Pengujian Model Analisis

Preprocessing dan Augmentasi Data 91

4.4.2 Hasil Uji Kruskall-Wallis Pengujian Model Analisis

Preprocessing dan Augmentasi Data 93

ix

4.4.3 Hasil Uji Mann-Whitney U Pengujian Model Analisis

Preprocessing dan Augmentasi Data 95

BAB V KESIMPULAN DAN SARAN 100

5.1 Kesimpulan 100

5.2 Saran 100

DAFTAR PUSTAKA 101

LAMPIRAN 104

x

DAFTAR GAMBAR

Gambar 2.1 Citra Fundus, (A) Mata Normal, (B) Mata NPRD Ringan, (C)

Mata NPRD Sedang, (D) Mata NPRD Berat, (E) Mata PRD 8

Gambar 2.2 Contoh Intensitas Citra greyscale pada matriks 2D 10

Gambar 2.3 Contoh Intensitas Citra RGB pada Matriks 2D 11

Gambar 2.4 Contoh Citra (A) Sebelum Diterapkan Cropping, (B) Setelah

Diterapkan Cropping 13

Gambar 2.5 Contoh Citra (A) Sebelum Diterapkan Contrast Adjustment, (B)

Setelah Diterapkan Contrast Adjustment 15

Gambar 2.6 Contoh Citra (A) Sebelum Diterapkan Histogram Equalization,

(B) Setelah Diterapkan Histogram Equalization 17

Gambar 2.7 Contoh Matriks 2D Nilai Intensitas Citra yang Berukuran 10x10 18

Gambar 2.8 Matriks 2D Intensitas Citra Hasil Histogram Equalization dari

Gambar 2.7 20

Gambar 2.9 Contoh Citra (A) Sebelum Diterapkan Brightness Adjustment,

(B) Setelah Diterapkan Brightness Adjustment 22

Gambar 2.10 Contoh Brightness Adjustment Pada Citra Berbentuk Matriks

2D 23

Gambar 2.11 Contoh Arsitektur CNN 28

Gambar 2.12 Contoh Arsitektur Inception-v4 30

Gambar 2.13 Arsitektur ResNet-50 31

Gambar 2.14 Contoh Arsitektur VGGNet 32

Gambar 2.15 Contoh Arsitektur YOLO 33

Gambar 2.16 Contoh Confusion Matrix Ukuran 2x2 33

Gambar 3.1 Tahapan Penelitian 44

Gambar 3.2 Desain Penelitian 45

Gambar 3.3 Contoh Citra Fundus (A) Normal, (B) RD Ringan, (C) RD

Sedang, (D) RD Berat, (E) RD Proliferatif 47

Gambar 3.4 Contoh Citra Fundus (A) Sebelum Cropping, (B) Setelah

Cropping 48

xi

Gambar 3.5 Contoh Citra Fundus (A) Sebelum Histogram Equalization, (B)

Setelah Histogram Equalization 49

Gambar 3.6 Contoh Citra (A) Sebelum Flipping, (B) Setelah Horizontal

Flipping, (C) Setelah Vertical Flipping, (D) Setelah

Horizontal dan Vertical Flipping 49

Gambar 3.7 Flowchart Pengujian Model 50

Gambar 3.8 Flowchart Pengujian Model Analisis Preprocessing dan

Augmentasi Data 55

Gambar 4.1 Grafik Akurasi Training dan Validasi ResNet-50 59

Gambar 4.2 Grafik Loss Training dan Validasi ResNet-50 59

Gambar 4.3 Confusion Matrix Testing ResNet-50 60

Gambar 4.4 Grafik Akurasi Training dan Validasi Inception-v4 61

Gambar 4.5 Grafik Loss Training dan Validasi Inception-v4 61

Gambar 4.6 Confusion Matrix Testing Inception-v4 62

Gambar 4.7 Grafik Akurasi Training dan Validasi VGG-19 63

Gambar 4.8 Grafik Loss Training dan Validasi VGG-19 63

Gambar 4.9 Confusion Matrix Testing VGG-19 64

Gambar 4.10 Grafik Akurasi Training dan Validasi YOLO v5Nano 65

Gambar 4.11 Grafik Loss Training dan Validasi YOLO v5Nano 65

Gambar 4.12 Confusion Matrix YOLO v5Nano 66

Gambar 4.13 Grafik Akurasi Training Dataset Asli 74

Gambar 4.14 Grafik Loss Training dan Validasi Dataset Asli 75

Gambar 4.15 Confusion Matrix Dataset Asli 75

Gambar 4.16 Grafik Akurasi Training Dataset Cropping 76

Gambar 4.17 Grafik Loss Training dan Validasi Dataset Cropping 77

Gambar 4.18 Confusion Matrix Dataset Cropping 77

Gambar 4.19 Grafik Akurasi Training Dataset Histeq 78

Gambar 4.20 Grafik Loss Training dan Validasi Dataset Histeq 79

Gambar 4.21 Confusion Matrix Dataset Histeq 79

Gambar 4.22 Grafik Akurasi Training Dataset Flipping 80

Gambar 4.23 Grafik Loss Training dan Validasi Dataset Flipping 81

Gambar 4.24 Confusion Matrix Dataset Flipping 81

xii

Gambar 4.25 Grafik Akurasi Training Dataset Cropping dan Histeq 82

Gambar 4.26 Grafik Loss Training dan Validasi Dataset Cropping dan

Histeq 83

Gambar 4.27 Confusion Matrix Dataset Cropping dan Histeq 83

Gambar 4.28 Grafik Akurasi Training Dataset Cropping dan Flipping 84

Gambar 4.29 Grafik Loss Training dan Validasi Dataset Cropping dan

Flipping 85

Gambar 4.30 Confusion Matrix Dataset Cropping dan Flipping 85

Gambar 4.31 Grafik Akurasi Training Dataset Histeq dan Flipping 86

Gambar 4.32 Grafik Loss Training dan Validasi Dataset Histeq dan Flipping 87

Gambar 4.33 Confusion Matrix Dataset Histeq dan Flipping 87

Gambar 4.34 Grafik Akurasi Training Dataset Setelah Preprocessing dan

Augmentasi 88

Gambar 4.35 Grafik Loss Training dan Validasi Dataset Setelah

Preprocessing dan Augmentasi 89

Gambar 4.36 Confusion Matrix Dataset Setelah Preprocessing dan

Augmentasi 90

xiii

DAFTAR TABEL

Tabel 2.1 Tabel Intensitas Citra Pada Gambar 2.7 19

Tabel 2.2 Tabel Hasil Transformasi Intensitas Citra Pada Gambar 2.7 19

Tabel 3.1 Contoh Confusion Matrix Multiclass 51

Tabel 3.2 Rincian Dataset RD Untuk Analisis Pengaruh Preprocessing dan

Augmentasi Data 54

Tabel 4.1 Hasil Training dan Testing Model 58

Tabel 4.2 Hasil Uji Shapiro-Wilk Pengujian Model 69

Tabel 4.3 Hasil Uji Mann-Whitney U Pengujian Model 73

Tabel 4.4 Akurasi Tes Analisis Preprocessing dan Augmentasi Data 73

Tabel 4.5 Hasil Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing

dan Augmentasi Data 93

Tabel 4.6 Hasil Uji Mann-Whitney U Pengujian Model Analisis

Preprocessing dan Augmentasi Data 97

1

BAB I

PENDAHULUAN

1.1 Latar Belakang

Retinopati Diabetik adalah komplikasi dari penyakit diabetes melitus.

Retinopati Diabetik merupakan salah satu penyebab utama kebutaan pada

penduduk usia kerja. Retinopati Diabetik terbagi menjadi dua tingkat, yaitu non-

proliferative diabetic retinopathy (NPRD) dan proliferative diabetic retinopathy

(PRD) (Wang & Lo, 2018). NPRD terbagi menjadi 3 tahap, yaitu NPRD ringan

(mild), NPRD sedang (moderate), dan NPRD berat (severe) (Fajariyanti, 2017).

Dalam penelitian yang dilakukan di beberapa daerah di Indonesia, prevalensi

retinopati diabetik diperkirakan sebesar 42,6%, dari jumlah tersebut, sekitar 10%

mengalami kebutaan (Bayer, 2019).

Untuk mencegah kebutaan, diperlukan metode deteksi dini agar penyakit

retinopati diabetik dapat segera diobati. Namun, cara mengklasifikasi penyakit

retinopati diabetik saat ini yang biasanya dilakukan adalah secara manual.

Diagnosis manual membutuhkan waktu yang lama dan memerlukan tenaga ahli

(Qummar et al., 2019). Selain itu, cara ini dapat menimbulkan pendapat yang

berbeda-beda dari masing-masing tenaga ahli (Valverde et al., 2016). Oleh karena

itu, dibutuhkan sebuah metode deteksi penyakit retinopati diabetik untuk

menghindari kemungkinan diagnosis yang salah.

Metode deteksi yang dapat dikembangkan menggunakan metode deep

learning. Pengembangan metode tersebut dapat meningkatkan akurasi deteksi

retinopati diabetik dalam setiap tahapan. Hal ini disebabkan karena metode deep

learning membuat sebuah model khusus untuk mengidentifikasi objek tersebut.

Beberapa penelitian terdahulu terkait dengan deteksi citra menggunakan CNN yang

menjadi landasan penggunaan CNN adalah, penelitian Lin dan Wu di tahun 2023,

digunakan arsitektur ResNet-50 untuk mengklasifikasi penyakit retinopati diabetik.

Akurasi arsitektur ResNet-50 pada penelitian tersebut mencapai 75% (Lin & Wu,

2023). Pada tahun 2020, Shankar dkk. berhasil menerapkan Hyper Parameter

Tuning Inception-v4 dan Contrast Limited Adaptive Histogram Equalization untuk

mengklasifikasi penyakit retinopati diabetik dengan nilai f1-score 98,72% (Shankar

2

et al., 2020). Pada penelitian Sudha dan Ganeshbabu (2021), preprocessing citra

digunakan untuk membedakan abnormalitas pada citra fundus penderita retinopati

diabetik. Metode tersebut diikuti dengan penggunaan arsitektur VGG-19 terbukti

dapat memberikan tingkat akurasi hingga 96% (Sudha & Ganeshbabu, 2021).

Beberapa penelitian terdahulu terkait dengan optimasi model deep learning

menggunakan preprocessing citra dan augmentasi data yang menjadi landasan

penggunaan preprocessing citra dan augmentasi data adalah, penelitian Mishra

dkk., (2020) menggunakan cropping untuk mengoptimasi performa model deep

learning pada kasus pengawasan bencana banjir. Proses cropping meningkatkan

akurasi training dari 55% menjadi 76% (Mishra et al., 2020). Penelitian yang

dilakukan Yang dkk., (2022) menerapkan berbagai macam augmentasi data pada

berbagai macam model dan dataset. Pada penelitian tersebut disimpulkan bahwa

augmentasi data merupakan solusi efektif meningkatkan akurasi model (Yang et

al., 2022).

Oleh karena itu, penelitian ini akan menerapkan preprocessing citra dan

augmentasi data sebagai upaya meningkatkan akurasi dari empat model CNN, yaitu

Inception-v4, Resnet-50, VGG-19, dan YOLO v5Nano. Preprocessing citra yang

akan digunakan pada penelitian ini antara lain cropping dan histogram equalization.

Augmentasi data yang akan digunakan adalah transformasi flipping.

1.2 Identifikasi Masalah

Berdasarkan latar belakang masalah yang telah dipaparkan, dapat

diidentifikasi masalah berupa proses klasifikasi penyakit RD secara manual

membutuhkan waktu yang lama dan hasil klasifikasi bisa berbeda. Hingga saat ini,

metode diagnosis menggunakan deep learning yang sudah diciptakan hanya dapat

mengidentifikasi penyakit RD. Sehingga belum dapat melakukan diagnosis tingkat

keparahan dari penyakit RD tersebut.

Penyakit RD Tingkat keparahan berbeda-beda, namun masih belum bisa

mengklasifikasi Tingkat keparahan RD

3

1.3 Batasan Masalah

Batasan masalah dalam penelitian ini adalah sebagai berikut.

a. Dataset yang digunakan diambil dari website Kaggle (Dugas et al.,

2015).

b. Program dibuat menggunakan Visual Studio Code dan Google Colab.

c. Arsitektur deep learning yang digunakan adalah Inception-v4, ResNet-

50, VGG-19, dan YOLO V5 Nano.

d. Preprocessing citra yang digunakan adalah cropping dan histogram

equalization.

1.4 Rumusan Masalah

Berdasarkan identifikasi masalah yang dipaparkan, dapat dirumuskan

masalah dari penelitian ini sebagai berikut.

a. Apa arsitektur CNN yang optimal untuk mengklasifikasi penyakit

retinopati diabetik?

b. Apakah preprocessing citra dan augmentasi data mampu meningkatkan

akurasi dari model deep learning untuk mengklasifikasi penyakit

retinopati diabetik?

1.5 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut.

a. Mengetahui arsitektur CNN yang optimal untuk mengklasifikasi

penyakit retinopati diabetik.

b. Mengetahui kemampuan preprocessing citra dan augmentasi data dalam

meningkatkan akurasi dari model deep learning untuk mengklasifikasi

penyakit retinopati diabetik.

1.6 Manfaat Penelitian

Manfaat dari pengerjaan penelitian ini sebagai berikut.

4

a. Bagi penulis, dapat menambah wawasan dan keterampilan baru dalam

membuat model Deep Learning yang diperuntukkan untuk

mengklasifikasi penyakit retinopati diabetik.

b. Bagi Universitas khususnya Program Studi Teknik Informatika, dapat

membantu mempersiapkan lulusan yang siap kerja dan kompeten

dengan memberikan bekal kepada mahasiswa berupa proses

pembelajaran yang intens selama kegiatan penelitian Tugas Akhir.

c. Bagi Masyarakat khususnya ahli medis, model Deep Learning yang

dihasilkan pada penelitian Tugas Akhir dapat dimanfaatkan dan

dipergunakan untuk melakukan klasifikasi penyakit retinopati diabetik.

1.7 Luaran Penelitian

Luaran hasil penelitian ini berupa model yang optimal untuk

mengklasifikasi RD melalui citra fundus dan artikel ilmiah yang akan

dipublikasikan di jurnal.

1.8 Sistematika Penulisan

Sistematika dalam penulisan proposal Tugas Akhir ini akan dibagi menjadi

lima bab seperti berikut.

Bab I Pendahuluan

Pada bab pendahuluan ini berisi latar belakang, identifikasi masalah,

batasan masalah, tujuan penelitian, manfaat penelitian, luaran tugas

akhir dan sistematika penulisan.

Bab II Tinjauan Pustaka

Bab tinjauan pustaka ini berisi uraian sistematis terkait dengan

literatur yang digunakan dalam proses penyusunan Tugas Akhir

sehingga diperoleh landasan teori terkait deep learning,

preprocessing citra, augmentasi data, dan penyakit retinopati

diabetik.

Bab III Metodologi Penelitian

5

Bab ini menjelaskan tahapan pengerjaan serta analisis perancangan

awal sistem yang akan dibuat. Tahapan ini sendiri terdiri atas

identifikasi masalah, studi pustaka, pengumpulan data, desain sistem

dan pengujian.

Bab IV Hasil dan Pembahasan

Bab ini menyajikan hasil-hasil dari tahapan pengerjaan serta analisis

sistem yang telah dilakukan. Dalam bab ini, terdapat penjelasan

mengenai identifikasi masalah, studi pustaka, pengumpulan data,

profiling, desain sistem, serta pengembangan dan pengujian aplikasi.

Bab V Kesimpulan dan Saran

Bab ini merupakan rangkuman simpulan dari hasil penelitian Tugas

Akhir yang telah dilakukan, serta menyajikan saran-saran yang dapat

diterapkan untuk meningkatkan sistem aplikasi dalam penelitian

selanjutnya.

6

BAB II

TINJAUAN PUSTAKA

2.1 Diabetes Melitus

Diabetes melitus adalah sebuah penyakit metabolik yang ditandai dengan

kadar gula dalam darah yang tinggi. Penderita diabetes melitus tidak dapat

memproduksi insulin yang cukup atau sel-sel tubuh penderita menjadi tidak

responsif kepada insulin. Insulin diproduksi di dalam sel-sel pankreas dan berfungsi

untuk mengatur kadar gula dalam tubuh dan memfasilitasi masuknya glukosa ke

dalam sel-sel tubuh untuk digunakan sebagai sumber energi. Terdapat tiga jenis

diabetes melitus, yaitu:

1. Diabetes Tipe 1

Diabetes tipe 1 disebabkan karena sel-sel pankreas tidak dapat

memproduksi insulin. Hal ini dapat disebabkan karena gangguan

autoimun yang menyebabkan sistem kekebalan tubuh menghancurkan

sel-sel penghasil insulin di pankreas.

2. Diabetes Tipe 2

Diabetes tipe 2 merupakan jenis diabetes yang paling umum terjadi.

Diabetes tipe ini dapat terjadi ketika tubuh menjadi kurang responsif

terhadap insulin atau tidak memproduksi insulin dengan cukup. Hal

tersebut dapat dipengaruhi oleh pola makan yang buruk, berat badan

berlebih, kurangnya aktivitas fisik, dan faktor genetik.

3. Diabetes Gestasional

Diabetes gestasional terjadi pada wanita hamil yang sebelumnya tidak

terkena penyakit diabetes tipe apapun. Hal ini terjadi karena

meningkatnya resistensi tubuh terhadap insulin atau kurangnya produksi

insulin pada masa kehamilan.

Penderita diabetes melitus perlu menjaga kadar glukosa dalam tubuh agar

tidak terjadi komplikasi. Komplikasi jangka Panjang dari penyakit diabetes melitus

adalah retinopati diabetik (mata), nefropati diabetik(ginjal), neuropati diabetik

(saraf), dan penyakit jantung. Cara menjaga kadar glukosa dalam tubuh dapat

dilakukan dengan menerapkan pola makan yang sehat, olahraga teratur, tidak stress,

7

dan mengonsumsi obat-obatan antidiabetes. Apabila diperlukan, dapat

menggunakan suntikan insulin (International Diabetes Federation & The Fred

Hollows Foundation, 2015).

2.2 Retinopati Diabetik

Retinopati diabetik adalah salah satu komplikasi jangka panjang dari

penyakit diabetes melitus. Kondisi ini disebabkan oleh rusaknya pembuluh darah

pada retina. Pada awalnya, penderita penyakit ini bisa tidak merasakan gejala

apapun. Namun, seiring waktu penglihatan akan menjadi kabur dan dapat

menyebabkan kebutaan jika tidak segera diobati dengan benar. Retinopati diabetik

dapat menyebabkan perubahan-perubahan berikut pada mata penderita

(International Diabetes Federation & The Fred Hollows Foundation, 2015).

• Mikroaneurisma, yaitu pembengkakan kecil pada pembuluh darah yang

berada di mata. Hal ini dapat menyebabkan bocornya cairan ke dalam

retina.

• Pendarahan pada retina, disebabkan oleh bocornya darah dari pembuluh

darah ke dalam retina.

• Eksudat keras, yaitu lemak yang tersimpan di dalam mata yang menjadi

keras.

• Cotton wool spots, yaitu bercak di mata yang disebabkan oleh

pembengkakan akson iskemik di lapisan saraf.

• Pelebaran dan perlekatan pembuluh darah vena

• Intraretinal microvascular abnormalities, percabangan atau pelebaran

abnormal pembuluh darah dalam retina yang sudah ada.

• Munculnya pembuluh darah baru pada tempat yang abnormal,

bergantung pada lokasi munculnya bisa disebut neovascularisation of

the disc atau neovascularisation elsewhere.

Penyakit retinopati diabetik terbagi menjadi 2 tahap, yaitu non-proliferative

diabetic retinopathy dan proliferative diabetic retinopathy. Non-proliferative

diabetic retinopathy terbagi menjadi 3, yaitu NPRD ringan (mild), NPRD sedang

(moderate), dan NPRD berat (severe). Pada tahap NPRD ringan, gejala yang

8

dialami terdapat minimal satu mikroaneurisma. Pada tahap NPRD sedang, terdapat

gejala mikroaneurisma yang meluas, pendarahan di dalam retina, dan cotton wool

spots. Pada tahap NPRD berat, terdapat intraretinal microvascular abnormalities.

Pada tahap NPRD ini dapat memengaruhi fungsi visual dari mata penderita.

Proliferative diabetic retinopathy merupakan komplikasi paling parah dari

retinopati diabetik. Pada tahap ini, terdapat gejala neovascularisation. Pembuluh

darah baru yang terbentuk dari neovascularisation rentan bocor. Jika tidak diatasi,

hal tersebut dapat menyebabkan kebutaan (Kementerian Kesehatan Republik

Indonesia, 2018).

Salah satu cara untuk mengklasifikasi penyakit retinopati diabetik adalah

menggunakan pemeriksaan citra fundus. Citra fundus hanya dapat diambil

menggunakan kamera khusus yaitu kamera fundus. Kamera fundus dapat

mengambil citra mata dengan sangat detail. Pemeriksaan ini biasa digunakan untuk

penderita penyakit retinopati diabetik, glaukoma, degenerasi makula, dan lain-lain.

Pemeriksaan citra fundus mempermudah dokter untuk melihat kondisi dari mata

penderita, contohnya adalah seperti berikut:

a. Ada atau hilangnya pembuluh darah sekitar retina.

b. Ada atau tidaknya pendarahan di sekitar retina.

c. Ada atau tidaknya pembuluh darah yang tidak seharusnya ada.

Berikut adalah contoh dari citra fundus untuk masing-masing tahapan

penyakit retinopati diabetik.

(A) (B) (C)

 (D) (E)

Gambar 2.1 Citra Fundus, (A) Mata Normal, (B) Mata NPRD Ringan, (C) Mata

NPRD Sedang, (D) Mata NPRD Berat, (E) Mata PRD

(Qummar et al., 2019)

9

Gambar 2.1 (A) merupakan hasil pengambilan citra fundus mata pada

pasien yang tidak terkena komplikasi retinopati diabetik. Pada gambar 2.1 (A) dapat

dilihat bahwa belum muncul gejala-gejala awal retinopati diabetik. Gambar 2.1 (B)

merupakan hasil pengambilan citra fundus mata pada pasien yang baru terkena

NPRD ringan. Pada gambar 2.1 (B) dapat dilihat mata pasien sudah mulai muncul

gejala-gejala retinopati diabetik seperti mikroaneurisma. Pada gambar 2.1 (C)

merupakan hasil pengambilan citra fundus mata pada pasien yang terkena NPRD

sedang. Pada gambar 2.1 (C) dapat dilihat gejala-gejala pada mata pasien sudah

bertambah parah. Pada gambar 2.1 (C), cotton wool spots pada mata pasien semakin

jelas terlihat.

