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Bab I 

Pendahuluan 

 

1.1. Latar Belakang 

Di era digital yang semakin berkembang, penggunaan mikrokontroler 

seperti Raspberry Pi dan Arduino Uno telah menjadi komponen vital dalam 

berbagai aplikasi Teknologi. Raspberry Pi, dengan kemampuan komputasi yang 

setara komputer mini, telah diimplementasikan dalam proyek-proyek mulai dari 

sistem otomasi rumah hingga stasiun pemantau cuaca. Sementara itu, Arduino Uno 

dengan arsitektur sederhananya telah menjadi pilihan utama para pengembang 

untuk proyek elektronika dan robotika skala kecil hingga menengah. Kedua 

platform ini menawarkan fleksibilitas tinggi dengan harga terjangkau, 

memungkinkan innovator dan peneliti mengembangkan Solusi Teknologi yang 

dapat diterapkan dalam kehidupan sehari-hari. 

Seiring dengan revolusi industry 4.0, kebutuhan akan sistem cerdas yang 

mampu belajar dan beradaptasi semakin meningkat. Machine learning hadir sebagai 

Solusi untuk menganalisis data dalam jumlah besar dan menghasilkan prediksi atau 

keputusan yang akurat. Dalam konteks industry, kemampuan machine learning 

untuk mendeteksi anomali, mengoptimalkan proses produksi, dan melakukan 

prediksi perawatan telah terbukti meningkatkan efisiensi dan mengurangi biaya 

operasional. Integrasi machine learning dengan perangkat mikrokontroler 

membuka peluang baru dalam pengembangan sistem cerdas yang dapat beroperasi 

secara mandiri di edge device, mengurangi ketergantungan pada koneksi cloud dan 

meningkatkan respons real-time. 

Perkembangan teknologi machine learning telah mendorong kemajuan di 

berbagai bidang, terutama dalam otomatisasi dan analisis data berbasis sensor. 

Dengan kemampuan machine learning untuk mengenali pola dan membuat 

keputusan berdasarkan data, penerapannya kini menjangkau perangkat kecil dan 

berdaya rendah melalui konsep TinyML (Tiny Machine Learning). TinyML 

memungkinkan model machine learning dapat dijalankan di perangkat mikro, 
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seperti mikrokontroler, sehingga membuka peluang bagi pengembangan solusi IoT 

yang hemat energi. 

Salah satu perangkat mikrokontroler yang mendukung penerapan TinyML 

adalah Arduino Nano 33 BLE Sense. Perangkat ini dilengkapi dengan beragam 

sensor—seperti akselerometer, mikrofon, dan sensor suhu—serta konektivitas 

Bluetooth Low Energy. Fitur-fitur ini membuatnya ideal untuk aplikasi berbasis 

sensor yang membutuhkan pemrosesan data real-time di lokasi, seperti pemantauan 

lingkungan, pengenalan suara, dan analisis gerakan. Kebutuhan akan sistem yang 

dapat bekerja secara mandiri dengan daya rendah menjadikan Arduino Nano 33 

BLE Sense sebagai salah satu platform yang potensial. 

Di sisi lain, penerapan machine learning pada perangkat berdaya rendah 

menghadapi beberapa tantangan. Mikrokontroler seperti Arduino Nano 33 BLE 

Sense memiliki keterbatasan dalam hal memori dan kapasitas komputasi. Oleh 

karena itu, pemilihan model machine learning yang efisien menjadi hal yang sangat 

penting agar sistem dapat berjalan dengan lancar tanpa mengorbankan akurasi 

prediksi. Selain itu, pengolahan data dari sensor yang dapat digunakan sebagai input 

bagi model machine learning harus dioptimalkan untuk meminimalkan penggunaan 

daya. 

Implementasi TinyML juga mengharuskan adanya metode kompresi dan 

optimasi model yang cermat. Model yang digunakan harus cukup ringan untuk 

dijalankan pada perangkat dengan kapasitas terbatas tanpa mengorbankan kinerja. 

Selain itu, diperlukan pemahaman mendalam tentang cara kerja model machine 

learning pada lingkungan berdaya rendah agar aplikasi dapat bertahan dalam jangka 

waktu yang lama tanpa intervensi pengguna. 

Penelitian ini bertujuan untuk mengeksplorasi penerapan machine learning 

pada Arduino Nano 33 BLE Sense, yang dapat menjadi referensi untuk 

mengembangkan aplikasi IoT berbasis machine learning dengan konsumsi daya 

yang rendah. Diharapkan, penelitian ini dapat memberikan solusi yang efisien dan 

aplikatif bagi berbagai kebutuhan teknologi masa kini yang memerlukan sistem 

prediktif berbasis sensor pada perangkat dengan sumber daya terbatas. 
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1.2. Batasan Masalah 

1. Penelitian ini berfokus pada implementasi model machine learning berbasis 

TensorFlow Lite pada Arduino Nano 33 BLE Sense. 

2. Data yang diolah berasal dari sensor bawaan Arduino Nano 33 BLE Sense, 

yaitu akselerometer, mikrofon, dan sensor suhu, tanpa menggunakan sensor 

tambahan dari perangkat eksternal. 

3. Model yang dikembangkan difokuskan pada klasifikasi berbasis data dari 

sensor bawaan.  

1.3. Tujuan 

Tujuan dari penelitian ini adalah: 

1. Mengembangkan model machine learning yang efisien dan sesuai untuk 

diterapkan pada perangkat Arduino Nano 33 BLE Sense dengan 

memanfaatkan data dari sensor bawaan. 

2. Mengimplementasikan proses pengolahan data dari sensor bawaan 

(akselerometer, mikrofon, dan sensor suhu) secara optimal agar dapat 

dimanfaatkan sebagai input bagi model machine learning. 

3. Mengevaluasi performa model dalam kondisi nyata menggunakan data dari 

sensor bawaan pada Arduino Nano 33 BLE Sense. 

1.4. Manfaat 

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut: 

1. Menyediakan referensi bagi pengembangan aplikasi IoT berbasis machine 

learning pada perangkat berdaya rendah. 

2. Memberikan solusi efisien untuk aplikasi yang membutuhkan pemrosesan 

prediktif secara real-time di perangkat mikro. 

3. Mendorong pengembangan teknologi TinyML yang hemat energi untuk 

berbagai bidang seperti kesehatan, lingkungan, dan otomasi 
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Bab II 

Gambaran Umum Perusahaan 

 

2.1. Ma Chung Human-Machine Interaction Research Center 

Teknik Informatika merupakan disiplin keilmuan yang memfokuskan 

dirinya pada penyediaan kebutuhan penggunaan dan organisasi terhadap teknologi 

komputer. Sebagai perkiraan untuk saat ini dan masa yang akan datang, teknologi 

informasi menjadi tulang punggung pertumbuhan ekonomi bangsa. Saat ini pun 

inovasi teknologi informasi sudah terasa di berbagai bidang kehidupan manusia. 

Dalam hal ini, pemerintah telah mencanangkan bahwa pengembangan pendidikan 

tinggi dalam bidang komputer dan informatika merupakan salah satu program 

prioritas, bersama-sama dengan disiplin ilmu lainnya seperti rekayasa, perilaku, 

manajemen, akuntansi, dan kesenian. 

Pendidikan tinggi diarahkan untuk mempersiapkan bangsa Indonesia dalam 

menghadapi era pembangunan industri dan informasi. Untuk itu pemerintah melalui 

Direktorat Jendral Pendidikan Tinggi pada tanggal 07 Juli 2007 menginstruksikan 

untuk membuka Program Studi S1 Teknik Informatika berdasarkan Surat 

Keputusan Penyelenggaraan 15274/D/T/K-VII/2013, pada tanggal 22 Maret 2013. 

Pada saat ini, Program Studi Teknik Informatika memperoleh nilai akreditasi B 

berdasarkan Keputusan BAN-PT No. 2546/SK/BAN-PT/Ak-PPJ/S/IV/2021, 

tanggal 28 April 2021. 

Pesatnya kemajuan juga tidak lepas dari aspek interaksi antara manusia dan 

dalam pengembangannya. Untuk menunjang pengembangan dan terapannya 

kepada human welfare dan aspek interaksinya maka dibentuk Ma Chung Human-

Machine Interaction Research Center sesuai Surat Keputusan 

031/MACHUNG/FST/SK-DEK/IX/2019, pada tanggal 11 September 2019. 

Ma Chung Human-Machine Interaction Research Center bergerak dalam 

bidang kajian meliputi namun tidak terbatas kepada: machine vision, human-

computer interaction, untuk manusia berkebutuhan khusus, dan aplikasi mobile 

yang mendukung penggunaan aplikasi yang lebih meluas. 
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2.2. Visi dan Misi Ma Chung Human-Machine Interaction Research Center 

Ma Chung Human-Machine Interaction Research Center merupakan pusat 

studi yang berada di bawah naungan Teknik Informatika Universitas Ma Chung 

yang memiliki visi dan misi yang sama dalam setiap aspeknya. Berikut adalah visi 

dari Teknik Informatika Universitas Ma Chung: 

“Pada tahun 2025 Menjadi Program Studi Teknik Informatika aras utama di 

Indonesia Timur yang mendukung eksplorasi sumber daya alam beserta 

pengelolaan bisnisnya sebagai perwujudan memuliakan Tuhan dan berkontribusi 

nyata bagi kesejahteraan masyarakat.” 

Berikut adalah misi dari Teknik Informatika Universitas Ma Chung: 

a. Menyelenggarakan pengajaran, penelitian dan pengabdian kepada masyarakat 

yang berfokus pada pengembangan ilmu-ilmu 5elola informatika untuk 

pengelolaan sumberdaya alam dan bisnis. 

b. Membentuk dan mengembangkan generasi motivator yang mempunyai jiwa 

pemimpin dan wirausahawan dengan bertitik berat pada perkembangan akhlak, 

bersikap rendah hati, dan berwawasan. 

c. Membentuk lulusan siap pakai yang berkualitas tinggi dan mampu bersaing pada 

pasar informasi global. 

d. Menyelenggarakan Program Studi dengan tata kelola yang baik dan profesional. 

2.3. Struktur Organisasi Ma Chung Human-Machine Interaction Research 

Center 

Pada struktur organisasi Pusat Studi Interaksi Manusia dan Mesin 

Universitas Ma Chung yaitu bertujuan untuk pengembangan ilmu dan penelitian. 

Gambar 2.1 menunjukkan struktur organisasi Ma Chung Human-Machine 

Interaction Research 
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Gambar 2. 1 Struktur organisasi dari Rektor hingga pusat studi 

2.4. Publikasi Ilmiah Ma Chung HMI Research Center  

Ma Chung Human-Machine Interaction Research Center pada saat ini 

memiliki topik-topik riset sebagai berikut:  

a. Rancang Bangun Pengontrol Gerakan Robot Openmanipulator dengan Matlab 

Penelitian ini bertujuan mengembangkan aplikasi untuk mengontrol Gerakan robot 

arm menggunakan MATLAB. Robot arm yang digunakan terdiri dari perangkat 

U2D2 board,adaptor daya, dan servo Dynamixel. Pengujian dilakukan dengan 

menggerakkan robot arm ke posisi yang telah ditentukan, dan hasilnya 

menunjukkan keberhasilan 100% dalam menjalankan pergerakan. Meskipun 

demikian, penyempurnaan lebih lanjut diperlukan agar robot arm dapat berfungsi 

lebih optimal di masa mendatang. 

b. Analisis Perbandingan Waktu Reaksi pada individu Usia Dewasa Muda dan 

Usia Lanjut dalam Tugas Kognitif  

Penelitian ini menguji perbedaan waktu reaksi kognitif antara kelompok usia 13-25 

tahun(masa remaja) dan 50 tahun ke atas (akhir kedewasaan), yang masing-masing 

ditandai oleh perkembangan optimal dan penurunan kognitif bertahap. Delapan 

subjek dengan variasi usia dianalisis menggunakan software GoStats, dengan uji 
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Liliefors untuk normalitas data dan uji Mann-Whitney U untuk mengukur 

perbedaan waktu reaksi. Hasil menunjukkan data tidak berdistribusi normal (p < 

0.05) dan tidak ada perbedaan signifikan antara kedua kelompok pada empat tugas 

kognitif yang diuji  (p > 0.05), yaitu Simple Reaction, Physical Matching, dan Class 

Matching. Temuan ini mengindikasikan bahwa perbedaan usia tidak selalu 

mempengaruhi semua aspek fungsi kognitif. Penelitian lanjutan diperlukan untuk 

mengeksplorasi factor-faktor lain seperti jenis tugas, Tingkat kesulitan, dan 

pengalaman individu. 

c. Hyperparameter Tuning for Malaria Detection using Convulation Neural 

network  

Malaria, yang disebabkan oleh parasit Plasmodium, dapat dideteksi melalui 

pemeriksaan blood smear menggunakan mikroskop setelah pewarnaan fluoresensi. 

Selain itu, metode computer vision dan deep learning telah digunakan untuk 

mendeteksi malaria dari citra sel darah merah, dengan model Convolutional Neural 

Network (CNN) terbukti memberikan hasil akurasi tinggi. Penelitian ini 

mengevaluasi pengaruh hyperparameter tuning terhadap akurasi, presisi, recall, f1-

score, dan Matthew Correlation Coefficient (MCC). Dua arsitektur CNN, yaitu 

Rajaraman dan BaselineNet, digunakan dalam eksperimen untuk membandingkan 

performa model. 
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Bab III 

Tinjauan Pustaka 

 

3.1. Rujukan Pustaka 

Tiny Machine Learning (TinyML) adalah implementasi machine learning pada 

perangkat berdaya rendah, seperti mikrokontroler, untuk menjalankan model yang 

mampu melakukan inferensi secara lokal tanpa memerlukan koneksi cloud. Salah 

satu pustaka yang digunakan adalah TensorFlow Lite for Microcontrollers, yang 

memungkinkan penggunaan model machine learning dengan konsumsi daya di 

bawah 1 mW, sesuai dengan karakteristik perangkat seperti Arduino Nano 33 BLE 

Sense. 

Dalam buku TinyML: Machine Learning with TensorFlow Lite on Arduino 

and Ultra-low-power Microcontrollers, Pete Warden dan Daniel Situnayake 

menjelaskan proses pengembangan model machine learning, mulai dari 

pengumpulan data, desain arsitektur model, pelatihan, hingga deployment ke 

perangkat embedded. Fokus utamanya adalah pada optimasi sumber daya untuk 

mengakomodasi keterbatasan perangkat mikrokontroler. 

3.2. Penjelasan Istilah Asing 

1. TinyML: Istilah untuk teknologi machine learning yang diterapkan pada 

perangkat mikro dengan daya dan kapasitas terbatas. 

2. TensorFlow Lite for Microcontrollers: Versi TensorFlow yang 

dioptimalkan untuk perangkat berdaya rendah dan kapasitas memori kecil. 

3. Inferensi: Proses menjalankan model machine learning untuk 

menghasilkan prediksi atau pengenalan berdasarkan input data. 

4. Deployment: Tahap penerapan model ke perangkat target, seperti 

mikrokontroler, agar model dapat digunakan secara langsung. 

5. Arduino Nano 33 BLE Sense: Mikrokontroler yang dilengkapi dengan 

berbagai sensor dan mendukung konektivitas Bluetooth Low Energy (BLE). 
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3.3. Arduino Nano 33 Sense BLE 

Arduino Nano 33 Sense adalah salah satu papan mikrokontroler dari 

keluarga Arduino yang dirancang khusus untuk aplikasi berbasis sensor dan 

pengolahan data IoT (Internet of Things). Papan ini dilengkapi dengan berbagai 

sensor bawaan dan menggunakan mikrokontroler berdaya rendah untuk 

memungkinkan penggunaan di perangkat kecil dan portabel. 

