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Bab I

Pendahuluan

1.1. Latar Belakang

Di era digital yang semakin berkembang, penggunaan mikrokontroler
seperti Raspberry Pi dan Arduino Uno telah menjadi komponen vital dalam
berbagai aplikasi Teknologi. Raspberry Pi, dengan kemampuan komputasi yang
setara komputer mini, telah diimplementasikan dalam proyek-proyek mulai dari
sistem otomasi rumah hingga stasiun pemantau cuaca. Sementara itu, Arduino Uno
dengan arsitektur sederhananya telah menjadi pilihan utama para pengembang
untuk proyek elektronika dan robotika skala kecil hingga menengah. Kedua
platform ini menawarkan fleksibilitas tinggi dengan harga terjangkau,
memungkinkan innovator dan peneliti mengembangkan Solusi Teknologi yang

dapat diterapkan dalam kehidupan sehari-hari.

Seiring dengan revolusi industry 4.0, kebutuhan akan sistem cerdas yang
mampu belajar dan beradaptasi semakin meningkat. Machine learning hadir sebagai
Solusi untuk menganalisis data dalam jumlah besar dan menghasilkan prediksi atau
keputusan yang akurat. Dalam konteks industry, kemampuan machine learning
untuk mendeteksi anomali, mengoptimalkan proses produksi, dan melakukan
prediksi perawatan telah terbukti meningkatkan efisiensi dan mengurangi biaya
operasional. Integrasi machine learning dengan perangkat mikrokontroler
membuka peluang baru dalam pengembangan sistem cerdas yang dapat beroperasi
secara mandiri di edge device, mengurangi ketergantungan pada koneksi cloud dan

meningkatkan respons real-time.

Perkembangan teknologi machine learning telah mendorong kemajuan di
berbagai bidang, terutama dalam otomatisasi dan analisis data berbasis sensor.
Dengan kemampuan machine learning untuk mengenali pola dan membuat
keputusan berdasarkan data, penerapannya kini menjangkau perangkat kecil dan
berdaya rendah melalui konsep TinyML (Tiny Machine Learning). TinyML

memungkinkan model machine learning dapat dijalankan di perangkat mikro,



seperti mikrokontroler, sehingga membuka peluang bagi pengembangan solusi [oT

yang hemat energi.

Salah satu perangkat mikrokontroler yang mendukung penerapan TinyML
adalah Arduino Nano 33 BLE Sense. Perangkat ini dilengkapi dengan beragam
sensor—seperti akselerometer, mikrofon, dan sensor suhu—serta konektivitas
Bluetooth Low Energy. Fitur-fitur ini membuatnya ideal untuk aplikasi berbasis
sensor yang membutuhkan pemrosesan data real-time di lokasi, seperti pemantauan
lingkungan, pengenalan suara, dan analisis gerakan. Kebutuhan akan sistem yang
dapat bekerja secara mandiri dengan daya rendah menjadikan Arduino Nano 33

BLE Sense sebagai salah satu platform yang potensial.

Di sisi lain, penerapan machine learning pada perangkat berdaya rendah
menghadapi beberapa tantangan. Mikrokontroler seperti Arduino Nano 33 BLE
Sense memiliki keterbatasan dalam hal memori dan kapasitas komputasi. Oleh
karena itu, pemilihan model machine learning yang efisien menjadi hal yang sangat
penting agar sistem dapat berjalan dengan lancar tanpa mengorbankan akurasi
prediksi. Selain itu, pengolahan data dari sensor yang dapat digunakan sebagai input
bagi model machine learning harus dioptimalkan untuk meminimalkan penggunaan

daya.

Implementasi TinyML juga mengharuskan adanya metode kompresi dan
optimasi model yang cermat. Model yang digunakan harus cukup ringan untuk
dijalankan pada perangkat dengan kapasitas terbatas tanpa mengorbankan kinerja.
Selain itu, diperlukan pemahaman mendalam tentang cara kerja model machine
learning pada lingkungan berdaya rendah agar aplikasi dapat bertahan dalam jangka

waktu yang lama tanpa intervensi pengguna.

Penelitian ini bertujuan untuk mengeksplorasi penerapan machine learning
pada Arduino Nano 33 BLE Sense, yang dapat menjadi referensi untuk
mengembangkan aplikasi loT berbasis machine learning dengan konsumsi daya
yang rendah. Diharapkan, penelitian ini dapat memberikan solusi yang efisien dan
aplikatif bagi berbagai kebutuhan teknologi masa kini yang memerlukan sistem

prediktif berbasis sensor pada perangkat dengan sumber daya terbatas.



1.2. Batasan Masalah

1. Penelitian ini berfokus pada implementasi model machine learning berbasis

TensorFlow Lite pada Arduino Nano 33 BLE Sense.

2. Data yang diolah berasal dari sensor bawaan Arduino Nano 33 BLE Sense,
yaitu akselerometer, mikrofon, dan sensor suhu, tanpa menggunakan sensor

tambahan dari perangkat eksternal.

3. Model yang dikembangkan difokuskan pada klasifikasi berbasis data dari

sensor bawaan.

1.3. Tujuan

Tujuan dari penelitian ini adalah:

1. Mengembangkan model machine learning yang efisien dan sesuai untuk
diterapkan pada perangkat Arduino Nano 33 BLE Sense dengan
memanfaatkan data dari sensor bawaan.

2. Mengimplementasikan proses pengolahan data dari sensor bawaan
(akselerometer, mikrofon, dan sensor suhu) secara optimal agar dapat
dimanfaatkan sebagai input bagi model machine learning.

3. Mengevaluasi performa model dalam kondisi nyata menggunakan data dari

sensor bawaan pada Arduino Nano 33 BLE Sense.

1.4. Manfaat

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:

1. Menyediakan referensi bagi pengembangan aplikasi IoT berbasis machine

learning pada perangkat berdaya rendah.

2. Memberikan solusi efisien untuk aplikasi yang membutuhkan pemrosesan

prediktif secara real-time di perangkat mikro.

3. Mendorong pengembangan teknologi TinyML yang hemat energi untuk

berbagai bidang seperti kesehatan, lingkungan, dan otomasi



Bab 11

Gambaran Umum Perusahaan

2.1. Ma Chung Human-Machine Interaction Research Center

Teknik Informatika merupakan disiplin keilmuan yang memfokuskan
dirinya pada penyediaan kebutuhan penggunaan dan organisasi terhadap teknologi
komputer. Sebagai perkiraan untuk saat ini dan masa yang akan datang, teknologi
informasi menjadi tulang punggung pertumbuhan ekonomi bangsa. Saat ini pun
inovasi teknologi informasi sudah terasa di berbagai bidang kehidupan manusia.
Dalam hal ini, pemerintah telah mencanangkan bahwa pengembangan pendidikan
tinggi dalam bidang komputer dan informatika merupakan salah satu program
prioritas, bersama-sama dengan disiplin ilmu lainnya seperti rekayasa, perilaku,

manajemen, akuntansi, dan kesenian.

Pendidikan tinggi diarahkan untuk mempersiapkan bangsa Indonesia dalam
menghadapi era pembangunan industri dan informasi. Untuk itu pemerintah melalui
Direktorat Jendral Pendidikan Tinggi pada tanggal 07 Juli 2007 menginstruksikan
untuk membuka Program Studi S1 Teknik Informatika berdasarkan Surat
Keputusan Penyelenggaraan 15274/D/T/K-VII/2013, pada tanggal 22 Maret 2013.
Pada saat ini, Program Studi Teknik Informatika memperoleh nilai akreditasi B
berdasarkan Keputusan BAN-PT No. 2546/SK/BAN-PT/Ak-PPJ/S/1V/2021,
tanggal 28 April 2021.

Pesatnya kemajuan juga tidak lepas dari aspek interaksi antara manusia dan
dalam pengembangannya. Untuk menunjang pengembangan dan terapannya
kepada human welfare dan aspek interaksinya maka dibentuk Ma Chung Human-
Machine  Interaction  Research  Center  sesuai  Surat  Keputusan

031/MACHUNG/FST/SK-DEK/IX/2019, pada tanggal 11 September 2019.

Ma Chung Human-Machine Interaction Research Center bergerak dalam
bidang kajian meliputi namun tidak terbatas kepada: machine vision, human-
computer interaction, untuk manusia berkebutuhan khusus, dan aplikasi mobile

yang mendukung penggunaan aplikasi yang lebih meluas.



2.2. Visi dan Misi Ma Chung Human-Machine Interaction Research Center

Ma Chung Human-Machine Interaction Research Center merupakan pusat
studi yang berada di bawah naungan Teknik Informatika Universitas Ma Chung
yang memiliki visi dan misi yang sama dalam setiap aspeknya. Berikut adalah visi

dari Teknik Informatika Universitas Ma Chung:

“Pada tahun 2025 Menjadi Program Studi Teknik Informatika aras utama di
Indonesia Timur yang mendukung eksplorasi sumber daya alam beserta
pengelolaan bisnisnya sebagai perwujudan memuliakan Tuhan dan berkontribusi

nyata bagi kesejahteraan masyarakat.”
Berikut adalah misi dari Teknik Informatika Universitas Ma Chung:

a. Menyelenggarakan pengajaran, penelitian dan pengabdian kepada masyarakat
yang berfokus pada pengembangan ilmu-ilmu 5elola informatika untuk

pengelolaan sumberdaya alam dan bisnis.

b. Membentuk dan mengembangkan generasi motivator yang mempunyai jiwa
pemimpin dan wirausahawan dengan bertitik berat pada perkembangan akhlak,

bersikap rendah hati, dan berwawasan.

c. Membentuk lulusan siap pakai yang berkualitas tinggi dan mampu bersaing pada

pasar informasi global.
d. Menyelenggarakan Program Studi dengan tata kelola yang baik dan profesional.

2.3. Struktur Organisasi Ma Chung Human-Machine Interaction Research

Center

Pada struktur organisasi Pusat Studi Interaksi Manusia dan Mesin
Universitas Ma Chung yaitu bertujuan untuk pengembangan ilmu dan penelitian.
Gambar 2.1 menunjukkan struktur organisasi Ma Chung Human-Machine

Interaction Research
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Gambar 2. 1 Struktur organisasi dari Rektor hingga pusat studi

2.4. Publikasi [lmiah Ma Chung HMI Research Center

Ma Chung Human-Machine Interaction Research Center pada saat ini

memiliki topik-topik riset sebagai berikut:
a. Rancang Bangun Pengontrol Gerakan Robot Openmanipulator dengan Matlab

Penelitian ini bertujuan mengembangkan aplikasi untuk mengontrol Gerakan robot
arm menggunakan MATLAB. Robot arm yang digunakan terdiri dari perangkat
U2D2 board,adaptor daya, dan servo Dynamixel. Pengujian dilakukan dengan
menggerakkan robot arm ke posisi yang telah ditentukan, dan hasilnya
menunjukkan keberhasilan 100% dalam menjalankan pergerakan. Meskipun
demikian, penyempurnaan lebih lanjut diperlukan agar robot arm dapat berfungsi

lebih optimal di masa mendatang.

b. Analisis Perbandingan Waktu Reaksi pada individu Usia Dewasa Muda dan
Usia Lanjut dalam Tugas Kognitif

Penelitian ini menguji perbedaan waktu reaksi kognitif antara kelompok usia 13-25
tahun(masa remaja) dan 50 tahun ke atas (akhir kedewasaan), yang masing-masing
ditandai oleh perkembangan optimal dan penurunan kognitif bertahap. Delapan

subjek dengan variasi usia dianalisis menggunakan software GoStats, dengan uji



Liliefors untuk normalitas data dan uji Mann-Whitney U untuk mengukur
perbedaan waktu reaksi. Hasil menunjukkan data tidak berdistribusi normal (p <
0.05) dan tidak ada perbedaan signifikan antara kedua kelompok pada empat tugas
kognitif yang diuji (p > 0.05), yaitu Simple Reaction, Physical Matching, dan Class
Matching. Temuan ini mengindikasikan bahwa perbedaan usia tidak selalu
mempengaruhi semua aspek fungsi kognitif. Penelitian lanjutan diperlukan untuk
mengeksplorasi factor-faktor lain seperti jenis tugas, Tingkat kesulitan, dan

pengalaman individu.

c. Hyperparameter Tuning for Malaria Detection using Convulation Neural
network
Malaria, yang disebabkan oleh parasit Plasmodium, dapat dideteksi melalui
pemeriksaan blood smear menggunakan mikroskop setelah pewarnaan fluoresensi.
Selain itu, metode computer vision dan deep learning telah digunakan untuk
mendeteksi malaria dari citra sel darah merah, dengan model Convolutional Neural
Network (CNN) terbukti memberikan hasil akurasi tinggi. Penelitian ini
mengevaluasi pengaruh hyperparameter tuning terhadap akurasi, presisi, recall, f1-
score, dan Matthew Correlation Coefficient (MCC). Dua arsitektur CNN, yaitu
Rajaraman dan BaselineNet, digunakan dalam eksperimen untuk membandingkan

performa model.



Bab III

Tinjauan Pustaka

3.1. Rujukan Pustaka

Tiny Machine Learning (TinyML) adalah implementasi machine learning pada
perangkat berdaya rendah, seperti mikrokontroler, untuk menjalankan model yang
mampu melakukan inferensi secara lokal tanpa memerlukan koneksi cloud. Salah
satu pustaka yang digunakan adalah TensorFlow Lite for Microcontrollers, yang
memungkinkan penggunaan model machine learning dengan konsumsi daya di
bawah 1 mW, sesuai dengan karakteristik perangkat seperti Arduino Nano 33 BLE

Sense.

Dalam buku TinyML: Machine Learning with TensorFlow Lite on Arduino
and Ultra-low-power Microcontrollers, Pete Warden dan Daniel Situnayake
menjelaskan proses pengembangan model machine learning, mulai dari
pengumpulan data, desain arsitektur model, pelatihan, hingga deployment ke
perangkat embedded. Fokus utamanya adalah pada optimasi sumber daya untuk

mengakomodasi keterbatasan perangkat mikrokontroler.

3.2. Penjelasan Istilah Asing
1. TinyML: Istilah untuk teknologi machine learning yang diterapkan pada

perangkat mikro dengan daya dan kapasitas terbatas.

2. TensorFlow Lite for Microcontrollers: Versi TensorFlow yang

dioptimalkan untuk perangkat berdaya rendah dan kapasitas memori kecil.

3. Inferensi: Proses menjalankan model machine learning untuk

menghasilkan prediksi atau pengenalan berdasarkan input data.

4. Deployment: Tahap penerapan model ke perangkat target, seperti

mikrokontroler, agar model dapat digunakan secara langsung.

5. Arduino Nano 33 BLE Sense: Mikrokontroler yang dilengkapi dengan
berbagai sensor dan mendukung konektivitas Bluetooth Low Energy (BLE).



3.3. Arduino Nano 33 Sense BLE

Arduino Nano 33 Sense adalah salah satu papan mikrokontroler dari
keluarga Arduino yang dirancang khusus untuk aplikasi berbasis sensor dan
pengolahan data IoT (Internet of Things). Papan ini dilengkapi dengan berbagai
sensor bawaan dan menggunakan mikrokontroler berdaya rendah untuk

memungkinkan penggunaan di perangkat kecil dan portabel.

Micr: DEFINE
8 BUILT_IN LED P0.13 [LED_BUILTIN
Power P1.09 LED_PWR

=}

SPI Micro

SeKI) po.13 { 012 |
[C=p11 ]
{_-o16_|
PO.04 L ~p9 |
PO.05 { ~ps |
PO.30 L ~07 |
12¢ Pe.29 {_-~o6 |
PorSTI [ A |
O e -
Po.28 A5 ) {__~03 |
P8.03 L -02 |

01/Rx IECIRST]

@ .03

TOP VIEW

Gambar 3. 1 Arduino Nano 33 Sense BLE

Gambar 3.1 adalah pinout diagram dari Arduino Nano 33 BLE yang
menggunakan nRF52840 sebagai mikrokontrolernya. Diagram ini menunjukkan
semua pin yang tersedia, termasuk fungsinya dalam berbagai mode operasi seperti

GPIO, SPI, 12C, dan UART. Berikut adalah penjelasan bagian-bagiannya:
1. Mikrokontroler

nRF52840 adalah mikrokontroler berbasis ARM Cortex-M4F yang
mendukung komunikasi nirkabel seperti Bluetooth Low Energy (BLE).