Gambar 2.1 (D) merupakan hasil pengambilan citra fundus mata pada

pasien yang terkena NPRD berat. Pada gambar 2.1 (D) terlihat cotton wool spots

semakin bertambah parah, pembuluh darah juga semakin menebal dan muncul pada

tempat yang tidak seharusnya. Gambar 2.1 (E) merupakan hasil pengambilan citra

fundus mata pada pasien yang terkena PRD. Pada gambar 2.1 (E) dapat terlihat

mata pasien sudah mengalami pendarahan akibat bocornya pembululuh darah.

Pembuluh darah pada mata pasien juga terlihat lebih banyak dibandingkan tahap-

tahap retinopati diabetik sebelumnya.

2.3 Citra

Citra digital adalah representasi visual dari sebuah informasi yang disimpan

dalam format digital, terdiri dari titik-titik yang biasa disebut dengan “piksel”.

Setiap piksel adalah unit dasar yang digunakan untuk membuat gambar digital, dan

setiap piksel adalah warna yang terdiri dari tiga saluran warna (merah, hijau, dan

biru) yang dapat digabungkan untuk menghasilkan berbagai warna. Citra digital

dapat dibuat dengan berbagai cara, seperti mengambil foto dengan kamera digital,

memindai dokumen atau gambar menggunakan mesin pemindai, atau menggambar

atau menggunakan perangkat lunak grafik untuk membuat gambar dari awal.

Setelah dibuat, gambar digital dapat disimpan dalam berbagai format file,

seperti JPEG, PNG, atau GIF. Citra digital memiliki beberapa keunggulan

dibandingkan gambar analog (seperti foto pada film atau kertas). Misalnya, gambar

digital dapat dengan mudah disalin, dikirim, dan diedit menggunakan komputer.

10

Selain itu, gambar digital juga dapat dengan mudah dicetak kembali dengan kualitas

yang sama seperti aslinya. Namun citra digital juga memiliki kekurangan, seperti

kerusakan akibat proses kompresi atau penurunan kualitas jika terus menerus

disimpan dan dimodifikasi.

Citra digital memiliki banyak aplikasi dalam berbagai bidang, seperti

fotografi, desain grafis, ilmu komputer, dan lain-lain. Teknologi citra digital juga

terus berkembang dan memungkinkan penggunaan citra digital dalam berbagai

aplikasi yang semakin luas, seperti pengenalan wajah, pemrosesan citra satelit, dan

lainnya. Oleh karena itu, pengetahuan tentang citra digital sangat penting bagi para

profesional di bidang terkait (Pramunendar et al., 2020).

2.4 Intensitas Citra

Citra digital pada umumnya memiliki bentuk persegi panjang dengan

dimensi tinggi x lebar (N x M). N menyatakan jumlah baris sedangkan M

menyatakan jumlah kolom pada matriks citra. Masing-masing elemen pada baris

dan kolom tersebut dapat disebut sebagai elemen citra, elemen gambar, atau piksel.

Informasi dalam piksel bergantung pada tipe data yang digunakan. Nilai piksel

selalu merupakan bilangan biner dengan panjang k, sehingga piksel dapat mewakili

nilai beda 2𝑘. Nilai k disebut juga sebagai kedalam bit (bit depth) dari citra. Susunan

skala bit yang tepat dari sebuah piksel bergantung pada jenis citra seperti citra biner,

citra aras keabuan (greyscale), atau warna RGB (red green blue).

Gambar 2.2 Contoh Intensitas Citra greyscale pada matriks 2D

(Sumber: https://yusronrijal.wordpress.com/2012/03/24/pengolahan-citra-digital/)

Gambar 2.2 merupakan contoh intensitas citra greyscale pada matriks 2D.

Data citra dalam citra greyscale terdiri dari kanal tunggal yang mewakili intensitas,

11

kecerahan atau densitas citra. Nilainya berupa bilangan bulat positif antara 0 hingga

2𝑘 − 1. Citra greyscale memiliki nilai kedalaman bit delapan, maka nilai intensitas

pikselnya bernilai dari 0 hingga 255. Nilai 0 mewakili hitam (kecerahan minimum)

dan 255 mewakili warna putih (kecerahan maksimum).

Gambar 2.3 Contoh Intensitas Citra RGB pada Matriks 2D

(Sumber: https://yusronrijal.wordpress.com/2012/03/24/pengolahan-citra-digital/)

Gambar 2.3 memiliki tiga kanal yang dimana masing-masing kanal

memiliki kedalaman 8 bit. Oleh karena itu, masing-masing piksel dalam citra RGB

dikodekan dalam 24 bit. Sedangkan dalam citra biner, masing-masing piksel hanya

memiliki kedalaman 1 bit. Sehingga masing-masing piksel dalam citra biner hanya

dapat bernilai 0 (berwarna hitam) atau 1 (berwarna putih) (Sulistiyanti et al., 2016).

2.5 Preprocessing Citra

Preprocessing citra adalah langkah-langkah atau teknik yang digunakan

untuk mempersiapkan data citra sebelum dilakukan analisis atau pengolahan lebih

lanjut kepada data citra tersebut. Tujuan dari preprocessing citra adalah

meningkatkan kualitas citra, menghilangkan gangguan atau noise, meningkatkan

kontras, mengurangi dimensi data, dan memperjelas fitur penting dalam citra.

Berikut adalah macam-macam teknik yang umum digunakan dalam preprocessing

citra:

12

1. Cropping atau pemotongan

Memotong bagian yang tidak diperlukan dari citra, bertujuan untuk

memfokuskan perhatian kepada area yang diinginkan.

2. Normalisasi

Mengubah rentang nilai piksel dalam citra agar sesuai dengan rentang

piksel yang diinginkan, bertujuan untuk menghilangkan perbedaan skala

yang ada di antara citra-citra yang berbeda-beda.

3. Contrast Adjustment

Meningkatkan perbedaan intensitas antara piksel-piksel dalam citra,

dapat dilakukan dengan mengaplikasikan teknik transformasi

histogram, seperti ekualisasi histogram.

4. Noise Reduction

Mengurangi atau menghilangkan noise yang mungkin terdapat dalam

citra. Salah satu teknik yang biasa digunakan adalah penghalusan citra

(smoothing) dengan filter median atau filter Gaussian.

5. Pemisahan Warna

Jika citra berwarna, citra dapat dipisahkan menjadi saluran warna

terpisah, seperti merah, hijau, dan biru. Hal ini dapat memungkinkan

analisis yang lebih spesifik pada masing-masing saluran warna.

6. Resize atau Resampling

Mengubah ukuran citra secara proporsional dengan memperbesar atau

memperkecil resolusi citra. Hal ini sering dilakukan untuk

menyesuaikan ukuran citra agar sesuai dengan kebutuhan analisis atau

mempercepat proses pengolahan citra.

7. Segmentasi

Memisahkan citra menjadi wilayah-wilayah yang berbeda berdasarkan

perbedaan intensitas atau fitur-fitur lainnya. Segmentasi dapat

membantu dalam mengidentifikasi objek atau fitur yang penting dalam

sebuah citra.

8. Brightness Adjustment

Mengubah kecerahan citra menjadi lebih terang atau lebih gelap

bergantung pada kebutuhan analisis citra tersebut. Biasa digunakan

13

untuk menyesuaikan kecerahan citra untuk membantu mengidentifikasi

fitur yang penting dalam sebuah citra.

Preprocessing citra merupakan langkah penting dalam analisis citra dan

sering kali menjadi langkah awal sebelum melakukan ekstraksi fitur atau

pengenalan objek dalam citra. Teknik yang digunakan dalam preprocessing citra

dapat bervariasi bergantung pada jenis citra yang digunakan dan tujuan analisis

yang ingin dicapai (Sulistiyanti et al., 2016).

2.5.1 Cropping

Cropping adalah sebuah teknik pemrosesan citra dengan cara menghapus

bagian-bagian yang tidak diinginkan dari sebuah citra. Teknik ini dilakukan untuk

memperoleh elemen yang diinginkan dari citra tersebut dan dapat fokus pada

elemen tersebut. Biasanya, teknik cropping ini dilakukan secara manual melalui

perangkat lunak pengolah citra seperti Adobe Photoshop, Corel Draw, dan lain-lain.

Dalam proses cropping, citra dapat dipotong-potong untuk memperbaiki

komposisi, menyesuaikan ukuran, mengubah rasio aspek, atau menghilangkan

unsur-unsur yang tidak relevan. Berikut adalah contoh citra yang diterapkan proses

cropping:

(A) (B)

Gambar 2.4 Contoh Citra (A) Sebelum Diterapkan Cropping, (B) Setelah

Diterapkan Cropping

(Sumber: online pictures di aplikasi Microsoft Word)

14

2.5.2 Contrast Adjustment

Contrast adjustment adalah proses mengubah tingkat kontras dalam sebuah

citra untuk meningkatkan perbedaan antara piksel-piksel yang berdekatan. Kontras

menggambarkan perbadaan kecerahan antara bagian gelap dengan bagian cerah

dalam sebuah citra. Dalam citra dengan kontras yang rendah, perbedaan antara

bagian gelap dengan bagian cerah menjadi kurang jelas. Dalam citra dengan kontras

yang tinggi, perbedaan ini menjadi semakin jelas.

Terdapat berbagai metode dan teknik yang dapat digunakan untuk

menyesuaikan kontras dalam citra, termasuk:

1. Brightness/Contrast Adjustment

Brightness/Contrast Adjustment merupakan metode sederhana yang

memungkinkan pengguna untuk mengatur tingkat kecerahan dan

kontras secara langsung.

2. Histogram Stretching

Histogram Stretching merupakan metode yang menggunakan histogram

citra untuk mengubah rentang intensitas piksel. Dengan merentangkan

histogram ke seluruh rentang intensitas yang tersedia, perbedaan kontras

dalam gambar diperbesar.

3. Histogram Equalization

Histogram Equalization merupakan metode yang menyetarakan nilai

rentang intensitas piksel. Hal ini berguna untuk meratakan distribusi

intensitas piksel citra dan meningkatkan kontras citra secara

keseluruhan

4. Tone Mapping

Tone Mapping biasa digunakan dalam pemrosesan citra High Dynamic

Range (HDR) untuk mengubah tingkat kontras antara area terang dan

area gelap dalam citra, sehingga detail dapat dipertahankan dengan baik.

5. Pengolahan Lokal

Kontras sebuah citra dapat diatur berdasarkan konteks regional atau

berdasarkan fitur-fitur tertentu dalam citra. Oleh karena itu, bagian citra

yang berubah hanya bagian yang diinginkan saja dan tidak seluruh citra.

15

Contrast adjustment biasa dilakukan di perangkat lunak pengedit citra

seperti Adobe Photoshop, Lightroom, atau GIMP. Pengaturan kontras yang tepat

akan bergantung pada preferensi pengguna dan sifat citra yang sedang diproses.

Berikut adalah contoh citra yang diterapkan contrast adjustment:

(A) (B)

Gambar 2.5 Contoh Citra (A) Sebelum Diterapkan Contrast Adjustment, (B)

Setelah Diterapkan Contrast Adjustment

(Sumber: https://www.mathworks.com/help/images/contrast-enhancement-

techniques.html)

Untuk melakukan contrast adjustment, perlu menghitung faktor perubahan

contrast yang diinginkan. Berikut adalah persamaan operasi contrast adjustment:

𝐹 =
259 ∗ (255 + 𝑐)

255 ∗ (259 − 𝑐)
 (2-1)

𝐹 = Faktor contrast adjustment

𝑐 = nilai input kontras

Kemudian langkah selanjutnya adalah menghitung nilai intensitas piksel

terbaru.

𝑓(𝑥, 𝑦)′ = 𝐹(𝑓(𝑥, 𝑦) − 128) + 128 (2-2)

𝐹 = Faktor contrast adjustment

𝑓(𝑥, 𝑦) = nilai intensitas piksel pada koordinat 𝑥, 𝑦

𝑓(𝑥, 𝑦)′ = nilai intensitas piksel baru pada koordinat 𝑥, 𝑦

16

Nilai intensitas piksel tidak boleh melebihi batas intensitas piksel tersebut.

Oleh karena itu diperlukan persamaan untuk membatasi nilai intensitas piksel

tersebut.

𝑓(𝑥, 𝑦) {

255, 𝑓(𝑥, 𝑦) > 255
(𝑥, 𝑦), 0 < 𝑓(𝑥, 𝑦) < 255

0, 𝑓(𝑥, 𝑦) < 0

 (2-3)

Dengan menggunakan persamaan (2-3), nilai intensitas piksel tersebut tidak

akan melebihi batas atas maupun bawah intensitas piksel tersebut (Sulistiyanti et

al., 2016).

2.5.3 Histogram Equalization

Histogram Equalization adalah salah satu teknik preprocessing citra yang

digunakan untuk meningkatkan kontras citra dengan cara mendistribusikan ulang

intensitas piksel secara merata di seluruh rentang nilai intensitas yang tersedia. Pada

dasarnya, teknik histogram equalization memanfaatkan histogram dari sebuah citra.

Histogram sendiri adalah grafik distribusi frekuensi kemunculan nilai intensitas

piksel sebuah citra.

Proses histogram equalization terdiri dari beberapa langkah, yaitu:

1. Menghitung histogram

Histogram citra awal dihitung untuk memperoleh informasi mengenai

distribusi intensitas piksel citra tersebut.

2. Menghitung Cumulative Distribution Function (CDF)

Fungsi ini merupakan akumulasi dari histogram dan berfungsi untuk

menunjukkan jumlah piksel dengan intensitas yang kurang dari atau

sama dengan nilai intensitas tertentu.

3. Normalisasi CDF

Fungsi CDF dinormalisasikan agar rentang nilai dari fungsi CDF adalah

0 hingga 1.

4. Transformasi intensitas

17

Setiap piksel dalam citra awal ditransformasikan dengan mengganti

nilai intensitasnya dengan nilai intensitas baru yang dihasilkan dari

fungsi CDF yang dinormalisasi.

5. Pembuatan histogram baru

Setelah piksel di citra awal ditransformasi, histogram citra baru akan

dihitung untuk memastikan distribusi intensitas di citra baru sudah

didistribusikan secara merata di seluruh rentang nilai intensitas yang

tersedia.

Hasil dari histogram equalization adalah sebuah citra dengan kontras yang

lebih baik, di mana piksel intensitas rendah dan tinggi didistribusikan secara merata

di seluruh rentang nilai intensitas. Teknik histogram equalization akan memperjelas

detail dan memperbaiki visualisasi citra dengan intensitas yang tidak seimbang

sebelumnya. Histogram equalization biasa digunakan dalam aplikasi pengolahan

citra seperti perbaikan gambar, deteksi tepi, segmentasi, dan aplikasi analisis citra

lainnya. Berikut adalah contoh citra yang diterapkan histogram equalization:

(A) (B)

Gambar 2.6 Contoh Citra (A) Sebelum Diterapkan Histogram Equalization, (B)

Setelah Diterapkan Histogram Equalization

(Sumber: https://www.mathworks.com/help/images/contrast-enhancement-

techniques.html)

Histogram equalization dilakukan dengan cara meratakan nilai perseberan

dari histogram sebuah citra. Berikut adalah persamaan matematika dari histogram

equalization:

𝑝𝑟(𝑟𝑘) =
𝑛𝑘

𝑘
 (2-4)

18

dimana

𝑟𝑘 =
𝑘

𝐿 − 1
, 0 ≤ 𝑘 < 𝐿 − 1 (2-5)

𝑘 = nilai kedalaman bit pada sebuah piksel

𝑝𝑟 = peluang kemunculan intensitas piksel bernilai r

𝑟𝑘 = nilai intensitas piksel yang sudah dinormalkan

𝐿 = nilai kedalaman bit pada sebuah citra

𝑛𝑘 = jumlah piksel dengan nilai kedalaman bit k

Histogram Equalization merupakan proses transformasi (T) intensitas

sebuah piksel (r) menjadi intensitas yang baru (s). Persamaan transformasi ini dapat

dituliskan menjadi persamaan berikut:

𝑆𝑘 = 𝑇(𝑟𝑘) = ∑ 𝑝𝑟(𝑟𝑗)
𝑘

𝑗=0
 (2-6)

Persamaan (2-6) merupakan persamaan yang akan digunakan untuk mencari

nilai intensitas baru dari sebuah piksel (Sulistiyanti et al., 2016). Berikut adalah

contoh histogram equalization pada sebuah citra dengan ukuran 10x10 dengan

intensitas maksimal (L) 8:

Gambar 2.7 Contoh Matriks 2D Nilai Intensitas Citra yang Berukuran 10x10

19

Tabel 2.1 Tabel Intensitas Citra Pada Gambar 2.7

k 𝑟𝑘 𝑛𝑘 𝑃𝑟(𝑟𝑘) 𝑠𝑘 = 𝑃𝑟(𝑟𝑗)

0 0/7 = 0 20 0,2 0,2

1 1/7 = 0,14 25 0,25 0,45

2 2/7 = 0,29 15 0,15 0,6

3 3/7 = 0,43 5 0,05 0,65

4 4/7 = 0,57 15 0,25 0,8

5 5/7 = 0,71 15 0,25 0,95

6 6/7 = 0,86 3 0,03 0,98

7 7/7 = 1 2 0,02 1

Nilai dari 𝑠𝑘 dibulatkan ke nilai 𝑟 terdekat.

𝑠0 = 0,2 lebih dekat ke nilai 1/7 = 0,14, maka 𝑠0 =
1

7

𝑠1 = 0,45 lebih dekat ke nilai 3/7 = 0,43, maka 𝑠1 =
3

7

𝑠2 = 0,60 lebih dekat ke nilai 4/7 = 0,57, maka 𝑠2 =
4

7

𝑠3 = 0,65 lebih dekat ke nilai 5/7 = 0,71, maka 𝑠3 =
5

7

𝑠4 = 0,80 lebih dekat ke nilai 6/7 = 0,86, maka 𝑠4 =
6

7

𝑠5 = 0,95 lebih dekat ke nilai 7/7 = 1, maka 𝑠5 =
7

7

𝑠6 = 0,98 lebih dekat ke nilai 7/7 = 1, maka 𝑠6 =
7

7

𝑠7 = 1 lebih dekat ke nilai 7/7 = 1, maka 𝑠7 =
7

7

Tabel 2.2 Tabel Hasil Transformasi Intensitas Citra Pada Gambar 2.7

k 𝑟𝑘 𝑠𝑘 = 𝑃𝑟(𝑟𝑗) s

0 0/7 = 0 0,2 1

1 1/7 = 0,14 0,45 3

2 2/7 = 0,29 0,6 4

3 3/7 = 0,43 0,65 5

4 4/7 = 0,57 0,8 6

20

5 5/7 = 0,71 0,95 7

6 6/7 = 0,86 0,98 7

7 7/7 = 1 1 7

Berikut adalah matriks 2D nilai intensitas citra yang telah diterapkan

histogram equalization:

Gambar 2.8 Matriks 2D Intensitas Citra Hasil Histogram Equalization dari

Gambar 2.7

 Gambar 2.8 merupakan matriks 2D dari intensitas gambar 2.7 yang telah

diterapkan histogram equalization. Hasil dari histogram equalization di atas tidak

terlalu merata disebabkan oleh nilai intensitas dan jumlah piksel yang terbatas. Hal

ini juga disebabkan oleh hasil perataan adalah pembuatan ke intensitas yang

terdekat.

2.5.4 Brightness Adjustment

Brightness adjustment adalah proses mengubah tingkat kecerahan dalam

citra untuk mengatur kecerahan piksel-piksel dalam citra tersebut. Penyesuaian

kecerahan memengaruhi sejauh mana citra terlihat terang atau gelap secara

keseluruhan. Dalam proses brightness adjustment, kecerahan gambar dapat

ditingkatkan atau dikurangi dengan cara mengubah nilai intensitas piksel secara

proporsional. Penyesuaian kecerahan ini dapat dilakukan menggunakan perangkat

lunak pengolahan citra seperti Adobe Photoshop, Lightroom, GIMP, atau alat

pengolahan citra lainnya. Dalam beberapa aplikasi, brightness adjustment sering

digunakan bersamaan dengan contrast adjustment untuk mengoptimalkan

penampilan visual secara keseluruhan. Brightness adjustment dapat membantu

meningkatkan detail dalam area citra yang terlalu gelap atau terlalu terang, atau

21

untuk mencapai pencahayaan yang lebih baik secara umum. Berikut adalah

beberapa metode dan alat yang umum digunakan untuk brightness adjustment:

1. Brightness Slider

Alat ini memungkinkan pengguna untuk secara langsung menyesuaikan

tingkat kecerahan dengan cara menggeser slider ke kanan atau ke kiri.

Geser ke kanan untuk meningkatkan kecerahan dan geser ke kiri untuk

mengurangi kecerahan.

2. Levels Adjustment

Pengaturan ini memungkinkan pengguna untuk secara manual

menyesuaikan tingkat kecerahan dalam berbagai rentang intensitas

piksel. Pengguna dapat mengatur titik hitam, putih, dan titik abu-abu

tengah untuk mencapai pencahayaan yang diinginkan.

3. Curves Adjustment

Pengaturan ini memungkinkan pengguna untuk mengubah distribusi

kecerahan dalam gambar dengan lebih rinci. Pengguna dapat

menyesuaikan kurva luminositas untuk mengatur kecerahan pada

berbagai tingkat intensitas.

4. Histogram Adjustment

Pengaturan ini menggunakan histogram citra, pengguna dapat melihat

sebaran intensitas piksel dalam gambar dan menyesuaikan tingkat

kecerahan berdasarkan informasi histogram tersebut.

Brightness adjustment harus dilakukan dengan hati-hati, agar penyesuaian

yang dilakukan tidak berlebihan dan tidak menyebabkan gambar terlihat terlalu

terang atau terlalu gelap dan kehilangan detailnya.

22

(A) (B)

Gambar 2.9 Contoh Citra (A) Sebelum Diterapkan Brightness Adjustment, (B)

Setelah Diterapkan Brightness Adjustment

(Sumber: https://www.mathworks.com/help/images/low-light-image-

enhancement.html)

Brightness adjustment dapat dilakukan dengan cara menambah atau

mengurangkan sebuah konstanta ke intensitas masing-masing piksel di dalam citra.

Berikut adalah persamaan matematika dari brightness adjustment:

𝑓(𝑥, 𝑦)′ = 𝑓(𝑥, 𝑦) + 𝑐 (2-7)

𝑓(𝑥, 𝑦) = nilai intensitas piksel pada koordinat 𝑥, 𝑦

𝑓(𝑥, 𝑦)′ = nilai intensitas piksel pada koordinat 𝑥, 𝑦

𝑐 = konstanta

Dalam persamaan (2-7) dimungkinkan untuk hasil dari persamaan tersebut

melebihi batas dari intensitas piksel. Oleh karena itu diperlukan operasi

pemotongan (clipping) agar hasil dari persamaan (2-7) tidak melebihi batas nilai

intentsitas piksel. Berikut adalah persamaan operasi pemotongan:

𝑓(𝑥, 𝑦) {

2𝑘 − 1, 𝑓(𝑥, 𝑦) > 2𝑘 − 1

(𝑥, 𝑦), 0 < 𝑓(𝑥, 𝑦) < 2𝑘 − 1

0, 𝑓(𝑥, 𝑦) < 0

 (2-8)

k = nilai kedalaman bit

Berikut adalah contoh brightness adjustment pada citra:

23

Gambar 2.10 Contoh Brightness Adjustment Pada Citra Berbentuk Matriks 2D

(Sulistiyanti et al., 2016)

Gambar 2.10 merupakan contoh brightness adjustment pada citra yang

berbentuk matriks 2D. Pada piksel (0,0) nilai intensitas citra tersebut adalah 45,

setelah diterapkan brightness adjustment (+100) nilai intensitas piksel tersebut

berubah menjadi 145. Begitu juga dengan nilai piksel (8,0) memiliki nilai intensitas

200, setelah diterapkan brightness adjustment (+100) nilai intensitas piksel tersebut

berubah menjadi 255. Hal itu disebabkan karena nilai intensitas citra memiliki batas

atas 255, sehingga nilai intensitas piksel (8,0) tidak dapat melebihi nilai 255

(Sulistiyanti et al., 2016).

