
STUDI MACHINE LEARNING MENGGUNAKAN ARDUINO NANO 33

SENSE

 Ferdinand Vincent Halim

 NIM: 312110019

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2025

i

KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas segala

rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan laporan penelitian

yang berjudul "Studi Penerapan Machine Learning pada Arduino Nano 33 BLE

Sense." Penelitian ini disusun sebagai salah satu syarat untuk menyelesaikan

program studi di Fakultas Teknologi dan Desain, Universitas Ma Chung. Penelitian

ini bertujuan untuk mengembangkan sistem berbasis machine learning pada

perangkat Arduino Nano 33 BLE Sense, yang diharapkan dapat berkontribusi

dalam pengembangan teknologi IoT dan memberikan solusi praktis dalam berbagai

bidang aplikasi sensorik.

Penulis menyadari bahwa penelitian ini tidak akan dapat terselesaikan tanpa

bantuan, bimbingan, dan dukungan dari berbagai pihak. Oleh karena itu, pada

kesempatan ini penulis ingin mengucapkan terima kasih yang sebesar-besarnya

kepada:

1. Bapak Prof. Dr.Eng. Romy Budhi Widodo, selaku dosen pembimbing,

yang telah memberikan bimbingan, arahan, serta motivasi selama proses

penelitian hingga penyusunan laporan ini.

2. Rekan-rekan mahasiswa, yang selalu memberikan dukungan dan

kerjasama selama masa studi.

3. Keluarga tercinta, yang selalu memberikan doa, dukungan, dan motivasi

tanpa henti kepada penulis.

Penulis menyadari bahwa laporan ini masih jauh dari sempurna, oleh karena

itu kritik dan saran yang membangun sangat penulis harapkan untuk perbaikan di

masa mendatang. Semoga laporan penelitian ini dapat memberikan manfaat bagi

kita semua, khususnya dalam pengembangan teknologi dan penerapan machine

learning pada perangkat IoT di berbagai bidang.

Malang, Mei 2025

Ferdinand Vincent Halim

ii

DAFTAR ISI

KATA PENGANTAR i

DAFTAR ISI ii

DAFTAR GAMBAR iv

Bab I 1

Pendahuluan 1

1.1. Latar Belakang .. 1

1.2. Batasan Masalah .. 3

1.3. Tujuan ... 3

1.4. Manfaat ... 3

Bab II 4

Gambaran Umum Perusahaan 4

2.1. Ma Chung Human-Machine Interaction Research Center 4

2.2. Visi dan Misi Ma Chung Human-Machine Interaction Research Center

 ... 5

2.3. Struktur Organisasi Ma Chung Human-Machine Interaction Research

Center ... 5

2.4. Publikasi Ilmiah Ma Chung HMI Research Center 6

Bab III 8

Tinjauan Pustaka 8

3.1. Rujukan Pustaka ... 8

3.2. Penjelasan Istilah Asing ... 8

3.3. Arduino Nano 33 Sense BLE ... 9

3.4. Machine Learning ... 11

3.5. Deep Learning ... 13

iii

3.6. TensorFlow Lite .. 20

3.7. Tiny Machine Learning (TinyML) ... 25

3.8. Internet of Things (IoT) ... 32

Bab IV 37

Deskripsi Data Dan Hasil Praktik Kerja Lapangan 37

4.1. Metode atau Prosedur yang Digunakan .. 37

5.1. Perancangan Deep Learning .. 40

5.2. Konversi Model ke Perangkat .. 63

5.3. Inference ... 69

Bab V 75

Penutup 75

5.1. Kesimpulan .. 75

5.2. Saran ... 76

Daftar Pustaka ... 78

iv

DAFTAR GAMBAR

Gambar 2. 1 Struktur Organisasi dari Rektor hingga pusat studi 6

Gambar 3. 1 Arduino Nano 33 Sense BLE 9

Gambar 3. 2 Machine Learning 12

Gambar 3. 3 Contoh Arsitektur Deep Learning 13

Gambar 3. 4 Internet of Things 33

Gambar 4. 1 Prosedur Yang Digunakan 37

Gambar 4. 2 Library 40

Gambar 4. 3 Kode untuk membuat 1000 data sinus secara random 41

Gambar 4. 4 Hasil Plot dari kode sebelumnya 43

Gambar 4. 5 Pembagian dataset dan proses Training 43

Gambar 4. 6 Hasil Dataset Sinus 45

Gambar 4. 7 Membuat model sequential 45

Gambar 4. 8 Arsitektur Model Neural Network 47

Gambar 4. 9 Kode Proses pelatihan model Neural Network 47

Gambar 4. 10 Output Hasil Training Model Meural Network 48

Gambar 4. 11 Kode Untuk Visualisasi Loss Selama Proses Pelatihan 48

Gambar 4. 12 Hasil Grafik Loss selama proses training dan validasi Model Neural

Network 49

Gambar 4. 13 Kode Untuk Visualisasi Training Loss dan Validasi 50

Gambar 4. 14 Grafik Training Loss dan Validation 51

Gambar 4. 15 Kode untuk visualisasi Mean Absolute Error 51

Gambar 4. 16 Pelatihan Dan validasi Mean Absolute Error 52

Gambar 4. 17 Kode untuk membuat plot prediksi 53

Gambar 4. 18 Kode untuk membuat Model 2 54

Gambar 4. 19 Kode untuk pelatihan Model 2 55

Gambar 4. 20 Kode Untuk menampilkan hasil loss pada model 2 56

Gambar 4. 21 Kode untuk menggambarkan proses training dan validasi diatas 100

epoch 58

Gambar 4. 22 Kode untuk menggambarkan Mean Absolute Error 59

v

Gambar 4. 23 Kode untuk menampilkan perbedaan antara prediksi dan Actualnya

 60

Gambar 4. 24 Kode untuk menkonversi Model Keras ke TFLite 62

Gambar 4. 25 Potongan Kode untuk Menginisialisasi Model TensorFlow Lite 67

Gambar 4. 26 Kode Untuk menjalankan inferensi pada Model TensorFlow Lite 68

Gambar 4. 27 Kode untuk memuat model ke dalam interpreter 70

Gambar 4. 28 Kode untuk menjalankan inference 71

Gambar 4. 29 Kode untuk mengambil nilai output 71

Gambar 4. 30 Kode untuk menangani hasil inferensi 72

Gambar 4. 31 Tampilan Papan Arduino Nano 33 BLE 73

1

Bab I

Pendahuluan

1.1. Latar Belakang

Di era digital yang semakin berkembang, penggunaan mikrokontroler

seperti Raspberry Pi dan Arduino Uno telah menjadi komponen vital dalam

berbagai aplikasi Teknologi. Raspberry Pi, dengan kemampuan komputasi yang

setara komputer mini, telah diimplementasikan dalam proyek-proyek mulai dari

sistem otomasi rumah hingga stasiun pemantau cuaca. Sementara itu, Arduino Uno

dengan arsitektur sederhananya telah menjadi pilihan utama para pengembang

untuk proyek elektronika dan robotika skala kecil hingga menengah. Kedua

platform ini menawarkan fleksibilitas tinggi dengan harga terjangkau,

memungkinkan innovator dan peneliti mengembangkan Solusi Teknologi yang

dapat diterapkan dalam kehidupan sehari-hari.

Seiring dengan revolusi industry 4.0, kebutuhan akan sistem cerdas yang

mampu belajar dan beradaptasi semakin meningkat. Machine learning hadir sebagai

Solusi untuk menganalisis data dalam jumlah besar dan menghasilkan prediksi atau

keputusan yang akurat. Dalam konteks industry, kemampuan machine learning

untuk mendeteksi anomali, mengoptimalkan proses produksi, dan melakukan

prediksi perawatan telah terbukti meningkatkan efisiensi dan mengurangi biaya

operasional. Integrasi machine learning dengan perangkat mikrokontroler

membuka peluang baru dalam pengembangan sistem cerdas yang dapat beroperasi

secara mandiri di edge device, mengurangi ketergantungan pada koneksi cloud dan

meningkatkan respons real-time.

Perkembangan teknologi machine learning telah mendorong kemajuan di

berbagai bidang, terutama dalam otomatisasi dan analisis data berbasis sensor.

Dengan kemampuan machine learning untuk mengenali pola dan membuat

keputusan berdasarkan data, penerapannya kini menjangkau perangkat kecil dan

berdaya rendah melalui konsep TinyML (Tiny Machine Learning). TinyML

memungkinkan model machine learning dapat dijalankan di perangkat mikro,

2

seperti mikrokontroler, sehingga membuka peluang bagi pengembangan solusi IoT

yang hemat energi.

Salah satu perangkat mikrokontroler yang mendukung penerapan TinyML

adalah Arduino Nano 33 BLE Sense. Perangkat ini dilengkapi dengan beragam

sensor—seperti akselerometer, mikrofon, dan sensor suhu—serta konektivitas

Bluetooth Low Energy. Fitur-fitur ini membuatnya ideal untuk aplikasi berbasis

sensor yang membutuhkan pemrosesan data real-time di lokasi, seperti pemantauan

lingkungan, pengenalan suara, dan analisis gerakan. Kebutuhan akan sistem yang

dapat bekerja secara mandiri dengan daya rendah menjadikan Arduino Nano 33

BLE Sense sebagai salah satu platform yang potensial.

Di sisi lain, penerapan machine learning pada perangkat berdaya rendah

menghadapi beberapa tantangan. Mikrokontroler seperti Arduino Nano 33 BLE

Sense memiliki keterbatasan dalam hal memori dan kapasitas komputasi. Oleh

karena itu, pemilihan model machine learning yang efisien menjadi hal yang sangat

penting agar sistem dapat berjalan dengan lancar tanpa mengorbankan akurasi

prediksi. Selain itu, pengolahan data dari sensor yang dapat digunakan sebagai input

bagi model machine learning harus dioptimalkan untuk meminimalkan penggunaan

daya.

Implementasi TinyML juga mengharuskan adanya metode kompresi dan

optimasi model yang cermat. Model yang digunakan harus cukup ringan untuk

dijalankan pada perangkat dengan kapasitas terbatas tanpa mengorbankan kinerja.

Selain itu, diperlukan pemahaman mendalam tentang cara kerja model machine

learning pada lingkungan berdaya rendah agar aplikasi dapat bertahan dalam jangka

waktu yang lama tanpa intervensi pengguna.

Penelitian ini bertujuan untuk mengeksplorasi penerapan machine learning

pada Arduino Nano 33 BLE Sense, yang dapat menjadi referensi untuk

mengembangkan aplikasi IoT berbasis machine learning dengan konsumsi daya

yang rendah. Diharapkan, penelitian ini dapat memberikan solusi yang efisien dan

aplikatif bagi berbagai kebutuhan teknologi masa kini yang memerlukan sistem

prediktif berbasis sensor pada perangkat dengan sumber daya terbatas.

3

1.2. Batasan Masalah

1. Penelitian ini berfokus pada implementasi model machine learning berbasis

TensorFlow Lite pada Arduino Nano 33 BLE Sense.

2. Data yang diolah berasal dari sensor bawaan Arduino Nano 33 BLE Sense,

yaitu akselerometer, mikrofon, dan sensor suhu, tanpa menggunakan sensor

tambahan dari perangkat eksternal.

3. Model yang dikembangkan difokuskan pada klasifikasi berbasis data dari

sensor bawaan.

1.3. Tujuan

Tujuan dari penelitian ini adalah:

1. Mengembangkan model machine learning yang efisien dan sesuai untuk

diterapkan pada perangkat Arduino Nano 33 BLE Sense dengan

memanfaatkan data dari sensor bawaan.

2. Mengimplementasikan proses pengolahan data dari sensor bawaan

(akselerometer, mikrofon, dan sensor suhu) secara optimal agar dapat

dimanfaatkan sebagai input bagi model machine learning.

3. Mengevaluasi performa model dalam kondisi nyata menggunakan data dari

sensor bawaan pada Arduino Nano 33 BLE Sense.

1.4. Manfaat

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:

1. Menyediakan referensi bagi pengembangan aplikasi IoT berbasis machine

learning pada perangkat berdaya rendah.

2. Memberikan solusi efisien untuk aplikasi yang membutuhkan pemrosesan

prediktif secara real-time di perangkat mikro.

3. Mendorong pengembangan teknologi TinyML yang hemat energi untuk

berbagai bidang seperti kesehatan, lingkungan, dan otomasi

4

Bab II

Gambaran Umum Perusahaan

2.1. Ma Chung Human-Machine Interaction Research Center

Teknik Informatika merupakan disiplin keilmuan yang memfokuskan

dirinya pada penyediaan kebutuhan penggunaan dan organisasi terhadap teknologi

komputer. Sebagai perkiraan untuk saat ini dan masa yang akan datang, teknologi

informasi menjadi tulang punggung pertumbuhan ekonomi bangsa. Saat ini pun

inovasi teknologi informasi sudah terasa di berbagai bidang kehidupan manusia.

Dalam hal ini, pemerintah telah mencanangkan bahwa pengembangan pendidikan

tinggi dalam bidang komputer dan informatika merupakan salah satu program

prioritas, bersama-sama dengan disiplin ilmu lainnya seperti rekayasa, perilaku,

manajemen, akuntansi, dan kesenian.

Pendidikan tinggi diarahkan untuk mempersiapkan bangsa Indonesia dalam

menghadapi era pembangunan industri dan informasi. Untuk itu pemerintah melalui

Direktorat Jendral Pendidikan Tinggi pada tanggal 07 Juli 2007 menginstruksikan

untuk membuka Program Studi S1 Teknik Informatika berdasarkan Surat

Keputusan Penyelenggaraan 15274/D/T/K-VII/2013, pada tanggal 22 Maret 2013.

Pada saat ini, Program Studi Teknik Informatika memperoleh nilai akreditasi B

berdasarkan Keputusan BAN-PT No. 2546/SK/BAN-PT/Ak-PPJ/S/IV/2021,

tanggal 28 April 2021.

Pesatnya kemajuan juga tidak lepas dari aspek interaksi antara manusia dan

dalam pengembangannya. Untuk menunjang pengembangan dan terapannya

kepada human welfare dan aspek interaksinya maka dibentuk Ma Chung Human-

Machine Interaction Research Center sesuai Surat Keputusan

031/MACHUNG/FST/SK-DEK/IX/2019, pada tanggal 11 September 2019.

Ma Chung Human-Machine Interaction Research Center bergerak dalam

bidang kajian meliputi namun tidak terbatas kepada: machine vision, human-

computer interaction, untuk manusia berkebutuhan khusus, dan aplikasi mobile

yang mendukung penggunaan aplikasi yang lebih meluas.

5

2.2. Visi dan Misi Ma Chung Human-Machine Interaction Research Center

Ma Chung Human-Machine Interaction Research Center merupakan pusat

studi yang berada di bawah naungan Teknik Informatika Universitas Ma Chung

yang memiliki visi dan misi yang sama dalam setiap aspeknya. Berikut adalah visi

dari Teknik Informatika Universitas Ma Chung:

“Pada tahun 2025 Menjadi Program Studi Teknik Informatika aras utama di

Indonesia Timur yang mendukung eksplorasi sumber daya alam beserta

pengelolaan bisnisnya sebagai perwujudan memuliakan Tuhan dan berkontribusi

nyata bagi kesejahteraan masyarakat.”

Berikut adalah misi dari Teknik Informatika Universitas Ma Chung:

a. Menyelenggarakan pengajaran, penelitian dan pengabdian kepada masyarakat

yang berfokus pada pengembangan ilmu-ilmu 5elola informatika untuk

pengelolaan sumberdaya alam dan bisnis.

b. Membentuk dan mengembangkan generasi motivator yang mempunyai jiwa

pemimpin dan wirausahawan dengan bertitik berat pada perkembangan akhlak,

bersikap rendah hati, dan berwawasan.

c. Membentuk lulusan siap pakai yang berkualitas tinggi dan mampu bersaing pada

pasar informasi global.

d. Menyelenggarakan Program Studi dengan tata kelola yang baik dan profesional.