2. Power Pins

+3V3 OUT — Output tegangan 3.3V.

+5V OUT — Output tegangan 5V (tergantung sumber daya).
VIN IN — Tegangan input eksternal.

GND — Ground (0V).



RESET — Pin untuk mereset mikrokontroler.

3. Analog Pins (A0 - A7)

Digunakan untuk membaca sinyal analog (0-3.3V).
Mapped ke port P0.04 - P0.03 dari nRF52840.

4. Digital Pins (DO - D13)

Digunakan untuk input/output digital.

Beberapa pin mendukung PWM (ditandai dengan ~).
Contohnya:

D13 (P0.13) — Terhubung ke LED BUILTIN.

D12 - D2 — Dapat digunakan untuk GPIO atau fungsi lainnya.
5. SPI Pins

SCK (P0.13) — Serial Clock.

CIPO (P1.08) — Controller In Peripheral Out (MISO).
COPI (P1.02) — Controller Out Peripheral In (MOSI).
6. 12C Pins

SDA (P0.20) — Data line.

SCL (P0.19) — Clock line.

7. UART Pins (Serial Communication)

DI1/RX (P1.10) — Menerima data serial.

DO0/TX (P1.03) — Mengirim data serial.

8. LED Indicators

BUILT IN LED (P0.13) — LED internal yang dapat dikendalikan dengan
kode.

LED PWR (P1.09) — Menunjukkan bahwa board mendapatkan daya.
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3.4.

Spesifikasi utama Arduino Nano 33 BLE:

. Mikrokontroler: Arduino Nano 33 Sense menggunakan Nordic nRF52840,

sebuah mikrokontroler ARM Cortex-M4 32-bit yang memiliki fitur
Bluetooth Low Energy (BLE).
Sensor Bawaan: Papan ini dilengkapi dengan berbagai sensor bawaan,
termasuk:
a. IMU (Inertial Measurement Unit): Sensor 9-axis untuk mendeteksi
akselerasi, rotasi, dan medan magnet.
b. Sensor Suhu dan Kelembaban: Untuk memantau kondisi
lingkungan.
c. Sensor Cahaya: Mengukur intensitas cahaya.
d. Microphone: Menggunakan sensor suara untuk aplikasi pemrosesan
audio.

e. Gesture Sensor: Untuk mendeteksi gerakan seperti sapuan tangan.

. Konektivitas: Bluetooth Low Energy (BLE) untuk komunikasi data secara

nirkabel.

. Konsumsi Daya Rendah: Dirancang untuk proyek yang memerlukan

efisiensi energi, sehingga cocok untuk perangkat bertenaga baterai.

. Ukuran: Kompak, dengan form factor yang serupa dengan Arduino Nano,

mempermudah integrasi pada proyek yang sudah menggunakan papan

Nano.

Machine Learning

Machine Learning (ML) adalah cabang dari kecerdasan buatan (Artificial

Intelligence, Al) yang berfokus pada pengembangan sistem komputer yang dapat

belajar dari data dan meningkatkan kinerjanya secara otomatis tanpa harus

diprogram secara eksplisit. ML menggunakan algoritma untuk menganalisis data,

mengenali pola, dan membuat prediksi atau keputusan berdasarkan data tersebut.

Gambar 3.2 menunjukkan jenis-jenis Machine Learning.
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Gambar 3. 2 Machine Learning

Cara Kerja Machine Learning:

1. Data Input: Data dikumpulkan dan disiapkan, mencakup data historis atau
data yang relevan dengan masalah yang ingin diselesaikan.

2. Pelatihan Model: Algoritma ML dilatih menggunakan data. Model belajar
mengenali pola dalam data dan membuat hubungan antara input dan output.

3. Prediksi/Inferensi: Setelah dilatih, model digunakan untuk memprediksi
hasil berdasarkan data baru.

4. Evaluasi dan Penyesuaian: Model dievaluasi untuk mengukur kinerjanya
menggunakan metrik tertentu. Jika model kurang akurat, proses pelatihan

dan penyempurnaan dilakukan kembali.
Jenis Machine Learning:

1. Supervised Learning:Model dilatih menggunakan data berlabel, di mana
setiap input memiliki output yang diketahui.
Contoh:
a. Prediksi harga rumah berdasarkan luas dan lokasi.
b. Klasifikasi email sebagai spam atau bukan.
2. Unsupervised Learning: Model belajar dari data yang tidak memiliki label,

dengan tujuan menemukan pola tersembunyi.

Contoh:
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a. Klasterisasi pelanggan berdasarkan kebiasaan belanja.
b. Deteksi anomali dalam data jaringan.
3. Reinforcement Learning: Model belajar melalui interaksi dengan
lingkungan, mendapatkan umpan balik dalam bentuk reward atau

punishment.
Contoh:

a. Robot yang belajar berjalan.
b. Sistem bermain game (misalnya, AlphaGo).
4. Semi-Supervised Learning: Kombinasi dari supervised dan unsupervised

learning, menggunakan sebagian data berlabel dan sebagian tidak berlabel.

3.5. Deep Learning

Deep Learning adalah salah satu cabang dari Machine Learning (Pembelajaran
Mesin) yang menggunakan jaringan saraf tiruan (neural networks) dengan banyak
lapisan (deep layers) untuk memodelkan dan memecahkan masalah kompleks.
Deep Learning meniru cara kerja otak manusia dalam memproses informasi,
khususnya dalam hal pengenalan pola dan pengambilan keputusan. Gambar 3.3

menunjukkan arsitektur Deep Learning.

@ neuron ...

(prediction)
Input L )
(features)

Hidden Layers .
lots of layers ~ “"deep learning" Q/l'lj ProjectPro

Gambar 3. 3 Contoh Arsitektur Deep Learning

Berikut penjelasan tentang Deep Learning:

1. Konsep Dasar Deep Learning
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Deep Learning menggunakan struktur jaringan saraf tiruan yang terdiri dari

beberapa lapisan (layers). Setiap lapisan terdiri dari neuron (unit pemroses) yang

menerima input, melakukan komputasi, dan menghasilkan output. Lapisan-lapisan

ini dibagi menjadi:

Input Layer: Lapisan pertama yang menerima data mentah.

Hidden Layers: Lapisan tersembunyi yang melakukan transformasi
matematis pada data.

Output Layer: Lapisan terakhir yang menghasilkan hasil akhir (prediksi atau
klasifikasi).

Semakin banyak lapisan tersembunyi, semakin "dalam" (deep) jaringan tersebut,

sehingga disebut Deep Learning.

2. Cara Kerja Deep Learning

Alur Kerja Deep Learning

Pada bagian sebelumnya, kita telah menjelaskan sebuah skenario
penggunaan deep learning untuk memprediksi kapan sebuah mesin pabrik
kemungkinan akan mengalami kerusakan. Deep learning dapat menjadi
solusi yang sangat efektif dalam mendeteksi anomali atau kegagalan mesin
dengan menganalisis pola dari data historis yang tersedia. Namun, untuk
membangun model yang akurat dan dapat diandalkan, diperlukan

serangkaian langkah yang sistematis.

Dalam bagian ini, kita akan membahas langkah-langkah yang diperlukan
untuk mengembangkan model deep learning dari awal hingga dapat
digunakan untuk inferensi dan evaluasi. Proses ini mencakup berbagai
tahapan yang penting untuk memastikan bahwa model yang dihasilkan

dapat bekerja dengan baik dalam kondisi nyata.

Proses ini melibatkan langkah-langkah berikut:
a. Menentukan tujuan
b. Mengumpulkan dataset

¢. Merancang arsitektur model
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d. Melatih model
e. Mengonversi model
f.  Menjalankan inferensi

g. Mengevaluasi dan memperbaiki model

Langkah a sampai d adalah bagian penting dari Deep Learning yang
menghasilkan suatu model. Langkah e sampai g adalah bagian yang membawa
model untuk di upload hardware, hal ini merupakan inti dari Tiny Machine
Learning. Setiap langkah ini memiliki peran krusial dalam membangun sistem

prediksi berbasis deep learning yang andal. Mari kita bahas satu per satu:

a. Menentukan Tujuan
Ketika merancang algoritma, penting untuk menetapkan tujuan yang jelas
sejak awal. Tanpa tujuan yang terdefinisi dengan baik, sulit untuk
menentukan data yang dibutuhkan, metode yang akan digunakan, dan
bagaimana cara mengevaluasi keberhasilan model.

Dalam Machine Learning, tujuan umumnya berkaitan dengan
prediksi atau klasifikasi. Kita perlu menentukan apa yang ingin diprediksi
agar dapat memilih dataset yang relevan serta arsitektur model yang tepat.
Jika tujuan tidak didefinisikan dengan jelas, hasil yang diperoleh mungkin
tidak sesuai dengan harapan.

Dalam contoh ini, kita ingin memprediksi apakah mesin pabrik akan
mengalami kerusakan. Ini dapat dianggap sebagai masalah klasifikasi, yaitu
tugas Machine Learning yang mengkategorikan data ke dalam beberapa

kelompok yang telah ditentukan sebelumnya.
Sebagai contoh, kita bisa membagi kondisi mesin menjadi dua kelas utama:

e "Normal": Mesin beroperasi tanpa gangguan dan tidak menunjukkan
tanda-tanda akan rusak.
e "Abnormal": Mesin menunjukkan indikasi adanya masalah dan
kemungkinan akan mengalami kegagalan dalam waktu dekat.
Dengan demikian, tujuan kita adalah menciptakan model yang mampu
mengklasifikasikan data sensor mesin ke dalam kategori "normal" atau

"abnormal" dengan tingkat akurasi yang tinggi.
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e Mengumpulkan Dataset
Setelah menentukan tujuan model, langkah berikutnya adalah
mengumpulkan dataset yang akan digunakan untuk melatih model deep
learning. Data yang digunakan dalam pelatihan harus mencerminkan
berbagai kondisi operasional mesin agar model dapat mengenali pola
dengan baik.

e Memilih Data yang Relevan
Model deep learning memiliki kemampuan untuk menyaring informasi
yang tidak relevan, tetapi lebih baik jika sejak awal kita hanya
menggunakan data yang benar-benar berkontribusi terhadap prediksi yang
akan dilakukan.
Sebagai contoh, dalam skenario prediksi kegagalan mesin pabrik, ada
banyak jenis data yang tersedia. Ini bisa mencakup suhu operasi, tingkat
getaran, tekanan, kecepatan rotasi, atau bahkan faktor eksternal seperti
kondisi cuaca atau jadwal pemeliharaan rutin.

Namun, tidak semua data tersebut relevan untuk tujuan kita.
Misalnya, menu makanan di kantin pabrik kemungkinan besar tidak
memiliki pengaruh terhadap kondisi mesin. Jika kita memasukkan data yang
tidak relevan, model bisa saja belajar pola yang salah, misalnya
menghubungkan kerusakan mesin dengan hari-hari tertentu ketika menu
tertentu disajikan. Oleh karena itu, pemilihan fitur atau variabel yang akan
digunakan dalam model harus dilakukan dengan hati-hati. Kita dapat
mengandalkan kombinasi antara pemahaman domain (pengetahuan
industri) dan teknik statistik untuk menentukan variabel yang benar-benar
berkontribusi terhadap prediksi. Jika masih ragu, pendekatan eksperimental
dapat dilakukan, misalnya dengan membandingkan dua model—satu
dengan dataset lengkap dan satu lagi dengan dataset yang sudah difilter—
untuk melihat mana yang memberikan hasil terbaik.

Dalam skenario ini, kita memilih laju produksi, suhu, dan getaran
sebagai fitur utama yang akan digunakan dalam pelatihan model. Setelah
fitur ditentukan, langkah selanjutnya adalah mengumpulkan data dalam

jumlah yang cukup agar model dapat belajar dengan baik.
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Mengumpulkan Data
Salah satu tantangan utama dalam deep learning adalah menentukan jumlah
data yang cukup untuk pelatihan. Jumlah data yang diperlukan tergantung
pada berbagai faktor seperti:

o Kompleksitas hubungan antara variabel dalam dataset

e Tingkat kebisingan (noise) dalam data

e Seberapa mudah model dapat membedakan antara kelas "normal"

dan "abnormal"
Secara umum, semakin banyak data yang dikumpulkan, semakin baik model
dalam mengenali pola. Namun, data harus mencakup berbagai kondisi dan
variasi agar model dapat bekerja dengan baik di berbagai situasi.
Sebagai contoh, jika suhu mesin bervariasi antara musim panas dan

musim dingin, maka dataset harus mencakup data dari kedua musim
tersebut. Jika mesin dapat mengalami berbagai jenis kegagalan, kita harus
memastikan bahwa semua jenis kegagalan tersebut terwakili dalam dataset.
Data dalam pabrik biasanya direkam dalam bentuk time series, yaitu
serangkaian pengukuran yang dilakukan secara berkala. Contoh data yang
bisa dikumpulkan adalah:

e Suhu mesin dicatat setiap 1 menit

e Laju produksi dicatat setiap 2 menit

e Qetaran dicatat setiap 10 detik
Setelah data dikumpulkan, langkah selanjutnya adalah mengubahnya ke
dalam format yang sesuai untuk model deep learning.

Pelatihan Model

Pelatihan model adalah proses di mana model belajar menghasilkan
output yang benar berdasarkan sekumpulan data masukan. Proses ini
melibatkan pemberian data pelatihan ke dalam model dan menyesuaikan
parameter model (berupa bobot dan bias) secara bertahap agar

prediksinya semakin akurat.

Model deep learning terdiri dari jaringan neuron buatan yang

direpresentasikan dalam bentuk array angka yang tersusun dalam
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lapisan-lapisan. Bobot awal dalam model biasanya diatur secara acak,
sedangkan bias dimulai dari nol. Ketika data dimasukkan ke dalam
model, ia mengalami berbagai transformasi matematis berdasarkan
bobot dan bias di setiap lapisan untuk menghasilkan output. Proses
pelatihan menggunakan algoritma backpropagation, yang secara
bertahap memperbaiki bobot dan bias berdasarkan perbedaan antara
output model dan output yang diharapkan. Pelatihan berlangsung
selama beberapa epoch hingga model mencapai performa optimal atau

tidak mengalami peningkatan lebih lanjut.
Kinerja model dinilai menggunakan loss dan accuracy:

e Loss mengukur seberapa jauh prediksi model dari nilai yang benar.

e Accuracy mengukur persentase prediksi yang benar.

Jika model terlalu sederhana dan tidak dapat mengenali pola dalam data,
ini disebut underfitting. Sebaliknya, jika model terlalu menghafal data

pelatihan tanpa dapat mengenali pola baru, ini disebut overfitting.
Untuk mencegah overfitting, beberapa teknik digunakan:

e Regularisasi (L1/L2, dropout): Membatasi kompleksitas model
agar tidak menghafal data pelatihan secara berlebihan.

e Augmentasi Data: Membuat variasi data baru dari data asli untuk
meningkatkan keberagaman input.

e Meningkatkan Ukuran Dataset: Semakin banyak data yang

digunakan, semakin baik model dalam memahami pola.
Dataset biasanya dibagi menjadi tiga bagian:

e Training set (60%): Digunakan untuk melatih model.

e Validation set (20%): Digunakan untuk mengevaluasi kinerja
model selama pelatihan.

e Test set (20%): Digunakan setelah pelatihan selesai untuk
memastikan model tidak overfit terhadap data pelatihan dan

validasi.
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3. Arsitektur Deep Learning
Beberapa arsitektur Deep Learning yang populer meliputi:

e Convolutional Neural Networks (CNNs): Digunakan untuk pemrosesan
gambar dan video. CNNs menggunakan lapisan konvolusi untuk
mengekstrak fitur dari data spasial.

e Recurrent Neural Networks (RNNs): Dirancang untuk data berurutan
seperti teks atau time series. RNNs memiliki memori internal untuk
mengingat informasi dari langkah sebelumnya.

e Transformers: Arsitektur yang digunakan dalam pemrosesan bahasa alami
(NLP) seperti model BERT dan GPT. Transformers menggunakan
mekanisme attention untuk memproses data secara paralel.

e Autoencoders: Digunakan untuk kompresi data dan reduksi dimensi.

e Generative Adversarial Networks (GANs): Dua jaringan (generator dan
discriminator) bekerja bersama untuk menghasilkan data baru yang mirip
dengan data asli.