 

Gambar 3. 1 Arduino Nano 33 Sense BLE 

Gambar 3.1 adalah pinout diagram dari Arduino Nano 33 BLE yang 

menggunakan nRF52840 sebagai mikrokontrolernya. Diagram ini menunjukkan 

semua pin yang tersedia, termasuk fungsinya dalam berbagai mode operasi seperti 

GPIO, SPI, I2C, dan UART. Berikut adalah penjelasan bagian-bagiannya: 

1. Mikrokontroler 

nRF52840 adalah mikrokontroler berbasis ARM Cortex-M4F yang 

mendukung komunikasi nirkabel seperti Bluetooth Low Energy (BLE). 

2. Power Pins 

+3V3 OUT → Output tegangan 3.3V. 

+5V OUT → Output tegangan 5V (tergantung sumber daya). 

VIN IN → Tegangan input eksternal. 

GND → Ground (0V). 
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RESET → Pin untuk mereset mikrokontroler. 

3. Analog Pins (A0 - A7) 

Digunakan untuk membaca sinyal analog (0-3.3V). 

Mapped ke port P0.04 - P0.03 dari nRF52840. 

4. Digital Pins (D0 - D13) 

Digunakan untuk input/output digital. 

Beberapa pin mendukung PWM (ditandai dengan ~). 

Contohnya: 

D13 (P0.13) → Terhubung ke LED_BUILTIN. 

D12 - D2 → Dapat digunakan untuk GPIO atau fungsi lainnya. 

5. SPI Pins 

SCK (P0.13) → Serial Clock. 

CIPO (P1.08) → Controller In Peripheral Out (MISO). 

COPI (P1.02) → Controller Out Peripheral In (MOSI). 

6. I2C Pins 

SDA (P0.20) → Data line. 

SCL (P0.19) → Clock line. 

7. UART Pins (Serial Communication) 

D1/RX (P1.10) → Menerima data serial. 

D0/TX (P1.03) → Mengirim data serial. 

8. LED Indicators 

BUILT_IN LED (P0.13) → LED internal yang dapat dikendalikan dengan 

kode. 

LED_PWR (P1.09) → Menunjukkan bahwa board mendapatkan daya. 



11 

 

Spesifikasi utama Arduino Nano 33 BLE: 

1. Mikrokontroler: Arduino Nano 33 Sense menggunakan Nordic nRF52840, 

sebuah mikrokontroler ARM Cortex-M4 32-bit yang memiliki fitur 

Bluetooth Low Energy (BLE). 

2. Sensor Bawaan: Papan ini dilengkapi dengan berbagai sensor bawaan, 

termasuk: 

a. IMU (Inertial Measurement Unit): Sensor 9-axis untuk mendeteksi 

akselerasi, rotasi, dan medan magnet. 

b. Sensor Suhu dan Kelembaban: Untuk memantau kondisi 

lingkungan. 

c. Sensor Cahaya: Mengukur intensitas cahaya. 

d. Microphone: Menggunakan sensor suara untuk aplikasi pemrosesan 

audio. 

e. Gesture Sensor: Untuk mendeteksi gerakan seperti sapuan tangan. 

3. Konektivitas:  Bluetooth Low Energy (BLE) untuk komunikasi data secara 

nirkabel. 

4. Konsumsi Daya Rendah: Dirancang untuk proyek yang memerlukan 

efisiensi energi, sehingga cocok untuk perangkat bertenaga baterai. 

5. Ukuran: Kompak, dengan form factor yang serupa dengan Arduino Nano, 

mempermudah integrasi pada proyek yang sudah menggunakan papan 

Nano. 

3.4. Machine Learning 

Machine Learning (ML) adalah cabang dari kecerdasan buatan (Artificial 

Intelligence, AI) yang berfokus pada pengembangan sistem komputer yang dapat 

belajar dari data dan meningkatkan kinerjanya secara otomatis tanpa harus 

diprogram secara eksplisit. ML menggunakan algoritma untuk menganalisis data, 

mengenali pola, dan membuat prediksi atau keputusan berdasarkan data tersebut. 

Gambar 3.2 menunjukkan jenis-jenis Machine Learning. 
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Gambar 3. 2 Machine Learning 

Cara Kerja Machine Learning: 

1. Data Input: Data dikumpulkan dan disiapkan, mencakup data historis atau 

data yang relevan dengan masalah yang ingin diselesaikan. 

2. Pelatihan Model: Algoritma ML dilatih menggunakan data. Model belajar 

mengenali pola dalam data dan membuat hubungan antara input dan output. 

3. Prediksi/Inferensi: Setelah dilatih, model digunakan untuk memprediksi 

hasil berdasarkan data baru. 

4. Evaluasi dan Penyesuaian: Model dievaluasi untuk mengukur kinerjanya 

menggunakan metrik tertentu. Jika model kurang akurat, proses pelatihan 

dan penyempurnaan dilakukan kembali. 

Jenis Machine Learning: 

1. Supervised Learning:Model dilatih menggunakan data berlabel, di mana 

setiap input memiliki output yang diketahui. 

Contoh:  

a. Prediksi harga rumah berdasarkan luas dan lokasi. 

b. Klasifikasi email sebagai spam atau bukan. 

2. Unsupervised Learning: Model belajar dari data yang tidak memiliki label, 

dengan tujuan menemukan pola tersembunyi. 

Contoh: 
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a. Klasterisasi pelanggan berdasarkan kebiasaan belanja. 

b. Deteksi anomali dalam data jaringan. 

3. Reinforcement Learning: Model belajar melalui interaksi dengan 

lingkungan, mendapatkan umpan balik dalam bentuk reward atau 

punishment. 

Contoh: 

a. Robot yang belajar berjalan. 

b. Sistem bermain game (misalnya, AlphaGo). 

4. Semi-Supervised Learning: Kombinasi dari supervised dan unsupervised 

learning, menggunakan sebagian data berlabel dan sebagian tidak berlabel. 

3.5. Deep Learning 

Deep Learning adalah  salah satu cabang dari Machine Learning (Pembelajaran 

Mesin) yang menggunakan jaringan saraf tiruan (neural networks) dengan banyak 

lapisan (deep layers) untuk memodelkan dan memecahkan masalah kompleks. 

Deep Learning meniru cara kerja otak manusia dalam memproses informasi, 

khususnya dalam hal pengenalan pola dan pengambilan keputusan. Gambar 3.3 

menunjukkan arsitektur Deep Learning. 

 

Gambar 3. 3 Contoh Arsitektur Deep Learning 

Berikut penjelasan tentang Deep Learning: 

1. Konsep Dasar Deep Learning 
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Deep Learning menggunakan struktur jaringan saraf tiruan yang terdiri dari 

beberapa lapisan (layers). Setiap lapisan terdiri dari neuron (unit pemroses) yang 

menerima input, melakukan komputasi, dan menghasilkan output. Lapisan-lapisan 

ini dibagi menjadi: 

• Input Layer: Lapisan pertama yang menerima data mentah. 

• Hidden Layers: Lapisan tersembunyi yang melakukan transformasi 

matematis pada data. 

• Output Layer: Lapisan terakhir yang menghasilkan hasil akhir (prediksi atau 

klasifikasi). 

Semakin banyak lapisan tersembunyi, semakin "dalam" (deep) jaringan tersebut, 

sehingga disebut Deep Learning. 

2. Cara Kerja Deep Learning 

• Alur Kerja Deep Learning 

Pada bagian sebelumnya, kita telah menjelaskan sebuah skenario 

penggunaan deep learning untuk memprediksi kapan sebuah mesin pabrik 

kemungkinan akan mengalami kerusakan. Deep learning dapat menjadi 

solusi yang sangat efektif dalam mendeteksi anomali atau kegagalan mesin 

dengan menganalisis pola dari data historis yang tersedia. Namun, untuk 

membangun model yang akurat dan dapat diandalkan, diperlukan 

serangkaian langkah yang sistematis. 

 

Dalam bagian ini, kita akan membahas langkah-langkah yang diperlukan 

untuk mengembangkan model deep learning dari awal hingga dapat 

digunakan untuk inferensi dan evaluasi. Proses ini mencakup berbagai 

tahapan yang penting untuk memastikan bahwa model yang dihasilkan 

dapat bekerja dengan baik dalam kondisi nyata. 

 

Proses ini melibatkan langkah-langkah berikut: 

a. Menentukan tujuan 

b. Mengumpulkan dataset 

c. Merancang arsitektur model 
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d. Melatih model 

e. Mengonversi model 

f. Menjalankan inferensi 

g. Mengevaluasi dan memperbaiki model 

Langkah a sampai d adalah bagian penting dari Deep Learning yang 

menghasilkan suatu model. Langkah e sampai g adalah bagian yang membawa 

model untuk di upload hardware, hal ini merupakan inti dari Tiny Machine 

Learning. Setiap langkah ini memiliki peran krusial dalam membangun sistem 

prediksi berbasis deep learning yang andal. Mari kita bahas satu per satu: 

a. Menentukan Tujuan 

Ketika merancang algoritma, penting untuk menetapkan tujuan yang jelas 

sejak awal. Tanpa tujuan yang terdefinisi dengan baik, sulit untuk 

menentukan data yang dibutuhkan, metode yang akan digunakan, dan 

bagaimana cara mengevaluasi keberhasilan model. 

 Dalam Machine Learning, tujuan umumnya berkaitan dengan 

prediksi atau klasifikasi. Kita perlu menentukan apa yang ingin diprediksi 

agar dapat memilih dataset yang relevan serta arsitektur model yang tepat. 

Jika tujuan tidak didefinisikan dengan jelas, hasil yang diperoleh mungkin 

tidak sesuai dengan harapan. 

 Dalam contoh ini, kita ingin memprediksi apakah mesin pabrik akan 

mengalami kerusakan. Ini dapat dianggap sebagai masalah klasifikasi, yaitu 

tugas Machine Learning yang mengkategorikan data ke dalam beberapa 

kelompok yang telah ditentukan sebelumnya. 

Sebagai contoh, kita bisa membagi kondisi mesin menjadi dua kelas utama: 

• "Normal": Mesin beroperasi tanpa gangguan dan tidak menunjukkan 

tanda-tanda akan rusak. 

• "Abnormal": Mesin menunjukkan indikasi adanya masalah dan 

kemungkinan akan mengalami kegagalan dalam waktu dekat. 

Dengan demikian, tujuan kita adalah menciptakan model yang mampu 

mengklasifikasikan data sensor mesin ke dalam kategori "normal" atau 

"abnormal" dengan tingkat akurasi yang tinggi. 
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• Mengumpulkan Dataset 

Setelah menentukan tujuan model, langkah berikutnya adalah 

mengumpulkan dataset yang akan digunakan untuk melatih model deep 

learning. Data yang digunakan dalam pelatihan harus mencerminkan 

berbagai kondisi operasional mesin agar model dapat mengenali pola 

dengan baik. 

• Memilih Data yang Relevan 

Model deep learning memiliki kemampuan untuk menyaring informasi 

yang tidak relevan, tetapi lebih baik jika sejak awal kita hanya 

menggunakan data yang benar-benar berkontribusi terhadap prediksi yang 

akan dilakukan. 

Sebagai contoh, dalam skenario prediksi kegagalan mesin pabrik, ada 

banyak jenis data yang tersedia. Ini bisa mencakup suhu operasi, tingkat 

getaran, tekanan, kecepatan rotasi, atau bahkan faktor eksternal seperti 

kondisi cuaca atau jadwal pemeliharaan rutin. 

 Namun, tidak semua data tersebut relevan untuk tujuan kita. 

Misalnya, menu makanan di kantin pabrik kemungkinan besar tidak 

memiliki pengaruh terhadap kondisi mesin. Jika kita memasukkan data yang 

tidak relevan, model bisa saja belajar pola yang salah, misalnya 

menghubungkan kerusakan mesin dengan hari-hari tertentu ketika menu 

tertentu disajikan. Oleh karena itu, pemilihan fitur atau variabel yang akan 

digunakan dalam model harus dilakukan dengan hati-hati. Kita dapat 

mengandalkan kombinasi antara pemahaman domain (pengetahuan 

industri) dan teknik statistik untuk menentukan variabel yang benar-benar 

berkontribusi terhadap prediksi. Jika masih ragu, pendekatan eksperimental 

dapat dilakukan, misalnya dengan membandingkan dua model—satu 

dengan dataset lengkap dan satu lagi dengan dataset yang sudah difilter—

untuk melihat mana yang memberikan hasil terbaik. 

 Dalam skenario ini, kita memilih laju produksi, suhu, dan getaran 

sebagai fitur utama yang akan digunakan dalam pelatihan model. Setelah 

fitur ditentukan, langkah selanjutnya adalah mengumpulkan data dalam 

jumlah yang cukup agar model dapat belajar dengan baik. 
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• Mengumpulkan Data 

Salah satu tantangan utama dalam deep learning adalah menentukan jumlah 

data yang cukup untuk pelatihan. Jumlah data yang diperlukan tergantung 

pada berbagai faktor seperti: 

• Kompleksitas hubungan antara variabel dalam dataset 

• Tingkat kebisingan (noise) dalam data 

• Seberapa mudah model dapat membedakan antara kelas "normal" 

dan "abnormal" 

Secara umum, semakin banyak data yang dikumpulkan, semakin baik model 

dalam mengenali pola. Namun, data harus mencakup berbagai kondisi dan 

variasi agar model dapat bekerja dengan baik di berbagai situasi.

 Sebagai contoh, jika suhu mesin bervariasi antara musim panas dan 

musim dingin, maka dataset harus mencakup data dari kedua musim 

tersebut. Jika mesin dapat mengalami berbagai jenis kegagalan, kita harus 

memastikan bahwa semua jenis kegagalan tersebut terwakili dalam dataset. 

Data dalam pabrik biasanya direkam dalam bentuk time series, yaitu 

serangkaian pengukuran yang dilakukan secara berkala. Contoh data yang 

bisa dikumpulkan adalah: 

• Suhu mesin dicatat setiap 1 menit 

• Laju produksi dicatat setiap 2 menit 

• Getaran dicatat setiap 10 detik 

Setelah data dikumpulkan, langkah selanjutnya adalah mengubahnya ke 

dalam format yang sesuai untuk model deep learning. 

• Pelatihan Model 

Pelatihan model adalah proses di mana model belajar menghasilkan 

output yang benar berdasarkan sekumpulan data masukan. Proses ini 

melibatkan pemberian data pelatihan ke dalam model dan menyesuaikan 

parameter model (berupa bobot dan bias) secara bertahap agar 

prediksinya semakin akurat. 

 Model deep learning terdiri dari jaringan neuron buatan yang 

direpresentasikan dalam bentuk array angka yang tersusun dalam 
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lapisan-lapisan. Bobot awal dalam model biasanya diatur secara acak, 

sedangkan bias dimulai dari nol. Ketika data dimasukkan ke dalam 

model, ia mengalami berbagai transformasi matematis berdasarkan 

bobot dan bias di setiap lapisan untuk menghasilkan output. Proses 

pelatihan menggunakan algoritma backpropagation, yang secara 

bertahap memperbaiki bobot dan bias berdasarkan perbedaan antara 

output model dan output yang diharapkan. Pelatihan berlangsung 

selama beberapa epoch hingga model mencapai performa optimal atau 

tidak mengalami peningkatan lebih lanjut. 

