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ANALISIS KINERJA TENSORRT DAN OPENVINO SEBAGAI
INFERENCE FRAMEWORK UNTUK PEMODELAN DEEP LEARNING

Louis Axel Tjokro Atmodjo, Kestrilia Rega Prilianti, Hendry Setiawan
Universitas Ma Chung

Abstrak

Deep Learning berusaha meniru kemampuan manusia melalui Artificial
Neural Network untuk melakukan task yang lebih kompleks dari sekedar
mengambil keputusan. Deep learning yang lebih kompleks, tentunya membutuhkan
data dan komputasi lebih kompleks juga. Inference framework mampu
mengoptimalkan deep learning agar lebih efisien tanpa mengorbankan akurasi.
Namun, tiap model deep learning membutuhkan inference framework yang tepat
agar mendapatkan performa optimal.

Metode computer vision dengan training dataset dilakukan terhadap dataset
citra yang dikumpulkan dalam pencahayaan redup hingga sangat terang menjadi
dua buah model deep learning, yaitu YOLOv8n dan YOLOv11n yang kemudian
dioptimalkan menjadi inference framework TensorRT yang memiliki keunggulan
dalam pengolahan dengan GPU dari NVIDIA dan OpenVINO yang unggul dengan
pengolahan menggunakan CPU dari Intel. Pengujian statistik T-Test dan Two-Way
ANOVA digunakan dalam penelitian ini untuk melihat performa kedua inference
framework secara terukur dan ilmiah.

TensorRT memiliki rata-rata inference speed sebesar 0.006 detik dan rata-
rata model load time selama 0.0007 detik sehingga sesuai untuk penggunaan real-
time processing dan unggul daripada OpenVINO. Sedangkan OpenVINO memiliki
rata-rata memory consumption sebesar 617841.9 MB dan rata-rata model size
sebesar 6 MB sehingga sesuai untuk penggunaan yang memiliki keterbatasan pada
perangkat, karena unggul dari TensorRT. Accuracy dari kedua inference framework
dan tiap model menunjukkan bahwa YOLOv11n lebih unggul sebesar 1% dari
YOLOvV8Nn dan OpenVINO mampu mengoptimalkan model yang lebih kompleks
dengan lebih baik.

Kata kunci : deep learning, inference framework, OpenVINO, TensorRT



PERFORMANCE ANALYSIS OF TENSORRT AND OPENVINO AS
INFERENCE FRAMEWORK FOR DEEP LEARNING MODELS

Louis Axel Tjokro Atmodjo, Kestrilia Rega Prilianti, Hendry Setiawan
Universitas Ma Chung

Abstract

Deep Learning seeks to mimic human abilities through Artificial Neural
Network to perform more complex tasks than just simple task decision-making,
such as object recognition. The more complex deep learning, requires larger data
and more sophisticated computations. Inference framework can optimize the deep
learning models to become more efficient without compromising the accuracy of
models. However, each deep learning model requires the correct inference
framwork to achieve optimal performance.

Computer vision with training dataset applied to images dataset that
captured under low to very bright light conditions, resulting in two deep learning
models YOLOv8n and YOLOv11n. Then these models were optimized using
TensorRT inference framwork which excels in using GPU with NVIDIA and
OpenVINO which superior in working with CPU and Intel. Statistical analysis, such
as T-Test and Two-Way ANOVA were utilized in this study to evaluate the
performance of both inference framworks in a measurable and scientific manner.

TensorRT has an average inference speed of 0.006 seconds and an average
model load time of 0.0007 seconds, making it suitable for real-time processing and
superior to OpenVINO in this regard. On the other hand, OpenVINO has an average
memory consumption of 617841.9 MB and an average model size of 6 MB, making
it more appropriate for devices with limited resources, as it outperforms TensorRT.
The accuracy of both inference frameworks and each model demonstrates that
YOLOvV11n surpasses YOLOvV8n by 1%, while OpenVINO also give better results

at optimizing more complex models.