4. Keunggulan Deep Learning
Berikut adalah beberapa keunggulan Deep Learning:

e Kemampuan Menangani Data Kompleks: Deep Learning dapat memproses
data yang tidak terstruktur seperti gambar, teks, dan suara.

e Otomatisasi Fitur: Tidak memerlukan ekstraksi fitur manual karena jaringan
dapat mempelajari fitur secara otomatis.

e Akurasi Tinggi: Dalam banyak kasus, Deep Learning mencapai akurasi
yang lebih tinggi dibandingkan metode tradisional.

5. Tantangan Deep Learning
Berikut adalah beberapa tantangan Deep Learning:

e Kebutuhan Data Besar: Deep Learning memerlukan dataset yang besar
untuk melatih model secara efektif.
e Sumber Daya Komputasi: Proses pelatihan membutuhkan GPU atau TPU

yang mahal dan waktu yang lama.
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e Opverfitting: Model mungkin terlalu spesifik pada data pelatihan dan gagal
generalisasi ke data baru.
o Interpretabilitas: Model Deep Learning sering dianggap sebagai "black box"

karena sulit untuk memahami bagaimana keputusan diambil.
6. Aplikasi Deep Learning
Deep Learning digunakan dalam berbagai bidang, seperti:

e Computer Vision: Pengenalan wajah, deteksi objek, dan mobil otonom.

e Natural Language Processing (NLP): Terjemahan mesin, chatbot, dan
analisis sentimen.

e Speech Recognition: Asisten virtual seperti Siri dan Alexa.

e Kesehatan: Diagnosis medis dan analisis gambar medis.

e Permainan: Al dalam game seperti AlphaGo.
7. Perkembangan Terkini
Deep Learning terus berkembang dengan inovasi seperti:

e Reinforcement Learning: Kombinasi Deep Learning dengan pembelajaran
penguatan untuk aplikasi seperti robotika.

e Transfer Learning: Menggunakan model yang sudah dilatih untuk tugas
baru dengan sedikit data.

e Explainable Al (XAI): Upaya untuk membuat model Deep Learning lebih

transparan dan dapat diinterpretasikan.

Dengan kemampuannya yang luar biasa dalam memproses data kompleks, Deep
Learning telah menjadi fondasi bagi banyak kemajuan dalam kecerdasan buatan

(AI) dan terus membuka peluang baru di berbagai industri.

3.6. TensorFlow Lite

TensorFlow Lite adalah versi ringan (lightweight) dari TensorFlow, sebuah
framework populer untuk Machine Learning dan deep learning yang dikembangkan
oleh Google. TensorFlow Lite dirancang khusus untuk perangkat mobile, embedded
systems, dan perangkat IoT (Internet of Things) yang memiliki sumber daya

terbatas, sepertti memori, daya komputasi, dan baterai. Tujuannya adalah
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memungkinkan penerapan model Machine Learning secara efisien di perangkat

edge (perangkat lokal) tanpa bergantung pada cloud.
Berikut penjelasan tentang TensorFlow Lite:
1. Tujuan TensorFlow Lite

e Optimasi untuk Perangkat Edge: TensorFlow Lite memungkinkan
model Machine Learning berjalan di perangkat dengan sumber daya
terbatas, seperti smartphone, mikrokontroler, dan perangkat IoT.

e Efisiensi: Mengurangi ukuran model dan kebutuhan komputasi
sehingga cocok untuk perangkat dengan daya dan memori terbatas.

e Latensi Rendah: Memproses data secara lokal di perangkat,
mengurangi  ketergantungan pada  koneksi internet dan
meningkatkan kecepatan respons.

e Privasi: Data tetap berada di perangkat lokal, meningkatkan

keamanan dan privasi pengguna.
2. Arsitektur TensorFlow Lite
TensorFlow Lite terdiri dari beberapa komponen utama:

e TensorFlow Lite Converter: Alat untuk mengonversi model
TensorFlow standar (dalam format SavedModel atau Keras) ke
format TensorFlow Lite (.tflite). Proses ini melibatkan optimasi
seperti kuantisasi (quantization) dan pemangkasan (pruning) untuk
mengurangi ukuran model.

e TensorFlow Lite Interpreter: Mesin yang menjalankan model .tflite
di perangkat target. Interpreter ini dirancang untuk efisiensi dan
kompatibilitas dengan berbagai platform.

e TensorFlow Lite Model: Model yang telah dioptimalkan dan
dikonversi ke format .tflite.

e Dukungan Hardware Accelerator: TensorFlow Lite mendukung
akselerasi hardware seperti GPU, DSP (Digital Signal Processor),

dan Neural Processing Units (NPU) untuk meningkatkan performa.
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3. Fitur Utama TensorFlow Lite

Berikut adalah beberapa Fitur utama TensorFlow Lite:

Kuantisasi (Quantization): Teknik untuk mengurangi ukuran model
dan mempercepat inferensi dengan mengubah bobot dan aktivasi
dari floating-point (32-bit) ke integer (8-bit). Ini mengurangi
kebutuhan memori dan daya komputasi.

Pemangkasan (Pruning): Menghilangkan bobot yang tidak penting
dari model untuk mengurangi ukuran dan kompleksitas.

Selective Operator Kernels: TensorFlow Lite hanya menyertakan
operator yang diperlukan untuk model tertentu, mengurangi ukuran
biner (binary size).

Dukungan Multi-Platform: TensorFlow Lite mendukung Android,
i0S, Linux, dan mikrokontroler (melalui TensorFlow Lite for
Microcontrollers).

Pre-Trained Models: Menyediakan model pra-latih (pre-trained)
yang siap digunakan untuk tugas seperti klasifikasi gambar, deteksi

objek, dan NLP.

4. Workflow Penggunaan TensorFlow Lite

Berikut adalah Workflow penggunaan TensorFlow Lite:

Pelatithan Model: Model dilatth menggunakan TensorFlow atau
Keras di lingkungan yang mendukung (seperti PC atau cloud).
Konversi Model: Model diubah ke format TensorFlow Lite
menggunakan TensorFlow Lite Converter. Proses ini melibatkan
optimasi seperti kuantisasi.

Deploy ke Perangkat: Model .tflite di-deploy ke perangkat target
(smartphone, mikrokontroler, dan lain lain).

Inferensi: Model dijalankan di perangkat menggunakan TensorFlow

Lite Interpreter.

5. Aplikasi TensorFlow Lite

Mobile Applications: Aplikasi seperti pengenalan gambar,

terjemahan teks, dan asisten virtual di smartphone.
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IoT Devices: Perangkat pintar seperti kamera keamanan, sensor
lingkungan, dan perangkat wearables.

Mikrokontroler: TensorFlowLiteforMicrocontrollers
memungkinkan model ML berjalan di perangkat dengan sumber

daya sangat terbatas, seperti Arduino dan ESP32.

6. Keunggulan TensorFlow Lite

Ringan dan Cepat: Dirancang untuk performa tinggi dengan sumber
daya minimal.

Fleksibel: Mendukung berbagai jenis model dan tugas Machine
Learning.

Kompatibilitas Luas: Dapat diintegrasikan dengan Android, 10S,
dan sistem embedded.

Dukungan Komunitas: TensorFlow Lite didukung oleh komunitas

besar dan dokumentasi yang lengkap.

7. Contoh Penggunaan TensorFlow Lite

Pengenalan Gambar: Aplikasi yang mengidentifikasi objek dalam
gambar menggunakan model CNN.

Pemrosesan Bahasa Alami (NLP): Aplikasi chat atau terjemahan
teks di perangkat mobile.

Deteksi Suara: Sistem perintah suara di perangkat IoT.

Kesehatan: Aplikasi yang menganalisis data sensor untuk memantau

kesehatan pengguna.

8. Cara Penerapan TensorFlow Lite

Saat ini, library Arduino TensorFlowLite sudah tidak tersedia melalui

Library Manager di Arduino IDE. Hal ini dikarenakan permintaan dari

pengelola TensorFlow Lite Micro untuk menghapusnya dari daftar Library

Manager. Oleh karena itu, pemasangan library ini harus dilakukan secara

manual.

Berikut adalah langkah-langkah untuk menginstal library TensorFlow Lite

secara manual di Arduino IDE:
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Langkah 1: Unduh Library dari GitHub
e Buka halaman resmi repository TensorFlow Lite Micro untuk
Arduino:
e https://github.com/tensorflow/tflite-micro-arduino-examples
e Kiik tombol "Code" dan pilih "Download ZIP" untuk mengunduh
seluruh repository sebagai file ZIP.
Langkah 2: Instal Library di Arduino IDE
Buka Arduino IDE.
e Navigasikan ke menu Sketch > Include Library > Add .ZIP
Library....
o Pilih file ZIP yang telah diunduh sebelumnya dan klik "Open".
e Tunggu hingga proses instalasi selesai.
Langkah 3: Verifikasi Instalasi
Setelah instalasi, Anda dapat memverifikasi bahwa library telah terpasang
dengan membuka menu Sketch > Include Library dan mencari
Arduino TensorFlowLite dalam daftar library yang tersedia.
Alternatif: Menggunakan Git untuk Clone Repository
Jika Anda lebih nyaman menggunakan Git, Anda dapat meng-clone
repository langsung ke folder library Arduino Anda:
e Buka terminal atau command prompt.
e Navigasikan ke folder library Arduino Anda. Lokasi default
biasanya:
Windows: C:\Users\<NamaPengguna>\Documents\Arduino\libraries
macOS/Linux: ~/Documents/Arduino/libraries
e Jalankan perintah berikut:
git clone https://github.com/tensorflow/tflite-micro-arduino-examples
Arduino_TensorFlowLite

e Setelah proses clone selesai, library akan tersedia di Arduino IDE.
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9. Perkembangan Terkini

e TensorFlow Lite for Microcontrollers: Versi yang dirancang untuk
perangkat dengan sumber daya sangat terbatas, seperti
mikrokontroler.

e Model Garden: Koleksi model pra-latih yang siap digunakan untuk
berbagai tugas.

e Dukungan Hardware Terbaru: Integrasi dengan hardware

accelerator seperti Coral Edge TPU dan ARM NPU.

Dengan TensorFlow Lite, pengembang dapat membawa kekuatan Machine
Learning ke perangkat edge, memungkinkan aplikasi yang lebih cepat, lebih aman,

dan lebih efisien.

3.7. Tiny Machine Learning (TinyML)

Buku ini bertujuan untuk membantu pengembang dengan pengalaman dasar
dalam menggunakan terminal dan editor kode agar dapat mulai membangun proyek
yang menjalankan Machine Learning (ML) pada perangkat embedded. Dengan
semakin berkembangnya teknologi, kini ML tidak hanya dapat dijalankan di
komputer atau server berkekuatan tinggi, tetapi juga pada perangkat kecil dengan

daya rendah.

Ketika penulis bergabung dengan Google pada tahun 2014, ia menemukan
banyak proyek internal yang menarik. Salah satu yang paling menonjol adalah
pekerjaan yang dilakukan oleh tim "OK Google". Mereka berhasil menjalankan
jaringan neural hanya sebesar 14KB pada prosesor sinyal digital (DSP) yang
terdapat di sebagian besar ponsel Android. DSP ini digunakan untuk terus
mendengarkan kata pemicu "OK Google" tanpa harus mengaktifkan CPU utama,

sehingga dapat menghemat daya baterai.

Keberhasilan ini menunjukkan bahwa jaringan neural dapat berjalan pada
perangkat dengan sumber daya terbatas. Biasanya, menjalankan model ML
membutuhkan daya yang besar, tetapi dalam kasus ini, konsumsi daya dapat ditekan
hingga hanya beberapa miliwatt (mW). Dari sinilah muncul gagasan tentang

TinyML, yaitu Machine Learning yang berjalan pada perangkat dengan konsumsi
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daya di bawah ImW. Dengan konsumsi daya sekecil ini, perangkat dapat beroperasi
selama bertahun-tahun hanya dengan baterai koin, tanpa memerlukan intervensi

manusia.

Seiring berkembangnya teknologi, muncul berbagai platform seperti
Raspberry Pi dan NVIDIA Jetson. Meskipun keduanya merupakan perangkat luar
biasa dalam menjalankan ML, namun konsumsi daya mereka jauh lebih tinggi
dibandingkan TinyML. Bahkan, Raspberry Pi yang paling kecil sekalipun masih
membutuhkan daya ratusan miliwatt, sementara Jetson bisa mengonsumsi hingga
12 watt saat beroperasi penuh. Hal ini membuat perangkat-perangkat tersebut sulit
digunakan untuk aplikasi yang membutuhkan konsumsi daya ultra-rendah dan tidak

memiliki sumber daya listrik yang stabil.

Sebaliknya, mikrokontroler 32-bit menjadi pilihan yang lebih cocok untuk
TinyML. Mikrokontroler ini jauh lebih murah, bahkan bisa didapatkan dengan
harga di bawah $1 per unit, sehingga memungkinkan produsen untuk menggantikan
sistem kontrol analog atau elektromekanis dengan alternatif berbasis perangkat
lunak. Dengan harga yang terjangkau, teknologi ini dapat diterapkan dalam
berbagai bidang, seperti sensor cerdas di lingkungan bangunan, konservasi satwa

liar, atau sistem pemantauan industri.
a. Perangkat Embedded

TinyML bergantung pada dunia perangkat embedded, yang dahulu dianggap
sulit untuk diakses oleh pengembang umum. Sebelumnya, perangkat embedded
menggunakan arsitektur 8-bit dengan alat pengembangan yang tertutup dan sulit
dipahami. Namun, dengan kehadiran Arduino, pengembangan perangkat embedded
menjadi lebih mudah karena adanya antarmuka yang ramah pengguna dan

ekosistem yang lebih terbuka.

Saat ini, sebagian besar mikrokontroler menggunakan CPU Arm Cortex-M,
yang telah menjadi standar dalam dunia embedded. Meskipun perangkat ini
memiliki keterbatasan, seperti kapasitas RAM dan penyimpanan yang kecil serta
kecepatan pemrosesan yang rendah, namun keunggulannya adalah konsumsi daya

yang sangat efisien. Tidak seperti komputer atau ponsel, perangkat embedded tidak
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memiliki sistem operasi Linux yang lengkap karena keterbatasan sumber daya,

sehingga pengembang harus bekerja dengan sistem yang lebih ringan.

Selain itu, banyak sistem embedded menghindari penggunaan alokasi
memori dinamis seperti malloc() atau new karena sistem ini dirancang agar dapat
berjalan dalam waktu yang lama dengan tingkat keandalan tinggi. Fragmentasi
memori dapat menjadi masalah besar dalam sistem yang harus berjalan tanpa
gangguan selama bertahun-tahun. Oleh karena itu, pengembangan perangkat
embedded memerlukan pendekatan yang berbeda dibandingkan dengan

pemrograman pada komputer atau ponsel.

Meskipun terdapat tantangan dalam pengembangan perangkat embedded,
ada juga banyak keuntungan. Salah satu keunggulannya adalah sederhananya
model pemrosesan, karena perangkat ini tidak memiliki proses lain yang
mengganggu jalannya program utama. Selain itu, dengan arsitektur prosesor yang
lebih sederhana dan tanpa prediksi cabang atau pipelining instruksi yang kompleks,
optimasi manual dalam bahasa assembly menjadi lebih mudah dilakukan

dibandingkan pada CPU yang lebih canggih.
b. Perkembangan Cepat

TinyML merupakan bidang yang masih sangat baru dan berkembang
dengan cepat. Baik dari sisi perangkat keras, perangkat lunak, maupun penelitian,
semuanya berubah dengan sangat dinamis. Buku ini ditulis berdasarkan kondisi
teknologi pada tahun 2019, namun dalam dunia TinyML, perubahan bisa terjadi
dalam hitungan bulan. Oleh karena itu, beberapa bagian dari buku ini mungkin akan

terasa usang dalam waktu singkat.