Kinerja model dinilai menggunakan loss dan accuracy: 

• Loss mengukur seberapa jauh prediksi model dari nilai yang benar. 

• Accuracy mengukur persentase prediksi yang benar. 

Jika model terlalu sederhana dan tidak dapat mengenali pola dalam data, 

ini disebut underfitting. Sebaliknya, jika model terlalu menghafal data 

pelatihan tanpa dapat mengenali pola baru, ini disebut overfitting. 

Untuk mencegah overfitting, beberapa teknik digunakan: 

• Regularisasi (L1/L2, dropout): Membatasi kompleksitas model 

agar tidak menghafal data pelatihan secara berlebihan. 

• Augmentasi Data: Membuat variasi data baru dari data asli untuk 

meningkatkan keberagaman input. 

• Meningkatkan Ukuran Dataset: Semakin banyak data yang 

digunakan, semakin baik model dalam memahami pola. 

Dataset biasanya dibagi menjadi tiga bagian: 

• Training set (60%): Digunakan untuk melatih model. 

• Validation set (20%): Digunakan untuk mengevaluasi kinerja 

model selama pelatihan. 

• Test set (20%): Digunakan setelah pelatihan selesai untuk 

memastikan model tidak overfit terhadap data pelatihan dan 

validasi. 
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3. Arsitektur Deep Learning 

Beberapa arsitektur Deep Learning yang populer meliputi: 

• Convolutional Neural Networks (CNNs): Digunakan untuk pemrosesan 

gambar dan video. CNNs menggunakan lapisan konvolusi untuk 

mengekstrak fitur dari data spasial. 

• Recurrent Neural Networks (RNNs): Dirancang untuk data berurutan 

seperti teks atau time series. RNNs memiliki memori internal untuk 

mengingat informasi dari langkah sebelumnya. 

• Transformers: Arsitektur yang digunakan dalam pemrosesan bahasa alami 

(NLP) seperti model BERT dan GPT. Transformers menggunakan 

mekanisme attention untuk memproses data secara paralel. 

• Autoencoders: Digunakan untuk kompresi data dan reduksi dimensi. 

• Generative Adversarial Networks (GANs): Dua jaringan (generator dan 

discriminator) bekerja bersama untuk menghasilkan data baru yang mirip 

dengan data asli. 

4. Keunggulan Deep Learning 

Berikut adalah beberapa keunggulan Deep Learning: 

• Kemampuan Menangani Data Kompleks: Deep Learning dapat memproses 

data yang tidak terstruktur seperti gambar, teks, dan suara. 

• Otomatisasi Fitur: Tidak memerlukan ekstraksi fitur manual karena jaringan 

dapat mempelajari fitur secara otomatis. 

• Akurasi Tinggi: Dalam banyak kasus, Deep Learning mencapai akurasi 

yang lebih tinggi dibandingkan metode tradisional. 

5. Tantangan Deep Learning 

Berikut adalah beberapa tantangan Deep Learning: 

• Kebutuhan Data Besar: Deep Learning memerlukan dataset yang besar 

untuk melatih model secara efektif. 

• Sumber Daya Komputasi: Proses pelatihan membutuhkan GPU atau TPU 

yang mahal dan waktu yang lama. 



20 

 

• Overfitting: Model mungkin terlalu spesifik pada data pelatihan dan gagal 

generalisasi ke data baru. 

• Interpretabilitas: Model Deep Learning sering dianggap sebagai "black box" 

karena sulit untuk memahami bagaimana keputusan diambil. 

6. Aplikasi Deep Learning 

Deep Learning digunakan dalam berbagai bidang, seperti: 

• Computer Vision: Pengenalan wajah, deteksi objek, dan mobil otonom. 

• Natural Language Processing (NLP): Terjemahan mesin, chatbot, dan 

analisis sentimen. 

• Speech Recognition: Asisten virtual seperti Siri dan Alexa. 

• Kesehatan: Diagnosis medis dan analisis gambar medis. 

• Permainan: AI dalam game seperti AlphaGo. 

7. Perkembangan Terkini 

Deep Learning terus berkembang dengan inovasi seperti: 

• Reinforcement Learning: Kombinasi Deep Learning dengan pembelajaran 

penguatan untuk aplikasi seperti robotika. 

• Transfer Learning: Menggunakan model yang sudah dilatih untuk tugas 

baru dengan sedikit data. 

• Explainable AI (XAI): Upaya untuk membuat model Deep Learning lebih 

transparan dan dapat diinterpretasikan. 

Dengan kemampuannya yang luar biasa dalam memproses data kompleks, Deep 

Learning telah menjadi fondasi bagi banyak kemajuan dalam kecerdasan buatan 

(AI) dan terus membuka peluang baru di berbagai industri. 

3.6. TensorFlow Lite 

TensorFlow Lite adalah versi ringan (lightweight) dari TensorFlow, sebuah 

framework populer untuk Machine Learning dan deep learning yang dikembangkan 

oleh Google. TensorFlow Lite dirancang khusus untuk perangkat mobile, embedded 

systems, dan perangkat IoT (Internet of Things) yang memiliki sumber daya 

terbatas, seperti memori, daya komputasi, dan baterai. Tujuannya adalah 
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memungkinkan penerapan model Machine Learning secara efisien di perangkat 

edge (perangkat lokal) tanpa bergantung pada cloud. 

Berikut penjelasan tentang TensorFlow Lite: 

1. Tujuan TensorFlow Lite 

• Optimasi untuk Perangkat Edge: TensorFlow Lite memungkinkan 

model Machine Learning berjalan di perangkat dengan sumber daya 

terbatas, seperti smartphone, mikrokontroler, dan perangkat IoT. 

• Efisiensi: Mengurangi ukuran model dan kebutuhan komputasi 

sehingga cocok untuk perangkat dengan daya dan memori terbatas. 

• Latensi Rendah: Memproses data secara lokal di perangkat, 

mengurangi ketergantungan pada koneksi internet dan 

meningkatkan kecepatan respons. 

• Privasi: Data tetap berada di perangkat lokal, meningkatkan 

keamanan dan privasi pengguna. 

2. Arsitektur TensorFlow Lite 

TensorFlow Lite terdiri dari beberapa komponen utama: 

• TensorFlow Lite Converter: Alat untuk mengonversi model 

TensorFlow standar (dalam format SavedModel atau Keras) ke 

format TensorFlow Lite (.tflite). Proses ini melibatkan optimasi 

seperti kuantisasi (quantization) dan pemangkasan (pruning) untuk 

mengurangi ukuran model. 

• TensorFlow Lite Interpreter: Mesin yang menjalankan model .tflite 

di perangkat target. Interpreter ini dirancang untuk efisiensi dan 

kompatibilitas dengan berbagai platform. 

• TensorFlow Lite Model: Model yang telah dioptimalkan dan 

dikonversi ke format .tflite. 

• Dukungan Hardware Accelerator: TensorFlow Lite mendukung 

akselerasi hardware seperti GPU, DSP (Digital Signal Processor), 

dan Neural Processing Units (NPU) untuk meningkatkan performa. 
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3. Fitur Utama TensorFlow Lite 

Berikut adalah beberapa Fitur utama TensorFlow Lite: 

• Kuantisasi (Quantization): Teknik untuk mengurangi ukuran model 

dan mempercepat inferensi dengan mengubah bobot dan aktivasi 

dari floating-point (32-bit) ke integer (8-bit). Ini mengurangi 

kebutuhan memori dan daya komputasi. 

• Pemangkasan (Pruning): Menghilangkan bobot yang tidak penting 

dari model untuk mengurangi ukuran dan kompleksitas. 

• Selective Operator Kernels: TensorFlow Lite hanya menyertakan 

operator yang diperlukan untuk model tertentu, mengurangi ukuran 

biner (binary size). 

• Dukungan Multi-Platform: TensorFlow Lite mendukung Android, 

iOS, Linux, dan mikrokontroler (melalui TensorFlow Lite for 

Microcontrollers). 

• Pre-Trained Models: Menyediakan model pra-latih (pre-trained) 

yang siap digunakan untuk tugas seperti klasifikasi gambar, deteksi 

objek, dan NLP. 

4. Workflow Penggunaan TensorFlow Lite 

Berikut adalah Workflow penggunaan TensorFlow Lite: 

• Pelatihan Model: Model dilatih menggunakan TensorFlow atau 

Keras di lingkungan yang mendukung (seperti PC atau cloud). 

• Konversi Model: Model diubah ke format TensorFlow Lite 

menggunakan TensorFlow Lite Converter. Proses ini melibatkan 

optimasi seperti kuantisasi. 

• Deploy ke Perangkat: Model .tflite di-deploy ke perangkat target 

(smartphone, mikrokontroler, dan lain lain). 

• Inferensi: Model dijalankan di perangkat menggunakan TensorFlow 

Lite Interpreter. 

5. Aplikasi TensorFlow Lite 

• Mobile Applications: Aplikasi seperti pengenalan gambar, 

terjemahan teks, dan asisten virtual di smartphone. 
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• IoT Devices: Perangkat pintar seperti kamera keamanan, sensor 

lingkungan, dan perangkat wearables. 

• Mikrokontroler:TensorFlowLiteforMicrocontrollers 

memungkinkan model ML berjalan di perangkat dengan sumber 

daya sangat terbatas, seperti Arduino dan ESP32. 

6. Keunggulan TensorFlow Lite 

• Ringan dan Cepat: Dirancang untuk performa tinggi dengan sumber 

daya minimal. 

• Fleksibel: Mendukung berbagai jenis model dan tugas Machine 

Learning. 

• Kompatibilitas Luas: Dapat diintegrasikan dengan Android, iOS, 

dan sistem embedded. 

• Dukungan Komunitas: TensorFlow Lite didukung oleh komunitas 

besar dan dokumentasi yang lengkap. 

7. Contoh Penggunaan TensorFlow Lite 

• Pengenalan Gambar: Aplikasi yang mengidentifikasi objek dalam 

gambar menggunakan model CNN. 

• Pemrosesan Bahasa Alami (NLP): Aplikasi chat atau terjemahan 

teks di perangkat mobile. 

• Deteksi Suara: Sistem perintah suara di perangkat IoT. 

• Kesehatan: Aplikasi yang menganalisis data sensor untuk memantau 

kesehatan pengguna. 

8. Cara Penerapan TensorFlow Lite 

Saat ini, library Arduino_TensorFlowLite sudah tidak tersedia melalui 

Library Manager di Arduino IDE. Hal ini dikarenakan permintaan dari 

pengelola TensorFlow Lite Micro untuk menghapusnya dari daftar Library 

Manager. Oleh karena itu, pemasangan library ini harus dilakukan secara 

manual. 

Berikut adalah langkah-langkah untuk menginstal library TensorFlow Lite 

secara manual di Arduino IDE: 
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Langkah 1: Unduh Library dari GitHub 

• Buka halaman resmi repository TensorFlow Lite Micro untuk 

Arduino: 

• https://github.com/tensorflow/tflite-micro-arduino-examples 

• Klik tombol "Code" dan pilih "Download ZIP" untuk mengunduh 

seluruh repository sebagai file ZIP. 

Langkah 2: Instal Library di Arduino IDE 

Buka Arduino IDE. 

• Navigasikan ke menu Sketch > Include Library > Add .ZIP 

Library.... 

• Pilih file ZIP yang telah diunduh sebelumnya dan klik "Open". 

• Tunggu hingga proses instalasi selesai. 

Langkah 3: Verifikasi Instalasi 

Setelah instalasi, Anda dapat memverifikasi bahwa library telah terpasang 

dengan membuka menu Sketch > Include Library dan mencari 

Arduino_TensorFlowLite dalam daftar library yang tersedia. 

Alternatif: Menggunakan Git untuk Clone Repository 

Jika Anda lebih nyaman menggunakan Git, Anda dapat meng-clone 

repository langsung ke folder library Arduino Anda: 

• Buka terminal atau command prompt. 

• Navigasikan ke folder library Arduino Anda. Lokasi default 

biasanya: 

Windows: C:\Users\<NamaPengguna>\Documents\Arduino\libraries 

macOS/Linux: ~/Documents/Arduino/libraries 

• Jalankan perintah berikut: 

git clone https://github.com/tensorflow/tflite-micro-arduino-examples 

Arduino_TensorFlowLite 

• Setelah proses clone selesai, library akan tersedia di Arduino IDE. 
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9. Perkembangan Terkini 

• TensorFlow Lite for Microcontrollers: Versi yang dirancang untuk 

perangkat dengan sumber daya sangat terbatas, seperti 

mikrokontroler. 

• Model Garden: Koleksi model pra-latih yang siap digunakan untuk 

berbagai tugas. 

• Dukungan Hardware Terbaru: Integrasi dengan hardware 

accelerator seperti Coral Edge TPU dan ARM NPU. 

Dengan TensorFlow Lite, pengembang dapat membawa kekuatan Machine 

Learning ke perangkat edge, memungkinkan aplikasi yang lebih cepat, lebih aman, 

dan lebih efisien. 

3.7. Tiny Machine Learning (TinyML) 

Buku ini bertujuan untuk membantu pengembang dengan pengalaman dasar 

dalam menggunakan terminal dan editor kode agar dapat mulai membangun proyek 

yang menjalankan Machine Learning (ML) pada perangkat embedded. Dengan 

semakin berkembangnya teknologi, kini ML tidak hanya dapat dijalankan di 

komputer atau server berkekuatan tinggi, tetapi juga pada perangkat kecil dengan 

daya rendah. 

Ketika penulis bergabung dengan Google pada tahun 2014, ia menemukan 

banyak proyek internal yang menarik. Salah satu yang paling menonjol adalah 

pekerjaan yang dilakukan oleh tim "OK Google". Mereka berhasil menjalankan 

jaringan neural hanya sebesar 14KB pada prosesor sinyal digital (DSP) yang 

terdapat di sebagian besar ponsel Android. DSP ini digunakan untuk terus 

mendengarkan kata pemicu "OK Google" tanpa harus mengaktifkan CPU utama, 

sehingga dapat menghemat daya baterai. 

Keberhasilan ini menunjukkan bahwa jaringan neural dapat berjalan pada 

perangkat dengan sumber daya terbatas. Biasanya, menjalankan model ML 

membutuhkan daya yang besar, tetapi dalam kasus ini, konsumsi daya dapat ditekan 

hingga hanya beberapa miliwatt (mW). Dari sinilah muncul gagasan tentang 

TinyML, yaitu Machine Learning yang berjalan pada perangkat dengan konsumsi 
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daya di bawah 1mW. Dengan konsumsi daya sekecil ini, perangkat dapat beroperasi 

selama bertahun-tahun hanya dengan baterai koin, tanpa memerlukan intervensi 

manusia. 

Seiring berkembangnya teknologi, muncul berbagai platform seperti 

Raspberry Pi dan NVIDIA Jetson. Meskipun keduanya merupakan perangkat luar 

biasa dalam menjalankan ML, namun konsumsi daya mereka jauh lebih tinggi 

dibandingkan TinyML. Bahkan, Raspberry Pi yang paling kecil sekalipun masih 

membutuhkan daya ratusan miliwatt, sementara Jetson bisa mengonsumsi hingga 

12 watt saat beroperasi penuh. Hal ini membuat perangkat-perangkat tersebut sulit 

digunakan untuk aplikasi yang membutuhkan konsumsi daya ultra-rendah dan tidak 

memiliki sumber daya listrik yang stabil. 

