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ANALISIS KINERJA TENSORRT DAN OPENVINO SEBAGAI 

INFERENCE FRAMEWORK UNTUK PEMODELAN DEEP LEARNING 

 

Louis Axel Tjokro Atmodjo, Kestrilia Rega Prilianti, Hendry Setiawan 

Universitas Ma Chung 

 

Abstrak 
 

 Deep Learning berusaha meniru kemampuan manusia melalui Artificial 

Neural Network untuk melakukan task yang lebih kompleks dari sekedar 

mengambil keputusan. Deep learning yang lebih kompleks, tentunya membutuhkan 

data dan komputasi lebih kompleks juga. Inference framework mampu 

mengoptimalkan deep learning agar lebih efisien tanpa mengorbankan akurasi. 

Namun, tiap model deep learning membutuhkan inference framework yang tepat 

agar mendapatkan performa optimal. 

 Metode computer vision dengan training dataset dilakukan terhadap dataset 

citra yang dikumpulkan dalam pencahayaan redup hingga sangat terang menjadi 

dua buah model deep learning, yaitu YOLOv8n dan YOLOv11n yang kemudian 

dioptimalkan menjadi inference framework TensorRT yang memiliki keunggulan 

dalam pengolahan dengan GPU dari NVIDIA dan OpenVINO yang unggul dengan 

pengolahan menggunakan CPU dari Intel. Pengujian statistik T-Test dan Two-Way 

ANOVA digunakan dalam penelitian ini untuk melihat performa kedua inference 

framework secara terukur dan ilmiah. 

 TensorRT memiliki rata-rata inference speed sebesar 0.006 detik dan rata-

rata model load time selama 0.0007 detik sehingga sesuai untuk penggunaan real-

time processing dan unggul daripada OpenVINO. Sedangkan OpenVINO memiliki 

rata-rata memory consumption sebesar 617841.9 MB dan rata-rata model size 

sebesar 6 MB sehingga sesuai untuk penggunaan yang memiliki keterbatasan pada 

perangkat, karena unggul dari TensorRT. Accuracy dari kedua inference framework 

dan tiap model menunjukkan bahwa YOLOv11n lebih unggul sebesar 1% dari 

YOLOv8n dan OpenVINO mampu mengoptimalkan model yang lebih kompleks 

dengan lebih baik. 

Kata kunci : deep learning, inference framework, OpenVINO, TensorRT 
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PERFORMANCE ANALYSIS OF TENSORRT AND OPENVINO AS 

INFERENCE FRAMEWORK FOR DEEP LEARNING MODELS 

 

Louis Axel Tjokro Atmodjo, Kestrilia Rega Prilianti, Hendry Setiawan 

Universitas Ma Chung 

 

Abstract 
 

 Deep Learning seeks to mimic human abilities through Artificial Neural 

Network to perform more complex tasks than just simple task decision-making, 

such as object recognition. The more complex deep learning, requires larger data 

and more sophisticated computations. Inference framework can optimize the deep 

learning models to become more efficient without compromising the accuracy of 

models. However, each deep learning model requires the correct inference 

framwork to achieve optimal performance. 

 Computer vision with training dataset applied to images dataset that 

captured under low to very bright light conditions, resulting in two deep learning 

models YOLOv8n and YOLOv11n. Then these models were optimized using 

TensorRT inference framwork which excels in using GPU with NVIDIA and 

OpenVINO which superior in working with CPU and Intel. Statistical analysis, such 

as T-Test and Two-Way ANOVA were utilized in this study to evaluate the 

performance of both inference framworks in a measurable and scientific manner. 

 TensorRT has an average inference speed of 0.006 seconds and an average 

model load time of 0.0007 seconds, making it suitable for real-time processing and 

superior to OpenVINO in this regard. On the other hand, OpenVINO has an average 

memory consumption of 617841.9 MB and an average model size of 6 MB, making 

it more appropriate for devices with limited resources, as it outperforms TensorRT. 

The accuracy of both inference frameworks and each model demonstrates that 

YOLOv11n surpasses YOLOv8n by 1%, while OpenVINO also give better results 

at optimizing more complex models. 

 

Keywords : deep learning, inference framework, OpenVINO, TensorRT 

 



v 

 

Kata Pengantar 

Puji syukur dipanjatkan kehadirat Tuhan Yang Maha Esa karena atas rahmat 

dan restu-Nya sehingga tugas akhir dengan judul “Analisis Kinerja TensorRT dan 

OpenVINO sebagai Inference Framework untuk Pemodelan Deep Learning” ini 

dapat diselesaikan dengan baik. Laporan ini disusun untuk menjelaskan hasil 

pengerjaan Tugas Akhir yang telah selesai dilaksanakan. Tugas Akhir merupakan 

salah satu mata kuliah wajib bagi mahasiswa dari Prodi Teknik Informatika 

Universitas Ma Chung Malang sebagai salah satu prasyarat kelulusan.  

Pada kesempatan ini, penulis menyampaikan ucapan terima kasih sebesar-

besarnya kepada seluruh pihak yang telah memberikan bantuan dan dukungan 

kepada penulis dalam proses pengerjaan Tugas Akhir hingga selesai. Ucapan terima 

kasih disampaikan kepada seluruh pihak terkait yang telah membantu, mendukung, 

dan membimbing kegiatan Tugas Akhir hingga selesai, di antaranya :    

1. Kepala Departemen ITE dari PT. XYZ yang telah menyediakan tempat untuk 

pelaksanaan penelitian, 

2. Bapak Dr. Eng. Romy Budhi, ST, M.T. selaku Dekan Fakultas Teknologi dan 

Desain Universitas Ma Chung, 

3. Bapak Hendry Setiawan, ST, M.Kom, selaku Kepala Program Studi Teknik 

Informatika dan Dosen Pembimbing 2 Tugas Akhir, 

4. Ibu Dr. Kestrilia Rega Prilianti, M.Si. selaku Dosen Pembimbing 1 Tugas Akhir, 

5. Seluruh Tim Data Science selaku Pembimbing Lapangan, 

6. Keluarga terkasih yang telah memberikan dukungan dan semangat selama 

pengerjaan Tugas Akhir ini, 

7. Serta teman-teman yang telah memberikan dukungan untuk menyelesaikan 

pengerjaan Tugas Akhir. 

Laporan ini disusun berdasarkan hasil penelitian di PT. XYZ selama enam 

bulan dengan judul “Analisis Kinerja TensorRT dan OpenVINO sebagai Inference 

Framework untuk Pemodelan Deep Learning”.  

Jakarta, 13 Januari 2024  

 Louis Axel Tjokro Atmodjo 



vi 

Daftar Isi 

LEMBAR PENGESAHAN TUGAS AKHIR ......................................................... i 

PERNYATAAN KEASLIAN TUGAS AKHIR ..................................................... ii 

Abstrak ................................................................................................................... iii 

Abstract .................................................................................................................. iv 

Kata Pengantar ........................................................................................................ v 

Daftar Isi................................................................................................................. vi 

Daftar Gambar ........................................................................................................ ix 

Daftar Tabel ............................................................................................................ 1 

BAB I Pendahuluan ................................................................................................ 1 

1.1 Latar Belakang ...................................................................................... 1 

1.2 Identifikasi Masalah .............................................................................. 3 

1.3 Batasan Masalah.................................................................................... 3 

1.4 Rumusan Masalah ................................................................................. 4 

1.5 Tujuan ................................................................................................... 4 

1.6 Manfaat ................................................................................................. 4 

1.7 Luaran ................................................................................................... 4 

1.8 Sistematika Penelitian ........................................................................... 4 

BAB II Tinjauan Pustaka ........................................................................................ 6 

2.1 Artificial Intelligence ............................................................................ 6 

2.1.1 Machine Learning ........................................................................ 7 

2.1.2 Deep Learning .............................................................................. 8 

2.1.2.1 YOLO ............................................................................... 8 

2.2 Implementasi Artificial Intelligence ................................................... 11 

2.2.1 Model Optimization ................................................................... 12 

2.3 Pengujian Statistik ............................................................................... 20 

BAB III Analisis dan Perancangan Sistem ........................................................... 23 



vii 

3.1 Alur Penelitian .................................................................................... 23 

3.2 Analisis Kebutuhan ............................................................................. 24 

3.2.1 Kebutuhan Pengguna ................................................................. 24 

3.2.2 Kebutuhan Eksperimen .............................................................. 25 

3.3 Studi Literatur ..................................................................................... 26 

3.4 Pembuatan Dataset.............................................................................. 28 

3.5 Training Model ................................................................................... 31 

3.6 Export Model ...................................................................................... 33 

3.7 Perbandingan Kinerja .......................................................................... 34 

BAB IV Hasil dan Pembahasan ............................................................................ 37 

4.1 Persiapan Perangkat ............................................................................ 37 

4.2 Dataset ................................................................................................ 37 

4.3 Training Model ................................................................................... 39 

4.3.1 Hasil Training Model ................................................................. 40 

4.3.1.1 Hasil Training YOLOv8n .............................................. 40 

4.3.1.2 Hasil Training YOLOv11n ............................................ 41 

4.4 Export Model ...................................................................................... 42 

4.5 Pembahasan Perbandingan Kinerja ..................................................... 48 

4.5.1 Perbandingan Rata-rata .............................................................. 48 

4.5.1.1 Inference Speed .............................................................. 48 

4.5.1.2 Memory Consumption .................................................... 49 

4.5.1.3 Model Size ...................................................................... 49 

4.5.1.4 Load Time ...................................................................... 50 

4.5.1.5 Accuracy ......................................................................... 50 

4.5.2 Uji T ........................................................................................... 50 



viii 

4.5.2.1 Hasil Uji Levene T-Test .................................................. 51 

4.5.2.2 Hasil Uji T ...................................................................... 54 

4.5.3 Uji ANOVA ............................................................................... 59 

4.5.3.1 Hasil Uji Levene ANOVA ............................................. 59 

4.5.3.2 Hasil Uji Two-Way ANOVA ......................................... 61 

4.5.4 Pembahasan Hasil Pengujian ..................................................... 65 

BAB V Simpulan dan Saran ................................................................................. 72 

5.1 Kesimpulan ......................................................................................... 72 

5.2 Saran .................................................................................................... 73 

Daftar Pustaka ....................................................................................................... 74 

 



1 

 

Daftar Tabel 

Tabel 3.1 Studi Literatur ....................................................................................... 27 

Tabel 3.2 Hyperparameter Tuning ........................................................................ 32 

Tabel 3.3 Indikator Perbandingan ......................................................................... 35 

Tabel 4.1 Hasil Training YOLOv8n ..................................................................... 40 

Tabel 4.2 Hasil Training YOLOv11n ................................................................... 41 

Tabel 4.3 Hasil Export Model Replikasi 1 ............................................................ 43 

Tabel 4.4 Hasil Export Model Replikasi 2 ............................................................ 44 

Tabel 4.5 Hasil Export Model Replikasi 3 ............................................................ 45 

Tabel 4.6 Hasil Export Model Replikasi 4 ............................................................ 46 

Tabel 4.7 Hasil Export Model Replikasi 5 ............................................................ 47 

Tabel 4.8 Perbandingan Rata-rata Inference Speed .............................................. 48 

Tabel 4.9 Perbandingan Rata-rata Memory Consumption .................................... 49 

Tabel 4.10 Perbandingan Rata-rata Model Size .................................................... 49 

Tabel 4.11 Perbandingan Rata-rata Load Time ..................................................... 50 

Tabel 4.12 Perbandingan Rata-rata Accuracy ....................................................... 50 

Tabel 4.13 Hasil Uji Levene T-Test....................................................................... 52 

Tabel 4.14 Hasil T-Test YOLOv8n ....................................................................... 54 

Tabel 4.15 Hasil T-Test YOLOv11n ..................................................................... 56 

Tabel 4.16 Hasil Uji Levene Two-Way ANOVA .................................................. 60 

Tabel 4.17 Hasil Uji Two-Way ANOVA .............................................................. 62 

 

 



ix 

Daftar Gambar 

Gambar 2.1 Ilustrasi Pembuatan Model .................................................................. 7 

Gambar 2.2 Arsitektur YOLO ................................................................................ 8 

Gambar 2.3 Ilustrasi Bounding Box ........................................................................ 9 

Gambar 2.4 Pembagian Citra S x S ......................................................................... 9 

Gambar 2.5 Arsitektur YOLOv8 .......................................................................... 10 

Gambar 2.6 Arsitektur YOLOv11 ........................................................................ 11 

Gambar 2.7 Ilustrasi Quantization ........................................................................ 13 

Gambar 2.8 Ilustrasi Pruning ................................................................................ 14 

Gambar 2.9 Ilustrasi Knowledge Distillation ........................................................ 14 

Gambar 2.10 Ilustrasi Intersection over Union (IoU) 50%................................... 19 

Gambar 3.1 Alur Penelitian................................................................................... 23 

Gambar 3.2 Ilustrasi Dataset Box Satu SKU ........................................................ 29 

Gambar 3.3 Ilustrasi Dataset Box Universal SKU................................................ 30 

Gambar 3.4 Ilustrasi Anotasi pada Dataset Box Satu SKU .................................. 31 

Gambar 3.5 Snapshot Kode Python Pengukuran Indikator .................................. 36 

Gambar 3.6 Contoh Hasil Pengukuran Indikator .................................................. 36 

Gambar 4.1 Pengukuran Pencahayaan; (a) Pengumpulan dataset pada kondisi 

gelap, (b) Pengumpulan dataset pada kondisi terang ..................... 38 

Gambar 4.2 Ilustrasi Anotasi dataset; (a) Noise pada anotasi box, (b) Anotasi tidak 

noise ................................................................................................... 39 

Gambar 4.3 Perbandingan Inference Speed .......................................................... 63 

Gambar 4.4 Perbandingan Model Size .................................................................. 64 

Gambar 4.5 Grafik Perbandingan Rata-rata Inference Speed ............................... 66 

Gambar 4.6 Grafik Perbandingan Rata-rata Memory Consumption ..................... 67 

Gambar 4.7 Grafik Perbandingan Rata-rata Model Size ....................................... 68 

Gambar 4.8 Grafik Perbandingan Rata-rata Model Load Time ............................ 69 

Gambar 4.9 Grafik Perbandingan Rata-rata Accuracy .......................................... 70 

 

 



1 

 

BAB I 

Pendahuluan 

1.1 Latar Belakang 

Kecerdasan buatan atau yang sering dikenal dengan Artificial Intelligence 

(AI) merupakan teknologi terbaru yang menjadi revolusi teknologi yang sangat 

pesat dalam beberapa tahun terakhir. Teknologi artificial intelligence pertama kali 

dicetuskan pada 1956 oleh John McCarthy yang membuat memulai riset mengenai 

sistem atau mesin yang dapat berpikir layaknya manusia. Artificial intelligence 

bermula pada sebuah rule-based system yang berjalan pada task yang sederhana. 

Pada beberapa tahun terakhir, artificial intelligence sudah mampu melakukan task 

yang lebih kompleks dengan kecepatan yang tinggi, algoritma perhitungan yang 

kompleks, serta pengolahan data dalam jumlah besar. Kemampuan artificial 

intelligence yang sangat baik ini hingga saat ini mampu diaplikasikan pada task 

yang lebih kompleks juga dan dapat menyesuaikan dengan berbagai bidang seperti 

kesehatan, keuangan, otomasi, pengolahan bahasa, pembuatan teks, pengenalan 

objek, hingga prediksi dan pengambilan keputusan. 

Artificial intelligence yang dapat diaplikasikan pada beragam bidang ini 

juga dapat diintegrasikan pada perangkat-perangkat sederhana seperti ponsel 

genggam dan menjadi personal assistant. Dengan ini, artificial intelligence menjadi 

sebuah sistem yang dapat membantu manusia yang mudah diakses dalam 

melakukan task untuk mengoptimalkan kinerja manusia pada hal-hal lain yang 

membutuhkan perhatian lebih. AI yang berusaha meniru kecerdasan manusia ini 

membutuhkan data dalam jumlah besar untuk dijadikan pengetahuan dasar atau 

knowledge base bagi sistem AI tersebut.  

Pada beberapa tahun terakhir, Machine Learning (ML) yang menjadi salah 

satu cabang ilmu dari artificial intelligence menjadi populer karena kemampuannya 

untuk mengajarkan komputer untuk mengambil keputusan berdasarkan data yang 

diberikan. Melalui algoritmanya, machine learning dapat mempelajari pola-pola 

yang terdapat pada data-data untuk melakukan prediksi atau rekomendasi. Machine 

learning memiliki beberapa dasar metode untuk mengajarkan mesin untuk memiliki 
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kecerdasan, seperti reinforcement learning, supervised learning, unsupervised 

learning. Metode-metode pengajaran mesin tersebut diberlakukan sesuai dengan 

kebutuhan masing-masing untuk mendapatkan hasil optimal. 

Deep Learning (DL) merupakan cabang lanjutan dari machine learning 

yang secara mendalam memaksimalkan potensi artificial intelligence, hingga 

sampai pada meniru struktur dan fungsi dari otak manusia sebagai kecerdasan 

manusia untuk mendapatkan kecerdasan buatan melalui Artificial Neural Networks. 

Melalui deep learning, sistem artificial intelligence mampu melakukan task yang 

lebih kompleks daripada machine learning yang berfokus pada pengenalan pola dan 

data. Deep learning mampu melakukan task seperti pengenalan objek atau citra 

melalui Computer Vision, pengolahan Bahasa melalui Natural Language 

Processing, dan hal lainnya dengan akurasi yang lebih baik daripada model milik 

machine learning. Model milik deep learning mampu mempelajari data secara 

otomatis dengan baik tanpa campur tangan manusia. Namun, kecerdasan dan 

akurasi ini tentunya datang dengan tantangan besar juga, seperti kebutuhan data 

yang besar hingga proses komputasi yang sangat berat.  

Inference Framework merupakan framework yang membantu model deep 

learning yang sangat besar agar dapat digunakan dengan lebih mudah tanpa 

mengorbankan akurasi pada aplikasinya secara nyata. Inference framework 

memiliki kemampuan untuk meningkatkan kemampuan model deep learning untuk 

penggunaan secara real-time dan membuat proses inference lebih efektif pada 

berbagai hardware platform sesuai kebutuhan. Hingga saat ini, terdapat beberapa 

inference framework yang populer dengan keahliannya yang terpolarisasi, yaitu 

TensorRT yang merupakan hasil pengembangan tim NVIDIA dan OpenVINO yang 

merupakan hasil pengembangan tim Intel. Kedua inference framework memiliki 

base architecture yang berbeda secara signifikan, dimana TensorRT dioptimalkan 

secara khusus untuk melakukan komputasi pada Graphic Processing Unit (GPU) 

milik NVIDIA, sedangkan OpenVINO dirancang khusus untuk melakukan 

komputasi pada Central Processing Unit (CPU). Kedua inference framework ini 

sangatlah penting dalam aplikasinya secara nyata, dimana kecepatan, efektivitas, 

hingga akurasi menjadi kunci dari keberhasilan sistem Artificial Intelligence.  
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Melalui penelitian yang telah dilakukan Zhou dan Yang (2022), didapatkan 

hasil bahwa model ONNX yang dikonversi menjadi TensorRT mampu 

meningkatkan kemampuan real-time inference tanpa mengorbankan akurasi. 