2.6 Augmentasi Data

Augmentasi data atau data augmentation merupakan cara untuk

mengurangi over-fitting. Augmentasi data akan menghasilkan data baru dengan

cara melakukan transformasi pada data asli. Augmentasi data memungkinkan untuk

meningkatkan generalisasi data. Berikut merupakan beberapa alasan utama untuk

menggunakan augmentasi data:

1. Data terlalu sedikit

Ketika data terlalu sedikit dan ingin membuat model machine learning

yang kompleks, maka model akan cenderung memiliki akurasi yang

rendah. Oleh karena itu, augmentasi data akan digunakan untuk

menambah jumlah data agar bisa digunakan dalam model machine

24

learning tersebut. Dengan melakukan augmentasi data, jumlah data

akan menjadi semakin banyak dan meningkatkan akurasi dari model

tersebut.

2. Meningkatkan akurasi model

Ketika data yang digunakan sudah cukup banyak, namun akurasi dari

model kurang memuaskan, maka dapat melakukan augmentasi data

untuk meningkatkan akurasi model tersebut. Augmentasi data dapat

mencegah model mengalami over-fitting atau under-fitting.

Pada data citra, tools yang biasa digunakan adalah OpenCV (python

library), Pillow (python library), dan imgaug (python library). Augmentasi data

yang dilakukan pada data citra adalah sebagai berikut (Mumuni & Mumuni, 2022).

1. Transformasi geometri

Memutar, memotong, membalik, meregangkan, dan memperbesar citra

secara acak.

2. Transformasi spasi warna

Mengubah saluran warna RGB, kontras, dan kecerahan citra secara

acak.

3. Penghapusan acak

Menghapus citra secara acak.

4. Pencampuran gambar

Mencampurkan beberapa citra secara acak.

2.7 Artificial Intelligence

Artificial Intelligence (AI) atau dalam bahasa Indonesia disebut kecerdasan

buatan merupakan simulasi kecerdasan manusia pada mesin yang diprogram untuk

melakukan tugas-tugas yang pada umumnya memerlukan kecerdasan manusia. AI

harus mampu berpikir seperti manusia dan secara rasional, begitu juga berperilaku

seperti manusia dan secara rasional. Pada tahun 1950, Alan Turing menciptakan

sebuah tes yang disebut Turing Test. Tes ini digunakan untuk menguji tingkat

kepintaran dari sebuah komputer. Komputer akan dinilai lulus tes tersebut apabila

penguji tidak mampu membedakan apakah jawaban tersebut merupakan jawaban

manusia atau komputer (Russell & Norvig, 2010).

25

AI dapat terbagi menjadi dua jenis seperti berikut.

1. Machine Learning

Machine learning merupakan pendekatan artificial intelligence yang

menggunakan algoritma dan model statistik untuk melatih mesin agar

dapat belajar dari data dan membuat prediksi atau keputusan. Ini

termasuk sub-bidang machine learning seperti supervised learning

(pembelajaran terawasi), unsupervised learning (pembelajaran tanpa

pengawasan), dan reinforcement learning (pembelajaran dengan

penguatan).

2. Deep Learning

Deep learning merupakan sub-bidang pembelajaran mesin yang

menggunakan jaringan saraf tiruan dengan banyak lapisan untuk

menganalisis data dengan representasi hierarkis. Deep learning telah

berhasil dalam pengenalan gambar, pemrosesan bahasa alami (Natural

language processing), dan bidang lainnya.

Artificial Intelligence dapat diterapkan kedalam berbagai bidang kehidupan,

seperti kesehatan, transportasi, manufaktur, keuangan, sistem layanan, dan lain-

lain. Namun Artificial Intelligence tidak selalu berefek baik, AI dapat

menggantikan tenaga manusia sehingga menyebabkan berkurangnya lapangan

pekerjaan dan lain-lain. Oleh karena itu, dalam pengembangan AI perlu

diperhatikan manfaat dan efek dari AI tersebut agar memberi positif kepada

manusia dan tidak merugikan manusia (Russell & Norvig, 2010).

2.8 Machine Learning

Machine Learning (ML) merupakan cabang dari artificial intelligence yang

berkaitan dengan pengembangan algoritma dan model statistik. Machine Learning

bertujuan untuk memungkinkan sebuah komputer dapat belajar secara mandiri dari

data yang ada dan dapat menghasilkan sebuah prediksi tanpa deprogram secara

eksplisit. Sebuah komputer dapat belajar dengan cara memperbaiki performa dalam

mengerjakan sebuah tugas berkali-kali melalui pengalaman sebelumnya.

Pengalaman yang dimaksud merupakan bagaimana hasil dari pengerjaan tugas

26

tersebut cocok dengan dataset yang digunakan atau biasa disebut fit (Bi et al., 2019).

Machine Learning terbagi menjadi tiga jenis seperti berikut.

1. Supervised Learning

Supervised Learning atau pembelajaran terbimbing ini merupakan jenis

machine learning yang dilatih menggunakan data yang sudah memiliki

label atau kelas yang sudah diketahui sebelumnya. Tujuan dari

supervised learning adalah mengembangkan sebuah model yang dapat

memelajari pola dari data training dan melakukan prediksi yang akurat

pada data baru yang belum diketahui. Contoh dari algoritma supervised

learning adalah regresi linier, Naïve Bayes, decision tree, SVM, dan

lain-lain.

2. Unsupervised Learning

Unspervised Learning atau pembelajaran tanpa pengawasan merupakan

jenis machine learning yang dilatih menggunakan data yang belum

memiliki label atau kelas yang sudah diketahui sebelumnya. Tujuan dari

unsupervised learning adalah mengidentifikasi pola, struktur, atau

kelompok pada sebuah data. Algoritma unsupervised learning akan

menemukan hubungan dan pola yang tersembunyi dalam data tersebut

tanpa memerlukan bimbingan eksternal. Contoh algoritma unsupervised

learning adalah k-means clustering, analisis faktor, algoritma asosiasi,

dan lain-lain.

3. Reinforcement Learning

Reinforcement Learning atau pembelajaran penguatan merupakan jenis

machine learning yang dilatih dengan tujuan menemukan tindakan atau

langkah mencapai tujuan yang paling menguntungkan. Algoritma

belajar dari tindakan yang diambil dengan tujuan memaksimalkan

reward yang diterima. Contoh dari algoritma reinforcement learning

adalah algoritma permainan catur seperti Stockfish, AlphaZero, dan

lain-lain.

Selain jenis-jenis machine learning di atas, terdapat beberapa sub-bidang

machine learning lainnya seperti semi-supervised learning atau pembelajaran semi-

27

terbimbing. Semi-supervised Learning menggabungkan unsur-unsur dari

supervised learning dan unsupervised learning (Bi et al., 2019). Cabang dari

machine learning lainnya adalah deep learning. Deep Learning menggunakan

arsitektur jaringan saraf tiruan (artificial neural network) yang dalam untuk

memelajari data yang lebih kompleks.

2.9 Deep Learning

Deep Learning merupakan salah satu cabang dari machine learning. Deep

Learning menggunakan arsitektur jaringan saraf tiruan (artificial neural network)

untuk memroses data yang diberikan. Jaringan saraf tiruan ini terdiri dari banyak

lapisan (layer). Dengan menggunakan deep learning, mesin dapat belajar dari data

yang diberikan dan memperbaiki performa seiring dengan proses pembelajaran.

Deep Learning dapat menganalisis data yang lebih kompleks dan abstrak

dibandingkan dengan machine learning. Namun, deep learning membutuhkan data

yang besar untuk mampu memberikan hasil yang akurat dan membutuhkan

perangkat keras yang bagus untuk memroses data-data tersebut. Selain itu, deep

learning memerlukan waktu yang lama untuk melatih komputer terhadap dataset

yang besar dan kompleks (Fan et al., 2021).

Proses pelatihan deep learning menggunakan pembaruan parameter di

setiap lapisan berdasarkan perbedaan antara output yang dihasilkan oleh model dan

output yang diharapkan. Ketika dilatih menggunakan data dengan jumlah yang

besar, arsitektur jaringan saraf tiruan dalam deep learning dapat mengekstraksi

fitur-fitur yang berguna secara otomatis dari data yang kompleks tanpa memerlukan

pemrograman eksplisit. Deep Learning telah mencapai kemajuan yang signifikan

dalam berbagai bidang kehidupan seperti pengenalan wajah, pengenalan suara,

natural language processing, pemodelan bahasa, dan lain-lain. Beberapa contoh

arsitektur jaringan saraf tiruan dalam deep learning adalah jaringan saraf konvolusi

(convolutional neural networks/CNN) biasa digunakan untuk pengenalan gambar,

jaringan saraf rekurensi (recurrent neural networks/RNN) biasa digunakan untuk

pemrosesan urutan data, dan jaringan saraf generatif (generative neural networks)

seperti jaringan generative berlawanan (generative adversarial networks/GAN)

untuk menghasilkan data baru yang realistis (Fan et al., 2021).

28

2.10 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) merupakan perkembangan dari

konsep Multi Layer Perceptron (MLP) yang dikembangkan khusus untuk

mengolah data dua dimensi yang berbentuk citra. Secara umum, CNN memiliki

beberapa lapisan (layer) yang memiliki fungsi yang berbeda-beda. Berikut adalah

contoh arsitektur dari CNN secara umum.

Gambar 2.11 Contoh Arsitektur CNN

(Sumber: https://developersbreach.com/convolution-neural-network-deep-

learning/)

Gambar 2.11 merupakan contoh arsitektur CNN secara umum. CNN secara

umum terbagi menjadi tiga layer, yaitu input layer, hidden layer, dan output layer.

Input layer merupakan layer dimana citra dimasukkan ke dalam CNN. Dalam

hidden layer terdapat lapisan konvolusi, lapisan aktivasi, lapisan pooling, dan fully

connected layer. Lapisan konvolusi berfungsi untuk mengekstrak fitur-fitur yang

terdapat dalam sebuah citra dengan cara menerapkan filter-filter terhadap citra

tersebut. Lapisan aktivasi berfungsi untuk mengaktifkan fitur-fitur yang telah

ditemukan oleh filter-filter tersebut.

Lapisan pooling berfungsi untuk memperkecil ukuran volume output.

Lapisan pooling diterapkan diantara lapisan konvolusi dalam arsitektur CNN.

Lapisan pooling digunakan untuk mengurangi jumlah parameter yang digunakan

sehingga dapat mempercepat komputasi. Fully connected layer berfungsi untuk

menggabungkan fitur-fitur yang telah diekstrak dari citra. Kemudian CNN

29

menggunakan algoritma backpropagation untuk memperbarui bobot dan bias pada

masing-masing layer agar hasil output menjadi lebih akurat (Alzubaidi et al., 2021).

2.11 Inception-v4

Inception atau yang bernama lain GoogleNet, merupakan sebuah model

jaringan saraf yang dikembangkan oleh peneliti-peneliti di Google. Versi terbaru

dari arsitektur tersebut adalah Inception-v4. Inception-v4 merupakan

pengembangan lanjutan dari model-model Inception sebelumnya, yaitu Inception-

v1, Inception-v2, dan Inception-v3. Model arsitektur Inception dikembangkan

dengan tujuan mengoptimalkan efisiensi komputasi dan meningkatkan akurasi

dalam pengenalan citra. Arsitektur ini menggunakan konsep yang dikenal sebagai

"Inception module" atau "Inception block" yang dirancang untuk mengekstraksi

fitur-fitur dengan berbagai ukuran dan tingkat kompleksitas dari citra (Al Husaini

et al., 2022). Berikut adalah beberapa fitur utama dari arsitektur Inception-v4,

antara lain:

1. Inception Module

Inception-v4 menggunakan beberapa modul Inception yang berisi

beberapa jalur paralel untuk melakukan ekstraksi fitur. Inception

module menggabungkan konvolusi dengan kernel yang memiliki ukuran

berbeda, yaitu 1x1, 3x3, dan 5x5, serta pooling berukuran 3x3, untuk

menangkap fitur-fitur pada berbagai skala spasial.

2. Residual Connections

Arsitektur Inception-v4 juga menggunakan koneksi residu. Hal ini

memungkinkan aliran informasi langsung melalui lapisan-lapisan dalam

jaringan. Koneksi residu dapat membantu mencegah terjadinya masalah

penurunan gradien dan membuat waktu pelatihan menjadi lebih cepat.

3. Factorization into smaller convolutions

Arsitektur Inception-v4 menggunakan faktorisasi konvolusi yang lebih

kecil untuk mengurangi tingginya kompleksitas komputasi. Contohnya,

konvolusi 5x5 dapat digantikan dengan menggunakan dua konvolusi

3x3 berturut-turut.

4. Average Pooling

30

Sebagai pengganti fully connected layers di bagian akhir jaringan saraf,

Inception-v4 menggunakan average pooling global untuk menghasilkan

vektor fitur akhir. Pendekatan ini membantu mengurangi jumlah

parameter dalam jaringan saraf dan dapat mencegah terjadinya

overfitting

Berikut merupakan gambar contoh arsitektur Inception-v4.

Gambar 2.12 Contoh Arsitektur Inception-v4

(Shankar et al., 2020)

2.12 ResNet-50

Residual Network-50 atau biasa disebut ResNet-50 merupakan salah satu

macam model arsitektur dari Convolutional Neural Network (CNN) yang populer

digunakan dalam deep learning. ResNet-50 dikembangkan oleh tim Microsoft

Research pada tahun 2015. Model arsitektur ini diberikan nama ResNet-50

dikarenakan model ini menambahkan 50 layer tambahan pada CNN.

Pada model arsitektur ResNet-50, terdapat konsep baru yaitu shortcut

connection atau skip connection. Hal ini menyebabkan model arsitektur tersebut

dapat melakukan skip atau melompati beberapa layer dalam pemrosesan citra dan

menggabungkan informasi yang didapat dari layer sebelumnya dengan layer saat

ini. Skip connection ini dikembangkan untuk menjadi solusi atas permasalahan

31

menghilangnya gradien (vanishing gradient) yang sering terjadi pada model

arsitektur CNN yang berukuran besar. Hal ini diakibatkan karena adanya kekeliruan

dalam stabilitas nilai parameter yang digunakan. Dengan menggunakan konsep skip

connection, ResNet-50 dapat mempelajari fitur-fitur yang lebih kompleks dan

abstrak pada citra. Hal ini menyebabkan meningkatnya kinerja dan akurasi pada

tugas-tugas seperti klasifikasi gambar, segmentasi objek, deteksi objek dan lain-

lain.

ResNet50 terdiri dari beberapa blok, di mana setiap blok terdiri dari

beberapa layer konvolusi dan aktivasi, diikuti dengan sebuah skip connection.

Blok-blok tersebut dapat diulang beberapa kali untuk meningkatkan kedalaman

jaringan. Selain itu, ResNet-50 juga menggunakan lapisan pooling dan lapisan fully

connected pada bagian akhir jaringan. Berikut merupakan gambar contoh arsitektur

dari ResNet-50.

Gambar 2.13 Arsitektur ResNet-50

(Sumber: https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758)

2.13 VGG-19

VGG-19 merupakan pengembangan dari VGGNet (Visual Geometry Group

Network) adalah sebuah arsitektur jaringan saraf konvolusi (convolutional neural

network) atau biasa disebut CNN. VGGNet dikembangkan oleh tim Visual

Geometry Group di Universitas Oxford. Arsitektur VGGNet pertama kali

diperkenalkan oleh Karen Simonyan dan Andrew Zisserman pada tahun 2014

dalam sebuah makalah yang berjudul "Very Deep Convolutional Networks for

Large-Scale Image Recognition"(Simonyan & Zisserman, 2014). VGGNet

dikembangkan untuk meningkatkan performa dari arsitektur CNN dengan cara

https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758

32

menambah kedalaman dari arsitektur tersebut. VGG-19 merupakan arsitektur

VGGnet yang menggunakan lapisan konvolusi sejumlah 19. Arsitektur ini

memanfaatkan konvolusi dengan jarak langkah (stride) dan penyaring konvolusi

kecil dengan ukuran 3x3 yang dijalankan secara berulang-ulang. Arsitektur VGG-

19 juga menggunakan max pooling dengan jarak langkah (stride) 2 untuk

mengurangi dimensi dari fitur yang akan dihasilkan. Secara keseluruhan, VGG-19

memberikan representasi fitur yang lebih jelas dan akurat dengan beban komputasi

yang lebih tinggi jika dibandingkan dengan arsitektur-arsitektur CNN lainnya yang

lebih dangkal (Simonyan & Zisserman, 2014).

Gambar 2.14 Contoh Arsitektur VGG-19

(Kamal et al., 2023)

2.14 YOLO V5

Memiliki kepanjangan You Only Look Once, YOLO merupakan sistem

deteksi objek yang memproses citra dan mengidentifikasi objek yang berada di

dalamnya. Arsitektur ini diperkenalkan oleh Joseph Radmon, Santosh Divvala,

Ross Girshick, dan Ali Farhadi dalam jurnal berjudul “You Only Look Once:

Unified, Real-Time Object Detection” yang diterbitkan pada tahun 2016. Arsitektur

YOLO telah mencapai versi ke-8, namun untuk penelitian ini yang akan digunakan

adalah YOLO V5. YOLO V5 merupakan arsitektur YOLO pertama yang

diterapkan di Pytorch. Kelebihan dari arsitektur YOLO V5 adalah cepatnya proses

33

training dan ringannya proses komputasi. Arsitektur YOLO V5 memiliki 5 ukuran

yaitu nano (n), small (s), medium (m), large (l), dan extra large (x). Semakin besar

ukuran arsitektur yang digunakan, maka semakin lama dan semakin membutuhkan

memori yang lebih besar untuk menjalankan proses training dan prediksi. Berikut

merupakan contoh gambar arsitektur YOLO.

Gambar 2.15 Contoh Arsitektur YOLO

(Redmon et al., 2015)

2.15 Confusion Matrix

Confusion matrix adalah sebuah tabel yang digunakan untuk menampilkan

visualisasi dari performa sebuah algoritma supervised machine learning atau deep

learning. Kolom dari tabel confusion matrix menampilkan label kelas yang

diprediksi, sedangkan baris menampilkan label kelas yang sebenarnya. Ukuran dari

confusion matrix beragam menyesuaikan dengan jumlah label. Berikut adalah

contoh confusion matrix berukuran 2x2:

Gambar 2.16 Contoh Confusion Matrix Ukuran 2x2

34

(Sumber: https://pub.towardsai.net/deep-understanding-of-confusion-matrix-

6ab1f88a267e)

Pada Gambar 2.16 terdapat kelas hasil prediksi dan kelas sebenarnya. True

Negative (TN) merupakan jumlah kelas negatif yang berhasil diklasifikasi sebagai

negatif. True Positive (TP) merupakan jumlah kelas positif yang berhasil

diklasifikasi sebagai positif. False Positive (FP) merupakan jumlah kelas negatif

yang diklasifikasi sebagai positif. Sedangkan False Negative (FN) merupakan

jumlah kelas positif yang diklasifikasi sebagai negatif. Dari empat elemen tersebut,

dapat digunakan untuk menghitung nilai accuracy.

Accuracy adalah rasio prediksi benar terhadap total prediksi. Accuracy

menunjukkan seberapa baik model dalam melakukan prediksi dengan benar secara

keseluruhan. Berikut persamaan untuk menghitung nilai accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2-9)

𝑇𝑃 = True Positive

𝑇𝑁 = True Negative

𝐹𝑃 = False Positive

𝐹𝑁 = False Negative

2.16 Python

Python merupakan bahasa pemrograman tingkat tinggi bersifat open source

yang dapat digunakan untuk banyak kasus (general purpose). Python diciptakan

oleh Guido van Rosum dan pertama kali dirilis pada 20 Februari 1991. Nama

python terinspirasi dari acara favorit Guido yang tayang di BBC dengan nama

Monty Python’s Flying Circus. Pada tahun 2021 berdasarkan survey pada website

stack overflow, python digunakan oleh 48.24% developer di seluruh dunia dari

83,052 responden.

2.17 Kaggle

Kaggle adalah sebuah platform online berbasis website yang menyediakan

data, sumber daya, dan kompetisi untuk pengembang, peneliti, dan ilmuwan data

untuk berpartisipasi dalam menyelesaikan sebuah tantangan data. Kaggle juga

35

menyediakan berbagai sumber daya seperti dataset, forum diskusi, dan tutorial

pemrosesan data dan machine learning.

Pada platform Kaggle, pengguna dapat mengikuti kompetisi data yang

diadakan oleh perusahaan-perusahaan atau organisasi yang membutuhkan bantuan

dalam menyelesaikan sebuah permasalahan terkait dengan machine learning atau

data science. Kompetisi ini dapat memberikan penghargaan berupa uang maupun

kesempatan kerja pada perusahaan yang mengadakan kompetisi tersebut. Akibat

adanya kompetisi-kompetisi ini, Kaggle menjadi platform yang populer dan telah

membantu memecahkan banyak permasalahan di bidang kesehatan, keuangan,

teknologi, dan lain-lain.

2.18 Google Colaboratory

Google Colaboratory atau yang biasa disebut Colab adalah sebuah platform

gratis berbasis cloud yang dikembangkan oleh tim Google Research untuk

mempermudah pekerjaan yang berkaitan dengan data science dan machine

learning. Colab menyediakan lingkungan (environment) pengembangan interaktif

yang memungkinkan pengguna untuk membuat, menjalankan, dan membagikan

kode python melalui web. Colab memiliki format notebook layaknya Jupyter

Notebook, sehingga memungkinkan kita untuk menulis kode per bagian. Selain itu

Colab juga menyediakan akses ke mesin virtual google yang dilengkapi dengan

GPU dan TPU, yang memungkinkan pengguna untuk memproses data dengan lebih

cepat.

2.19 Microsoft Visual Studio Code

Microsoft Visual Studio Code (VS Code) adalah salah satu editor kode teks

yang dikembangkan oleh Microsoft. VS Code dapat digunakan pada berbagai

sistem operasi seperti Windows, Linux, dan macOS. Dirilis pada 29 April 2015, VS

Code mampu digunakan untuk 15 bahasa pemrograman. Beberapa fitur yang

disediakan oleh VS Code adalah debugging, pengeditan kode cerdas, integrasi

terminal, dan lain-lain.