Sebaliknya, mikrokontroler 32-bit menjadi pilihan yang lebih cocok untuk 

TinyML. Mikrokontroler ini jauh lebih murah, bahkan bisa didapatkan dengan 

harga di bawah $1 per unit, sehingga memungkinkan produsen untuk menggantikan 

sistem kontrol analog atau elektromekanis dengan alternatif berbasis perangkat 

lunak. Dengan harga yang terjangkau, teknologi ini dapat diterapkan dalam 

berbagai bidang, seperti sensor cerdas di lingkungan bangunan, konservasi satwa 

liar, atau sistem pemantauan industri. 

a. Perangkat Embedded 

TinyML bergantung pada dunia perangkat embedded, yang dahulu dianggap 

sulit untuk diakses oleh pengembang umum. Sebelumnya, perangkat embedded 

menggunakan arsitektur 8-bit dengan alat pengembangan yang tertutup dan sulit 

dipahami. Namun, dengan kehadiran Arduino, pengembangan perangkat embedded 

menjadi lebih mudah karena adanya antarmuka yang ramah pengguna dan 

ekosistem yang lebih terbuka. 

Saat ini, sebagian besar mikrokontroler menggunakan CPU Arm Cortex-M, 

yang telah menjadi standar dalam dunia embedded. Meskipun perangkat ini 

memiliki keterbatasan, seperti kapasitas RAM dan penyimpanan yang kecil serta 

kecepatan pemrosesan yang rendah, namun keunggulannya adalah konsumsi daya 

yang sangat efisien. Tidak seperti komputer atau ponsel, perangkat embedded tidak 
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memiliki sistem operasi Linux yang lengkap karena keterbatasan sumber daya, 

sehingga pengembang harus bekerja dengan sistem yang lebih ringan. 

Selain itu, banyak sistem embedded menghindari penggunaan alokasi 

memori dinamis seperti malloc() atau new karena sistem ini dirancang agar dapat 

berjalan dalam waktu yang lama dengan tingkat keandalan tinggi. Fragmentasi 

memori dapat menjadi masalah besar dalam sistem yang harus berjalan tanpa 

gangguan selama bertahun-tahun. Oleh karena itu, pengembangan perangkat 

embedded memerlukan pendekatan yang berbeda dibandingkan dengan 

pemrograman pada komputer atau ponsel. 

Meskipun terdapat tantangan dalam pengembangan perangkat embedded, 

ada juga banyak keuntungan. Salah satu keunggulannya adalah sederhananya 

model pemrosesan, karena perangkat ini tidak memiliki proses lain yang 

mengganggu jalannya program utama. Selain itu, dengan arsitektur prosesor yang 

lebih sederhana dan tanpa prediksi cabang atau pipelining instruksi yang kompleks, 

optimasi manual dalam bahasa assembly menjadi lebih mudah dilakukan 

dibandingkan pada CPU yang lebih canggih. 

b. Perkembangan Cepat 

TinyML merupakan bidang yang masih sangat baru dan berkembang 

dengan cepat. Baik dari sisi perangkat keras, perangkat lunak, maupun penelitian, 

semuanya berubah dengan sangat dinamis. Buku ini ditulis berdasarkan kondisi 

teknologi pada tahun 2019, namun dalam dunia TinyML, perubahan bisa terjadi 

dalam hitungan bulan. Oleh karena itu, beberapa bagian dari buku ini mungkin akan 

terasa usang dalam waktu singkat. 

Namun, penulis berusaha untuk memberikan panduan dengan 

menggunakan platform yang diperkirakan akan tetap tersedia dalam jangka 

panjang. Selain itu, framework TensorFlow Lite yang digunakan dalam buku ini 

memiliki API yang cukup stabil dan terus mendapatkan dukungan dari komunitas 

pengembang. Untuk mengikuti perkembangan terbaru, disediakan pula tautan ke 

sumber daya online yang selalu diperbarui, termasuk kode contoh dan dokumentasi 

terbaru. 
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Lebih dari sekadar membahas teknologi spesifik, buku ini juga berfokus 

pada pemahaman konsep fundamental, seperti teknik debugging, pembuatan 

model, dan dasar-dasar deep learning. Dengan memahami konsep-konsep ini, 

pembaca dapat tetap relevan dalam industri, meskipun perangkat keras dan 

perangkat lunak yang digunakan terus berkembang. Tiny Machine Learning 

(TinyML) adalah cabang dari pembelajaran mesin (Machine Learning) yang fokus 

pada implementasi model pembelajaran mesin di perangkat kecil dengan daya 

sangat rendah, seperti mikrocontroller. TinyML memungkinkan perangkat tersebut 

untuk melakukan inferensi atau prediksi secara lokal tanpa memerlukan 

konektivitas internet atau cloud. Salah satu karakteristik utama dari TinyML adalah 

kemampuannya untuk beroperasi dengan konsumsi daya di bawah 1 mW, 

menjadikannya sangat efisien untuk aplikasi yang membutuhkan masa pakai baterai 

yang lama atau bahkan menggunakan sumber daya energi alternatif seperti 

pengumpulan energi (energy harvesting). 

TinyML memanfaatkan berbagai teknik optimasi seperti quantization, yang 

mengurangi ukuran model dengan menurunkan presisi numerik, dan pruning, yang 

menghilangkan neuron-neuron yang tidak penting dari jaringan saraf. Kombinasi 

teknik ini memastikan bahwa model deep learning yang kompleks dapat berjalan 

pada perangkat keras dengan memori yang sangat terbatas, sering kali hanya 

memiliki puluhan hingga ratusan kilobyte RAM. Contoh aplikasi TinyML meliputi 

deteksi suara untuk wake-word seperti “OK Google,” pengenalan gerakan 

menggunakan akselerometer, dan deteksi objek menggunakan kamera kecil. 

Dengan mengolah data secara lokal, TinyML tidak hanya mengurangi konsumsi 

daya tetapi juga meningkatkan privasi data, menjadikannya ideal untuk aplikasi IoT 

dan perangkat yang tersebar luas dalam skala besar. 

• Konversi Model 

Dalam buku ini, kita menggunakan TensorFlow untuk membangun dan melatih 

model. Model TensorFlow pada dasarnya adalah seperangkat instruksi yang 

memberi tahu interpreter bagaimana cara mengubah data untuk menghasilkan 

output tertentu. Saat ingin menggunakan model, kita cukup memuatnya ke dalam 

memori dan menjalankannya dengan interpreter TensorFlow. 
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Gambar 3.3 Kode untuk proses konversi 

 Namun, interpreter TensorFlow dirancang untuk berjalan di komputer 

desktop dan server yang memiliki daya pemrosesan tinggi. Karena kita ingin 

menjalankan model di mikrocontroller kecil dengan daya terbatas, kita memerlukan 

interpreter yang lebih ringan dan efisien. 

 TensorFlow menyediakan alat bernama TensorFlow Lite, yang 

memungkinkan model dapat berjalan pada perangkat kecil dan berdaya rendah. 

Dengan menggunakan TensorFlow Lite, kita dapat menjalankan model 

pembelajaran mesin tanpa harus mengandalkan perangkat keras yang kuat seperti 

komputer atau server. 

 Sebelum TensorFlow Lite dapat menjalankan model, model tersebut harus 

dikonversi ke dalam format khusus yang lebih ringan. Proses ini dilakukan 

menggunakan alat bernama TensorFlow Lite Converter. Konversi ini penting 

karena mengoptimalkan ukuran dan kecepatan model agar lebih sesuai untuk 

perangkat dengan sumber daya terbatas. 

 Selain mengonversi format model, TensorFlow Lite Converter juga dapat 

menerapkan berbagai teknik optimasi. Optimasi ini bertujuan untuk mengurangi 

ukuran model dan meningkatkan kecepatan eksekusi tanpa mengorbankan 

performa prediksi yang dihasilkan oleh model. 
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• Menjalankan Inferensi 

Setelah model dikonversi ke dalam format TensorFlow Lite, model siap untuk 

diterapkan ke perangkat target. Untuk menjalankannya, kita akan menggunakan 

pustaka TensorFlow Lite for Microcontrollers yang ditulis dalam bahasa 

pemrograman C++. 

 Saat model diterapkan ke dalam sistem, kita perlu memastikan bahwa data 

masukan yang diberikan ke model memiliki format yang sama dengan data yang 

digunakan saat pelatihan. Ini penting agar model dapat memberikan hasil prediksi 

yang akurat. 

 Hasil yang dihasilkan oleh model berupa skor probabilitas untuk setiap 

kelas yang telah ditentukan sebelumnya. Sebagai contoh, dalam kasus model 

klasifikasi, skor ini menunjukkan kemungkinan apakah suatu kondisi termasuk 

"normal" atau "abnormal." 

Misalnya, jika model menghasilkan skor berikut: 

Skor Normal Skor Abnormal  

0.1 0.9 Model yakin terjadi keadaan abnormal 

0.7 0.3 Model yakin keadaan normal 

0.49 0.51 Hasil tidak meyakinkan 

Dari tabel di atas, kita dapat melihat bahwa semakin besar selisih antara skor kelas 

yang dihasilkan, semakin tinggi tingkat kepastian model terhadap prediksinya. 

• Menangani Noise dan Glitch dalam Data 

Dalam banyak kasus, model pembelajaran mesin hanya mempertimbangkan 

snapshot data dalam periode waktu tertentu. Sebagai contoh, dalam sistem 

pemantauan mesin industri, model dapat mengevaluasi kondisi mesin berdasarkan 

data sensor dalam 10 detik terakhir. 

 Namun, data dunia nyata sering kali tidak bersih dan bisa mengandung 

gangguan atau glitch. Hal ini dapat menyebabkan model membuat prediksi yang 

keliru. Sebagai contoh, lonjakan suhu akibat kesalahan sensor dapat menyebabkan 

model mengklasifikasikan kondisi mesin sebagai abnormal, padahal kondisi 

sebenarnya masih normal. 
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Untuk menghindari masalah ini, kita bisa menerapkan teknik penyaringan data. 

Salah satu metode yang efektif adalah dengan menghitung rata-rata dari beberapa 

hasil inferensi sebelumnya. Dengan cara ini, keputusan tidak akan terlalu 

dipengaruhi oleh gangguan sementara dan lebih mencerminkan kondisi yang 

sebenarnya. 

 Sebagai contoh, kita dapat menjalankan model setiap 10 detik dan 

mengambil rata-rata hasil inferensi selama satu menit terakhir. Jika kondisi 

abnormal terdeteksi secara konsisten selama periode tersebut, maka sistem dapat 

mengambil tindakan, seperti mematikan mesin atau memberi peringatan kepada tim 

pemeliharaan. 

• Evaluasi dan Troubleshooting Model 

 Setelah model diterapkan ke dalam perangkat target, kita perlu 

mengevaluasi apakah model benar-benar bekerja dengan baik dalam kondisi nyata. 

Meskipun model dapat menunjukkan performa yang baik pada data uji, hasilnya di 

dunia nyata bisa berbeda. 

 Ada beberapa alasan mengapa performa model di lapangan bisa menurun. 

Salah satunya adalah karena data pelatihan tidak sepenuhnya mencerminkan 

kondisi operasional sebenarnya. Sebagai contoh, jika model dilatih menggunakan 

data suhu dari lingkungan yang lebih hangat, sedangkan perangkat digunakan di 

lokasi dengan suhu lebih dingin, maka model mungkin tidak berfungsi seakurat 

yang diharapkan. 

 Selain itu, masalah overfitting juga bisa menjadi penyebab performa yang 

buruk. Overfitting terjadi ketika model terlalu menghafal pola dari data pelatihan 

dan kurang mampu beradaptasi dengan data baru. Jika model terlalu spesifik 

terhadap dataset pelatihan, ia mungkin gagal memberikan prediksi yang akurat 

ketika digunakan dalam skenario yang berbeda. 

• Langkah-Langkah Troubleshooting 

Jika model tidak bekerja sesuai harapan, ada beberapa langkah yang bisa kita 

lakukan untuk mencari penyebab masalah dan memperbaikinya: 

i.Periksa perangkat keras 

• Pastikan sensor berfungsi dengan baik dan tidak mengalami gangguan. 
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• Periksa apakah ada noise atau interferensi yang dapat memengaruhi kualitas 

data. 

2. Bandingkan data dunia nyata dengan data pelatihan 

• Ambil sampel data dari perangkat di lapangan dan bandingkan dengan 

dataset pelatihan. 

• Pastikan tidak ada perbedaan signifikan dalam karakteristik data yang 

digunakan. 

3. Mengatasi Overfitting 

• Jika overfitting terdeteksi, latih ulang model menggunakan lebih banyak 

data yang lebih bervariasi. 

• Terapkan teknik regularisasi untuk mengurangi kompleksitas model agar 

lebih mampu menangani data baru. 

• Gunakan augmentasi data untuk meningkatkan keragaman dalam dataset 

pelatihan. 

3.8. Internet of Things (IoT) 

Internet of Things (IoT) adalah konsep di mana berbagai perangkat fisik, seperti 

sensor, alat rumah tangga, kendaraan, dan mesin industri, dapat terhubung ke 

internet dan berkomunikasi satu sama lain. Dengan adanya IoT, perangkat dapat 

mengumpulkan, bertukar, dan menganalisis data secara otomatis. Hal ini 

memungkinkan sistem untuk bekerja lebih efisien, meningkatkan produktivitas, 

serta memberikan kenyamanan dan keamanan bagi penggunanya. 

 IoT berkembang pesat di berbagai sektor, termasuk rumah pintar (smart 

home), kota pintar (smart city), otomasi industri, kesehatan digital, dan masih 

banyak lagi. Keunggulan utama IoT adalah kemampuannya dalam mengoptimalkan 

proses, mengurangi keterlibatan manusia dalam tugas-tugas rutin, serta 

meningkatkan pengambilan keputusan berbasis data yang akurat dan real-time. 

 Dengan adanya teknologi IoT, berbagai perangkat dapat saling terhubung 

dan bekerja secara otomatis berdasarkan data yang dikumpulkan. Sebagai contoh, 

di sektor kesehatan, IoT memungkinkan pemantauan pasien secara real-time 

melalui sensor medis yang dapat mendeteksi tanda-tanda vital dan mengirimkan 

laporan langsung ke dokter. Dalam sektor industri, IoT dapat digunakan untuk 
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mendeteksi kerusakan mesin sebelum terjadi kegagalan total, sehingga dapat 

mengurangi downtime produksi. 

 

Gambar 3. 4 Internet of Things 

Gambar 3.4 menjelaskan bagaimana IoT bekerja, mulai dari tahap awal 

menghubungkan perangkat hingga menghasilkan manfaat bagi manusia. Proses ini 

terdiri dari enam tahap utama yang membentuk siklus IoT: 

 

1. Device Connection (Koneksi Perangkat) 

Tahap pertama dalam sistem IoT adalah menghubungkan perangkat ke jaringan 

internet. Perangkat yang digunakan dalam IoT biasanya memiliki kemampuan 

untuk terhubung melalui jaringan seperti Wi-Fi, Bluetooth, atau protokol 

komunikasi khusus IoT seperti LoRa dan Zigbee. 

 Selain itu, perangkat ini sering kali dilengkapi dengan kecerdasan tertanam 

(embedded intelligence) yang memungkinkan mereka untuk memproses data 

sebelum mengirimkannya ke sistem pusat. Contoh perangkat IoT meliputi sensor 

suhu, kamera pintar, smartwatches, dan mesin industri yang terkoneksi dengan 

cloud. 