Penelitian lain yang telah dilakukan oleh Zhongyi, et al (2019) menunjukkan bahwa 

OpenVINO mendapatkan hasil memuaskan pada kemampuannya melakukan 

detection secara real-time ketika menggunakan model ringan seperti MobileNet, 

ResNet, dan SqueezeNet. Namun, belum ada penelitian terbaru mengenai 

kemampuan inference framework pada model yang lebih modern saat ini, yaitu 

YOLO. YOLOv8 mampu melampaui akurasi YOLO terdahulu karena kombinasi 

pada arsitekturnya (Reis, et al, 2024) . Hingga saat ini YOLO telah mengeluarkan 

YOLOv11 yang dikenalkan mampu memberikan akurasi lebih baik dari YOLOv8. 

Penelitian kali ini akan berfokus pada analisis kinerja dari TensorRT milik NVIDIA 

dan OpenVINO milik Intel sebagai sebuah inference framework untuk pemodelan 

dari Deep Learning. 

1.2 Identifikasi Masalah 

Melalui latar belakang masalah yang telah disampaikan, dapat diperoleh 

identifikasi masalah bahwa inference framework milik TensorRT dan OpenVINO 

memiliki ciri khas masing-masing dengan variasi kinerja yang berbeda, sehingga 

diperlukan penelitian komprehensif untuk mengetahui kinerja secara real-time 

antara keduanya. Selain itu, penggunaan GPU dan CPU menjadi tantangan baru 

untuk menemukan performa inference framework yang sesuai pada aplikasi secara 

nyata.  

1.3 Batasan Masalah 

Berikut merupakan batasan masalah yang ditetapkan pada Tugas Akhir ini: 

a) Jenis model yang digunakan dalam penelitian ini adalah YOLOv8 dan 

YOLOv11 

b) Ukuran model yang digunakan pada penelitian ini adalah ukuran nano (n) 

c) Optimasi model berfokus pada model conversion 

d) Hyperparameter tuning untuk training model pada penelitian ini disamakan 
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1.4 Rumusan Masalah 

Bagaimana kinerja TensorRT dan OpenVINO sebagai inference framework 

untuk pemodelan Deep Learning pada kasus perhitungan atau counting box secara 

real-time. 

1.5 Tujuan 

Tujuan dari dilakukannya penelitian ini adalah untuk mengetahui 

perbandingan kinerja TensorRT dan OpenVINO sebagai inference framework 

untuk pemodelan Deep Learning. 

1.6 Manfaat 

Manfaat yang dapat diperoleh dalam penelitian ini adalah sebagai berikut: 

1. Bagi praktik industri, manfaat yang didapatkan adalah mengetahui alternatif 

format model yang menggunakan CPU untuk melakukan object detection 

secara real-time. 

2. Bagi penulis, maanfaat yang didapatkan adalah memperluas wawasan 

mengenai ragam format model dalam YOLO untuk melakukan object detection 

secara real-time. 

3. Bagi Universitas Ma Chung, khususnya Program Studi Teknik Informatika, 

manfaat yang didapatkan adalah dapat mempersiapkan lulusan yang kompeten 

dan siap kerja dengan memberikan bekal kepada mahasiswa melalui proses 

pembelajaran selama Tugas Akhir. 

 

1.7 Luaran 

Luaran dalam penelitian ini penjelasan mengenai perbandingan kinerja 

TensorRT dan OpenVINO sebagai inference framework untuk pemodelan deep 

learning beserta beserta analisis serta dilanjutkan dengan publikasi ilmiah ke jurnal. 

1.8 Sistematika Penelitian 

 Sistematika penulisan proposal Tugas Akhir ini dibagi menjadi tiga bab  

seperti berikut ini. 

Bab I   Pendahuluan 
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Bab ini terdiri dari latar belakang, identifikasi masalah, 

rumusan masalah, Batasan masalah, tujuan penelitian, 

manfaat peneltian, luaran tugas akhir, dan sistematika 

penelitian. 

Bab II   Tinjauan Pustaka 

Bab ini berisi urutan sistematis terkait literatur yang 

digunakan dalam proses penyusunan laporan Tugas Akhir 

sehingga diperoleh landasan teori terkait dengan TensorRT 

dan OpenVINO sebagai inference framework, teknik 

optimasi model, dan pemodelan deep learning. 

Bab III   Metodologi Penelitian 

Bab ini menjelaskan mengenai tahapan pengerjaan serta 

analisis dari penelitian yang akan dilakukan. Tahapan 

pengerjaan meliputi identifikasi masalah, studi literatur, 

pembuatan data, training model, export model, hingga 

perbandingan kinerja. 

Bab IV   Hasil dan Pembahasan 

Bab ini membahas mengenai hasil dari penelitian yang telah 

dilakukan untuk menganalisis perbandingan kinerja 

TensorRT dan OpenVINO sebagai inference framework 

untuk pemodelan deep learning. 

Bab V   Kesimpulan dan Saran 

Bab ini berisi simpulan dari hasil penelitian yang telah 

dilakukan serta saran mengenai yang mungkin dapat 

memperbaiki kinerja atau penelitian selanjutnya. 
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BAB II 

Tinjauan Pustaka 

2.1 Artificial Intelligence 

Artificial Intelligence atau dalam bahasa Indonesia berarti kecerdasan 

buatan merupakan kecerdasan yang ditanamkan pada suatu sistem sehingga dapat 

diatur sedemikian rupa. Penelitian mengenai artificial intelligence telah dimulai 

pada tahun 1956 oleh John McCarthy dan Marvin Minsky yang menjalankan 

penelitian selama 8 bulan, yaitu Dartmouth Summer Research Project on Artificial 

Intelligence (DSRPAI) di kampus Dartmouth, New Hampshire (Haenlein, M., 

Kaplan, A., 2019). Tujuan dari diadakannya DSRPAI adalah untuk mengumpulkan 

para peneliti untuk akhirnya dapat membangun sebuah mesin yang memiliki 

kemampuan mensimulasikan kecerdasan manusia. Pada dasarnya artificial 

intelligence ini ditanamkan pada sebuah komputer, agar komputer dapat menjadi 

cerdas untuk dapat meniru beberapa perilaku manusia seperti perhitungan, 

pengolahan bahasa, pengetahuan, identifikasi, pemecahan masalah hingga 

pengambilan suatu keputusan. Dalam jurnalnya, Haenlein, M. Dan Kaplan, A. juga 

menjelaskan bahwa kecerdasan buatan adalah sebuah sistem yang mampu untuk 

menafsirkan data eksternal dan belajar dari data tersebut serta menggunakan hasil 

pembelajarannya untuk mencapai tujuan tertentu (2019).  

Latar belakang dari artificial intelligence adalah sebuah sistem yang 

melakukan pengambilan keputusan hingga pemikiran berdasarkan sebuah reason 

atau knowledge base dan sebuah rule-based system. Namun, sistem sederhana ini 

sangat terbatas pada beberapa penggunaan yang lebih kompleks dan membutuhkan 

penyesuaian yang meluas pada skala tertentu. Hingga saat ini, banyak sekali task 

yang dapat dilakukan oleh artificial intelligence seperti pengenalan objek pada 

gambar, melakukan prediksi, dan lain-lain. Kemampuan artificial intelligence yang 

paling populer saat ini adalah Generative Artificial Intelligence bersamaan dengan 

Large Language Model yang dapat melakukan interaksi dengan manusia seperti 

tanya jawab, membuat kesimpulan dari suatu paragraf, hingga hal lain. 

Kemampuan-kemampuan ini muncul berkat adanya pengembangan dari sistem atau 
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ide dasar dari artificial intelligence sendiri melalui machine learning dan deep 

learning yang terus berkembang dengan sangat pesat hingga saat ini. Artificial 

intelligence telah menunjukkan kemampuannya sebagai alat bantu yang berharga 

dalam melakukan beragam task mulai dari analisis, memberikan wawasan melalui 

motif, dan gaya bahasa yang dapat dilewatkan oleh manusia (Swathi, M., 

Dhayalakrishnan, R., 2024). 

2.1.1 Machine Learning 

 Machine Learning merupakan bagian dari artificial intelligence yang 

mencakup ilmu dalam membuat algoritma yang akan membuat mesin mempelajari 

data dan terus berkembang secara pertahap. Kemampuan machine learning ini 

berbeda dengan program atau sistem pada umumnya yang perlu memerlukan 

campur tangan manusia. Konsep dasar dari sebuah machine learning adalah mesin 

atau sistem yang mampu mempelajari data hingga mengenali pola yang terdapat 

pada data untuk akhirnya membuat sebuah prediksi atau pengambilan keputusan 

untuk data baru diluar data sebelumnya. Terdapat beberapa metode dalam machine 

learning, seperti supervised learning, unsupervised learning, semi-supervised 

learning, dan reinforcement learning. Machine learning dengan beragam 

metodenya masih kesulitan dalam menangani data yang kompleks untuk melakukan 

feature extraction atau mencari pola dan hubungan pada data. Sehingga, machine 

learning masih membutuhkan bantuan manusia dalam melakukan feature 

extraction yang akan digunakan nantinya untuk membuat algoritmanya. 

 

Gambar 2.1 Ilustrasi Pembuatan Model (Janiesch, C, et al. 2021) 



8 

 

2.1.2 Deep Learning 

 Perkembangan lebih lanjut dari machine learning adalah Deep Learning 

yang berusaha menirukan jaringan saraf manusia. Berbeda dengan machine 

learning yang lebih sederhana, deep learning memiliki lapisan dalam jumlah 

banyak untuk menjawab kekurangan dari machine learning. Deep learning 

memiliki lapisan atau layer ini adalah bagian yang memuat informasi pola hingga 

relasi yang terdapat pada data. Ciri khas deep learning adalah kemampuannya 

untuk mengenali pola hingga relasi pada data secara mandiri dan memperbaiki hasil 

keluarannya. Pada algoritma sederhana, jika ingin melakukan perubahan pada 

model, dibutuhkan banyak penyesuaian, sedangkan deep learning hanya perlu 

melakukan penyesuaian pada parameter (Hao, 2018). 

2.1.2.1 YOLO  

 You Only Look Once (YOLO) merupakan sebuah algoritma Deep learning 

yang umum digunakan sebagai pendeteksi objek yang memiliki kelebihan dalam 

hal kecepatan dan akurasi. Algoritma ini dapat mendeteksi objek secara real-time 

dengan pendekatan Convolutional Neural Network (CNN). CNN mampu membagi 

suatu citra menjadi beberapa bagian (dalam pixel) dan memprediksi setiap kotak 

yang kemudian dibandingkan dengan probabilitas yang diprediksi. Model dari 

YOLO menggunakan deep learning untuk meningkatkan kecepatan dan akurasi 

dalam melakukan deteksi dan klasifikasi objek. 

 

Gambar 2.2 Arsitektur YOLO (Redmon, J., et al. 2016) 

 

Arsitektur dari YOLO menggunakan 24 convolutional layers dengan 2 fully 

connected layers. Secara bergantian 1 x 1 convolutional layers mengurangi fitur 
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yang terdapat pada layer sebelumnya. YOLO juga melakukan pre-train pada 

convolutional layers pada ImageNet classification sebesar setengah dari resolusi 

citra dan kemudian menggandakannya untuk deteksi (Redmon, J., et al. 2016) 

YOLO dapat memberikan informasi koordinat dari bounding box atau kotak 

pembatas (area yang dideteksi sebagai objek) dan mengklasifikasikan objek yang 

dideteksi. Bounding box memberikan informasi x dan y sebagai pusat dari bounding 

box dan height dan width sebagai ukurannya, serta nilai dari probabilitasnya. 

Algoritma yang bekerja dalam model YOLO adalah dengan membagi citra yang 

diberikan menjadi S x S dengan S adalah jumlah dari sel. 

 

 

Gambar 2.3 Ilustrasi Bounding Box 

 

Gambar 2.4 Pembagian Citra S x S (Redmon, et al. 2016) 

 

 YOLOv8 merupakan salah satu perkembangan dari YOLO yang dirilis pada 

bulan Januari tahun 2023 dan dikembangkan oleh tim dari perusahaan Ultralytics, 
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sebuah perusahaan teknologi yang juga telah mengembangkan YOLOv5 

sebelumnya. Terdapat 5 jenis versi YOLOv8 yang tersedia, yaitu YOLOv8n (nano), 

YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), dan YOLOv8x (extra-

large). Keseluruhan versi YOLOv8 menunjukkan ukuran dan kemampuan model 

YOLOv8, mulai dari YOLOv8n yang terkecil serta ringan, hingga YOLOv8x yang 

terbesar dan berat. Namun, secara keseluruhan YOLOv8 mampu mendukung 

kemampuan computer vision seperti object detection, image segmentation, pose 

estimation, tracking, dan classification (Terven, J., et al. 2023). 

 

Gambar 2.5 Arsitektur YOLOv8 (Huang, H., 2024) 

 

 YOLOv11 merupakan versi terbaru yang juga dikembangkan oleh tim 

Ultralytics dan dirilis pada September 2024. Terdapat 5 versi YOLOv11 yang 

tersedia, yaitu YOLOv11n (nano), YOLOv11s (small), YOLOv11m (medium), 

YOLOv11l (large), dan YOLOv11x (extra-large). YOLOv11 memiliki 

kemampuan untuk meningkatkan akurasi melalui mAP sebesar 22% dengan jumlah 
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parameter lebih sedikit ketika dibandingkan dengan YOLOv8m. Perkembangan 

terbaru arsitektur YOLOv11 pada backbone, neck dan peningkatan pada 

kemampuan feature extraction dapat membawa memberikan akurasi yang lebih 

baik yang berpengaruh pada diagnosis kanker (Awad, et al, 2024).  

 

Gambar 2.6 Arsitektur YOLOv11 (Rao, S. N., 2024) 

 

2.2 Implementasi Artificial Intelligence 

 Industri 4.0 berarti bahwa industri telah berevolusi dan saat ini beralih 

menuju yang keempat kalinya. Revolusi industri yang pertama terjadi pada 1784 di 

Inggris, ketika mesin uap pertama kali ditemukan untuk menggantikan tenaga 

manusia. Revolusi dari industri yang keempat ini diperkasai oleh negara Jerman 

yang menjadikan industri sebagai kebijakan pembangunannya. Pada akhirnya, 

beberapa negara lain juga menyusul menerapkan industri 4.0 ini dengan nama-nama 

lain seperti Smart Industry, Internet of Things, dan lain-lain. Sesuai dengan revolusi 

industri pertama di Inggris, revolusi industri keempat ini juga masih melihat bidang 

industri sebagai porosnya dengan contohnya adalah kecepatan produksi, 

fleksibilitas produksi, dan hal lain yang berkaitan dengan bidang industri 

manufaktur dan pada akhirnya dapat membawa perkembangan dari sebuah negara. 

Dilihat dari industri penerapannya, maka bidang industri manufakturlah yang 
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memiliki peran besar (Prasetyo dan Sutopo, 2018). Disisi lain, terdapat bidang 

industri otomotif, kesehatan, energi, logistik, hingga industri pertanian yang terkena 

dampak revolusi industri 4.0 dan menuntut hal seperti kecepatan dan fleksibilitas. 

Seiring perkembangan teknologi, muncul artificial intelligence atau 

kecerdasan buatan yang cerdas dan dapat membantu berbagai keperluan yang ada. 

Dilihat dari perspektif positf, tantangan industri yang kompleks justru membuka 

peluang bagi kemampuan unik yang dimiliki teknologi kecerdasan buatan 

dibandingkan dengan alat dan pendekatan konvensional (Arinez, et al, 2020). 

Kemampuan dari kecerdasan buatan dalam memaksimalkan industri sangat 

beragam, dari meningkatkan produktivitas, fleksibilitas, keamanan, kualitas hingga 

mengurangi biaya produksi.  

Ilmu kecerdasan buatan telah digunakan dalam lini produksi, kesehatan 

hingga logistik dan pertanian, contohnya adalah optimisasi produksi, deteksi cacat 

pada produk, identifikasi hingga prediksi downtime dari suatu mesin, diagnosis 

penyakit dari citra x-ray, smart watch dengan sistem pemantauan dan 

rekomendasinya, rekomendasi rute logistik, rekomendasi warehouse stock 

management, dan deteksi dini penyakit pada tumbuhan melalui citra satelit serta 

sistem irigasi cerdas untuk industri pertanian. Hasil dari implementasi kecerdasan 

buatan ini telah terbukti meningkatkan produktivitas dan kualitas dari industri. 

Keuntungan lain dari kecerdasan buatan dalam industri adalah membuat industri 

berjalan dengan lebih mudah, cepat dan fleksibel untuk perputaran industrinya. 

Menurut Lubis (2021), implementasi kecerdasan buatan pada pengerjaan manusia 

dapat menghasilkan kinerja optimal dengan waktu proses yang cepat dan hasil 

maksimal. 

2.2.1 Model Optimization 

Sebuah model pada deep learning tentunya memiliki layer yang sangat kaya 

akan pengetahuan atau knowledge base untuk mencapai kecerdasan yang sesuai 

dengan keinginan atau training pada dataset yang telah dilakukan sebelumnya. 

Model dari YOLO yang memiliki kemampuan object detection secara real-time 

dengan akurasi tinggi tentunya akan memiliki knowledge base yang juga sangat 

luas, sehingga ukuran dari model ini cukup besar. Proses training bertujuan agar 
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model memiliki knowledge base sesuai dengan yang diharapkan, sedangkan untuk 

menggunakan model tersebut agar dapat melakukan task seperti prediction pada 

data baru dibutuhkan satu buah tools yang dapat membantu deployment dari model 

tersebut. Tools yang dapat membantu proses deployment model agar dapat 

melakukan task yang diinginkan dari model disebut dengan inference frameworks. 

Sebuah inference frameworks memiliki kemampuan untuk melakukan 

model deployment dan model optimization yang dibutuhkan untuk meningkatkan 

efektivitas model. Dalam penggunaan industri, tentunya penggunaan model YOLO 

tidak semata-mata melakukan task atau inference satu kali saja, tetapi secara 

berulang dengan menggunakan edge device yang memiliki spesifikasi atau sumber 

daya terbatas. Dari sinilah muncul kebutuhan untuk melakukan optimasi untuk 

mengurangi ukuran dari model agar lebih ringan tanpa mengurangi knowledge yang 

dimiliki oleh model tersebut, sehingga model dapat berjalan dengan efisien dan 

maksimal. Terdapat beberapa teknik yang dapat diterapkan untuk mengoptimalkan 

sebuah model tanpa mengganggu kinerja model tersebut. Quantization merupakan 

teknik untuk merubah angka yang memiliki keakuratan tinggi atau high-precision 

floating-point yang dalam neural networks menjadi angka yang memiliki 

keakuratan lebih rendah atau low-precision seperti contohnya 0.56 menjadi 78. 

Dengan mengurangi tingkat keakuratan sebuah angka, maka model tentunya 

menjadi lebih sederhana dan berukuran lebih kecil yang dapat mengurangi 

penggunaan memory consumption selama proses inference. 

 

Gambar 2.7 Ilustrasi Quantization 
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Pruning merupakan teknik untuk menghapus jaringan neuron atau filter 

yang dianggap tidak penting pada model. Tujuan dari pruning adalah untuk 

mengurangi kompleksitas model dan mempercepat proses inference. Pruning 

menghilangkan jaringan neuron yang memiliki beban kecil atau kurang 

mempengaruhi output model agar mendapatkan ukuran model yang lebih ringan 

dengan memory consumption yang lebih sedikit. Keuntungan yang didapat dari 

teknik ini selain ukuran yang lebih kecil adalah dengan struktur model yang lebih 

sederhana dapat mencegah terjadinya ketidakmampuan model mendeteksi data 

baru (overfitting) karena memiliki knowledge yang lebih general. Teknik pruning 

dapat mempercepat proses inference tanpa mengorbankan akurasi dari model. 