36

2.20 Uji Normalitas

Uji Normalitas merupakan sebuah metode untuk mengevaluasi apakah data

dalam suatu kelompok atau variabel mengikuti distribusi normal atau tidak.

Tujuannya adalah untuk menentukan apakah data yang telah dikumpulkan berasal

dari populasi yang memiliki distribusi normal. Meskipun secara empiris banyak ahli

statistik menyatakan bahwa data dengan jumlah sampel lebih dari 30 dapat

diasumsikan mengikuti distribusi normal, namun untuk memastikan, disarankan

untuk menggunakan uji normalitas. Hal ini karena jumlah sampel yang besar tidak

selalu menjamin distribusi normal, begitu pula sebaliknya untuk jumlah sampel

yang kurang dari 30. Beberapa uji statistik yang umum digunakan untuk menguji

normalitas antara lain Uji Chi-Square, Kolmogorov Smirnov, Lilliefors, Shapiro

Wilk, dan Jarque Bera.

2.20.1 Uji Shapiro Wilk

Uji Shapiro Wilk adalah sebuah teknik atau formula untuk mengukur

sebaran data yang dikembangkan oleh Shapiro dan Wilk. Metode ini efektif dan

dapat diandalkan untuk menguji normalitas pada sampel dengan jumlah yang relatif

kecil. Dalam praktiknya, para peneliti dapat menggunakan perangkat lunak statistik

seperti SPSS dan STATA untuk menerapkan uji ini. Berikut adalah persamaan dari

uji Shapiro Wilk.

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

𝑚
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

 (2-10)

𝑊 = Koefisien Uji Shapiro Wilk

𝑋̅ = Rata-rata sampel

𝑋𝑖 = Angka ke i pada sampel

𝑚 = jika genap
𝑛

2
, jika ganjil

𝑛−1

2

Setelah menemukan nilai W, cari nilai W pada tabel Uji Shapiro Wilk untuk

menemukan p-value. Nilai p-value akan dibandingkan dengan nilai alpha (α) untuk

pengambilan kesimpulan.

37

2.21 Uji Rata-Rata (Mean)

Uji rata-rata (mean) adalah metode statistik yang digunakan untuk menguji

rata-rata populasi atau kelompok data terdapat perbedaan secara signifikan. Uji

rata-rata berguna untuk membandingkan rata-rata sampel dengan nilai teoritis atau

referensi yang diberikan.

2.21.1 Uji Anova

Uji Anova (Analysis of Variance) adalah sebuah analisis statistik yang

digunakan untuk menguji perbedaan rata-rata dari lebih dari dua populasi atau

kelompok yang berbeda. Uji ini berfungsi untuk mengidentifikasi apakah ada

perbedaan signifikan antar rata-rata populasi yang dibandingkan. Uji Anova

mengukur varian (variance) data dalam populasi dan varian (variance) antar

populasi. Jika varian antar populasi lebih besar dibandingkan varian dalam

populasi, maka dapat dinyatakan bahwa terdapat perbedaan signifikan antara rata-

rata populasi tersebut. Uji ANOVA digunakan jika data yang digunakan

berdistribusi normal. Berikut merupakan contoh macam uji ANOVA yang sering

digunakan, seperti:

a. One-Way ANOVA: Digunakan ketika ada satu faktor atau variabel bebas

yang mempengaruhi satu variabel dependen. Berikut adalah persamaan

One-Way ANOVA.

𝑆𝑆𝑇 = ∑(𝑋𝑖𝑗 − 𝑋̅)2 (2-11)

𝑆𝑆𝑇 = Jumlah Kuadrat Total

𝑋̅ = Rata-rata seluruh kelompok

𝑋𝑖𝑗 = Angka ke I pada kelompok j

𝑆𝑆𝐵 = ∑ 𝑛𝑗(𝑋̅𝑗 − 𝑋̅)2 (2-12)

𝑆𝑆𝐵 = Jumlah Kuadrat Antara

𝑋̅𝑗 = Rata-rata kelompok j

38

𝑆𝑆𝑊 = ∑ ∑(𝑋𝑖𝑗 − 𝑋̅𝑗)2 (2-13)

𝑆𝑆𝑊 = Jumlah Kuadrat Dalam

𝑑𝑓𝑎 = 𝑗 − 1 (2-14)

𝑑𝑓𝑎 = degree of freedom (derajat kebebasan) kelompok

𝑑𝑓𝑟 = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 − 𝑗 (2-15)

𝑑𝑓𝑟 = degree of freedom (derajat kebebasan) residual

𝑀𝑆𝑎 =
𝑆𝑆𝑊

𝑑𝑓𝑎
 (2-16)

𝑀𝑆𝑎 = mean square (rata-rata Kuadrat) kelompok

𝑀𝑆𝑟 =
𝑆𝑆𝐵

𝑑𝑓𝑟
 (2-16)

𝑀𝑆𝑟 = mean square (rata-rata Kuadrat) residual

𝐹 =
𝑀𝑆𝑎

𝑀𝑆𝑟
 (2-16)

𝐹 = F statistik

Setelah mendapatkan nilai F statistik, bandingkan nilai F statistik dengan

nilai kritis menggunakan tabel distribusi F dengan alpha dan derajat kebebasan yang

sesuai. Hasil perbandingan tersebut digunakan untuk pengambilan kesimpulan dari

hipotesis yang telah ditetapkan.

b. Two-Way ANOVA: Digunakan ketika ada dua faktor atau variabel bebas

yang mempengaruhi satu variabel dependen.

c. Repeated Measures ANOVA: Digunakan ketika mengukur data pada

kelompok yang sama pada waktu yang berbeda.

39

2.21.2 Uji Tukey HSD

Uji Tukey HSD (Honestly Significant Difference) adalah metode statistik

yang digunakan untuk membandingkan rata-rata antara dua kelompok atau lebih

dalam analisis varians (ANOVA). Uji ini dirancang untuk mengidentifikasi

perbedaan signifikan di antara kelompok-kelompok tersebut setelah dilakukan uji

ANOVA. Hasil dari Uji Tukey HSD menunjukkan bahwa terdapat perbedaan

secara keseluruhan di antara kelompok-kelompok tersebut. Berikut adalah

persamaan uji Tukey HSD.

𝑄 =
𝑋̅𝑖 − 𝑋̅𝑗

√𝑀𝑆𝑎

𝑛

(2-16)

𝑄 = Hasil uji Tukey HSD

𝑋̅𝑖 = Rata-rata kelompok i

𝑋̅𝑗 = Rata-rata kelompok j

𝑀𝑆𝑎 = mean square (rata-rata Kuadrat) kelompok

𝑛 = Jumlah sampel setiap kelompok

Setelah mendapatkan nilai Q, bandingkan nilai Q dengan nilai kritis

menggunakan tabel distribusi q dengan alpha dan derajat kebebasan yang sesuai.

Hasil perbandingan tersebut digunakan untuk pengambilan kesimpulan dari

hipotesis yang telah ditetapkan.

2.21.3 Uji Kruskal-Wallis

Uji Kruskal-Wallis adalah metode statistik non-parametrik yang digunakan

untuk menguji apakah terdapat perbedaan signifikan antara tiga atau lebih

kelompok. Dalam uji ini, hipotesis nol menyatakan bahwa tidak ada perbedaan

signifikan antara median kelompok-kelompok tersebut. Uji ini sering digunakan

sebagai alternatif ketika asumsi dari uji ANOVA tidak terpenuhi. Salah satunya

adalah ketika data yang digunakan tidak berdistribusi normal. Metode ini dinamai

sesuai dengan nama dua statistikawan, Maurice Kruskal dan William Wallis, yang

40

mengembangkannya pada tahun 1952. Berikut adalah persamaan uji Kruskal-

Wallis.

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1)

𝑘

𝑖=1
 (2-17)

𝐻 = Hasil uji Kruskal-Wallis

𝑁 = Jumlah sampel semua kelompok

𝑘 = Jumlah kelompok

𝑅𝑖 = Jumlah peringkat dalam kelompok i

𝑛𝑖 = Jumlah sampel kelompok i

Setelah mendapatkan nilai H, bandingkan nilai H dengan nilai kritis

menggunakan tabel distribusi chi-square dengan alpha dan derajat kebebasan yang

sesuai. Hasil perbandingan tersebut digunakan untuk pengambilan kesimpulan dari

hipotesis yang telah ditetapkan.

2.21.4 Uji Mann-Whitney U

Uji Mann-Whitney U adalah uji statistik non-parametrik yang digunakan

untuk membandingkan median dari dua sampel independen. Metode ini menjadi

pilihan alternatif untuk uji T jika data tidak terdistribusi normal. Uji ini didasarkan

pada peringkat observasi dalam dua sampel, bukan pada nilai aktualnya. Hipotesis

nol dari uji ini menyatakan bahwa kedua sampel berasal dari populasi yang sama,

sementara hipotesis alternatifnya menyatakan bahwa keduanya berasal dari

populasi yang berbeda. Uji dapat dilakukan secara manual atau menggunakan

perangkat lunak statistik, seperti SPSS. Berikut adalah persamaan uji Mann-

Whitney U.

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 (2-18)

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 (2-19)

41

𝐻 = Hasil uji Mann-Whitney U

𝑛1 = Jumlah sampel pertama

𝑛2 = Jumlah sampel kedua

𝑅1 = Total peringkat dari sampel pertama

𝑅2 = Total peringkat dari sampel kedua

Nilai U yang lebih kecil akan digunakan sebagai nilai statistik uji. Jika nilai

statistik uji bernilai lebih kecil dari alpha yang ditentukan, maka dianggap terdapat

perbedaan signifikan diantara dua kelompok tersebut.

2.22 Formulasi Hipotesis

Sebelum menggunakan uji normalitas dan uji statistik, diperlukan

penentuan hipotesis yang akan digunakan untuk pengambilan kesimpulan nantinya.

Terdapat dua macam hipotesis yang akan digunakan dalam uji statistik, yaitu

hipotesis nol (H0) dan hipotesis alternatif (H1). Hipotesis nol merupakan asumsi

bahwa tidak terdapat perbedaan signifikan antara dua populasi atau variabel.

Hipotesis satu merupakan asumsi bahwa terdapat perbedaan signifikan antara dua

populasi atau variabel.

Proses pengambilan kesimpulan ditentukan oleh nilai p-value dan nilai

alpha (α). P-value adalah ukuran probabilitas apakah hipotesis nol dapat diterima

atau ditolak. Nilai alpha atau yang biasa dilambangkan dengan α adalah tingkat

kesalahan maksimal yang akan ditentukan sendiri oleh peneliti. Pada umumnya

nilai α yang digunakan adalah 1% (0.01), 5% (0.05), atau 10% (0.1). Kriteria

penerimaan atau penolakan H0 adalah H0 diterima jika nilai P-value lebih besar

dari nilai α, H0 ditolak jika nilai P-value lebih kecil dari nilai α.

Berikut merupakan penyusunan hipotesis untuk uji normalitas:

H0 : data berasal dari populasi yang berdistribusi normal

H1 : data berasal dari populasi yang tidak berdistribusi normal

Berikut merupakan penyusunan hipotesis untuk uji ANOVA:

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih.

42

H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih.

Berikut merupakan penyusunan hipotesis untuk uji Tukey HSD:

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi.

H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi.

Berikut merupakan penyusunan hipotesis untuk uji Kruskal-Wallis:

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih.

H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi atau lebih.

Berikut merupakan penyusunan hipotesis untuk uji Mann-Whitney U:

H0 : tidak ada korelasi, pengaruh, dan perbedaan antar dua populasi.

H1 : ada korelasi, pengaruh, dan perbedaan antar dua populasi.

2.23 Penelitian Terdahulu

Beberapa penelitian terdahulu terkait deteksi penyakit retinopati diabetik

digunakan untuk menjadi referensi dalam melaksanakan penelitian ini.

Shankar dkk., (2020) melakukan penelitian mengembangkan Hyper

Parameter Tuning Inception-v4 (HPTI-v4) untuk mengklasifikasi penyakit

retinopati diabetik. Pada penelitian tersebut, digunakan preprocessing citra berupa

contrast limited adaptive histogram equalization (CLAHE). Dataset yang

digunakan berisi 1200 citra yang terdiri dari 542 citra mata normal, 154 citra mata

RD ringan, 248 citra mata RD sedang dan berat, dan 255 citra mata PRD. Arsitektur

HPTI-v4 berhasil mencapai tingkat akurasi 99,49%.

Penelitian yang dilakukan oleh Sudha dan Ganeshbabu (2021) berfokus

pada lesion detection and grading pada penyakit retinopati diabetik. Penelitian ini

menggunakan arsitektur VGG-19. Penelitian ini juga menggunakan saliency map

dan gradient descent method untuk proses preprocessing citra. Dataset yang

digunakan berisi 35.126 citra, dengan 25.810 citra mata normal, 2.443 citra RD

ringan, 5.292 citra RD sedang, 873 citra RD berat, dan 708 citra PRD. Akurasi

arsitektur VGG-19 pada penelitian ini mencapai 96%.

Lin dan Wu (2023) melakukan penelitian mengembangkan ResNet-50

untuk deteksi retinopati diabetik. Penelitian ini membandingkan performa dari

43

ResNet-50 dengan revised ResNet-50 yang menggunakan adaptive learning rate.

Dataset yang digunakan berisi 35.126 citra, dengan 25.810 citra mata normal, 2.443

citra RD ringan, 5.292 citra RD sedang, 873 citra RD berat, dan 708 citra PRD.

Akurasi dari model ResNet-50 mencapai 89%, sedangkan model revised ResNet-

50 mencapai 83,95%.

Mishra dkk., (2020) melakukan penelitian menerapkan preprocessing citra

cropping untuk mengoptimasi model deep learning dalam melakukan pengawasan

bencana banjir. Pada penelitian ini, cropping digunakan untuk hanya menunjukkan

RDainase pada citra tersebut dan diklasifikasi menjadi 3 kelompok, yaitu fully

blocked, partially blocked, dan no blockage. Cropping berhasil meningkatkan

akurasi model deep learning dari 55% menjadi 76%.

 Penelitian yang dilakukan Yang dkk., (2022) menerapkan berbagai macam

augmentasi data pada berbagai macam model dan dataset. Jenis-jenis augmentasi

yang dilakukan berupa image manipulation seperti rotation, flipping, dan lain-lain,

image erasing, image mix, dan lain-lain. Pada penelitian tersebut disimpulkan

bahwa augmentasi data merupakan solusi efektif apabila mengalami kekurangan

data.

44

BAB III

RANCANGAN PENELITIAN

3.1 Tahapan Penelitian

Penelitian ini bertujuan untuk mengetahui apakah preprocessing citra dan

augmentasi data yang dilakukan pada sistem deteksi penyakit retinopati diabetik

dapat memengaruhi tingkat akurasi model. Tahapan penelitian dari proyek tugas

akhir ini adalah sebagai berikut.

Gambar 3.1 Tahapan Penelitian

3.2 Analisis Kebutuhan Penelitian

Tahapan pertama dari penelitian tugas akhir ini adalah analisis kebutuhan

penelitian. Analisis yang dilakukan untuk mengetahui pengaruh preprocessing citra

dan augmentasi data pada sistem deteksi retinopati diabetik mencakup kebutuhan

perangkat keras dan perangkat lunak.

A. Perangkat Keras

1. Laptop Ideapad 3 Slim 3 14inch

i. Processor : AMD Ryzen 5 5500U

ii. GPU : AMD Radeon™ Graphics

iii. Memory : RAM 8 GB, 512 GB SSD

45

iv. OS : Windows 11 Home Single Language 64-bit

B. Perangkat Lunak

1. Python 3

2. Google Colab

3. Microsoft Studio Code

C. Dataset

1. Citra Fundus Retinopati Diabetik Seluruh Kelas

3.3 Desain Penelitian

Gambar 3.2 Desain Penelitian

46

Penelitian ini dimulai dari melakukan pengunduhan data. Data retinopati

diabetik diunduh dari website Kaggle dengan judul “Diabetic Retinopathy

Detection”. Setelah diunduh, dataset akan di-sampling untuk membuat dataset asli.

Lalu dataset asli diterapkan preprocessing citra dan augmentasi data untuk

membuat dataset setelah preprocessing dan augmentasi citra. Preprocessing citra

yang digunakan merupakan cropping dan histogram equalization. Augmentasi data

yang dilakukan merupakan transformasi flipping. Masing-masing dataset akan

dibagi menjadi data train, test, dan validation dengan rasio pembagian 70%, 20%,

dan 10%.

Tahap pelatihan model akan dilakukan dengan menggunakan dataset setelah

preprocessing dan augmentasi citra untuk menentukan arsitektur terbaik untuk

mengklasifikasi penyakit RD. Arsitektur deep learning yang digunakan adalah

Inception-v4, ResNet-50, VGG-19, dan YOLO v5Nano. Output dari proses

pelatihan ini adalah empat buah model, confusion matrix, dan nilai accuracy yang

akan dievaluasi. Output tersebut akan dievaluasi menggunakan uji statistik untuk

mengetahui perbandingan performa dari empat model tersebut.

Selanjutnya adalah tahap pelatihan model analisis preprocessing dan

augmentasi data. Pada tahap ini akan dilakukan pelatihan arsitektur terbaik terhadap

dataset asli, dataset cropping, dataset histeq, dataset flipping, dataset cropping dan

histeq, dataset cropping dan flipping, dataset histeq dan flipping, dan dataset setelah

preprocessing dan augmentasi citra. Hal ini dilakukan agar dapat mengetahui

pengaruh dari masing-masing preprocessing citra atau augmentasi citra terhadap

performa dari model. Output dari proses pelatihan ini adalah delapan buah model,

confusion matrix, dan nilai accuracy yang akan dievaluasi. Output tersebut akan

dievaluasi menggunakan uji statistik untuk mengetahui perbandingan performa dari

delapan model tersebut.

3.3.1 Pengunduhan Data

Dataset retinopati diabetik diunduh dari website Kaggle dengan judul

“Diabetic Retinopathy Detection”. Dataset ini berisi lima belas files dengan ukuran

files tersebut mencapai 88,29 GB. Dari lima belas files yang ada, hanya files

train.zip, dan trainLabels.csv.zip yang akan digunakan.

47

Berikut adalah rincian dari files tersebut:

1. Lima set data latih (train.zip)

Total data berjumlah 35.126 citra, dengan 25.810 citra di kelas mata

normal, 2.443 citra di kelas RD ringan, 5.292 citra di kelas RD sedang,

873 citra di kelas RD berat, dan 708 citra di kelas RD proliferatif.

2. Label dari data latih dalam format .csv (trainLabels.csv.zip)

Berisi label citra dari data latih.

Masing-masing citra retina dalam dataset tersebut memiliki resolusi dan

ukuran yang berbeda-beda. Setiap citra tersebut diberi label dengan format id,

subjek, dan keterangan mata dari subjek tersebut. Contoh pelabelan citra-citra

tersebut adalah “1_left.jpeg” yang berarti citra tersebut diambil dari mata kiri subjek

dengan id satu. Citra retina diklasifikasikan ke dalam lima tingkatan retinopati

diabetik dengan label 0 hingga 4. Label 0 merupakan citra fundus mata normal,

label 1 merupakan citra fundus RD ringan, label 2 merupakan citra fundus RD

sedang, label 3 merupakan citra fundus RD berat, dan label 4 merupakan citra

fundus RD proliferatif. Berikut adalah contoh sampel gambar dari dataset tersebut:

(A) (B) (C) (D) (E)

Gambar 3.3 Contoh Citra Fundus (A) Normal, (B) RD Ringan, (C) RD Sedang,

(D) RD Berat, (E) RD Proliferatif

Pada penelitian ini, terdapat delapan dataset yang akan digunakan, yaitu

dataset asli, cropping, histeq, flipping, cropping dan histeq, cropping dan flipping,

histeq dan flipping, dan setelah preprocessing dan augmentasi citra. Dataset

tersebut kemudian akan dibagi untuk proses training, testing, dan validation.

Berikut adalah pembagian citra pada masing-masing dataset.

Jumlah data citra pada tabel 4.1 dihitung berdasarkan pembagian dataset

yaitu 70% untuk data train, 20% untuk data test, dan 10% untuk data validation.

Dataset sebelum preprocessing akan langsung digunakan untuk proses training dan

48

diterapkan preprocessing dan augmentasi citra untuk membuat dataset setelah

preprocessing.

3.3.2 Sampling Data

Sebelum diterapkan preprocessing dan augmentasi citra, dataset akan di-

sampling agar jumlah citra untuk setiap kelas menjadi sama. Hal ini dilakukan

untuk mengurangi waktu dan sumber daya yang diperlukan untuk melakukan

pelatihan model. Sampling data juga dilakukan untuk mencegah terjadinya

overfitting saat pengujian model. Jumlah citra untuk tiap kelas yang akan digunakan

merupakan 500 citra per kelas. Sehingga jumlah citra untuk dataset asli adalah 2500

citra.

3.3.3 Preprocessing dan Augmentasi Data

Dataset asli akan diterapkan preprocessing citra dan augmentasi data untuk

menghasilkan dataset yang baru. Preprocessing citra yang dilakukan terhadap

dataset asli adalah cropping dan histogram equalization. Masing-masing citra

fundus akan diterapkan preprocessing citra yang telah disebutkan sebelumnya.

Pada langkah pertama, citra fundus akan diterapkan cropping untuk menghilangkan

bagian dari citra fundus yang tidak diinginkan. Berikut adalah contoh citra fundus

yang telah diterapkan proses cropping:

(A) (B)

Gambar 3.4 Contoh Citra Fundus (A) Sebelum Cropping, (B) Setelah Cropping

Setelah cropping, langkah yang diterapkan berikutnya adalah histogram

equalization. Hal ini dilakukan dengan menerapkan histogram equalization pada

49

citra fundus. Berikut adalah contoh citra fundus yang telah diterapkan proses

histogram equalization:

(A) (B)

Gambar 3.5 Contoh Citra Fundus (A) Sebelum Histogram Equalization, (B)

Setelah Histogram Equalization

Setelah dilakukan preprocessing citra akan dilakukan augmentasi citra

untuk menambah jumlah citra dalam dataset, meningkatkan akurasi, dan mencegah

overfitting. Augmentasi citra yang dilakukan adalah flipping, yaitu horizontal

flipping dan vertical flipping. Masing-masing citra fundus akan diterapkan

horizontal flipping menjadi citra yang baru, vertical flipping menjadi citra yang

baru, dan horizontal dan vertical flipping menjadi citra yang baru. Jumlah citra

dalam masing-masing kelas akan diterapkan augmentasi citra agar jumlah citra tiap

kelas bertambah dari 500 citra menjadi 2000 citra. Sehingga jumlah citra dalam

dataset setelah preprocessing citra dan augmentasi adalah 10000 citra.