2.3. Struktur Organisasi Ma Chung Human-Machine Interaction Research

Center

Pada struktur organisasi Pusat Studi Interaksi Manusia dan Mesin

Universitas Ma Chung yaitu bertujuan untuk pengembangan ilmu dan penelitian.

Gambar 2.1 menunjukkan struktur organisasi Ma Chung Human-Machine

Interaction Research

6

Gambar 2. 1 Struktur organisasi dari Rektor hingga pusat studi

2.4. Publikasi Ilmiah Ma Chung HMI Research Center

Ma Chung Human-Machine Interaction Research Center pada saat ini

memiliki topik-topik riset sebagai berikut:

a. Rancang Bangun Pengontrol Gerakan Robot Openmanipulator dengan Matlab

Penelitian ini bertujuan mengembangkan aplikasi untuk mengontrol Gerakan robot

arm menggunakan MATLAB. Robot arm yang digunakan terdiri dari perangkat

U2D2 board,adaptor daya, dan servo Dynamixel. Pengujian dilakukan dengan

menggerakkan robot arm ke posisi yang telah ditentukan, dan hasilnya

menunjukkan keberhasilan 100% dalam menjalankan pergerakan. Meskipun

demikian, penyempurnaan lebih lanjut diperlukan agar robot arm dapat berfungsi

lebih optimal di masa mendatang.

b. Analisis Perbandingan Waktu Reaksi pada individu Usia Dewasa Muda dan

Usia Lanjut dalam Tugas Kognitif

Penelitian ini menguji perbedaan waktu reaksi kognitif antara kelompok usia 13-25

tahun(masa remaja) dan 50 tahun ke atas (akhir kedewasaan), yang masing-masing

ditandai oleh perkembangan optimal dan penurunan kognitif bertahap. Delapan

subjek dengan variasi usia dianalisis menggunakan software GoStats, dengan uji

7

Liliefors untuk normalitas data dan uji Mann-Whitney U untuk mengukur

perbedaan waktu reaksi. Hasil menunjukkan data tidak berdistribusi normal (p <

0.05) dan tidak ada perbedaan signifikan antara kedua kelompok pada empat tugas

kognitif yang diuji (p > 0.05), yaitu Simple Reaction, Physical Matching, dan Class

Matching. Temuan ini mengindikasikan bahwa perbedaan usia tidak selalu

mempengaruhi semua aspek fungsi kognitif. Penelitian lanjutan diperlukan untuk

mengeksplorasi factor-faktor lain seperti jenis tugas, Tingkat kesulitan, dan

pengalaman individu.

c. Hyperparameter Tuning for Malaria Detection using Convulation Neural

network

Malaria, yang disebabkan oleh parasit Plasmodium, dapat dideteksi melalui

pemeriksaan blood smear menggunakan mikroskop setelah pewarnaan fluoresensi.

Selain itu, metode computer vision dan deep learning telah digunakan untuk

mendeteksi malaria dari citra sel darah merah, dengan model Convolutional Neural

Network (CNN) terbukti memberikan hasil akurasi tinggi. Penelitian ini

mengevaluasi pengaruh hyperparameter tuning terhadap akurasi, presisi, recall, f1-

score, dan Matthew Correlation Coefficient (MCC). Dua arsitektur CNN, yaitu

Rajaraman dan BaselineNet, digunakan dalam eksperimen untuk membandingkan

performa model.

8

Bab III

Tinjauan Pustaka

3.1. Rujukan Pustaka

Tiny Machine Learning (TinyML) adalah implementasi machine learning pada

perangkat berdaya rendah, seperti mikrokontroler, untuk menjalankan model yang

mampu melakukan inferensi secara lokal tanpa memerlukan koneksi cloud. Salah

satu pustaka yang digunakan adalah TensorFlow Lite for Microcontrollers, yang

memungkinkan penggunaan model machine learning dengan konsumsi daya di

bawah 1 mW, sesuai dengan karakteristik perangkat seperti Arduino Nano 33 BLE

Sense.

Dalam buku TinyML: Machine Learning with TensorFlow Lite on Arduino

and Ultra-low-power Microcontrollers, Pete Warden dan Daniel Situnayake

menjelaskan proses pengembangan model machine learning, mulai dari

pengumpulan data, desain arsitektur model, pelatihan, hingga deployment ke

perangkat embedded. Fokus utamanya adalah pada optimasi sumber daya untuk

mengakomodasi keterbatasan perangkat mikrokontroler.

3.2. Penjelasan Istilah Asing

1. TinyML: Istilah untuk teknologi machine learning yang diterapkan pada

perangkat mikro dengan daya dan kapasitas terbatas.

2. TensorFlow Lite for Microcontrollers: Versi TensorFlow yang

dioptimalkan untuk perangkat berdaya rendah dan kapasitas memori kecil.

3. Inferensi: Proses menjalankan model machine learning untuk

menghasilkan prediksi atau pengenalan berdasarkan input data.

4. Deployment: Tahap penerapan model ke perangkat target, seperti

mikrokontroler, agar model dapat digunakan secara langsung.

5. Arduino Nano 33 BLE Sense: Mikrokontroler yang dilengkapi dengan

berbagai sensor dan mendukung konektivitas Bluetooth Low Energy (BLE).

9

3.3. Arduino Nano 33 Sense BLE

Arduino Nano 33 Sense adalah salah satu papan mikrokontroler dari

keluarga Arduino yang dirancang khusus untuk aplikasi berbasis sensor dan

pengolahan data IoT (Internet of Things). Papan ini dilengkapi dengan berbagai

sensor bawaan dan menggunakan mikrokontroler berdaya rendah untuk

memungkinkan penggunaan di perangkat kecil dan portabel.

Gambar 3. 1 Arduino Nano 33 Sense BLE

Gambar 3.1 adalah pinout diagram dari Arduino Nano 33 BLE yang

menggunakan nRF52840 sebagai mikrokontrolernya. Diagram ini menunjukkan

semua pin yang tersedia, termasuk fungsinya dalam berbagai mode operasi seperti

GPIO, SPI, I2C, dan UART. Berikut adalah penjelasan bagian-bagiannya:

1. Mikrokontroler

nRF52840 adalah mikrokontroler berbasis ARM Cortex-M4F yang

mendukung komunikasi nirkabel seperti Bluetooth Low Energy (BLE).

2. Power Pins

+3V3 OUT → Output tegangan 3.3V.

+5V OUT → Output tegangan 5V (tergantung sumber daya).

VIN IN → Tegangan input eksternal.

GND → Ground (0V).

10

RESET → Pin untuk mereset mikrokontroler.

3. Analog Pins (A0 - A7)

Digunakan untuk membaca sinyal analog (0-3.3V).

Mapped ke port P0.04 - P0.03 dari nRF52840.

4. Digital Pins (D0 - D13)

Digunakan untuk input/output digital.

Beberapa pin mendukung PWM (ditandai dengan ~).

Contohnya:

D13 (P0.13) → Terhubung ke LED_BUILTIN.

D12 - D2 → Dapat digunakan untuk GPIO atau fungsi lainnya.

5. SPI Pins

SCK (P0.13) → Serial Clock.

CIPO (P1.08) → Controller In Peripheral Out (MISO).

COPI (P1.02) → Controller Out Peripheral In (MOSI).

6. I2C Pins

SDA (P0.20) → Data line.

SCL (P0.19) → Clock line.

7. UART Pins (Serial Communication)

D1/RX (P1.10) → Menerima data serial.

D0/TX (P1.03) → Mengirim data serial.

8. LED Indicators

BUILT_IN LED (P0.13) → LED internal yang dapat dikendalikan dengan

kode.

LED_PWR (P1.09) → Menunjukkan bahwa board mendapatkan daya.

11

Spesifikasi utama Arduino Nano 33 BLE:

1. Mikrokontroler: Arduino Nano 33 Sense menggunakan Nordic nRF52840,

sebuah mikrokontroler ARM Cortex-M4 32-bit yang memiliki fitur

Bluetooth Low Energy (BLE).

2. Sensor Bawaan: Papan ini dilengkapi dengan berbagai sensor bawaan,

termasuk:

a. IMU (Inertial Measurement Unit): Sensor 9-axis untuk mendeteksi

akselerasi, rotasi, dan medan magnet.

b. Sensor Suhu dan Kelembaban: Untuk memantau kondisi

lingkungan.

c. Sensor Cahaya: Mengukur intensitas cahaya.

d. Microphone: Menggunakan sensor suara untuk aplikasi pemrosesan

audio.

e. Gesture Sensor: Untuk mendeteksi gerakan seperti sapuan tangan.

3. Konektivitas: Bluetooth Low Energy (BLE) untuk komunikasi data secara

nirkabel.

4. Konsumsi Daya Rendah: Dirancang untuk proyek yang memerlukan

efisiensi energi, sehingga cocok untuk perangkat bertenaga baterai.

5. Ukuran: Kompak, dengan form factor yang serupa dengan Arduino Nano,

mempermudah integrasi pada proyek yang sudah menggunakan papan

Nano.

3.4. Machine Learning

Machine Learning (ML) adalah cabang dari kecerdasan buatan (Artificial

Intelligence, AI) yang berfokus pada pengembangan sistem komputer yang dapat

belajar dari data dan meningkatkan kinerjanya secara otomatis tanpa harus

diprogram secara eksplisit. ML menggunakan algoritma untuk menganalisis data,

mengenali pola, dan membuat prediksi atau keputusan berdasarkan data tersebut.

Gambar 3.2 menunjukkan jenis-jenis Machine Learning.

12

Gambar 3. 2 Machine Learning

Cara Kerja Machine Learning:

1. Data Input: Data dikumpulkan dan disiapkan, mencakup data historis atau

data yang relevan dengan masalah yang ingin diselesaikan.

2. Pelatihan Model: Algoritma ML dilatih menggunakan data. Model belajar

mengenali pola dalam data dan membuat hubungan antara input dan output.

3. Prediksi/Inferensi: Setelah dilatih, model digunakan untuk memprediksi

hasil berdasarkan data baru.

4. Evaluasi dan Penyesuaian: Model dievaluasi untuk mengukur kinerjanya

menggunakan metrik tertentu. Jika model kurang akurat, proses pelatihan

dan penyempurnaan dilakukan kembali.

Jenis Machine Learning:

1. Supervised Learning:Model dilatih menggunakan data berlabel, di mana

setiap input memiliki output yang diketahui.

Contoh:

a. Prediksi harga rumah berdasarkan luas dan lokasi.

b. Klasifikasi email sebagai spam atau bukan.

2. Unsupervised Learning: Model belajar dari data yang tidak memiliki label,

dengan tujuan menemukan pola tersembunyi.

Contoh:

13

a. Klasterisasi pelanggan berdasarkan kebiasaan belanja.

b. Deteksi anomali dalam data jaringan.

3. Reinforcement Learning: Model belajar melalui interaksi dengan

lingkungan, mendapatkan umpan balik dalam bentuk reward atau

punishment.

Contoh:

a. Robot yang belajar berjalan.

b. Sistem bermain game (misalnya, AlphaGo).

4. Semi-Supervised Learning: Kombinasi dari supervised dan unsupervised

learning, menggunakan sebagian data berlabel dan sebagian tidak berlabel.

3.5. Deep Learning

Deep Learning adalah salah satu cabang dari Machine Learning (Pembelajaran

Mesin) yang menggunakan jaringan saraf tiruan (neural networks) dengan banyak

lapisan (deep layers) untuk memodelkan dan memecahkan masalah kompleks.

Deep Learning meniru cara kerja otak manusia dalam memproses informasi,

khususnya dalam hal pengenalan pola dan pengambilan keputusan. Gambar 3.3

menunjukkan arsitektur Deep Learning.

Gambar 3. 3 Contoh Arsitektur Deep Learning

Berikut penjelasan tentang Deep Learning:

1. Konsep Dasar Deep Learning

14

Deep Learning menggunakan struktur jaringan saraf tiruan yang terdiri dari

beberapa lapisan (layers). Setiap lapisan terdiri dari neuron (unit pemroses) yang

menerima input, melakukan komputasi, dan menghasilkan output. Lapisan-lapisan

ini dibagi menjadi:

• Input Layer: Lapisan pertama yang menerima data mentah.

• Hidden Layers: Lapisan tersembunyi yang melakukan transformasi

matematis pada data.

• Output Layer: Lapisan terakhir yang menghasilkan hasil akhir (prediksi atau

klasifikasi).

Semakin banyak lapisan tersembunyi, semakin "dalam" (deep) jaringan tersebut,

sehingga disebut Deep Learning.

2. Cara Kerja Deep Learning

• Alur Kerja Deep Learning

Pada bagian sebelumnya, kita telah menjelaskan sebuah skenario

penggunaan deep learning untuk memprediksi kapan sebuah mesin pabrik

kemungkinan akan mengalami kerusakan. Deep learning dapat menjadi

solusi yang sangat efektif dalam mendeteksi anomali atau kegagalan mesin

dengan menganalisis pola dari data historis yang tersedia. Namun, untuk

membangun model yang akurat dan dapat diandalkan, diperlukan

serangkaian langkah yang sistematis.

Dalam bagian ini, kita akan membahas langkah-langkah yang diperlukan

untuk mengembangkan model deep learning dari awal hingga dapat

digunakan untuk inferensi dan evaluasi. Proses ini mencakup berbagai

tahapan yang penting untuk memastikan bahwa model yang dihasilkan

dapat bekerja dengan baik dalam kondisi nyata.

Proses ini melibatkan langkah-langkah berikut:

a. Menentukan tujuan

b. Mengumpulkan dataset

c. Merancang arsitektur model

15

d. Melatih model

e. Mengonversi model

f. Menjalankan inferensi

g. Mengevaluasi dan memperbaiki model

Langkah a sampai d adalah bagian penting dari Deep Learning yang

menghasilkan suatu model. Langkah e sampai g adalah bagian yang membawa

model untuk di upload hardware, hal ini merupakan inti dari Tiny Machine

Learning. Setiap langkah ini memiliki peran krusial dalam membangun sistem

prediksi berbasis deep learning yang andal. Mari kita bahas satu per satu:

a. Menentukan Tujuan

Ketika merancang algoritma, penting untuk menetapkan tujuan yang jelas

sejak awal. Tanpa tujuan yang terdefinisi dengan baik, sulit untuk

menentukan data yang dibutuhkan, metode yang akan digunakan, dan

bagaimana cara mengevaluasi keberhasilan model.

 Dalam Machine Learning, tujuan umumnya berkaitan dengan

prediksi atau klasifikasi. Kita perlu menentukan apa yang ingin diprediksi

agar dapat memilih dataset yang relevan serta arsitektur model yang tepat.

Jika tujuan tidak didefinisikan dengan jelas, hasil yang diperoleh mungkin

tidak sesuai dengan harapan.

 Dalam contoh ini, kita ingin memprediksi apakah mesin pabrik akan

mengalami kerusakan. Ini dapat dianggap sebagai masalah klasifikasi, yaitu

tugas Machine Learning yang mengkategorikan data ke dalam beberapa

kelompok yang telah ditentukan sebelumnya.

Sebagai contoh, kita bisa membagi kondisi mesin menjadi dua kelas utama:

• "Normal": Mesin beroperasi tanpa gangguan dan tidak menunjukkan

tanda-tanda akan rusak.

• "Abnormal": Mesin menunjukkan indikasi adanya masalah dan

kemungkinan akan mengalami kegagalan dalam waktu dekat.

Dengan demikian, tujuan kita adalah menciptakan model yang mampu

mengklasifikasikan data sensor mesin ke dalam kategori "normal" atau

"abnormal" dengan tingkat akurasi yang tinggi.

16

• Mengumpulkan Dataset

Setelah menentukan tujuan model, langkah berikutnya adalah

mengumpulkan dataset yang akan digunakan untuk melatih model deep

learning. Data yang digunakan dalam pelatihan harus mencerminkan

berbagai kondisi operasional mesin agar model dapat mengenali pola

dengan baik.