 

Gambar 2.8 Ilustrasi Pruning 

 

Knowledge distillation adalah teknik untuk transfer knowledge dari model 

besar kepada model yang lebih kecil. Solusi optimisasi yang disampaikan Hinton, 

et al disebut sebagai distillation yang berarti menggunakan output dari model besar 

beserta rincian jaringannya untuk melatih model yang lebih kecil agar dapat meniru 

hasil dari model yang besar (2015).  

 

Gambar 2.9 Ilustrasi Knowledge Distillation 
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Fusing layers merupakan teknik yang mampu menggabungkan beberapa 

layer menjadi satu untuk mengurangi memory consumption agar performa inference 

dapat ditingkatkan. Ditemukan bahwa menggabungkan beberapa layer yang paling 

sama antara satu dan lainnya dapat memberikan performa yang setara dengan model 

aslinya (O’Neill, et al. 2020). 

Teknik quantization, pruning, knowledge distillation, fusing layer saat ini 

tidak perlu dilakukan secara manual dan terpisah dikarenakan sudah terdapat 

beberapa tools untuk inference yang telah disediakan. Beberapa frameworks 

popular yang sudah tersedia untuk melakukan inference adalah TensorRT oleh 

NVIDIA, ONNX-runtime oleh Microsoft, OpenVINO oleh Intel, MXNet oleh 

Apache. Seluruh inference frameworks dikembangkan sesuai dengan algoritma 

masing-masing yang unik. Inference framework yang cukup popular adalah milik 

NVIDIA, yaitu TensorRT yang melakukan optimisasi menggunakan hardware 

GPU (Graphic Processing Unit) milik NVIDIA yang dikenal dengan kecepatan 

inferensi, sehingga sesuai jika digunakan dalam kebutuhan komputasi dengan 

performa tinggi. Pada sisi lainnya, OpenVINO yang dikembangkan oleh Intel 

memiliki kemampuan komputasi pada CPU (Central Processing Unit). Kedua 

inference framework memiliki kelebihan masing-masing untuk kebutuhan yang 

berbeda. Perbedaan arsitektur inference framework dan penggunaan hardware yang 

cukup signifikan pada proses komputasi milik TensorRT dan OpenVINO 

menjadikan keduanya perbandingan yang sesuai untuk mengetahui kemampuan 

inference framework berdarkan hardware yang berbeda dan sesuai untuk real-time 

detection. 

Masing-masing inference framework memiliki arsitektur dan algoritma 

tertentu untuk mencapai tujuan tertentu. Sehingga pada setiap inference framework 

dapat menghasilkan hasil yang berbeda untuk satu kasus yang sama. TensorRT 

yang merupakan inference framework dengan dasar pengembangan GPU NVIDIA 

tentunya akan lebih optimal ketika digunakan untuk kasus spesifik yang 

membutuhkan GPU dalam komputasinya dan lebih baik jika menggunakan GPU 

milik NVIDIA. Di sisi lain, penggunaan OpenVINO akan lebih optimal pada kasus 

komputasi dengan CPU dan CPU milik Intel. Kelebihan dari inference framework 
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milik TensorRT adalah peningkatan performa sebesar 3.5 jika dibandingkan dengan 

model yang tidak dioptimasi, Frame per Second (FPS) yang lebih tinggi dalam 

melakukan real-time detection, optimasi memory untuk penggunaan Embedded 

System, mendukung format Open Neural Network Exchange (ONNX) untuk 

kemampuan penggunaan pada berbagai platform, dan kemampuan untuk 

melakukan penyesuaian melalui Compute Unified Device Architecture (CUDA) (Al 

Ghadani, et al, 2020). Penggunaan TensorRT sebagai inference framework dengan 

segala kelebihannya, tentunya juga memiliki kekurangan. Menurut Assunção, et al 

(2022), kekurangan dari TensorRT adalah kehilangan akurasi dari 75% menjadi 

64% pada mIOU (mean Intersection over Union) ketika menggunakan depth 

multiplier sebesar 0.5, kompleksitas hyperparameter tuning, ketergantungan pada 

perangkat NVIDIA yang memiliki CUDA, kebutuhan memory spesifik yang 

disebabkan oleh konfigurasi yang dilakukan, dan overfitting karena kemampuan 

model dalam melakukan optimisasi yang berlebihan. Inference framework 

OpenVINO milik Intel juga menawarkan kelebihan seperti, performa optimal 

ketika menggunakan perangkat Intel, peningkatan performa sebesar 3,3 kali pada 

perangkat Intel dengan quantization sebesar 75%, multi-platform compatibility 

mulai dari edge device hingga cloud dan berbagai framework lain seperti 

TensorFlow dan PyTorch, high throughput dengan low latency yang membuatnya 

sesuai dengan real-time detection, hemat daya atau dapat dijalankan pada perangkat 

dengan daya yang rendah, hingga kemudahaan penggunaanya (Ahn, et al, 2023). 

OpenVINO juga memiliki kekurangan, seperti yang dijelaskan oleh Mani, et al 

(2024) seperti, penggunaannya akan terlimit jika tidak menggunakan perangkat 

Intel, kurangnya fleksibilitas pada penggunaan framework selain TensorFlow dan 

PyTorch, rumit pada konfigurasi, tidak semua model support OpenVINO. 

Terdapat beberapa indikator perbandingan untuk mengetahui performa 

masing-masing inference framework adalah dengan melihat inference speed, 

memory consumption, power consumption, model size, loading time, dan accuracy. 

Namun, tidak semua indikator sesuai dan memiliki kualitas yang sama ketika 

melakukan perbandingan performa inference framework pada tiap kasus. Pada 

penelitian ini, terdapat lima indikator yang dirasa sesuai dan tepat dengan 
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kebutuhan real-time object detection. Kelimanya adalah inference speed, memory 

consumption, model size, loading time, dan accuracy yang melihat dari nilai mAP 

atau mean Average Precision. 

1. Inference speed merupakan satu indikator penting untuk menilai 

efektivitas inference framework dalam melakukan task secara real-time. 

Inference speed merupakan waktu yang dibutuhkan inference 

framework dalam memproses dan menghasilkan prediksi dari data 

masukkan yang diberikan yang pada umumnya diukur dengan satuan 

millisecond. Dalam konteks penelitian ini, inference speed dievaluasi 

berdasarkan kemampuan inference framework untuk menyelesaikan 

task object detection pada satu data masukkan. Semakin cepat atau 

semakin kecil inference speed dalam menyelesaikan task pada data 

masukkan, semakin efektif inference framework dalam mendukung 

real-time object detection. 

2. Memory consumption menjadi indikator perbandingan yang penting 

dalam menilai skalabilitas dan efektivitas sebuah inference framwork 

secara khusus jika digunakan pada hardware dengan spesifikasi yang 

lebih terbatas sesuai dengan kebutuhan. Memory consumption berarti 

jumlah sumber daya memori yang digunakan oleh inference framework 

selama proses inference dilakukan yang berdampak secara langsung 

pada kemampuan system melakukan task. Pada penelitian ini, memory 

consumption dapat dievaluasi dengan melihat penggunaan RAM 

(Random Access Memory) mulai dari inference framework menerima 

data masukkan hingga menyelesaikan task object detection. Semakin 

rendah atau kecil memory consumption selama proses inference 

dilakukan, maka semakin efektif inference framework tersebut dalam 

mendukung real-time object detection. 

3. Model size dapat menjadi indikator perbandingan berikutnya yang 

sesuai dalam menilai skalabilitas inference framework yang secara 

khusus digunakan pada hardware dengan spesifikasi terbatas untuk 

mengoptimalkan infrastruktur penyimpanannya. Model size merupakan 
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ukuran file dari inference framework yang dapat diukur dengan satuan 

megabyte (MB) atau gigabyte (GB) yang dapat menjadi indikator 

penting dari kompleksitas dan efektifitas suatu inference framework. 

Dalam penelitian ini model size dapat dievaluasi berdasarkan ukuran 

penyimpanannya. Semakin rendah atau kecil model size yang dimiliki 

inference framework, maka semakin baik efektifitas inference 

framework dalam melakukan inference tanpa mengorbankan kebutuhan 

hardware. 

4. Loading time sebuah inference framework berperan penting dalam 

menunjukkan efektifitas inference framework secara khusus pada 

penggunaan dalam task real-time object detection. Loading time 

merupakan indikator yang menunjukkan waktu yang diperlukan untuk 

memuat inference framework ke dalam memori sebelum melakukan 

inference pada data masukkan. Loading time dapat dipengaruhi oleh 

arsitektur, metode optimization yang dilakukan oleh inference 

framework. Dalam penelitian ini loading time dapat dievaluasi melalui 

kecepatan inference framework dimuat pada memori sebelum inference 

mulai dilakukan. Semakin rendah atau cepat loading time suatu 

inference framework, maka semakin efektif suatu inference framework 

untuk melakukan task real-time object detection terutama pada 

kebutuhan kecepatan inisiasi. 

5. Accuracy tentunya menjadi indikator utama dalam melihat kemampuan 

inference framework melakukan task yang diberikan pada berbagai 

kondisi yang ada. Accuracy yang dimiliki oleh inference framework 

biasanya diukur melalui mean Average Precision (mAP) yang 

menunjukkan kemampuan inference framework dalam melakukan task 

yang diberikan. Pada penelitian ini, mAP digunakan sebagai indikator 

utama dalam mengukur performa inference framework pada presisi 

Intersection over Union (IoU) 50%. IoU 50% dapat diartikan bahwa 

hasil prediksi bounding box mengalami tumpang tindih dengan 

bounding box dari ground truth deteksinya sebesar minimal 50%. 
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Gambar 2.10 Ilustrasi Intersection over Union (IoU) 50% 

 

Semakin besar atau tinggi nilai dari mAP(50%) suatu inference 

framework, maka semakin akurat inference framework dalam 

melakukan task yang diberikan secara konsisten dengan threshold IoU 

50%. 

Penelitian ini dilakukan dengan melihat performa inference framework pada 

dua hardware yang berbeda dengan tujuan untuk memperkaya wawasan mengenai 

performa masing-masing inference framework sesuai dengan desain arsitekturnya. 

Hardware yang pertama adalah komputer dengan CPU Intel(R) Gold Intel(R) 

Xeon(R) Gold 5218 CPU @ 2.30GHz  yang memiliki storage sebesar 2.5 terrabyte 

berupa Hard Disk Drive (HDD) CPU 64 core dan Random Access Memory (RAM) 

sebesar 130 gigabyte. Hardware kedua adalah milik NVIDIA dengan spesifikasi 

CPU Arm® Cortex®-A78AE v8.2 64-bit yang memiliki 12 core dengan storage 

sebesar 256 gigabyte dan memiliki RAM sebesar 64 gigabyte 256-bit LPDDR5 

yang memiliki kecepatan 204.8 gigabyte/second dengan GPU NVIDIA Ampere 

architecture dengan 2045 NVIDIA® CUDA® cores dan 64 Tensor cores. 

Kedua hardware memiliki perbedaan yang signifikan dengan ciri khas 

masing-masing. Hardware pertama milik Intel yang prosesnya difokuskan pada 

CPU miliknya, sedangkan hardware kedua milik NVIDIA yang computing 

background miliknya difokuskan pada GPU. Python 3.8 digunakan pada kedua 
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hardware untuk mengetahui kinerja masing-masing inference framework untuk 

mendapatkan perbandingan yang setara dengan operating system LINUX 

UBUNTU. 

2.3 Pengujian Statistik 

Dalam melakukan perbandingan yang membutuhkan pengambilan 

kesimpulan berdasarkan data numerik yang tersedia, diperlukan suatu metode 

pengujian yang terukur untuk mengetahui hasil perbandingan secara terukur dengan 

metode sesuai. Pengujian statistik merupakan suatu metode pengujian yang terukur 

secara ilmiah untuk menarik kesimpulan berdasarkan data yang diberikan. 

Pengujian statistik memungkinkan peneliti untuk melihat dan menarik kesimpulan 

mengenai perbedaan antar data hingga mengetahui hubungan antar variabel secara 

pada data atau antar data. Metode statistik ini dapat memberikan hasil yang 

signifikan berdasarkan ketentuan yang ditentukan secara mandiri. Tujuan dari 

pengujian statistik adalah untuk melakukan komparasi dan melihat interaksi antara 

kelompok data yang mencakup perbedaan rata-rata, interaksi hingga variabel dan 

dampak perlakuan tertentu pada kelompok data tertentu. Selain itu, pengujian 

statistik juga penting dilakukan untuk mengetahui reliabilitas data agar dapat 

dipertanggungjawabkan, mengetahui jenis data, memberikan pemahaman atas 

faktor tertentu terhadap data tertentu yang berujung pada kebutuhan pengambilan 

keputusan atau kesimpulan berdasarkan analisis data yang objektif. Metode uji 

statistik memiliki beberapa teknik pengujian yang dapat digunakan untuk 

mengambil kesimpulan (Ramadhani, dkk, 2022). 

Terdapat dua metode pengujian statistik yang umum digunakan, yaitu T-

Test dan ANOVA (Analysis of Variance). Uji statistik uji T dapat digunakan untuk 

mencari tahu apakah terdapat perbedaan signifikan pada data dengan cara 

membandingkan nilai rata-rata dari satu atau dua data yang tersedia. Dalam uji T 

sendiri terdapat beberapa jenis bergantung dengan karakteristik dari data. Uji T 

yang pertama adalah one-sample T-Test, untuk jenis uji T ini tujuan utamanya 

adalah mengetahui apakah terdapat perbedaan signifikan antara satu nilai dengan 

rata-rata dari satu set data, contohnya adalah untuk mengetahui apakah terdapat 

perbedaan signifikan dari rata-rata tinggi satu kelas dengan tinggi seorang siswa. 
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Jenis uji T berikutnya adalah independent T-Test yang biasa digunakan untuk 

mengetahui apakah terdapat perbedaan signifikan antara dua set data dengan syarat 

kedua data tidak memiliki hubungan. Contoh dari independent T-Test ini adalah 

untuk mengetahui apakah terdapat perbedaan signifikan antara rata-rata kecepatan 

berlari laki-laki dengan rata-rata kecepatan berlari wanita, dimana kedua data tidak 

memiliki relasi. Berikutnya, terdapat paired / dependent T-Test yang bertujuan 

untuk mengetahui apakah terdapat perbedaan signifikan dari rata-rata dua set data 

yang memiliki relasi. Paired / dependent T-Test dapat digunakan untuk mengetahui 

apakah terdapat perbedaan rata-rata berat badan harian seseorang ketika sebelum 

berolahraga secara rutin dan sesudah berolahraga secara rutin, dimana terdapat 

relasi antara keduanya yaitu pada subjek pengamatan. Pada uji statistik independent 

T-Test, diperlukan data dan jenis variance dari kedua data independen. Data 

variance merupakan data yang menunjukkan homogenitas antara setiap nilai pada 

data dengan rata-rata maupun nilai tengah pada data. Apabila variance 

menunjukkan terdapat homogenitas pada data, maka dapat diartikan bahwa varians 

data pada kelompok tidak berbeda secara signifikan. Uji homogenitas pada data 

atau uji variance dapat dijadikan sebagai penentu berikutnya untuk metode 

independent T-Test. Apabila data disebut homogen melalui uji variance, maka 

dapat langsung menggunakan independent T-Test, sebaliknya jika data tidak 

homogen, maka akan menggunakan Welch’s T-Test. Untuk melakukan uji 

homogenitas data, dapat dilakukan uji levene. 

ANOVA yang merupakan singkatan dari Analysis of Variance yang 

merupakan salah satu uji statistik dengan yang bertujuan untuk menguji perbedaan 

secara signifikan pada rata-rata antara dua faktor atau lebih pada data. Pada 

dasarnya, uji ANOVA memiliki tujuan yang sama dengan uji T, tetapi uji ANOVA 

memiliki keunggulan dalam kemampuannya untuk menguji perbedaan secara 

signifikan pada kelompok data yang memiliki faktor uji. Pada uji ANOVA, terdapat 

dua jenis uji yang dapat dilakukan, yaitu One-Way ANOVA dan Two-Way 

ANOVA. Uji One-Way ANOVA merupakan pengujian statistik yang serupa 

dengan T-Test dengan dua set data, tetapi lebih kompleks pada metode statistiknya, 

sehingga hasil yang disajikan uji ANOVA juga lebih kompleks dan disajikan dalam 
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bentuk tabel atau yang dikenal dengan tabel F. Perhitungan statistik yang di lakukan 

pada One-Way ANOVA dengan menghitung rata-rata atau mean, standar deviasi, 

standar error rata-rata, nilai maksimum, nilai minimum, selang kepercayaan rata-

rata, dan uji levene untuk setiap set data. Pada metode Two-Way ANOVA dapat 

dilakukan pada kebutuhan perhitungan yang lebih kompleks dan dilakukan untuk 

mengetahui perbedaan secara signifikan antar set data yang diberikan pada faktor 

tertentu. Sederhananya, Two-Way ANOVA tidak hanya menguji perbedaan 

signifikan pada variabel dalam set data, tetapi juga melakukan pengujian antara set 

data untuk mengetahui interaksi antar set data yang diberikan untuk mengetahui 

faktor yang berinteraksi satu sama lain pada data. Pada penelitian ini digunakan dua 

buah inference framework, yaitu TensorRT dan OpenVINO sebagai faktor pertama 

dan pada dua model yang berbeda, yaitu YOLOv8n dan YOLOv11n sebagai faktor 

kedua, sehingga perlu dikaji juga secara mendalam pada data untuk tiap kategori 

atau indikator perbandingan serta antar model pada tiap inference framework untuk 

melihat interaksi pada model untuk tiap inference framework. Berdasarkan kondisi 

datadan kebutuhan kajian, maka dalam penelitian ini akan digunakan Two-Way 

ANOVA yang mampu menguji faktor tertentu dalam set data dan variabel antar set 

data. Sama dengan pengujian statistik menggunakan T-Test perlu dilakukan 

pengujian terhadap homogenitas data dengan menggunakan uji levene.
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BAB III 

Analisis dan Perancangan Sistem 

3.1 Alur Penelitian 

 Proyek Tugas Akhir ini memiliki tujuan untuk mengetahui perbandingan 

performa dari inference framework yang disediakan oleh OpenVINO yang 

dikembangkan Intel dan inference framework TensorRT yang disediakan oleh 

NVIDIA. Alur penelitian dari proyek ini dapat dilihat pada gambar 3.1. 

 

Gambar 3.1 Alur Penelitian 
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3.2 Analisis Kebutuhan 

Dalam penelitian untuk menganalisis perbandingan performa antara 

inference framework milik OpenVINO dan TensorRT, dibutuhkan analisis agar 

penelitian dapat berjalan dengan lancar dan optimal. Analisis kebutuhan yang 

dilakukan dalam menganalisis perbandingan performa kedua inference framework 

mencakup analisis kebutuhan dari sisi pengguna dan peneliti. 

3.2.1 Kebutuhan Pengguna 

 Analisis kebutuhan dapat dimulai dengan mengidentifikasi masalah utama 

yang dihadapi, yaitu keperluan mencari alternatif yang efisien dari TensorRT milik 

NVIDIA. TensorRT merupakan framework dikenal optimal dalam melakukan 

inference menggunakan GPU, terutama untuk keperluan seperti object detection, 

hingga counting box secara real-time. Namun, penggunaan GPU yang intensif 

menjadi tantangan, terutama karena konsumsi sumber daya yang besar, yang 

terkadang tidak sebanding dengan kebutuhan atau keterbatasan infrastruktur pada 

khususnya dalam dunia industri. Oleh karena itu, penting untuk menemukan solusi 

lain yang lebih cost saving dalam penggunaan sumber daya maupun secara 

komputasi, dengan tetap mampu mempertahankan performa yang dibutuhkan. 