Keywords : deep learning, inference framework, OpenVINO, TensorRT
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BAB I

Pendahuluan

1.1 Latar Belakang

Kecerdasan buatan atau yang sering dikenal dengan Artificial Intelligence
(Al) merupakan teknologi terbaru yang menjadi revolusi teknologi yang sangat
pesat dalam beberapa tahun terakhir. Teknologi artificial intelligence pertama kali
dicetuskan pada 1956 oleh John McCarthy yang membuat memulai riset mengenai
sistem atau mesin yang dapat berpikir layaknya manusia. Artificial intelligence
bermula pada sebuah rule-based system yang berjalan pada task yang sederhana.
Pada beberapa tahun terakhir, artificial intelligence sudah mampu melakukan task
yang lebih kompleks dengan kecepatan yang tinggi, algoritma perhitungan yang
kompleks, serta pengolahan data dalam jumlah besar. Kemampuan artificial
intelligence yang sangat baik ini hingga saat ini mampu diaplikasikan pada task
yang lebih kompleks juga dan dapat menyesuaikan dengan berbagai bidang seperti
kesehatan, keuangan, otomasi, pengolahan bahasa, pembuatan teks, pengenalan
objek, hingga prediksi dan pengambilan keputusan.

Artificial intelligence yang dapat diaplikasikan pada beragam bidang ini
juga dapat diintegrasikan pada perangkat-perangkat sederhana seperti ponsel
genggam dan menjadi personal assistant. Dengan ini, artificial intelligence menjadi
sebuah sistem yang dapat membantu manusia yang mudah diakses dalam
melakukan task untuk mengoptimalkan kinerja manusia pada hal-hal lain yang
membutuhkan perhatian lebih. Al yang berusaha meniru kecerdasan manusia ini
membutuhkan data dalam jumlah besar untuk dijadikan pengetahuan dasar atau
knowledge base bagi sistem Al tersebut.

Pada beberapa tahun terakhir, Machine Learning (ML) yang menjadi salah
satu cabang ilmu dari artificial intelligence menjadi populer karena kemampuannya
untuk mengajarkan komputer untuk mengambil keputusan berdasarkan data yang
diberikan. Melalui algoritmanya, machine learning dapat mempelajari pola-pola
yang terdapat pada data-data untuk melakukan prediksi atau rekomendasi. Machine

learning memiliki beberapa dasar metode untuk mengajarkan mesin untuk memiliki



kecerdasan, seperti reinforcement learning, supervised learning, unsupervised
learning. Metode-metode pengajaran mesin tersebut diberlakukan sesuai dengan
kebutuhan masing-masing untuk mendapatkan hasil optimal.

Deep Learning (DL) merupakan cabang lanjutan dari machine learning
yang secara mendalam memaksimalkan potensi artificial intelligence, hingga
sampai pada meniru struktur dan fungsi dari otak manusia sebagai kecerdasan
manusia untuk mendapatkan kecerdasan buatan melalui Artificial Neural Networks.
Melalui deep learning, sistem artificial intelligence mampu melakukan task yang
lebih kompleks daripada machine learning yang berfokus pada pengenalan pola dan
data. Deep learning mampu melakukan task seperti pengenalan objek atau citra
melalui Computer Vision, pengolahan Bahasa melalui Natural Language
Processing, dan hal lainnya dengan akurasi yang lebih baik daripada model milik
machine learning. Model milik deep learning mampu mempelajari data secara
otomatis dengan baik tanpa campur tangan manusia. Namun, kecerdasan dan
akurasi ini tentunya datang dengan tantangan besar juga, seperti kebutuhan data
yang besar hingga proses komputasi yang sangat berat.

Inference Framework merupakan framework yang membantu model deep
learning yang sangat besar agar dapat digunakan dengan lebih mudah tanpa
mengorbankan akurasi pada aplikasinya secara nyata. Inference framework
memiliki kemampuan untuk meningkatkan kemampuan model deep learning untuk
penggunaan secara real-time dan membuat proses inference lebih efektif pada
berbagai hardware platform sesuai kebutuhan. Hingga saat ini, terdapat beberapa
inference framework yang populer dengan keahliannya yang terpolarisasi, yaitu
TensorRT yang merupakan hasil pengembangan tim NVIDIA dan OpenVINO yang
merupakan hasil pengembangan tim Intel. Kedua inference framework memiliki
base architecture yang berbeda secara signifikan, dimana TensorRT dioptimalkan
secara khusus untuk melakukan komputasi pada Graphic Processing Unit (GPU)
milik NVIDIA, sedangkan OpenVINO dirancang khusus untuk melakukan
komputasi pada Central Processing Unit (CPU). Kedua inference framework ini
sangatlah penting dalam aplikasinya secara nyata, dimana kecepatan, efektivitas,

hingga akurasi menjadi kunci dari keberhasilan sistem Artificial Intelligence.