• Memilih Data yang Relevan

Model deep learning memiliki kemampuan untuk menyaring informasi

yang tidak relevan, tetapi lebih baik jika sejak awal kita hanya

menggunakan data yang benar-benar berkontribusi terhadap prediksi yang

akan dilakukan.

Sebagai contoh, dalam skenario prediksi kegagalan mesin pabrik, ada

banyak jenis data yang tersedia. Ini bisa mencakup suhu operasi, tingkat

getaran, tekanan, kecepatan rotasi, atau bahkan faktor eksternal seperti

kondisi cuaca atau jadwal pemeliharaan rutin.

 Namun, tidak semua data tersebut relevan untuk tujuan kita.

Misalnya, menu makanan di kantin pabrik kemungkinan besar tidak

memiliki pengaruh terhadap kondisi mesin. Jika kita memasukkan data yang

tidak relevan, model bisa saja belajar pola yang salah, misalnya

menghubungkan kerusakan mesin dengan hari-hari tertentu ketika menu

tertentu disajikan. Oleh karena itu, pemilihan fitur atau variabel yang akan

digunakan dalam model harus dilakukan dengan hati-hati. Kita dapat

mengandalkan kombinasi antara pemahaman domain (pengetahuan

industri) dan teknik statistik untuk menentukan variabel yang benar-benar

berkontribusi terhadap prediksi. Jika masih ragu, pendekatan eksperimental

dapat dilakukan, misalnya dengan membandingkan dua model—satu

dengan dataset lengkap dan satu lagi dengan dataset yang sudah difilter—

untuk melihat mana yang memberikan hasil terbaik.

 Dalam skenario ini, kita memilih laju produksi, suhu, dan getaran

sebagai fitur utama yang akan digunakan dalam pelatihan model. Setelah

fitur ditentukan, langkah selanjutnya adalah mengumpulkan data dalam

jumlah yang cukup agar model dapat belajar dengan baik.

17

• Mengumpulkan Data

Salah satu tantangan utama dalam deep learning adalah menentukan jumlah

data yang cukup untuk pelatihan. Jumlah data yang diperlukan tergantung

pada berbagai faktor seperti:

• Kompleksitas hubungan antara variabel dalam dataset

• Tingkat kebisingan (noise) dalam data

• Seberapa mudah model dapat membedakan antara kelas "normal"

dan "abnormal"

Secara umum, semakin banyak data yang dikumpulkan, semakin baik model

dalam mengenali pola. Namun, data harus mencakup berbagai kondisi dan

variasi agar model dapat bekerja dengan baik di berbagai situasi.

 Sebagai contoh, jika suhu mesin bervariasi antara musim panas dan

musim dingin, maka dataset harus mencakup data dari kedua musim

tersebut. Jika mesin dapat mengalami berbagai jenis kegagalan, kita harus

memastikan bahwa semua jenis kegagalan tersebut terwakili dalam dataset.

Data dalam pabrik biasanya direkam dalam bentuk time series, yaitu

serangkaian pengukuran yang dilakukan secara berkala. Contoh data yang

bisa dikumpulkan adalah:

• Suhu mesin dicatat setiap 1 menit

• Laju produksi dicatat setiap 2 menit

• Getaran dicatat setiap 10 detik

Setelah data dikumpulkan, langkah selanjutnya adalah mengubahnya ke

dalam format yang sesuai untuk model deep learning.

• Pelatihan Model

Pelatihan model adalah proses di mana model belajar menghasilkan

output yang benar berdasarkan sekumpulan data masukan. Proses ini

melibatkan pemberian data pelatihan ke dalam model dan menyesuaikan

parameter model (berupa bobot dan bias) secara bertahap agar

prediksinya semakin akurat.

 Model deep learning terdiri dari jaringan neuron buatan yang

direpresentasikan dalam bentuk array angka yang tersusun dalam

18

lapisan-lapisan. Bobot awal dalam model biasanya diatur secara acak,

sedangkan bias dimulai dari nol. Ketika data dimasukkan ke dalam

model, ia mengalami berbagai transformasi matematis berdasarkan

bobot dan bias di setiap lapisan untuk menghasilkan output. Proses

pelatihan menggunakan algoritma backpropagation, yang secara

bertahap memperbaiki bobot dan bias berdasarkan perbedaan antara

output model dan output yang diharapkan. Pelatihan berlangsung

selama beberapa epoch hingga model mencapai performa optimal atau

tidak mengalami peningkatan lebih lanjut.

Kinerja model dinilai menggunakan loss dan accuracy:

• Loss mengukur seberapa jauh prediksi model dari nilai yang benar.

• Accuracy mengukur persentase prediksi yang benar.

Jika model terlalu sederhana dan tidak dapat mengenali pola dalam data,

ini disebut underfitting. Sebaliknya, jika model terlalu menghafal data

pelatihan tanpa dapat mengenali pola baru, ini disebut overfitting.

Untuk mencegah overfitting, beberapa teknik digunakan:

• Regularisasi (L1/L2, dropout): Membatasi kompleksitas model

agar tidak menghafal data pelatihan secara berlebihan.

• Augmentasi Data: Membuat variasi data baru dari data asli untuk

meningkatkan keberagaman input.

• Meningkatkan Ukuran Dataset: Semakin banyak data yang

digunakan, semakin baik model dalam memahami pola.

Dataset biasanya dibagi menjadi tiga bagian:

• Training set (60%): Digunakan untuk melatih model.

• Validation set (20%): Digunakan untuk mengevaluasi kinerja

model selama pelatihan.

• Test set (20%): Digunakan setelah pelatihan selesai untuk

memastikan model tidak overfit terhadap data pelatihan dan

validasi.

19

3. Arsitektur Deep Learning

Beberapa arsitektur Deep Learning yang populer meliputi:

• Convolutional Neural Networks (CNNs): Digunakan untuk pemrosesan

gambar dan video. CNNs menggunakan lapisan konvolusi untuk

mengekstrak fitur dari data spasial.

• Recurrent Neural Networks (RNNs): Dirancang untuk data berurutan

seperti teks atau time series. RNNs memiliki memori internal untuk

mengingat informasi dari langkah sebelumnya.

• Transformers: Arsitektur yang digunakan dalam pemrosesan bahasa alami

(NLP) seperti model BERT dan GPT. Transformers menggunakan

mekanisme attention untuk memproses data secara paralel.

• Autoencoders: Digunakan untuk kompresi data dan reduksi dimensi.

• Generative Adversarial Networks (GANs): Dua jaringan (generator dan

discriminator) bekerja bersama untuk menghasilkan data baru yang mirip

dengan data asli.

4. Keunggulan Deep Learning

Berikut adalah beberapa keunggulan Deep Learning:

• Kemampuan Menangani Data Kompleks: Deep Learning dapat memproses

data yang tidak terstruktur seperti gambar, teks, dan suara.

• Otomatisasi Fitur: Tidak memerlukan ekstraksi fitur manual karena jaringan

dapat mempelajari fitur secara otomatis.

• Akurasi Tinggi: Dalam banyak kasus, Deep Learning mencapai akurasi

yang lebih tinggi dibandingkan metode tradisional.

5. Tantangan Deep Learning

Berikut adalah beberapa tantangan Deep Learning:

• Kebutuhan Data Besar: Deep Learning memerlukan dataset yang besar

untuk melatih model secara efektif.

• Sumber Daya Komputasi: Proses pelatihan membutuhkan GPU atau TPU

yang mahal dan waktu yang lama.

20

• Overfitting: Model mungkin terlalu spesifik pada data pelatihan dan gagal

generalisasi ke data baru.

• Interpretabilitas: Model Deep Learning sering dianggap sebagai "black box"

karena sulit untuk memahami bagaimana keputusan diambil.

6. Aplikasi Deep Learning

Deep Learning digunakan dalam berbagai bidang, seperti:

• Computer Vision: Pengenalan wajah, deteksi objek, dan mobil otonom.

• Natural Language Processing (NLP): Terjemahan mesin, chatbot, dan

analisis sentimen.

• Speech Recognition: Asisten virtual seperti Siri dan Alexa.

• Kesehatan: Diagnosis medis dan analisis gambar medis.

• Permainan: AI dalam game seperti AlphaGo.

7. Perkembangan Terkini

Deep Learning terus berkembang dengan inovasi seperti:

• Reinforcement Learning: Kombinasi Deep Learning dengan pembelajaran

penguatan untuk aplikasi seperti robotika.

• Transfer Learning: Menggunakan model yang sudah dilatih untuk tugas

baru dengan sedikit data.

• Explainable AI (XAI): Upaya untuk membuat model Deep Learning lebih

transparan dan dapat diinterpretasikan.

Dengan kemampuannya yang luar biasa dalam memproses data kompleks, Deep

Learning telah menjadi fondasi bagi banyak kemajuan dalam kecerdasan buatan

(AI) dan terus membuka peluang baru di berbagai industri.

3.6. TensorFlow Lite

TensorFlow Lite adalah versi ringan (lightweight) dari TensorFlow, sebuah

framework populer untuk Machine Learning dan deep learning yang dikembangkan

oleh Google. TensorFlow Lite dirancang khusus untuk perangkat mobile, embedded

systems, dan perangkat IoT (Internet of Things) yang memiliki sumber daya

terbatas, seperti memori, daya komputasi, dan baterai. Tujuannya adalah

21

memungkinkan penerapan model Machine Learning secara efisien di perangkat

edge (perangkat lokal) tanpa bergantung pada cloud.

Berikut penjelasan tentang TensorFlow Lite:

1. Tujuan TensorFlow Lite

• Optimasi untuk Perangkat Edge: TensorFlow Lite memungkinkan

model Machine Learning berjalan di perangkat dengan sumber daya

terbatas, seperti smartphone, mikrokontroler, dan perangkat IoT.

• Efisiensi: Mengurangi ukuran model dan kebutuhan komputasi

sehingga cocok untuk perangkat dengan daya dan memori terbatas.

• Latensi Rendah: Memproses data secara lokal di perangkat,

mengurangi ketergantungan pada koneksi internet dan

meningkatkan kecepatan respons.

• Privasi: Data tetap berada di perangkat lokal, meningkatkan

keamanan dan privasi pengguna.

2. Arsitektur TensorFlow Lite

TensorFlow Lite terdiri dari beberapa komponen utama:

• TensorFlow Lite Converter: Alat untuk mengonversi model

TensorFlow standar (dalam format SavedModel atau Keras) ke

format TensorFlow Lite (.tflite). Proses ini melibatkan optimasi

seperti kuantisasi (quantization) dan pemangkasan (pruning) untuk

mengurangi ukuran model.

• TensorFlow Lite Interpreter: Mesin yang menjalankan model .tflite

di perangkat target. Interpreter ini dirancang untuk efisiensi dan

kompatibilitas dengan berbagai platform.

• TensorFlow Lite Model: Model yang telah dioptimalkan dan

dikonversi ke format .tflite.

• Dukungan Hardware Accelerator: TensorFlow Lite mendukung

akselerasi hardware seperti GPU, DSP (Digital Signal Processor),

dan Neural Processing Units (NPU) untuk meningkatkan performa.

22

3. Fitur Utama TensorFlow Lite

Berikut adalah beberapa Fitur utama TensorFlow Lite:

• Kuantisasi (Quantization): Teknik untuk mengurangi ukuran model

dan mempercepat inferensi dengan mengubah bobot dan aktivasi

dari floating-point (32-bit) ke integer (8-bit). Ini mengurangi

kebutuhan memori dan daya komputasi.

• Pemangkasan (Pruning): Menghilangkan bobot yang tidak penting

dari model untuk mengurangi ukuran dan kompleksitas.

• Selective Operator Kernels: TensorFlow Lite hanya menyertakan

operator yang diperlukan untuk model tertentu, mengurangi ukuran

biner (binary size).

• Dukungan Multi-Platform: TensorFlow Lite mendukung Android,

iOS, Linux, dan mikrokontroler (melalui TensorFlow Lite for

Microcontrollers).

• Pre-Trained Models: Menyediakan model pra-latih (pre-trained)

yang siap digunakan untuk tugas seperti klasifikasi gambar, deteksi

objek, dan NLP.

4. Workflow Penggunaan TensorFlow Lite

Berikut adalah Workflow penggunaan TensorFlow Lite:

• Pelatihan Model: Model dilatih menggunakan TensorFlow atau

Keras di lingkungan yang mendukung (seperti PC atau cloud).

• Konversi Model: Model diubah ke format TensorFlow Lite

menggunakan TensorFlow Lite Converter. Proses ini melibatkan

optimasi seperti kuantisasi.

• Deploy ke Perangkat: Model .tflite di-deploy ke perangkat target

(smartphone, mikrokontroler, dan lain lain).

• Inferensi: Model dijalankan di perangkat menggunakan TensorFlow

Lite Interpreter.

5. Aplikasi TensorFlow Lite

• Mobile Applications: Aplikasi seperti pengenalan gambar,

terjemahan teks, dan asisten virtual di smartphone.

23

• IoT Devices: Perangkat pintar seperti kamera keamanan, sensor

lingkungan, dan perangkat wearables.

• Mikrokontroler:TensorFlowLiteforMicrocontrollers

memungkinkan model ML berjalan di perangkat dengan sumber

daya sangat terbatas, seperti Arduino dan ESP32.

6. Keunggulan TensorFlow Lite

• Ringan dan Cepat: Dirancang untuk performa tinggi dengan sumber

daya minimal.

• Fleksibel: Mendukung berbagai jenis model dan tugas Machine

Learning.

• Kompatibilitas Luas: Dapat diintegrasikan dengan Android, iOS,

dan sistem embedded.

• Dukungan Komunitas: TensorFlow Lite didukung oleh komunitas

besar dan dokumentasi yang lengkap.

7. Contoh Penggunaan TensorFlow Lite

• Pengenalan Gambar: Aplikasi yang mengidentifikasi objek dalam

gambar menggunakan model CNN.

• Pemrosesan Bahasa Alami (NLP): Aplikasi chat atau terjemahan

teks di perangkat mobile.

• Deteksi Suara: Sistem perintah suara di perangkat IoT.

• Kesehatan: Aplikasi yang menganalisis data sensor untuk memantau

kesehatan pengguna.

8. Cara Penerapan TensorFlow Lite

Saat ini, library Arduino_TensorFlowLite sudah tidak tersedia melalui

Library Manager di Arduino IDE. Hal ini dikarenakan permintaan dari

pengelola TensorFlow Lite Micro untuk menghapusnya dari daftar Library

Manager. Oleh karena itu, pemasangan library ini harus dilakukan secara

manual.

Berikut adalah langkah-langkah untuk menginstal library TensorFlow Lite

secara manual di Arduino IDE:

24

Langkah 1: Unduh Library dari GitHub

• Buka halaman resmi repository TensorFlow Lite Micro untuk

Arduino:

• https://github.com/tensorflow/tflite-micro-arduino-examples

• Klik tombol "Code" dan pilih "Download ZIP" untuk mengunduh

seluruh repository sebagai file ZIP.

Langkah 2: Instal Library di Arduino IDE

Buka Arduino IDE.

• Navigasikan ke menu Sketch > Include Library > Add .ZIP

Library....

• Pilih file ZIP yang telah diunduh sebelumnya dan klik "Open".

• Tunggu hingga proses instalasi selesai.

Langkah 3: Verifikasi Instalasi

Setelah instalasi, Anda dapat memverifikasi bahwa library telah terpasang

dengan membuka menu Sketch > Include Library dan mencari

Arduino_TensorFlowLite dalam daftar library yang tersedia.

Alternatif: Menggunakan Git untuk Clone Repository

Jika Anda lebih nyaman menggunakan Git, Anda dapat meng-clone

repository langsung ke folder library Arduino Anda:

• Buka terminal atau command prompt.