Salah satu alternatif yang dapat dipertimbangkan adalah framework 

inference yang tidak hanya bergantung pada GPU, tetapi juga memungkinkan 

penggunaan CPU secara optimal. Intel menawarkan solusi komputasi berbasis CPU 

dengan nama OpenVINO yang dapat menjadi alternatif menarik untuk 

menggantikan TensorRT dalam konteks object detection, hingga counting box 

secara real-time. Penggunaan CPU ini diharapkan mampu mengurangi 

ketergantungan pada GPU dan memberikan efektivitas yang lebih baik dalam hal 

cost saving. 

Framework yang berbasis CPU ini juga memiliki potensi untuk diterapkan 

di berbagai lingkungan yang mungkin tidak memiliki akses ke GPU dengan 

spesifikasi tinggi. Dengan begitu, solusi ini dapat memperluas jangkauan 

penggunaan teknologi counting box dalam skenario real-time yang lebih luas. Di 

sisi lain, penerapan framework CPU tentu juga memiliki tantangan, terutama dalam 

hal memastikan bahwa performa tetap optimal tanpa kehilangan kecepatan atau 

akurasi yang diharapkan dan mampu dipenuhi oleh GPU. Oleh karena itu, 
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penelitian ini bertujuan untuk mengevaluasi dan membandingkan kinerja inference 

framework alternatif milik OpenVINO dengan TensorRT. Hasil dari penelitian ini 

diharapkan dapat memberikan gambaran yang jelas mengenai apakah solusi 

berbasis CPU dapat menjadi pilihan yang layak untuk keperluan counting box 

secara real-time. Implementasi dari penelitian ini juga akan diguanakan oleh PT. 

XYZ sebagai bahan pertimbangan mengenai penggunaan inference framework 

utnuk optimisasi kinerja counting box secara real-time untuk membantu 

meningkatkan sistem perhitungan yang saat ini diterapkan. 

3.2.2 Kebutuhan Eksperimen 

 Dalam melakukan penelitian, penulis membutuhkan dukungan perangkat 

keras dan perangkat lunak agar penelitian dapat berjalan dengan baik dan optimal. 

Pemilihan perangkat keras atau hardware perlu dilakukan dengan benar sesuai 

dengan kondisi yang ada dan kebutuhan dari masing-masing inference framework. 

Kesalahan pemilihan hardware dapat mengakibatkan kesalahan analisis dan 

membuat hasil tidak optimal. Pemilihan perangkat lunak atau software juga tidak 

dapat dilakukan tanpa adanya dasar yang baik. Akibat dari kesalahan pemilihan 

software dapat menyebabkan kegagalan program. Berikut adalah hardware dan 

software yang dibutuhkan berdasarkan pemilihan untuk menunjang penelitian ini. 

1. Perangkat Keras (Hardware) : 

a. Komputer A: 

i. Processor  : Intel(R) Gold Intel(R) Xeon(R) Gold 

5218 2.30GHz 

ii. GPU   : 130 gigabyte 

iii. Memory  : Hard Disk Drive 2.5 terrabyte 64 

core 

iv. Operating system : Linux UBUNTU 

b. Komputer B: 

i. Processor  : Arm® Cortex®-A78AE v8.2 64-bit 

12 core 

ii. GPU   : 64 gigabyte 256-bit LPDDR5 204.8 

gigabyte/second 

iii. Memory  : Solid State Drive 256 gigabyte 
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iv. Operating system  : Linux UBUNTU 

2. Perangkat Lunak (software): 

a. Python3 

b. Visual Studio Code 

c. Supervision 

d. You Only Look Once (YOLO) 

e. Pandas 

f. Numpy 

g. Torch 

3.3 Studi Literatur 

Pada tahapan studi literatur, akan dilakukan studi mengenai penelitian-

penelitian terdahulu, buku hingga jurnal artikel mengenai topik terkait yang 

sekiranya dapat dijadikan sebagai bahan referensi dalam menyelesaikan 

permasalahan. Topik-topik pada penelitian terdahulu yang dapat dijadikan sebagai 

bahan referensi adalah mengenai arsitektur dari model YOLO mulai dari arsitektur 

dari YOLO hingga perbedaan antara YOLOv8 dengan YOLOv11, teknik-teknik 

yang dapat dilakukan untuk melakukan optimisasi model, dan arsitektur dari 

OpenVINO dan TensorRT dalam melakukan optimisasi. Studi literatur terhadap 

teknik optimasi model dapat dijadikan sebagai acuan dalam mengetahui cara teknik 

yang dapat dilakukan dalam mengoptimalkan kinerja model. Kajian topik arsitektur 

YOLO hingga arsitektur dari YOLOv8 dan YOLOv11 difokuskan untuk 

mengetahui perbedaan arsitektur dari kedua model. Studi literatur yang berkaitan 

dengan arsitektur dari OpenVINO dan TensorRT akan berfokus menyelesaikan 

permasalahan yang terdapat pada penggunaan CPU dan GPU dalam meningkatkan 

kinerja model. Studi literatur terhadap perbandingan juga dibutuhkan agar 

penelitian ini dapat terukur dengan baik. Proses studi literatur ini ditujukan untuk 

mempelajari langkah serta metode yang sesuai dengan penelitian agar dapat 

dilakukan analisis yang selaras sehingga mendapatkan hasil yang baik. Studi 

literatur akan mencakup penjelasan mengenai kedua inference framework dalam 

mengoptimalkan kinerja model. Ringkasan dari studi literatur yang dilakukan 

terdapat pada tabel 3.1. 
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Tabel 3.1 Studi Literatur 

No Topik Pengetahuan Temuan 

1. 

YOLO YOLO merupakan object 

detector yang akurat. 

YOLO mampu 

mempertahankan 

kemampuannya pada kasus 

real-time. (Redmon, et al, 

2016). 

2. 

YOLOv8 YOLOv8 memiliki 

arsitektur yang serupa 

dengan pendahulunya. 

Arsitektur milik YOLOv8 

yang menggabungkan FAN 

dan PAN serta peningkatan 

post-processing membuat 

YOLOv8 lebih unggul dari 

pendahulunya (Reis, et al, 

2024) 

3. 

YOLOv11 YOLOv11 merupakan 

versi terbaru dari YOLO 

yang menawarkan akurasi 

tinggi dengan parameter 

lebih sedikit. 

YOLOv11 dapat memberikan 

akurasi yang sedikit lebih baik 

daripada YOLOv8 pada 

diagnosis kanker (Awad, et al, 

2024). 

4. 

Model 

Optimization 

Model optimization 

dibutuhkan untuk 

mengaplikasikan deep 

learning pada real-world 

application. 

Teknik optimasi seperti 

quantization, pruning, dan 

knowledge distillation mampu 

meningkatkan efektivitas 

model tanpa mengorbankan 

performanya (Kim, et al, 

2021). 
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Tabel 3.1 Lanjutan Studi Literatur 

No Topik Pengetahuan Temuan 

5. OpenVINO Inference framework 

untuk membantu 

mengoptimalkan model 

pada CPU yang 

dikembangkan oleh Intel 

Model optimization 

OpenVINO mampu 

meningkatkan akurasi dari 

model (Biswas, et al, 2020). 

6. 

TensorRT Inference framework 

milik NVIDIA yang 

mengoptimalkan model 

pada GPU NVIDIA 

TensorRT meningkatkan 

kemampuan komputasi dan 

kecepatan model sebesar tiga 

kali lipat (Chaturvedi, et al, 

2022) 

7. 

Indikator 

perbandingan 

inference 

framework 

Indikator dalam 

melakukan perbandingan 

untuk inference 

framework 

Beberapa indikator 

perbandingan dapat digunakan 

untuk menemukan kekuatan 

dan kelemahan dari tiap 

inference framework (Pochelu, 

2022) 

 

3.4 Pembuatan Dataset 

 Data didapatkan dari PT. XYZ yang merupakan sebuah perusahaan 

manufaktur. Total data yang digunakan adalah sejumlah 1976 gambar kardus yang 

terdiri dari 9 jenis box yang berbeda. Kesembilan jenis box yang dijadikan dataset 

terbagi menjadi 6 buah dataset foto kardus milik PT. XYZ yang memiliki identitas 

material dan tidak memiliki identitas material, serta 3 buah dataset foto kardus 

milik anak perusahaan PT. XYZ yang memiliki identitas material dan multi 

identitas material. 

Proses pengumpulan data dilakukan oleh tim produksi dan tim office. 

Pengambilan data dilakukan dengan mengambil gambar kardus dari berbagai sudut 

dan tingkat kecerahan yang juga beragam. Anotasi data dilakukan dengan bantuan 

aplikasi Computer Vision Annotation Tool (CVAT) yang memiliki service untuk 
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anotasi data dengan cepat dengan menggunakan 2D bounding box, polygon, point 

polylinesi yang programnya terdapat pada komputer A. 

Tahapan anotasi data menggunakan CVAT mebutuhkan beberapa langkah 

terlebih dahulu hingga akhirnya data dapat digunakan sebagai dataset untuk 

training model. Pertama adalah membuat dengan proyek baru dan kemudian 

menyiapkan kelas-kelas yang akan digunakan dengan tools yang sudah disiapkan 

CVAT. Setelah seluruh data dianotasi, barulah dataset dapat digunakan sebagai 

dataset training untuk modeling. Dalam penelitian ini, terdapat lima kelas object 

yang dibutuhkan. Kelas-kelas tersebut adalah box universal SKU, box satu SKU, 

universal SKU, SKU, dan flag. Setelah membuat kelas-kelas yang dibutuhkan 

dalam object detection untuk penelitian ini, dilakukan proses labeling atau anotasi 

data dengan bantuan CVAT sesuai dengan kelasnya masing-masing pada setiap 

dataset. Pada penelitian ini, anotasi data kali ini menggunakan bounding box 

dengan bentuk rectangle karena sesuai dengan bentuk dari data gambar, yaitu box. 

Tahapan anotasi data yang dilakukan pada keseluruhan gambar dibantu oleh tim 

outsource. Terdapat dua jenis box utama dalam penelitian ini, yang pertama adalah 

box dengan satu identitas atau satu SKU yang tercetak pada box, dan box universal 

dengan beberapa identitas atau universal SKU yang berati terdapat beberapa SKU 

yang tercetak pada box, dimana identitas sebenarnya ditandai dengan object flag. 

 

Gambar 3.2 Ilustrasi Dataset Box Satu SKU 
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Gambar 3.3 merupakan ilustrasi dari gambar box dengan satu identitas atau 

satu SKU yang dimiliki oleh PT. XYZ, sedangkan gambar 3.4 merupakan ilustrasi 

dari gambar box universal yang memiliki beberapa identitas atau universal SKU. 

Desain kotak multi SKU dirancang agar lebih efisien saat memproduksi variasi lain 

dari suatu produk. Untuk box dengan SKU universal, terdapat tanda atau flag 

sebagai penunjuk identitas kotak sebenarnya. Flag ini menandai kotak yang berisi 

produk yang sedang diproduksi. Lokasi flag berada di sisi kanan kode batang yang 

terletak di bagian tengah kotak dengan SKU sebenarnya terletak di sisi kiri dari 

kode batang tersebut. Desain box ini membantu untuk mempermudah identifikasi 

produk dalam box yang sedang diproduksi. Box universal ini memungkinkan PT. 

XYZ memproduksi berbagai produk tanpa perlu mengubah desain kotak secara 

signifikan. Penggunaan flag menjadi kunci dalam membedakan antara satu produk 

dengan produk lainnya, atau biasanya satu produk yang memiliki varian yang 

beragam. Efisiensi dalam penggunaan kotak multi SKU meningkatkan 

produktivitas dan fleksibilitas dalam produksi. Hal ini membuat proses produksi 

menjadi lebih optimal dan cost saving. 

 

Gambar 3.3 Ilustrasi Dataset Box Universal SKU 

 

Dataset untuk train dan validation terbagi menjadi 1580 gambar untuk train 

dataset dan 396 gambar untuk validation dataset. Train dan validation dari seluruh 

dataset menggunakan bantuan YOLOv8 dan YOLOv11 dengan outputnya adalah 
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best.pt yang merupakan model dari proyek ini. Pada penelitian ini, model yang 

berupa best.pt akan diberlakukan task export menjadi best.openvino yang 

merupakan inference framework dari OpenVINO untuk inference milik Intel dan 

menjadi best.engine yang untuk inference menggunakan TensorRT yang 

merupakan inference framework milik NVIDIA. Train dan validation dilakukan di 

komputer A karena dataset sudah disiapkan pada komputer A. Untuk task export 

model dilakukan pada masing-masing komputer sesuai dengan arsitektur inference 

framework. Gambar 3.5 dan gambar 3.6 merupakan ilustrasi dari hasil anotasi atau 

gambar yang telah diberi label pada dataset. 

 

 

Gambar 3.4 Ilustrasi Anotasi pada Dataset Box Satu SKU 

 

3.5 Training Model 

 Para tahapan pelatihan model atau training model yang akan dilakukan 

menggunakan komputer A, perlu dilakukan beberapa hal terlebih dahulu. Setelah 

selesai melakukan anotasi data, perlu dilakukan split antara data training dan data 

untuk test. Pada penlitian ini digunakan perbandingan 80% untuk data training dan 

20% untuk data testing, sehingga total data untuk training adalah 1580 dan total 

data untuk testing adalah 396 data. Tahapan pertama setelah anotasi dan split data 
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adalah melakukan anotasi data yang sudah dijelaskan sebelumnya. Berikutnya 

adalah melakukan review terhadap dataset yang sudah dianotasi. Review dataset ini 

berguna untuk memastikan agar model tidak overfit dan dataset yang digunakan 

memiliki kualitas yang baik secara ukuran hingga variasi data. Apabila terdapat 

kekurangan pada dataset, maka tahapan pengumpulan data akan dilakukan kembali 

untuk melengkapi data-data gambar yang kurang bervariasi. Setelah dataset 

disiapkan, perlu dilakukan konversi dari seluruh dataset menjadi satu buah file yang 

memiliki format .yaml untuk mempermudah melakukan training model. Konversi 

format ini dapat dilakukan dengan menggunakan tools bawaan dari CVAT setelah 

proses anotasi data selesai dilakukan. 

 Setelah disiapkan dataset dengan format .yaml, barulah dapat diberlakukan 

tahapan training model pada menggunakan YOLOv8 dan YOLOv11. Proses 

training dilakukan menggunakan komputer A dengan bantuan program python dan 

library seperti ultralytics dan YOLO dengan parameter seperti pada tabel 3.2. 

 

Tabel 3.2 Hyperparameter Tuning 

Parameter Penjelasan Singkat Nilai 

imgsize Mengubah ukuran citra 640 

Batch Untuk pengaturan batch size 64 

Epochs Total epoch 8000 

Pretrained Pretrained model dari COCO True 

lr0 Learning Rate awal 0.01 

lr1 Learning Rate akhir 0.1 

momentum Faktor momentum 0.937 

weight_decay L2 untuk menghindari overfit 0.0005 

warmup_epochs Learning rate untuk fase 

warmup 

3 

warmup_momentum Momentum untuk warmup 0.8 

warmup_bias_lr Learning rate untuk warmup 0.1 

box Beban dari box loss 0.05 

cls Beban dari classification loss 0.3 

iou Intersection over Union 

threshold 

0.2 

hsv_h Penyesuaian hue 0.015 

hsv_s Penyesuaian saturation 0.7 
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Tabel 3.2 Lanjutan Hyperparameter Tuning 

Parameter Penjelasan Singkat Nilai 

hsv_v Penyesuaian value 0.4 

degrees Rotasi citra 45.0 

translate Transalasi citra 0.2 

scale Skala citra 0.5 

shear Memotong citra 5.0 

perspective Transformasi citra acak 0.0001 

flipud Memutar balikkan citra atas 

bawah 

0.25 

fliplr Memutar balikkan citra kiri 

kanan 

0.1 

mosaic Mengombinasikan 4 citra train 0.0 

mixup Mencampur citra 0.0 

dropout Dropout 0.2 

patience Jumlah epoch tanpa 

perkembangan 

300 

 

Melalui tabel 3.2 dapat dilihat bahwa terdapat proses preprocessing yang 

diberlakukan pada dataset. Diantaranya adalah resize, penyesuaian warna HSV, 

translate, scale, shear, flipud, fliplr. Tujuan dari proses preprocessing pada tahapan 

training model ini adalah untuk memperkaya pengetahuan knowledge base dengan 

menambah variasi pada dataset. Parameter pretrained diatur menjadi True dengan 

dataset dari COCO yang memiliki kelas yang banyak seperti orang, kendaraan 

mobil, sepeda, dan objek lainnya. 

3.6 Export Model 

 Tahapan export model bertujuan agar model yang sudah diberlakukan 

training dengan dataset sebelumnya dapat digunakan untuk melakukan task sesuai 

dengan keinginan. Dengan memberlakukan export, model dapat digunakan untuk 

detection, segmentation, classify, pose estimation, dan Oriented Bounding Boxes 

(OBB) object detection. Selain agar dapat digunakan untuk inference, export model 

dapat membuat model menjadi lebih optimal dengan memberlakukan model 

optimization pada model best.pt yang didapatkan dari training model. Terdapat 

beberapa teknik optimisasi model yang ada, tetapi sudah terdapat beberapa tools 

untuk mempermudah melakukan model optimization yang telah disediakan. 
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Beberapa inference framework yang dapat digunakan sebagai tools untuk 

mempermudah model optimization adalah OpenVINO, TensorRT, ONNX, hingga 

TF Lite. Masing-masing inference framework tersebut sudah memiliki metode-

metodenya sendiri untuk melakukan model optimization dengan cara yang khas dan 

memiliki tujuan yang berbeda sesuai dengan arsitektur tiap inference framework.  

 Library YOLO yang digunakan dalam penelitian ini telah menawarkan cara 

mudah untuk melakukan export model. YOLO menyediakan mode untuk 

melakukan export model menjadi inference framework sesuai dengan keinginan 

dan kebutuhan yang berbeda. Sebagai contohnya untuk inference framework pada 

mobile device dapat mengguankan format TF Lite. Tiap versi dari YOLO 

menyediakan inference framework yang berbeda, tetapi terdapat beberapa inference 

framework yang selalu ada, yaitu OpenVINO dan TensorRT. Inference framework 

milik OpenVINO menawarkan arsitektur yang membuat model dapat 

menggunakan CPU dengan tiga kali lebih cepat, sedangkan TensorRT menawarkan 

arsitektur yang mampu mendorong kemampuan GPU hingga lima kali lipat. Pada 

penelitian yang berfokus melihat potensi CPU sebagai alternatif dari GPU, tentunya 

akan menggunakan inference framework dari OpenVINO untuk CPU dan 

TensorRT untuk mengetahui performa inference framework menggunakan GPU. 