 

 

 



34 

 

2. Data Sensing (Penginderaan Data) 

Setelah perangkat terhubung, tahap selanjutnya adalah pengumpulan data. IoT 

menggunakan berbagai sensor untuk menangkap informasi dari lingkungan sekitar. 

Sensor ini bisa berupa sensor suhu, kelembaban, tekanan, gerakan, dan sebagainya. 

 Setelah data dikumpulkan, informasi tersebut disimpan dalam sistem 

penyimpanan seperti database atau cloud. Data yang dikumpulkan ini akan menjadi 

dasar bagi proses analisis yang dilakukan di tahap selanjutnya. 

 

3. Communication (Komunikasi Data) 

Data yang telah dikumpulkan oleh sensor harus dikirim ke pusat pemrosesan untuk 

dianalisis. Proses ini melibatkan komunikasi data melalui jaringan yang telah 

dikonfigurasi sebelumnya. 

 Terdapat berbagai metode komunikasi yang digunakan dalam IoT, mulai 

dari jaringan kabel hingga teknologi nirkabel seperti 4G, 5G, dan satelit. Cloud 

computing dan edge computing juga memainkan peran penting dalam tahap ini, 

karena memungkinkan data untuk diproses lebih dekat ke sumbernya sehingga 

mengurangi latensi. 

 

4. Data Analytics (Analisis Data) 

Setelah data diterima oleh sistem pusat, langkah berikutnya adalah menganalisis 

data tersebut. Analisis dilakukan menggunakan teknologi seperti big data analytics, 

kecerdasan buatan (AI), dan komputasi kognitif. 

 Analisis ini bertujuan untuk menemukan pola, mendeteksi anomali, serta 

membuat prediksi yang dapat membantu dalam pengambilan keputusan. Proses 

analisis ini bisa dilakukan baik di cloud maupun di edge (lebih dekat dengan 

perangkat sumber data) untuk meningkatkan kecepatan dan efisiensi. 

 

5. Data Value (Nilai Data) 

Data yang telah dianalisis akan dikonversi menjadi informasi yang dapat 

dimanfaatkan. Tahap ini melibatkan penggunaan Application Programming 

Interface (API) dan proses otomatisasi untuk menghasilkan actionable intelligence 

atau wawasan yang dapat langsung digunakan. 
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Sebagai contoh, dalam sistem pemantauan lingkungan, jika sensor mendeteksi 

polusi udara yang tinggi, sistem dapat secara otomatis mengaktifkan alarm 

peringatan atau memberi tahu pihak yang berwenang untuk mengambil tindakan. 

 

6. Human Value (Manfaat bagi Manusia) 

Tahap terakhir dalam siklus IoT adalah memberikan manfaat nyata kepada manusia. 

Wawasan yang telah dihasilkan melalui analisis data dapat diterapkan dalam 

berbagai aplikasi pintar untuk meningkatkan efisiensi dan kualitas hidup. 

 Sebagai contoh, dalam industri manufaktur, jika sistem IoT mendeteksi 

potensi kerusakan pada suatu mesin, informasi ini dapat digunakan untuk 

menjadwalkan pemeliharaan sebelum terjadi kegagalan. Dalam sistem rumah 

pintar, IoT dapat digunakan untuk mengatur pencahayaan dan suhu ruangan secara 

otomatis berdasarkan kebiasaan penghuni. Manfaat ini tidak hanya dirasakan oleh 

individu, tetapi juga oleh bisnis dan pemerintah dalam meningkatkan efisiensi 

operasional serta mengurangi biaya. 

7. Kesimpulan 

Gambar ini menggambarkan siklus kerja IoT dari awal hingga memberikan manfaat 

bagi manusia. Proses ini dimulai dengan menghubungkan perangkat, menangkap 

data, mengirimkannya untuk dianalisis, hingga menghasilkan wawasan yang 

berharga dan dapat digunakan dalam berbagai aplikasi cerdas. 

 Dengan memahami alur kerja ini, kita bisa lebih efektif dalam menerapkan 

IoT untuk meningkatkan efisiensi, produktivitas, dan kenyamanan di berbagai 

bidang. IoT tidak hanya sebatas teknologi masa depan, tetapi sudah menjadi bagian 

dari kehidupan sehari-hari yang terus berkembang dan memberikan dampak positif 

bagi berbagai sektor. 

 Dalam konteks IoT, TinyML berperan penting sebagai teknologi pendukung 

untuk memproses data langsung di perangkat ujung (edge devices). Biasanya, 

perangkat IoT bergantung pada cloud untuk memproses data sensor, tetapi 

pendekatan ini membutuhkan konektivitas yang konstan dan memakan daya. 

Dengan menggunakan TinyML, perangkat IoT dapat memproses data sensor secara 

langsung, mengurangi ketergantungan pada cloud, meningkatkan efisiensi energi, 
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dan mempercepat waktu respons. Sebagai contoh, sensor gerakan yang dilengkapi 

dengan model TinyML dapat mengenali aktivitas tertentu dan hanya mengirimkan 

data penting ke cloud, sehingga menghemat bandwidth. Kombinasi IoT dan 

TinyML menciptakan solusi yang lebih cerdas, hemat daya, dan cocok untuk 

aplikasi berskala besar seperti pertanian pintar, pemantauan kesehatan jarak jauh, 

dan pelacakan logistik. 
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Bab IV 

Deskripsi Data Dan Hasil Praktik Kerja Lapangan 

 

4.1. Metode atau Prosedur yang Digunakan 

Gambar 4.1 menunjukkan prosedur yang digunakan untuk praktik kerja 

lapangan.  

 

Gambar 4. 1 Prosedur yang digunakan dalam Praktik Kerja Lapangan 

1. Studi Literatur 

Tahap pertama dalam proses ini adalah melakukan studi literatur, yang bertujuan 

untuk memahami konsep dasar Deep Learning, teknik yang digunakan, serta 

bagaimana model dapat diterapkan pada perangkat target. Studi ini mencakup 

eksplorasi berbagai sumber, seperti jurnal ilmiah, buku, artikel, dan penelitian 

terdahulu yang relevan. 

 Selain memahami teori Deep Learning, dalam tahap ini juga dilakukan 

analisis terhadap perangkat keras yang akan digunakan, seperti Arduino, Raspberry 

Pi, atau mikrokontroler lainnya. Hal ini penting karena keterbatasan daya 

komputasi dan memori pada perangkat kecil mempengaruhi bagaimana model 

harus dirancang dan dioptimalkan. 

 Studi literatur juga mencakup pemilihan algoritma dan metode yang paling 

sesuai untuk diterapkan dalam skenario tertentu. Misalnya, jika proyek berfokus 

pada pengolahan citra, maka arsitektur Convolutional Neural Network (CNN) 

mungkin menjadi pilihan terbaik. Sementara itu, jika proyek berkaitan dengan 

pemrosesan teks, maka model berbasis Recurrent Neural Network (RNN) atau 

Transformer dapat lebih cocok digunakan. 
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2. Perancangan Deep Learning 

Setelah memahami teori dan memilih pendekatan yang tepat, tahap selanjutnya 

adalah merancang model Deep Learning. Pada tahap ini, peneliti atau pengembang 

menentukan arsitektur model, jumlah lapisan neuron, fungsi aktivasi, algoritma 

optimasi, serta parameter lain yang akan digunakan selama pelatihan. 

 Proses pelatihan model biasanya dilakukan menggunakan dataset yang 

sesuai dengan permasalahan yang ingin diselesaikan. Dataset ini bisa berupa 

kumpulan gambar, teks, atau data sensor yang dikumpulkan dari perangkat. Model 

kemudian diuji dengan data pelatihan dan validasi untuk memastikan bahwa ia 

dapat mengenali pola dengan baik tanpa mengalami overfitting. 

 Selama tahap perancangan, berbagai teknik dapat diterapkan untuk 

meningkatkan performa model. Misalnya, penggunaan augmentasi data untuk 

meningkatkan keberagaman data pelatihan atau penerapan regularisasi untuk 

mengurangi risiko overfitting. 

3. Konversi Model ke Perangkat 

Setelah model Deep Learning berhasil dilatih di lingkungan komputasi yang lebih 

kuat (misalnya di komputer dengan GPU), model tersebut harus dikompresi dan 

dikonversi agar dapat berjalan di perangkat kecil dengan keterbatasan daya dan 

memori. 

 Proses konversi ini dilakukan menggunakan alat seperti TensorFlow Lite 

yang memungkinkan model menjadi lebih ringan dan tetap mempertahankan 

performa yang optimal. Dalam beberapa kasus, dilakukan juga kuantisasi model, 

yaitu teknik untuk mengurangi ukuran model dengan mengganti tipe data floating 

point menjadi integer tanpa mengorbankan akurasi secara signifikan. 

 Konversi ini sangat penting karena model Deep Learning yang tidak 

dioptimalkan dapat membebani perangkat dan menyebabkan kinerja yang lambat 

atau bahkan tidak dapat berjalan sama sekali. Oleh karena itu, diperlukan teknik 

khusus untuk memastikan model tetap akurat tetapi juga efisien dalam penggunaan 

sumber daya. 
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4. Inference (Inferensi) 

Tahap terakhir dalam proses ini adalah inferensi, yaitu ketika model yang telah 

dikonversi mulai dijalankan di perangkat target. Pada tahap ini, model menerima 

data input secara real-time, seperti gambar dari kamera atau data dari sensor, 

kemudian memprosesnya untuk menghasilkan prediksi. 

 Sebagai contoh, dalam sistem deteksi anomali mesin industri, sensor yang 

dipasang pada mesin akan mengirimkan data suhu dan getaran ke model yang telah 

dioptimalkan. Model kemudian menentukan apakah mesin dalam keadaan normal 

atau mengalami anomali berdasarkan pola data yang telah dipelajari sebelumnya. 

Jika terdeteksi anomali secara konsisten, sistem dapat mengirimkan peringatan 

untuk segera dilakukan pemeriksaan atau pemeliharaan. 

 Selain itu, dalam sistem pengenalan suara seperti wake-word detection, 

model yang telah dikonversi ke TensorFlow Lite akan mendeteksi perintah suara 

pengguna dan mengaktifkan perangkat sesuai dengan instruksi yang diberikan. 

Proses inferensi ini harus berlangsung cepat dan efisien, sehingga optimalisasi 

model pada tahap sebelumnya menjadi sangat penting. 

 Dalam banyak kasus, model inferensi juga menggunakan teknik tambahan 

seperti pengambilan keputusan berbasis rata-rata untuk menghindari kesalahan 

prediksi akibat gangguan sesaat dalam data. Sebagai contoh, jika model mendeteksi 

anomali selama satu detik tetapi kembali normal di detik berikutnya, sistem dapat 

mengabaikannya agar tidak terjadi false alarm. 

5. Kesimpulan 

Flowchart ini memberikan gambaran lengkap mengenai bagaimana model Deep 

Learning dikembangkan, dioptimalkan, dan diterapkan dalam perangkat kecil 

seperti mikrokontroler atau sistem IoT. 

 Dengan melalui tahapan studi literatur, pengembang memastikan bahwa 

pendekatan yang digunakan sesuai dengan kebutuhan proyek. Selanjutnya, pada 

tahap perancangan, model dikembangkan dan diuji untuk mencapai tingkat akurasi 

yang diharapkan. Kemudian, dalam tahap konversi, model dioptimalkan agar dapat 

berjalan dengan baik dalam keterbatasan sumber daya perangkat. Akhirnya, pada 

tahap inferensi, model diterapkan untuk melakukan prediksi secara real-time dan 

memberikan output yang dapat digunakan untuk pengambilan keputusan. 
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 Proses ini menunjukkan pentingnya kombinasi antara pengembangan model 

yang akurat dan optimasi model yang efisien agar sistem berbasis Deep Learning 

dapat berjalan dengan baik di perangkat yang memiliki keterbatasan daya 

komputasi. 

5.1. Perancangan Deep Learning 

Gambar 4.2 menunjukkan cuplikan kode Python yang berisi perintah 

instalasi dan impor pustaka yang umum digunakan dalam Machine Learning dan 

deep learning. 

 

Gambar 4. 2 Library 

Berikut penjelasan gambar 4.2: 

1. Instalasi Pustaka 

!pip install protobuf==3.20.3 

!pip install tensorflow==2.8.0rc0 

• protobuf==3.20.3: Menginstal versi tertentu dari pustaka Protocol Buffers 

yang digunakan oleh TensorFlow untuk komunikasi data yang efisien. 

• tensorflow==2.8.0rc0: Menginstal versi kandidat rilis (release candidate) 

dari TensorFlow 2.8.0. 

2. Import Pustaka 

Line 3 sampai 7 dijelaskan berikut: 

• import tensorflow as tf: Mengimpor TensorFlow dengan alias tf, yang sering 

digunakan dalam deep learning. 

• import tensorflow.keras.layers as mylayers: Mengimpor modul keras.layers 

dari TensorFlow dan memberinya alias mylayers untuk mempermudah 

akses ke berbagai jenis layer dalam neural network. 
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• import numpy as np: Mengimpor NumPy dengan alias np, pustaka yang 

digunakan untuk komputasi numerik dan operasi matriks. 

• import matplotlib.pyplot as plt: Mengimpor pyplot dari matplotlib dengan 

alias plt, yang digunakan untuk visualisasi data. 

• import math: Mengimpor pustaka matematika bawaan Python untuk 

perhitungan matematis dasar. 

Gambar 4.3 menunjukkan cuplikan kode Python yang digunakan untuk 

menghasilkan dan memvisualisasikan data berbasis fungsi sinus dengan sedikit 

noise. 

 

Gambar 4. 3 Kode untuk membuat 1000 data sinus secara random 

1. Inisialisasi Variabel 

SAMPLES = 1000 

SEED = 1337 

• SAMPLES = 1000: Menentukan jumlah sampel data yang akan dihasilkan. 

• SEED = 1337: Menentukan nilai seed agar hasil randomisasi tetap konsisten 

setiap kali kode dijalankan. 

2. Pengaturan Seed untuk Reproduksibilitas 

np.random.seed(SEED) 

tf.random.set_seed(SEED) 
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• np.random.seed(SEED): Mengatur seed untuk generator angka acak dari 

NumPy. 

• tf.random.set_seed(SEED): Mengatur seed untuk generator angka acak dari 

TensorFlow. 

3. Pembuatan Data 

x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES) 

• np.random.uniform(low=0, high=2*math.pi, size=SAMPLES): 

Menghasilkan 1000 nilai acak dari distribusi uniform dalam rentang [0, 2π]. 

np.random.shuffle(x_values) 

• np.random.shuffle(x_values): Mengacak urutan nilai x_values. 

y_values = np.sin(x_values) 

• Menghitung nilai sinus dari setiap elemen dalam x_values. 

4. Penambahan Noise (Gangguan Acak) pada Data 

y_values += 0.1 * np.random.randn(*y_values.shape) 

• np.random.randn(*y_values.shape): Menghasilkan noise dari distribusi 

normal (mean = 0, standar deviasi = 1). 

• * np.random.randn(*y_values.shape): Memperkecil noise dengan 

mengalikannya dengan 0.1 agar gangguan tidak terlalu besar. 

• y_values += ...: Menambahkan noise ke nilai y_values agar data lebih 

realistis dan tidak terlalu sempurna. 

5. Visualisasi Data 

plt.plot(x_values, y_values, 'b.') 

plt.show() 

• plt.plot(x_values, y_values, 'b.'): Membuat scatter plot dengan titik 

berwarna biru ('b.'). 