Namun, penulis berusaha untuk memberikan panduan dengan
menggunakan platform yang diperkirakan akan tetap tersedia dalam jangka
panjang. Selain itu, framework TensorFlow Lite yang digunakan dalam buku ini
memiliki API yang cukup stabil dan terus mendapatkan dukungan dari komunitas
pengembang. Untuk mengikuti perkembangan terbaru, disediakan pula tautan ke
sumber daya online yang selalu diperbarui, termasuk kode contoh dan dokumentasi

terbaru.
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Lebih dari sekadar membahas teknologi spesifik, buku ini juga berfokus
pada pemahaman konsep fundamental, seperti teknik debugging, pembuatan
model, dan dasar-dasar deep learning. Dengan memahami konsep-konsep ini,
pembaca dapat tetap relevan dalam industri, meskipun perangkat keras dan
perangkat lunak yang digunakan terus berkembang. Tiny Machine Learning
(TinyML) adalah cabang dari pembelajaran mesin (Machine Learning) yang fokus
pada implementasi model pembelajaran mesin di perangkat kecil dengan daya
sangat rendah, seperti mikrocontroller. TinyML memungkinkan perangkat tersebut
untuk melakukan inferensi atau prediksi secara lokal tanpa memerlukan
konektivitas internet atau cloud. Salah satu karakteristik utama dari TinyML adalah
kemampuannya untuk beroperasi dengan konsumsi daya di bawah 1 mW,
menjadikannya sangat efisien untuk aplikasi yang membutuhkan masa pakai baterai
yang lama atau bahkan menggunakan sumber daya energi alternatif seperti

pengumpulan energi (energy harvesting).

TinyML memanfaatkan berbagai teknik optimasi seperti quantization, yang
mengurangi ukuran model dengan menurunkan presisi numerik, dan pruning, yang
menghilangkan neuron-neuron yang tidak penting dari jaringan saraf. Kombinasi
teknik ini memastikan bahwa model deep learning yang kompleks dapat berjalan
pada perangkat keras dengan memori yang sangat terbatas, sering kali hanya
memiliki puluhan hingga ratusan kilobyte RAM. Contoh aplikasi TinyML meliputi
deteksi suara untuk wake-word seperti “OK Google,” pengenalan gerakan
menggunakan akselerometer, dan deteksi objek menggunakan kamera kecil.
Dengan mengolah data secara lokal, TinyML tidak hanya mengurangi konsumsi
daya tetapi juga meningkatkan privasi data, menjadikannya ideal untuk aplikasi IoT

dan perangkat yang tersebar luas dalam skala besar.
e Konversi Model

Dalam buku ini, kita menggunakan TensorFlow untuk membangun dan melatih
model. Model TensorFlow pada dasarnya adalah seperangkat instruksi yang
memberi tahu interpreter bagaimana cara mengubah data untuk menghasilkan
output tertentu. Saat ingin menggunakan model, kita cukup memuatnya ke dalam

memori dan menjalankannya dengan interpreter TensorFlow.
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include <algorithm>

include "Arduino.h"

include "constants.h"

include “"output_handler.h"

include "tensorflow/lite/micro/micro_log.h"

int led = LED_BUILTIN;
bool initialized = false;

void HandleOutput(float x_value, float y_value) {
if (linitialized) {

pinMode(led, OUTPUT);

initialized = true;}

int brightness = (int)(127.5f * (y_value + 1));

int brightness_clamped = std::min(255, std::max(®@, brightness));
analogWrite(led,brightness_clamped);

Serial.write(brightness);

MicroPrintf("%d\n", brightness);

delay(33);

}

Gambar 3.3 Kode untuk proses konversi

Namun, interpreter TensorFlow dirancang untuk berjalan di komputer
desktop dan server yang memiliki daya pemrosesan tinggi. Karena kita ingin
menjalankan model di mikrocontroller kecil dengan daya terbatas, kita memerlukan
interpreter yang lebih ringan dan efisien.

TensorFlow menyediakan alat bernama TensorFlow Lite, yang
memungkinkan model dapat berjalan pada perangkat kecil dan berdaya rendah.
Dengan menggunakan TensorFlow Lite, kita dapat menjalankan model
pembelajaran mesin tanpa harus mengandalkan perangkat keras yang kuat seperti
komputer atau server.

Sebelum TensorFlow Lite dapat menjalankan model, model tersebut harus
dikonversi ke dalam format khusus yang lebih ringan. Proses ini dilakukan
menggunakan alat bernama TensorFlow Lite Converter. Konversi ini penting
karena mengoptimalkan ukuran dan kecepatan model agar lebih sesuai untuk
perangkat dengan sumber daya terbatas.

Selain mengonversi format model, TensorFlow Lite Converter juga dapat
menerapkan berbagai teknik optimasi. Optimasi ini bertujuan untuk mengurangi
ukuran model dan meningkatkan kecepatan eksekusi tanpa mengorbankan

performa prediksi yang dihasilkan oleh model.
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e Menjalankan Inferensi
Setelah model dikonversi ke dalam format TensorFlow Lite, model siap untuk
diterapkan ke perangkat target. Untuk menjalankannya, kita akan menggunakan
pustaka TensorFlow Lite for Microcontrollers yang ditulis dalam bahasa
pemrograman C++.

Saat model diterapkan ke dalam sistem, kita perlu memastikan bahwa data
masukan yang diberikan ke model memiliki format yang sama dengan data yang
digunakan saat pelatihan. Ini penting agar model dapat memberikan hasil prediksi
yang akurat.

Hasil yang dihasilkan oleh model berupa skor probabilitas untuk setiap
kelas yang telah ditentukan sebelumnya. Sebagai contoh, dalam kasus model
klasifikasi, skor ini menunjukkan kemungkinan apakah suatu kondisi termasuk
"normal" atau "abnormal."

Misalnya, jika model menghasilkan skor berikut:
Skor Normal Skor Abnormal

0.1 0.9  Model yakin terjadi keadaan abnormal
0.7 03 Model yakin keadaan normal

0.49 0.51 Hasil tidak meyakinkan

Dari tabel di atas, kita dapat melihat bahwa semakin besar selisih antara skor kelas

yang dihasilkan, semakin tinggi tingkat kepastian model terhadap prediksinya.

e Menangani Noise dan Glitch dalam Data
Dalam banyak kasus, model pembelajaran mesin hanya mempertimbangkan
snapshot data dalam periode waktu tertentu. Sebagai contoh, dalam sistem
pemantauan mesin industri, model dapat mengevaluasi kondisi mesin berdasarkan
data sensor dalam 10 detik terakhir.

Namun, data dunia nyata sering kali tidak bersih dan bisa mengandung
gangguan atau glitch. Hal ini dapat menyebabkan model membuat prediksi yang
keliru. Sebagai contoh, lonjakan suhu akibat kesalahan sensor dapat menyebabkan
model mengklasifikasikan kondisi mesin sebagai abnormal, padahal kondisi

sebenarnya masih normal.
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Untuk menghindari masalah ini, kita bisa menerapkan teknik penyaringan data.
Salah satu metode yang efektif adalah dengan menghitung rata-rata dari beberapa
hasil inferensi sebelumnya. Dengan cara ini, keputusan tidak akan terlalu
dipengaruhi oleh gangguan sementara dan lebih mencerminkan kondisi yang
sebenarnya.

Sebagai contoh, kita dapat menjalankan model setiap 10 detik dan
mengambil rata-rata hasil inferensi selama satu menit terakhir. Jika kondisi
abnormal terdeteksi secara konsisten selama periode tersebut, maka sistem dapat
mengambil tindakan, seperti mematikan mesin atau memberi peringatan kepada tim
pemeliharaan.

e Evaluasi dan Troubleshooting Model

Setelah model diterapkan ke dalam perangkat target, kita perlu
mengevaluasi apakah model benar-benar bekerja dengan baik dalam kondisi nyata.
Meskipun model dapat menunjukkan performa yang baik pada data uji, hasilnya di
dunia nyata bisa berbeda.

Ada beberapa alasan mengapa performa model di lapangan bisa menurun.
Salah satunya adalah karena data pelatihan tidak sepenuhnya mencerminkan
kondisi operasional sebenarnya. Sebagai contoh, jika model dilatih menggunakan
data suhu dari lingkungan yang lebih hangat, sedangkan perangkat digunakan di
lokasi dengan suhu lebih dingin, maka model mungkin tidak berfungsi seakurat
yang diharapkan.

Selain itu, masalah overfitting juga bisa menjadi penyebab performa yang
buruk. Overfitting terjadi ketika model terlalu menghafal pola dari data pelatihan
dan kurang mampu beradaptasi dengan data baru. Jika model terlalu spesifik
terhadap dataset pelatihan, ia mungkin gagal memberikan prediksi yang akurat
ketika digunakan dalam skenario yang berbeda.

e Langkah-Langkah Troubleshooting

Jika model tidak bekerja sesuai harapan, ada beberapa langkah yang bisa kita

lakukan untuk mencari penyebab masalah dan memperbaikinya:

1.Periksa perangkat keras

o Pastikan sensor berfungsi dengan baik dan tidak mengalami gangguan.
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o Periksa apakah ada noise atau interferensi yang dapat memengaruhi kualitas

data.

2. Bandingkan data dunia nyata dengan data pelatihan

o Ambil sampel data dari perangkat di lapangan dan bandingkan dengan
dataset pelatihan.

. Pastikan tidak ada perbedaan signifikan dalam karakteristik data yang
digunakan.

3. Mengatasi Overfitting

o Jika overfitting terdeteksi, latih ulang model menggunakan lebih banyak

data yang lebih bervariasi.

o Terapkan teknik regularisasi untuk mengurangi kompleksitas model agar
lebih mampu menangani data baru.

o Gunakan augmentasi data untuk meningkatkan keragaman dalam dataset

pelatihan.

3.8. Internet of Things (IoT)

Internet of Things (IoT) adalah konsep di mana berbagai perangkat fisik, seperti
sensor, alat rumah tangga, kendaraan, dan mesin industri, dapat terhubung ke
internet dan berkomunikasi satu sama lain. Dengan adanya IoT, perangkat dapat
mengumpulkan, bertukar, dan menganalisis data secara otomatis. Hal ini
memungkinkan sistem untuk bekerja lebih efisien, meningkatkan produktivitas,
serta memberikan kenyamanan dan keamanan bagi penggunanya.

IoT berkembang pesat di berbagai sektor, termasuk rumah pintar (smart
home), kota pintar (smart city), otomasi industri, kesehatan digital, dan masih
banyak lagi. Keunggulan utama IoT adalah kemampuannya dalam mengoptimalkan
proses, mengurangi keterlibatan manusia dalam tugas-tugas rutin, serta
meningkatkan pengambilan keputusan berbasis data yang akurat dan real-time.

Dengan adanya teknologi IoT, berbagai perangkat dapat saling terhubung
dan bekerja secara otomatis berdasarkan data yang dikumpulkan. Sebagai contoh,
di sektor kesehatan, IoT memungkinkan pemantauan pasien secara real-time
melalui sensor medis yang dapat mendeteksi tanda-tanda vital dan mengirimkan

laporan langsung ke dokter. Dalam sektor industri, IoT dapat digunakan untuk
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mendeteksi kerusakan mesin sebelum terjadi kegagalan total, sehingga dapat

mengurangi downtime produksi.

The Internet of Things

From connecting devices to human value

m Device connection

Big data analysis
Al and cognitive
Analyis at the edge

Data value m
Internet Of Thlngs Analysis 1o action
FROM CONNECTION APls and processes
Actionable intelligence

TO BENEFIT

Human value m

Smart applications
Stakeholder benefits
Tangible benefits

Focus on access
Networks, cloud, edge
Data transport

Gambar 3. 4 Internet of Things

Gambar 3.4 menjelaskan bagaimana IoT bekerja, mulai dari tahap awal
menghubungkan perangkat hingga menghasilkan manfaat bagi manusia. Proses ini

terdiri dari enam tahap utama yang membentuk siklus IoT:

1. Device Connection (Koneksi Perangkat)

Tahap pertama dalam sistem IoT adalah menghubungkan perangkat ke jaringan
internet. Perangkat yang digunakan dalam IoT biasanya memiliki kemampuan
untuk terhubung melalui jaringan seperti Wi-Fi, Bluetooth, atau protokol
komunikasi khusus [oT seperti LoRa dan Zigbee.

Selain itu, perangkat ini sering kali dilengkapi dengan kecerdasan tertanam
(embedded intelligence) yang memungkinkan mereka untuk memproses data
sebelum mengirimkannya ke sistem pusat. Contoh perangkat IoT meliputi sensor
suhu, kamera pintar, smartwatches, dan mesin industri yang terkoneksi dengan

cloud.
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2. Data Sensing (Penginderaan Data)

Setelah perangkat terhubung, tahap selanjutnya adalah pengumpulan data. IoT

menggunakan berbagai sensor untuk menangkap informasi dari lingkungan sekitar.

Sensor ini bisa berupa sensor suhu, kelembaban, tekanan, gerakan, dan sebagainya.
Setelah data dikumpulkan, informasi tersebut disimpan dalam sistem

penyimpanan seperti database atau cloud. Data yang dikumpulkan ini akan menjadi

dasar bagi proses analisis yang dilakukan di tahap selanjutnya.

3. Communication (Komunikasi Data)

Data yang telah dikumpulkan oleh sensor harus dikirim ke pusat pemrosesan untuk
dianalisis. Proses ini melibatkan komunikasi data melalui jaringan yang telah
dikonfigurasi sebelumnya.

Terdapat berbagai metode komunikasi yang digunakan dalam IoT, mulai
dari jaringan kabel hingga teknologi nirkabel seperti 4G, 5G, dan satelit. Cloud
computing dan edge computing juga memainkan peran penting dalam tahap ini,
karena memungkinkan data untuk diproses lebih dekat ke sumbernya sehingga

mengurangi latensi.

4. Data Analytics (Analisis Data)
Setelah data diterima oleh sistem pusat, langkah berikutnya adalah menganalisis
data tersebut. Analisis dilakukan menggunakan teknologi seperti big data analytics,
kecerdasan buatan (Al), dan komputasi kognitif.

Analisis ini bertujuan untuk menemukan pola, mendeteksi anomali, serta
membuat prediksi yang dapat membantu dalam pengambilan keputusan. Proses
analisis ini bisa dilakukan baik di cloud maupun di edge (lebih dekat dengan

perangkat sumber data) untuk meningkatkan kecepatan dan efisiensi.

5. Data Value (Nilai Data)

Data yang telah dianalisis akan dikonversi menjadi informasi yang dapat
dimanfaatkan. Tahap ini melibatkan penggunaan Application Programming
Interface (API) dan proses otomatisasi untuk menghasilkan actionable intelligence

atau wawasan yang dapat langsung digunakan.
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Sebagai contoh, dalam sistem pemantauan lingkungan, jika sensor mendeteksi
polusi udara yang tinggi, sistem dapat secara otomatis mengaktifkan alarm

peringatan atau memberi tahu pihak yang berwenang untuk mengambil tindakan.

6. Human Value (Manfaat bagi Manusia)

Tahap terakhir dalam siklus IoT adalah memberikan manfaat nyata kepada manusia.
Wawasan yang telah dihasilkan melalui analisis data dapat diterapkan dalam
berbagai aplikasi pintar untuk meningkatkan efisiensi dan kualitas hidup.

Sebagai contoh, dalam industri manufaktur, jika sistem IoT mendeteksi
potensi kerusakan pada suatu mesin, informasi ini dapat digunakan untuk
menjadwalkan pemeliharaan sebelum terjadi kegagalan. Dalam sistem rumah
pintar, IoT dapat digunakan untuk mengatur pencahayaan dan suhu ruangan secara
otomatis berdasarkan kebiasaan penghuni. Manfaat ini tidak hanya dirasakan oleh
individu, tetapi juga oleh bisnis dan pemerintah dalam meningkatkan efisiensi
operasional serta mengurangi biaya.