3.7 Perbandingan Kinerja 

 Pada tahapan perbandingan kinerja akan dilakukan eksperimen dan 

membandingkan serta menganalisis hasil dari dua inference framework yang 

berbeda, yaitu OpenVINO dan TensorRT. Kedua inference framework akan 

diimplementasikan menggunakan model yang telah diberlakukan training dengan 

dataset yang sama pada YOLOv8 dan YOLOv11. Masing-masing inference 

framework memiliki kemampuan untuk mengubah format model agar dapat 

diberlakukan task lain seperti prediction, classification, hingga detection dan dapat 

mengoptimalkan kinerja dari model tersebut. Perbedaan antara OpenVINO dan 

TensorRT sangat mendasar, terletak pada arsitekturnya. OpenVINO yang 

dikembangkan oleh Intel mengoptimalkan kinerja model dan dirancang untuk 

dijalankan pada perangkat milik CPU milik Intel dan FPGA. Inference framework 

TensorRT yang dikembangkan oleh NVIDIA dirancang dan disesuaikan sehingga 

mampu mengoptimalkan kinerja model pada hardware GPU milik NVIDIA. 
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 Perbandingan kinerja pada penelitian kali ini mencakup beberapa hal agar 

penelitian tetap sesuai dengan keinginan, yaitu untuk mengetahui performa 

inference framework pada kebutuhan object detection secara real-time khususnya 

untuk objek box yang berjalan pada belt conveyor.  Indikator perbandingan untuk 

melihat kinerja dari masing-masing inference framework adalah inference speed, 

memory consumption, model size, loading time, dan accuracy yang melihat dari 

nilai mAP atau mean Average Precision. Dengan melakukan perbandingan antara 

inference framework dari OpenVINO dan TensorRT menggunakan kelima 

indikator tersebut, diharapkan dapat memberikan wawasan yang sesuai pada trade-

off antara performa keduanya berdasarkan resource dan arstiketur masing-masing 

ketika kedua inference framework diterapkan pada model YOLOv8 dan YOLOv11 

yang telah melalui proses training dengan dataset yang sama. 

 

Tabel 3.3 Indikator Perbandingan 

Indikator 
TensorRT OpenVINO 

YOLOv8 YOLOv11 YOLOv8 YOLOv11 

Inference 

speed (s) 
    

Memory 

consumption 

(MB) 

    

Model size 

(MB) 
    

Loading time 

(s) 
    

Accuracy (%)     

 

 Indikator inference speed akan didapatkan dari melakukan model validation 

menggunakan fungsi val() dari ultralytics yang dapat memberikan informasi 

lengkap mulai dari preprocess, inference speed, loss, dan postprocess tiap citra 

pada dataset test. Indikator memory consumption didapatkan dari pengukuran 
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jumlah memory yang digunakan saat program dijalankan dengan bantuan library 

psutils yang memiliki fungsi Process() dan memiliki getter berupa memory_info() 

dan  Resident Set Size (RSS) yang memberikan informasi penggunaan memory 

dalam satuan kilobyte (KB). Indikator model size didapatkan dari melihat ukuran 

model setelah dioptimisasi dengan cara klik kanan dan memilih properties pada 

model. Indikator loading time didapatkan dari memberikan timestamp pada start 

dan end untuk proses load model dengan bantuan library time yang memberikan 

informasi waktu dalam satuan detik. Indikator accuracy dengan mAP50 didapatkan 

dari fungsi metrics dan box secara spesifik mAP50 untuk mendapatkan akurasi 

berdasarkan mAP50. 

 

Gambar 3.5 Snapshot Kode Python Pengukuran Indikator 

  

Gambar 3.5 merupakan potongan kode program python yang digunakan 

dalam penelitian ini untuk mendapatkan indikator inference speed, memory 

consumption, load time, dan accuracy. Gambar 3.6 merupakan contoh keluaran dari 

program python yang merupakan hasil dari pengukuran indikator pada penelitian 

ini. 

 

Gambar 3.6 Contoh Hasil Pengukuran Indikator 
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BAB IV 

Hasil dan Pembahasan 

4.1 Persiapan Perangkat 

 Perangkat keras yang digunakan merupakan aset milik PT. XYZ yang 

digunakan sesuai dengan izin yang diperoleh. Komputer A dan komputer B pada 

saat yang bersamaan digunakan untuk kebutuhan Perusahaan PT. XYZ, sehingga 

untuk penelitian ini, dibutuhkan koordinasi jadwal. Setelah mendapatkan izin dan 

jadwal penggunaan komputer A, peneliti baru dapat melanjutkan penelitiannya, 

mulai dari anotasi dataset hingga proses optimisasi model dan eksperimen. 

Perangkat lunak yang digunakan didapatkan dengan mudah, karena perangkat 

lunaknya bersifat open source yang dapat diakses dengan mudah. Persiapan 

perangkat lunak dilakukan dengan melakukan instalasi library pada kedua 

perangkat keras. 

4.2 Dataset 

 Pembuatan dataset dibantu oleh tim produksi di lapangan untuk 

mengumpulkan data berdasarkan arahan peneliti. Ketentuan dataset yang 

dibutuhkan untuk penelitian ini adalah gambar box dengan berbagai sudut dengan 

pencahayaan ruangan yang cukup variatif dalam keadaan cenderung gelap maupun 

terang dengan berbagai desain box yang tersedia. Variasi pencahayaan dalam 

melakukan pengumpulan dataset ada pada pencahayaan gelap sebesar 76 lux pada 

pencahayaan normal ruangan di gudang dan area produksi hingga pencahayaan 

terang sebesar 2208 lux pada pencahayaan normal ruangan kerja menggunakan 

aplikasi android Illuminance – Lux Light Meter.  
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(a)                                                         (b) 

Gambar 4.1 Pengukuran Pencahayaan; (a) Pengumpulan dataset pada kondisi 

gelap, (b) Pengumpulan dataset pada kondisi terang 

 

Setelah dataset dikumpulkan dalam google drive, peneliti melakukan proses 

review untuk memperhatikan kualitas dataset sesuai permintaan. Apabila terdapat 

data yang tidak variatif pada sudut pengambilan gambar dan desain, maka data akan 

dihapus dan meminta bantuan tim produksi untuk menambah beberapa data sesuai 

kebutuhan. 

 Setelah melalui proses review dan dataset sudah cukup variatif, maka proses 

selanjutnya adalah mengunduh data dan mengunggahnya untuk disiapkan di 

komputer A yang kemudian dilakukan anotasi data. Anotasi data dilakukan 

menggunakan bantuan software aplikasi Computer Vision Annotation Tools 

(CVAT) yang terdapat pada komputer A. Proses anotasi dataset dibantu oleh tim 

outsource untuk mempercepat proses anotasi. Tim outsource merupakan pihak 

eksternal yang dipekerjakan secara profesional secara khusus untuk tugas tertentu 

maupun project tertentu dengan tujuan mengoptimalkan efisiensi profesional dan 

mengurangi biaya. Setelah anotasi data selesai dilakukan, akan kembali dilakukan 
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review untuk perbaikan agar tidak terdapat noise pada anotasi data. Anotasi yang 

dianggap memiliki noise adalah anotasi yang melewati sisi samping dari box 

maupun SKU dan flag seperti yang tertera pada gambar 4.1. 

  

                               (a)                                                         (b) 

Gambar 4.2 Ilustrasi Anotasi dataset; (a) Noise pada anotasi box, (b) Anotasi 

tidak noise 

 

4.3 Training Model 

 Pada proses training model, diperlukan dataset train dan dataset test yang 

sudah dipisahkan. Untuk melakukan train test split, digunakan function 

train_test_split milik library SKLearn dengan proporsi 80:20 yang berarti terdapat 

1580 data untuk training dan 396 data untuk test atau validation. Training model 

dilakukan menggunakan komputer A dikarenakan komputer A memiliki storage 

yang lebih besar dengan RAM dan GPU yang lebih besar dibandingkan komputer 

B, sehingga sesuai untuk kebutuhan proses training. Proses training dilakukan 

sebanyak masing-masing lima kali, untuk model YOLOv8n dan YOLOv11n untuk 

mendapatkan variasi hasil guna memperkaya data pada penelitian ini. Proses 

training model menggunakan hyperparameter yang sama antara YOLOv8n dan 

YOLOv11n seperti pada tabel 3.2. 

Hyperparameter yang digunakan pada penelitian kali ini telah disesuaikan 

untuk mendapatkan hasil yang maksimal. Parameter imgsz dijadikan sebesar 640 

guna mengurangi jumlah pixel dari gambar asli, tetapi tidak menjadikannya terlalu 

rendah. Pada batch digunakan batch size sebesar 64 untuk membagi dataset 

menjadi 64 data tiap epoch agar proses training terbagi dan menjadi lebih ringan 
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untuk mendapatkan gradien hasil yang stabil. Parameter pretrain diatur menjadi 

True untuk menjadikannya transfer learning model original dengan dataset dari 

COCO milik ultralytics. Parameter learning rate diatur 0.01 dan 0.1 agar weight 

dari model terus diperbaiki. Parameter weight dan dropout diatur menjadi 0.0005 

dan 0.2 untuk mencegah terjadinya overfit pada model. Preprocessing tentunya 

juga dibutuhkan untuk menambah variasi pada data, sehingga diterapkan beberapa 

parameter seperti flip, scale, translate, hsv. Parameter patience diatur menjadi 300 

epochs, sehingga setelah 300 epochs tidak terdapat perubahan pada mAP, maka 

proses training akan dihentikan untuk mempercepat proses training model. 

4.3.1 Hasil Training Model 

 Training model untuk YOLOv8n dan YOLOv11n dilakukan sebanyak lima 

kali untuk memperkaya data dalam penelitian ini. Kedua model diberlakukan 

training dengan pengatruan hyperparameter yang sama dan dataset yang sama. 

4.3.1.1 Hasil Training YOLOv8n 

Tabel 4.1 Hasil Training YOLOv8n 

No mAP(50%) Precision Recall Total epochs 

1. 95.67 94.58 92.65 1033 

2. 95.65 94.52 92.65 1033 

3. 95.65 94.59 92.65 1033 

4. 95.65 94.58 92.65 1033 

5. 95.67 94.58 92.65 1033 

  

Pada tabel 4.1 menunjukkan hasil training model YOLOv8n sebanyak lima 

kali yang memuat nilai dari mAP(50%), precision, recall, dan total epochs. Hasil 

training yang menggunakan 1580 total data ini memberikan performa yang cukup 

konsisten pada setiap kali melakukan training. Nilai mAP(50%) mendapatkan 

rentang nilai antara 95.65% dan 95.67%, dengan precision berada pada rentang 

94.52% hingga 94.59% dan nilai recall yang konsisten pada 92.65%. Melalui data 

akurasi pada tabel 4.1 dapat disimpulkan bahwa model YOLOv8n dapat melakukan 

task object detection dengan baik untuk setiap dataset train yang diberikan. 
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Seluruh repetisi training untuk YOLOv8n berakhir pada epoch 1033 yang 

menandakan bahwa tidak terdapat perubahan hasil setelah 300 epoch hingga 

diakhiri pada epoch yang ke 1033. Perbedaan hasil pada tiap repetisi training 

yang tidak signifikan ini dapat diartikan bahwa YOLOv8n memiliki kemampuan 

yang baik sehingga tetap konsisten pada tiap repetisinya.  

4.3.1.2 Hasil Training YOLOv11n 

Tabel 4.2 Hasil Training YOLOv11n 

No mAP(50%) Precision Recall Total epochs 

1. 96.83 95.35 93.91 1074 

2. 96.83 95.35 93.91 1074 

3. 96.83 95.35 93.91 1074 

4. 96.83 95.35 93.91 1074 

5. 96.83 95.35 93.91 1074 

 

Pada tabel 4.2 menunjukkan hasil training model YOLOv11n sebanyak 

lima kali yang memuat nilai dari mAP(50%), precision, recall, dan total epochs. 

Hasil training dengan 1580 total data ini memberikan performa yang sangat 

konsisten pada setiap kali melakukan training. Nilai mAP(50%) mendapatkan nilai 

96.83%, dengan precision berada pada 95.35, dan nilai recall yang konsisten pada 

93.91%. Melalui data akurasi pada tabel 4.2 dapat disimpulkan bahwa model 

YOLOv11n dapat melakukan task object detection dengan baik untuk setiap dataset 

train yang diberikan. 

Seluruh repetisi training untuk YOLOv11n berakhir pada epoch 1074 yang 

menandakan bahwa tidak terdapat perubahan hasil setelah 300 epoch hingga 

diakhiri pada epoch yang ke 1074. Setelah lima kali repetisi training pada model 

YOLOv11n dengan dataset yang sama, didapatkan hasil yang sama untuk setiap 

repetisinya, sehingga dapat diartikan bahwa YOLOv11n sangat stabil dan konsisten 

untuk tiap repetisinya. 

Dalam perbandingan melalui accuracy yang dihasilkan dari YOLOv8n dan 

YOLOv11n dapat dilihat bahwa YOLOv11n memiliki selisih 1.21%. Diketahui 

pada penelitian terdahulu bahwa YOLOv8n telah mengalami kenaikan accuracy 
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dibandingkan dengan pendahulunya seperti YOLOv6n yang sebesar 89.8% 

menjadi 90.6% atau kenaikan sebesar 0.89% (Liu, dan Li, 2024). Dari sini dapat 

dilihat bahwa YOLO selalu konsisten memperbarui model miliknya dari segi 

arsitekturnya, sehingga membawa perubahan dan peningkatan pada setiap versinya, 

sesuai dengan temuan pada hasil training YOLOv11n pada penelitian ini. 

4.4 Export Model 

  Pada proses export model, atau mengoptimalkan model menjadi TensorRT 

dan OpenVINO pada penelitian ini diberlakukan pada setiap model yang sudah 

selesai proses training. Seluruh model yang ada akan dioptimalkan dengan cara 

export model menjadi format engine untuk TensorRT dan openvino yang memiliki 

XML untuk network topology, BIN yang menjelaskan weights dan biases, Mapping 

untuk OpenVINO. Proses export model YOLO menjadi format engine untuk pada 

TensorRT dilakukan menggunakan komputer B yang memiliki GPU dari NVIDIA, 

sehingga sesuai dengan teknik optimisasi TensorRT yang secara spesifik 

menggunakan GPU milik NVIDIA. Sedangkan untuk export model menjadi format 

openvino, dilakukan menggunakan komputer A yang memiliki processor Intel 

XEON, sehingga sesuai dengan teknik optimasi dari OpenVINO yang 

menggunakan perangkat CPU milik Intel.  

Dalam melakukan optimisasi model melalui export ini, terdapat parameter 

yang dapat disesuaikan untuk masing-masing metode, baik dari TensorRT maupun 

dari OpenVINO. Tujuan dari menyesuaikan parameter ini adalah mengaktifkan dan 

menyesuaikan teknik-teknik optimisasi model yang dimiliki oleh masing-masing 

inference framework. Seperti contohnya pada TensorRT, terdapat format untuk 

menentukan format inference framework, INT8 untuk mengaktifkan quantization 

menjadi INT8, half untuk mengaktifkan half-precision floating-point menjadi 

FP16, simplify untuk menghilangkan nodes yang tidak digunakan, workspace untuk 

mengalokasikan jumlah maksimal dari memory yang akan digunakan untuk 

optimization dan inference, batch untuk memberikan batch secara spesifik. Pada 

OpenVINO, terdapat parameter yang lebih sederhana untuk mengaktifkan teknik 

optimisasinya, yaitu format untuk menentukan inference framework, imgsz untuk 

mengaktifkan resize pada input, half untuk mengaktifkan quantization menjadi 

FP16, INT8 untuk mengaktifkan quantization menjadi INT8, batch untuk 
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memberikan batch secara spesifik, dynamic untuk mengaktifkan kemampuan 

inference untuk berbagai ukuran input. Pada penelitian ini, untuk export menjadi 

TensorRT, diaktifkan format menjadi engine, half menjadi True, simplify menjadi 

True, dan workspace menjadi 50 serta menggunakan device 0. Pada export model 

menjadi OpenVINO, diberikan parameter imgsz menjadi 640, half menjadi True, 

dan dynamic menjadi True. Tabel 4.3 hingga tabel 4.7 merupakan tabel rekapitulasi 

indikator perbandingan dari lima kali export model terhadap lima model yang telah 

diberlakukan training sebelumnya. 

Tabel 4.3 Hasil Export Model Replikasi 1 

Indikator 
TensorRT OpenVINO 

YOLOv8 YOLOv11 YOLOv8 YOLOv11 

Inference 

speed (s) 
0.0059 0.0066 0.0173 0.0168 

Memory 

consumption 

(MB) 

4175.36 4176.77 2428.08 3178.16 

Model size 

(MB) 
8.3 7.8 MB 6.4 5.6 

Loading time 

(s) 
0.0006589 0.0009272 0.002273 0.0032367 

Accuracy (%) 95.27 96.32 95.23 96.22 

  

Hasil export model pada replikasi pertama untuk melakukan perbandingan 

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada 

beberapa indikator pengujian disajikan pada tabel 4.3. Seperti contohnya pada 

inference speed, TensorRT memiliki kecepatan yang lebih baik dibandingkan 

dengan OpenVINO pada YOLOv8n dan YOLOv11n, pada indikator memory 

consumption OpenVINO memiliki kemampuan lebih baik karena membutuhkan 

RAM yang lebih sedikit ketika melakukan inference, pada model size untuk 

replikasi pertama ini OpenVINO lebih unggul karena ukuran model yang lebih kecil 

dan ringan serta adanya penurunan model size pada model YOLOv11n. Pada 
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indikator loading time terlihat bahwa TensorRT memiliki kecepatan load model 

lebih cepat, sedangkan pada accuracy tidak terlihat perbedaan signifikan pada 

kedua inference framework, tetapi terlihat adanya sedikit kenaikan accuracy jika 

menggunakan model YOLOv11n. 

 

Tabel 4.4 Hasil Export Model Replikasi 2 

Indikator 
TensorRT OpenVINO 

YOLOv8 YOLOv11 YOLOv8 YOLOv11 

Inference 

speed (s) 
0.0057 0.0068 0.0171 0.0166 

Memory 

consumption 

(MB) 

4081.616 4077.600 2674.860 3172.896 

Model size 

(MB) 
8.3 7.9 6.4 5.6 

Loading time 

(s) 
0.00069713 0.0007345 0.0035126 0.0036258 

Accuracy (%) 95.26 96.3 95.23 96.22 

 

Hasil export model pada replikasi kedua untuk melakukan perbandingan 

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada 

beberapa indikator pengujian disajikan pada tabel 4.4. Pada indikator inference 

speed terlihat TensorRT memiliki kecepatan yang lebih baik dibandingkan dengan 

OpenVINO pada YOLOv8n dan YOLOv11n, pada indikator memory consumption 

OpenVINO memiliki kemampuan lebih baik karena membutuhkan RAM yang 

lebih sedikit ketika melakukan inference, pada model size untuk replikasi kedua 

OpenVINO masih lebih unggul karena ukuran model yang lebih kecil dan ringan 

serta adanya penurunan model size pada model YOLOv11n sama seperti replikasi 

sebelumnya. Pada indikator loading time terlihat bahwa TensorRT memiliki 

kecepatan load model lebih cepat, sedangkan pada accuracy tidak terlihat 
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perbedaan signifikan pada kedua inference framework, tetapi tetap terlihat adanya 

kenaikan accuracy jika menggunakan model YOLOv11n. 