• plt.show(): Menampilkan plot. 
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Gambar 4.3 adalah hasil plot dari kode sebelumnya yang menggunakan 

fungsi sinus dengan noise acak 

 

Gambar 4. 4 Hasil Plot dari kode sebelumnya 

Gambar 4.4 menunjukkan kode untuk membagi dataset menjadi tiga 

bagian: train (pelatihan), validate (validasi), dan test (pengujian), serta 

memvisualisasikannya dengan warna berbeda. 

 

Gambar 4. 5 Pembagian dataset dan proses Training 

1. Pembagian Dataset 

TRAIN_SPLIT = int(0.6 * SAMPLES) 

TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT) 

• TRAIN_SPLIT = int(0.6 * SAMPLES): Menentukan indeks batas untuk 

data training (60% dari total SAMPLES). 

• TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT): Menentukan 

indeks batas untuk data testing (20% setelah data training), sehingga sisanya 

(20%) otomatis menjadi validation set. 

2. Memisahkan Data 
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x_train, x_validate, x_test = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT]) 

y_train, y_validate, y_test = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT]) 

• np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT]): Memisahkan x_values 

menjadi tiga bagian: 

x_train (60%) 

x_validate (20%) 

x_test (20%) 

• np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT]): Memisahkan y_values 

dengan cara yang sama. 

3. Visualisasi Data 

plt.plot(x_train, y_train, 'b.', label="Train") 

plt.plot(x_validate, y_validate, 'y.', label="Validate") 

plt.plot(x_test, y_test, 'r.', label="Test") 

• plt.plot(x_train, y_train, 'b.', label="Train"): Menampilkan data training 

dengan titik biru ('b.'). 

• plt.plot(x_validate, y_validate, 'y.', label="Validate"): Menampilkan data 

validasi dengan titik kuning ('y.'). 

• plt.plot(x_test, y_test, 'r.', label="Test"): Menampilkan data uji dengan titik 

merah ('r.'). 

4. Menampilkan Plot 

plt.legend() 

plt.show() 

• plt.legend(): Menampilkan legenda untuk membedakan kategori data. 

• plt.show(): Menampilkan plot. 

Gambar 4.6 menunjukkan pembagian dataset sinus dengan noise menjadi 

tiga bagian: 

1. Training Set (Train) → Ditandai dengan titik biru (60% data). 
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2. Validation Set (Validate) → Ditandai dengan titik kuning (20% 

data). 

3. Test Set (Test) → Ditandai dengan titik merah (20% data). 

 

Gambar 4. 6 Hasil Dataset Sinus 

Gambar 4.7 menunjukkan arsitektur model neural network (MLP) sederhana yang 

dibuat menggunakan TensorFlow dan Keras. 

 

Gambar 4. 7 Membuat model sequential 

1. Membuat Model Sequential 

model_1 = tf.keras.Sequential() 

• Membuat model sequential, yang berarti lapisan (layers) akan 

ditambahkan secara berurutan dari input ke output. 

2. Menambahkan Hidden Layer 

model_1.add(mylayers.Dense(16, activation='relu', input_shape=(1,))) 

• mylayers.Dense(16, activation='relu', input_shape=(1,)) 

• 16 neuron di layer tersembunyi. 

• Fungsi aktivasi: ReLU (Rectified Linear Unit), yang umum 

digunakan dalam deep learning untuk mengatasi masalah vanishing 

gradient. 
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• input_shape=(1,): Model menerima satu fitur input (karena hanya 

ada satu variabel input). 

3. Menambahkan Output Layer 

model_1.add(mylayers.Dense(1)) 

• mylayers.Dense(1) 

• Layer keluaran (output layer) memiliki 1 neuron, yang cocok untuk 

tugas regresi (memprediksi nilai kontinu). 

4. Mengompilasi Model 

model_1.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) 

• optimizer='rmsprop' 

• RMSprop (Root Mean Square Propagation) adalah algoritma 

optimasi yang cocok untuk pelatihan model dengan gradien yang 

bervariasi. 

• loss='mse' 

• Mean Squared Error (MSE) digunakan sebagai fungsi kerugian 

(loss function), cocok untuk regresi. 

• metrics=['mae'] 

• Mean Absolute Error (MAE) digunakan sebagai metrik evaluasi 

untuk menilai performa model. 

5. Menampilkan Ringkasan Model 

model_1.summary() Menampilkan struktur model, jumlah parameter trainable, 

serta jumlah layer. 

Gambar 4.8 menunjukkan ringkasan arsitektur model neural network yang dibuat 

menggunakan TensorFlow/Keras. 
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Gambar 4. 8 Arsitektur Model Neural Network 

Gambar 4.9 menunjukkan proses pelatihan model neural network menggunakan 

metode .fit() pada TensorFlow/Keras. 

 

Gambar 4. 9 Kode Proses pelatihan model Neural Network 

Rincian Parameter 

1. x_train, y_train 

Ini adalah dataset pelatihan yang digunakan model untuk belajar. 

x_train berisi fitur (input), sementara y_train adalah label atau target yang 

ingin diprediksi. 

2. epochs=1000 

Model akan dilatih selama 1000 iterasi penuh pada dataset. 

Semakin tinggi jumlah epoch, semakin lama pelatihan berlangsung. 

Bisa menyebabkan overfitting jika terlalu besar. 

3. batch_size=16 

Data akan diproses dalam kelompok kecil berisi 16 sampel per iterasi. 
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Penggunaan batch membantu dalam optimalisasi dan penggunaan memori. 

4. validation_data=(x_validate, y_validate) 

Model akan dievaluasi menggunakan data validasi setelah setiap epoch. 

Berguna untuk melihat apakah model mengalami overfitting atau 

underfitting. 

Gambar 4.10 menunjukkan output hasil training model neural network 

menggunakan TensorFlow/Keras. 

 

Gambar 4. 10 Output Hasil Training Model Meural Network 

 

Gambar 4.11 menunjukkan kode Python untuk memvisualisasikan loss selama 

proses pelatihan model. 

 

Gambar 4. 11 Kode Untuk Visualisasi Loss Selama Proses Pelatihan 

Rincian Fungsi 

1. Mengambil History Loss 

• history_1.history['loss'] → berisi nilai loss selama training. 

• history_1.history['val_loss'] → berisi nilai loss selama validasi. 
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2. Membuat Rentang Epochs 

• epochs = range(1, len(loss) + 1) → Membuat list dari 1 sampai 

jumlah epoch untuk sumbu x. 

3. Plot Loss Training & Validation 

• plt.plot(epochs, loss, 'g.', label='Training loss') 

• Menampilkan loss training dengan warna hijau (g.) dan titik kecil. 

• plt.plot(epochs, val_loss, 'b', label='Validation loss') 

• Menampilkan loss validasi dengan warna biru (b) dan garis 

kontinu. 

4. Memberikan Label pada Grafik 

• plt.title('Training and validation loss') → Menambahkan judul. 

• plt.xlabel('Epochs'), plt.ylabel('Loss') → Memberikan label sumbu 

x dan y. 

• plt.legend() → Menampilkan legenda untuk membedakan antara 

training loss dan validation loss. 

5. Menampilkan Grafik 

• plt.show() → Menampilkan grafik di layar. 

Gambar 4.12 menunjukkan grafik loss selama proses training dan validasi 

model neural network menggunakan TensorFlow/Keras. 

 

Gambar 4. 12 Hasil Grafik Loss selama proses training dan validasi Model 

Neral Network 
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Gambar 4.13 menunjukkan kode Python untuk memvisualisasikan training 

loss dan validation loss dengan mengabaikan 100 epoch pertama dalam grafik. 

 

Gambar 4. 13 Kode Untuk Visualisasi Training Loss dan Validasi 

Rincian Fungsi 

1. Melewati 100 Epoch Pertama 

SKIP = 100 → Hanya menampilkan loss setelah epoch ke-100. 

epochs[SKIP:], loss[SKIP:], dan val_loss[SKIP:] → Memotong data 

sehingga hanya menampilkan nilai setelah epoch ke-100. 

2. Plot Loss Training & Validation 

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss') 

Menampilkan loss training dengan warna hijau (g.) dan titik kecil. 

plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss') 

Menampilkan loss validasi dengan warna biru (b.) dan titik kecil. 

3. Memberikan Label pada Grafik 

plt.title('Training and validation loss') → Judul grafik. 

plt.xlabel('Epochs'), plt.ylabel('Loss') → Memberikan label sumbu x dan y. 

plt.legend() → Menampilkan legenda untuk membedakan antara training 

loss dan validation loss. 

4. Menampilkan Grafik 

plt.show() → Menampilkan grafik di layar. 
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Gambar 4.14 menunjukkan grafik Training Loss dan Validation Loss setelah 

mengabaikan 100 epoch pertama selama pelatihan model 

 

Gambar 4. 14 Grafik Training Loss dan Validation 

Gambar 4.15 menunjukkan kode Python untuk memvisualisasikan Mean Absolute 

Error (MAE) pada training dan validation data selama proses pelatihan model. 

 

Gambar 4. 15 Kode untuk visualisasi Mean Absolute Error 

Rincian Fungsi 

1. Mengambil Data MAE dari Training & Validation 

history_1.history['mae'] → Menyimpan nilai Mean Absolute Error (MAE) dari 

training. 

history_1.history['val_mae'] → Menyimpan nilai MAE dari validasi. 

2. Melewati Epoch Awal yang Tidak Stabil 

epochs[SKIP:] → Memotong epoch awal agar tidak ditampilkan. 
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mae[SKIP:], val_mae[SKIP:] → Menampilkan MAE hanya setelah sejumlah epoch 

tertentu. 

3. Plot MAE Training dan Validation 

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE') 

Menampilkan MAE training dengan warna hijau (g.). 

plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE') 

Menampilkan MAE validasi dengan warna biru (b.). 

4. Memberikan Label pada Grafik 

plt.title('Training and validation mean absolute error') → Judul grafik. 

plt.xlabel('Epochs'), plt.ylabel('MAE') → Memberikan label sumbu x dan y. 

plt.legend() → Menampilkan legenda agar grafik lebih mudah dibaca. 

5. Menampilkan Grafik 

plt.show() → Menampilkan grafik di layar. 

 

Gambar 4. 16 Pelatihan Dan validasi Mean Absolute Error 
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Gambar 4. 17 Kode untuk membuat plot prediksi 

Rincian Fungsi Gambar 4.17 : 

1. Melakukan Prediksi pada Data Latih 

predictions = model_1.predict(x_train) 

model_1.predict(x_train) → Model menghasilkan prediksi untuk data latih 

(x_train). 

predictions akan berisi nilai-nilai prediksi yang dihasilkan oleh model. 

2. Menghapus Grafik Sebelumnya 

plt.clf() 

plt.clf() → Membersihkan grafik sebelum membuat plot baru agar tidak 

tercampur dengan grafik sebelumnya. 

Menambahkan Judul Grafik 

plt.title('Training data predicted vs actual values') 

Memberikan judul pada grafik: "Training data predicted vs actual values" 

3. Menampilkan Data Aktual 

plt.plot(x_test, y_test, 'b.', label='Actual') 

plt.plot(x_test, y_test, 'b.', label='Actual') 

Menampilkan data aktual dengan titik berwarna biru (b.). 

x_test, y_test → Data uji digunakan sebagai representasi data aktual. 
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4. Menampilkan Data Prediksi 

plt.plot(x_train, predictions, 'r.', label='Predicted') 

plt.plot(x_train, predictions, 'r.', label='Predicted') 

Menampilkan data prediksi model dengan titik merah (r.). 

x_train, predictions → Data latih digunakan untuk mengevaluasi prediksi model. 

5. Menampilkan Legenda dan Grafik 

plt.legend() 

plt.show() 

plt.legend() → Menampilkan legenda agar lebih mudah membedakan antara data 

aktual (biru) dan prediksi (merah). 

plt.show() → Menampilkan grafik hasil visualisasi. 

 

 

Gambar 4. 18 Kode untuk membuat Model 2 

Penjelasan Gambar 4.18 

1. model_2 = tf.keras.Sequential() 

tf.keras.Sequential() → Membuat model Sequential, yaitu model dengan susunan 

layer bertingkat dari input hingga output. 

1. model_2.add(mylayers.Dense(16, activation='relu', input_shape=(1,))) 

Layer pertama (Hidden Layer 1) 

mylayers.Dense(16, activation='relu', input_shape=(1,)) 
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Memiliki 16 neuron dengan fungsi aktivasi ReLU. 

input_shape=(1,) menunjukkan bahwa input model memiliki 1 fitur. 

2. model_2.add(mylayers.Dense(16, activation='relu')) 

Layer kedua (Hidden Layer 2) 

Memiliki 16 neuron. 

Menggunakan ReLU sebagai fungsi aktivasi. 

3. model_2.add(mylayers.Dense(1)) 

Layer Output 

Memiliki 1 neuron, sesuai untuk regresi (karena ingin memprediksi nilai numerik). 

Tidak menggunakan fungsi aktivasi, sehingga hasilnya berupa nilai kontinu. 

4. model_2.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) 

Mengompilasi model dengan: 

optimizer='rmsprop' → Menggunakan RMSprop sebagai optimasi. 

loss='mse' → Menggunakan Mean Squared Error (MSE) sebagai fungsi loss. 

metrics=['mae'] → Memantau Mean Absolute Error (MAE) selama pelatihan. 

5. model_2.summary() 

Menampilkan ringkasan model termasuk jumlah parameter, jumlah layer, dan 

ukuran setiap layer. 

 

Gambar 4. 19 Kode untuk pelatihan Model 2 

Penjelasan Gambar 4.19 : 
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1. model_2.fit(...) 

Metode fit() digunakan untuk melatih model neural network dengan data latih 

(x_train, y_train). 

2. epochs=600 

Model akan dilatih sebanyak 600 epoch (iterasi) untuk meningkatkan akurasi. 

3. batch_size=16 

Data akan diproses dalam batch berisi 16 sampel dalam satu iterasi. 

4. validation_data=(x_validate, y_validate) 

Model akan dievaluasi pada data validasi (x_validate, y_validate) di setiap epoch 

untuk memantau performa selama pelatihan. 

 

Gambar 4. 20 Kode Untuk menampilkan hasil loss pada model 2 

Penjelasan Kode Gambar 4.20 

1. Mengambil Data Loss dari History Training 

loss = history_2.history['loss'] 

val_loss = history_2.history['val_loss'] 

history_2.history['loss'] → Menyimpan nilai loss (kerugian) pada data training 

selama proses pelatihan model. 



57 

 

history_2.history['val_loss'] → Menyimpan nilai validation loss (kerugian pada 

data validasi). 

2. Membuat Rentang Epochs 

epochs = range(1, len(loss) + 1) 

range(1, len(loss) + 1) → Membuat rentang epoch dari 1 hingga jumlah epoch 

terakhir. 

Digunakan sebagai sumbu X dalam plot. 

3. Membuat Grafik Loss 

plt.plot(epochs, loss, 'g.', label='Training loss') 

plt.plot(epochs, val_loss, 'b', label='Validation loss') 

plt.plot(epochs, loss, 'g.', label='Training loss') → Memplot training loss dengan 

titik warna hijau ('g.'). 

plt.plot(epochs, val_loss, 'b', label='Validation loss') → Memplot validation loss 

dengan garis warna biru ('b'). 