Berikut adalah contoh citra fundus yang telah diterapkan augmentasi data

berupa flipping:

(A) (B) (C) (D)

Gambar 3.6 Contoh Citra (A) Sebelum Flipping, (B) Setelah Horizontal Flipping,

(C) Setelah Vertical Flipping, (D) Setelah Horizontal dan Vertical Flipping

Pada gambar 3.6 (A) merupakan contoh citra fundus sebelum diterapkan

augmentasi citra. Gambar 3.6 (B) merupakan hasil horizontal flipping dari gambar

50

3.6 (A). Gambar 3.6 (C) merupakan hasil vertical flipping dari gambar 3.6 (A).

Gambar 3.6 (D) merupakan hasil horizontal dan vertical flipping dari gambar 3.6

(A).

3.3.4 Pelatihan Model

Setelah tercipta dataset hasil preprocessing dan augmentasi citra, hal yang

dilakukan selanjutnya adalah melatih arsitektur untuk klasifikasi penyakit diabetik

retinopati. Arsitektur deep learning yang digunakan dalam penelitian tugas akhir

ini adalah Inception-v4, ResNet-50, VGG-19, dan YOLO v5 Nano. Ukuran citra

input yang digunakan adalah 224x224. Seluruh arsitektur dilatih dengan

menggunakan dataset setelah preprocessing dan augmentasi citra. Dataset tersebut

akan dibagi menjadi data train, test, dan validation dengan rasio 70%, 20%, dan

10%. Hasil dari proses pelatihan ini adalah empat buah model, confusion matrix,

dan nilai accuracy yang akan dievaluasi untuk menentukan arsitektur terbaik.

3.3.5 Pengujian Model

Gambar 3.7 Flowchart Pengujian Model

51

Setelah proses pelatihan model selesai, akan dilakukan pengujian model

yang sudah terbentuk. Pada penelitian ini, digunakan confusion matrix untuk

melakukan evaluasi model. Confusion matrix yang digunakan berukuran 5x5

dengan label 0 (mata normal), 1 (RD ringan), 2 (RD sedang), 3 (RD berat), dan 4

(RD proliferatif). Jumlah model yang diuji berjumlah empat, yaitu hasil empat

arsitektur untuk dataset setelah preprocessing dan augmentasi citra. Masing-masing

model akan dilakukan testing dengan data testing masing-masing sebanyak lima

kali. Berikut contoh confusion matrix yang akan dihasilkan dari model:

Tabel 3.1 Contoh Confusion Matrix Multiclass

Kelas Prediksi

0 1 2 3 4

Kelas

Asli

0 A B C D E

1 F G H I J

2 K L M N O

3 P Q R S T

4 U V W X Y

Selain confusion matrix, model juga akan dievaluasi dengan menggunakan

nilai tes accuracy. Nilai tes akurasi akan diuji normalitas untuk menentukan apakah

data berdistribusi normal atau tidak. Hal ini perlu dilakukan untuk mengetahui uji

statistik yang akan digunakan. Apabila data berdistribusi normal, maka akan

menggunakan uji ANOVA untuk mengetahui apakah terdapat perbedaan nilai

akurasi tes yang signifikan antara masing-masing model. Jika terdapat perbedaan

signifikan, dilakukan uji Tukey HSD untuk mencari pasangan model yang terdapat

perbedaan signifikan nilai akurasi tes.

Apabila data tidak berdistribusi normal, maka akan menggunakan uji

Kruskal-Wallis untuk mengetahui apakah terdapat perbedaan nilai akurasi tes yang

signifikan antara masing-masing model. Jika terdapat perbedaan signifikan,

dilakukan uji Mann-Whitney U untuk mencari pasangan model yang terdapat

perbedaan signifikan nilai akurasi tes. Pengujian model ini dilakukan untuk mencari

arsitektur terbaik untuk mengklasifikasi penyakit RD.

52

3.3.5.1 Testing Model

Model yang merupakan hasil dari pelatihan model akan disimpan untuk

dilakukan testing model. Data testing dibuat dengan cara menggunakan train test

split pada dataset yang digunakan. Setelah itu model akan dites dengan data test

yang telah dibuat. Testing model ini dilakukan sebanyak lima kali. Random state

yang digunakan pada train test split akan berbeda-beda pada setiap tes. Hal ini

dilakukan untuk menciptakan data tes yang berbeda-beda.

3.3.5.2 Uji Normalitas

Uji normalitas yang digunakan untuk penelitian ini adalah uji Shapiro-Wilk.

Untuk melakukan uji Shapiro-Wilk, diperlukan hipotesis yang akan digunakan

sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan contoh

hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Shapiro-Wilk:

H0: data berasal dari populasi yang berdistribusi normal.

H1: data berasal dari populasi yang tidak berdistribusi normal.

3.3.5.3 Uji ANOVA

Apabila data berdistribusi normal, maka uji statistik yang digunakan adalah

uji ANOVA. Untuk melakukan uji ANOVA, diperlukan hipotesis yang akan

digunakan sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji

ANOVA:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model.

H1: terdapat perbedaan signifikan antara akurasi tes model-model.

3.3.5.4 Uji Tukey HSD

Jika terdapat perbedaan signifikan pada tahap uji ANOVA, maka akan

dilanjutkan dengan melakukan uji Tukey HSD untuk mencari pasangan model yang

53

terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan contoh hipotesis

nol dan hipotesis alternatif yang akan digunakan dalam uji Tukey HSD:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan

model B.

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B.

3.3.5.5 Uji Kruskal-Wallis

Apabila data tidak berdistribusi normal, maka uji statistik yang digunakan

adalah uji Kruskal-Wallis. Untuk melakukan uji Kruskal-Wallis, diperlukan

hipotesis yang akan digunakan sebagai panduan untuk pengambilan kesimpulan.

Berikut merupakan contoh hipotesis nol dan hipotesis alternatif yang akan

digunakan dalam uji Kruskal-Wallis:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model.

H1: terdapat perbedaan signifikan antara akurasi tes model-model.

3.3.5.6 Uji Mann-Whitney U

Jika terdapat perbedaan signifikan pada tahap uji Kruskal-Wallis, maka

akan dilanjutkan dengan melakukan uji Mann-Whitney U untuk mencari pasangan

model yang terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Mann-

Whitney U:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan

model B.

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B.

3.3.6 Pelatihan Model Analisis Preprocessing dan Augmentasi Data

Setelah menentukan arsitektur terbaik, arsitektur tersebut akan dilatih

menggunakan dataset asli, dataset cropping, dataset histeq, dataset flipping, dataset

54

cropping dan histeq, dataset cropping dan flipping, dataset histeq dan flipping, dan

dataset setelah preprocessing dan augmentasi data. Berikut adalah rincian dataset

tersebut.

Tabel 3.2 Rincian Dataset RD Untuk Analisis Pengaruh Preprocessing dan

Augmentasi Data

Nama Dataset Train Test Validation Total

Asli 1750 500 250 2.500

Cropping 1750 500 250 2.500

Histeq 1750 500 250 2.500

Flipping 7000 2000 1000 10.000

Cropping dan

Histeq
1750 500 250 2.500

Cropping dan

Flipping
7000 2000 1000 10.000

Histeq dan

Flipping
7000 2000 1000 10.000

Setelah

Preprocessing

dan Augmentasi

7000 2000 1000 10.000

Seluruh dataset pada tabel 3.2 akan dibagi menjadi data train, test, dan

validation dengan rasio 70%, 20%, dan 10%. Hasil dari proses pelatihan ini adalah

delapan buah model, confusion matrix, dan nilai accuracy yang akan dievaluasi

untuk menentukan preprocessing atau augmentasi data yang memiliki pengaruh

paling signifikan terhadap performa arsitektur.

55

3.3.7 Pengujian Model Analisis Preprocessing dan Augmentasi Data

Gambar 3.8 Flowchart Pengujian Model Analisis Preprocessing dan Augmentasi

Data

Setelah proses pelatihan model analisis preprocessing dan augmentasi data

selesai, akan dilakukan pengujian terhadap model yang sudah terbentuk. Pada tahap

ini, confusion matrix yang digunakan untuk melakukan evaluasi model sesuai

dengan Tabel 3.1. Jumlah model yang diuji berjumlah delapan, yaitu model untuk

dataset asli, dataset cropping, dataset histeq, dataset flipping, dataset cropping dan

histeq, dataset cropping dan flipping, dataset histeq dan flipping, dan dataset setelah

preprocessing dan augmentasi citra. Masing-masing model akan dilakukan testing

dengan data testing masing-masing sebanyak lima kali.

3.3.7.1 Testing Model

Model yang merupakan hasil dari pelatihan model akan disimpan untuk

dilakukan testing model. Data testing dibuat dengan cara menggunakan train test

split pada dataset yang digunakan. Setelah itu model akan dites dengan data test

yang telah dibuat. Testing model ini dilakukan sebanyak lima kali. Random state

56

yang digunakan pada train test split akan berbeda-beda pada setiap tes. Hal ini

dilakukan untuk menciptakan data tes yang berbeda-beda.

3.3.7.2 Uji Normalitas

Uji normalitas yang digunakan untuk penelitian ini adalah uji Shapiro-Wilk.

Untuk melakukan uji Shapiro-Wilk, diperlukan hipotesis yang akan digunakan

sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan contoh

hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Shapiro-Wilk:

H0: data berasal dari populasi yang berdistribusi normal.

H1: data berasal dari populasi yang tidak berdistribusi normal.

3.3.7.3 Uji ANOVA

Apabila data berdistribusi normal, maka uji statistik yang digunakan adalah

uji ANOVA. Untuk melakukan uji ANOVA, diperlukan hipotesis yang akan

digunakan sebagai panduan untuk pengambilan kesimpulan. Berikut merupakan

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji

ANOVA:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model.

H1: terdapat perbedaan signifikan antara akurasi tes model-model.

3.3.7.4 Uji Tukey HSD

Jika terdapat perbedaan signifikan pada tahap uji ANOVA, maka akan

dilanjutkan dengan melakukan uji Tukey HSD untuk mencari pasangan model yang

terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan contoh hipotesis

nol dan hipotesis alternatif yang akan digunakan dalam uji Tukey HSD:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan

model B.

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B.

57

3.3.7.5 Uji Kruskal-Wallis

Apabila data tidak berdistribusi normal, maka uji statistik yang digunakan

adalah uji Kruskal-Wallis. Untuk melakukan uji Kruskal-Wallis, diperlukan

hipotesis yang akan digunakan sebagai panduan untuk pengambilan kesimpulan.

Berikut merupakan contoh hipotesis nol dan hipotesis alternatif yang akan

digunakan dalam uji Kruskal-Wallis:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model.

H1: terdapat perbedaan signifikan antara akurasi tes model-model.

3.3.7.6 Uji Mann-Whitney U

Jika terdapat perbedaan signifikan pada tahap uji Kruskal-Wallis, maka

akan dilanjutkan dengan melakukan uji Mann-Whitney U untuk mencari pasangan

model yang terdapat perbedaan signifikan nilai akurasi tes. Berikut merupakan

contoh hipotesis nol dan hipotesis alternatif yang akan digunakan dalam uji Mann-

Whitney U:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan

model B.

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B.

3.4 Interpretasi Hasil Penelitian

Tahapan terakhir setelah analisis preprocessing dan augmentasi data adalah

pengambilan kesimpulan atau interpretasi hasil penelitian. Tahap interpretasi hasil

penelitian akan menggunakan uji hipotesis yang telah dilakukan pada tahap

evaluasi model. Pengambilan kesimpulan akan berdasar pada rumusan masalah

yang telah ditetapkan, dalam hal ini pencarian arsitektur CNN yang optimal untuk

mengklasifikasi penyakit retinopati diabetik dan pencarian preprocessing citra dan

augmentasi data terbaik yang mampu meningkatkan akurasi model dalam

mengklasifikasi penyakit retinopati diabetik.

58

BAB IV

HASIL DAN PEMBAHASAN

4.1 Hasil Pelatihan Model

Seperti yang dijelaskan pada bab sebelumnya, penelitian ini diawali dengan

mencari arsitektur terbaik untuk mengklasifikasi penyakit RD. Arsitektur ResNet-

50, Inception-v4, VGG-19, dan YOLO v5Nano akan dilatih menggunakan dataset

setelah preprocessing dan augmentasi. Masing-masing model hasil training akan

disimpan dan diuji sebanyak lima kali. Pengujian model akan dilakukan terhadap

model yang telah disimpan dan menggunakan dataset yang sama. Untuk masing-

masing pengujian, dataset tersebut akan diterapkan train test split untuk

menciptakan dataset train dan dataset test. Masing-masing train test split akan

menggunakan random state yang berbeda untuk menciptakan dataset test yang

berbeda-beda.

Tabel 4.1 Hasil Training dan Testing Model

Arsitektur
Akurasi

Training

Akurasi Tes

Tes 1 Tes 2 Tes 3 Tes 4 Tes 5

ResNet-50 0.41 0.41 0.41 0.41 0.42 0.41

Inception-

v4
0.21 0.45 0.44 0.44 0.45 0.44

VGG-19 0.82 0.72 0.22 0.21 0.19 0.19

YOLO

v5Nano
0.93 0.74 0.71 0.73 0.73 0.73

Tabel 4.1 merupakan hasil akurasi training dan testing masing-masing

model. Akurasi hasil tes masing-masing model akan diuji dengan uji ANOVA dan

dilanjutkan dengan uji Tukey HSD untuk menentukan arsitektur terbaik dalam

mengklasifikasi penyakit RD.

59

4.1.1 Hasil Pelatihan ResNet-50

Model ResNet-50 tidak menunjukkan adanya overfitting maupun

underfitting pada hasil testing. Nilai akurasi training dan testing dari model ResNet-

50 berkisar pada angka 0.41. Berikut adalah grafik loss dan akurasi hasil training

dari model ResNet-50.

Gambar 4.1 Grafik Akurasi Training dan Validasi ResNet-50

Gambar 4.2 Grafik Loss Training dan Validasi ResNet-50

60

Pada gambar 4.1 dapat dilihat terjadi peningkatan akurasi dari model

ResNet-50, walaupun terdapat fluktuasi didalamnya. Nilai akurasi training model

ResNet-50 adalah 0.41, sedangkan nilai akurasi validasi adalah 0.33. Pada gambar

4.2 juga dapat dilihat bahwa terdapat fluktuasi di penurunan loss dari model

ResNet-50. Nilai loss training model ResNet-50 adalah 1.31, sedangkan loss

validasi adalah 1.4566. Setelah itu dilakukan testing model menggunakan model

yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix dari

testing model ResNet-50.

Gambar 4.3 Confusion Matrix Testing ResNet-50

Berdasarkan gambar 4.3, model ResNet-50 berhasil mengklasifikasikan RD

dengan akurasi 0.41. Model ini masih belum dapat mengklasifikasi kelas 0 dan

kelas 2 dengan baik, dimana kelas-kelas ini diprediksi menjadi kelas 1. Untuk kelas

3 mampu diklasifikasi oleh model dengan lebih baik. Hal ini dapat dilihat dari

jumlah TP dari kelas 3 mencapai setengah dari total kelas. Sedangkan untuk kelas

1 dan 4 dapat diklasifikasi dengan baik oleh model ResNet-50. Hal ini ditunjukkan

dengan angka TP paling tinggi terdapat pada kelas 1 dan 4.

61

4.1.2 Hasil Pelatihan Inception-v4

Model Inception-v4 menunjukkan adanya underfitting. Nilai akurasi

training jauh lebih kecil dibandingkan dengan nilai akurasi testing. Nilai akurasi

training model Inception-v4 hanya mencapai 0.21, sedangkan nilai akurasi testing

model Inception-v4 rata-rata mencapai 0.44. Berikut adalah grafik loss dan akurasi

hasil training dari model Inception-v4.

Gambar 4.4 Grafik Akurasi Training dan Validasi Inception-v4

Gambar 4.5 Grafik Loss Training dan Validasi Inception-v4

62

Pada gambar 4.4 terlihat terjadi peningkatan nilai akurasi training dari

model Inception-v4, namun peningkatan nilai tersebut hanya berubah sedikit saja.

Sedangkan nilai akurasi validasi tidak mengalami perubahan. Nilai akurasi training

model Inception-v4 adalah 0.21, sedangkan nilai akurasi validasi adalah 0.17. Pada

gambar 4.5 juga terlihat bahwa terdapat penurunan loss training dan terjadi

peningkatan loss validation dari model Inception-v4, namun nilai tersebut hanya

berubah sedikit saja. Nilai loss training model Inception-v4 adalah 1.61, sedangkan

nilai loss validasi adalah 1.61. Setelah itu dilakukan testing model menggunakan

model yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix

dari testing model Inception-v4.

Gambar 4.6 Confusion Matrix Testing Inception-v4

Berdasarkan gambar 4.6, model Inception-v4 berhasil mengklasifikasikan

RD dengan akurasi 0.45. Model ini masih belum dapat mengklasifikasi kelas 0 dan

2 dengan baik. Hal ini dapat dilihat dengan nilai TP dari kelas 0 dan 2 kecil. Untuk

kelas 1 dapat diklasifikasi oleh model dengan lebih baik. Hal ini dapat dilihat dari

nilai TP dari kelas 1 cukup tinggi. Sedangkan untuk kelas 3 dan 4 dapat diklasifikasi

dengan baik oleh model Inception-v4. Hal ini ditunjukkan dengan angka TP paling

tinggi terdapat pada kelas 3 dan 4.

63

4.1.3 Hasil Pelatihan VGG-19

Model VGG-19 menunjukkan adanya overfitting. Nilai akurasi training

jauh lebih tinggi dibandingkan dengan nilai akurasi testing. Nilai akurasi training

model VGG-19 mencapai 0.82, sedangkan nilai akurasi testing model VGG-19

banyak yang hanya mencapai 0.20. Berikut adalah grafik loss dan accuracy hasil

training dari model VGG-19.

Gambar 4.7 Grafik Akurasi Training dan Validasi VGG-19

Gambar 4.8 Grafik Loss Training dan Validasi VGG-19

64

Pada gambar 4.7 dapat dilihat terjadi peningkatan akurasi training yang

signifikan dari model VGG-19, namun hal tersebut tidak terjadi pada akurasi

validasi. Nilai akurasi training model VGG-19 adalah 0.82, sedangkan nilai akurasi

validasi hanya mencapai 0.40. Pada gambar 4.8 juga dapat dilihat bahwa terdapat

penurunan loss training yang signifikan dan terjadi peningkatan loss validasi yang

signifikan dari model VGG-19. Nilai loss training model VGG-19 adalah 0.45,

sedangkan loss validasi adalah 2.51. Setelah itu dilakukan testing model

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu

confusion matrix dari testing model VGG-19.

Gambar 4.9 Confusion Matrix Testing VGG-19

Berdasarkan gambar 4.9, model VGG-19 belum dapat mengklasifikasikan

penyakit RD dengan benar dan terjadi overfitting. Hal ini dapat dilihat dari hasil

confusion matrix dimana predicted label seluruhnya mengarah ke kelas 1,

sedangkan kelas-kelas lainnya masih tidak dapat diklasifikasi. Overfitting dapat

terjadi karena model terlalu cocok dengan data pelatihan atau kompleksitas model

VGG-19 tidak sesuai.

65

4.1.4 Hasil Pelatihan YOLO v5Nano

Model YOLO v5Nano menunjukkan adanya overfitting. Nilai akurasi

training lebih tinggi dibandingkan dengan akurasi testing. Nilai akurasi training

model YOLO v5Nano mencapai 0.93, sedangkan nilai akurasi testing model YOLO

v5Nano rata-rata hanya mencapai 0.73. Berikut adalah grafik loss dan accuracy dari

training model YOLO v5Nano.

Gambar 4.10 Grafik Akurasi Training dan Validasi YOLO v5Nano

Gambar 4.11 Grafik Loss Training dan Validasi YOLO v5Nano

Pada gambar 4.10 dapat dilihat model YOLO v5Nano mengalami

peningkatan akurasi training yang signifikan. Nilai akurasi training model ini

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o
ss

Epoch

train val

66

mencapai 0.93. Pada gambar 4.11 juga dapat dilihat model YOLO v5Nano

mengalami penurunan loss yang signifikan. Nilai loss training model YOLO

v5Nano adalah 0.56, sedangkan nilai loss validasi adalah 0.58. Setelah itu dilakukan

testing model menggunakan model yang telah disimpan sebelumnya. Berikut

adalah salah satu confusion matrix dari model YOLO v5Nano.

Gambar 4.12 Confusion Matrix YOLO v5Nano

Berdasarkan gambar 4.12, model YOLO v5Nano berhasil

mengklasifikasikan penyakit RD dengan akurasi 0.924. Model YOLO v5Nano

dapat mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat dilihat dari

hasil confusion matrix dimana predicted label masing-masing kelas hampir

seluruhnya telah sesuai dengan actual label.

4.2 Hasil Pengujian Model

Empat model hasil pelatihan model dengan dataset setelah preprocessing

dan augmentasi data akan diuji untuk menentukan arsitektur terbaik untuk

mengklasifikasi penyakit RD. Dalam tahap pengujian model, digunakan uji

normalitas dan uji statistik. Uji normalitas yang digunakan pada tahap ini adalah uji

Shapiro-Wilk. Uji statistik yang digunakan pada tahap ini adalah uji ANOVA dan

uji Tukey HSD atau uji Kruskal-Wallis dan uji Mann-Whitney U. Berikut adalah

hasil dari uji normalitas dan uji statistik dari empat model tersebut.

67

4.2.1 Hasil Uji Shapiro-Wilk Pengujian Model

Pada tahap ini menggunakan uji Shapiro-Wilk untuk menentukan apakah

sampel akurasi tes berdistribusi normal atau tidak. Nilai alpha yang ditentukan

untuk uji Sapiro-Wilk adalah 0.05. Berikut adalah hipotesis nol dan hipotesis

alternatif yang digunakan dalam uji Shapiro-Wilk:

H0: data berdistribusi normal.

H1: data tidak berdistribusi normal.

Contoh perhitungan uji Shapiro-Wilk pada VGG-19:

Data VGG-19:

𝑋(1) = 0.1875, 𝑋(2) = 0.1915, 𝑋(3) = 0.2135, 𝑋(4) = 0.2165, 𝑋(5) = 0.72

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.1875 + 0.1915 + 0.2135 + 0.2165 + 0.72

5

= 0.3058

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.2151148

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5:

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

=
(0.3538995 + 0.0060325)2

0.2151148

= 0.602

Karena nilai W lebih kecil dari nilai W untuk p-value 0.01 pada tabel nilai

kritis uji Shapiro-Wilk, maka nilai p-value dianggap lebih rendah dari 0.01. Karena

68

p-value lebih kecil dibandingkan alpha, maka H0 ditolak, maka dapat disimpulkan

sampel tidak terdistribusi normal.