7. Kesimpulan
Gambar ini menggambarkan siklus kerja IoT dari awal hingga memberikan manfaat
bagi manusia. Proses ini dimulai dengan menghubungkan perangkat, menangkap
data, mengirimkannya untuk dianalisis, hingga menghasilkan wawasan yang
berharga dan dapat digunakan dalam berbagai aplikasi cerdas.

Dengan memahami alur kerja ini, kita bisa lebih efektif dalam menerapkan
IoT untuk meningkatkan efisiensi, produktivitas, dan kenyamanan di berbagai
bidang. [oT tidak hanya sebatas teknologi masa depan, tetapi sudah menjadi bagian
dari kehidupan sehari-hari yang terus berkembang dan memberikan dampak positif
bagi berbagai sektor.

Dalam konteks [oT, TinyML berperan penting sebagai teknologi pendukung
untuk memproses data langsung di perangkat ujung (edge devices). Biasanya,
perangkat I[oT bergantung pada cloud untuk memproses data sensor, tetapi
pendekatan ini membutuhkan konektivitas yang konstan dan memakan daya.
Dengan menggunakan TinyML, perangkat IoT dapat memproses data sensor secara

langsung, mengurangi ketergantungan pada cloud, meningkatkan efisiensi energi,
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dan mempercepat waktu respons. Sebagai contoh, sensor gerakan yang dilengkapi
dengan model TinyML dapat mengenali aktivitas tertentu dan hanya mengirimkan
data penting ke cloud, sehingga menghemat bandwidth. Kombinasi IoT dan
TinyML menciptakan solusi yang lebih cerdas, hemat daya, dan cocok untuk
aplikasi berskala besar seperti pertanian pintar, pemantauan kesehatan jarak jauh,

dan pelacakan logistik.
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Bab IV
Deskripsi Data Dan Hasil Praktik Kerja Lapangan

4.1. Metode atau Prosedur yang Digunakan

Gambar 4.1 menunjukkan prosedur yang digunakan untuk praktik kerja

lapangan.

Perancangan Konversi
Deep model ke Interference
Learning Perangkat

Studi
Literatur

Gambar 4. 1 Prosedur yang digunakan dalam Praktik Kerja Lapangan

1. Studi Literatur

Tahap pertama dalam proses ini adalah melakukan studi literatur, yang bertujuan
untuk memahami konsep dasar Deep Learning, teknik yang digunakan, serta
bagaimana model dapat diterapkan pada perangkat target. Studi ini mencakup
eksplorasi berbagai sumber, seperti jurnal ilmiah, buku, artikel, dan penelitian
terdahulu yang relevan.

Selain memahami teori Deep Learning, dalam tahap ini juga dilakukan
analisis terhadap perangkat keras yang akan digunakan, seperti Arduino, Raspberry
Pi, atau mikrokontroler lainnya. Hal ini penting karena keterbatasan daya
komputasi dan memori pada perangkat kecil mempengaruhi bagaimana model
harus dirancang dan dioptimalkan.

Studi literatur juga mencakup pemilihan algoritma dan metode yang paling
sesuai untuk diterapkan dalam skenario tertentu. Misalnya, jika proyek berfokus
pada pengolahan citra, maka arsitektur Convolutional Neural Network (CNN)
mungkin menjadi pilihan terbaik. Sementara itu, jika proyek berkaitan dengan
pemrosesan teks, maka model berbasis Recurrent Neural Network (RNN) atau

Transformer dapat lebih cocok digunakan.
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2. Perancangan Deep Learning

Setelah memahami teori dan memilih pendekatan yang tepat, tahap selanjutnya
adalah merancang model Deep Learning. Pada tahap ini, peneliti atau pengembang
menentukan arsitektur model, jumlah lapisan neuron, fungsi aktivasi, algoritma
optimasi, serta parameter lain yang akan digunakan selama pelatihan.

Proses pelatihan model biasanya dilakukan menggunakan dataset yang
sesuai dengan permasalahan yang ingin diselesaikan. Dataset ini bisa berupa
kumpulan gambar, teks, atau data sensor yang dikumpulkan dari perangkat. Model
kemudian diuji dengan data pelatihan dan validasi untuk memastikan bahwa ia
dapat mengenali pola dengan baik tanpa mengalami overfitting.

Selama tahap perancangan, berbagai teknik dapat diterapkan untuk
meningkatkan performa model. Misalnya, penggunaan augmentasi data untuk
meningkatkan keberagaman data pelatihan atau penerapan regularisasi untuk
mengurangi risiko overfitting.

3. Konversi Model ke Perangkat

Setelah model Deep Learning berhasil dilatih di lingkungan komputasi yang lebih
kuat (misalnya di komputer dengan GPU), model tersebut harus dikompresi dan
dikonversi agar dapat berjalan di perangkat kecil dengan keterbatasan daya dan
memori.

Proses konversi ini dilakukan menggunakan alat seperti TensorFlow Lite
yang memungkinkan model menjadi lebih ringan dan tetap mempertahankan
performa yang optimal. Dalam beberapa kasus, dilakukan juga kuantisasi model,
yaitu teknik untuk mengurangi ukuran model dengan mengganti tipe data floating
point menjadi integer tanpa mengorbankan akurasi secara signifikan.

Konversi ini sangat penting karena model Deep Learning yang tidak
dioptimalkan dapat membebani perangkat dan menyebabkan kinerja yang lambat
atau bahkan tidak dapat berjalan sama sekali. Oleh karena itu, diperlukan teknik
khusus untuk memastikan model tetap akurat tetapi juga efisien dalam penggunaan

sumber daya.
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4. Inference (Inferensi)

Tahap terakhir dalam proses ini adalah inferensi, yaitu ketika model yang telah
dikonversi mulai dijalankan di perangkat target. Pada tahap ini, model menerima
data input secara real-time, seperti gambar dari kamera atau data dari sensor,
kemudian memprosesnya untuk menghasilkan prediksi.

Sebagai contoh, dalam sistem deteksi anomali mesin industri, sensor yang
dipasang pada mesin akan mengirimkan data suhu dan getaran ke model yang telah
dioptimalkan. Model kemudian menentukan apakah mesin dalam keadaan normal
atau mengalami anomali berdasarkan pola data yang telah dipelajari sebelumnya.
Jika terdeteksi anomali secara konsisten, sistem dapat mengirimkan peringatan
untuk segera dilakukan pemeriksaan atau pemeliharaan.

Selain itu, dalam sistem pengenalan suara seperti wake-word detection,
model yang telah dikonversi ke TensorFlow Lite akan mendeteksi perintah suara
pengguna dan mengaktifkan perangkat sesuai dengan instruksi yang diberikan.
Proses inferensi ini harus berlangsung cepat dan efisien, sehingga optimalisasi
model pada tahap sebelumnya menjadi sangat penting.

Dalam banyak kasus, model inferensi juga menggunakan teknik tambahan
seperti pengambilan keputusan berbasis rata-rata untuk menghindari kesalahan
prediksi akibat gangguan sesaat dalam data. Sebagai contoh, jika model mendeteksi
anomali selama satu detik tetapi kembali normal di detik berikutnya, sistem dapat
mengabaikannya agar tidak terjadi false alarm.

5. Kesimpulan

Flowchart ini memberikan gambaran lengkap mengenai bagaimana model Deep
Learning dikembangkan, dioptimalkan, dan diterapkan dalam perangkat kecil
seperti mikrokontroler atau sistem IoT.

Dengan melalui tahapan studi literatur, pengembang memastikan bahwa
pendekatan yang digunakan sesuai dengan kebutuhan proyek. Selanjutnya, pada
tahap perancangan, model dikembangkan dan diuji untuk mencapai tingkat akurasi
yang diharapkan. Kemudian, dalam tahap konversi, model dioptimalkan agar dapat
berjalan dengan baik dalam keterbatasan sumber daya perangkat. Akhirnya, pada
tahap inferensi, model diterapkan untuk melakukan prediksi secara real-time dan

memberikan output yang dapat digunakan untuk pengambilan keputusan.
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Proses ini menunjukkan pentingnya kombinasi antara pengembangan model
yang akurat dan optimasi model yang efisien agar sistem berbasis Deep Learning
dapat berjalan dengan baik di perangkat yang memiliki keterbatasan daya

komputasi.

5.1. Perancangan Deep Learning

Gambar 4.2 menunjukkan cuplikan kode Python yang berisi perintah
instalasi dan impor pustaka yang umum digunakan dalam Machine Learning dan

deep learning.

'pip install protobuf==3.20.3

'pip install tensorflow==2.8.0rco

import tensorflow as tf

import tensorflow.keras.layers as mylayers
import numpy as np

import matplotlib.pyplot as plt

import math

Gambar 4. 2 Library

Berikut penjelasan gambar 4.2:

l. Instalasi Pustaka

!pip install protobuf==3.20.3
!pip install tensorflow==2.8.0rc0

e protobuf==3.20.3: Menginstal versi tertentu dari pustaka Protocol Buffers
yang digunakan oleh TensorFlow untuk komunikasi data yang efisien.
e tensorflow==2.8.0rcO: Menginstal versi kandidat rilis (release candidate)
dari TensorFlow 2.8.0.
2. Import Pustaka
Line 3 sampai 7 dijelaskan berikut:
e import tensorflow as tf: Mengimpor TensorFlow dengan alias tf, yang sering
digunakan dalam deep learning.
e import tensorflow.keras.layers as mylayers: Mengimpor modul keras.layers
dari TensorFlow dan memberinya alias mylayers untuk mempermudah

akses ke berbagai jenis layer dalam neural network.
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e import numpy as np: Mengimpor NumPy dengan alias np, pustaka yang
digunakan untuk komputasi numerik dan operasi matriks.

e import matplotlib.pyplot as plt: Mengimpor pyplot dari matplotlib dengan
alias plt, yang digunakan untuk visualisasi data.

e import math: Mengimpor pustaka matematika bawaan Python untuk

perhitungan matematis dasar.

Gambar 4.3 menunjukkan cuplikan kode Python yang digunakan untuk
menghasilkan dan memvisualisasikan data berbasis fungsi sinus dengan sedikit

noise.

SAMPLES = 1000

SEED = 1337

np.random.seed(SEED)

tf.random.set_seed(SEED)

x_values = np.random.uniform(low=0, high=2%math.pi, size=SAMPLES)
np.random.shuffle(x_values)

y_values = np.sin(x_values)

y_values += 0.1 * np.random.randn(*y_values.shape)
plt.plot(x_values, y_values, 'b.")

plt.show()

Gambar 4. 3 Kode untuk membuat 1000 data sinus secara random
1. Inisialisasi Variabel
SAMPLES = 1000
SEED = 1337

e SAMPLES = 1000: Menentukan jumlah sampel data yang akan dihasilkan.
e SEED =1337: Menentukan nilai seed agar hasil randomisasi tetap konsisten

setiap kali kode dijalankan.
2. Pengaturan Seed untuk Reproduksibilitas
np.random.seed(SEED)

tf.random.set seed(SEED)
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e np.random.seed(SEED): Mengatur seed untuk generator angka acak dari
NumPy.
o tfirandom.set seed(SEED): Mengatur seed untuk generator angka acak dari

TensorFlow.
3. Pembuatan Data
x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES)

e np.random.uniform(low=0, high=2*math.pi, size=SAMPLES):

Menghasilkan 1000 nilai acak dari distribusi uniform dalam rentang [0, 2.
np.random.shuffle(x_values)
e np.random.shuffle(x values): Mengacak urutan nilai x_values.
y_values = np.sin(x_values)
e Menghitung nilai sinus dari setiap elemen dalam x_values.
4. Penambahan Noise (Gangguan Acak) pada Data
y_values += 0.1 * np.random.randn(*y_values.shape)

e np.random.randn(*y values.shape): Menghasilkan noise dari distribusi
normal (mean = 0, standar deviasi = 1).

e * np.random.randn(*y values.shape): Memperkecil noise dengan
mengalikannya dengan 0.1 agar gangguan tidak terlalu besar.

e y values += .... Menambahkan noise ke nilai y values agar data lebih

realistis dan tidak terlalu sempurna.
5. Visualisasi Data
plt.plot(x_values, y values, 'b.")
plt.show()

e plt.plot(x_values, y values, 'b."): Membuat scatter plot dengan titik
berwarna biru ('b.").

e plt.show(): Menampilkan plot.
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Gambar 4.3 adalah hasil plot dari kode sebelumnya yang menggunakan

fungsi sinus dengan noise acak

1.0 1

0.5

0.0 4

-1.0 4

Gambar 4. 4 Hasil Plot dari kode sebelumnya

Gambar 4.4 menunjukkan kode untuk membagi dataset menjadi tiga
bagian: train (pelatihan), validate (validasi), dan test (pengujian), serta

memvisualisasikannya dengan warna berbeda.

TRAIN_SPLIT = int(0.6 * SAMPLES)

TEST_SPLIT = int(8.2 % SAMPLES + TRAIN_SPLIT)

x_train, x_validate, x_test = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])
y_train, y_validate, y_test = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])
plt.plot(x_train, y_train, 'b.', label="Train")

plt.plot(x_validate, y_validate, 'y.', label="Validate")

plt.plot(x_test, y_test, 'r.', label="Test")

plt.legend()

plt.show()

Gambar 4. 5 Pembagian dataset dan proses Training

1. Pembagian Dataset
TRAIN_SPLIT = int(0.6 * SAMPLES)
TEST SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)

o TRAIN_SPLIT = int(0.6 * SAMPLES): Menentukan indeks batas untuk
data training (60% dari total SAMPLES).

o TEST SPLIT = int(0.2 * SAMPLES + TRAIN_ SPLIT): Menentukan
indeks batas untuk data testing (20% setelah data training), sehingga sisanya

(20%) otomatis menjadi validation set.

2. Memisahkan Data
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x_train, x_validate, x_test = np.split(x_values, [TRAIN_ SPLIT, TEST SPLIT])
y train, y validate, y test =np.split(y values, [TRAIN SPLIT, TEST SPLIT])

o np.split(x_values, [TRAIN_ SPLIT, TEST SPLIT]): Memisahkan x_values
menjadi tiga bagian:

x_train (60%)

x_validate (20%)

x_test (20%)

o np.split(y_values, [TRAIN_SPLIT, TEST SPLIT]): Memisahkan y_values

dengan cara yang sama.

3. Visualisasi Data

plt.plot(x_train, y train, 'b.", label="Train")
plt.plot(x_validate, y validate, 'y.", label="Validate")
plt.plot(x_test, y test, 'r.", label="Test")

o plt.plot(x_train, y train, 'b.", label="Train"): Menampilkan data training
dengan titik biru ('b.").

o plt.plot(x_validate, y validate, 'y.", label="Validate"): Menampilkan data
validasi dengan titik kuning ('y.").

o plt.plot(x_test, y test, 'r.", label="Test"): Menampilkan data uji dengan titik

merah ('r.').

4. Menampilkan Plot
plt.legend()
plt.show()

o plt.legend(): Menampilkan legenda untuk membedakan kategori data.

o plt.show(): Menampilkan plot.