• Navigasikan ke folder library Arduino Anda. Lokasi default

biasanya:

Windows: C:\Users\<NamaPengguna>\Documents\Arduino\libraries

macOS/Linux: ~/Documents/Arduino/libraries

• Jalankan perintah berikut:

git clone https://github.com/tensorflow/tflite-micro-arduino-examples

Arduino_TensorFlowLite

• Setelah proses clone selesai, library akan tersedia di Arduino IDE.

25

9. Perkembangan Terkini

• TensorFlow Lite for Microcontrollers: Versi yang dirancang untuk

perangkat dengan sumber daya sangat terbatas, seperti

mikrokontroler.

• Model Garden: Koleksi model pra-latih yang siap digunakan untuk

berbagai tugas.

• Dukungan Hardware Terbaru: Integrasi dengan hardware

accelerator seperti Coral Edge TPU dan ARM NPU.

Dengan TensorFlow Lite, pengembang dapat membawa kekuatan Machine

Learning ke perangkat edge, memungkinkan aplikasi yang lebih cepat, lebih aman,

dan lebih efisien.

3.7. Tiny Machine Learning (TinyML)

Buku ini bertujuan untuk membantu pengembang dengan pengalaman dasar

dalam menggunakan terminal dan editor kode agar dapat mulai membangun proyek

yang menjalankan Machine Learning (ML) pada perangkat embedded. Dengan

semakin berkembangnya teknologi, kini ML tidak hanya dapat dijalankan di

komputer atau server berkekuatan tinggi, tetapi juga pada perangkat kecil dengan

daya rendah.

Ketika penulis bergabung dengan Google pada tahun 2014, ia menemukan

banyak proyek internal yang menarik. Salah satu yang paling menonjol adalah

pekerjaan yang dilakukan oleh tim "OK Google". Mereka berhasil menjalankan

jaringan neural hanya sebesar 14KB pada prosesor sinyal digital (DSP) yang

terdapat di sebagian besar ponsel Android. DSP ini digunakan untuk terus

mendengarkan kata pemicu "OK Google" tanpa harus mengaktifkan CPU utama,

sehingga dapat menghemat daya baterai.

Keberhasilan ini menunjukkan bahwa jaringan neural dapat berjalan pada

perangkat dengan sumber daya terbatas. Biasanya, menjalankan model ML

membutuhkan daya yang besar, tetapi dalam kasus ini, konsumsi daya dapat ditekan

hingga hanya beberapa miliwatt (mW). Dari sinilah muncul gagasan tentang

TinyML, yaitu Machine Learning yang berjalan pada perangkat dengan konsumsi

26

daya di bawah 1mW. Dengan konsumsi daya sekecil ini, perangkat dapat beroperasi

selama bertahun-tahun hanya dengan baterai koin, tanpa memerlukan intervensi

manusia.

Seiring berkembangnya teknologi, muncul berbagai platform seperti

Raspberry Pi dan NVIDIA Jetson. Meskipun keduanya merupakan perangkat luar

biasa dalam menjalankan ML, namun konsumsi daya mereka jauh lebih tinggi

dibandingkan TinyML. Bahkan, Raspberry Pi yang paling kecil sekalipun masih

membutuhkan daya ratusan miliwatt, sementara Jetson bisa mengonsumsi hingga

12 watt saat beroperasi penuh. Hal ini membuat perangkat-perangkat tersebut sulit

digunakan untuk aplikasi yang membutuhkan konsumsi daya ultra-rendah dan tidak

memiliki sumber daya listrik yang stabil.

Sebaliknya, mikrokontroler 32-bit menjadi pilihan yang lebih cocok untuk

TinyML. Mikrokontroler ini jauh lebih murah, bahkan bisa didapatkan dengan

harga di bawah $1 per unit, sehingga memungkinkan produsen untuk menggantikan

sistem kontrol analog atau elektromekanis dengan alternatif berbasis perangkat

lunak. Dengan harga yang terjangkau, teknologi ini dapat diterapkan dalam

berbagai bidang, seperti sensor cerdas di lingkungan bangunan, konservasi satwa

liar, atau sistem pemantauan industri.

a. Perangkat Embedded

TinyML bergantung pada dunia perangkat embedded, yang dahulu dianggap

sulit untuk diakses oleh pengembang umum. Sebelumnya, perangkat embedded

menggunakan arsitektur 8-bit dengan alat pengembangan yang tertutup dan sulit

dipahami. Namun, dengan kehadiran Arduino, pengembangan perangkat embedded

menjadi lebih mudah karena adanya antarmuka yang ramah pengguna dan

ekosistem yang lebih terbuka.

Saat ini, sebagian besar mikrokontroler menggunakan CPU Arm Cortex-M,

yang telah menjadi standar dalam dunia embedded. Meskipun perangkat ini

memiliki keterbatasan, seperti kapasitas RAM dan penyimpanan yang kecil serta

kecepatan pemrosesan yang rendah, namun keunggulannya adalah konsumsi daya

yang sangat efisien. Tidak seperti komputer atau ponsel, perangkat embedded tidak

27

memiliki sistem operasi Linux yang lengkap karena keterbatasan sumber daya,

sehingga pengembang harus bekerja dengan sistem yang lebih ringan.

Selain itu, banyak sistem embedded menghindari penggunaan alokasi

memori dinamis seperti malloc() atau new karena sistem ini dirancang agar dapat

berjalan dalam waktu yang lama dengan tingkat keandalan tinggi. Fragmentasi

memori dapat menjadi masalah besar dalam sistem yang harus berjalan tanpa

gangguan selama bertahun-tahun. Oleh karena itu, pengembangan perangkat

embedded memerlukan pendekatan yang berbeda dibandingkan dengan

pemrograman pada komputer atau ponsel.

Meskipun terdapat tantangan dalam pengembangan perangkat embedded,

ada juga banyak keuntungan. Salah satu keunggulannya adalah sederhananya

model pemrosesan, karena perangkat ini tidak memiliki proses lain yang

mengganggu jalannya program utama. Selain itu, dengan arsitektur prosesor yang

lebih sederhana dan tanpa prediksi cabang atau pipelining instruksi yang kompleks,

optimasi manual dalam bahasa assembly menjadi lebih mudah dilakukan

dibandingkan pada CPU yang lebih canggih.

b. Perkembangan Cepat

TinyML merupakan bidang yang masih sangat baru dan berkembang

dengan cepat. Baik dari sisi perangkat keras, perangkat lunak, maupun penelitian,

semuanya berubah dengan sangat dinamis. Buku ini ditulis berdasarkan kondisi

teknologi pada tahun 2019, namun dalam dunia TinyML, perubahan bisa terjadi

dalam hitungan bulan. Oleh karena itu, beberapa bagian dari buku ini mungkin akan

terasa usang dalam waktu singkat.

Namun, penulis berusaha untuk memberikan panduan dengan

menggunakan platform yang diperkirakan akan tetap tersedia dalam jangka

panjang. Selain itu, framework TensorFlow Lite yang digunakan dalam buku ini

memiliki API yang cukup stabil dan terus mendapatkan dukungan dari komunitas

pengembang. Untuk mengikuti perkembangan terbaru, disediakan pula tautan ke

sumber daya online yang selalu diperbarui, termasuk kode contoh dan dokumentasi

terbaru.

28

Lebih dari sekadar membahas teknologi spesifik, buku ini juga berfokus

pada pemahaman konsep fundamental, seperti teknik debugging, pembuatan

model, dan dasar-dasar deep learning. Dengan memahami konsep-konsep ini,

pembaca dapat tetap relevan dalam industri, meskipun perangkat keras dan

perangkat lunak yang digunakan terus berkembang. Tiny Machine Learning

(TinyML) adalah cabang dari pembelajaran mesin (Machine Learning) yang fokus

pada implementasi model pembelajaran mesin di perangkat kecil dengan daya

sangat rendah, seperti mikrocontroller. TinyML memungkinkan perangkat tersebut

untuk melakukan inferensi atau prediksi secara lokal tanpa memerlukan

konektivitas internet atau cloud. Salah satu karakteristik utama dari TinyML adalah

kemampuannya untuk beroperasi dengan konsumsi daya di bawah 1 mW,

menjadikannya sangat efisien untuk aplikasi yang membutuhkan masa pakai baterai

yang lama atau bahkan menggunakan sumber daya energi alternatif seperti

pengumpulan energi (energy harvesting).

TinyML memanfaatkan berbagai teknik optimasi seperti quantization, yang

mengurangi ukuran model dengan menurunkan presisi numerik, dan pruning, yang

menghilangkan neuron-neuron yang tidak penting dari jaringan saraf. Kombinasi

teknik ini memastikan bahwa model deep learning yang kompleks dapat berjalan

pada perangkat keras dengan memori yang sangat terbatas, sering kali hanya

memiliki puluhan hingga ratusan kilobyte RAM. Contoh aplikasi TinyML meliputi

deteksi suara untuk wake-word seperti “OK Google,” pengenalan gerakan

menggunakan akselerometer, dan deteksi objek menggunakan kamera kecil.

Dengan mengolah data secara lokal, TinyML tidak hanya mengurangi konsumsi

daya tetapi juga meningkatkan privasi data, menjadikannya ideal untuk aplikasi IoT

dan perangkat yang tersebar luas dalam skala besar.

• Konversi Model

Dalam buku ini, kita menggunakan TensorFlow untuk membangun dan melatih

model. Model TensorFlow pada dasarnya adalah seperangkat instruksi yang

memberi tahu interpreter bagaimana cara mengubah data untuk menghasilkan

output tertentu. Saat ingin menggunakan model, kita cukup memuatnya ke dalam

memori dan menjalankannya dengan interpreter TensorFlow.

29

Gambar 3.3 Kode untuk proses konversi

 Namun, interpreter TensorFlow dirancang untuk berjalan di komputer

desktop dan server yang memiliki daya pemrosesan tinggi. Karena kita ingin

menjalankan model di mikrocontroller kecil dengan daya terbatas, kita memerlukan

interpreter yang lebih ringan dan efisien.

 TensorFlow menyediakan alat bernama TensorFlow Lite, yang

memungkinkan model dapat berjalan pada perangkat kecil dan berdaya rendah.

Dengan menggunakan TensorFlow Lite, kita dapat menjalankan model

pembelajaran mesin tanpa harus mengandalkan perangkat keras yang kuat seperti

komputer atau server.

 Sebelum TensorFlow Lite dapat menjalankan model, model tersebut harus

dikonversi ke dalam format khusus yang lebih ringan. Proses ini dilakukan

menggunakan alat bernama TensorFlow Lite Converter. Konversi ini penting

karena mengoptimalkan ukuran dan kecepatan model agar lebih sesuai untuk

perangkat dengan sumber daya terbatas.

 Selain mengonversi format model, TensorFlow Lite Converter juga dapat

menerapkan berbagai teknik optimasi. Optimasi ini bertujuan untuk mengurangi

ukuran model dan meningkatkan kecepatan eksekusi tanpa mengorbankan

performa prediksi yang dihasilkan oleh model.

30

• Menjalankan Inferensi

Setelah model dikonversi ke dalam format TensorFlow Lite, model siap untuk

diterapkan ke perangkat target. Untuk menjalankannya, kita akan menggunakan

pustaka TensorFlow Lite for Microcontrollers yang ditulis dalam bahasa

pemrograman C++.

 Saat model diterapkan ke dalam sistem, kita perlu memastikan bahwa data

masukan yang diberikan ke model memiliki format yang sama dengan data yang

digunakan saat pelatihan. Ini penting agar model dapat memberikan hasil prediksi

yang akurat.

 Hasil yang dihasilkan oleh model berupa skor probabilitas untuk setiap

kelas yang telah ditentukan sebelumnya. Sebagai contoh, dalam kasus model

klasifikasi, skor ini menunjukkan kemungkinan apakah suatu kondisi termasuk

"normal" atau "abnormal."

Misalnya, jika model menghasilkan skor berikut:

Skor Normal Skor Abnormal

0.1 0.9 Model yakin terjadi keadaan abnormal

0.7 0.3 Model yakin keadaan normal

0.49 0.51 Hasil tidak meyakinkan

Dari tabel di atas, kita dapat melihat bahwa semakin besar selisih antara skor kelas

yang dihasilkan, semakin tinggi tingkat kepastian model terhadap prediksinya.

• Menangani Noise dan Glitch dalam Data

Dalam banyak kasus, model pembelajaran mesin hanya mempertimbangkan

snapshot data dalam periode waktu tertentu. Sebagai contoh, dalam sistem

pemantauan mesin industri, model dapat mengevaluasi kondisi mesin berdasarkan

data sensor dalam 10 detik terakhir.

 Namun, data dunia nyata sering kali tidak bersih dan bisa mengandung

gangguan atau glitch. Hal ini dapat menyebabkan model membuat prediksi yang

keliru. Sebagai contoh, lonjakan suhu akibat kesalahan sensor dapat menyebabkan

model mengklasifikasikan kondisi mesin sebagai abnormal, padahal kondisi

sebenarnya masih normal.

31

Untuk menghindari masalah ini, kita bisa menerapkan teknik penyaringan data.

Salah satu metode yang efektif adalah dengan menghitung rata-rata dari beberapa

hasil inferensi sebelumnya. Dengan cara ini, keputusan tidak akan terlalu

dipengaruhi oleh gangguan sementara dan lebih mencerminkan kondisi yang

sebenarnya.

 Sebagai contoh, kita dapat menjalankan model setiap 10 detik dan

mengambil rata-rata hasil inferensi selama satu menit terakhir. Jika kondisi

abnormal terdeteksi secara konsisten selama periode tersebut, maka sistem dapat

mengambil tindakan, seperti mematikan mesin atau memberi peringatan kepada tim

pemeliharaan.

• Evaluasi dan Troubleshooting Model

 Setelah model diterapkan ke dalam perangkat target, kita perlu

mengevaluasi apakah model benar-benar bekerja dengan baik dalam kondisi nyata.

Meskipun model dapat menunjukkan performa yang baik pada data uji, hasilnya di

dunia nyata bisa berbeda.

 Ada beberapa alasan mengapa performa model di lapangan bisa menurun.

Salah satunya adalah karena data pelatihan tidak sepenuhnya mencerminkan

kondisi operasional sebenarnya. Sebagai contoh, jika model dilatih menggunakan

data suhu dari lingkungan yang lebih hangat, sedangkan perangkat digunakan di

lokasi dengan suhu lebih dingin, maka model mungkin tidak berfungsi seakurat

yang diharapkan.

 Selain itu, masalah overfitting juga bisa menjadi penyebab performa yang

buruk. Overfitting terjadi ketika model terlalu menghafal pola dari data pelatihan

dan kurang mampu beradaptasi dengan data baru. Jika model terlalu spesifik

terhadap dataset pelatihan, ia mungkin gagal memberikan prediksi yang akurat

ketika digunakan dalam skenario yang berbeda.

• Langkah-Langkah Troubleshooting

Jika model tidak bekerja sesuai harapan, ada beberapa langkah yang bisa kita

lakukan untuk mencari penyebab masalah dan memperbaikinya:

i.Periksa perangkat keras

• Pastikan sensor berfungsi dengan baik dan tidak mengalami gangguan.

32

• Periksa apakah ada noise atau interferensi yang dapat memengaruhi kualitas

data.

2. Bandingkan data dunia nyata dengan data pelatihan

• Ambil sampel data dari perangkat di lapangan dan bandingkan dengan

dataset pelatihan.

• Pastikan tidak ada perbedaan signifikan dalam karakteristik data yang

digunakan.

3. Mengatasi Overfitting

• Jika overfitting terdeteksi, latih ulang model menggunakan lebih banyak

data yang lebih bervariasi.

• Terapkan teknik regularisasi untuk mengurangi kompleksitas model agar

lebih mampu menangani data baru.

• Gunakan augmentasi data untuk meningkatkan keragaman dalam dataset

pelatihan.