Contoh perhitungan uji Shapiro-Wilk pada ResNet-50:

Data ResNet-50:

𝑋(1) = 0.407, 𝑋(2) = 0.4085, 𝑋(3) = 0.409, 𝑋(4) = 0.41, 𝑋(5) = 0.418

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.407 + 0.4085 + 0.409 + 0.41 + 0.418

5

= 0.4105

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1
= 0.000075

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5:

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

=
(0.0073106 + 0.00036195)2

0.000075

= 0.784

Karena nilai W lebih besar dari nilai W untuk alpha 0.05, maka nilai p-value

dianggap lebih tinggi dari 0.05. Karena nilai p-value lebih tinggi dibandingkan

alpha, maka H0 diterima, maka dapat disimpulkan bahwa sampel terdistribusi

normal. Berikut adalah tabel hasil uji Shapiro-Wilk dari empat model yang

digunakan.

69

Tabel 4.2 Hasil Uji Shapiro-Wilk Pengujian Model

Arsitektur p-value Hipotesis

ResNet-50 0.06 H0 diterima

Inception-v4 0.98 H0 diterima

VGG-19 0.00 H0 ditolak

YOLO v5Nano 0.37 H0 diterima

Dari tabel 4.2, dapat dilihat bahwa terdapat data yang tidak terdistribusi

normal, yaitu hasil tes VGG-19. Oleh karena itu, uji statistik yang digunakan pada

tahap selanjutnya adalah uji Kruskal-Wallis.

4.2.2 Hasil Uji Kruskal-Wallis Pengujian Model

Pada tahap ini menggunakan uji Kruskal-Wallis untuk menentukan apakah

terdapat perbedaan signifikan antara akurasi tes dari model-model tersebut. Nilai

alpha yang ditentukan untuk uji Kruskal-Wallis adalah 0.05. Berikut adalah

hipotesis nol dan hipotesis alternatif yang digunakan dalam uji Kruskal-Wallis:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model-model.

H1: terdapat perbedaan signifikan antara akurasi tes model-model.

Perhitungan uji Kruskal-Wallis Pengujian Model:

Data model:

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418

Inception-v4: 0.4355, 0.4395, 0.4435, 0.4465, 0.452

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739

Peringkat Sampel Model:

ResNet-50: 8, 7, 5, 9, 6

Inception-v4: 14, 12, 11, 13, 10

VGG-19: 16, 4, 3, 2, 1

70

YOLO v5Nano: 20, 15, 19, 18, 17

Total Peringkat masing-masing kelompok:

ResNet-50: 35

Inception-v4: 60

VGG-19: 26

YOLO v5Nano: 89

𝐻 =
12

20(20 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(20 + 1)

𝑘

𝑖=1

𝐻 =
12

420
× (

352

5
+

602

5
+

262

5
+

892

5
) − 63

𝐻 = 13.69

𝑑𝑓 = 𝑁 − 1 = 4 − 1 = 3

Nilai p-value jika 𝑑𝑓 = 3 adalah 0.0035. Karena nilai p-value lebih kecil

dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model-model.

Untuk mengetahui model-model yang terdapat perbedaan signifikan, dilakukan uji

Mann-Whitney U.

4.2.3 Hasil Uji Mann-Whitney U Pengujian Model

Sebagai kelanjutan dari uji Kruskal-Wallis, digunakan uji Mann-Whitney U

untuk mengetahui model yang terdapat perbedaan signifikan. Nilai alpha yang

ditentukan untuk uji Mann-Whitney U adalah 0.05. Berikut adalah hipotesis nol dan

hipotesis alternatif yang digunakan dalam uji Mann-Whitney U:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan

model B.

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B.

71

Perhitungan uji Mann-Whitney U Pengujian Model antara ResNet-50 dan

VGG-19:

Data model:

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72

Peringkat Sampel Model:

ResNet-50: 5, 6, 7, 8, 9

VGG-19: 1, 2, 3, 4, 10

Total Peringkat masing-masing kelompok:

ResNet-50: 35

VGG-19: 20

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 35 = 5

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 20 = 20

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 20 = 5

Nilai U jika menggunakan alpha 0.05 adalah 2. Karena nilai p-value lebih

besar dibandingkan nilai alpha, maka hipotesis nol diterima. Oleh karena itu, dapat

disimpulkan bahwa tidak terdapat perbedaan signifikan antara akurasi tes model

ResNet-50 dengan model VGG-19.

72

Perhitungan uji Mann-Whitney U Pengujian Model antara ResNet-50 dan

YOLO v5Nano:

Data model:

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739

Peringkat Sampel Model:

ResNet-50: 1, 2, 3, 4, 5

YOLO v5Nano: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

ResNet-50: 15

YOLO v5Nano: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

Nilai U jika menggunakan alpha 0.05 adalah 2. Karena nilai p-value lebih

kecil dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model ResNet-

50 dengan model YOLO v5Nano.

73

Tabel 4.3 Hasil Uji Mann-Whitney U Pengujian Model

Arsitektur 1 Arsitektur 2 p-value Hipotesis

ResNet-50 Inception-v4 0.97 H0 ditolak

ResNet-50 VGG-19 0.50 H0 diterima

ResNet-50 YOLO v5Nano 0.00 H0 ditolak

Inception-v4 VGG-19 0.28 H0 diterima

Inception-v4 YOLO v5Nano 0.01 H0 Ditolak

VGG-19 YOLO v5Nano 0.00 H0 Ditolak

Dari tabel 4.2 dapat dilihat bahwa pada model ResNet-50, Inception-v4, dan

VGG-19 terdapat perbedaan signifikan dari nilai akurasi tes dengan model YOLO

v5Nano. Karena arsitektur YOLO v5Nano merupakan arsitektur terbaik untuk

mengklasifikasi penyakit RD, maka pada tahap analisis preprocessing dan

augmentasi akan menggunakan arsitektur YOLO v5Nano.

4.3 Hasil Pelatihan Model Analisis Preprocessing dan Augmentasi Data

Pada tahap analisis preprocessing dan augmentasi data, arsitektur terbaik

yaitu YOLO v5Nano dilatih dengan delapan dataset untuk menentukan

preprocessing atau augmentasi yang terbaik untuk meningkatkan performa model.

Berikut adalah hasil training arsitektur YOLO v5Nano terhadap delapan dataset

tersebut.

Tabel 4.4 Akurasi Tes Analisis Preprocessing dan Augmentasi Data

Model
Akurasi

Training

Akurasi Tes

Tes 1 Tes 2 Tes 3 Tes 4 Tes 5

Asli 0.46 0.69 0.67 0.67 0.59 0.58

Cropping 0.46 0.57 0.54 0.54 0.54 0.55

Histeq 0.43 0.45 0.46 0.44 0.46 0.47

Flipping 0.91 0.91 0.94 0.94 0.94 0.93

Cropping dan Histeq 0.40 0.46 0.54 0.54 0.56 0.57

74

Tabel 4.4 Lanjutan

Cropping dan Flipping 0.93 0.82 0.81 0.81 0.81 0.82

Histeq dan Flipping 0.92 0.69 0.70 0.68 0.70 0.69

Setelah Preprocessing

dan Augmentasi
0.93 0.74 0.71 0.73 0.73 0.73

Tabel 4.3 merupakan hasil akurasi model dengan menggunakan dataset asli,

cropping, histeq, flipping, cropping dan histeq, cropping dan flipping, histeq dan

flipping, dan setelah preprocessing dan augmentasi data untuk menentukan

preprocessing atau augmentasi data yang terbaik untuk meningkatkan performa

model. Model hasil pelatihan akan disimpan dengan format h5 untuk dilakukan test

model. Masing-masing model dites sebanyak lima kali.

4.3.1 Hasil Pelatihan Dataset Asli

Model dataset asli menunjukkan adanya underfitting. Nilai akurasi training

jauh lebih rendah dibandingkan nilai akurasi testing. Nilai akurasi training model

dataset asli hanya mencapai 0.46, sedangkan rata-rata nilai akurasi testing model

dataset asli adalah 0.64. Berikut adalah grafik loss dan akurasi dari training model

dataset asli.

Gambar 4.13 Grafik Akurasi Training Dataset Asli

0,00

0,10

0,20

0,30

0,40

0,50

0,60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

75

Gambar 4.14 Grafik Loss Training dan Validasi Dataset Asli

Pada gambar 4.13 dapat dilihat grafik model dataset asli mengalami sedikit

peningkatan akurasi training dari 0.33 menjadi 0.46. Pada gambar 4.14 juga dapat

dilihat grafik model dataset asli mengalami penurunan loss training yang signifikan

dari 1.58 menjadi 0.65, sedangkan nilai loss validasi mengalami sedikit peningkatan

dari 1.53 menjadi 1.57. Setelah itu dilakukan testing model menggunakan model

yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix dari

model dataset asli.

Gambar 4.15 Confusion Matrix Dataset Asli

0,00

0,50

1,00

1,50

2,00

2,50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o

ss

Epoch

train val

76

Berdasarkan gambar 4.15, model dataset asli berhasil mengklasifikasikan

RD dengan akurasi 0.46. Model ini masih belum dapat mengklasifikasi kelas 0, 1,

dan kelas 2 dengan baik, dimana prediksi kelas-kelas ini masih banyak yang

tertukar satu sama lain. Untuk kelas 3 dan 4 mampu diklasifikasi oleh model dengan

lebih baik. Hal ini dapat dilihat dari jumlah TP dari kelas 3 dan 4 lebih banyak

dibandingkan kelas yang lain.

4.3.2 Hasil Pelatihan Dataset Cropping

Model dataset cropping menunjukkan adanya underfitting. Nilai akurasi

training jauh lebih rendah dibandingkan nilai akurasi testing. Nilai akurasi training

model dataset cropping hanya mencapai 0.46, sedangkan rata-rata nilai akurasi

testing model dataset cropping adalah 0.55. Berikut adalah grafik loss dan akurasi

dari training model dataset cropping.

Gambar 4.16 Grafik Akurasi Training Dataset Cropping

0,00

0,10

0,20

0,30

0,40

0,50

0,60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

77

Gambar 4.17 Grafik Loss Training dan Validasi Dataset Cropping

Pada gambar 4.16 dapat dilihat grafik model dataset cropping mengalami

sedikit peningkatan akurasi training dari 0.26 menjadi 0.46. Pada gambar 4.17 juga

dapat dilihat grafik model dataset cropping mengalami penurunan loss training dari

1.57 menjadi 0.65, sedangkan nilai loss validasi hanya mengalami sedikit

perubahan dari 1.54 menjadi 1.56. Setelah itu dilakukan testing model

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu

confusion matrix dari model dataset cropping.

Gambar 4.18 Confusion Matrix Dataset Cropping

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o

ss

Epoch

train val

78

Berdasarkan gambar 4.18, model dataset cropping berhasil

mengklasifikasikan RD dengan akurasi 0.49. Model ini masih belum dapat

mengklasifikasi kelas 1 dan 2 dengan baik, dimana TP kelas ini tidak mencapai

setengah dari total citra tes kelas tersebut. Untuk kelas 0 dan kelas 3 mampu

diklasifikasi oleh model dengan lebih baik. Hal ini dapat dilihat dari jumlah TP dari

kelas 0 dan kelas 3 mencapai setengah dari total kelas. Sedangkan untuk kelas 4

dapat diklasifikasi dengan baik oleh model dataset cropping. Hal ini ditunjukkan

dengan angka TP paling tinggi terdapat pada kelas 4.

4.3.3 Hasil Pelatihan Dataset Histeq

Model dataset histeq tidak menunjukkan adanya underfitting atau

overfitting. Hal ini dapat dilihat dari nilai akurasi training dan nilai akurasi testing

yang tidak berbeda jauh. Nilai akurasi training model dataset histeq mencapai 0.43,

sedangkan rata-rata nilai akurasi testing model dataset histeq mencapai 0.46.

Berikut adalah grafik loss dan akurasi dari training model dataset histeq.

Gambar 4.19 Grafik Akurasi Training Dataset Histeq

0,00

0,10

0,20

0,30

0,40

0,50

0,60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

79

Gambar 4.20 Grafik Loss Training dan Validasi Dataset Histeq

Pada gambar 4.19 dapat dilihat grafik model dataset histeq mengalami

sedikit peningkatan akurasi training dari 0.36 menjadi 0.43. Pada gambar 4.20 juga

dapat dilihat grafik model dataset histeq mengalami penurunan loss training yang

signifikan dari 1.50 menjadi 0.61, sedangkan nilai loss validasi mengalami sedikit

peningkatan dari 1.51 menjadi 1.60. Setelah itu dilakukan testing model

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu

confusion matrix dari model dataset histeq.

Gambar 4.21 Confusion Matrix Dataset Histeq

Berdasarkan gambar 4.18, model dataset histeq berhasil mengklasifikasikan

RD dengan akurasi 0.45. Model ini masih belum dapat mengklasifikasi kelas 0 dan

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o

ss

Epoch

train val

80

2 dengan baik, dimana TP kelas ini tidak mencapai setengah dari total citra tes kelas

tersebut. Untuk kelas 1, 3, dan 4 mampu diklasifikasi oleh model dengan lebih baik.

Hal ini dapat dilihat dari jumlah TP dari kelas 1, 3, dan 4 mencapai setengah dari

total kelas.

4.3.4 Hasil Pelatihan Dataset Flipping

Model dataset flipping tidak menunjukkan adanya underfitting atau

overfitting. Hal ini dapat dilihat dari nilai akurasi training dan nilai akurasi testing

yang tidak berbeda jauh. Nilai akurasi training model dataset flipping mencapai

0.91, sedangkan rata-rata nilai akurasi testing model dataset flipping mencapai 0.93.

Berikut adalah grafik loss dan akurasi dari training model dataset flipping.

Gambar 4.22 Grafik Akurasi Training Dataset Flipping

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

81

Gambar 4.23 Grafik Loss Training dan Validasi Dataset Flipping

Pada gambar 4.22 dapat dilihat grafik model dataset flipping mengalami

peningkatan akurasi training yang signifikan dari 0.35 menjadi 0.91. Pada gambar

4.23 juga dapat dilihat grafik model dataset flipping mengalami penurunan loss

training dari 1.51 menjadi 0.59, sedangkan nilai loss validasi mengalami penurunan

dari 1.48 menjadi 0.63. Setelah itu dilakukan testing model menggunakan model

yang telah disimpan sebelumnya. Berikut adalah salah satu confusion matrix dari

model dataset flipping.

Gambar 4.24 Confusion Matrix Dataset Flipping

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o

ss

Epoch

train val

82

Berdasarkan gambar 4.12, model dataset flipping berhasil

mengklasifikasikan penyakit RD dengan akurasi 0.92. Model dataset flipping dapat

mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat dilihat dari hasil

confusion matrix dimana predicted label masing-masing kelas hampir seluruhnya

telah sesuai dengan actual label.

4.3.5 Hasil Pelatihan Dataset Cropping dan Histeq

Model dataset cropping dan histeq menunjukkan adanya underfitting. Hal

ini dapat dilihat dari nilai akurasi training lebih rendah dibandingkan nilai akurasi

testing. Nilai akurasi training model dataset cropping dan histeq hanya mencapai

0.40, sedangkan rata-rata nilai akurasi testing model dataset cropping dan histeq

adalah 0.53. Berikut adalah grafik loss dan akurasi dari training model dataset

cropping dan histeq.

Gambar 4.25 Grafik Akurasi Training Dataset Cropping dan Histeq

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

83

Gambar 4.26 Grafik Loss Training dan Validasi Dataset Cropping dan Histeq

Pada gambar 4.25 dapat dilihat grafik model dataset cropping dan histeq

mengalami peningkatan akurasi training dari 0.19 menjadi 0.40. Pada gambar 4.26

juga dapat dilihat grafik model dataset cropping dan histeq mengalami penurunan

loss training dari 1.50 menjadi 0.62, sedangkan nilai loss validasi mengalami

penurunan dari 2.10 menjadi 1.65. Setelah itu dilakukan testing model

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu

confusion matrix dari model dataset cropping dan histeq.

Gambar 4.27 Confusion Matrix Dataset Cropping dan Histeq

0,00

0,50

1,00

1,50

2,00

2,50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o

ss

Epoch

train test

84

Berdasarkan gambar 4.27, model dataset cropping dan histeq berhasil

mengklasifikasikan RD dengan akurasi 0.57. Model ini masih belum dapat

mengklasifikasi kelas 0 dengan baik, dimana TP kelas ini tidak mencapai setengah

dari total citra tes kelas tersebut. Untuk kelas 1 dan kelas 2 mampu diklasifikasi

oleh model dengan lebih baik. Hal ini dapat dilihat dari jumlah TP dari kelas 1 dan

kelas 2 mencapai setengah dari total kelas. Sedangkan untuk kelas 3 dan kelas 4

mampu diklasifikasi dengan baik, hal ini dapat dilihat dari jumlah TP kelas 3 dan

kelas 4 hampir mencapai total citra tes kelas tersebut.

4.3.6 Hasil Pelatihan Dataset Cropping dan Flipping

Model dataset cropping dan flipping menunjukkan adanya overfitting. Hal

ini dapat dilihat dari nilai akurasi training lebih tinggi dari nilai akurasi testing.

Nilai akurasi training model dataset cropping dan flipping mencapai 0.93,

sedangkan rata-rata nilai akurasi testing model dataset cropping dan flipping

mencapai 0.82. Berikut adalah grafik loss dan akurasi dari training model dataset

cropping dan flipping.

Gambar 4.28 Grafik Akurasi Training Dataset Cropping dan Flipping

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

85

Gambar 4.29 Grafik Loss Training dan Validasi Dataset Cropping dan Flipping

Pada gambar 4.28 dapat dilihat grafik model dataset cropping dan flipping

mengalami peningkatan akurasi training dari 0.41 menjadi 0.93. Pada gambar 4.29

juga dapat dilihat grafik model dataset cropping dan flipping mengalami penurunan

loss training dari 1.50 menjadi 0.59, sedangkan nilai loss validasi mengalami

penurunan dari 1.40 menjadi 0.60. Setelah itu dilakukan testing model

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu

confusion matrix dari model dataset cropping dan flipping.

Gambar 4.30 Confusion Matrix Dataset Cropping dan Flipping

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o

ss

Epoch

train test

86

Berdasarkan gambar 4.30, model dataset cropping dan flipping berhasil

mengklasifikasikan penyakit RD dengan akurasi 0.92. Model dataset cropping dan

flipping dapat mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat

dilihat dari hasil confusion matrix dimana predicted label masing-masing kelas

hampir seluruhnya telah sesuai dengan actual label.

4.3.7 Hasil Pelatihan Dataset Histeq dan Flipping

Model dataset histeq dan flipping menunjukkan adanya overfitting. Hal ini

dapat dilihat dari nilai akurasi training jauh lebih tinggi dari nilai akurasi testing.

Nilai akurasi training model dataset histeq dan flipping mencapai 0.92, sedangkan

rata-rata nilai akurasi testing model dataset histeq dan flipping mencapai 0.69.

Berikut adalah grafik loss dan akurasi dari training model dataset histeq dan

flipping.

Gambar 4.31 Grafik Akurasi Training Dataset Histeq dan Flipping

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

87

Gambar 4.32 Grafik Loss Training dan Validasi Dataset Histeq dan Flipping

Pada gambar 4.31 dapat dilihat grafik model dataset histeq dan flipping

mengalami peningkatan akurasi training dari 0.41 menjadi 0.92. Pada gambar 4.32

juga dapat dilihat grafik model dataset histeq dan flipping mengalami penurunan

loss training dari 1.40 menjadi 0.56, sedangkan nilai loss validasi mengalami

penurunan dari 1.40 menjadi 0.58. Setelah itu dilakukan testing model

menggunakan model yang telah disimpan sebelumnya. Berikut adalah salah satu

confusion matrix dari model dataset histeq dan flipping.

Gambar 4.33 Confusion Matrix Dataset Histeq dan Flipping

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o

ss

Epoch

train test

88

Berdasarkan gambar 4.33, model dataset histeq dan flipping berhasil

mengklasifikasikan penyakit RD dengan akurasi 0.91. Model dataset histeq dan

flipping dapat mengklasifikasikan seluruh kelas RD dengan baik. Hal ini dapat

dilihat dari hasil confusion matrix dimana predicted label masing-masing kelas

hampir seluruhnya telah sesuai dengan actual label.

4.3.8 Hasil Pelatihan Dataset Setelah Preprocessing dan Augmentasi

Model setelah preprocessing dan augmentasi menunjukkan adanya

overfitting. Nilai akurasi training lebih tinggi dibandingkan dengan akurasi testing.

Nilai akurasi training model setelah preprocessing dan augmentasi mencapai 0.93,

sedangkan nilai akurasi testing model setelah preprocessing dan augmentasi rata-

rata hanya mencapai 0.73. Berikut adalah grafik loss dan akurasi dari training

model setelah preprocessing dan augmentasi.

Gambar 4.34 Grafik Akurasi Training Dataset Setelah Preprocessing dan

Augmentasi

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

A
cc

u
ra

cy

Epoch

train

89

Gambar 4.35 Grafik Loss Training dan Validasi Dataset Setelah Preprocessing

dan Augmentasi

Pada gambar 4.34 dapat dilihat grafik model dataset setelah preprocessing

dan augmentasi mengalami peningkatan akurasi training dari 0.38 menjadi 0.93.

Pada gambar 4.35 juga dapat dilihat grafik model dataset setelah preprocessing dan

augmentasi mengalami penurunan loss training dari 1.50 menjadi 0.56, sedangkan

nilai loss validasi mengalami penurunan dari 1.40 menjadi 0.58. Setelah itu

dilakukan testing model menggunakan model yang telah disimpan sebelumnya.

Berikut adalah salah satu confusion matrix dari model dataset setelah preprocessing

dan augmentasi.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
o
ss

Epoch

train val

90

Gambar 4.36 Confusion Matrix Dataset Setelah Preprocessing dan Augmentasi

Berdasarkan gambar 4.36, model dataset setelah preprocessing dan

augmentasi berhasil mengklasifikasikan penyakit RD dengan akurasi 0.92. Model

dataset setelah preprocessing dan augmentasi dapat mengklasifikasikan seluruh

kelas RD dengan baik. Hal ini dapat dilihat dari hasil confusion matrix dimana

predicted label masing-masing kelas hampir seluruhnya telah sesuai dengan actual

label.

4.4 Hasil Pengujian Model Analisis Preprocessing dan Augmentasi Data

Delapan model di atas akan diuji untuk menentukan preprocessing dan

augmentasi data yang memiliki pengaruh terbaik terhadap akurasi model. Dalam

tahap ini, digunakan uji normalitas dan uji statistik. Uji normalitas yang digunakan

pada tahap ini adalah uji Shapiro-Wilk. Uji statistik yang digunakan pada tahap ini

adalah uji ANOVA dan uji Tukey HSD atau uji Kruskal-Wallis dan uji Mann-

Whitney U. Berikut adalah hasil dari uji normalitas dan uji statistik dari delapan

model tersebut.

91

4.4.1 Hasil Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data

Pada tahap ini menggunakan uji Shapiro-Wilk untuk menentukan apakah

sampel akurasi tes berdistribusi normal atau tidak. Nilai alpha yang ditentukan

untuk uji Sapiro-Wilk adalah 0.05. Berikut adalah hipotesis nol dan hipotesis

alternatif yang digunakan dalam uji Shapiro-Wilk:

H0: data berdistribusi normal.