Gambar 4.6 menunjukkan pembagian dataset sinus dengan noise menjadi

tiga bagian:

1. Training Set (Train) — Ditandai dengan titik biru (60% data).
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2. Validation Set (Validate) — Ditandai dengan titik kuning (20%
data).
3. Test Set (Test) — Ditandai dengan titik merah (20% data).
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Gambar 4. 6 Hasil Dataset Sinus

Gambar 4.7 menunjukkan arsitektur model neural network (MLP) sederhana yang

dibuat menggunakan TensorFlow dan Keras.

model_1 = tf.keras.Sequential()

model_1.add(mylayers.Dense(16, activation='relu',input_shape=(1,)))
model_1.add(mylayers.Dense(1))

model_1.compile(optimizer="'"rmsprop', loss='mse', metrics=['mae'])
model_1.summary()

Gambar 4. 7 Membuat model sequential

1. Membuat Model Sequential
model 1 = tf.keras.Sequential()
e Membuat model sequential, yang berarti lapisan (layers) akan
ditambahkan secara berurutan dari input ke output.
2. Menambahkan Hidden Layer
model 1.add(mylayers.Dense(16, activation="relu', input_shape=(1,)))
e mylayers.Dense(16, activation="relu', input_shape=(1,))
e 16 neuron di layer tersembunyi.
e Fungsi aktivasi: ReLU (Rectified Linear Unit), yang umum
digunakan dalam deep learning untuk mengatasi masalah vanishing

gradient.
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e input shape=(1,): Model menerima satu fitur input (karena hanya
ada satu variabel input).
3. Menambahkan Output Layer
model 1.add(mylayers.Dense(1))
e mylayers.Dense(1)
e Layer keluaran (output layer) memiliki 1 neuron, yang cocok untuk
tugas regresi (memprediksi nilai kontinu).
4. Mengompilasi Model
model 1.compile(optimizer="rmsprop', loss='mse', metrics=['mae'])

e optimizer="rmsprop'

RMSprop (Root Mean Square Propagation) adalah algoritma
optimasi yang cocok untuk pelatihan model dengan gradien yang
bervariasi.
e loss='mse'
e Mean Squared Error (MSE) digunakan sebagai fungsi kerugian
(loss function), cocok untuk regresi.
e metrics=['mae']
e Mean Absolute Error (MAE) digunakan sebagai metrik evaluasi
untuk menilai performa model.
5. Menampilkan Ringkasan Model
model 1.summary() Menampilkan struktur model, jumlah parameter trainable,

serta jumlah layer.

Gambar 4.8 menunjukkan ringkasan arsitektur model neural network yang dibuat

menggunakan TensorFlow/Keras.
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Model: "sequential_1"

Layer (type) Output Shape Param #
dense_3 (Dense) (None, 16) 32
dense_4 (Dense) (None, 1) 17

Total params: 49
Trainable params: 49
Non-trainable params: 0

Gambar 4. 8 Arsitektur Model Neural Network

Gambar 4.9 menunjukkan proses pelatithan model neural network menggunakan

metode .fit() pada TensorFlow/Keras.

history_1 = model_1.fit(
X_train, y_train,
epochs=1000,
batch_size=16,

validation_data=(x_validate, y_validate)

Gambar 4. 9 Kode Proses pelatihan model Neural Network

Rincian Parameter
1. x train, y_train
Ini adalah dataset pelatihan yang digunakan model untuk belajar.

x_train berisi fitur (input), sementara y_train adalah label atau target yang

ingin diprediksi.
2. epochs=1000
Model akan dilatih selama 1000 iterasi penuh pada dataset.
Semakin tinggi jumlah epoch, semakin lama pelatihan berlangsung.
Bisa menyebabkan overfitting jika terlalu besar.
3. batch_size=16

Data akan diproses dalam kelompok kecil berisi 16 sampel per iterasi.
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Penggunaan batch membantu dalam optimalisasi dan penggunaan memori.
4. wvalidation data=(x_validate, y validate)
Model akan dievaluasi menggunakan data validasi setelah setiap epoch.

Berguna untuk melihat apakah model mengalami overfitting atau

underfitting.

Gambar 4.10 menunjukkan output hasil training model neural network

menggunakan TensorFlow/Keras.

Epach 1/1800

38/38 [========ss=cc=ccoccoccocoooooc] - 1s Tns/step - loss: 0.7994 - mae: 0.7884 - val_loss: 0.5914 - val_mae: 0.6926
Epach 2/1008
38/38 [=====s==sssss=ssssssssss=s===z] - @s 2ns/step - loss: 0.4854 - mae: 8.6188 - val_loss: 0.4723 - val_mae: B.6022
Epach 3/1088
38/38 [============z==s=szs=sssozm==z) - 0s 2ns/step - loss: 0.4214 - mae: 0.5637 - val_loss: 0.4276 - val_mae: B.5725
Epach 4/1008
38/38 [s=s==s===szs===s=sss==ssss====] - Os 2ms/step - loss: 0.3848 - mae: 8.5383 - val_loss: 0.3897 - val_mae: B.5418
Epach 5/1088
38/38 [============s=szoszsssszozzs=c] - @s 3ms/step - loss: 0.3516 - mae: 8.5157 - val_loss: 0.3548 - val_mae: B.5120

Gambar 4. 10 Output Hasil Training Model Meural Network

Epoch 996/10080

38/38 [s====ss===s=sszsssssssz==s===:z] - Bs 3ms/step - loss: 0.1545 - mae: B.3077 - val_loss: 8.1591 - val_mae: B.3D45
Epoch 997/10088
38/38 [s====z=z====zzzzz==zzzz==z===z] - Bs 3ms/step - 10ss: 0.1538 - mae: B.3065 - val_loss: 8.1594 - val_mae: B.3131
Epoch 998/1000
38/38 [== - Ds 3ms/step - loss: 0.1537 - mae: 0.3068 - val_loss: 0.1575 - val_mae: D.3099

Epoch 999
38/38 - Bs 3ms/step - loss: B.1538 - mae: B.3869 - val_loss: 8.1648 - val_mae: 0.3181
Epoch 100
38/38 [== - Bs 4ms/step - loss: 08.1549 - mae: B.3082 - val_loss: 8.1585 - val_mae: 0.3119

Gambar 4.11 menunjukkan kode Python untuk memvisualisasikan loss selama

proses pelatihan model.

loss = history_1.history['loss']

val_loss = histery_1.history['val_loss']

epochs = range(l, len(loss) + 1)

plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation less')
plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Gambar 4. 11 Kode Untuk Visualisasi Loss Selama Proses Pelatihan

Rincian Fungsi

1. Mengambil History Loss
e history l.history['loss'] — berisi nilai loss selama training.

e history l.history['val loss'] — berisi nilai loss selama validasi.
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2. Membuat Rentang Epochs
e c¢pochs = range(1, len(loss) + 1) — Membuat list dari 1 sampai
jumlah epoch untuk sumbu x.
3. Plot Loss Training & Validation
e plt.plot(epochs, loss, 'g.', label="Training loss")
e Menampilkan loss training dengan warna hijau (g.) dan titik kecil.
e plt.plot(epochs, val loss, 'b', label="Validation loss')
e Menampilkan loss validasi dengan warna biru (b) dan garis
kontinu.
4. Memberikan Label pada Grafik
o plt.title('"Training and validation loss') — Menambahkan judul.
e plt.xlabel("Epochs'), plt.ylabel('Loss') — Memberikan label sumbu
x dany.
e plt.legend() — Menampilkan legenda untuk membedakan antara
training loss dan validation loss.
5. Menampilkan Grafik

e plt.show() — Menampilkan grafik di layar.

Gambar 4.12 menunjukkan grafik loss selama proses training dan validasi

model neural network menggunakan TensorFlow/Keras.

Training and validation loss

084 = « Training loss
—— Validation loss

o+

0 200 400 600 800 1000
Epochs

. e T AP ——l e

Gambar 4. 12 Hasil Grafik Loss selama proses training dan validasi Model

Neral Network
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Gambar 4.13 menunjukkan kode Python untuk memvisualisasikan training

loss dan validation loss dengan mengabaikan 100 epoch pertama dalam grafik.

SKIP = 100

plt.plot(epochs[SKIP:], loss[SKIP:]1, 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')

plt.xlabel('Epochs')

plt.ylabel('Loss")

plt.legend()
plt.show()

Gambar 4. 13 Kode Untuk Visualisasi Training Loss dan Validasi
Rincian Fungsi
1. Melewati 100 Epoch Pertama
SKIP = 100 — Hanya menampilkan loss setelah epoch ke-100.

epochs[SKIP:], loss[SKIP:], dan val loss[SKIP:] — Memotong data

sehingga hanya menampilkan nilai setelah epoch ke-100.

2. Plot Loss Training & Validation
plt.plot(epochs[SKIP:], loss[SKIP:], 'g.", label="Training loss')
Menampilkan loss training dengan warna hijau (g.) dan titik kecil.
plt.plot(epochs[SKIP:], val loss[SKIP:], 'b.", label='Validation loss')
Menampilkan loss validasi dengan warna biru (b.) dan titik kecil.

3. Memberikan Label pada Grafik
plt.title('Training and validation loss') — Judul grafik.
plt.xlabel("Epochs'), plt.ylabel('Loss') — Memberikan label sumbu x dan y.

plt.legend() — Menampilkan legenda untuk membedakan antara training

loss dan validation loss.
4. Menampilkan Grafik

plt.show() — Menampilkan grafik di layar.
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Gambar 4.14 menunjukkan grafik Training Loss dan Validation Loss setelah

mengabaikan 100 epoch pertama selama pelatihan model

Training and validation loss

. e Training loss

0.170 4 « * Validation loss
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Gambar 4. 14 Grafik Training Loss dan Validation
Gambar 4.15 menunjukkan kode Python untuk memvisualisasikan Mean Absolute
Error (MAE) pada training dan validation data selama proses pelatihan model.

mae = history_1.history['mae']

val_mae = history_1.history['val_mae']

plt.plot(epochs[SKIP:1, mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')
plt.title('Training and validation mean absolute error')
plt.xLlabel('Epochs")

plt.ylabel('MAE')

plt.legend()

plt.show()

Gambar 4. 15 Kode untuk visualisasi Mean Absolute Error
Rincian Fungsi
1. Mengambil Data MAE dari Training & Validation

history 1.history['mae'] — Menyimpan nilai Mean Absolute Error (MAE) dari

training.
history 1.history['val mae'] — Menyimpan nilai MAE dari validasi.
2. Melewati Epoch Awal yang Tidak Stabil

epochs[SKIP:] — Memotong epoch awal agar tidak ditampilkan.
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mae[SKIP:], val_ mae[SKIP:] — Menampilkan MAE hanya setelah sejumlah epoch
tertentu.

3. Plot MAE Training dan Validation
plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label="Training MAE")
Menampilkan MAE training dengan warna hijau (g.).
plt.plot(epochs[SKIP:], val mae[SKIP:], 'b.', label="Validation MAE')
Menampilkan MAE validasi dengan warna biru (b.).

4. Memberikan Label pada Grafik
plt.title('Training and validation mean absolute error') — Judul grafik.
plt.xlabel('"Epochs'), plt.ylabel('MAE') — Memberikan label sumbu x dan y.
plt.legend() — Menampilkan legenda agar grafik lebih mudah dibaca.

5. Menampilkan Grafik

plt.show() — Menampilkan grafik di layar.

Training and validation mean absolute error

0.340 . « Training MAE
. « Validation MAE
0.335 4

0.330 4

0.325 4

MAE

0.320 4

0.315

0.310

0.305 1

200 400 600 800 1000
Epochs

Gambar 4. 16 Pelatihan Dan validasi Mean Absolute Error
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predictions = model_1.predict(x_train)

plt.clf()

plt.title('Training data predicted vs actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_train, predictions, 'r.', label='Predicted')
plt.legend()

plt.show()

Gambar 4. 17 Kode untuk membuat plot prediksi

Rincian Fungsi Gambar 4.17 :
1. Melakukan Prediksi pada Data Latih
predictions = model 1.predict(x_train)

model 1.predict(x train) — Model menghasilkan prediksi untuk data latih

(x_train).

predictions akan berisi nilai-nilai prediksi yang dihasilkan oleh model.
2. Menghapus Grafik Sebelumnya

plt.clf()

plt.clf() — Membersihkan grafik sebelum membuat plot baru agar tidak

tercampur dengan grafik sebelumnya.

Menambahkan Judul Grafik

plt.title("Training data predicted vs actual values')

Memberikan judul pada grafik: "Training data predicted vs actual values"
3. Menampilkan Data Aktual

plt.plot(x_test, y test,'b.", label='Actual’)

plt.plot(x_test, y test,'b.', label='Actual')

Menampilkan data aktual dengan titik berwarna biru (b.).

X _test, y_test — Data uji digunakan sebagai representasi data aktual.
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4. Menampilkan Data Prediksi

plt.plot(x_train, predictions, 'r.', label='Predicted")

plt.plot(x_train, predictions, 'r.", label="Predicted")

Menampilkan data prediksi model dengan titik merah (r.).

x_train, predictions — Data latih digunakan untuk mengevaluasi prediksi model.
5. Menampilkan Legenda dan Grafik

plt.legend()

plt.show()

plt.legend() — Menampilkan legenda agar lebih mudah membedakan antara data

aktual (biru) dan prediksi (merah).

plt.show() — Menampilkan grafik hasil visualisasi.

model_2 = tf.keras.Sequential()

model_2.add(mylayers.Dense(16, activation='relu', input_shape=(1,)))
model_2.add(mylayers.Dense(16, activation='relu'))
model_2.add(mylayers.Dense(1))

model_2.compile(optimizer="rmsprop', loss='mse', metrics=['mae'])
model_2.summary()

Gambar 4. 18 Kode untuk membuat Model 2

Penjelasan Gambar 4.18
1. model 2 = tfkeras.Sequential()

tf.keras.Sequential() — Membuat model Sequential, yaitu model dengan susunan

layer bertingkat dari input hingga output.
1. model 2.add(mylayers.Dense(16, activation="relu', input_shape=(1,)))
Layer pertama (Hidden Layer 1)

mylayers.Dense(16, activation="relu', input_shape=(1,))
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Memiliki 16 neuron dengan fungsi aktivasi ReLU.

input_shape=(1,) menunjukkan bahwa input model memiliki 1 fitur.

2. model 2.add(mylayers.Dense(16, activation="relu'))

Layer kedua (Hidden Layer 2)

Memiliki 16 neuron.

Menggunakan ReLU sebagai fungsi aktivasi.

3. model 2.add(mylayers.Dense(1))

Layer Output

Memiliki 1 neuron, sesuai untuk regresi (karena ingin memprediksi nilai numerik).
Tidak menggunakan fungsi aktivasi, sehingga hasilnya berupa nilai kontinu.
4. model 2.compile(optimizer="rmsprop', loss="mse', metrics=['mae'])
Mengompilasi model dengan:

optimizer="rmsprop' — Menggunakan RMSprop sebagai optimasi.
loss="mse' — Menggunakan Mean Squared Error (MSE) sebagai fungsi loss.
metrics=['mae'] — Memantau Mean Absolute Error (MAE) selama pelatihan.
S. model 2.summary()

Menampilkan ringkasan model termasuk jumlah parameter, jumlah layer, dan

ukuran setiap layer.

history_2 = model_2.fit(
x_train, y_train,
epochs=600,
batch_size=16,
validation_data=(x_validate, y_validate)

Gambar 4. 19 Kode untuk pelatihan Model 2

Penjelasan Gambar 4.19 :
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1. model 2 .fit(...)

Metode fit() digunakan untuk melatih model neural network dengan data latih

(x_train, y_train).

2. epochs=600

Model akan dilatih sebanyak 600 epoch (iterasi) untuk meningkatkan akurasi.
3. batch_size=16

Data akan diproses dalam batch berisi 16 sampel dalam satu iterasi.

4. validation data=(x_validate, y validate)

Model akan dievaluasi pada data validasi (x_validate, y validate) di setiap epoch

untuk memantau performa selama pelatihan.

loss = history_2.history['loss']

val_loss = history_2.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

Gambar 4. 20 Kode Untuk menampilkan hasil loss pada model 2

Penjelasan Kode Gambar 4.20

1. Mengambil Data Loss dari History Training
loss = history 2.history]['loss']

val loss = history 2.history['val loss']

history 2.history['loss'] — Menyimpan nilai loss (kerugian) pada data training

selama proses pelatihan model.
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history 2.history['val loss'] — Menyimpan nilai validation loss (kerugian pada

data validasi).
2. Membuat Rentang Epochs
epochs = range(1, len(loss) + 1)

range(1, len(loss) + 1) — Membuat rentang epoch dari 1 hingga jumlah epoch
terakhir.

Digunakan sebagai sumbu X dalam plot.

3. Membuat Grafik Loss

plt.plot(epochs, loss, 'g.', label="Training loss')
plt.plot(epochs, val loss, 'b', label="Validation loss')

plt.plot(epochs, loss, 'g.', label="Training loss') — Memplot training loss dengan

titik warna hijau ('g.").

plt.plot(epochs, val loss, 'b', label="Validation loss') — Memplot validation loss

dengan garis warna biru ('b').