3.8. Internet of Things (IoT)

Internet of Things (IoT) adalah konsep di mana berbagai perangkat fisik, seperti

sensor, alat rumah tangga, kendaraan, dan mesin industri, dapat terhubung ke

internet dan berkomunikasi satu sama lain. Dengan adanya IoT, perangkat dapat

mengumpulkan, bertukar, dan menganalisis data secara otomatis. Hal ini

memungkinkan sistem untuk bekerja lebih efisien, meningkatkan produktivitas,

serta memberikan kenyamanan dan keamanan bagi penggunanya.

 IoT berkembang pesat di berbagai sektor, termasuk rumah pintar (smart

home), kota pintar (smart city), otomasi industri, kesehatan digital, dan masih

banyak lagi. Keunggulan utama IoT adalah kemampuannya dalam mengoptimalkan

proses, mengurangi keterlibatan manusia dalam tugas-tugas rutin, serta

meningkatkan pengambilan keputusan berbasis data yang akurat dan real-time.

 Dengan adanya teknologi IoT, berbagai perangkat dapat saling terhubung

dan bekerja secara otomatis berdasarkan data yang dikumpulkan. Sebagai contoh,

di sektor kesehatan, IoT memungkinkan pemantauan pasien secara real-time

melalui sensor medis yang dapat mendeteksi tanda-tanda vital dan mengirimkan

laporan langsung ke dokter. Dalam sektor industri, IoT dapat digunakan untuk

33

mendeteksi kerusakan mesin sebelum terjadi kegagalan total, sehingga dapat

mengurangi downtime produksi.

Gambar 3. 4 Internet of Things

Gambar 3.4 menjelaskan bagaimana IoT bekerja, mulai dari tahap awal

menghubungkan perangkat hingga menghasilkan manfaat bagi manusia. Proses ini

terdiri dari enam tahap utama yang membentuk siklus IoT:

1. Device Connection (Koneksi Perangkat)

Tahap pertama dalam sistem IoT adalah menghubungkan perangkat ke jaringan

internet. Perangkat yang digunakan dalam IoT biasanya memiliki kemampuan

untuk terhubung melalui jaringan seperti Wi-Fi, Bluetooth, atau protokol

komunikasi khusus IoT seperti LoRa dan Zigbee.

 Selain itu, perangkat ini sering kali dilengkapi dengan kecerdasan tertanam

(embedded intelligence) yang memungkinkan mereka untuk memproses data

sebelum mengirimkannya ke sistem pusat. Contoh perangkat IoT meliputi sensor

suhu, kamera pintar, smartwatches, dan mesin industri yang terkoneksi dengan

cloud.

34

2. Data Sensing (Penginderaan Data)

Setelah perangkat terhubung, tahap selanjutnya adalah pengumpulan data. IoT

menggunakan berbagai sensor untuk menangkap informasi dari lingkungan sekitar.

Sensor ini bisa berupa sensor suhu, kelembaban, tekanan, gerakan, dan sebagainya.

 Setelah data dikumpulkan, informasi tersebut disimpan dalam sistem

penyimpanan seperti database atau cloud. Data yang dikumpulkan ini akan menjadi

dasar bagi proses analisis yang dilakukan di tahap selanjutnya.

3. Communication (Komunikasi Data)

Data yang telah dikumpulkan oleh sensor harus dikirim ke pusat pemrosesan untuk

dianalisis. Proses ini melibatkan komunikasi data melalui jaringan yang telah

dikonfigurasi sebelumnya.

 Terdapat berbagai metode komunikasi yang digunakan dalam IoT, mulai

dari jaringan kabel hingga teknologi nirkabel seperti 4G, 5G, dan satelit. Cloud

computing dan edge computing juga memainkan peran penting dalam tahap ini,

karena memungkinkan data untuk diproses lebih dekat ke sumbernya sehingga

mengurangi latensi.

4. Data Analytics (Analisis Data)

Setelah data diterima oleh sistem pusat, langkah berikutnya adalah menganalisis

data tersebut. Analisis dilakukan menggunakan teknologi seperti big data analytics,

kecerdasan buatan (AI), dan komputasi kognitif.

 Analisis ini bertujuan untuk menemukan pola, mendeteksi anomali, serta

membuat prediksi yang dapat membantu dalam pengambilan keputusan. Proses

analisis ini bisa dilakukan baik di cloud maupun di edge (lebih dekat dengan

perangkat sumber data) untuk meningkatkan kecepatan dan efisiensi.

5. Data Value (Nilai Data)

Data yang telah dianalisis akan dikonversi menjadi informasi yang dapat

dimanfaatkan. Tahap ini melibatkan penggunaan Application Programming

Interface (API) dan proses otomatisasi untuk menghasilkan actionable intelligence

atau wawasan yang dapat langsung digunakan.

35

Sebagai contoh, dalam sistem pemantauan lingkungan, jika sensor mendeteksi

polusi udara yang tinggi, sistem dapat secara otomatis mengaktifkan alarm

peringatan atau memberi tahu pihak yang berwenang untuk mengambil tindakan.

6. Human Value (Manfaat bagi Manusia)

Tahap terakhir dalam siklus IoT adalah memberikan manfaat nyata kepada manusia.

Wawasan yang telah dihasilkan melalui analisis data dapat diterapkan dalam

berbagai aplikasi pintar untuk meningkatkan efisiensi dan kualitas hidup.

 Sebagai contoh, dalam industri manufaktur, jika sistem IoT mendeteksi

potensi kerusakan pada suatu mesin, informasi ini dapat digunakan untuk

menjadwalkan pemeliharaan sebelum terjadi kegagalan. Dalam sistem rumah

pintar, IoT dapat digunakan untuk mengatur pencahayaan dan suhu ruangan secara

otomatis berdasarkan kebiasaan penghuni. Manfaat ini tidak hanya dirasakan oleh

individu, tetapi juga oleh bisnis dan pemerintah dalam meningkatkan efisiensi

operasional serta mengurangi biaya.

7. Kesimpulan

Gambar ini menggambarkan siklus kerja IoT dari awal hingga memberikan manfaat

bagi manusia. Proses ini dimulai dengan menghubungkan perangkat, menangkap

data, mengirimkannya untuk dianalisis, hingga menghasilkan wawasan yang

berharga dan dapat digunakan dalam berbagai aplikasi cerdas.

 Dengan memahami alur kerja ini, kita bisa lebih efektif dalam menerapkan

IoT untuk meningkatkan efisiensi, produktivitas, dan kenyamanan di berbagai

bidang. IoT tidak hanya sebatas teknologi masa depan, tetapi sudah menjadi bagian

dari kehidupan sehari-hari yang terus berkembang dan memberikan dampak positif

bagi berbagai sektor.

 Dalam konteks IoT, TinyML berperan penting sebagai teknologi pendukung

untuk memproses data langsung di perangkat ujung (edge devices). Biasanya,

perangkat IoT bergantung pada cloud untuk memproses data sensor, tetapi

pendekatan ini membutuhkan konektivitas yang konstan dan memakan daya.

Dengan menggunakan TinyML, perangkat IoT dapat memproses data sensor secara

langsung, mengurangi ketergantungan pada cloud, meningkatkan efisiensi energi,

36

dan mempercepat waktu respons. Sebagai contoh, sensor gerakan yang dilengkapi

dengan model TinyML dapat mengenali aktivitas tertentu dan hanya mengirimkan

data penting ke cloud, sehingga menghemat bandwidth. Kombinasi IoT dan

TinyML menciptakan solusi yang lebih cerdas, hemat daya, dan cocok untuk

aplikasi berskala besar seperti pertanian pintar, pemantauan kesehatan jarak jauh,

dan pelacakan logistik.

37

Bab IV

Deskripsi Data Dan Hasil Praktik Kerja Lapangan

4.1. Metode atau Prosedur yang Digunakan

Gambar 4.1 menunjukkan prosedur yang digunakan untuk praktik kerja

lapangan.

Gambar 4. 1 Prosedur yang digunakan dalam Praktik Kerja Lapangan

1. Studi Literatur

Tahap pertama dalam proses ini adalah melakukan studi literatur, yang bertujuan

untuk memahami konsep dasar Deep Learning, teknik yang digunakan, serta

bagaimana model dapat diterapkan pada perangkat target. Studi ini mencakup

eksplorasi berbagai sumber, seperti jurnal ilmiah, buku, artikel, dan penelitian

terdahulu yang relevan.

 Selain memahami teori Deep Learning, dalam tahap ini juga dilakukan

analisis terhadap perangkat keras yang akan digunakan, seperti Arduino, Raspberry

Pi, atau mikrokontroler lainnya. Hal ini penting karena keterbatasan daya

komputasi dan memori pada perangkat kecil mempengaruhi bagaimana model

harus dirancang dan dioptimalkan.

 Studi literatur juga mencakup pemilihan algoritma dan metode yang paling

sesuai untuk diterapkan dalam skenario tertentu. Misalnya, jika proyek berfokus

pada pengolahan citra, maka arsitektur Convolutional Neural Network (CNN)

mungkin menjadi pilihan terbaik. Sementara itu, jika proyek berkaitan dengan

pemrosesan teks, maka model berbasis Recurrent Neural Network (RNN) atau

Transformer dapat lebih cocok digunakan.

38

2. Perancangan Deep Learning

Setelah memahami teori dan memilih pendekatan yang tepat, tahap selanjutnya

adalah merancang model Deep Learning. Pada tahap ini, peneliti atau pengembang

menentukan arsitektur model, jumlah lapisan neuron, fungsi aktivasi, algoritma

optimasi, serta parameter lain yang akan digunakan selama pelatihan.

 Proses pelatihan model biasanya dilakukan menggunakan dataset yang

sesuai dengan permasalahan yang ingin diselesaikan. Dataset ini bisa berupa

kumpulan gambar, teks, atau data sensor yang dikumpulkan dari perangkat. Model

kemudian diuji dengan data pelatihan dan validasi untuk memastikan bahwa ia

dapat mengenali pola dengan baik tanpa mengalami overfitting.

 Selama tahap perancangan, berbagai teknik dapat diterapkan untuk

meningkatkan performa model. Misalnya, penggunaan augmentasi data untuk

meningkatkan keberagaman data pelatihan atau penerapan regularisasi untuk

mengurangi risiko overfitting.

3. Konversi Model ke Perangkat

Setelah model Deep Learning berhasil dilatih di lingkungan komputasi yang lebih

kuat (misalnya di komputer dengan GPU), model tersebut harus dikompresi dan

dikonversi agar dapat berjalan di perangkat kecil dengan keterbatasan daya dan

memori.

 Proses konversi ini dilakukan menggunakan alat seperti TensorFlow Lite

yang memungkinkan model menjadi lebih ringan dan tetap mempertahankan

performa yang optimal. Dalam beberapa kasus, dilakukan juga kuantisasi model,

yaitu teknik untuk mengurangi ukuran model dengan mengganti tipe data floating

point menjadi integer tanpa mengorbankan akurasi secara signifikan.

 Konversi ini sangat penting karena model Deep Learning yang tidak

dioptimalkan dapat membebani perangkat dan menyebabkan kinerja yang lambat

atau bahkan tidak dapat berjalan sama sekali. Oleh karena itu, diperlukan teknik

khusus untuk memastikan model tetap akurat tetapi juga efisien dalam penggunaan

sumber daya.

39

4. Inference (Inferensi)

Tahap terakhir dalam proses ini adalah inferensi, yaitu ketika model yang telah

dikonversi mulai dijalankan di perangkat target. Pada tahap ini, model menerima

data input secara real-time, seperti gambar dari kamera atau data dari sensor,

kemudian memprosesnya untuk menghasilkan prediksi.

 Sebagai contoh, dalam sistem deteksi anomali mesin industri, sensor yang

dipasang pada mesin akan mengirimkan data suhu dan getaran ke model yang telah

dioptimalkan. Model kemudian menentukan apakah mesin dalam keadaan normal

atau mengalami anomali berdasarkan pola data yang telah dipelajari sebelumnya.

Jika terdeteksi anomali secara konsisten, sistem dapat mengirimkan peringatan

untuk segera dilakukan pemeriksaan atau pemeliharaan.

 Selain itu, dalam sistem pengenalan suara seperti wake-word detection,

model yang telah dikonversi ke TensorFlow Lite akan mendeteksi perintah suara

pengguna dan mengaktifkan perangkat sesuai dengan instruksi yang diberikan.

Proses inferensi ini harus berlangsung cepat dan efisien, sehingga optimalisasi

model pada tahap sebelumnya menjadi sangat penting.

 Dalam banyak kasus, model inferensi juga menggunakan teknik tambahan

seperti pengambilan keputusan berbasis rata-rata untuk menghindari kesalahan

prediksi akibat gangguan sesaat dalam data. Sebagai contoh, jika model mendeteksi

anomali selama satu detik tetapi kembali normal di detik berikutnya, sistem dapat

mengabaikannya agar tidak terjadi false alarm.

5. Kesimpulan

Flowchart ini memberikan gambaran lengkap mengenai bagaimana model Deep

Learning dikembangkan, dioptimalkan, dan diterapkan dalam perangkat kecil

seperti mikrokontroler atau sistem IoT.

 Dengan melalui tahapan studi literatur, pengembang memastikan bahwa

pendekatan yang digunakan sesuai dengan kebutuhan proyek. Selanjutnya, pada

tahap perancangan, model dikembangkan dan diuji untuk mencapai tingkat akurasi

yang diharapkan. Kemudian, dalam tahap konversi, model dioptimalkan agar dapat

berjalan dengan baik dalam keterbatasan sumber daya perangkat. Akhirnya, pada

tahap inferensi, model diterapkan untuk melakukan prediksi secara real-time dan

memberikan output yang dapat digunakan untuk pengambilan keputusan.

40

 Proses ini menunjukkan pentingnya kombinasi antara pengembangan model

yang akurat dan optimasi model yang efisien agar sistem berbasis Deep Learning

dapat berjalan dengan baik di perangkat yang memiliki keterbatasan daya

komputasi.

5.1. Perancangan Deep Learning

Gambar 4.2 menunjukkan cuplikan kode Python yang berisi perintah

instalasi dan impor pustaka yang umum digunakan dalam Machine Learning dan

deep learning.

Gambar 4. 2 Library

Berikut penjelasan gambar 4.2:

1. Instalasi Pustaka

!pip install protobuf==3.20.3

!pip install tensorflow==2.8.0rc0

• protobuf==3.20.3: Menginstal versi tertentu dari pustaka Protocol Buffers

yang digunakan oleh TensorFlow untuk komunikasi data yang efisien.

• tensorflow==2.8.0rc0: Menginstal versi kandidat rilis (release candidate)

dari TensorFlow 2.8.0.

2. Import Pustaka

Line 3 sampai 7 dijelaskan berikut:

• import tensorflow as tf: Mengimpor TensorFlow dengan alias tf, yang sering

digunakan dalam deep learning.

• import tensorflow.keras.layers as mylayers: Mengimpor modul keras.layers

dari TensorFlow dan memberinya alias mylayers untuk mempermudah

akses ke berbagai jenis layer dalam neural network.

41

• import numpy as np: Mengimpor NumPy dengan alias np, pustaka yang

digunakan untuk komputasi numerik dan operasi matriks.

• import matplotlib.pyplot as plt: Mengimpor pyplot dari matplotlib dengan

alias plt, yang digunakan untuk visualisasi data.

• import math: Mengimpor pustaka matematika bawaan Python untuk

perhitungan matematis dasar.

Gambar 4.3 menunjukkan cuplikan kode Python yang digunakan untuk

menghasilkan dan memvisualisasikan data berbasis fungsi sinus dengan sedikit

noise.

Gambar 4. 3 Kode untuk membuat 1000 data sinus secara random

1. Inisialisasi Variabel

SAMPLES = 1000

SEED = 1337

• SAMPLES = 1000: Menentukan jumlah sampel data yang akan dihasilkan.

• SEED = 1337: Menentukan nilai seed agar hasil randomisasi tetap konsisten

setiap kali kode dijalankan.