Melalui penelitian yang telah dilakukan Zhou dan Yang (2022), didapatkan
hasil bahwa model ONNX yang dikonversi menjadi TensorRT mampu
meningkatkan kemampuan real-time inference tanpa mengorbankan akurasi.
Penelitian lain yang telah dilakukan oleh Zhongyi, et al (2019) menunjukkan bahwa
OpenVINO mendapatkan hasil memuaskan pada kemampuannya melakukan
detection secara real-time ketika menggunakan model ringan seperti MobileNet,
ResNet, dan SqueezeNet. Namun, belum ada penelitian terbaru mengenai
kemampuan inference framework pada model yang lebih modern saat ini, yaitu
YOLO. YOLOvV8 mampu melampaui akurasi YOLO terdahulu karena kombinasi
pada arsitekturnya (Reis, et al, 2024) . Hingga saat ini YOLO telah mengeluarkan
YOLOv11 yang dikenalkan mampu memberikan akurasi lebih baik dari YOLOVS.
Penelitian kali ini akan berfokus pada analisis kinerja dari TensorRT milik NVIDIA
dan OpenVINO milik Intel sebagai sebuah inference framework untuk pemodelan
dari Deep Learning.

1.2 Identifikasi Masalah

Melalui latar belakang masalah yang telah disampaikan, dapat diperoleh
identifikasi masalah bahwa inference framework milik TensorRT dan OpenVINO
memiliki ciri khas masing-masing dengan variasi kinerja yang berbeda, sehingga
diperlukan penelitian komprehensif untuk mengetahui kinerja secara real-time
antara keduanya. Selain itu, penggunaan GPU dan CPU menjadi tantangan baru
untuk menemukan performa inference framework yang sesuai pada aplikasi secara
nyata.

1.3 Batasan Masalah
Berikut merupakan batasan masalah yang ditetapkan pada Tugas Akhir ini:
a) Jenis model yang digunakan dalam penelitian ini adalah YOLOvV8 dan
YOLOv1l
b) Ukuran model yang digunakan pada penelitian ini adalah ukuran nano (n)
¢) Optimasi model berfokus pada model conversion

d) Hyperparameter tuning untuk training model pada penelitian ini disamakan



1.4 Rumusan Masalah

Bagaimana kinerja TensorRT dan OpenVINO sebagai inference framework
untuk pemodelan Deep Learning pada kasus perhitungan atau counting box secara
real-time.

1.5 Tujuan

Tujuan dari dilakukannya penelitian ini adalah untuk mengetahui
perbandingan kinerja TensorRT dan OpenVINO sebagai inference framework
untuk pemodelan Deep Learning.

1.6 Manfaat

Manfaat yang dapat diperoleh dalam penelitian ini adalah sebagai berikut:

1. Bagi praktik industri, manfaat yang didapatkan adalah mengetahui alternatif
format model yang menggunakan CPU untuk melakukan object detection
secara real-time.

2. Bagi penulis, maanfaat yang didapatkan adalah memperluas wawasan
mengenai ragam format model dalam YOLO untuk melakukan object detection
secara real-time.

3. Bagi Universitas Ma Chung, khususnya Program Studi Teknik Informatika,
manfaat yang didapatkan adalah dapat mempersiapkan lulusan yang kompeten
dan siap kerja dengan memberikan bekal kepada mahasiswa melalui proses

pembelajaran selama Tugas Akhir.

1.7 Luaran
Luaran dalam penelitian ini penjelasan mengenai perbandingan kinerja
TensorRT dan OpenVINO sebagai inference framework untuk pemodelan deep

learning beserta beserta analisis serta dilanjutkan dengan publikasi ilmiah ke jurnal.