H1: data tidak berdistribusi normal.

Contoh perhitungan uji Shapiro-Wilk pada model flipping:

Data model flipping:

𝑋(1) = 0.913, 𝑋(2) = 0.934, 𝑋(3) = 0.935, 𝑋(4) = 0.935, 𝑋(5) = 0.935

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.913 + 0.934 + 0.935 + 0.935 + 0.935

5

= 0.9304

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.0003792

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5:

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)25
𝑖=1

=
(0.0146212 + 0.0002413)2

0.0003792

= 0.582

92

Karena nilai W lebih kecil dari nilai W untuk p-value 0.01 pada tabel nilai

kritis uji Shapiro-Wilk, maka dianggap nilai p-value lebih kecil dari 0.01. Karena

p-value lebih kecil dibandingkan alpha, maka H0 ditolak, maka dapat disimpulkan

data tidak terdistribusi normal.

Contoh perhitungan uji Shapiro-Wilk pada model asli:

Data model asli:

𝑋(1) = 0.578, 𝑋(2) = 0.589, 𝑋(3) = 0.666, 𝑋(4) = 0.674, 𝑋(5) = 0.694

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.578 + 0.589 + 0.666 + 0.674 + 0.694

5

= 0.6402

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.0111928

Nilai koefisien Shapiro-Wilk untuk 𝑛 = 5:

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)25
𝑖=1

=
0.00952656033681

0.0111928

= 0.851132

Karena nilai W lebih besar dari nilai W untuk p-value 0.10 pada tabel nilai

kritis uji Shapiro-Wilk, maka dianggap p-value lebih tinggi dari 0.10. Karena p-

value lebih besar dibandingkan alpha, maka H0 diterima, maka dapat disimpulkan

bahwa data terdistribusi normal.

93

Tabel 4.5 Hasil Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data

Model p-value Hipotesis

Asli 0.19 H0 diterima

Cropping 0.05 H0 ditolak

Histeq 0.50 H0 diterima

Flipping 0.00 H0 ditolak

Cropping dan Histeq 0.08 H0 diterima

Cropping dan Flipping 0.54 H0 diterima

Histeq dan Flipping 0.73 H0 diterima

Setelah Preprocessing

dan Augmentasi Data
0.37 H0 diterima

Dari tabel 4.5 dapat dilihat bahwa terdapat data yang tidak terdistribusi

normal, yaitu model cropping dan model flipping. Oleh karena itu, pada tahap

selanjutnya akan digunakan uji Kruskal-Wallis.

4.4.2 Hasil Uji Kruskall-Wallis Pengujian Model Analisis Preprocessing dan

Augmentasi Data

Pada tahap ini digunakan uji Kruskal-Wallis untuk menentukan apakah

terdapat perbedaan signifikan antara akurasi tes dari model-model tersebut. Nilai

alpha yang ditentukan untuk uji Kruskal-Wallis adalah 0.05. Berikut adalah

hipotesis nol dan hipotesis alternatif yang digunakan dalam uji ANOVA:

H0: tidak terdapat perbedaan signifikan antara akurasi tes masing-masing

model.

H1: terdapat perbedaan signifikan antara akurasi tes masing-masing model.

Perhitungan uji Kruskal-Wallis Pengujian Model:

Data model:

Asli = 0.694, 0.666, 0.674, 0.589, 0.578

94

Cropping = 0.57, 0.536, 0.536, 0.54, 0.546

Histeq = 0.45, 0.462, 0.442, 0.462, 0.468

Flipping = 0.913, 0.935, 0.935, 0.935, 0.934

Cropping dan histeq = 0.456, 0.54, 0.538, 0.56, 0.568

Cropping dan flipping = 0.823, 0.813, 0.813, 0.81, 0.818

Histeq dan flipping = 0.687, 0.697, 0.682, 0.695, 0.692

Setelah preprocessing dan augmentasi = 0.739, 0.708, 0.731, 0.728, 0.727

Peringkat Sampel Model:

Asli = 23, 18, 19, 17, 16

Cropping = 15, 7, 8, 10.5, 12

Histeq = 2, 4, 1, 5, 6

Flipping = 35, 38, 39, 40, 37

Cropping dan histeq = 3, 10.5, 9, 13, 14

Cropping dan flipping = 35, 33, 32, 31, 34

Histeq dan flipping = 21, 25, 20, 24, 22

Setelah preprocessing dan augmentasi = 30, 26, 29, 27, 28

Total Peringkat masing-masing kelompok:

Asli = 93

Cropping =52.5

Histeq = 18

Flipping = 190

Cropping dan histeq = 49.5

Cropping dan flipping = 165

Histeq dan flipping = 112

Setelah preprocessing dan augmentasi = 140

𝐻 =
12

40(40 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(40 + 1)

𝑘

𝑖=1

95

𝐻 =
12

1640
× (

932

5
+

52.52

5
+

182

5
+

1902

5
+

49.52

5
+

1652

5
+

1122

5
+

1402

5
)

− 123

𝐻 = 37.49

𝑑𝑓 = 𝑁 − 1 = 8 − 1 = 7

Nilai p-value jika 𝑑𝑓 = 7 adalah 0.00. Karena nilai p-value lebih kecil

dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model-model.

Untuk mengetahui model-model yang terdapat perbedaan signifikan, dilakukan uji

Mann-Whitney U.

4.4.3 Hasil Uji Mann-Whitney U Pengujian Model Analisis Preprocessing

dan Augmentasi Data

Sebagai kelanjutan dari uji Kruskal-Wallis, digunakan uji Mann-Whitney U

untuk mengetahui model yang terdapat perbedaan signifikan. Nilai alpha yang

ditentukan untuk uji Mann-Whitney U adalah 0.05. Berikut adalah hipotesis nol dan

hipotesis alternatif yang digunakan dalam uji Mann-Whitney U:

H0: tidak terdapat perbedaan signifikan antara akurasi tes model A dengan

model B.

H1: terdapat perbedaan signifikan antara akurasi tes model A dengan model B.

Perhitungan uji Mann-Whitney U Pengujian Model Analisis Preprocessing

dan Augmentasi Data antara model asli dan model cropping:

Data model:

Asli: 0.578, 0.589, 0.666, 0.674, 0.694

Cropping: 0.536, 0.536, 0.54, 0.546, 0.57

Peringkat Sampel Model:

Asli: 6, 7, 8, 9, 10

96

Cropping: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

Asli: 40

Cropping: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

Nilai U jika menggunakan alpha 0.05 adalah 2. Karena nilai p-value lebih

kecil dibandingkan nilai alpha, maka hipotesis nol ditolak. Oleh karena itu, dapat

disimpulkan bahwa terdapat perbedaan signifikan antara akurasi tes model asli

dengan model cropping.

Perhitungan uji Mann-Whitney U Pengujian Model Analisis Preprocessing

dan Augmentasi Data antara model asli dan model histeq flipping:

Data model:

asli: 0.578, 0.589, 0.666, 0.674, 0.694

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697

97

Peringkat Sampel Model:

asli: 1, 2, 3, 4, 8

histeq flipping: 5, 6, 7, 9, 10

Total Peringkat masing-masing kelompok:

asli: 18

histeq flipping: 37

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 18 = 22

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 37 = 3

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 22 = 3

Nilai U jika menggunakan alpha 0.05 adalah 3. Karena nilai p-value lebih

besar dibandingkan nilai alpha, maka hipotesis nol diterim. Oleh karena itu, dapat

disimpulkan bahwa tidak terdapat perbedaan signifikan antara akurasi tes model

asli dengan model histeq flipping.

Tabel 4.6 Hasil Uji Mann-Whitney U Pengujian Model Analisis Preprocessing

dan Augmentasi Data

Model A Model B p-value Hipotesis

Asli Cropping 0.01 H0 Ditolak

Asli Histeq 0.01 H0 Ditolak

Asli Flipping 0.01 H0 Ditolak

98

Tabel 4.6 Lanjutan

Asli Cropping dan Histeq 0.01 H0 Ditolak

Asli Cropping dan Flipping 0.01 H0 Ditolak

Asli Histeq dan Flipping 0.06 H0 Diterima

Asli
Setelah Preprocessing

dan Augmentasi Data
0.01 H0 Ditolak

Cropping Histeq 0.01 H0 Ditolak

Cropping Flipping 0.01 H0 Ditolak

Cropping Cropping dan Histeq 1.00 H0 Diterima

Cropping Cropping dan Flipping 0.01 H0 Ditolak

Cropping Histeq dan Flipping 0.01 H0 Ditolak

Cropping
Setelah Preprocessing

dan Augmentasi Data
0.01 H0 Ditolak

Histeq Flipping 0.01 H0 Ditolak

Histeq Cropping dan Histeq 0.06 H0 Diterima

Histeq Cropping dan Flipping 0.01 H0 Ditolak

Histeq Histeq dan Flipping 0.01 H0 Ditolak

Histeq
Setelah Preprocessing

dan Augmentasi Data
0.00 H0 Ditolak

Flipping Cropping dan Histeq 0.01 H0 Ditolak

Flipping Cropping dan Flipping 0.01 H0 Ditolak

Flipping Histeq dan Flipping 0.01 H0 Ditolak

Flipping
Setelah Preprocessing

dan Augmentasi Data
0.01 H0 Ditolak

Cropping dan Histeq Cropping dan Flipping 0.01 H0 Ditolak

Cropping dan Histeq Histeq dan Flipping 0.00 H0 Ditolak

Cropping dan Histeq
Setelah Preprocessing

dan Augmentasi Data
0.00 H0 Ditolak

Cropping dan Flipping Histeq dan Flipping 0.01 H0 Ditolak

Cropping dan Flipping
Setelah Preprocessing

dan Augmentasi Data
0.01 H0 Ditolak

99

Tabel 4.6 Lanjutan

Histeq dan Flipping
Setelah Preprocessing

dan Augmentasi Data
0.00 H0 Ditolak

Dari tabel 4.6 dapat dilihat bahwa terdapat perbedaan signifikan di hampir

seluruh dataset. Dimana hanya dataset asli dengan histeq dan flipping, cropping

dengan cropping dan histeq, dan histeq dengan cropping dan histeq yang tidak

berbeda signifikan. Merujuk pada tabel 4.3, model dataset flipping memiliki akurasi

training dan testing yang paling baik, maka preprocessing atau augmentasi yang

terbaik untuk meningkatkan performa model adalah augmentasi flipping tanpa

preprocessing.

100

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berikut kesimpulan dari penelitian ini.

1. Pada penelitian ini telah berhasil dikembangkan model CNN untuk

mengklasifikasi penyakit retinopati diabetik (RR). Model CNN terbaik

untuk mengklasifikasi penyakit RD adalah model YOLO v5Nano,

dengan akurasi train 0.93 dan rata-rata akurasi tes mencapai 0.73.

2. Pada penelitian ini berhasil diterapkan preprocessing dan augmentasi

data untuk meningkatkan performa dari model CNN yang digunakan.

Preprocessing dan augmentasi data terbaik untuk meningkatkan

performa model CNN adalah augmentasi flipping tanpa preprocessing.

Augmentasi flipping mampu meningkatkan akurasi train model YOLO

v5Nano menjadi 0.91 dan akurasi tes mencapai 0.93.

5.2 Saran

Adapun saran dan masukan yang dapat dilakukan sebagai referensi untuk

penelitian selanjutnya yang berkaitan dengan topik penelitian ini adalah sebagai

berikut:

1. Menggunakan dataset yang menunjukkan perbedaan antar kelas dengan

lebih jelas.

2. Menggunakan arsitektur yang berbeda.

3. Menggunakan augmentasi data lebih beragam.

101

DAFTAR PUSTAKA

Al Husaini, M. A. S., Habaebi, M. H., Gunawan, T. S., Islam, M. R., Elsheikh, E.

A. A., & Suliman, F. M. (2022). Thermal-based early breast cancer detection

using inception V3, inception V4 and modified inception MV4. Neural

Computing and Applications, 34(1), 333–348. https://doi.org/10.1007/s00521-

021-06372-1

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,

Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of

deep learning: concepts, CNN architectures, challenges, applications, future

directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-

00444-8

Bi, Q., Goodman, K. E., Kaminsky, J., & Lessler, J. (2019). What is machine

learning? A primer for the epidemiologist. American Journal of Epidemiology,

188(12), 2222–2239. https://doi.org/10.1093/aje/kwz189

Dugas, E., Jared, Jorge, & Cukierski, W. (2015). Diabetic Retinopathy Detection.

Kaggle. https://www.kaggle.com/competitions/diabetic-retinopathy-detection

Fajariyanti, Y. (2017). Perbedaan Quality of Life Pada Penderita Proliferative

Diabetic Retinopathy Dengan dan Tanpa Laser Panretinal Photocoagulation.

Fan, J., Ma, C., & Zhong, Y. (2021). A Selective Overview of Deep Learning.

Statistical Science, 36(2), 264–290. https://doi.org/10.1214/20-STS783

International Diabetes Federation, & The Fred Hollows Foundation. (2015).

Diabetes eye health: A guide for health professionals. www.idf.org/eyecare

Kamal, K., Ez-Zahraouy, H., & Halloum, K. (2023). A comparison between the

VGG16, VGG19 and ResNet50 architecture frameworks for classiication of

normal and CLAHE processed medical images A comparison between the

VGG16, VGG19 and ResNet50 architecture frameworks for classification of

normal and CLAHE processed medical images.

https://doi.org/10.21203/rs.3.rs-2863523/v1

Kementerian Kesehatan Republik Indonesia. (2018). Pedoman Nasional Pelayanan

Kedokteran Retinopati Diabetika.

102

Lin, C. L., & Wu, K. C. (2023). Development of revised ResNet-50 for diabetic

retinopathy detection. BMC Bioinformatics, 24(1).

https://doi.org/10.1186/s12859-023-05293-1

Mishra, B. K., Thakker, D., Mazumdar, S., Neagu, D., Gheorghe, M., & Simpson,

S. (2020). A novel application of deep learning with image cropping: a smart

city use case for flood monitoring. Journal of Reliable Intelligent

Environments, 6(1), 51–61. https://doi.org/10.1007/s40860-020-00099-x

Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey

of modern approaches. In Array (Vol. 16). Elsevier B.V.

https://doi.org/10.1016/j.array.2022.100258

Pramunendar, R. A., Andono, P. N., Soeleman, Moch. A., Prabowo, D. P., &

Pergiwati, D. (2020). Buku Pengenalan Citra 2 Dimensi Menggunakan

MATLAB.

Qummar, S., Khan, F. G., Shah, S., Khan, A., Shamshirband, S., Rehman, Z. U.,

Khan, I. A., & Jadoon, W. (2019). A Deep Learning Ensemble Approach for

Diabetic Retinopathy Detection. IEEE Access, 7, 150530–150539.

https://doi.org/10.1109/ACCESS.2019.2947484

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once:

Unified, Real-Time Object Detection. http://arxiv.org/abs/1506.02640

Russell, S. J., & Norvig, P. (2010). Artificial Intelligence A Modern Approach Third

Edition. www.PlentyofeBooks.net

Shankar, K., Zhang, Y., Liu, Y., Wu, L., & Chen, C. H. (2020). Hyperparameter

Tuning Deep Learning for Diabetic Retinopathy Fundus Image Classification.

IEEE Access, 8, 118164–118173.

https://doi.org/10.1109/ACCESS.2020.3005152

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for

Large-Scale Image Recognition. http://arxiv.org/abs/1409.1556

Sudha, V., & Ganeshbabu, T. R. (2021). A convolutional neural network classifier

VGG-19 architecture for lesion detection and grading in diabetic retinopathy

based on deep learning. Computers, Materials and Continua, 66(1), 827–842.

https://doi.org/10.32604/cmc.2020.012008

103

Sulistiyanti, S. R., Setyawan, F. A., & Komarudin, M. (2016). PENGOLAHAN

CITRA; DASAR DAN CONTOH PENERAPANNYA.

Valverde, C., Garcia, M., Hornero, R., & Lopez-Galvez, M. (2016). Automated

detection of diabetic retinopathy in retinal images. In Indian Journal of

Ophthalmology (Vol. 64, Issue 1, pp. 26–32). Medknow Publications.

https://doi.org/10.4103/0301-4738.178140

Wang, W., & Lo, A. C. Y. (2018). Diabetic retinopathy: Pathophysiology and

treatments. In International Journal of Molecular Sciences (Vol. 19, Issue 6).

MDPI AG. https://doi.org/10.3390/ijms19061816

Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., & Shen, F. (2022). Image Data

Augmentation for Deep Learning: A Survey. http://arxiv.org/abs/2204.08610

104

LAMPIRAN

Lampiran nomor 1:

Kode Arsitektur ResNet-50

import tensorflow as tf

from tensorflow.keras.applications import ResNet50

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, GlobalAveragePooling2D

Load pre-trained ResNet-50 model

base_model = ResNet50(input_shape= (224,224,3),

 include_top = False,

 weights = 'imagenet')

Freeze the layers in the base model (optional)

for layer in base_model.layers:

 layer.trainable = False

last_layer = base_model.get_layer('conv5_block3_out')

print('last layer output shape: ', last_layer.output_shape)

last_output = last_layer.output

from tensorflow.keras.optimizers import Adam

Flatten the output layer to 1 dimension

x = layers.Flatten()(last_output)

x = layers.Dense(512, activation='relu')(x)

x = layers.Dense(512, activation='relu')(x)

x = layers.Dropout(0.4)(x)

x = layers.Dense(5, activation='softmax')(x)

Append the dense network to the base model

model = Model(base_model.input, x)

Compile the model

model.compile(optimizer=Adam(learning_rate=0.0001),

loss='sparse_categorical_crossentropy', metrics=['accuracy'])

105

Lampiran nomor 2:

Kode Arsitektur Inception-v4

def inception_v4_block(x, num1x1, num3x3red, num3x3, num3x3dblred,

num3x3dbl, poolproj, name=None):

 if name is not None:

 conv1_1 = layers.Conv2D(num1x1, (1, 1), padding='same',

activation='relu', name=name + '_1x1')(x)

 conv3_3_reduce = layers.Conv2D(num3x3red, (1, 1),

padding='same', activation='relu', name=name + '_3x3_reduce')(x)

 conv3_3 = layers.Conv2D(num3x3, (3, 3), padding='same',

activation='relu', name=name + '_3x3')(conv3_3_reduce)

 conv3_3dbl_reduce = layers.Conv2D(num3x3dblred, (1, 1),

padding='same', activation='relu', name=name +

'_3x3dbl_reduce')(x)

 conv3_3dbl = layers.Conv2D(num3x3dbl, (3, 3),

padding='same', activation='relu', name=name +

'_3x3dbl')(conv3_3dbl_reduce)

 conv3_3dbl = layers.Conv2D(num3x3dbl, (3, 3),

padding='same', activation='relu', name=name +

'_3x3dbl_2')(conv3_3dbl)

 pool_proj = layers.AveragePooling2D((3, 3), strides=(1,

1), padding='same', name=name + '_pool_proj')(x)

 pool_proj = layers.Conv2D(poolproj, (1, 1),

padding='same', activation='relu', name=name +

'_pool_proj_1x1')(pool_proj)

 output = layers.concatenate([conv1_1, conv3_3, conv3_3dbl,

pool_proj], axis=-1, name=name + '_output')

 else:

 raise ValueError('Blok Inception harus memiliki nama.')

 return output

def inception_v4_model(input_shape=(224, 224, 3), num_classes=5):

 input_layer = layers.Input(shape=input_shape,

name='input_layer')

106

 x = layers.Conv2D(32, (3, 3), strides=(2, 2), padding='valid',

activation='relu', name='conv1_3x3/2')(input_layer)

 x = layers.Conv2D(32, (3, 3), padding='valid',

activation='relu', name='conv2_3x3/1')(x)

 x = layers.Conv2D(64, (3, 3), padding='same',

activation='relu', name='conv3_3x3/1')(x)

 x = layers.MaxPooling2D((3, 3), strides=(2, 2),

name='maxpool1_3x3/2')(x)

 x = layers.Conv2D(80, (1, 1), padding='same',

activation='relu', name='conv4_1x1/1')(x)

 x = layers.Conv2D(192, (3, 3), padding='valid',

activation='relu', name='conv5_3x3/1')(x)

 x = layers.MaxPooling2D((3, 3), strides=(2, 2),

name='maxpool2_3x3/2')(x)

 x = inception_v4_block(x, 64, 96, 128, 16, 32, 32,

name='inception_a')

 x = inception_v4_block(x, 64, 96, 128, 16, 32, 32,

name='inception_b')

 x = inception_v4_block(x, 64, 96, 128, 16, 32, 32,

name='inception_c')

 x = inception_v4_block(x, 384, 192, 448, 512, 256, 256,

name='inception_d')

 x = layers.GlobalAveragePooling2D(name='avg_pool')(x)

 x = layers.Dense(num_classes, activation='softmax',

name='output')(x)

 model = Model(inputs=input_layer, outputs=x,

name='inception_v4')

 return model

Buat model Inception-v4 dengan ukuran input 224x224

model = inception_v4_model(input_shape=(224, 224, 3))

Compile the model

107

model.compile(optimizer=Adam(lr=0.0001),

loss='sparse_categorical_crossentropy', metrics=['accuracy'])

108

Lampiran nomor 3:

Kode Arsitektur VGG-19

from tensorflow.keras.applications import VGG19

from tensorflow.keras.layers import Input, Flatten, Dense, Dropout

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

Create an Input layer for your data

input_layer = Input(shape=(224, 224, 3))

Instantiate the VGG19 model with weights pre-trained on ImageNet

base_model = VGG19(weights='imagenet',

 include_top=False,

 input_tensor=input_layer)

Freeze the layers in the pre-trained model

for layer in base_model.layers:

 layer.trainable = False

Get the output of the desired layer from the InceptionV4 model

last_layer = base_model.get_layer('block5_pool')

print('last layer output shape: ', last_layer.output_shape)

last_output = last_layer.output

Get the output of the last layer from the VGG19 model

last_layer = base_model.get_layer('block5_pool')

Flatten the output layer to 1 dimension

x = Flatten()(last_layer.output)

x = Dense(512, activation='relu')(x)

x = Dense(512, activation='relu')(x)

x = Dropout(0.4)(x)

output = Dense(5, activation='softmax')(x)

Create the custom model by specifying the input and output

layers

model = Model(inputs=input_layer, outputs=output)

Print the model summary

109

model.summary()

Compile the model

model.compile(optimizer=Adam(lr=0.0001),

loss='sparse_categorical_crossentropy', metrics=['accuracy'])

110

Lampiran nomor 4:

Kode Arsitektur YOLO v5Nano

def train(opt, device):

 """Trains a YOLOv5 model, managing datasets, model

optimization, logging, and saving checkpoints."""