4. Menambahkan Judul dan Label Grafik 

plt.title('Training and validation loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.show() 

plt.title('Training and validation loss') → Menambahkan judul grafik. 

plt.xlabel('Epochs') → Memberi label sumbu X sebagai Epochs. 

plt.ylabel('Loss') → Memberi label sumbu Y sebagai Loss. 

plt.legend() → Menampilkan keterangan untuk training loss dan validation loss. 

plt.show() → Menampilkan grafik. 
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Gambar 4. 21 Kode untuk menggambarkan proses training dan validasi 

diatas 100 epoch 

Penjelasan Kode Gambar 4.21: 

1. SKIP = 100 

Variabel SKIP digunakan untuk melewatkan 100 epoch pertama agar grafik lebih 

jelas dan tidak terlalu padat. 

2. plt.clf() 

plt.clf() digunakan untuk membersihkan plot sebelum membuat plot baru, 

mencegah tumpang tindih gambar. 

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss') 

plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss') 

plt.plot(...) digunakan untuk menggambar grafik: 

Training loss ditampilkan dalam warna hijau ('g.'). 

Validation loss ditampilkan dalam warna biru ('b.'). 

[SKIP:] berarti hanya menampilkan epoch setelah 100 pertama. 

plt.title('Training and validation loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 



59 

 

plt.legend() 

plt.show() 

3. Judul & Label: 

plt.title(...) → Menetapkan judul grafik. 

plt.xlabel('Epochs') → Label sumbu X sebagai "Epochs". 

plt.ylabel('Loss') → Label sumbu Y sebagai "Loss". 

plt.legend() → Menampilkan keterangan warna pada grafik. 

plt.show() → Menampilkan grafik. 

 

Gambar 4. 22 Kode untuk menggambarkan Mean Absolute Error 

Penjelasan Kode: 

1. plt.clf() 

plt.clf() digunakan untuk membersihkan plot sebelum membuat grafik baru, 

mencegah tumpang tindih gambar. 

2. mae = history_2.history['mae'] 

val_mae = history_2.history['val_mae'] 

mae → Menyimpan nilai Mean Absolute Error (MAE) saat training dari 

history_2.history['mae']. 

val_mae → Menyimpan nilai MAE saat validasi dari history_2.history['val_mae']. 
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3. plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE') 

plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE') 

Training MAE ditampilkan dalam warna hijau ('g.'). 

Validation MAE ditampilkan dalam warna biru ('b.'). 

[SKIP:] digunakan untuk melewatkan sejumlah epoch pertama (biasanya agar 

grafik lebih jelas). 

4. plt.title('Training and validation mean absolute error') 

plt.xlabel('Epochs') 

plt.ylabel('MAE') 

plt.legend() 

plt.show() 

5. Judul & Label: 

plt.title(...) → Menetapkan judul grafik. 

plt.xlabel('Epochs') → Label sumbu X sebagai "Epochs". 

plt.ylabel('MAE') → Label sumbu Y sebagai "Mean Absolute Error". 

plt.legend() → Menampilkan keterangan warna pada grafik. 

plt.show() → Menampilkan grafik. 

 

Gambar 4. 23 Kode untuk menampilkan perbedaan antara prediksi dan 

Actualnya 
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Penjelasan Gambar 4.23: 

1. loss = model_2.evaluate(x_test, y_test) 

model_2.evaluate(x_test, y_test) → Mengevaluasi performa model pada data uji 

(test set) dan menyimpan nilai error atau loss. 

2. predictions = model_2.predict(x_test) 

model_2.predict(x_test) → Menghasilkan prediksi model berdasarkan data uji 

(x_test). 

3. plt.clf() 

plt.clf() → Membersihkan plot sebelum menggambar yang baru. 

4. plt.title('Comparison of predictions and actual values') 

Judul grafik: "Comparison of predictions and actual values" (Perbandingan antara 

prediksi dan nilai aktual). 

5. plt.plot(x_test, y_test, 'b.', label='Actual') 

plt.plot(x_test, predictions, 'r.', label='Predicted') 

Data aktual (ground truth) divisualisasikan dengan warna biru ('b.'). 

Prediksi model divisualisasikan dengan warna merah ('r.'). 

6. plt.legend() 

plt.show() 

plt.legend() → Menampilkan label (keterangan) untuk warna pada grafik. 

plt.show() → Menampilkan grafik. 
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Gambar 4. 24 Kode untuk menkonversi Model Keras ke TFLite 

Penjelasan Gambar 4.24: 

1. Konversi Model Keras ke TFLite( Line 1) 

converter = tf.lite.TFLiteConverter.from_keras_model(model_2) 

tflite_model = converter.convert() 

open("sine_model.tflite", "wb").write(tflite_model) 

tf.lite.TFLiteConverter.from_keras_model(model_2) → Membuat converter untuk 

mengubah model Keras (model_2) menjadi model TensorFlow Lite (TFLite). 

converter.convert() → Mengkonversi model ke format TFLite. 

open("sine_model.tflite", "wb").write(tflite_model) → Menyimpan model yang 

sudah dikonversi ke dalam file "sine_model.tflite". 

2. Konversi dengan Kuantisasi 

converter = tf.lite.TFLiteConverter.from_keras_model(model_2) 

converter.optimizations = [tf.lite.Optimize.DEFAULT] 

converter.optimizations = [tf.lite.Optimize.DEFAULT] → Mengaktifkan optimasi 

kuantisasi untuk membuat model lebih kecil dan lebih cepat tanpa kehilangan 

akurasi secara signifikan. 

3. Membuat Representative Dataset untuk Kuantisasi** 

def representative_dataset_generator(): 
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    for value in x_test: 

        yield [np.array(value, dtype=np.float32, ndmin=2)] 

Representative dataset digunakan dalam kuantisasi model untuk memastikan 

performa tetap optimal pada perangkat dengan sumber daya terbatas. 

Fungsi representative_dataset_generator(): 

Mengambil nilai dari x_test sebagai contoh data. 

Mengubah setiap nilai menjadi array float32 dengan dimensi minimal 2 

(ndmin=2). 

4. Menetapkan Dataset dan Mengkonversi Model 

converter.representative_dataset = representative_dataset_generator 

tflite_model = converter.convert() 

open("sine_model_quantized.tflite", "wb").write(tflite_model) 

converter.representative_dataset = representative_dataset_generator → 

Menetapkan dataset perwakilan untuk kuantisasi. 

converter.convert() → Mengkonversi model dengan kuantisasi. 

Menyimpan model yang telah dikonversi dengan kuantisasi ke dalam file 

"sine_model_quantized.tflite". 

5.2. Konversi Model ke Perangkat  

Konversi model Machine Learning ke perangkat merupakan langkah penting dalam 

implementasi model di lingkungan dengan keterbatasan sumber daya, seperti 

mikrokontroler, edge devices, atau sistem IoT. Proses ini bertujuan untuk 

mengoptimalkan ukuran, kecepatan, dan efisiensi model agar dapat berjalan secara 

real-time dengan konsumsi daya yang minimal. 

1. Persiapan lingkungan kerja. 

Sebelum melakukan konversi model machine learning ke perangkat embedded 

seperti Arduino Nano 33 BLE Sense, penting untuk menyiapkan lingkungan 
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pengembangan yang mendukung proses konversi dan pengujian. Adapun langkah-

langkah persiapan lingkungan kerja meliputi: 

 

Instalasi Python dan Pustaka Pendukung: 

• Pastikan Python 3.x telah terinstal pada sistem. 

Instal pustaka TensorFlow dengan perintah berikut: 

• pip install tensorflow 

Untuk mikrokontroler, Anda juga perlu: 

• pip install numpy 

Instalasi Arduino IDE: 

Unduh dan pasang Arduino IDE versi terbaru dari situs resmi: 

https://www.arduino.cc/en/software 

Tambahkan board Arduino Nano 33 BLE Sense melalui Board Manager. 

Instal pustaka tambahan, seperti: 

• Arduino_TensorFlowLite (diinstal manual melalui GitHub karena 

tidak tersedia di Library Manager) 

Arduino_LSM9DS1, PDM, dan pustaka sensor lain jika diperlukan 

Unduh TensorFlow Lite Micro Examples: 

• Clone repository TensorFlow Lite for Microcontrollers untuk 

mengakses contoh dan template proyek: git clone 

https://github.com/tensorflow/tflite-micro 

Pemasangan xxd (untuk konversi ke format C array): 

Pada sistem berbasis Unix/Linux/MacOS, xxd biasanya sudah tersedia. Untuk 

Windows, xxd bisa didapat dari paket vim atau gunakan versi portabel CLI dari 

internet. 

• xxd -i model_quantized.tflite > model_data.cc 

Verifikasi Versi dan Dependensi: 

Pastikan semua pustaka dan tools yang dibutuhkan kompatibel dengan versi 

TensorFlow dan Arduino yang digunakan. Perbedaan versi dapat menyebabkan 

kegagalan saat konversi atau deploy model ke perangkat. 
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Dengan lingkungan kerja yang telah disiapkan secara lengkap, proses konversi, 

kuantisasi, dan deploy model ke perangkat mikrokontroler dapat dilakukan 

dengan lancar dan efisien. 

 

2.  Ekspor Model yang Telah Dilatih 

Langkah pertama dalam proses konversi adalah mengekspor model yang telah 

dilatih dalam format yang lebih ringan. Model deep learning biasanya 

dikembangkan dan dilatih dalam framework seperti TensorFlow, PyTorch, atau 

Scikit-learn. Setelah model mencapai akurasi yang diinginkan, model perlu 

diekspor ke format yang lebih kompatibel dengan perangkat tujuan.Untuk model 

yang dikembangkan menggunakan TensorFlow, model harus dikonversi ke 

TensorFlow Lite (TFLite) menggunakan perintah berikut: 

import tensorflow as tf 

• Memuat model yang telah dilatih 

model = tf.keras.models.load_model("model.h5") 

•  Mengonversi model ke format TensorFlow Lite 

converter = tf.lite.TFLiteConverter.from_keras_model(model) 

tflite_model = converter.convert() 

• Menyimpan model hasil konversi 

Pada tahap ini, model yang awalnya dalam format H5 atau SavedModel telah 

dikonversi ke format TFLite yang lebih ringan. 

3. Optimasi dan Kuantisasi Model 

Model deep learning yang dikembangkan di komputer umumnya menggunakan 

floating-point precision (float32) yang memerlukan sumber daya besar untuk 

komputasi. Untuk mengurangi ukuran model dan mempercepat inferensi, dilakukan 

kuantisasi yang mengubah bobot model dari format float32 ke int8 atau float16. 

Kuantisasi dapat dilakukan dengan beberapa metode, antara lain: 
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• Post-Training Quantization (PTQ): Kuantisasi dilakukan setelah model 

selesai dilatih. 

• Full Integer Quantization: Seluruh bobot dan aktivasi model dikonversi 

menjadi bilangan bulat (int8) agar bisa dijalankan di perangkat dengan prosesor 

sederhana. 

• Hybrid Quantization: Menggabungkan floating-point dan integer untuk 

keseimbangan antara akurasi dan efisiensi.  

• Mengubah model menjadi TensorFlow Lite dengan Kuantisasi  

Gambar 4.10 Line 4 adalah contoh kode untuk melakukan kuantisasi model: 

•  Mengaktifkan optimasi kuantisasi  

Gambar 4.10 Line 5 melakukan optimasi 

converter.optimizations = [tf.lite.Optimize.DEFAULT] 

•  Menyediakan dataset perwakilan untuk kuantisasi 

def representative_dataset(): 

    for data in x_test: 

        yield [np.array(data, dtype=np.float32, ndmin=2)] 

converter.representative_dataset = representative_dataset 

converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] 

•  Konversi model dengan kuantisasi penuh 

tflite_quantized_model = converter.convert() 

•  Menyimpan model yang telah dikonversi 

with open("model_quantized.tflite", "wb") as f: 

    f.write(tflite_quantized_model) 

Dengan kuantisasi ini, ukuran model bisa berkurang hingga 75% dan meningkatkan 

efisiensi komputasi hingga 4 kali lebih cepat dibandingkan model float32. 

4. Deploy Model ke Perangkat Tujuan 
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Setelah model dikonversi ke format TFLite, langkah selanjutnya adalah 

memasukkannya ke perangkat yang akan digunakan, seperti Arduino, Raspberry Pi, 

atau ESP32. Untuk mikrokontroler seperti Arduino Nano 33 BLE Sense, model 

dapat dijalankan menggunakan pustaka TensorFlow Lite for Microcontrollers. 

Berikut adalah langkah-langkahnya:  

1. Mengompilasi model ke dalam kode sumber C++ 

TensorFlow Lite untuk mikrokontroler tidak mendukung file .tflite secara langsung, 

sehingga model harus dikonversi ke dalam array biner menggunakan skrip berikut: 

xxd -i model_quantized.tflite > model_data.cc 

Hasilnya adalah array yang dapat disisipkan langsung dalam kode C++. 

2. Memuat model di Arduino 

Dalam kode Arduino (file .ino), model yang telah dikompilasi ditambahkan 

menggunakan pustaka TensorFlow Lite: 

Gambar 4.11 menunjukkan potongan kode dalam bahasa pemrograman C++ yang 

digunakan untuk menginisialisasi model TensorFlow Lite di perangkat dengan 

sumber daya terbatas, seperti mikrokontroler atau edge devices. 

 

Gambar 4. 25 Potongan Kode untuk Menginisialisasi Model TensorFlow 

Lite 

Kode Gambar 4.25 memastikan bahwa model dapat dimuat dan digunakan di 

perangkat dengan memori terbatas. 

3. Menjalankan Inferensi di Perangkat 

Setelah model di-deploy, kita bisa menggunakannya untuk menjalankan inferensi 

(prediksi) secara real-time. Untuk model regresi sederhana, kita bisa menggunakan 

kode berikut: 



68 

 

Gambar 4.26 menunjukkan potongan kode dalam bahasa C++ yang digunakan 

untuk menjalankan inferensi pada model TensorFlow Lite yang telah dimuat 

sebelumnya. 

 

Gambar 4. 26 Kode Untuk menjalankan inferensi pada Model TensorFlow 

Lite 

Dengan cara di Gambar 4.26, model yang telah dikonversi dapat berjalan di 

Arduino atau ESP32 tanpa memerlukan komputer atau cloud. 

4. Pengujian dan Validasi Model 

Setelah model berhasil dijalankan di perangkat, tahap terakhir adalah pengujian dan 

validasi untuk memastikan model bekerja dengan baik. Pengujian ini dapat 

dilakukan dengan: 

1. Membandingkan hasil inferensi di perangkat dengan hasil di komputer 

untuk memastikan tidak ada perbedaan signifikan. 

2. Menggunakan dataset pengujian untuk melihat apakah model tetap akurat 

setelah dikonversi dan dikompresi. 

3. Mengukur waktu inferensi untuk memastikan model berjalan dengan 

kecepatan yang sesuai dengan kebutuhan sistem real-time. 

 

5. Kesimpulan 

Proses konversi model ke perangkat adalah langkah penting dalam penerapan 

machine learning di perangkat embedded. Dengan menggunakan teknik seperti 

TensorFlow Lite, kuantisasi, dan optimasi model, kita dapat menjalankan model 

deep learning di perangkat dengan daya rendah seperti Arduino, ESP32, atau 

Raspberry Pi. 
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Proses utama yang dilakukan dalam konversi model meliputi: 

• Ekspor model yang telah dilatih ke format yang kompatibel. 

• Optimasi dan kuantisasi untuk mengurangi ukuran model dan meningkatkan  

       efisiensi. 