1.8 Sistematika Penelitian
Sistematika penulisan proposal Tugas Akhir ini dibagi menjadi tiga bab
seperti berikut ini.

Bab | Pendahuluan



Bab 11

Bab 111

Bab IV

Bab V

Bab ini terdiri dari latar belakang, identifikasi masalah,
rumusan masalah, Batasan masalah, tujuan penelitian,
manfaat peneltian, luaran tugas akhir, dan sistematika
penelitian.

Tinjauan Pustaka

Bab ini berisi urutan sistematis terkait literatur yang
digunakan dalam proses penyusunan laporan Tugas Akhir
sehingga diperoleh landasan teori terkait dengan TensorRT
dan OpenVINO sebagai inference framework, teknik
optimasi model, dan pemodelan deep learning.

Metodologi Penelitian

Bab ini menjelaskan mengenai tahapan pengerjaan serta
analisis dari penelitian yang akan dilakukan. Tahapan
pengerjaan meliputi identifikasi masalah, studi literatur,
pembuatan data, training model, export model, hingga
perbandingan Kinerja.

Hasil dan Pembahasan

Bab ini membahas mengenai hasil dari penelitian yang telah
dilakukan untuk menganalisis perbandingan kinerja
TensorRT dan OpenVINO sebagai inference framework
untuk pemodelan deep learning.

Kesimpulan dan Saran

Bab ini berisi simpulan dari hasil penelitian yang telah
dilakukan serta saran mengenai yang mungkin dapat

memperbaiki kinerja atau penelitian selanjutnya.



BAB II

Tinjauan Pustaka

2.1 Artificial Intelligence

Artificial Intelligence atau dalam bahasa Indonesia berarti kecerdasan
buatan merupakan kecerdasan yang ditanamkan pada suatu sistem sehingga dapat
diatur sedemikian rupa. Penelitian mengenai artificial intelligence telah dimulai
pada tahun 1956 oleh John McCarthy dan Marvin Minsky yang menjalankan
penelitian selama 8 bulan, yaitu Dartmouth Summer Research Project on Artificial
Intelligence (DSRPAI) di kampus Dartmouth, New Hampshire (Haenlein, M.,
Kaplan, A., 2019). Tujuan dari diadakannya DSRPAI adalah untuk mengumpulkan
para peneliti untuk akhirnya dapat membangun sebuah mesin yang memiliki
kemampuan mensimulasikan kecerdasan manusia. Pada dasarnya artificial
intelligence ini ditanamkan pada sebuah komputer, agar komputer dapat menjadi
cerdas untuk dapat meniru beberapa perilaku manusia seperti perhitungan,
pengolahan bahasa, pengetahuan, identifikasi, pemecahan masalah hingga
pengambilan suatu keputusan. Dalam jurnalnya, Haenlein, M. Dan Kaplan, A. juga
menjelaskan bahwa kecerdasan buatan adalah sebuah sistem yang mampu untuk
menafsirkan data eksternal dan belajar dari data tersebut serta menggunakan hasil
pembelajarannya untuk mencapai tujuan tertentu (2019).

Latar belakang dari artificial intelligence adalah sebuah sistem yang
melakukan pengambilan keputusan hingga pemikiran berdasarkan sebuah reason
atau knowledge base dan sebuah rule-based system. Namun, sistem sederhana ini
sangat terbatas pada beberapa penggunaan yang lebih kompleks dan membutuhkan
penyesuaian yang meluas pada skala tertentu. Hingga saat ini, banyak sekali task
yang dapat dilakukan oleh artificial intelligence seperti pengenalan objek pada
gambar, melakukan prediksi, dan lain-lain. Kemampuan artificial intelligence yang
paling populer saat ini adalah Generative Artificial Intelligence bersamaan dengan
Large Language Model yang dapat melakukan interaksi dengan manusia seperti
tanya jawab, membuat kesimpulan dari suatu paragraf, hingga hal lain.