 init_seeds(opt.seed + 1 + RANK, deterministic=True)

 save_dir, data, bs, epochs, nw, imgsz, pretrained = (

 opt.save_dir,

 Path(opt.data),

 opt.batch_size,

 opt.epochs,

 min(os.cpu_count() - 1, opt.workers),

 opt.imgsz,

 str(opt.pretrained).lower() == "true",

)

 cuda = device.type != "cpu"

 # Directories

 wdir = save_dir / "weights"

 wdir.mkdir(parents=True, exist_ok=True) # make dir

 last, best = wdir / "last.pt", wdir / "best.pt"

 # Save run settings

 yaml_save(save_dir / "opt.yaml", vars(opt))

 # Logger

 logger = GenericLogger(opt=opt, console_logger=LOGGER) if RANK

in {-1, 0} else None

 # Download Dataset

 with torch_distributed_zero_first(LOCAL_RANK),

WorkingDirectory(ROOT):

 data_dir = data if data.is_dir() else (DATASETS_DIR /

data)

 if not data_dir.is_dir():

 LOGGER.info(f"\nDataset not found , missing path

{data_dir}, attempting download...")

 t = time.time()

 if str(data) == "imagenet":

111

 subprocess.run(["bash", str(ROOT /

"data/scripts/get_imagenet.sh")], shell=True, check=True)

 else:

 url =

f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{da

ta}.zip"

 download(url, dir=data_dir.parent)

 s = f"Dataset download success ({time.time() -

t:.1f}s), saved to {colorstr('bold', data_dir)}\n"

 LOGGER.info(s)

 # Dataloaders

 nc = len([x for x in (data_dir / "train").glob("*") if

x.is_dir()]) # number of classes

 trainloader = create_classification_dataloader(

 path=data_dir / "train",

 imgsz=imgsz,

 batch_size=bs // WORLD_SIZE,

 augment=True,

 cache=opt.cache,

 rank=LOCAL_RANK,

 workers=nw,

)

 test_dir = data_dir / "test" if (data_dir / "test").exists()

else data_dir / "val" # data/test or data/val

 if RANK in {-1, 0}:

 testloader = create_classification_dataloader(

 path=test_dir,

 imgsz=imgsz,

 batch_size=bs // WORLD_SIZE * 2,

 augment=False,

 cache=opt.cache,

 rank=-1,

 workers=nw,

)

 # Model

112

 with torch_distributed_zero_first(LOCAL_RANK),

WorkingDirectory(ROOT):

 if Path(opt.model).is_file() or opt.model.endswith(".pt"):

 model = attempt_load(opt.model, device="cpu",

fuse=False)

 elif opt.model in torchvision.models.__dict__: #

TorchVision models i.e. resnet50, efficientnet_b0

 model =

torchvision.models.__dict__[opt.model](weights="IMAGENET1K_V1" if

pretrained else None)

 else:

 m = hub.list("ultralytics/yolov5") # +

hub.list('pytorch/vision') # models

 raise ModuleNotFoundError(f"--model {opt.model} not

found. Available models are: \n" + "\n".join(m))

 if isinstance(model, DetectionModel):

 LOGGER.warning("WARNING pass YOLOv5 classifier

model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'")

 model = ClassificationModel(model=model, nc=nc,

cutoff=opt.cutoff or 10) # convert to classification model

 reshape_classifier_output(model, nc) # update class count

 for m in model.modules():

 if not pretrained and hasattr(m, "reset_parameters"):

 m.reset_parameters()

 if isinstance(m, torch.nn.Dropout) and opt.Dropout is not

None:

 m.p = opt.Dropout # set Dropout

 for p in model.parameters():

 p.requires_grad = True # for training

 model = model.to(device)

 # Info

 if RANK in {-1, 0}:

 model.names = trainloader.dataset.classes # attach class

names

 model.transforms = testloader.dataset.torch_transforms #

attach inference transforms

 model_info(model)

 if opt.verbose:

113

 LOGGER.info(model)

 images, labels = next(iter(trainloader))

 file = imshow_cls(images[:25], labels[:25],

names=model.names, f=save_dir / "train_images.jpg")

 logger.log_images(file, name="Train Examples")

 logger.log_graph(model, imgsz) # log model

 # Optimizer

 optimizer = smart_optimizer(model, opt.optimizer, opt.lr0,

momentum=0.9, decay=opt.decay)

 # Scheduler

 lrf = 0.01 # final lr (fraction of lr0)

 # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) *

(1 - lrf) + lrf # cosine

 lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear

 scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

 # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0,

total_steps=epochs, pct_start=0.1,

 # final_div_factor=1 / 25 /

lrf)

 # EMA

 ema = ModelEMA(model) if RANK in {-1, 0} else None

 # DDP mode

 if cuda and RANK != -1:

 model = smart_DDP(model)

 # Train

 t0 = time.time()

 criterion =

smartCrossEntropyLoss(label_smoothing=opt.label_smoothing) # loss

function

 best_fitness = 0.0

 scaler = amp.GradScaler(enabled=cuda)

 val = test_dir.stem # 'val' or 'test'

 LOGGER.info(

 f'Image sizes {imgsz} train, {imgsz} test\n'

114

 f'Using {nw * WORLD_SIZE} dataloader workers\n'

 f"Logging results to {colorstr('bold', save_dir)}\n"

 f'Starting {opt.model} training on {data} dataset with

{nc} classes for {epochs} epochs...\n\n'

f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12

}{'top1_acc':>12}{'top5_acc':>12}"

)

 for epoch in range(epochs): # loop over the dataset multiple

times

 tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val

loss, fitness

 model.train()

 if RANK != -1:

 trainloader.sampler.set_epoch(epoch)

 pbar = enumerate(trainloader)

 if RANK in {-1, 0}:

 pbar = tqdm(enumerate(trainloader),

total=len(trainloader), bar_format=TQDM_BAR_FORMAT)

 for i, (images, labels) in pbar: # progress bar

 images, labels = images.to(device, non_blocking=True),

labels.to(device)

 # Forward

 with amp.autocast(enabled=cuda): # stability issues

when enabled

 loss = criterion(model(images), labels)

 # Backward

 scaler.scale(loss).backward()

 # Optimize

 scaler.unscale_(optimizer) # unscale gradients

 torch.nn.utils.clip_grad_norm_(model.parameters(),

max_norm=10.0) # clip gradients

 scaler.step(optimizer)

 scaler.update()

 optimizer.zero_grad()

 if ema:

115

 ema.update(model)

 if RANK in {-1, 0}:

 # Print

 tloss = (tloss * i + loss.item()) / (i + 1) #

update mean losses

 mem = "%.3gG" % (torch.cuda.memory_reserved() /

1e9 if torch.cuda.is_available() else 0) # (GB)

 pbar.desc = f"{f'{epoch +

1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}" + " " * 36

 # Test

 if i == len(pbar) - 1: # last batch

 top1, top5, vloss = validate.run(

 model=ema.ema, dataloader=testloader,

criterion=criterion, pbar=pbar

) # test accuracy, loss

 fitness = top1 # define fitness as top1

accuracy

 # Scheduler

 scheduler.step()

 # Log metrics

 if RANK in {-1, 0}:

 # Best fitness

 if fitness > best_fitness:

 best_fitness = fitness

 # Log

 metrics = {

 "train/loss": tloss,

 f"{val}/loss": vloss,

 "metrics/accuracy_top1": top1,

 "metrics/accuracy_top5": top5,

 "lr/0": optimizer.param_groups[0]["lr"],

 } # learning rate

 logger.log_metrics(metrics, epoch)

116

 # Save model

 final_epoch = epoch + 1 == epochs

 if (not opt.nosave) or final_epoch:

 ckpt = {

 "epoch": epoch,

 "best_fitness": best_fitness,

 "model": deepcopy(ema.ema).half(), #

deepcopy(de_parallel(model)).half(),

 "ema": None, # deepcopy(ema.ema).half(),

 "updates": ema.updates,

 "optimizer": None, # optimizer.state_dict(),

 "opt": vars(opt),

 "git": GIT_INFO, # {remote, branch, commit}

if a git repo

 "date": datetime.now().isoformat(),

 }

 # Save last, best and delete

 torch.save(ckpt, last)

 if best_fitness == fitness:

 torch.save(ckpt, best)

 del ckpt

 # Train complete

 if RANK in {-1, 0} and final_epoch:

 LOGGER.info(

 f'\nTraining complete ({(time.time() - t0) / 3600:.3f}

hours)'

 f"\nResults saved to {colorstr('bold', save_dir)}"

 f'\nPredict: python classify/predict.py --

weights {best} --source im.jpg'

 f'\nValidate: python classify/val.py --weights

{best} --data {data_dir}'

 f'\nExport: python export.py --weights {best}

--include onnx'

 f"\nPyTorch Hub: model =

torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"

 f'\nVisualize: https://netron.app\n'

)

117

 # Plot examples

 images, labels = (x[:25] for x in next(iter(testloader)))

first 25 images and labels

 pred = torch.max(ema.ema(images.to(device)), 1)[1]

 file = imshow_cls(images, labels, pred,

de_parallel(model).names, verbose=False, f=save_dir /

"test_images.jpg")

 # Log results

 meta = {"epochs": epochs, "top1_acc": best_fitness,

"date": datetime.now().isoformat()}

 logger.log_images(file, name="Test Examples (true-

predicted)", epoch=epoch)

 logger.log_model(best, epochs, metadata=meta)

118

Lampiran nomor 5:

Perhitungan Uji Shapiro Wilk Pengujian Model Inception-v4

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.4525 + 0.4435 + 0.4395 + 0.4465 + 0.4355

5

= 0.44

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.00017

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

=
(0.0112982 + 0.0016891)2

0.00017

= 0.992

119

Lampiran nomor 6:

Perhitungan Uji Shapiro Wilk Pengujian Model YOLO v5Nano

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.739, +0.708 + 0.731 + 0.728 + 0.727

5

= 0.7266

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.0005212

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(𝑛+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 𝑛
𝑖=1

=
(0.0206026 + 0.0009652)2

0.0005212

= 0.892498

120

Lampiran Nomor 7:

Perhitungan Uji Mann-Whitney U Pengujian Model ResNet-50 dan Inception-v4

Data model:

ResNet-50: 0.407, 0.4085, 0.409, 0.41, 0.418

Inception-v4: 0.4355, 0.4395, 0.4435, 0.4465, 0.4525

Peringkat Sampel Model:

ResNet-50: 1, 2, 3, 4, 5

Inception-v4: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

ResNet-50: 15

Inception-v4: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

121

Lampiran Nomor 8:

Perhitungan Uji Mann-Whitney U Pengujian Model Inception-v4 dan VGG-19

Data model:

Inception-v4: 0.4355, 0.4395, 0.4435, 0.4465, 0.4525

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72

Peringkat Sampel Model:

Inception: 5, 6, 7, 8, 9

VGG-19: 1, 2, 3, 4, 10

Total Peringkat masing-masing kelompok:

Inception-v4: 35

VGG-19: 20

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 35 = 5

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 20 = 20

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 20 = 5

122

Lampiran Nomor 9:

Perhitungan Uji Mann-Whitney U Pengujian Model Inception-v4 dan YOLO

v5Nano

Data model:

Inception-v4: 0.4355, 0.4395, 0.4435, 0.4465, 0.4525

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739

Peringkat Sampel Model:

Inception-v4: 1, 2, 3, 4, 5

YOLO v5Nano: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

Inception-v4: 15

YOLO v5Nano: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

123

Lampiran Nomor 10:

Perhitungan Uji Mann-Whitney U Pengujian Model VGG-19 dan YOLO v5Nano

Data model:

VGG-19: 0.1875, 0.1915, 0.2135, 0.2165, 0.72

YOLO v5Nano: 0.708, 0.727, 0.728, 0.729, 0.739

Peringkat Sampel Model:

VGG-19: 1, 2, 3, 4, 6

YOLO v5Nano: 5, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

VGG-19: 16

YOLO v5Nano: 39

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 16 = 24

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 39 = 1

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 24 = 1

124

Lampiran Nomor 11:

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.57 + 0.536 + 0.536 + 0.54 + 0.546

5

= 0.5456

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.000811

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

=
(0.022596 + 0.002413)2

0.000811

= 0.77

125

Lampiran Nomor 12:

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.442 + 0.45 + 0.462 + 0.462 + 0.468

5

= 0.4568

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.000445

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

=
(0.01728 + 0.002896)2

0.000455

= 0.92

126

Lampiran Nomor 13:

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Histeq

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.456 + 0.538 + 0.54 + 0.56 + 0.568

5

= 0.5324

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.007955

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

=
(0.074435 + 0.005309)2

0.007955

= 0.799361

127

Lampiran Nomor 14:

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Flipping

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.81 + 0.813 + 0.813 + 0.818 + 0.823

5

= 0.8154

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.000105

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

=
(0.00864 + 0.001207)2

0.000105

= 0.921574

128

Lampiran Nomor 15:

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq dan Flipping

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.682 + 0.687 + 0.692 + 0.695 + 0.697

5

= 0.6906

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.000149

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

=
(0.009969 + 0.00193)2

0.000105

= 0.949033

129

Lampiran Nomor 16:

Perhitungan Uji Shapiro-Wilk Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Setelah Preprocessing dan Augmentasi

𝑋̅ =
1

5
∑ 𝑋𝑖

5

𝑖=1
=

0.708 + 0.727 + 0.728 + 0.731 + 0.739

5

= 0.7266

𝑆2 = ∑ (𝑋𝑖 − 𝑋̅)2
5

𝑖=1

= 0.000521

𝑎1 = 0.6646, 𝑎2 = 0.2413

𝑊 =
(∑ 𝑎𝑖(𝑋(5+1−𝑖) − 𝑋𝑖)

2
𝑖=1)2

∑ (𝑋𝑖 − 𝑋̅)2 5
𝑖=1

=
(0.020603 + 0.000965)2

0.000521

= 0.892498

130

Lampiran Nomor 17:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Asli dan Model Histeq

Data model:

asli: 0.578, 0.589, 0.666, 0.674, 0.694

histeq: 0.536, 0.536, 0.54, 0.546, 0.57

Peringkat Sampel Model:

asli: 6, 7, 8, 9, 10

histeq: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

asli: 40

histeq: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

131

Lampiran Nomor 18:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Asli dan Model Flipping

Data model:

asli: 0.578, 0.589, 0.666, 0.674, 0.694

flipping: 0.913, 0.934, 0.935, 0.935, 0.935

Peringkat Sampel Model:

asli: 1, 2, 3, 4, 5

flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

asli: 15

flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

132

Lampiran Nomor 19:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Asli dan Model Cropping dan Histeq

Data model:

asli: 0.578, 0.589, 0.666, 0.674, 0.694

cropping dan histeq: 0.456, 0.538, 0.54, 0.56, 0.568

Peringkat Sampel Model:

asli: 6, 7, 8, 9, 10

flipping: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

asli: 40

flipping: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

133

Lampiran Nomor 20:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Asli dan Model Cropping dan Flipping

Data model:

asli: 0.578, 0.589, 0.666, 0.674, 0.694

cropping dan histeq: 0.81, 0.813, 0.813, 0.818, 0.823

Peringkat Sampel Model:

asli: 1, 2, 3, 4, 5

flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

asli: 15

flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

134

Lampiran Nomor 20:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Asli dan Model Setelah Preprocessing dan Augmentasi

Data model:

asli: 0.578, 0.589, 0.666, 0.674, 0.694

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739

Peringkat Sampel Model:

asli: 1, 2, 3, 4, 5

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

asli: 15

setelah preprocessing dan augmentasi: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

135

Lampiran Nomor 21:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Model Histeq

Data model:

cropping: 0.536, 0.536, 0.54, 0.546, 0.57

histeq: 0.442, 0.45, 0.462, 0.462, 0.468

Peringkat Sampel Model:

cropping: 6, 7, 8, 9, 10

histeq: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

cropping: 40

histeq: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

136

Lampiran Nomor 22:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Model Flipping

Data model:

cropping: 0.536, 0.536, 0.54, 0.546, 0.57

flipping: 0.913, 0.934, 0.935, 0.935, 0.935

Peringkat Sampel Model:

cropping: 1, 2, 3, 4, 5

flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

cropping: 15

flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

137

Lampiran Nomor 23:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Model Cropping Histeq

Data model:

cropping: 0.536, 0.536, 0.54, 0.546, 0.57

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568

Peringkat Sampel Model:

cropping: 2, 3, 5.5, 7, 10

cropping histeq: 1, 4, 5.5, 8, 9

Total Peringkat masing-masing kelompok:

cropping: 27.5

histeq: 27.5

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 27.5 = 12.5

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 12.5 = 12.5

138

Lampiran Nomor 24:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Model Cropping Flipping

Data model:

cropping: 0.536, 0.536, 0.54, 0.546, 0.57

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823

Peringkat Sampel Model:

cropping: 1, 2, 3, 4, 5

cropping flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

cropping: 15

cropping flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

139

Lampiran Nomor 25:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Model Histeq Flipping

Data model:

cropping: 0.536, 0.536, 0.54, 0.546, 0.57

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697

Peringkat Sampel Model:

cropping: 1, 2, 3, 4, 5

histeq flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

cropping: 15

histeq flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

140

Lampiran Nomor 26:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping dan Model Setelah Preprocessing dan

Augmentasi

Data model:

cropping: 0.536, 0.536, 0.54, 0.546, 0.57

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739

Peringkat Sampel Model:

cropping: 1, 2, 3, 4, 5

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

cropping: 15

setelah preprocessing dan augmentasi: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

141

Lampiran Nomor 27:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq dan Model Flipping

Data model:

histeq: 0.442, 0.45, 0.462, 0.462, 0.468

flipping: 0.913, 0.934, 0.935, 0.935, 0.935

Peringkat Sampel Model:

histeq: 1, 2, 3, 4, 5

flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

histeq: 15

flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

142

Lampiran Nomor 28:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq dan Model Cropping Histeq

Data model:

histeq: 0.442, 0.45, 0.462, 0.462, 0.468

flipping: 0.456, 0.538, 0.54, 0.56, 0.568

Peringkat Sampel Model:

histeq: 1, 2, 4, 5, 6

flipping: 3, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

histeq: 20

flipping: 35

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 20 = 20

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 35 = 5

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 20 = 5

143

Lampiran Nomor 29:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq dan Model Cropping Flipping

Data model:

histeq: 0.442, 0.45, 0.462, 0.462, 0.468

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823

Peringkat Sampel Model:

histeq: 1, 2, 3, 4, 5

cropping flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

histeq: 15

cropping flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

144

Lampiran Nomor 30:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq dan Model Histeq Flipping

Data model:

histeq: 0.442, 0.45, 0.462, 0.462, 0.468

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697

Peringkat Sampel Model:

histeq: 1, 2, 3, 4, 5

histeq flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

histeq: 15

histeq flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

145

Lampiran Nomor 31:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq dan Model Setelah Preprocessing dan

Augmentasi

Data model:

histeq: 0.442, 0.45, 0.462, 0.462, 0.468

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739

Peringkat Sampel Model:

histeq: 1, 2, 3, 4, 5

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

histeq: 15

setelah preprocessing dan augmentasi: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

146

Lampiran Nomor 32:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Flipping dan Model Cropping Histeq

Data model:

flipping: 0.913, 0.934, 0.935, 0.935, 0.935

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568

Peringkat Sampel Model:

flipping: 6, 7, 8, 9, 10

cropping histeq: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

flipping: 40

cropping histeq: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

147

Lampiran Nomor 33:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Flipping dan Model Cropping Flipping

Data model:

flipping: 0.913, 0.934, 0.935, 0.935, 0.935

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823

Peringkat Sampel Model:

flipping: 6, 7, 8, 9, 10

cropping flipping: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

flipping: 40

cropping flipping: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

148

Lampiran Nomor 34:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Flipping dan Model Histeq Flipping

Data model:

flipping: 0.913, 0.934, 0.935, 0.935, 0.935

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697

Peringkat Sampel Model:

flipping: 6, 7, 8, 9, 10

histeq flipping: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

flipping: 40

histeq flipping: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

149

Lampiran Nomor 35:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Flipping dan Model Setelah Preprocessing dan

Augmentasi

Data model:

flipping: 0.913, 0.934, 0.935, 0.935, 0.935

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739

Peringkat Sampel Model:

flipping: 6, 7, 8, 9, 10

setelah preprocessing dan augmentasi: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

flipping: 40

setelah preprocessing dan augmentasi: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

150

Lampiran Nomor 36:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping Histeq dan Model Cropping Flipping

Data model:

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823

Peringkat Sampel Model:

cropping histeq: 1, 2, 3, 4, 5

cropping flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

cropping histeq: 15

cropping flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

151

Lampiran Nomor 37:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping Histeq dan Model Histeq Flipping

Data model:

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697

Peringkat Sampel Model:

cropping histeq: 1, 2, 3, 4, 5

histeq flipping: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

cropping histeq: 15

histeq flipping: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

152

Lampiran Nomor 38:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping Histeq dan Model Setelah Preprocessing dan

Augmentasi

Data model:

cropping histeq: 0.456, 0.538, 0.54, 0.56, 0.568

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739

Peringkat Sampel Model:

cropping histeq: 1, 2, 3, 4, 5

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

cropping histeq: 15

setelah preprocessing dan augmentasi: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

153

Lampiran Nomor 39:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping Flipping dan Model Histeq Flipping

Data model:

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697

Peringkat Sampel Model:

cropping flipping: 6, 7, 8, 9, 10

histeq flipping: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

cropping flipping: 40

histeq flipping: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

154

Lampiran Nomor 40:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Cropping Flipping dan Model Setelah Preprocessing

dan Augmentasi

Data model:

cropping flipping: 0.81, 0.813, 0.813, 0.818, 0.823

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739

Peringkat Sampel Model:

cropping flipping: 6, 7, 8, 9, 10

setelah preprocessing dan augmentasi: 1, 2, 3, 4, 5

Total Peringkat masing-masing kelompok:

cropping flipping: 40

setelah preprocessing dan augmentasi: 15

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

155

Lampiran Nomor 40:

Perhitungan Uji Mann-Whitney Pengujian Model Analisis Preprocessing dan

Augmentasi Data Model Histeq Flipping dan Model Setelah Preprocessing dan

Augmentasi

Data model:

histeq flipping: 0.682, 0.687, 0.692, 0.695, 0.697

setelah preprocessing dan augmentasi: 0.708, 0.727, 0.728, 0.731, 0.739

Peringkat Sampel Model:

histeq flipping: 1, 2, 3, 4, 5

setelah preprocessing dan augmentasi: 6, 7, 8, 9, 10

Total Peringkat masing-masing kelompok:

histeq flipping: 15

setelah preprocessing dan augmentasi: 40

𝑈 = 𝑛1 × 𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1

𝑈 = 25 +
5(5 + 1)

2
− 15 = 25

atau

𝑈 = 𝑛1 × 𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2

𝑈 = 25 +
5(5 + 1)

2
− 40 = 0

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑛1 × 𝑛2 − 𝑈𝑡𝑒𝑟𝑏𝑒𝑠𝑎𝑟 = 25 − 25 = 0