2. Pengaturan Seed untuk Reproduksibilitas

np.random.seed(SEED)

tf.random.set_seed(SEED)

42

• np.random.seed(SEED): Mengatur seed untuk generator angka acak dari

NumPy.

• tf.random.set_seed(SEED): Mengatur seed untuk generator angka acak dari

TensorFlow.

3. Pembuatan Data

x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES)

• np.random.uniform(low=0, high=2*math.pi, size=SAMPLES):

Menghasilkan 1000 nilai acak dari distribusi uniform dalam rentang [0, 2π].

np.random.shuffle(x_values)

• np.random.shuffle(x_values): Mengacak urutan nilai x_values.

y_values = np.sin(x_values)

• Menghitung nilai sinus dari setiap elemen dalam x_values.

4. Penambahan Noise (Gangguan Acak) pada Data

y_values += 0.1 * np.random.randn(*y_values.shape)

• np.random.randn(*y_values.shape): Menghasilkan noise dari distribusi

normal (mean = 0, standar deviasi = 1).

• * np.random.randn(*y_values.shape): Memperkecil noise dengan

mengalikannya dengan 0.1 agar gangguan tidak terlalu besar.

• y_values += ...: Menambahkan noise ke nilai y_values agar data lebih

realistis dan tidak terlalu sempurna.

5. Visualisasi Data

plt.plot(x_values, y_values, 'b.')

plt.show()

• plt.plot(x_values, y_values, 'b.'): Membuat scatter plot dengan titik

berwarna biru ('b.').

• plt.show(): Menampilkan plot.

43

Gambar 4.3 adalah hasil plot dari kode sebelumnya yang menggunakan

fungsi sinus dengan noise acak

Gambar 4. 4 Hasil Plot dari kode sebelumnya

Gambar 4.4 menunjukkan kode untuk membagi dataset menjadi tiga

bagian: train (pelatihan), validate (validasi), dan test (pengujian), serta

memvisualisasikannya dengan warna berbeda.

Gambar 4. 5 Pembagian dataset dan proses Training

1. Pembagian Dataset

TRAIN_SPLIT = int(0.6 * SAMPLES)

TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)

• TRAIN_SPLIT = int(0.6 * SAMPLES): Menentukan indeks batas untuk

data training (60% dari total SAMPLES).

• TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT): Menentukan

indeks batas untuk data testing (20% setelah data training), sehingga sisanya

(20%) otomatis menjadi validation set.

2. Memisahkan Data

44

x_train, x_validate, x_test = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])

y_train, y_validate, y_test = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])

• np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT]): Memisahkan x_values

menjadi tiga bagian:

x_train (60%)

x_validate (20%)

x_test (20%)

• np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT]): Memisahkan y_values

dengan cara yang sama.

3. Visualisasi Data

plt.plot(x_train, y_train, 'b.', label="Train")

plt.plot(x_validate, y_validate, 'y.', label="Validate")

plt.plot(x_test, y_test, 'r.', label="Test")

• plt.plot(x_train, y_train, 'b.', label="Train"): Menampilkan data training

dengan titik biru ('b.').

• plt.plot(x_validate, y_validate, 'y.', label="Validate"): Menampilkan data

validasi dengan titik kuning ('y.').

• plt.plot(x_test, y_test, 'r.', label="Test"): Menampilkan data uji dengan titik

merah ('r.').

4. Menampilkan Plot

plt.legend()

plt.show()

• plt.legend(): Menampilkan legenda untuk membedakan kategori data.

• plt.show(): Menampilkan plot.

Gambar 4.6 menunjukkan pembagian dataset sinus dengan noise menjadi

tiga bagian:

1. Training Set (Train) → Ditandai dengan titik biru (60% data).

45

2. Validation Set (Validate) → Ditandai dengan titik kuning (20%

data).

3. Test Set (Test) → Ditandai dengan titik merah (20% data).

Gambar 4. 6 Hasil Dataset Sinus

Gambar 4.7 menunjukkan arsitektur model neural network (MLP) sederhana yang

dibuat menggunakan TensorFlow dan Keras.

Gambar 4. 7 Membuat model sequential

1. Membuat Model Sequential

model_1 = tf.keras.Sequential()

• Membuat model sequential, yang berarti lapisan (layers) akan

ditambahkan secara berurutan dari input ke output.

2. Menambahkan Hidden Layer

model_1.add(mylayers.Dense(16, activation='relu', input_shape=(1,)))

• mylayers.Dense(16, activation='relu', input_shape=(1,))

• 16 neuron di layer tersembunyi.

• Fungsi aktivasi: ReLU (Rectified Linear Unit), yang umum

digunakan dalam deep learning untuk mengatasi masalah vanishing

gradient.

46

• input_shape=(1,): Model menerima satu fitur input (karena hanya

ada satu variabel input).

3. Menambahkan Output Layer

model_1.add(mylayers.Dense(1))

• mylayers.Dense(1)

• Layer keluaran (output layer) memiliki 1 neuron, yang cocok untuk

tugas regresi (memprediksi nilai kontinu).

4. Mengompilasi Model

model_1.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

• optimizer='rmsprop'

• RMSprop (Root Mean Square Propagation) adalah algoritma

optimasi yang cocok untuk pelatihan model dengan gradien yang

bervariasi.

• loss='mse'

• Mean Squared Error (MSE) digunakan sebagai fungsi kerugian

(loss function), cocok untuk regresi.

• metrics=['mae']

• Mean Absolute Error (MAE) digunakan sebagai metrik evaluasi

untuk menilai performa model.

5. Menampilkan Ringkasan Model

model_1.summary() Menampilkan struktur model, jumlah parameter trainable,

serta jumlah layer.

Gambar 4.8 menunjukkan ringkasan arsitektur model neural network yang dibuat

menggunakan TensorFlow/Keras.

47

Gambar 4. 8 Arsitektur Model Neural Network

Gambar 4.9 menunjukkan proses pelatihan model neural network menggunakan

metode .fit() pada TensorFlow/Keras.

Gambar 4. 9 Kode Proses pelatihan model Neural Network

Rincian Parameter

1. x_train, y_train

Ini adalah dataset pelatihan yang digunakan model untuk belajar.

x_train berisi fitur (input), sementara y_train adalah label atau target yang

ingin diprediksi.

2. epochs=1000

Model akan dilatih selama 1000 iterasi penuh pada dataset.

Semakin tinggi jumlah epoch, semakin lama pelatihan berlangsung.

Bisa menyebabkan overfitting jika terlalu besar.

3. batch_size=16

Data akan diproses dalam kelompok kecil berisi 16 sampel per iterasi.

48

Penggunaan batch membantu dalam optimalisasi dan penggunaan memori.

4. validation_data=(x_validate, y_validate)

Model akan dievaluasi menggunakan data validasi setelah setiap epoch.

Berguna untuk melihat apakah model mengalami overfitting atau

underfitting.

Gambar 4.10 menunjukkan output hasil training model neural network

menggunakan TensorFlow/Keras.

Gambar 4. 10 Output Hasil Training Model Meural Network

Gambar 4.11 menunjukkan kode Python untuk memvisualisasikan loss selama

proses pelatihan model.

Gambar 4. 11 Kode Untuk Visualisasi Loss Selama Proses Pelatihan

Rincian Fungsi

1. Mengambil History Loss

• history_1.history['loss'] → berisi nilai loss selama training.

• history_1.history['val_loss'] → berisi nilai loss selama validasi.

49

2. Membuat Rentang Epochs

• epochs = range(1, len(loss) + 1) → Membuat list dari 1 sampai

jumlah epoch untuk sumbu x.

3. Plot Loss Training & Validation

• plt.plot(epochs, loss, 'g.', label='Training loss')

• Menampilkan loss training dengan warna hijau (g.) dan titik kecil.

• plt.plot(epochs, val_loss, 'b', label='Validation loss')

• Menampilkan loss validasi dengan warna biru (b) dan garis

kontinu.

4. Memberikan Label pada Grafik

• plt.title('Training and validation loss') → Menambahkan judul.

• plt.xlabel('Epochs'), plt.ylabel('Loss') → Memberikan label sumbu

x dan y.

• plt.legend() → Menampilkan legenda untuk membedakan antara

training loss dan validation loss.

5. Menampilkan Grafik

• plt.show() → Menampilkan grafik di layar.

Gambar 4.12 menunjukkan grafik loss selama proses training dan validasi

model neural network menggunakan TensorFlow/Keras.

Gambar 4. 12 Hasil Grafik Loss selama proses training dan validasi Model

Neral Network

50

Gambar 4.13 menunjukkan kode Python untuk memvisualisasikan training

loss dan validation loss dengan mengabaikan 100 epoch pertama dalam grafik.

Gambar 4. 13 Kode Untuk Visualisasi Training Loss dan Validasi

Rincian Fungsi

1. Melewati 100 Epoch Pertama

SKIP = 100 → Hanya menampilkan loss setelah epoch ke-100.

epochs[SKIP:], loss[SKIP:], dan val_loss[SKIP:] → Memotong data

sehingga hanya menampilkan nilai setelah epoch ke-100.

2. Plot Loss Training & Validation

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')

Menampilkan loss training dengan warna hijau (g.) dan titik kecil.

plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')

Menampilkan loss validasi dengan warna biru (b.) dan titik kecil.

3. Memberikan Label pada Grafik

plt.title('Training and validation loss') → Judul grafik.

plt.xlabel('Epochs'), plt.ylabel('Loss') → Memberikan label sumbu x dan y.

plt.legend() → Menampilkan legenda untuk membedakan antara training

loss dan validation loss.

4. Menampilkan Grafik

plt.show() → Menampilkan grafik di layar.

51

Gambar 4.14 menunjukkan grafik Training Loss dan Validation Loss setelah

mengabaikan 100 epoch pertama selama pelatihan model

Gambar 4. 14 Grafik Training Loss dan Validation

Gambar 4.15 menunjukkan kode Python untuk memvisualisasikan Mean Absolute

Error (MAE) pada training dan validation data selama proses pelatihan model.

Gambar 4. 15 Kode untuk visualisasi Mean Absolute Error

Rincian Fungsi

1. Mengambil Data MAE dari Training & Validation

history_1.history['mae'] → Menyimpan nilai Mean Absolute Error (MAE) dari

training.

history_1.history['val_mae'] → Menyimpan nilai MAE dari validasi.

2. Melewati Epoch Awal yang Tidak Stabil

epochs[SKIP:] → Memotong epoch awal agar tidak ditampilkan.

52

mae[SKIP:], val_mae[SKIP:] → Menampilkan MAE hanya setelah sejumlah epoch

tertentu.

3. Plot MAE Training dan Validation

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')

Menampilkan MAE training dengan warna hijau (g.).

plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')

Menampilkan MAE validasi dengan warna biru (b.).

4. Memberikan Label pada Grafik

plt.title('Training and validation mean absolute error') → Judul grafik.

plt.xlabel('Epochs'), plt.ylabel('MAE') → Memberikan label sumbu x dan y.

plt.legend() → Menampilkan legenda agar grafik lebih mudah dibaca.

5. Menampilkan Grafik

plt.show() → Menampilkan grafik di layar.

Gambar 4. 16 Pelatihan Dan validasi Mean Absolute Error

53

Gambar 4. 17 Kode untuk membuat plot prediksi

Rincian Fungsi Gambar 4.17 :

1. Melakukan Prediksi pada Data Latih

predictions = model_1.predict(x_train)

model_1.predict(x_train) → Model menghasilkan prediksi untuk data latih

(x_train).

predictions akan berisi nilai-nilai prediksi yang dihasilkan oleh model.

2. Menghapus Grafik Sebelumnya

plt.clf()

plt.clf() → Membersihkan grafik sebelum membuat plot baru agar tidak

tercampur dengan grafik sebelumnya.

Menambahkan Judul Grafik

plt.title('Training data predicted vs actual values')

Memberikan judul pada grafik: "Training data predicted vs actual values"

3. Menampilkan Data Aktual

plt.plot(x_test, y_test, 'b.', label='Actual')

plt.plot(x_test, y_test, 'b.', label='Actual')

Menampilkan data aktual dengan titik berwarna biru (b.).

x_test, y_test → Data uji digunakan sebagai representasi data aktual.

54

4. Menampilkan Data Prediksi

plt.plot(x_train, predictions, 'r.', label='Predicted')

plt.plot(x_train, predictions, 'r.', label='Predicted')

Menampilkan data prediksi model dengan titik merah (r.).

x_train, predictions → Data latih digunakan untuk mengevaluasi prediksi model.

5. Menampilkan Legenda dan Grafik

plt.legend()

plt.show()

plt.legend() → Menampilkan legenda agar lebih mudah membedakan antara data

aktual (biru) dan prediksi (merah).

plt.show() → Menampilkan grafik hasil visualisasi.

Gambar 4. 18 Kode untuk membuat Model 2

Penjelasan Gambar 4.18

1. model_2 = tf.keras.Sequential()

tf.keras.Sequential() → Membuat model Sequential, yaitu model dengan susunan

layer bertingkat dari input hingga output.

1. model_2.add(mylayers.Dense(16, activation='relu', input_shape=(1,)))

Layer pertama (Hidden Layer 1)

mylayers.Dense(16, activation='relu', input_shape=(1,))

55

Memiliki 16 neuron dengan fungsi aktivasi ReLU.

input_shape=(1,) menunjukkan bahwa input model memiliki 1 fitur.

2. model_2.add(mylayers.Dense(16, activation='relu'))

Layer kedua (Hidden Layer 2)

Memiliki 16 neuron.

Menggunakan ReLU sebagai fungsi aktivasi.

3. model_2.add(mylayers.Dense(1))

Layer Output

Memiliki 1 neuron, sesuai untuk regresi (karena ingin memprediksi nilai numerik).

Tidak menggunakan fungsi aktivasi, sehingga hasilnya berupa nilai kontinu.

4. model_2.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

Mengompilasi model dengan:

optimizer='rmsprop' → Menggunakan RMSprop sebagai optimasi.

loss='mse' → Menggunakan Mean Squared Error (MSE) sebagai fungsi loss.

metrics=['mae'] → Memantau Mean Absolute Error (MAE) selama pelatihan.

5. model_2.summary()

Menampilkan ringkasan model termasuk jumlah parameter, jumlah layer, dan

ukuran setiap layer.

Gambar 4. 19 Kode untuk pelatihan Model 2

Penjelasan Gambar 4.19 :

56

1. model_2.fit(...)

Metode fit() digunakan untuk melatih model neural network dengan data latih

(x_train, y_train).

2. epochs=600

Model akan dilatih sebanyak 600 epoch (iterasi) untuk meningkatkan akurasi.

3. batch_size=16

Data akan diproses dalam batch berisi 16 sampel dalam satu iterasi.

4. validation_data=(x_validate, y_validate)

Model akan dievaluasi pada data validasi (x_validate, y_validate) di setiap epoch

untuk memantau performa selama pelatihan.

Gambar 4. 20 Kode Untuk menampilkan hasil loss pada model 2

Penjelasan Kode Gambar 4.20

1. Mengambil Data Loss dari History Training

loss = history_2.history['loss']

val_loss = history_2.history['val_loss']

history_2.history['loss'] → Menyimpan nilai loss (kerugian) pada data training

selama proses pelatihan model.

57

history_2.history['val_loss'] → Menyimpan nilai validation loss (kerugian pada

data validasi).

2. Membuat Rentang Epochs

epochs = range(1, len(loss) + 1)

range(1, len(loss) + 1) → Membuat rentang epoch dari 1 hingga jumlah epoch

terakhir.

Digunakan sebagai sumbu X dalam plot.

3. Membuat Grafik Loss

plt.plot(epochs, loss, 'g.', label='Training loss')

plt.plot(epochs, val_loss, 'b', label='Validation loss')

plt.plot(epochs, loss, 'g.', label='Training loss') → Memplot training loss dengan

titik warna hijau ('g.').

plt.plot(epochs, val_loss, 'b', label='Validation loss') → Memplot validation loss

dengan garis warna biru ('b').