4. Menambahkan Judul dan Label Grafik

plt.title("Training and validation loss')

plt.xlabel("Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

plt.title('Training and validation loss') — Menambahkan judul grafik.
plt.xlabel('"Epochs') — Memberi label sumbu X sebagai Epochs.
plt.ylabel('Loss") — Memberi label sumbu Y sebagai Loss.
plt.legend() — Menampilkan keterangan untuk training loss dan validation loss.

plt.show() — Menampilkan grafik.
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SKIP = 100

plt.clf()

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')

plt.xLlabel('Epochs")

plt.ylabel('Loss")

plt.legend()

plt.show()

Gambar 4. 21 Kode untuk menggambarkan proses training dan validasi

diatas 100 epoch

Penjelasan Kode Gambar 4.21:
1. SKIP =100

Variabel SKIP digunakan untuk melewatkan 100 epoch pertama agar grafik lebih
jelas dan tidak terlalu padat.

2. plt.clf()

plt.clf() digunakan untuk membersihkan plot sebelum membuat plot baru,

mencegah tumpang tindih gambar.

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.", label="Training loss')
plt.plot(epochs[SKIP:], val loss[SKIP:], 'b.", label='Validation loss')
plt.plot(...) digunakan untuk menggambar grafik:

Training loss ditampilkan dalam warna hijau ('g.").

Validation loss ditampilkan dalam warna biru ('b.").

[SKIP:] berarti hanya menampilkan epoch setelah 100 pertama.
plt.title("Training and validation loss')

plt.xlabel("Epochs')

plt.ylabel('Loss")
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plt.legend()

plt.show()

3. Judul & Label:

plt.title(...) — Menetapkan judul grafik.

plt.xlabel("Epochs') — Label sumbu X sebagai "Epochs".
plt.ylabel('Loss') — Label sumbu Y sebagai "Loss".
plt.legend() — Menampilkan keterangan warna pada grafik.

plt.show() — Menampilkan grafik.

plLt.clf()

mae = history_2.history['mae']

val_mae = history_2.history['val_mae' ]

plt.plot( epochs[SKIP : ], mae [SKIP : ], 'g .', label= 'Training MAE')
plt.plot( epochs[SKIP: ], val_mae[SKIP : ], 'b .', label='Validation MAE')
plt.title ('Training and validation mean absolute error ')
plt.xlabel('Epochs')

plt.ylabel('MAE")

plt.legend ()

plt.show ()

Gambar 4. 22 Kode untuk menggambarkan Mean Absolute Error

Penjelasan Kode:
1. plt.clf()

plt.clf() digunakan untuk membersihkan plot sebelum membuat grafik baru,

mencegah tumpang tindih gambar.
2. mae = history 2.history['mae']
val_mae = history 2.history['val mae']

mae — Menyimpan nilai Mean Absolute Error (MAE) saat training dari

history 2.history['mae'].

val_mae — Menyimpan nilai MAE saat validasi dari history 2.history['val mae'].
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3. plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label="Training MAE")
plt.plot(epochs[SKIP:], val mae[SKIP:], 'b.", label='Validation MAE")
Training MAE ditampilkan dalam warna hijau ('g.").

Validation MAE ditampilkan dalam warna biru ('b.").

[SKIP:] digunakan untuk melewatkan sejumlah epoch pertama (biasanya agar

grafik lebih jelas).

4. plt.title("Training and validation mean absolute error')
plt.xlabel('"Epochs')

plt.ylabel('MAE')

plt.legend()

plt.show()

S. Judul & Label:

plt.title(...) — Menetapkan judul grafik.

plt.xlabel("Epochs') — Label sumbu X sebagai "Epochs".
plt.ylabel('MAE') — Label sumbu Y sebagai "Mean Absolute Error".
plt.legend() — Menampilkan keterangan warna pada grafik.
plt.show() — Menampilkan grafik.

loss = model_2.evaluate(x_test, y_test)

predictions = model_2.predict(x_test)

plt.clf()

plLt.title('Comparison of predictions and actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_test, predictions, 'r.', label='Predicted')
plt.legend()

plt.show()

Gambar 4. 23 Kode untuk menampilkan perbedaan antara prediksi dan

Actualnya
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Penjelasan Gambar 4.23:
1. loss = model 2.evaluate(x test, y test)

model 2.evaluate(x test, y test) — Mengevaluasi performa model pada data uji

(test set) dan menyimpan nilai error atau loss.
2. predictions = model 2.predict(x_test)

model 2.predict(x_test) — Menghasilkan prediksi model berdasarkan data uji
(x_test).

3. plt.clf()
plt.clf() — Membersihkan plot sebelum menggambar yang baru.
4. plt.title('Comparison of predictions and actual values')

Judul grafik: "Comparison of predictions and actual values" (Perbandingan antara

prediksi dan nilai aktual).

5. plt.plot(x_test, y test,'b.', label='Actual')

plt.plot(x_test, predictions, 'r.", label="Predicted")

Data aktual (ground truth) divisualisasikan dengan warna biru ('b.").
Prediksi model divisualisasikan dengan warna merah ('r.').

6. plt.legend()

plt.show()

plt.legend() — Menampilkan label (keterangan) untuk warna pada grafik.

plt.show() — Menampilkan grafik.
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converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
tflite_model = converter.convert()
open("sine_model.tflite", "wb").write(tflite_model)
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
def representative_dataset_generator():

for value in x_test:

yield [np.array(value, dtype=np.float32, ndmin=2)]

converter.representative_dataset = representative_dataset_generator
tflite_model = converter.convert()
open("sine_model_quantized.tflite", "wb").write(tflite_model)

Gambar 4. 24 Kode untuk menkonversi Model Keras ke TFLite

Penjelasan Gambar 4.24:

1. Konversi Model Keras ke TFLite( Line 1)

converter = tf.lite. TFLiteConverter.from_keras model(model 2)
tflite_model = converter.convert()

open("sine_model.tflite", "wb").write(tflite_model)

tf.lite. TFLiteConverter.from_keras model(model 2) — Membuat converter untuk

mengubah model Keras (model 2) menjadi model TensorFlow Lite (TFLite).
converter.convert() — Mengkonversi model ke format TFLite.

nn

open("sine_model.tflite", "wb").write(tflite_ model) — Menyimpan model yang

sudah dikonversi ke dalam file "sine_model.tflite".

2. Konversi dengan Kuantisasi

converter = tf.lite. TFLiteConverter.from keras model(model 2)
converter.optimizations = [tf.lite.Optimize. DEFAULT]

converter.optimizations = [tf.lite.Optimize. DEFAULT] — Mengaktifkan optimasi
kuantisasi untuk membuat model lebih kecil dan lebih cepat tanpa kehilangan

akurasi secara signifikan.
3. Membuat Representative Dataset untuk Kuantisasi**

def representative dataset generator():
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for value in x_test:
yield [np.array(value, dtype=np.float32, ndmin=2)]

Representative dataset digunakan dalam kuantisasi model untuk memastikan

performa tetap optimal pada perangkat dengan sumber daya terbatas.
Fungsi representative dataset generator():
Mengambil nilai dari x_test sebagai contoh data.

Mengubah setiap nilai menjadi array float32 dengan dimensi minimal 2

(ndmin=2).

4. Menetapkan Dataset dan Mengkonversi Model
converter.representative_dataset = representative dataset generator
tflite_ model = converter.convert()

open("sine_model quantized.tflite", "wb").write(tflite_model)

converter.representative dataset = representative dataset generator —

Menetapkan dataset perwakilan untuk kuantisasi.
converter.convert() — Mengkonversi model dengan kuantisasi.

Menyimpan model yang telah dikonversi dengan kuantisasi ke dalam file

"sine_model quantized.tflite".

5.2. Konversi Model ke Perangkat

Konversi model Machine Learning ke perangkat merupakan langkah penting dalam

implementasi model di lingkungan dengan keterbatasan sumber daya, seperti

mikrokontroler, edge devices, atau sistem IoT. Proses ini bertujuan untuk

mengoptimalkan ukuran, kecepatan, dan efisiensi model agar dapat berjalan secara

real-time dengan konsumsi daya yang minimal.

1. Persiapan lingkungan kerja.
Sebelum melakukan konversi model machine learning ke perangkat embedded

seperti Arduino Nano 33 BLE Sense, penting untuk menyiapkan lingkungan
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pengembangan yang mendukung proses konversi dan pengujian. Adapun langkah-

langkah persiapan lingkungan kerja meliputi:

Instalasi Python dan Pustaka Pendukung:
e Pastikan Python 3.x telah terinstal pada sistem.
Instal pustaka TensorFlow dengan perintah berikut:
e pip install tensorflow
Untuk mikrokontroler, Anda juga perlu:
e pip install numpy
Instalasi Arduino IDE:
Unduh dan pasang Arduino IDE versi terbaru dari situs resmi:
https://www.arduino.cc/en/software
Tambahkan board Arduino Nano 33 BLE Sense melalui Board Manager.
Instal pustaka tambahan, seperti:
e Arduino_TensorFlowLite (diinstal manual melalui GitHub karena
tidak tersedia di Library Manager)
Arduino LSM9DSI1, PDM, dan pustaka sensor lain jika diperlukan
Unduh TensorFlow Lite Micro Examples:
¢ Clone repository TensorFlow Lite for Microcontrollers untuk
mengakses contoh dan template proyek: git clone
https://github.com/tensorflow/tflite-micro
Pemasangan xxd (untuk konversi ke format C array):
Pada sistem berbasis Unix/Linux/MacOS, xxd biasanya sudah tersedia. Untuk
Windows, xxd bisa didapat dari paket vim atau gunakan versi portabel CLI dari
internet.
e xxd -1 model quantized.tflite > model data.cc
Verifikasi Versi dan Dependensi:
Pastikan semua pustaka dan tools yang dibutuhkan kompatibel dengan versi
TensorFlow dan Arduino yang digunakan. Perbedaan versi dapat menyebabkan

kegagalan saat konversi atau deploy model ke perangkat.
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Dengan lingkungan kerja yang telah disiapkan secara lengkap, proses konversi,
kuantisasi, dan deploy model ke perangkat mikrokontroler dapat dilakukan

dengan lancar dan efisien.

2. Ekspor Model yang Telah Dilatih

Langkah pertama dalam proses konversi adalah mengekspor model yang telah
dilatith dalam format yang lebih ringan. Model deep learning biasanya
dikembangkan dan dilatih dalam framework seperti TensorFlow, PyTorch, atau
Scikit-learn. Setelah model mencapai akurasi yang diinginkan, model perlu
diekspor ke format yang lebih kompatibel dengan perangkat tujuan.Untuk model
yang dikembangkan menggunakan TensorFlow, model harus dikonversi ke

TensorFlow Lite (TFLite) menggunakan perintah berikut:
import tensorflow as tf

. Memuat model yang telah dilatih

model = tf.keras.models.load model("model.h5")

o Mengonversi model ke format TensorFlow Lite
converter = tf.lite. TFLiteConverter.from_keras model(model)
tflite_model = converter.convert()

. Menyimpan model hasil konversi

Pada tahap ini, model yang awalnya dalam format HS5 atau SavedModel telah
dikonversi ke format TFLite yang lebih ringan.

3. Optimasi dan Kuantisasi Model

Model deep learning yang dikembangkan di komputer umumnya menggunakan
floating-point precision (float32) yang memerlukan sumber daya besar untuk
komputasi. Untuk mengurangi ukuran model dan mempercepat inferensi, dilakukan

kuantisasi yang mengubah bobot model dari format float32 ke int8 atau float16.

Kuantisasi dapat dilakukan dengan beberapa metode, antara lain:
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o Post-Training Quantization (PTQ): Kuantisasi dilakukan setelah model
selesai dilatih.

o Full Integer Quantization: Seluruh bobot dan aktivasi model dikonversi
menjadi bilangan bulat (int8) agar bisa dijalankan di perangkat dengan prosesor
sederhana.

. Hybrid Quantization: Menggabungkan floating-point dan integer untuk
keseimbangan antara akurasi dan efisiensi.

o Mengubah model menjadi TensorFlow Lite dengan Kuantisasi

Gambar 4.10 Line 4 adalah contoh kode untuk melakukan kuantisasi model:

o Mengaktifkan optimasi kuantisasi

Gambar 4.10 Line 5 melakukan optimasi
converter.optimizations = [tf.lite.Optimize. DEFAULT]
o Menyediakan dataset perwakilan untuk kuantisasi
def representative dataset():

for data in x_test:

yield [np.array(data, dtype=np.float32, ndmin=2)]

converter.representative_dataset = representative dataset
converter.target spec.supported ops = [tf.lite.OpsSet. TFLITE BUILTINS INTS]
. Konversi model dengan kuantisasi penuh
tflite_quantized model = converter.convert()
J Menyimpan model yang telah dikonversi
with open("model quantized.tflite", "wb") as f:

f.write(tflite quantized model)

Dengan kuantisasi ini, ukuran model bisa berkurang hingga 75% dan meningkatkan

efisiensi komputasi hingga 4 kali lebih cepat dibandingkan model float32.

4. Deploy Model ke Perangkat Tujuan
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Setelah model dikonversi ke format TFLite, langkah selanjutnya adalah
memasukkannya ke perangkat yang akan digunakan, seperti Arduino, Raspberry P1i,
atau ESP32. Untuk mikrokontroler seperti Arduino Nano 33 BLE Sense, model
dapat dijalankan menggunakan pustaka TensorFlow Lite for Microcontrollers.

Berikut adalah langkah-langkahnya:
1. Mengompilasi model ke dalam kode sumber C++

TensorFlow Lite untuk mikrokontroler tidak mendukung file .tflite secara langsung,

sehingga model harus dikonversi ke dalam array biner menggunakan skrip berikut:
xxd -1 model quantized.tflite > model data.cc
Hasilnya adalah array yang dapat disisipkan langsung dalam kode C++.

2. Memuat model di Arduino

Dalam kode Arduino (file .ino), model yang telah dikompilasi ditambahkan

menggunakan pustaka TensorFlow Lite:

Gambar 4.11 menunjukkan potongan kode dalam bahasa pemrograman C++ yang
digunakan untuk menginisialisasi model TensorFlow Lite di perangkat dengan

sumber daya terbatas, seperti mikrokontroler atau edge devices.

// Inisialisasi model TensorFlow Lite
const tflite::Model* model = tflite::GetModel(model_data);

Gambar 4. 25 Potongan Kode untuk Menginisialisasi Model TensorFlow

Lite

Kode Gambar 4.25 memastikan bahwa model dapat dimuat dan digunakan di

perangkat dengan memori terbatas.
3. Menjalankan Inferensi di Perangkat

Setelah model di-deploy, kita bisa menggunakannya untuk menjalankan inferensi
(prediksi) secara real-time. Untuk model regresi sederhana, kita bisa menggunakan

kode berikut:
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Gambar 4.26 menunjukkan potongan kode dalam bahasa C++ yang digunakan
untuk menjalankan inferensi pada model TensorFlow Lite yang telah dimuat

sebelumnya.

float input_value = 1.5;

input->data.f[0] = input_value;

if (interpreter->Invoke() != KTfLiteOk) {
Serial.println("Error running inference!");
return;

B

float output_value = output->data.f[0];
Serial.println(output_value);
Gambar 4. 26 Kode Untuk menjalankan inferensi pada Model TensorFlow

Lite

Dengan cara di Gambar 4.26, model yang telah dikonversi dapat berjalan di

Arduino atau ESP32 tanpa memerlukan komputer atau cloud.
4. Pengujian dan Validasi Model

Setelah model berhasil dijalankan di perangkat, tahap terakhir adalah pengujian dan
validasi untuk memastikan model bekerja dengan baik. Pengujian ini dapat

dilakukan dengan:

1. Membandingkan hasil inferensi di perangkat dengan hasil di komputer
untuk memastikan tidak ada perbedaan signifikan.

2. Menggunakan dataset pengujian untuk melihat apakah model tetap akurat
setelah dikonversi dan dikompresi.

3. Mengukur waktu inferensi untuk memastikan model berjalan dengan

kecepatan yang sesuai dengan kebutuhan sistem real-time.