 

 

Tabel 4.5 Hasil Export Model Replikasi 3 

Indikator 
TensorRT OpenVINO 

YOLOv8 YOLOv11 YOLOv8 YOLOv11 

Inference 

speed (s) 
0.005 0.0067 0.0171 0.0167 

Memory 

consumption 

(MB) 

2096.992 4079.976 2809.352 3248.260 

Model size 

(MB) 
8.2 7.7 6.4 5.6 

Loading time 

(s) 
0.0006437 0.0006775 0.0027019 0.0030105 

Accuracy (%) 95.21 96.17 95.23 96.22 

 

Hasil export model pada replikasi ketiga untuk melakukan perbandingan 

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada 

beberapa indikator pengujian disajikan pada tabel 4.5. Pada indikator inference 

speed masih sama seperti dua replikasi sebelumnya, yaitu terlihat TensorRT lebih 

cepat melakukan inference jika dibandingkan dengan OpenVINO pada YOLOv8n 

dan YOLOv11n. Pada indikator memory consumption terlihat perubahan 

kemampuan pada inference framework TensorRT khususnya pada model 

YOLOv8n yang mengalami penurunan signifikan pada, tetapi tidak terlihat pada 

model YOLOv11n, sedangkan pada OpenVINO juga tidak terlihat perubahan 

signifikan jika dibandingkan dengan dua replikasi sebelumnya. Pada model size 

untuk replikasi ketiga OpenVINO masih lebih unggul karena ukuran model yang 

lebih kecil dan ringan serta adanya penurunan model size pada model YOLOv11n 
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sama seperti replikasi sebelumnya. Pada indikator loading time terlihat bahwa 

TensorRT memiliki kecepatan load model lebih cepat, sedangkan pada accuracy 

tidak terlihat perbedaan signifikan pada kedua inference framework, tetapi tetap 

terlihat adanya kenaikan accuracy jika menggunakan model YOLOv11n. 

 

Tabel 4.6 Hasil Export Model Replikasi 4 

Indikator 
TensorRT OpenVINO 

YOLOv8 YOLOv11 YOLOv8 YOLOv11 

Inference 

speed (s) 
0.0055 0.0068 0.0173 0.0165 

Memory 

consumption 

(MB) 

2102.776 4075.564 2947.048 3293.976 

Model size 

(MB) 
8.4 7.7 6.4 5.6 

Loading time 

(s) 
0.0007231 0.0006728 0.0028142 0.0026895 

Accuracy (%) 95.27 96.30 95.23 96.22 

 

Hasil export model pada replikasi keempat untuk melakukan perbandingan 

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada 

beberapa indikator pengujian disajikan pada tabel 4.3. Pada indikator inference 

speed masih sama seperti tiga replikasi sebelumnya, yaitu terlihat TensorRT lebih 

cepat melakukan inference jika dibandingkan dengan OpenVINO pada model 

YOLOv8n dan YOLOv11n. Penurunan memory consumption pada YOLOv8n 

dengan inference framework TensorRT kembali terlihat di replikasi keempat ini, 

sedangkan pada model YOLOv11n dan kedua model dengan OpenVINO tidak 

terlihat adanya perubahan signifikan. Pada model size untuk replikasi keempat 

OpenVINO kembali unggul dengan ukuran model yang lebih kecil dan ringan serta 

adanya penurunan model size pada model YOLOv11n sama seperti replikasi 

sebelumnya. Pada indikator loading time terlihat bahwa TensorRT lebih cepat 
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dalam kemampuan load model, sedangkan pada accuracy masih tidak terlihat 

perbedaan signifikan pada kedua inference framework, tetapi tetap terlihat adanya 

kenaikan accuracy jika menggunakan model YOLOv11n. 

 

 

Tabel 4.7 Hasil Export Model Replikasi 5 

Indikator 
TensorRT OpenVINO 

YOLOv8 YOLOv11 YOLOv8 YOLOv11 

Inference 

speed (s) 
0.0051 0.0063 0.0169 0.0166 

Memory 

consumption 

(MB) 

2098.904 4073.968 3026.500 3352.200 

Model size 

(MB) 
8.0 7.7 6.4 5.6 

Loading time 

(s) 
0.0006904 0.0006697 0.0030753 0.0032799 

Accuracy (%) 95.24 96.31 95.23 96.22 

 

Hasil export model pada replikasi kelima untuk melakukan perbandingan 

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada 

beberapa indikator pengujian disajikan pada tabel 4.3. Pada indikator inference 

speed masih sama seperti empat replikasi sebelumnya, yaitu terlihat TensorRT lebih 

cepat jika dibandingkan dengan OpenVINO pada model YOLOv8n dan 

YOLOv11n. Penurunan memory consumption pada YOLOv8n dengan inference 

framework TensorRT kembali terjadi di replikasi keempat ini yang menandakan 

bahwa replikasi export model membawa dampak, sedangkan pada model 

YOLOv11n dan kedua model dengan OpenVINO masih tidak terlihat adanya 

perubahan signifikan. Pada model size untuk replikasi kelima OpenVINO kembali 

unggul dengan ukuran model yang lebih kecil dan ringan sekitar 1 MB dari 

TensorRT, serta adanya penurunan model size pada model YOLOv11n sama seperti 
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replikasi sebelumnya. Pada indikator loading time terlihat bahwa TensorRT masih 

unggul dalam kemampuan load model, sedangkan pada accuracy masih tidak 

terlihat perbedaan signifikan setelah lima kali replikasi pada kedua inference 

framework, tetapi tetap terlihat adanya kenaikan accuracy jika menggunakan model 

YOLOv11n dengan selisih sekitar 1%. 

Melalui rekapitulasi hasil export model dengan replikasi lima kali, belum 

dapat dilihat hasil signifikan pada kedua inference framework dengan variasi model 

YOLOv8n dan YOLOv11n. Maka dari itu diperlukan kajian lebih mendalam pada 

hasil export model dengan replikasi lima kali ini. 

4.5 Pembahasan Perbandingan Kinerja 

Pada sub bab ini akan membahas lebih mendalam mengenai hasil dari 

export model YOLOv8n dan YOLOv11n menjadi inference framework TensorRT 

dan OpenVINO. Pada perbandingan kinerja ini akan dilakukan tiga metode 

pengujian agar didapatkan hasil dengan pembahasan yang lebih mendalam. Ketiga 

metode pengujian adalah melalui rata-rata, kemudian melalui uji T independent 

untuk melihat perbedaan rata-rata kedua kelompok signifikan atau tidak, dan uji 

two-way ANOVA untuk mencari tahu relasi atau interaksi pada kombinasi tertentu 

antara model dengan inference framework. 

4.5.1 Perbandingan Rata-rata 

 Perbandingan rata-rata atau mean dapat dilakukan dengan cukup sederhana 

melalui perhitungan rata-rata dari indikator perbandingan terhadap model dan 

inference framework yang telah dilakukan dengan replikasi sebanyak lima kali. 

4.5.1.1 Inference Speed 

Tabel 4.8 Perbandingan Rata-rata Inference Speed 

Model TensorRT OpenVINO 

YOLOv8n 0.00544 s 0.01714 s 

YOLOv11n 0.00664 s 0.01664 s 

 

Tabel 4.8 menyajikan data rata-rata inference speed untuk TensorRT dan 

OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n. Dalam 

penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata inference 
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speed untuk model YOLOv8n adalah 0.00544 detik dan untuk YOLOv11n adalah 

0.00664 detik dengan selisih antara kedua inference speed pada kedua model adalah 

sebesar 0.0012 detik. Pada  inference framework OpenVINO, terlihat bahwa 

menggunakan model YOLOv8n adalah 0.0171 detik,  sedangkan saat menggunakan 

YOLOv11n inference speed mengalami peningkatan menjadi 0.0166 detik dengan 

selisih sebesar 0.0005 detik. 

4.5.1.2 Memory Consumption 

Tabel 4.9 Perbandingan Rata-rata Memory Consumption 

Model TensorRT OpenVINO 

YOLOv8n 2891.557 MB 2765.787 MB 

YOLOv11n 4077.197 MB 3234.202 MB 

 

Tabel 4.9 menyajikan perbandingan rata-rata dari memory consumption 

untuk TensorRT dan OpenVINO pada saat  melakukan inference menggunakan 

model YOLOv8n dan YOLOv11n. Dalam penggunaan inference framework 

TensorRT, dapat dilihat bahwa rata-rata memory consumption untuk model 

YOLOv8n adalah 2891.557 MB dan untuk YOLOv11n adalah 4077.197 MB yang 

menunjukkan bahwa penggunaan TensorRT pada model YOLOv8n. Pada 

OpenVINO didapatkan memory consumption sebesar 2765.787 MB untuk 

YOLOv8n dan 3234.202 MB untuk YOLOv11n. 

4.5.1.3 Model Size 

Tabel 4.10 Perbandingan Rata-rata Model Size 

Model TensorRT OpenVINO 

YOLOv8n 8.24 MB 6.4 MB 

YOLOv11n 7.76 MB 5.6 MB 

 

Tabel 4.10 menyajikan perbandingan rata-rata dari model size untuk 

TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n. 

Dalam penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata 

model size untuk model YOLOv8n adalah 8.24 MB dan untuk YOLOv11n adalah 

7.76 MB yang memiliki selisih sebesar 0.48 MB. Pada  inference framework 
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OpenVINO, terlihat bahwa rata-rata model size untuk YOLOv8n adalah 6.4 MB 

dan pada YOLOv11n adalah 5.6 MB yang memiliki selisih 0.8 MB.  

4.5.1.4 Load Time 

Tabel 4.11 Perbandingan Rata-rata Load Time 

Model TensorRT OpenVINO 

YOLOv8n 0.000682646 s 0.0028754 s 

YOLOv11n 0.00073634 s 0.00316848 s 

 

Tabel 4.11 menyajikan perbandingan rata-rata dari load time untuk 

TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n. 

Dalam penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata 

load time untuk model YOLOv8n adalah 0.00068 detik dan untuk YOLOv11n 

adalah 0.00073 detik. Pada  inference framework OpenVINO, terlihat bahwa 

YOLOv8n membutuhkan waktu 0.00287 detik, sedangkan untuk YOLOv11n 

membutuhkan waktu 0.00316 detik untuk melakukan load model.  

4.5.1.5 Accuracy 

Tabel 4.12 Perbandingan Rata-rata Accuracy 

Model TensorRT OpenVINO 

YOLOv8n 95.25 % 95.23 % 

YOLOv11n 96.28 % 96.22 % 

 

Tabel 4.12 menyajikan perbandingan rata-rata dari accuracy dengan 

mAP50 untuk TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan 

YOLOv11n. Dapat dilihat bahwa rata-rata accuracy saat menggunakan TensorRT 

untuk model YOLOv8n adalah 95.25% dan untuk YOLOv11n adalah 96.28% 

dengan selisih sebesar 1.03%. Pada  inference framework OpenVINO terlihat 

bahwa YOLOv8n memberikan accuracy sebesar 95.23% dan YOLOv11n 

menghasilkan accuracy sebesar 96.22% dengan selisih accuracy sebesar 0.99%.  

4.5.2 Uji T 

 Data yang dimiliki pada penelitian ini merupakan dua set data, maka one-

sample T-Test tidak sesuai dengan kondisi data. Setelah itu, pilihan uji T hanya pada 
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independent T-Test atau paired T-Test dilihat dari kondisi relasi pada data. Data 

pertama dengan data kedua tidak memiliki relasi yang saling berkaitan, karena 

variabel pengamatan yang berbeda, yaitu inference framework TensorRT dan 

OpenVINO yang memiliki arsitektur masing-masing yang khas dan tidak berkaitan. 

Maka jenis uji T yang sesuai untuk pengujian perbedaan signifikan antara kedua 

data dari inference framework adalah independent T-Test. 

 Uji levene yang digunakan pada penelitian ini adalah menggunakan 

pemrograman python dengan library scipy, yaitu levene. Parameter yang digunakan 

pada uji levene pada penelitian ini adalah kedua data dan function pengujiannya 

yaitu mean atau rata-rata dari data. Dengan kembalian nilai dari fungsi levene ini 

adalah hasil uji statistiknya dan p-value untuk menentukan tolak H0 yang berarti 

tidak ada homogenitas pada data atau gagal tolak H0 yang berarti terdapat 

homogenitas pada data. Penentuan tolak H0 atau gagal tolak H0 dapat dilihat dari 

membandingkan nilai alpha dengan nilai p-value, jika p-value < alpha maka akan 

tolak H0 yang berarti tidak ada homogenitas pada data dan jika sebaliknya maka 

gagak tolak H0 yang berarti terdapat homogenitas pada data. 

4.5.2.1 Hasil Uji Levene T-Test 

 Uji levene pada penelitian ini dilakukan dengan tujuan untuk menentukan 

metode yang tepat dalam melakukan T-Test yang akan dilakukan berikutnya. Pada 

penelitian ini, uji levene dilakukan dengan menggunakan bahasa pemrograman 

python dengan bantuan library scipy dengan fungsi levene(). Fungsi levene() 

menerima dua buah parameter yang terdiri atas set data yang akan diuji dan metode 

pengujiannya atau center. Parameter metode pengujian atau center pada uji levene 

dengan scipy bertujuan untuk menghitung pusat distribusi data, umumnya akan 

digunakan mean atau rata-rata dari data untuk mendapatkan pusat distribusi data. 

Pada penelitian ini, dua set data yang digunakan adalah model YOLOv8n dan 

YOLOv11n ketika menggunakan inference framework TensorRT dan OpenVINO, 

dengan masing-masing indikator perbandingan dan center menggunakan mean. 

Pengujian masing-masing dilakukan dengan melihat homogenitas antara data 

indikator perbandingan dengan model tertentu ketika menggunakan TensorRT dan 

OpenVINO, sehingga total dilakukan sepuluh kali pengujian dengan rincian lima 

kali untuk YOLOv8n dengan lima indikator perbandingan dan YOLOv11n dengan 
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lima indikator perbandingan. Dalam uji levene untuk penelitian ini, ditetapkan nilai 

threshold alpha adalah 0.05 dengan hipotesis nol adalah tidak ada perbedaan 

signifikan antara dua set data atau homogen. 

 

Tabel 4.13 Hasil Uji Levene T-Test 

Model Category p-value Status Levene 

YOLOv8 Inference speed 0.0557 Gagal Tolak H0 True 

YOLOv8 Memory consumption 0.0002 Tolak H0 False 

YOLOv8 Model size 0.0191 Tolak H0 False 

YOLOv8 Load time 0.0314 Tolak H0 False 

YOLOv8 mAP50 0.0065 Tolak H0 False 

YOLOv11 Inference speed 0.3101 Gagal Tolak H0 True 

YOLOv11 Memory consumption 0.0079 Tolak H0 False 

YOLOv11 Model size 0.0033 Tolak H0 False 

YOLOv11 Load time 0.0931 Gagal Tolak H0 True 

YOLOv11 mAP50 0.0315 Tolak H0 False 

  

Pada kedua model, untuk indikator inference speed didapatkan bahwa p-

value bernilai lebih dari threshold alpha, maka tidak ditemukan adanya perbedaan 

variance secara signifikan atau dapat disebut data homogen dan levene menjadi 

bernilai True untuk parameter T-Test. Berikutnya, pada indikator memory 

consumption ditemukan bahwa p-value dari pengujian ini kurang dari threshold 

alpha yang berarti ditemukan perbedaan data signifikan atau dapat disebut data 

tidak homogen dan levene menjadi bernilai False. Untuk indikator model size 

kembali ditemukan bahwa p-value kurang dari threshold alpha yang berarti 

perbedaan pada data TensorRT dan OpenVINO signifikan atau dapat diartikan 

bahwa data bukan data homogen untuk model YOLOv8n dan YOLOv11n. Pada 

indikator perbandingan load time, ditemukan perbedaan hasil uji levene di model 

YOLOv8n dan YOLOv11n. Untuk model YOLOv8n, p-value dari uji levene 

kurang dari threshold alpha yang berarti tidak ditemukan perbedaan signifikan pada 

load time menggunakan TensorRT ataupun OpenVINO sehingga dapat disebut data 
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homogen, sedangkan pada YOLOv11n, ditemukan bahwa p-value lebih dari 

threshold alpha yang berarti terdapat perbedaan signifikan pada load time untuk 

inference framework TensorRT dan OpenVINO sehingga data disebut tidak 

homogen. Indikator accuracy pada kedua model dengan data inference framework 

TensorRT dan OpenVINO ditemukan bahwa p-value hasil uji levene kurang dari 

threshold alpha, sehingga ditemukan perbedaan signifikan pada kedua data atau 

data tidak bersifat homogen. 

Hasil uji levene yang menunjukkan adanya sifat homogenitas pada data, 

memberikan arti bahwa keseluruhan data cenderung memiliki nilai yang sama 

bahkan mirip, sehingga dapat dikatakan bahwa data lebih stabil. Sebagai contoh 

pada indikator load time, ditemukan bahwa pengujian levene untuk data YOLOv8n 

dengan TensorRT dan OpenVINO ditemukan sifat tidak homogen pada data, dan 

pada YOLOv11n ditemukan sifat homogen pada data inference framework 

TensorRT dan OpenVINO, yang berarti model YOLOv11n dapat dengan mudah 

dimuat ketika menggunakan inference framework TensorRT maupun OpenVINO 

oleh komputer. Pada hasil uji levene, ditambahkan kolom levene yang terdiri dari 

True dan False yang dapat digunakan sebagai parameter untuk T-Test. Jika levene 

bernilai True, maka data disebut homogen dan jika False, maka data disebut tidak 

homogen. 

 Melalui uji levene pada setiap inference framework dengan penggunaan 

model yang berbeda, dapat diambil kesimpulan dini mengenai kedua model dengan 

inference framework yang berbeda. Model YOLOv8n dan YOLOv11n 

menunjukkan inference speed yang memiliki variance homogen, sehingga 

mencerminkan konsistensi performa pada dua inference framework. Pada data 

memory consumption, model YOLOv11n cenderung memiliki variance yang lebih 

rendah pada dua inference framework dibandingkan dengan model YOLOv8n, 

sehingga YOLOv11n dapat diandalkan pada berbagai kondisi. Namun, pada model 

size, ditemukan variance inference framework yang lebih besar pada YOLOv11n, 

sehingga perlu mempertimbangkan storage untuk penyimpanan. Di sisi lain, 

YOLOv11n lebih stabil dalam melakukan load time, baik ketika menggunakan 

TensorRT maupun OpenVINO, jika dibandingkan dengan kemampuan load time 

dari YOLOv8n. Pada indikator accuracy melalui uji levene, ditemukan bahwa 
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variance pada YOLOv11n lebih kecil ketika menggunakan TensorRT maupun 

OpenVINO, yang berarti model YOLOv11n cenderung stabil. 

4.5.2.2 Hasil Uji T 

Pada penelitian ini, pengujian T-Test dilakukan dengan bantuan program 

python dengan library scipy, yang memiliki sebuah fungsi ttest_ind(). Fungsi 

ttst_ind() ini menerima dua parameter, yang pertama adalah set data untuk 

pengujian dan penanda sifat data homogen. Set data yang dijadikan parameter pada 

penelitian ini adalah inference framework TensorRT dengan OpenVINO dan 

menggunakan category atau indikator perbandingan sebagai variabelnya, 

sedangkan True atau False sebagai penanda sifat homogen pada data yang 

disiapkan melalui hasil uji levene. Pada tabel 4.14 disajikan hasil dari T-Test yang 

membandingkan performa dari inference framework TensorRT milik NVIDIA 

dengan OpenVINO milik Intel dengan pemodelan YOLOv8n. T-Test pada 

penelitian kali ini dilakukan terhadap lima indikator perbandingan yang telah 

disebutkan sebelumnya, sehingga total hasil dari T-Test ini adalah lima baris data 

hasil pengujian terhadap lima indikator perbandingan. Pada T-Test penelitian ini, 

threshold alpha ditetapkan menjadi 0.05 dengan hipotesis nol bahwa tidak terdapat 

perbedaan pada rata-rata pada kedua inference framework dengan masing-masing 

kelompok data indikator perbandingan. 