4. Menambahkan Judul dan Label Grafik

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

plt.title('Training and validation loss') → Menambahkan judul grafik.

plt.xlabel('Epochs') → Memberi label sumbu X sebagai Epochs.

plt.ylabel('Loss') → Memberi label sumbu Y sebagai Loss.

plt.legend() → Menampilkan keterangan untuk training loss dan validation loss.

plt.show() → Menampilkan grafik.

58

Gambar 4. 21 Kode untuk menggambarkan proses training dan validasi

diatas 100 epoch

Penjelasan Kode Gambar 4.21:

1. SKIP = 100

Variabel SKIP digunakan untuk melewatkan 100 epoch pertama agar grafik lebih

jelas dan tidak terlalu padat.

2. plt.clf()

plt.clf() digunakan untuk membersihkan plot sebelum membuat plot baru,

mencegah tumpang tindih gambar.

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')

plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')

plt.plot(...) digunakan untuk menggambar grafik:

Training loss ditampilkan dalam warna hijau ('g.').

Validation loss ditampilkan dalam warna biru ('b.').

[SKIP:] berarti hanya menampilkan epoch setelah 100 pertama.

plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

59

plt.legend()

plt.show()

3. Judul & Label:

plt.title(...) → Menetapkan judul grafik.

plt.xlabel('Epochs') → Label sumbu X sebagai "Epochs".

plt.ylabel('Loss') → Label sumbu Y sebagai "Loss".

plt.legend() → Menampilkan keterangan warna pada grafik.

plt.show() → Menampilkan grafik.

Gambar 4. 22 Kode untuk menggambarkan Mean Absolute Error

Penjelasan Kode:

1. plt.clf()

plt.clf() digunakan untuk membersihkan plot sebelum membuat grafik baru,

mencegah tumpang tindih gambar.

2. mae = history_2.history['mae']

val_mae = history_2.history['val_mae']

mae → Menyimpan nilai Mean Absolute Error (MAE) saat training dari

history_2.history['mae'].

val_mae → Menyimpan nilai MAE saat validasi dari history_2.history['val_mae'].

60

3. plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')

plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')

Training MAE ditampilkan dalam warna hijau ('g.').

Validation MAE ditampilkan dalam warna biru ('b.').

[SKIP:] digunakan untuk melewatkan sejumlah epoch pertama (biasanya agar

grafik lebih jelas).

4. plt.title('Training and validation mean absolute error')

plt.xlabel('Epochs')

plt.ylabel('MAE')

plt.legend()

plt.show()

5. Judul & Label:

plt.title(...) → Menetapkan judul grafik.

plt.xlabel('Epochs') → Label sumbu X sebagai "Epochs".

plt.ylabel('MAE') → Label sumbu Y sebagai "Mean Absolute Error".

plt.legend() → Menampilkan keterangan warna pada grafik.

plt.show() → Menampilkan grafik.

Gambar 4. 23 Kode untuk menampilkan perbedaan antara prediksi dan

Actualnya

61

Penjelasan Gambar 4.23:

1. loss = model_2.evaluate(x_test, y_test)

model_2.evaluate(x_test, y_test) → Mengevaluasi performa model pada data uji

(test set) dan menyimpan nilai error atau loss.

2. predictions = model_2.predict(x_test)

model_2.predict(x_test) → Menghasilkan prediksi model berdasarkan data uji

(x_test).

3. plt.clf()

plt.clf() → Membersihkan plot sebelum menggambar yang baru.

4. plt.title('Comparison of predictions and actual values')

Judul grafik: "Comparison of predictions and actual values" (Perbandingan antara

prediksi dan nilai aktual).

5. plt.plot(x_test, y_test, 'b.', label='Actual')

plt.plot(x_test, predictions, 'r.', label='Predicted')

Data aktual (ground truth) divisualisasikan dengan warna biru ('b.').

Prediksi model divisualisasikan dengan warna merah ('r.').

6. plt.legend()

plt.show()

plt.legend() → Menampilkan label (keterangan) untuk warna pada grafik.

plt.show() → Menampilkan grafik.

62

Gambar 4. 24 Kode untuk menkonversi Model Keras ke TFLite

Penjelasan Gambar 4.24:

1. Konversi Model Keras ke TFLite(Line 1)

converter = tf.lite.TFLiteConverter.from_keras_model(model_2)

tflite_model = converter.convert()

open("sine_model.tflite", "wb").write(tflite_model)

tf.lite.TFLiteConverter.from_keras_model(model_2) → Membuat converter untuk

mengubah model Keras (model_2) menjadi model TensorFlow Lite (TFLite).

converter.convert() → Mengkonversi model ke format TFLite.

open("sine_model.tflite", "wb").write(tflite_model) → Menyimpan model yang

sudah dikonversi ke dalam file "sine_model.tflite".

2. Konversi dengan Kuantisasi

converter = tf.lite.TFLiteConverter.from_keras_model(model_2)

converter.optimizations = [tf.lite.Optimize.DEFAULT]

converter.optimizations = [tf.lite.Optimize.DEFAULT] → Mengaktifkan optimasi

kuantisasi untuk membuat model lebih kecil dan lebih cepat tanpa kehilangan

akurasi secara signifikan.

3. Membuat Representative Dataset untuk Kuantisasi**

def representative_dataset_generator():

63

 for value in x_test:

 yield [np.array(value, dtype=np.float32, ndmin=2)]

Representative dataset digunakan dalam kuantisasi model untuk memastikan

performa tetap optimal pada perangkat dengan sumber daya terbatas.

Fungsi representative_dataset_generator():

Mengambil nilai dari x_test sebagai contoh data.

Mengubah setiap nilai menjadi array float32 dengan dimensi minimal 2

(ndmin=2).

4. Menetapkan Dataset dan Mengkonversi Model

converter.representative_dataset = representative_dataset_generator

tflite_model = converter.convert()

open("sine_model_quantized.tflite", "wb").write(tflite_model)

converter.representative_dataset = representative_dataset_generator →

Menetapkan dataset perwakilan untuk kuantisasi.

converter.convert() → Mengkonversi model dengan kuantisasi.

Menyimpan model yang telah dikonversi dengan kuantisasi ke dalam file

"sine_model_quantized.tflite".

5.2. Konversi Model ke Perangkat

Konversi model Machine Learning ke perangkat merupakan langkah penting dalam

implementasi model di lingkungan dengan keterbatasan sumber daya, seperti

mikrokontroler, edge devices, atau sistem IoT. Proses ini bertujuan untuk

mengoptimalkan ukuran, kecepatan, dan efisiensi model agar dapat berjalan secara

real-time dengan konsumsi daya yang minimal.

1. Persiapan lingkungan kerja.

Sebelum melakukan konversi model machine learning ke perangkat embedded

seperti Arduino Nano 33 BLE Sense, penting untuk menyiapkan lingkungan

64

pengembangan yang mendukung proses konversi dan pengujian. Adapun langkah-

langkah persiapan lingkungan kerja meliputi:

Instalasi Python dan Pustaka Pendukung:

• Pastikan Python 3.x telah terinstal pada sistem.

Instal pustaka TensorFlow dengan perintah berikut:

• pip install tensorflow

Untuk mikrokontroler, Anda juga perlu:

• pip install numpy

Instalasi Arduino IDE:

Unduh dan pasang Arduino IDE versi terbaru dari situs resmi:

https://www.arduino.cc/en/software

Tambahkan board Arduino Nano 33 BLE Sense melalui Board Manager.

Instal pustaka tambahan, seperti:

• Arduino_TensorFlowLite (diinstal manual melalui GitHub karena

tidak tersedia di Library Manager)

Arduino_LSM9DS1, PDM, dan pustaka sensor lain jika diperlukan

Unduh TensorFlow Lite Micro Examples:

• Clone repository TensorFlow Lite for Microcontrollers untuk

mengakses contoh dan template proyek: git clone

https://github.com/tensorflow/tflite-micro

Pemasangan xxd (untuk konversi ke format C array):

Pada sistem berbasis Unix/Linux/MacOS, xxd biasanya sudah tersedia. Untuk

Windows, xxd bisa didapat dari paket vim atau gunakan versi portabel CLI dari

internet.

• xxd -i model_quantized.tflite > model_data.cc

Verifikasi Versi dan Dependensi:

Pastikan semua pustaka dan tools yang dibutuhkan kompatibel dengan versi

TensorFlow dan Arduino yang digunakan. Perbedaan versi dapat menyebabkan

kegagalan saat konversi atau deploy model ke perangkat.

65

Dengan lingkungan kerja yang telah disiapkan secara lengkap, proses konversi,

kuantisasi, dan deploy model ke perangkat mikrokontroler dapat dilakukan

dengan lancar dan efisien.

2. Ekspor Model yang Telah Dilatih

Langkah pertama dalam proses konversi adalah mengekspor model yang telah

dilatih dalam format yang lebih ringan. Model deep learning biasanya

dikembangkan dan dilatih dalam framework seperti TensorFlow, PyTorch, atau

Scikit-learn. Setelah model mencapai akurasi yang diinginkan, model perlu

diekspor ke format yang lebih kompatibel dengan perangkat tujuan.Untuk model

yang dikembangkan menggunakan TensorFlow, model harus dikonversi ke

TensorFlow Lite (TFLite) menggunakan perintah berikut:

import tensorflow as tf

• Memuat model yang telah dilatih

model = tf.keras.models.load_model("model.h5")

• Mengonversi model ke format TensorFlow Lite

converter = tf.lite.TFLiteConverter.from_keras_model(model)

tflite_model = converter.convert()

• Menyimpan model hasil konversi

Pada tahap ini, model yang awalnya dalam format H5 atau SavedModel telah

dikonversi ke format TFLite yang lebih ringan.

3. Optimasi dan Kuantisasi Model

Model deep learning yang dikembangkan di komputer umumnya menggunakan

floating-point precision (float32) yang memerlukan sumber daya besar untuk

komputasi. Untuk mengurangi ukuran model dan mempercepat inferensi, dilakukan

kuantisasi yang mengubah bobot model dari format float32 ke int8 atau float16.

Kuantisasi dapat dilakukan dengan beberapa metode, antara lain:

66

• Post-Training Quantization (PTQ): Kuantisasi dilakukan setelah model

selesai dilatih.

• Full Integer Quantization: Seluruh bobot dan aktivasi model dikonversi

menjadi bilangan bulat (int8) agar bisa dijalankan di perangkat dengan prosesor

sederhana.

• Hybrid Quantization: Menggabungkan floating-point dan integer untuk

keseimbangan antara akurasi dan efisiensi.

• Mengubah model menjadi TensorFlow Lite dengan Kuantisasi

Gambar 4.10 Line 4 adalah contoh kode untuk melakukan kuantisasi model:

• Mengaktifkan optimasi kuantisasi

Gambar 4.10 Line 5 melakukan optimasi

converter.optimizations = [tf.lite.Optimize.DEFAULT]

• Menyediakan dataset perwakilan untuk kuantisasi

def representative_dataset():

 for data in x_test:

 yield [np.array(data, dtype=np.float32, ndmin=2)]

converter.representative_dataset = representative_dataset

converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]

• Konversi model dengan kuantisasi penuh

tflite_quantized_model = converter.convert()

• Menyimpan model yang telah dikonversi

with open("model_quantized.tflite", "wb") as f:

 f.write(tflite_quantized_model)

Dengan kuantisasi ini, ukuran model bisa berkurang hingga 75% dan meningkatkan

efisiensi komputasi hingga 4 kali lebih cepat dibandingkan model float32.

4. Deploy Model ke Perangkat Tujuan

67

Setelah model dikonversi ke format TFLite, langkah selanjutnya adalah

memasukkannya ke perangkat yang akan digunakan, seperti Arduino, Raspberry Pi,

atau ESP32. Untuk mikrokontroler seperti Arduino Nano 33 BLE Sense, model

dapat dijalankan menggunakan pustaka TensorFlow Lite for Microcontrollers.

Berikut adalah langkah-langkahnya:

1. Mengompilasi model ke dalam kode sumber C++

TensorFlow Lite untuk mikrokontroler tidak mendukung file .tflite secara langsung,

sehingga model harus dikonversi ke dalam array biner menggunakan skrip berikut:

xxd -i model_quantized.tflite > model_data.cc

Hasilnya adalah array yang dapat disisipkan langsung dalam kode C++.

2. Memuat model di Arduino

Dalam kode Arduino (file .ino), model yang telah dikompilasi ditambahkan

menggunakan pustaka TensorFlow Lite:

Gambar 4.11 menunjukkan potongan kode dalam bahasa pemrograman C++ yang

digunakan untuk menginisialisasi model TensorFlow Lite di perangkat dengan

sumber daya terbatas, seperti mikrokontroler atau edge devices.

Gambar 4. 25 Potongan Kode untuk Menginisialisasi Model TensorFlow

Lite

Kode Gambar 4.25 memastikan bahwa model dapat dimuat dan digunakan di

perangkat dengan memori terbatas.

3. Menjalankan Inferensi di Perangkat

Setelah model di-deploy, kita bisa menggunakannya untuk menjalankan inferensi

(prediksi) secara real-time. Untuk model regresi sederhana, kita bisa menggunakan

kode berikut:

68

Gambar 4.26 menunjukkan potongan kode dalam bahasa C++ yang digunakan

untuk menjalankan inferensi pada model TensorFlow Lite yang telah dimuat

sebelumnya.

Gambar 4. 26 Kode Untuk menjalankan inferensi pada Model TensorFlow

Lite

Dengan cara di Gambar 4.26, model yang telah dikonversi dapat berjalan di

Arduino atau ESP32 tanpa memerlukan komputer atau cloud.

4. Pengujian dan Validasi Model

Setelah model berhasil dijalankan di perangkat, tahap terakhir adalah pengujian dan

validasi untuk memastikan model bekerja dengan baik. Pengujian ini dapat

dilakukan dengan:

1. Membandingkan hasil inferensi di perangkat dengan hasil di komputer

untuk memastikan tidak ada perbedaan signifikan.

2. Menggunakan dataset pengujian untuk melihat apakah model tetap akurat

setelah dikonversi dan dikompresi.

3. Mengukur waktu inferensi untuk memastikan model berjalan dengan

kecepatan yang sesuai dengan kebutuhan sistem real-time.

5. Kesimpulan

Proses konversi model ke perangkat adalah langkah penting dalam penerapan

machine learning di perangkat embedded. Dengan menggunakan teknik seperti

TensorFlow Lite, kuantisasi, dan optimasi model, kita dapat menjalankan model

deep learning di perangkat dengan daya rendah seperti Arduino, ESP32, atau

Raspberry Pi.

69

Proses utama yang dilakukan dalam konversi model meliputi:

• Ekspor model yang telah dilatih ke format yang kompatibel.

• Optimasi dan kuantisasi untuk mengurangi ukuran model dan meningkatkan

 efisiensi.

• Deploy ke perangkat menggunakan pustaka TensorFlow Lite.

• Pengujian dan validasi untuk memastikan akurasi dan performa tetap

 terjaga.

5.3. Inference

Proses Inference dalam TinyML merupakan tahap akhir dari implementasi model

machine learning, di mana model yang telah dilatih digunakan untuk membuat

prediksi atau keputusan secara langsung di perangkat dengan sumber daya terbatas,

seperti mikrokontroler dan edge devices. Tidak seperti pelatihan model yang

memerlukan komputasi tinggi dan sering kali dilakukan di server atau cloud,

inference dilakukan secara lokal di perangkat kecil dengan efisiensi tinggi.

1. Persiapan Data Input

Langkah pertama dalam inference adalah menyiapkan data yang akan digunakan

sebagai input ke model. Data ini dapat berasal dari berbagai sensor yang terhubung

ke perangkat, seperti kamera untuk pengenalan gambar, mikrofon untuk pengenalan

suara, atau akselerometer untuk mendeteksi gerakan. Setiap model memiliki format

input yang berbeda, sehingga data yang masuk harus diproses agar sesuai dengan

format yang diharapkan oleh model.