5. Kesimpulan

Proses konversi model ke perangkat adalah langkah penting dalam penerapan
machine learning di perangkat embedded. Dengan menggunakan teknik seperti
TensorFlow Lite, kuantisasi, dan optimasi model, kita dapat menjalankan model
deep learning di perangkat dengan daya rendah seperti Arduino, ESP32, atau
Raspberry Pi.
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Proses utama yang dilakukan dalam konversi model meliputi:

e Ekspor model yang telah dilatih ke format yang kompatibel.

e  Optimasi dan kuantisasi untuk mengurangi ukuran model dan meningkatkan
efisiensi.

e Deploy ke perangkat menggunakan pustaka TensorFlow Lite.

e Pengujian dan validasi untuk memastikan akurasi dan performa tetap

terjaga.
5.3. Inference

Proses Inference dalam TinyML merupakan tahap akhir dari implementasi model
machine learning, di mana model yang telah dilatih digunakan untuk membuat
prediksi atau keputusan secara langsung di perangkat dengan sumber daya terbatas,
seperti mikrokontroler dan edge devices. Tidak seperti pelatihan model yang
memerlukan komputasi tinggi dan sering kali dilakukan di server atau cloud,

inference dilakukan secara lokal di perangkat kecil dengan efisiensi tinggi.
1. Persiapan Data Input

Langkah pertama dalam inference adalah menyiapkan data yang akan digunakan
sebagai input ke model. Data ini dapat berasal dari berbagai sensor yang terhubung
ke perangkat, seperti kamera untuk pengenalan gambar, mikrofon untuk pengenalan
suara, atau akselerometer untuk mendeteksi gerakan. Setiap model memiliki format
input yang berbeda, sehingga data yang masuk harus diproses agar sesuai dengan

format yang diharapkan oleh model.

Sebagai contoh, jika model memerlukan gambar dengan resolusi 28x28 piksel
dalam skala abu-abu, maka gambar dari sensor kamera perlu diubah ukurannya
terlebih dahulu. Jika model membutuhkan nilai numerik dari sensor suhu, maka
data harus dikonversi ke format yang kompatibel, misalnya dalam bentuk bilangan
desimal dengan skala yang sesuai. Setelah data siap, nilai tersebut kemudian

dimasukkan ke dalam tensor input yang dialokasikan dalam memori perangkat
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2. Memuat Model dan Interpreter

Setelah input siap, langkah berikutnya adalah memuat model yang telah dikonversi
ke format TensorFlow Lite (TFLite) ke dalam perangkat. Model ini biasanya telah
dikompresi dan dikonversi dari model yang lebih besar agar dapat berjalan dengan

efisien di sistem dengan RAM dan penyimpanan terbatas.

Interpreter TensorFlow Lite bertanggung jawab untuk menjalankan model dan
mengelola proses inferensi di perangkat. Interpreter ini memastikan bahwa model
dapat berjalan dengan baik meskipun terdapat keterbatasan komputasi. Untuk
menginisialisasi model, perangkat akan mengalokasikan memori yang diperlukan

untuk input, output, dan variabel perantara lainnya.

Pada Gambar 4.27 adalah contoh cara memuat model ke dalam interpreter ( Pada

file hello_world.ino) :

const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;

Gambar 4. 27 Kode untuk memuat model ke dalam interpreter

Dalam contoh ini, model yang telah dikonversi ke format TFLite disimpan dalam
variabel model data dan kemudian diproses oleh interpreter agar bisa digunakan

untuk inference.
3. Menjalankan Model dengan Interpreter

Setelah model dimuat ke dalam interpreter, langkah berikutnya adalah menjalankan
proses inferensi dengan data input yang telah dipersiapkan(Pada file
hello_ world.ino). Ini dilakukan dengan memanggil fungsi Invoke() pada
interpreter, yang akan mengeksekusi model menggunakan input yang telah

diberikan.

Gambar 4.28 adalah contoh kode untuk menjalankan inference:
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if (interpreter->Invoke() != kTfLiteOk) {
MicroPrintf("Error: Invoke() failed!\n");
return;

Iy

Gambar 4. 28 Kode untuk menjalankan inference

Jika Invoke() berhasil, model akan memproses data dan menghasilkan output
berdasarkan hasil prediksi. Namun, jika terjadi kesalahan dalam eksekusi model,

sistem akan menampilkan pesan error agar dapat dilakukan perbaikan.
4. Mengambil Hasil Inferensi dari Model

Setelah model selesai dijalankan, hasil dari inferensi disimpan dalam tensor output.
Output ini dapat berupa nilai numerik, probabilitas dari berbagai kategori, atau hasil

perhitungan regresi, tergantung pada jenis model yang digunakan.

Gambar 4.29 adalah contoh cara mengambil nilai output dari tensor hasil prediksi:

float y_value = output->data.f[0];

Gambar 4. 29 Kode untuk mengambil nilai output

Dalam contoh ini, hasil prediksi model diambil dari elemen pertama dalam array
output bertipe float. Nilai ini kemudian dapat digunakan untuk berbagai tujuan,
seperti mengendalikan perangkat keras, menampilkan hasil di layar, atau mengirim

data ke sistem lain.
5. Menggunakan Hasil Inferensi untuk Pengambilan Keputusan

Setelah mendapatkan hasil prediksi dari model, langkah terakhir adalah mengambil
tindakan berdasarkan hasil tersebut. Misalnya, dalam sistem smart home, jika
model mendeteksi bahwa suhu ruangan terlalu tinggi, maka kipas atau pendingin
ruangan dapat diaktifkan secara otomatis. Jika model digunakan untuk mengenali
suara perintah tertentu, perangkat bisa merespons dengan menjalankan instruksi

yang sesuai.

Gambar 4.30 adalah contoh kode untuk menangani hasil inferensi berdasarkan

kategori output ( Pada file arduino_output handler.cpp):
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void HandleOutput(float x_value, float y_value) {
if (linitialized) {

// Set the LED pin to output

pinMode(led, OUTPUT);

initialized = true;

Gambar 4. 30 Kode untuk menangani hasil inferensi

Dalam contoh Gambar 4.30, jika hasil inferensi menunjukkan nilai lebih dari 0.5,
sistem akan menganggap bahwa suara telah dikenali dan akan memberikan respons

dengan menyalakan LED. Jika nilai di bawah ambang batas, LED akan dimatikan.

M

Output  Serial Manitor X

Gambar 4. 31 Hasil Serial Monitor
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Gambar 4. 32 Hasil Serial Monitor

Gambar 4.31 dan 4.32 menampilkan deretan karakter seperti 136, 139, dan
angka-angka yang berubah secara berkala. Karakter tersebut merupakan hasil dari
data yang dikirim oleh program Arduino ke komputer melalui komunikasi serial.
Setiap satu detik, program mengirimkan nilai acak yang berada dalam rentang
tertentu. Nilai ini kemudian diterima dan ditampilkan oleh Serial Monitor dalam
bentuk karakter atau angka sesuai dengan data yang dikirimkan dari mikrokontroler.
Tampilan yang berubah secara periodik menunjukkan bahwa program berjalan

secara berulang dan terus menghasilkan output baru setiap detiknya.
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6. Hasil
Gambar 4.33 adalah tampilan fisik dari papan mikrokontroler Arduino Nano 33
BLE yang digunakan dalam proses pengembangan sistem (terhubung melalui kabel

USB seperti tampak pada gambar).

Gambar 4. 33 Tampilan Papan Arduino Nano 33 BLE

Dalam Gambar 4.33, terlihat bahwa papan Arduino Nano 33 BLE telah terhubung
ke sumber daya melalui kabel USB, yang ditandai dengan menyala-nya LED
indikator berwarna hijau di bagian atas papan. Papan ini memiliki bentuk kecil dan
kompak, serta dilengkapi dengan modul komunikasi nirkabel berbasis Bluetooth
Low Energy (BLE) dan sensor IMU bawaan. Fitur-fitur ini memungkinkan papan
untuk digunakan dalam berbagai proyek berbasis Internet of Things (IoT), seperti
pemantauan lingkungan, deteksi gerakan, dan aplikasi wearable. Keaktifan LED
juga menunjukkan bahwa papan telah berhasil diinisialisasi dan siap digunakan
untuk proses selanjutnya dalam sistem.

Selama kegiatan Praktik Kerja Lapangan (PKL), berhasil dilakukan
implementasi dan pengujian perangkat mikrokontroler menggunakan papan
pengembangan Arduino Nano 33 BLE yang dilengkapi dengan konektivitas
Bluetooth dan sensor bawaan. Perangkat dihubungkan ke komputer menggunakan
kabel USB dan berhasil terdeteksi oleh perangkat lunak Arduino IDE. Indikator
LED menyala dengan stabil, menandakan bahwa papan berfungsi dengan baik.
Program sederhana berhasil diunggah untuk membaca data dari sensor serta
mengirimkan informasi secara nirkabel. Hasil ini menunjukkan bahwa perangkat
bekerja secara optimal dan dapat dimanfaatkan sebagai prototipe awal untuk
berbagai aplikasi berbasis Internet of Things (IoT), seperti pelacakan lokasi,

pemantauan lingkungan, atau pengendalian perangkat jarak jauh.
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7. Kesimpulan

Proses inference dalam TinyML mencakup beberapa tahapan utama, mulai dari
persiapan input data, memuat model ke interpreter, menjalankan model, membaca
hasil output, dan mengambil tindakan berdasarkan hasil prediksi. Dengan
menggunakan TensorFlow Lite for Microcontrollers, model machine learning dapat

berjalan secara efisien di perangkat dengan keterbatasan sumber daya.

Inference yang dioptimalkan memungkinkan berbagai aplikasi machine learning
berbasis edge computing, seperti pengenalan suara, deteksi gerakan, atau analisis
sensor, untuk berjalan tanpa memerlukan koneksi ke server atau cloud. Hal ini
memberikan keunggulan dalam efisiensi daya, kecepatan pemrosesan, dan
keamanan data, sehingga memungkinkan implementasi Al di perangkat kecil

dengan daya rendah.

Untuk informasi lebih lanjut serta materi tambahan yang mendukung pembelajaran
dalam buku ini, Anda dapat mengunduhnya melalui tautan berikut:
https://tinymlbook.com/supplemental. Situs tersebut menyediakan berbagai sumber
daya tambahan seperti kode program, dataset, dan petunjuk teknis yang relevan

dengan topik TinyML.
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Bab Vv

Penutup

5.1.  Kesimpulan

Pada Praktik Kerja Lapangan (PKL) ini, telah dilakukan pengembangan model
Machine Learning mulai dari tahap pelatihan hingga proses inference pada
perangkat Arduino Sense. Model yang digunakan dalam penelitian ini berbasis
persamaan sinus, yang memungkinkan perangkat untuk mengenali dan
memprediksi pola berbasis fungsi sinusoidal. Proses pengembangan mencakup
pembuatan dataset, pelatihan model, konversi ke format yang kompatibel dengan
TensorFlow Lite, serta implementasi pada perangkat keras dengan sumber daya
terbatas. Dengan pendekatan ini, model dapat berjalan secara efisien di
mikrokontroler, memungkinkan aplikasi seperti analisis sinyal, pengenalan pola,
dan pemrosesan data real-time secara langsung di perangkat.

Implementasi proses pengolahan data belum sempat dikerjakan pada PKL
ini disebabkan oleh beberapa kendala yang dihadapi selama pelaksanaan. Salah satu
faktor utama adalah terbatasnya waktu yang tersedia untuk menyelesaikan seluruh
tahapan pengembangan, mulai dari pelatihan model hingga deployment pada
perangkat. Selain itu, kendala teknis seperti kompatibilitas perangkat keras,
keterbatasan sumber daya komputasi pada mikrokontroler, serta tantangan dalam
konversi model ke format yang lebih ringan juga menjadi faktor penghambat. Di
samping itu, proses pengolahan data memerlukan pengujian dan validasi lebih
lanjut, yang membutuhkan waktu serta dukungan infrastruktur yang memadai. Oleh
karena itu, tahap ini masih menjadi bagian yang dapat dikembangkan lebih lanjut
dalam penelitian atau implementasi berikutnya.

Evaluasi performa model dalam kondisi nyata telah dilakukan dengan
menampilkan hasil inference di Serial Monitor, sehingga output model dapat
diamati secara langsung. Namun, dalam implementasi ini, penggunaan sensor
bawaan Arduino Sense belum dapat dilakukan sepenuhnya. Hal ini disebabkan oleh
keterbatasan dalam integrasi model dengan sensor, baik dari segi kompatibilitas
perangkat lunak maupun konfigurasi perangkat keras. Sebagai alternatif, nilai input
diberikan secara manual atau melalui simulasi, sehingga prediksi model tetap dapat

dianalisis meskipun tanpa data sensor langsung. Untuk pengembangan selanjutnya,
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diperlukan optimalisasi lebih lanjut agar model dapat berinteraksi langsung dengan

sensor, memungkinkan evaluasi yang lebih akurat dalam kondisi nyata.

5.2. Saran

Untuk pengembangan lebih lanjut, terdapat beberapa saran yang dapat diterapkan
agar implementasi Machine Learning pada perangkat Arduino Sense menjadi lebih

optimal dan aplikatif.
1. Integrasi Model dengan Sensor Bawaan

Pada penelitian ini, model masih dievaluasi menggunakan input simulasi tanpa
melibatkan sensor bawaan. Ke depan, perlu dilakukan optimalisasi agar model
dapat langsung menerima data dari sensor akselerometer, mikrofon, atau sensor
lainnya. Dengan demikian, hasil inferensi akan lebih akurat dan mencerminkan

kondisi nyata.
2. Optimasi dan Kuantisasi Model

Untuk meningkatkan efisiensi komputasi pada perangkat dengan keterbatasan daya
dan memori, model dapat dioptimalkan lebih lanjut menggunakan teknik post-
training quantization atau pruning. Teknik ini dapat mempercepat waktu inferensi
dan mengurangi penggunaan memori tanpa mengorbankan akurasi secara

signifikan.
3. Pengolahan Data Secara Langsung di Perangkat

Pada PKL ini, proses pengolahan data belum dapat diimplementasikan sepenuhnya.
Untuk penelitian selanjutnya, disarankan agar perangkat dapat melakukan
preprocessing data secara langsung, seperti filtering, normalisasi, atau ekstraksi
fitur. Dengan cara ini, model tidak hanya menerima input mentah, tetapi juga data

yang telah diproses untuk meningkatkan akurasi prediksi.
4. Pengujian Model dalam Berbagai Kondisi

Evaluasi model sebaiknya dilakukan dalam berbagai kondisi lingkungan nyata
untuk memastikan ketahanannya terhadap perubahan variabel eksternal. Misalnya,
jika model diterapkan untuk analisis gerakan, pengujian dapat mencakup berbagai

tingkat pencahayaan, variasi suhu, atau latensi dalam pemrosesan sinyal sensor.
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5. Implementasi Model pada Perangkat Lain

Selain Arduino Sense, model juga dapat diuji pada platform [oT lainnya, seperti
ESP32, Raspberry Pi, atau perangkat edge AI lainnya. Dengan melakukan
perbandingan performa pada berbagai platform, dapat ditentukan perangkat yang

paling efisien dan sesuai dengan kebutuhan aplikasi tertentu.
6. Penggunaan Model yang Lebih Kompleks

Ke depan, model yang digunakan dapat diperluas dengan arsitektur yang lebih
kompleks, seperti Convolutional Neural Networks (CNN) untuk pengolahan citra
atau Recurrent Neural Networks (RNN) untuk analisis data sekuensial. Hal ini
memungkinkan implementasi aplikasi yang lebih luas, seperti pengenalan suara,

deteksi objek, atau analisis pola waktu nyata.

Dengan menerapkan saran-saran ini, diharapkan pengembangan Machine Learning
pada Arduino Sense dapat berjalan lebih optimal, efisien, dan memiliki dampak

yang lebih luas dalam aplikasi dunia nyata.
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