 

Tabel 4.14 Hasil T-Test YOLOv8n 

Model Category p-value Status 
Mean 

TensorRT 

Mean 

OpenVINO 

YOLO

v8n 

Inference 

speed 
0.0000 Tolak H0 0.00544 s 0.01714 s 

YOLO

v8n 

Memory 

consumption 
0.8072 

Gagal 

Tolak H0 

2891.557 

MB 

2765.787 

MB 

YOLO

v8n 
Model size 0.0000 Tolak H0 8.24 MB 6.4 MB 

YOLO

v8n 
Load time 0.0000 Tolak H0 0.00068 s 0.00287 s 
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YOLO

v8n 
mAP50 0.1175 

Gagal 

Tolak H0 
95.25 % 95.23 % 

 

Pada Tabel 4.14 disajikan hasil dari T-Test yang membandingkan performa 

dari inference framework TensorRT milik NVIDIA dengan OpenVINO milik Intel 

dengan pemodelan YOLOv8n. T-Test pada penelitian kali ini dilakukan terhadap 

lima indikator perbandingan yang telah disebutkan sebelumnya, sehingga total hasil 

dari T-Test ini adalah lima baris data hasil pengujian terhadap lima indikator 

perbandingan. Pada T-Test penelitian ini, threshold alpha ditetapkan menjadi 0.05 

dengan hipotesis nol bahwa tidak terdapat perbedaan pada rata-rata pada kedua 

inference framework dengan masing-masing kelompok data indikator 

perbandingan. 

 Pada indikator perbandingan inference speed dengan model YOLOv8n 

didapatkan bahwa p-value kurang dari threshold alpha, yang berarti terdapat 

perbedaan signifikan pada rata-rata inference speed untuk inference framework 

TensorRT dan OpenVINO, jika melihat nilai rata-ratanya, maka dapat disimpulkan 

bahwa TensorRT lebih unggul tiga kali lipat dalam inference speed. Hasil dari T-

Test pada kedua inference framework untuk indikator memory consumption adalah 

p-value lebih dari threshold alpha, sehingga dapat disimpulkan bahwa tidak 

terdapat perbedaan signifikan pada kedua rata-rata jumlah memory consumption 

untuk model YOLOv8n. Pada indikator model size, p-value untuk hasil T-Test 

adalah kurang dari threshold alpha, yang berarti bahwa terdapat perbedaan 

signifikan antara model size YOLOv8n dengan inference framework TensorRT dan 

OpenVINO dengan OpenVINO lebih unggul dalam ukuran yang ringan, sehingga 

dapat lebih meringankan beban pada storage komputer. Pada indikator load time, 

hasil dari T-Test menyatakan bahwa nilai p-value kurang dari threshold alpha, yang 

menunjukkan bahwa terdapat perbedaan signifikan antara load time pada kedua 

inference framework dengan TensorRT yang unggul hampir empat kali lebih cepat, 

sehingga TensorRT dapat memberi keuntungan untuk kebutuhan kecepatan dalam 

tahap deployment. Pada indikator accuracy berdasarkan nilai mAP50 dari kedua 

inference framework, hasil T-Test menunjukkan bahwa p-value lebih dari threshold 

alpha, sehingga dapat disimpulkan bahwa tidak terdapat perbedaan signifikan pada 
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accuracy kedua inference framework, meskipun terlihat TensorRT unggul 0.02% 

dari OpenVINO. 

 Secara keseluruhan untuk YOLOv8n, inference framework TensorRT lebih 

unggul pada kategori inference speed sebesar tiga kali lipat daripada OpenVINO, 

sehingga sangat sesuai untuk penggunaan yang sangat mempertimbangkan 

kecepatan dalam melakukan inference atau pada kasus real-time processing. Untuk 

memory consumption pada kedua inference framework tidak begitu signifikan, 

sehingga keduanya tidak menjadi masalah dalam hal batasan perangkat keras secara 

khusus pada RAM. Berikutnya pada kategori model size, dapat dilihat bahwa 

OpenVINO memiliki kemampuan yang sedikit lebih unggul daripada TensorRT 

karena mampu melakukan konversi model dengan optimal sehingga membuat 

model size lebih kecil dan membuat OpenVINO sesuai untuk kebutuhan perangkat 

yang terbatas pada ukuran storage. Pada kategori load time, TensorRT ternyata 

lebih unggul 0.00219 detik daripada menggunakan OpenVINO, sehingga kembali 

mendukung kebutuhan kecepatan inference daripada menggunakan OpenVINO. 

Namun, pada indikator accuracy dengan mAP50 tidak ditemukan perbedaan yang 

signifikan dari kedua inference framework dalam penggunaannya pada model 

YOLOv8n. 

Tabel 4.15 Hasil T-Test YOLOv11n 

Model Category p-value Status 
Mean 

TensorRT 

Mean 

OpenVINO 

YOLO

v11n 

Inference 

speed 
0.0000 Tolak H0 0.00664 s 0.01664 s 

YOLO

v11n 

Memory 

consumption 
0.0000 Tolak H0 

4077.197 

MB 

3234.202 

MB 

YOLO

v11n 
Model size 0.0000 Tolak H0 7.76 MB 5.6 MB 

YOLO

v11n 
Load time 0.0000 Tolak H0 0.00073 s 0.00316 s 
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YOLO

v11n 
mAP50 0.0626 

Gagal 

Tolak H0 
96.28 % 96.22 % 

Tabel 4.15 menunjukkan hasil dari T-Test yang membandingkan performa 

dari inference framework TensorRT milik NVIDIA dengan OpenVINO milik Intel 

dengan pemodelan YOLOv11n. T-Test kali kali ini dilakukan terhadap lima 

indikator perbandingan sama seperti T-Test untuk YOLOv8n dengan total hasil dari 

T-Test ini adalah lima baris data hasil pengujian terhadap lima indikator 

perbandingan. Pada T-Test YOLOv11n ini, threshold alpha ditetapkan menjadi 

0.05 dengan hipotesis nol bahwa tidak terdapat perbedaan pada rata-rata pada kedua 

inference framework dengan masing-masing kelompok data indikator 

perbandingan. Pada indikator perbandingan inference speed dengan model 

YOLOv11n, didapatkan bahwa p-value kurang dari threshold alpha yang 

ditentukan, hal ini berarti bahwa terdapat perbedaan signifikan pada rata-rata 

inference speed untuk inference framework TensorRT dan OpenVINO. 

Berdasarkan nilai rata-rata yang diperoleh, dapat disimpulkan bahwa TensorRT 

lebih unggul hampir sebesar tiga kali lipat dalam inference speed jika dibandingkan 

OpenVINO, menjadikannya lebih ideal untuk kebutuhan yang memprioritaskan 

real-time processing. Pada indikator memory consumption, melalui hasil T-Test, 

ditemukan bahwa p-value kurang dari threshold alpha, yang menunjukkan adanya 

perbedaan signifikan pada rata-rata memory consumption antara TensorRT dan 

OpenVINO. OpenVINO menunjukkan penggunaan memory yang lebih baik 

dengan konsumsi memori yang lebih rendah sekitar 800.000 MB dibandingkan 

dengan TensorRT, sehingga lebih sesuai untuk kebutuhan tertentu yang memiliki 

keterbatasan pada memory. Pada indikator model size, p-value hasil T-Test juga 

kurang dari threshold alpha yang telah ditentukan, yang berarti terdapat perbedaan 

signifikan antara model size dari YOLOv11n yang dihasilkan oleh TensorRT dan 

OpenVINO, dengan OpenVINO kembali unggul dengan model size yang lebih kecil 

dibandingkan TensorRT, memberikan keunggulan dalam hal penghematan storage 

dan fleksibilitas dalam deployment pada perangkat dengan sumber daya terbatas. 

Pada indikator load time, hasil T-Test menunjukkan bahwa p-value kurang dari 

threshold alpha, yang mengindikasikan terdapat perbedaan signifikan antara load 
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time model pada kedua inference framework. TensorRT terbukti hampir empat kali 

lebih cepat dibandingkan OpenVINO, memberikan keunggulan yang signifikan 

untuk kebutuhan deployment model yang cepat. Pada indikator accuracy 

berdasarkan mAP50, melalui T-Test, didapatkan bahwa p-value lebih dari threshold 

alpha yang menunjukkan tidak terdapat perbedaan yang signifikan pada accuracy 

antara kedua inference framework, meskipun TensorRT lebih unggul dengan selisih 

0.06% dibandingkan dengan OpenVINO. 

Secara keseluruhan untuk YOLOv11n, inference framework TensorRT 

kembali unggul pada kategori inference speed daripada menggunakan OpenVINO, 

sehingga sesuai untuk penggunaan yang sangat mempertimbangkan kecepatan 

dalam melakukan inference. Pada indikator memory consumption untuk kedua 

inference framework, terlihat perbedaan yang cukup signifikan dimana OpenVINO 

unggul karena OpenVINO menggunakan RAM yang lebih sedikit saat melakukan 

inference, sehingga hal ini dapat dijadikan pertimbangan untuk kebutuhan 

perangkat yang terbatas pada RAM. Selanjutnya, pada kategori model size, dapat 

dilihat bahwa OpenVINO kembali unggul daripada TensorRT karena mampu 

melakukan konversi model dengan lebih optimal, sehingga membuat model size 

lebih ringan dengan selisih antara ukuran TensorRT dan OpenVINO adalah sekitar 

2 MB dan membuat OpenVINO sesuai untuk kebutuhan perangkat yang terbatas 

pada ukuran storage. TensorRT lebih unggul daripada OpenVINO pada indikator 

load time, sehingga masih mendukung dalam segi kebutuhan untuk kecepatan 

inference daripada menggunakan OpenVINO. Namun, pada indikator accuracy 

dengan mAP50 kembali tidak ditemukan perbedaan signifikan antara kedua 

inference framework dalam penggunaannya pada model YOLOv11n. 

Dari kedua T-Test untuk inference framework dalam penggunaan model 

YOLOv8n dan YOLOv11n, terdapat beberapa kesamaan. Kesimpulan yang dapat 

diambil dari T-Test ini adalah bahwa inference speed untuk TensorRT sangat 

unggul dibandingkan dengan OpenVINO baik ketika menggunakan model 

YOLOv8n maupun YOLOv11n. Kemudian untuk memory consumption, ternyata 

TensorRT dan OpenVINO tidak memiliki perbedaan signifikan pada YOLOv8n, 

sedangkan pada model yang lebih kompleks seperti YOLOv11n, OpenVINO 

unggul dalam penggunaan RAM ketika melakukan inference, karena OpenVINO 
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hanya menggunakan RAM yang lebih sedikit. Berikutnya untuk indikator model 

size, OpenVINO selalu unggul baik saat menggunakan YOLOv8n maupun 

YOLOv11n. Hal ini mengindikasikan bahwa OpenVINO mampu mengoptimalkan 

kedua model menjadi lebih sederhana dibandingkan dengan inference framework 

TensorRT. Dari indikator load time model, TensorRT menunjukkan keunggulan, 

karena kemampuannya untuk mengunggah model yang lebih cepat daripada 

OpenVINO pada model YOLOv8n dan YOLOv11n. Berikutnya dari sisi accuracy 

dengan menggunakan mAP50, ditemukan bahwa TensorRT maupun OpenVINO 

sama-sama memiliki kemampuan baik dalam melakukan konversi atau export 

model karena mampu mengoptimalkan model YOLOv8n dan YOLOv11n tanpa 

mengorbankan accuracy secara signifikan. Secara keseluruhan model YOLOv11n 

tetap menunjukkan accuracy yang lebih baik saat menggunakan kedua inference 

framework, meskipun OpenVINO sedikit menunjukkan penurunan accuracy 

sekitar 0.04% secara rata-rata. Accuracy dari model yang diberlakukan optimization 

dengan inference framework OpenVINO ternyata mengalami sedikit penurunan 

accuracy sebesar 0.021% pada YOLOv8n dan 0.062% pada YOLOv11n. Hal ini 

bertentangan dengan penelitian terdahulu yang dilakukan oleh Biswas, et al (2020) 

yang menyatakan bahwa OpenVINO lebih unggul secara accuracy.  

4.5.3 Uji ANOVA 

Seperti yang dilakukan pada T-Test, sebelum melakukan uji ANOVA perlu 

dilakukan uji levene untuk mengetahui variance pada data agar pengujian untuk 

ANOVA dapat sesuai dengan kondisi data sehingga hasil dari pengujian dapat 

disebut valid. 

4.5.3.1 Hasil Uji Levene ANOVA 

Uji levene pada untuk Two-Way ANOVA pada penelitian ini dilakukan 

dengan tujuan untuk menentukan metode yang tepat dalam melakukan Two-Way 

ANOVA yang akan dilakukan berikutnya. Pada penelitian ini, uji levene dilakukan 

dengan menggunakan bahasa pemrograman python dengan bantuan library scipy 

dengan fungsi levene(). Fungsi levene() menerima dua buah parameter yang terdiri 

atas set data yang akan diuji dan metode pengujiannya atau center. Parameter 

metode pengujian atau center pada uji levene dengan scipy bertujuan untuk 

menghitung pusat distribusi data, umumnya akan digunakan mean atau rata-rata 
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dari data untuk mendapatkan pusat distribusi data. Pada penelitian ini, untuk 

menguji levene dengan empat set data, data yang digunakan adalah model 

YOLOv8n dan YOLOv11n ketika menggunakan inference framework TensorRT 

dan OpenVINO, dengan tiap indikator perbandingan dan center menggunakan 

mean. Pengujian masing-masing dilakukan dengan melihat homogenitas antara 

data indikator perbandingan dengan model tertentu ketika menggunakan TensorRT 

dan OpenVINO serta YOLOv8n dan YOLOv11n, sehingga total dilakukan lima 

kali pengujian dengan rincian lima indikator perbandingan. Dalam uji levene untuk 

penelitian ini, ditetapkan nilai threshold alpha adalah 0.05 dengan hipotesis nol 

adalah tidak ada perbedaan rata-rata signifikan pada data masing-masing atau 

homogen. 

Tabel 4.16 Hasil Uji Levene Two-Way ANOVA 

Category p-value Status Levene 

Inference speed 0.03210 Tolak H0 False 

Memory consumption 0.00000 Tolak H0 False 

Model size 0.00323 Tolak H0 False 

Load time 0.03307 Tolak H0 False 

mAP50 0.00842 Tolak H0 False 

 Pada tabel 4.16, disajikan data yang merupakan hasil dari uji levene untuk 

Two-Way ANOVA denan masing-masing merupakan pengujian terhadap variable 

indikator perbandingan dengan empat set data, TensorRT dengan YOLOv8n, 

OpenvVINO dengan YOLOv8n, TensorRT dengan YOLOv11n, OpenvVINO 

dengan YOLOv11n. Pada indikator inference speed, hasil uji levene menunjukkan 

bahwa p-value kurang dari nilai threshold alpha, yang berarti terdapat perbedaan 

signifikan pada keempat data yang diberikan atau data tidak bersifat homogen. 

Berikutnya pada indikator memory consumption juga didapatkan hasil p-value 

kurang dari threshold alpha, yang berarti pada data terdapat perbedaan yang 

signifikan atau data tidak bersifat homogen. Berikutnya melalui indikator model 

size kembali didapatkan nilai p-value yang kurang dari threshold alpha yang 

menunjukkan bahwa terdapat perbedaan signifikan pada keempat data atau data 
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tidak bersifat homogen. Pada indikator load time juga menghasilkan nilai p-value 

yang kurang dari threshold alpha dari uji levene, yang berarti ditemukan adanya 

perbedaan signifikan pada keempat data atau data tidak bersifat homogen. Dari uji 

levene untuk indikator accuracy melalui mAP50 kembali memberikan p-value yang 

kurang dari threshold alpha yang telah ditentukan, yang berarti ditemukan 

perbedaan signifikan pada keempat data atau data tidak bersifat homogen. 

4.5.3.2 Hasil Uji Two-Way ANOVA 

 Melalui uji levene untuk Two-Way ANOVA, ditemukan bahwa pada 

keempat data ditemukan perbedaan yang signifikan atau seluruh data tidak bersifat 

homogen pada setiap pengujian indikator perbandingannya, sehingga pengujian 

Two-Way ANOVA dilakukan metode non parametrik. Pada penelitian ini, Two-

Way ANOVA dengan metode non parametrik dilakukan dengan bantuan program 

python dengan library pingouin dan fungsi anova(). Fungsi anova() milik pingouin 

menerima empat buah parameter, yaitu data, dependent variable atau dv, faktor uji 

atau between, dan detailed untuk merincikan hasil pengujian dalam bentuk tabel. 

Parameter data untuk penelitian ini adalah data dari keempat kombinasi data 

bersama dengan nilai dari indikator perbandingannya, keempat kombinasi data 

adalah TensorRT dengan YOLOv8n, OpenVINO dengan YOLOv8n, TensorRT 

dengan YOLOv11n, OpenvVINO dengan YOLOv11n. Indikator perbandingannya 

akan menjadi dependent variable, kemudian membuat model dan inference 

framework sebagai parameter between. Pada parameter detailed akan diberi nilai 

True agar keluaran dari uji Two-Way ANOVA tersaji dalam bentuk tabel terperinci. 

Pada tabel 4.17 disajikan hasil dari Two-Way ANOVA yang 

membandingkan performa dari inference framework TensorRT milik NVIDIA 

dengan OpenVINO milik Intel dengan setiap pemodelan YOLOv8n dan 

YOLOv11n. Two-Way ANOVA pada penelitian kali ini dilakukan terhadap setiap 

indikator perbandingan atau category yang telah disebutkan sebelumnya, sehingga 

total hasil dari Two-Way ANOVA ini adalah lima baris data hasil pengujian 

terhadap lima indikator perbandingan. Pada Two-Way ANOVA untuk penelitian 

ini, threshold alpha ditetapkan menjadi 0.05 dengan hipotesis nol bahwa tidak 

terdapat interaksi pada rata-rata dengan inference framework dan model tertentu 

terhadap setiap indikator perbandingan.  
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Tabel 4.17 Hasil Uji Two-Way ANOVA 

Category p-value Status Interaksi 

Inference speed 0.00000 Tolak H0 Ada 

Memory consumption 0.17109 Gagal Tolak H0 Tidak Ada 

Model size 0.00090 Tolak H0 Ada 

Load time 0.37492 Gagal Tolak H0 Tidak Ada 

mAP50 0.20110 Gagal Tolak H0 Tidak Ada 

 Pada tabel 4.17 dapat dilihat bahwa indikator inference speed memiliki p-

value yang kurang dari threshold alpha melalui uji Two-Way ANOVA untuk data 

kombinasi antara TensorRT dengan YOLOv8n, OpenvVINO dengan YOLOv8n, 

TensorRT dengan YOLOv11n, OpenvVINO dengan YOLOv11n, yang berarti 

terdapat interaksi yang signifikan antara inference framework dengan model 

tertentu terhadap rata-rata dari inference speed. Dengan kata lain, inference speed 

pada inference framework tertentu ternyata dipengaruhi oleh model tertentu. Pada 

indikator memory consumption ditemukan bahwa p-value bernilai 0.171 yang 

berarti lebih dari threshold alpha dan menunjukkan bahwa tidak ada interaksi 

signifikan pada memory consumption antara inference framework dengan model. 

Tidak adanya interaksi pada variabel memory consumption memiliki arti bahwa 

inference framework pada setiap model menunjukkan hasil yang konsisten pada 

indikator memory consumption. Melalui uji Two-Way ANOVA untuk model size, 

didapatkan hasil p-value kurang dari threshold alpha, yang berarti bahwa terdapat 

interaksi signifikan antara inference framework dengan model tertentu atau dapat 

dipahami bahwa model size berpengaruh terhadap sebuah inference framework 

yang memiliki model spesifik. Pada indikator load time didapatkan hasil p-value 

yang lebih dari threshold alpha yang dapat diartikan bahwa tidak terdapat interaksi 

signifikan dari dependent variable load time terhadap kombinasi data yang juga 

menunjukkan bahwa load time untuk setiap kombinasi inference framework dan 

model konsisten. Pada uji Two-Way ANOVA untuk accuracy dengan mAP50, 

didapatkan p-value yang juga lebih dari threshold alpha yang telah ditentukan 
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sebelumnya dan mengindikasikan tidak ada interaksi signifikan. Dalam hal ini, 

ditemukan bahwa performa accuracy cukup konsisten ketika menggunakan tiap 

inference framework dengan tiap model. 