• Deploy ke perangkat menggunakan pustaka TensorFlow Lite. 

• Pengujian dan validasi untuk memastikan akurasi dan performa tetap        

       terjaga. 

5.3. Inference  

Proses Inference dalam TinyML merupakan tahap akhir dari implementasi model 

machine learning, di mana model yang telah dilatih digunakan untuk membuat 

prediksi atau keputusan secara langsung di perangkat dengan sumber daya terbatas, 

seperti mikrokontroler dan edge devices. Tidak seperti pelatihan model yang 

memerlukan komputasi tinggi dan sering kali dilakukan di server atau cloud, 

inference dilakukan secara lokal di perangkat kecil dengan efisiensi tinggi. 

1. Persiapan Data Input 

Langkah pertama dalam inference adalah menyiapkan data yang akan digunakan 

sebagai input ke model. Data ini dapat berasal dari berbagai sensor yang terhubung 

ke perangkat, seperti kamera untuk pengenalan gambar, mikrofon untuk pengenalan 

suara, atau akselerometer untuk mendeteksi gerakan. Setiap model memiliki format 

input yang berbeda, sehingga data yang masuk harus diproses agar sesuai dengan 

format yang diharapkan oleh model. 

Sebagai contoh, jika model memerlukan gambar dengan resolusi 28x28 piksel 

dalam skala abu-abu, maka gambar dari sensor kamera perlu diubah ukurannya 

terlebih dahulu. Jika model membutuhkan nilai numerik dari sensor suhu, maka 

data harus dikonversi ke format yang kompatibel, misalnya dalam bentuk bilangan 

desimal dengan skala yang sesuai. Setelah data siap, nilai tersebut kemudian 

dimasukkan ke dalam tensor input yang dialokasikan dalam memori perangkat 
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2. Memuat Model dan Interpreter 

Setelah input siap, langkah berikutnya adalah memuat model yang telah dikonversi 

ke format TensorFlow Lite (TFLite) ke dalam perangkat. Model ini biasanya telah 

dikompresi dan dikonversi dari model yang lebih besar agar dapat berjalan dengan 

efisien di sistem dengan RAM dan penyimpanan terbatas. 

Interpreter TensorFlow Lite bertanggung jawab untuk menjalankan model dan 

mengelola proses inferensi di perangkat. Interpreter ini memastikan bahwa model 

dapat berjalan dengan baik meskipun terdapat keterbatasan komputasi. Untuk 

menginisialisasi model, perangkat akan mengalokasikan memori yang diperlukan 

untuk input, output, dan variabel perantara lainnya.  

Pada Gambar 4.27 adalah contoh cara memuat model ke dalam interpreter ( Pada 

file hello_world.ino) : 

 

Gambar 4. 27 Kode untuk memuat model ke dalam interpreter 

Dalam contoh ini, model yang telah dikonversi ke format TFLite disimpan dalam 

variabel model_data dan kemudian diproses oleh interpreter agar bisa digunakan 

untuk inference. 

3. Menjalankan Model dengan Interpreter 

Setelah model dimuat ke dalam interpreter, langkah berikutnya adalah menjalankan 

proses inferensi dengan data input yang telah dipersiapkan(Pada file 

hello_world.ino). Ini dilakukan dengan memanggil fungsi Invoke() pada 

interpreter, yang akan mengeksekusi model menggunakan input yang telah 

diberikan. 

Gambar 4.28 adalah contoh kode untuk menjalankan inference: 
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Gambar 4. 28 Kode untuk menjalankan inference 

Jika Invoke() berhasil, model akan memproses data dan menghasilkan output 

berdasarkan hasil prediksi. Namun, jika terjadi kesalahan dalam eksekusi model, 

sistem akan menampilkan pesan error agar dapat dilakukan perbaikan. 

4. Mengambil Hasil Inferensi dari Model 

Setelah model selesai dijalankan, hasil dari inferensi disimpan dalam tensor output. 

Output ini dapat berupa nilai numerik, probabilitas dari berbagai kategori, atau hasil 

perhitungan regresi, tergantung pada jenis model yang digunakan. 

Gambar 4.29 adalah contoh cara mengambil nilai output dari tensor hasil prediksi: 

 

Gambar 4. 29 Kode untuk mengambil nilai output 

Dalam contoh ini, hasil prediksi model diambil dari elemen pertama dalam array 

output bertipe float. Nilai ini kemudian dapat digunakan untuk berbagai tujuan, 

seperti mengendalikan perangkat keras, menampilkan hasil di layar, atau mengirim 

data ke sistem lain. 

5. Menggunakan Hasil Inferensi untuk Pengambilan Keputusan 

Setelah mendapatkan hasil prediksi dari model, langkah terakhir adalah mengambil 

tindakan berdasarkan hasil tersebut. Misalnya, dalam sistem smart home, jika 

model mendeteksi bahwa suhu ruangan terlalu tinggi, maka kipas atau pendingin 

ruangan dapat diaktifkan secara otomatis. Jika model digunakan untuk mengenali 

suara perintah tertentu, perangkat bisa merespons dengan menjalankan instruksi 

yang sesuai. 

Gambar 4.30 adalah contoh kode untuk menangani hasil inferensi berdasarkan 

kategori output ( Pada file arduino_output_handler.cpp): 
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Gambar 4. 30 Kode untuk menangani hasil inferensi 

Dalam contoh Gambar 4.30, jika hasil inferensi menunjukkan nilai lebih dari 0.5, 

sistem akan menganggap bahwa suara telah dikenali dan akan memberikan respons 

dengan menyalakan LED. Jika nilai di bawah ambang batas, LED akan dimatikan. 

 

Gambar 4. 31 Hasil Serial Monitor 

 

Gambar 4. 32 Hasil Serial Monitor 

Gambar 4.31 dan 4.32 menampilkan deretan karakter seperti  136,  139, dan 

angka-angka yang berubah secara berkala. Karakter tersebut merupakan hasil dari 

data yang dikirim oleh program Arduino ke komputer melalui komunikasi serial. 

Setiap satu detik, program mengirimkan nilai acak yang berada dalam rentang 

tertentu. Nilai ini kemudian diterima dan ditampilkan oleh Serial Monitor dalam 

bentuk karakter atau angka sesuai dengan data yang dikirimkan dari mikrokontroler. 

Tampilan yang berubah secara periodik menunjukkan bahwa program berjalan 

secara berulang dan terus menghasilkan output baru setiap detiknya. 
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6. Hasil  

Gambar 4.33 adalah tampilan fisik dari papan mikrokontroler Arduino Nano 33 

BLE yang digunakan dalam proses pengembangan sistem (terhubung melalui kabel 

USB seperti tampak pada gambar). 

 

Gambar 4. 33 Tampilan Papan Arduino Nano 33 BLE 

Dalam Gambar 4.33, terlihat bahwa papan Arduino Nano 33 BLE telah terhubung 

ke sumber daya melalui kabel USB, yang ditandai dengan menyala-nya LED 

indikator berwarna hijau di bagian atas papan. Papan ini memiliki bentuk kecil dan 

kompak, serta dilengkapi dengan modul komunikasi nirkabel berbasis Bluetooth 

Low Energy (BLE) dan sensor IMU bawaan. Fitur-fitur ini memungkinkan papan 

untuk digunakan dalam berbagai proyek berbasis Internet of Things (IoT), seperti 

pemantauan lingkungan, deteksi gerakan, dan aplikasi wearable. Keaktifan LED 

juga menunjukkan bahwa papan telah berhasil diinisialisasi dan siap digunakan 

untuk proses selanjutnya dalam sistem. 

      Selama kegiatan Praktik Kerja Lapangan (PKL), berhasil dilakukan 

implementasi dan pengujian perangkat mikrokontroler menggunakan papan 

pengembangan Arduino Nano 33 BLE yang dilengkapi dengan konektivitas 

Bluetooth dan sensor bawaan. Perangkat dihubungkan ke komputer menggunakan 

kabel USB dan berhasil terdeteksi oleh perangkat lunak Arduino IDE. Indikator 

LED menyala dengan stabil, menandakan bahwa papan berfungsi dengan baik. 

Program sederhana berhasil diunggah untuk membaca data dari sensor serta 

mengirimkan informasi secara nirkabel. Hasil ini menunjukkan bahwa perangkat 

bekerja secara optimal dan dapat dimanfaatkan sebagai prototipe awal untuk 

berbagai aplikasi berbasis Internet of Things (IoT), seperti pelacakan lokasi, 

pemantauan lingkungan, atau pengendalian perangkat jarak jauh. 
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7. Kesimpulan 

Proses inference dalam TinyML mencakup beberapa tahapan utama, mulai dari 

persiapan input data, memuat model ke interpreter, menjalankan model, membaca 

hasil output, dan mengambil tindakan berdasarkan hasil prediksi. Dengan 

menggunakan TensorFlow Lite for Microcontrollers, model machine learning dapat 

berjalan secara efisien di perangkat dengan keterbatasan sumber daya. 

Inference yang dioptimalkan memungkinkan berbagai aplikasi machine learning 

berbasis edge computing, seperti pengenalan suara, deteksi gerakan, atau analisis 

sensor, untuk berjalan tanpa memerlukan koneksi ke server atau cloud. Hal ini 

memberikan keunggulan dalam efisiensi daya, kecepatan pemrosesan, dan 

keamanan data, sehingga memungkinkan implementasi AI di perangkat kecil 

dengan daya rendah. 

Untuk informasi lebih lanjut serta materi tambahan yang mendukung pembelajaran 

dalam buku ini, Anda dapat mengunduhnya melalui tautan berikut: 

https://tinymlbook.com/supplemental. Situs tersebut menyediakan berbagai sumber 

daya tambahan seperti kode program, dataset, dan petunjuk teknis yang relevan 

dengan topik TinyML. 
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Bab V 

Penutup 

5.1.  Kesimpulan 

Pada Praktik Kerja Lapangan (PKL) ini, telah dilakukan pengembangan model 

Machine Learning mulai dari tahap pelatihan hingga proses inference pada 

perangkat Arduino Sense. Model yang digunakan dalam penelitian ini berbasis 

persamaan sinus, yang memungkinkan perangkat untuk mengenali dan 

memprediksi pola berbasis fungsi sinusoidal. Proses pengembangan mencakup 

pembuatan dataset, pelatihan model, konversi ke format yang kompatibel dengan 

TensorFlow Lite, serta implementasi pada perangkat keras dengan sumber daya 

terbatas. Dengan pendekatan ini, model dapat berjalan secara efisien di 

mikrokontroler, memungkinkan aplikasi seperti analisis sinyal, pengenalan pola, 

dan pemrosesan data real-time secara langsung di perangkat. 

 Implementasi proses pengolahan data belum sempat dikerjakan pada PKL 

ini disebabkan oleh beberapa kendala yang dihadapi selama pelaksanaan. Salah satu 

faktor utama adalah terbatasnya waktu yang tersedia untuk menyelesaikan seluruh 

tahapan pengembangan, mulai dari pelatihan model hingga deployment pada 

perangkat. Selain itu, kendala teknis seperti kompatibilitas perangkat keras, 

keterbatasan sumber daya komputasi pada mikrokontroler, serta tantangan dalam 

konversi model ke format yang lebih ringan juga menjadi faktor penghambat. Di 

samping itu, proses pengolahan data memerlukan pengujian dan validasi lebih 

lanjut, yang membutuhkan waktu serta dukungan infrastruktur yang memadai. Oleh 

karena itu, tahap ini masih menjadi bagian yang dapat dikembangkan lebih lanjut 

dalam penelitian atau implementasi berikutnya. 

 Evaluasi performa model dalam kondisi nyata telah dilakukan dengan 

menampilkan hasil inference di Serial Monitor, sehingga output model dapat 

diamati secara langsung. Namun, dalam implementasi ini, penggunaan sensor 

bawaan Arduino Sense belum dapat dilakukan sepenuhnya. Hal ini disebabkan oleh 

keterbatasan dalam integrasi model dengan sensor, baik dari segi kompatibilitas 

perangkat lunak maupun konfigurasi perangkat keras. Sebagai alternatif, nilai input 

diberikan secara manual atau melalui simulasi, sehingga prediksi model tetap dapat 

dianalisis meskipun tanpa data sensor langsung. Untuk pengembangan selanjutnya, 
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diperlukan optimalisasi lebih lanjut agar model dapat berinteraksi langsung dengan 

sensor, memungkinkan evaluasi yang lebih akurat dalam kondisi nyata. 

5.2.  Saran 

Untuk pengembangan lebih lanjut, terdapat beberapa saran yang dapat diterapkan 

agar implementasi Machine Learning pada perangkat Arduino Sense menjadi lebih 

optimal dan aplikatif. 

1. Integrasi Model dengan Sensor Bawaan 

Pada penelitian ini, model masih dievaluasi menggunakan input simulasi tanpa 

melibatkan sensor bawaan. Ke depan, perlu dilakukan optimalisasi agar model 

dapat langsung menerima data dari sensor akselerometer, mikrofon, atau sensor 

lainnya. Dengan demikian, hasil inferensi akan lebih akurat dan mencerminkan 

kondisi nyata. 

2. Optimasi dan Kuantisasi Model 

Untuk meningkatkan efisiensi komputasi pada perangkat dengan keterbatasan daya 

dan memori, model dapat dioptimalkan lebih lanjut menggunakan teknik post-

training quantization atau pruning. Teknik ini dapat mempercepat waktu inferensi 

dan mengurangi penggunaan memori tanpa mengorbankan akurasi secara 

signifikan. 

3. Pengolahan Data Secara Langsung di Perangkat 

Pada PKL ini, proses pengolahan data belum dapat diimplementasikan sepenuhnya. 

Untuk penelitian selanjutnya, disarankan agar perangkat dapat melakukan 

preprocessing data secara langsung, seperti filtering, normalisasi, atau ekstraksi 

fitur. Dengan cara ini, model tidak hanya menerima input mentah, tetapi juga data 

yang telah diproses untuk meningkatkan akurasi prediksi. 

4. Pengujian Model dalam Berbagai Kondisi 

Evaluasi model sebaiknya dilakukan dalam berbagai kondisi lingkungan nyata 

untuk memastikan ketahanannya terhadap perubahan variabel eksternal. Misalnya, 

jika model diterapkan untuk analisis gerakan, pengujian dapat mencakup berbagai 

tingkat pencahayaan, variasi suhu, atau latensi dalam pemrosesan sinyal sensor. 
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5. Implementasi Model pada Perangkat Lain 

Selain Arduino Sense, model juga dapat diuji pada platform IoT lainnya, seperti 

ESP32, Raspberry Pi, atau perangkat edge AI lainnya. Dengan melakukan 

perbandingan performa pada berbagai platform, dapat ditentukan perangkat yang 

paling efisien dan sesuai dengan kebutuhan aplikasi tertentu. 

6. Penggunaan Model yang Lebih Kompleks 

Ke depan, model yang digunakan dapat diperluas dengan arsitektur yang lebih 

kompleks, seperti Convolutional Neural Networks (CNN) untuk pengolahan citra 

atau Recurrent Neural Networks (RNN) untuk analisis data sekuensial. Hal ini 

memungkinkan implementasi aplikasi yang lebih luas, seperti pengenalan suara, 

deteksi objek, atau analisis pola waktu nyata. 

Dengan menerapkan saran-saran ini, diharapkan pengembangan Machine Learning 

pada Arduino Sense dapat berjalan lebih optimal, efisien, dan memiliki dampak 

yang lebih luas dalam aplikasi dunia nyata. 
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