Sebagai contoh, jika model memerlukan gambar dengan resolusi 28x28 piksel

dalam skala abu-abu, maka gambar dari sensor kamera perlu diubah ukurannya

terlebih dahulu. Jika model membutuhkan nilai numerik dari sensor suhu, maka

data harus dikonversi ke format yang kompatibel, misalnya dalam bentuk bilangan

desimal dengan skala yang sesuai. Setelah data siap, nilai tersebut kemudian

dimasukkan ke dalam tensor input yang dialokasikan dalam memori perangkat

70

2. Memuat Model dan Interpreter

Setelah input siap, langkah berikutnya adalah memuat model yang telah dikonversi

ke format TensorFlow Lite (TFLite) ke dalam perangkat. Model ini biasanya telah

dikompresi dan dikonversi dari model yang lebih besar agar dapat berjalan dengan

efisien di sistem dengan RAM dan penyimpanan terbatas.

Interpreter TensorFlow Lite bertanggung jawab untuk menjalankan model dan

mengelola proses inferensi di perangkat. Interpreter ini memastikan bahwa model

dapat berjalan dengan baik meskipun terdapat keterbatasan komputasi. Untuk

menginisialisasi model, perangkat akan mengalokasikan memori yang diperlukan

untuk input, output, dan variabel perantara lainnya.

Pada Gambar 4.27 adalah contoh cara memuat model ke dalam interpreter (Pada

file hello_world.ino) :

Gambar 4. 27 Kode untuk memuat model ke dalam interpreter

Dalam contoh ini, model yang telah dikonversi ke format TFLite disimpan dalam

variabel model_data dan kemudian diproses oleh interpreter agar bisa digunakan

untuk inference.

3. Menjalankan Model dengan Interpreter

Setelah model dimuat ke dalam interpreter, langkah berikutnya adalah menjalankan

proses inferensi dengan data input yang telah dipersiapkan(Pada file

hello_world.ino). Ini dilakukan dengan memanggil fungsi Invoke() pada

interpreter, yang akan mengeksekusi model menggunakan input yang telah

diberikan.

Gambar 4.28 adalah contoh kode untuk menjalankan inference:

71

Gambar 4. 28 Kode untuk menjalankan inference

Jika Invoke() berhasil, model akan memproses data dan menghasilkan output

berdasarkan hasil prediksi. Namun, jika terjadi kesalahan dalam eksekusi model,

sistem akan menampilkan pesan error agar dapat dilakukan perbaikan.

4. Mengambil Hasil Inferensi dari Model

Setelah model selesai dijalankan, hasil dari inferensi disimpan dalam tensor output.

Output ini dapat berupa nilai numerik, probabilitas dari berbagai kategori, atau hasil

perhitungan regresi, tergantung pada jenis model yang digunakan.

Gambar 4.29 adalah contoh cara mengambil nilai output dari tensor hasil prediksi:

Gambar 4. 29 Kode untuk mengambil nilai output

Dalam contoh ini, hasil prediksi model diambil dari elemen pertama dalam array

output bertipe float. Nilai ini kemudian dapat digunakan untuk berbagai tujuan,

seperti mengendalikan perangkat keras, menampilkan hasil di layar, atau mengirim

data ke sistem lain.

5. Menggunakan Hasil Inferensi untuk Pengambilan Keputusan

Setelah mendapatkan hasil prediksi dari model, langkah terakhir adalah mengambil

tindakan berdasarkan hasil tersebut. Misalnya, dalam sistem smart home, jika

model mendeteksi bahwa suhu ruangan terlalu tinggi, maka kipas atau pendingin

ruangan dapat diaktifkan secara otomatis. Jika model digunakan untuk mengenali

suara perintah tertentu, perangkat bisa merespons dengan menjalankan instruksi

yang sesuai.

Gambar 4.30 adalah contoh kode untuk menangani hasil inferensi berdasarkan

kategori output (Pada file arduino_output_handler.cpp):

72

Gambar 4. 30 Kode untuk menangani hasil inferensi

Dalam contoh Gambar 4.30, jika hasil inferensi menunjukkan nilai lebih dari 0.5,

sistem akan menganggap bahwa suara telah dikenali dan akan memberikan respons

dengan menyalakan LED. Jika nilai di bawah ambang batas, LED akan dimatikan.

Gambar 4. 31 Hasil Serial Monitor

Gambar 4. 32 Hasil Serial Monitor

Gambar 4.31 dan 4.32 menampilkan deretan karakter seperti 136, 139, dan

angka-angka yang berubah secara berkala. Karakter tersebut merupakan hasil dari

data yang dikirim oleh program Arduino ke komputer melalui komunikasi serial.

Setiap satu detik, program mengirimkan nilai acak yang berada dalam rentang

tertentu. Nilai ini kemudian diterima dan ditampilkan oleh Serial Monitor dalam

bentuk karakter atau angka sesuai dengan data yang dikirimkan dari mikrokontroler.

Tampilan yang berubah secara periodik menunjukkan bahwa program berjalan

secara berulang dan terus menghasilkan output baru setiap detiknya.

73

6. Hasil

Gambar 4.33 adalah tampilan fisik dari papan mikrokontroler Arduino Nano 33

BLE yang digunakan dalam proses pengembangan sistem (terhubung melalui kabel

USB seperti tampak pada gambar).

Gambar 4. 33 Tampilan Papan Arduino Nano 33 BLE

Dalam Gambar 4.33, terlihat bahwa papan Arduino Nano 33 BLE telah terhubung

ke sumber daya melalui kabel USB, yang ditandai dengan menyala-nya LED

indikator berwarna hijau di bagian atas papan. Papan ini memiliki bentuk kecil dan

kompak, serta dilengkapi dengan modul komunikasi nirkabel berbasis Bluetooth

Low Energy (BLE) dan sensor IMU bawaan. Fitur-fitur ini memungkinkan papan

untuk digunakan dalam berbagai proyek berbasis Internet of Things (IoT), seperti

pemantauan lingkungan, deteksi gerakan, dan aplikasi wearable. Keaktifan LED

juga menunjukkan bahwa papan telah berhasil diinisialisasi dan siap digunakan

untuk proses selanjutnya dalam sistem.

 Selama kegiatan Praktik Kerja Lapangan (PKL), berhasil dilakukan

implementasi dan pengujian perangkat mikrokontroler menggunakan papan

pengembangan Arduino Nano 33 BLE yang dilengkapi dengan konektivitas

Bluetooth dan sensor bawaan. Perangkat dihubungkan ke komputer menggunakan

kabel USB dan berhasil terdeteksi oleh perangkat lunak Arduino IDE. Indikator

LED menyala dengan stabil, menandakan bahwa papan berfungsi dengan baik.

Program sederhana berhasil diunggah untuk membaca data dari sensor serta

mengirimkan informasi secara nirkabel. Hasil ini menunjukkan bahwa perangkat

bekerja secara optimal dan dapat dimanfaatkan sebagai prototipe awal untuk

berbagai aplikasi berbasis Internet of Things (IoT), seperti pelacakan lokasi,

pemantauan lingkungan, atau pengendalian perangkat jarak jauh.

74

7. Kesimpulan

Proses inference dalam TinyML mencakup beberapa tahapan utama, mulai dari

persiapan input data, memuat model ke interpreter, menjalankan model, membaca

hasil output, dan mengambil tindakan berdasarkan hasil prediksi. Dengan

menggunakan TensorFlow Lite for Microcontrollers, model machine learning dapat

berjalan secara efisien di perangkat dengan keterbatasan sumber daya.

Inference yang dioptimalkan memungkinkan berbagai aplikasi machine learning

berbasis edge computing, seperti pengenalan suara, deteksi gerakan, atau analisis

sensor, untuk berjalan tanpa memerlukan koneksi ke server atau cloud. Hal ini

memberikan keunggulan dalam efisiensi daya, kecepatan pemrosesan, dan

keamanan data, sehingga memungkinkan implementasi AI di perangkat kecil

dengan daya rendah.

Untuk informasi lebih lanjut serta materi tambahan yang mendukung pembelajaran

dalam buku ini, Anda dapat mengunduhnya melalui tautan berikut:

https://tinymlbook.com/supplemental. Situs tersebut menyediakan berbagai sumber

daya tambahan seperti kode program, dataset, dan petunjuk teknis yang relevan

dengan topik TinyML.

75

Bab V

Penutup

5.1. Kesimpulan

Pada Praktik Kerja Lapangan (PKL) ini, telah dilakukan pengembangan model

Machine Learning mulai dari tahap pelatihan hingga proses inference pada

perangkat Arduino Sense. Model yang digunakan dalam penelitian ini berbasis

persamaan sinus, yang memungkinkan perangkat untuk mengenali dan

memprediksi pola berbasis fungsi sinusoidal. Proses pengembangan mencakup

pembuatan dataset, pelatihan model, konversi ke format yang kompatibel dengan

TensorFlow Lite, serta implementasi pada perangkat keras dengan sumber daya

terbatas. Dengan pendekatan ini, model dapat berjalan secara efisien di

mikrokontroler, memungkinkan aplikasi seperti analisis sinyal, pengenalan pola,

dan pemrosesan data real-time secara langsung di perangkat.

 Implementasi proses pengolahan data belum sempat dikerjakan pada PKL

ini disebabkan oleh beberapa kendala yang dihadapi selama pelaksanaan. Salah satu

faktor utama adalah terbatasnya waktu yang tersedia untuk menyelesaikan seluruh

tahapan pengembangan, mulai dari pelatihan model hingga deployment pada

perangkat. Selain itu, kendala teknis seperti kompatibilitas perangkat keras,

keterbatasan sumber daya komputasi pada mikrokontroler, serta tantangan dalam

konversi model ke format yang lebih ringan juga menjadi faktor penghambat. Di

samping itu, proses pengolahan data memerlukan pengujian dan validasi lebih

lanjut, yang membutuhkan waktu serta dukungan infrastruktur yang memadai. Oleh

karena itu, tahap ini masih menjadi bagian yang dapat dikembangkan lebih lanjut

dalam penelitian atau implementasi berikutnya.

 Evaluasi performa model dalam kondisi nyata telah dilakukan dengan

menampilkan hasil inference di Serial Monitor, sehingga output model dapat

diamati secara langsung. Namun, dalam implementasi ini, penggunaan sensor

bawaan Arduino Sense belum dapat dilakukan sepenuhnya. Hal ini disebabkan oleh

keterbatasan dalam integrasi model dengan sensor, baik dari segi kompatibilitas

perangkat lunak maupun konfigurasi perangkat keras. Sebagai alternatif, nilai input

diberikan secara manual atau melalui simulasi, sehingga prediksi model tetap dapat

dianalisis meskipun tanpa data sensor langsung. Untuk pengembangan selanjutnya,

76

diperlukan optimalisasi lebih lanjut agar model dapat berinteraksi langsung dengan

sensor, memungkinkan evaluasi yang lebih akurat dalam kondisi nyata.

5.2. Saran

Untuk pengembangan lebih lanjut, terdapat beberapa saran yang dapat diterapkan

agar implementasi Machine Learning pada perangkat Arduino Sense menjadi lebih

optimal dan aplikatif.

1. Integrasi Model dengan Sensor Bawaan

Pada penelitian ini, model masih dievaluasi menggunakan input simulasi tanpa

melibatkan sensor bawaan. Ke depan, perlu dilakukan optimalisasi agar model

dapat langsung menerima data dari sensor akselerometer, mikrofon, atau sensor

lainnya. Dengan demikian, hasil inferensi akan lebih akurat dan mencerminkan

kondisi nyata.

2. Optimasi dan Kuantisasi Model

Untuk meningkatkan efisiensi komputasi pada perangkat dengan keterbatasan daya

dan memori, model dapat dioptimalkan lebih lanjut menggunakan teknik post-

training quantization atau pruning. Teknik ini dapat mempercepat waktu inferensi

dan mengurangi penggunaan memori tanpa mengorbankan akurasi secara

signifikan.

3. Pengolahan Data Secara Langsung di Perangkat

Pada PKL ini, proses pengolahan data belum dapat diimplementasikan sepenuhnya.

Untuk penelitian selanjutnya, disarankan agar perangkat dapat melakukan

preprocessing data secara langsung, seperti filtering, normalisasi, atau ekstraksi

fitur. Dengan cara ini, model tidak hanya menerima input mentah, tetapi juga data

yang telah diproses untuk meningkatkan akurasi prediksi.

4. Pengujian Model dalam Berbagai Kondisi

Evaluasi model sebaiknya dilakukan dalam berbagai kondisi lingkungan nyata

untuk memastikan ketahanannya terhadap perubahan variabel eksternal. Misalnya,

jika model diterapkan untuk analisis gerakan, pengujian dapat mencakup berbagai

tingkat pencahayaan, variasi suhu, atau latensi dalam pemrosesan sinyal sensor.

77

5. Implementasi Model pada Perangkat Lain

Selain Arduino Sense, model juga dapat diuji pada platform IoT lainnya, seperti

ESP32, Raspberry Pi, atau perangkat edge AI lainnya. Dengan melakukan

perbandingan performa pada berbagai platform, dapat ditentukan perangkat yang

paling efisien dan sesuai dengan kebutuhan aplikasi tertentu.

6. Penggunaan Model yang Lebih Kompleks

Ke depan, model yang digunakan dapat diperluas dengan arsitektur yang lebih

kompleks, seperti Convolutional Neural Networks (CNN) untuk pengolahan citra

atau Recurrent Neural Networks (RNN) untuk analisis data sekuensial. Hal ini

memungkinkan implementasi aplikasi yang lebih luas, seperti pengenalan suara,

deteksi objek, atau analisis pola waktu nyata.

Dengan menerapkan saran-saran ini, diharapkan pengembangan Machine Learning

pada Arduino Sense dapat berjalan lebih optimal, efisien, dan memiliki dampak

yang lebih luas dalam aplikasi dunia nyata.

78

Daftar Pustaka

Warden, P. and Situnayake, D., 2019, TinyML: Machine Learning with
TensorFlow Lite on Arduino and Ultra-low-power Microcontrollers, O’Reilly
Media, Inc., Sebastopol, USA.

TensorFlow, 2023, TensorFlow Lite Guide, Available at:

https://www.tensorflow.org/lite [Accessed 11 June 2025].

Arduino, 2023, Arduino Nano 33 BLE Sense Overview, Available at:

https://docs.arduino.cc/hardware/nano-33-ble-sense [Accessed 11 June

2025].

Goodfellow, I., Bengio, Y. and Courville, A., 2016, Deep Learning, MIT Press,
Cambridge, USA.

Chollet, F., 2021, Deep Learning with Python (2nd ed.), Manning Publications,
Shelter Island, USA.

Sze, V., Chen, Y.H., Yang, T.J. and Emer, J.S., 2017, Efficient Processing of Deep
Neural Networks: A Tutorial and Survey, Proceedings of the IEEE,
105(12):2295–2329. https://doi.org/10.1109/JPROC.2017.2761740

Banzi, M. and Shiloh, M., 2014, Getting Started with Arduino (3rd ed.), Maker
Media, Inc., Sebastopol, USA.

Duda, R.O., Hart, P.E. and Stork, D.G., 2001, Pattern Classification (2nd ed.),
Wiley-Interscience, New York, USA.

Zhang, C., Bengio, S., Hardt, M., Recht, B. and Vinyals, O., 2017, Understanding
Deep Learning Requires Rethinking Generalization, arXiv preprint,
arXiv:1611.03530.

Lane, N.D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, P., Qendro, L. and
Kawsar, F., 2015, DeepX: A Software Accelerator for Low-power Deep
Learning Inference on Mobile Devices, Proceedings of the 14th International
Conference on Information Processing in Sensor Networks (IPSN '15), 23–34.