 Setelah mendapatkan hasil Two-Way ANOVA, untuk mengetahui 

keberadaan dan kejelasan mengenai interaksi antara inference framework dengan 

model untuk setiap indikator perbandingan, perlu dilakukan kajian lebih mendalam 

mengenai interaksi yang terdapat pada beberapa indikator untuk mengetahui 

performa inference framework secara signifikan. Pada indikator inference speed 

dan model size, ditemukan interaksi antara inference framework dengan model, 

sehingga perlu dikaji lebih lanjut mengenai kedua indikator perbandingan ini untuk 

mengetahui performa kedua inference framework. 

 

Gambar 4.3 Perbandingan Inference Speed 

  Gambar 4.7 menunjukkan rata-rata inference speed untuk TensorRT dan 

OpenVINO pada model YOLOv8n dengan YOLOv11n. Garis berwarna biru 

menunjukkan rata-rata dari inference speed ketika menggunakan YOLOv8n dan 

YOLOv11n, sedangkan garis berwarna merah menunjukkan inference speed ketika 

menggunakan inference framework OpenVINO. TensorRT menunjukkan inference 

speed yang bertambah dari 0.0054 ketika menggunakan YOLOv8n menjadi 0.0066 

ketika menggunakan YOLOv11n. Hal ini mengindikasikan bahwa dalam 

menggunakan model yang lebih sederhana, TensorRT lebih cepat dalam melakukan 

inference dan sedikit lebih lambat ketika menggunakan model yang lebih kompleks 

seperti YOLOv11n. Berikutnya untuk inference framework OpenVINO, berlaku 

kebalikan dari TensorRT. Inference speed dari OpenVINO ketika menggunakan 
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model YOLOv11n mengalami penurunan dari YOLOv8n yang awalnya 0.017 

menjadi 0.016 pada YOLOv11n. Penurunan inference speed pada YOLOv11n 

menunjukkan bahwa OpenVINO mampu melakukan inference lebih baik atau lebih 

cepat ketika menggunakan model yang lebih kompleks. Namun, selisih inference 

speed OpenVINO YOLOv8n dan YOLOv11n sangatlah sedikit dengan selisih 

hanya sebesar 0.001 yang juga menunjukkan bahwa OpenVINO lebih konsisten 

daripada TensorRT untuk model yang lebih kompleks, walaupun secara 

keseluruhan inference framework TensorRT masih lebih cepat sekitar tiga kali lipat 

daripada OpenVINO. Dengan ini, inference framework TensorRT tetap dapat 

menjadi pertimbangan untuk kebutuhan kecepatan inference seperti pada kasus 

real-time processing, sedangkan OpenVINO dapat digunakan untuk kebutuhan 

penggunaan model yang lebih kompleks tanpa mempertimbangkan kebutuhan real-

time processing. 

 Melalui penelitian ini, tedapat temuan mengenai inference speed dari model 

YOLOv8n dan model YOLOv11n saat menggunakan inference framework 

TensorRT dan OpenVINO yang menunjukkan kestabilan dari kemampuan 

TensorRT untuk melakukan inference dengan baik dan kecepatan yang tinggi 

 

Gambar 4.4 Perbandingan Model Size 

 Gambar 4.4 menunjukkan rata-rata dari model size untuk TensorRT dan 

OpenVINO ketika menggunakan model YOLOv8n dan YOLOv11n. Garis 

berwarna biru menunjukkan rata-rata dari model size ketika menggunakan 

YOLOv8n dan YOLOv11n, sedangkan garis berwarna merah menunjukkan model 
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size ketika menggunakan inference framework OpenVINO. Melalui gambar 4.8, 

dapat dilihat bahwa kedua inference framework mengalami penurunan ukuran 

model ketika menggunakan model YOLOv11n yang menujukkan bahwa dengan 

kompleksitas model milik YOLOv11n, ternyata tidak membuat model YOLOv11n 

berukuran lebih besar daripada model milik YOLOv8n setelah dilakukan export 

menjadi inference framework. Hal ini mengindikasikan bahwa YOLOv11n lebih 

efisien daripada YOLOv8n. Kajian lebih mendalam mengenai perbandingan kedua 

inference framework ini dapat dilihat dari selisih ukuran dari model milik 

YOLOv8n dan YOLOv11n ketika menggunakan TensorRT dan OpenVINO. 

Selisih model size dari ketika menggunakan TensorRT dari YOLOv8n dan 

YOLOv11n adalah sebesar 0.48 MB, sedangkan pada penggunaan inference 

framework OpenVINO selisihnya adalah 0.8 MB. Hal ini menunjukkan bahwa 

OpenVINO mampu melakukan konversi model atau export model lebih baik 

daripada TensorRT pada model yang kompleks, karena mampu membuat ukuran 

model YOLOv11n menjadi lebih kecil daripada YOLOv8n dengan penurunan 

ukuran sebesar 0.8 MB. Secara keseluruhan, inference framework OpenVINO 

mengindikasikan adanya keunggulan pada model size, sehingga sesuai untuk 

kebutuhan perangkat yang terbatas pada storage serta OpenVINO juga unggul 

dalam melakukan konversi atau export model yang kompleks dengan lebih 

maksimal daripada TensorRT. 

4.5.4 Pembahasan Hasil Pengujian 

Melalui pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA 

dapat dilihat bahwa pada inference framework TensorRT memberikan performa 

yang lebih optimal pada indikator inference speed dibandingkan dengan 

OpenVINO. Melalui kajian lebih mendalam berdasarkan data pada tabel 4.8 juga 

ditemukan bahwa TensorRT lebih unggul 0.0012 detik secara inference speed pada 

model YOLOv8n dibandingkan YOLOv11n dengan inference framework 

TensorRT, sedangkan OpenVINO unggul ketika menggunakan YOLOv11n sebesar 

0.0005 detik dibandingkan YOLOv8n dengan OpenVINO. 
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Gambar 4.5 Grafik Perbandingan Rata-rata Inference Speed 

 Melalui gambar 4.5 dapat dilihat bahwa TensorRT dapat melakukan 

inference dengan cepat untuk YOLOv8n maupun untukYOLOv11n dibandingkan 

dengan OpenVINO dengan selisih sekitar tiga kali lipat lebih cepat.. Disisi lain, 

dapat dipahami juga bahwa OpenVINO memiliki kemampuan yang lebih stabil jika 

dibandingkan dengan TensorRT dalam melakukan optimization terhadap model 

yang sederhana maupun kompleks, dilihat dari selisih pada inference speed 

OpenVINO antara kedua model yang lebih kecil daripada selisih inference speed 

pada TensorRT. Pada indikator inferefence speed, dapat disimpulkan bahwa 

TensorRT lebih unggul dan sesuai untuk kebutuhan real-time processing terlebih 

jika menggunakan model yang sederhana seperti YOLOv8n, tetapi jika ingin 

menggunakan model yang lebih kompleks tanpa mempertimbangkan inference 

speed, OpenVINO dapat menjadi pilihan yang sesuai. Hal ini sesuai dengan temuan 

dari penelitian Chaturvedi (2022) mengenai TensorRT yang mampu melakukan 

inference tiga kali lebih cepat. 

Hasil pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA 

menunjukkan bahwa pada inference framework TensorRT dan OpenVINO 

ditemukan suatu persamaan pada indikator memory consumption, dimana saat 

menggunakan model yang lebih kompleks seperti YOLOv11n, kebutuhan akan 
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memory meningkat cukup signifikan hingga setidaknya 500000 MB pada 

OpenVINO dan lebih dari 1000000 MB pada TensorRT. Dari data memory 

consumption pada tabel 4.9 saat menggunakan TensorRT dan OpenVINO, dapat 

dipahami bahwa meskipun kedua inference framework mengindikasikan adanya 

peningkatan memory consumption pada model yang lebih kompleks seperti 

YOLOv11n dibandingkan model lebih sederhana seperti YOLOv8n, tetapi 

kenaikan memory consumption ketika menggunakan OpenVINO hanya sekitar 16 

% sedangkan saat menggunakan TensorRT kenaikannya adalah sekitar 41%. 

 

Gambar 4.6 Grafik Perbandingan Rata-rata Memory Consumption 

 Melalui gambar 4.6 dapat dilihat bahwa TensorRT dan OpenVINO sama-

sama mengalami peningkatan memory consumption saat menggunakan model yang 

lebih kompleks. Namun, melalui indikator memory consumption, dapat 

disimpulkan bahwa OpenVINO sedikit lebih unggul baik untuk model sederhana 

maupun kompleks seperti YOLOv11n dan lebih sesuai untuk kebutuhan processing 

yang memiliki keterbatasan pada perangkat keras seperti RAM dikarenakan 

kemampuan OpenVINO dalam mengoptimalkan model sederhana dan kompleks 

yang lebih stabil dibandingkan dengan TensorRT dengan peningkatan sebesar 16% 
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untuk OpenVINO dan 40% untuk TensorRT Ketika menggunakan model yang 

lebih kompleks. 

Hasil dari pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA 

menunjukkan bahwa TensorRT dan OpenVINO mampu melakukan optimization 

pada model dengan baik, terlebih pada model YOLOv11n yang terbilang lebih 

kompleks dibandingkan dengan YOLOv8n. Hal ini menunjukkan bahwa 

YOLOv11n dengan kompleksitasnya ternyata tidak mempengaruhi ukuran model. 

Dari data model size pada tabel 4.10 saat menggunakan TensorRT dan OpenVINO, 

dapat dipahami bahwa OpenVINO mampu melakukan konversi atau export model 

deep learning dengan lebih baik saat menggunakan YOLOv8n maupun YOLOv11n 

karena hasil konversi modelnya lebih ringan daripada saat menggunakan inference 

framework TensorRT. 

 

Gambar 4.7 Grafik Perbandingan Rata-rata Model Size 

 Gambar 4.7 menujukkan perbandingan yang signifikan antara inference 

framework TensorRT dan OpenVINO pada indikator model size, dimana TensorRT 

lebih konsisten dalam melakukan konversi model menjadi lebih ringan 

dibandingkan dengan OpenVINO karena memiliki selisih hanya sebesar 0.48 MB 

ketika menggunakan model sederhana maupun kompleks. Dari data juga dapat 

disimpulkan bahwa OpenVINO sangat sesuai untuk kebutuhan yang 

mempertimbangkan perangkat keras khususnya storage. Model YOLOv11n 
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dengan kompleksitasnya ternyata juga tidak menujukkan peningkatan pada model 

size, tetapi justru menawarkan model size yang lebih ringan. Pada penelitian ini, 

mengenai memory consumption dan model size terbukti selaras dengan penelitian 

terdahulu oleh Li (2022) yang juga menyatakan bahwa secara keseluruhan, 

OpenVINO mampu memberikan performa yang lebih baik dan power efficiency 

pada banyak skenario. 

Melalui hasil pengujian statistik dengan T-Test dan Two-Way ANOVA 

ditemukan bahwa OpenVINO membutuhkan waktu yang lebih lama dalam 

melakukan load model dibandingkan dengan TensorRT. Namun, pada kedua 

inference framework ditemukan kesamaan bahwa model yang lebih kompleks 

seperti YOLOv11n membutuhkan waktu lebih lama untuk load model daripada 

model lebih sederhana seperti YOLOv8n. Dari data load time pada tabel 4.11 saat 

menggunakan TensorRT dan OpenVINO, dapat dipahami bahwa TensorRT 

mampu melakukan membuat model deep learning lebih cepat untuk dimuat sekitar 

300%, baik saat menggunakan model YOLOv8n maupun YOLOv11n 

dibandingkan dengan menggunakan inference framework OpenVINO. 

 

Gambar 4.8 Grafik Perbandingan Rata-rata Model Load Time 

 Dari gambar 4.8 dapat dilihat dengan lebih jelas mengenai performa 

TensorRT dalam memuat model. Load time untuk model ketika menggunakan 

inference framework TensorRT sangat baik untuk model sederhana seperti 

YOLOv8n maupun kompleks seperti YOLOv11n. TensorRT juga stabil dalam 
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melakukan load model, yang dapat dilihat dari selisih load time untuk model 

sederhana maupun kompleks sebesar 0.00015 detik, sedangkan 0.003 detik untuk 

OpenVINO. Hal ini dapat diartikan bahwa TensorRT unggul ketika membutuhkan 

kecepatan dalam proses deployment. Hasil dari penelitian yang dilakukan oleh Zhou 

dan Yang (2022) kembali selaras dengan temuan pada penelitian ini bahwa 

TensorRT mampu memberikan inference speed dan load time model yang sangat 

baik sehingga sesuai dengan kebutuhan performa atau kecepatan inference yang 

tinggi. 

Dari pengujian statistik yang melalui T-Test dan Two-Way ANOVA, 

ditemukan bahwa pada inference framwork TensorRT dan OpenVINO terlihat hal 

yang sama pada accuracy yang meningkat pada penggunaannya untuk model yang 

lebih kompleks seperti YOLOv11n. Dari data accuracy dengan mAP50 saat 

menggunakan TensorRT dan OpenVINO, dapat dipahami bahwa YOLOv11n 

memberikan accuracy yang lebih tinggi dibandingkan dengan YOLOv8n. Dari sini 

dapat diartikan bahwa dengan kompleksitas yang dimiliki YOLOv11n, ternyata 

mampu membawa dampak peningkatan dalam segi accuracy melalui mAP50 jika 

dibandingkan dengan YOLOv8n. 

 

Gambar 4.9 Grafik Perbandingan Rata-rata Accuracy 

 Gambar 4.9 menunjukkan bahwa dengan jelas bahwa accuracy TensorRT 

pada YOLOv8n sedikit lebih tinggi dibandingkan menggunakan OpenVINO. Saat 
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menggunakan YOLOv11n, terlihat hal yang sama, dimana TensorRT memberikan 

accuracy yang lebih tinggi. Namun, OpenVINO mampu melakukan konversi yang 

cukup stabil pada model yang lebih sederhana seperti YOLOv8n dan model yang 

lebih kompleks seperti YOLOv11n dengan selisih sebesar 0.99% jika dibandingkan 

selisih pada TensorRT pada model yang lebih kompleks sebesar 1.03%. Dari 

gambar dapat disimpulkan bahwa inference framework TensorRT mampu 

memberikan performa accuracy yang sedikit lebih tinggi jika dibandingkan dengan 

OpenVINO pada model sederhana seperti YOLOv8n maupun model yang lebih 

kompleks seperti YOLOv11n. Peningkatan accuracy yang ditemukan pada 

penelitian ini dari perbandingan YOLOv8n dan YOLOv11n juga selaras dengan 

temuan pada penelitian-penelitian terdahulu. YOLOv11 memberikan performa 

optimal yang seimbang antara accuracy, efficiency, dan secara model size (Jegham, 

et al, 2024) dan penelitian oleh Khanam dan Hussein (2024) yang turut menyatakan 

bahwa YOLOv11 merupakan perkembangan dari feature extraction, optimized 

performance, dan kemampuannya pada berbagai task dalam computer vision. 
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BAB V 

Simpulan dan Saran 

5.1 Kesimpulan 

 Pada penelitian tugas akhir dengan judul “Analisis Kinerja TensorRT dan 

OpenVINO sebagai Inference Framework untuk Pemodelan Deep Learning” telah 

berjalan dengan baik. Melalui penelitian yang telah dilakukan, dapat diperoleh 

beberapa kesimpulan sebagai berikut. 

1. Inference framework TensorRT lebih unggul dibandingkan OpenVINO 

jika dilihat performa inference speed dan load time. Sehingga TensorRT 

sangat sesuai untuk kebutuhan aplikasi model deep learning yang sangat 

memperhatikan kecepatan atau real-time processing tanpa 

memperhatikan batasan perangkat seperti storage dan memory. 

2. Inference framework OpenVINO lebih unggul dibandingkan TensorRT 

jika melihat performa memory consumption dan model size. OpenVINO 

ditemukan membutuhkan RAM dan storage yang lebih sedikit 

dikarenakan kemampuan OpenVINO untuk melakukan export model 

menjadi lebih sederhana. OpenVINO sesuai untuk kebutuhan aplikasi 

deep learning yang mempertimbangkan keterbatasan pada perangkat 

keras seperti storage dan memory dengan mengesampingkan inference 

speed. 

3. Untuk indikator perbandingan accuracy dengan menggunakan mAP50, 

tidak dapat dilihat perbedaan yang signifikan. Namun, dengan 

kompleksitas modelnya,  YOLOv11n selalu mampu memberikan 

performa yang 1% lebih baik dan OpenVINO yang memiliki accuracy 

lebih rendah dari TensorRT sebesar 0.04%. 

4. Melalui pengujian Two-Way ANOVA, ditemukan bahwa terdapat 

interaksi yang cukup signifikan pada indikator inference speed dan model 

size antara model dengan inference framework. TensorRT memang lebih 

baik dari indikator inference speed, tetapi ketika digunakan pada model 

yang lebih kompleks, TensorRT akan sedikit mengalami kemunduran 

dalam inference speed, sedangkan OpenVINO akan mengalami kemajuan 
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atau lebih cepat dalam inference speed saat menggunakan model yang 

lebih kompleks. OpenVINO memiliki kemampuan konversi model yang 

jauh lebih baik dibandingkan TensorRT, tetapi secara khsus, OpenVINO 

yang digunakan pada model yang kompleks mampu menghasilkan model 

yang lebih ringan. 

5. TensorRT secara keseluruhan lebih sesuai untuk kasus counting box 

secara real-time pada conveyor belt yang sedang diterapkan oleh PT. XYZ 

dikarenakan keunggulannya dalam melakukan inference secara real-time 

yang berkaitan dengan kecepatan dari conveyor belt keluaran produksi. 

Namun, apabila terdapat kendala dalam cost untuk pengadaan computing 

device dan kebutuhan real-time counting dapat dikesampingkan, maka 

OpenVINO dapat menjadi opsi yang bisa dipertimbangkan oleh PT. XYZ. 

5.2 Saran 

 Melalui kesimpulan dari penelitian yang telah disebutkan sebelumnya, 

terdapat beberapa saran yang dapat dilakukan untuk memperbaiki dan 

mengembangkan penelitian ini. 

1. PT. XYZ disarankan menggunakan inference framework milik TensorRT 

dengan computing device GPU NVIDIA dan model YOLOv8n 

dikarenakan terdapat kebutuhan counting box secara real-time pada 

conveyor belt keluaran produksi, karena TensorRT mampu melakukan 

inference dengan rata-rata kecepatan sebesar 0.006 detik dan memiliki 

memory consumption yang lebih rendah daripada penggunaan 

YOLOv11n. 

2. Dalam penelitian ini, pemodelan deep learning yang digunakan adalah 

YOLOv8n dengan YOLOv11n yang sama-sama dikembangkan oleh tim 

ultralytics. Akan lebih baik jika dalam penelitian berikutnya, pemodelan 

deep learning yang digunakan memiliki arsitektur yang berbeda 

signifikan, agar hasil perbedaan terlihat lebih jelas. 

3. Pada penelitian ini, validasi terhadap datanya dilakukan melalui metode 

val() yang merupakan fungsi dari ultralytics, disarankan validasi data 

untuk penelitian berikutnya adalah menggunakan data nyata, atau real-

world use case.  
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