Kemampuan-kemampuan ini muncul berkat adanya pengembangan dari sistem atau



ide dasar dari artificial intelligence sendiri melalui machine learning dan deep
learning yang terus berkembang dengan sangat pesat hingga saat ini. Artificial
intelligence telah menunjukkan kemampuannya sebagai alat bantu yang berharga
dalam melakukan beragam task mulai dari analisis, memberikan wawasan melalui
motif, dan gaya bahasa yang dapat dilewatkan oleh manusia (Swathi, M.,
Dhayalakrishnan, R., 2024).

2.1.1 Machine Learning

Machine Learning merupakan bagian dari artificial intelligence yang
mencakup ilmu dalam membuat algoritma yang akan membuat mesin mempelajari
data dan terus berkembang secara pertahap. Kemampuan machine learning ini
berbeda dengan program atau sistem pada umumnya yang perlu memerlukan
campur tangan manusia. Konsep dasar dari sebuah machine learning adalah mesin
atau sistem yang mampu mempelajari data hingga mengenali pola yang terdapat
pada data untuk akhirnya membuat sebuah prediksi atau pengambilan keputusan
untuk data baru diluar data sebelumnya. Terdapat beberapa metode dalam machine
learning, seperti supervised learning, unsupervised learning, semi-supervised
learning, dan reinforcement learning. Machine learning dengan beragam
metodenya masih kesulitan dalam menangani data yang kompleks untuk melakukan
feature extraction atau mencari pola dan hubungan pada data. Sehingga, machine
learning masih membutuhkan bantuan manusia dalam melakukan feature

extraction yang akan digunakan nantinya untuk membuat algoritmanya.

Data input Feature extraction Model building Model assessment
A A A A
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programming P 9 P
::2:?:1 Inout " Handcrafted Automated » Outout
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Deep Input ® | Feature leaming + automated model building | # Output
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Gambar 2.1 llustrasi Pembuatan Model (Janiesch, C, et al. 2021)



2.1.2 Deep Learning

Perkembangan lebih lanjut dari machine learning adalah Deep Learning
yang berusaha menirukan jaringan saraf manusia. Berbeda dengan machine
learning yang lebih sederhana, deep learning memiliki lapisan dalam jumlah
banyak untuk menjawab kekurangan dari machine learning. Deep learning
memiliki lapisan atau layer ini adalah bagian yang memuat informasi pola hingga
relasi yang terdapat pada data. Ciri khas deep learning adalah kemampuannya
untuk mengenali pola hingga relasi pada data secara mandiri dan memperbaiki hasil
keluarannya. Pada algoritma sederhana, jika ingin melakukan perubahan pada
model, dibutuhkan banyak penyesuaian, sedangkan deep learning hanya perlu

melakukan penyesuaian pada parameter (Hao, 2018).

2.1.2.1YOLO

You Only Look Once (YOLO) merupakan sebuah algoritma Deep learning
yang umum digunakan sebagai pendeteksi objek yang memiliki kelebihan dalam
hal kecepatan dan akurasi. Algoritma ini dapat mendeteksi objek secara real-time
dengan pendekatan Convolutional Neural Network (CNN). CNN mampu membagi
suatu citra menjadi beberapa bagian (dalam pixel) dan memprediksi setiap kotak
yang kemudian dibandingkan dengan probabilitas yang diprediksi. Model dari
YOLO menggunakan deep learning untuk meningkatkan kecepatan dan akurasi

dalam melakukan deteksi dan klasifikasi objek.
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Gambar 2.2 Arsitektur YOLO (Redmon, J., et al. 2016)

Arsitektur dari YOLO menggunakan 24 convolutional layers dengan 2 fully

connected layers. Secara bergantian 1 x 1 convolutional layers mengurangi fitur



yang terdapat pada layer sebelumnya. YOLO juga melakukan pre-train pada
convolutional layers pada ImageNet classification sebesar setengah dari resolusi
citra dan kemudian menggandakannya untuk deteksi (Redmon, J., et al. 2016)
YOLO dapat memberikan informasi koordinat dari bounding box atau kotak
pembatas (area yang dideteksi sebagai objek) dan mengklasifikasikan objek yang
dideteksi. Bounding box memberikan informasi x dan y sebagai pusat dari bounding
box dan height dan width sebagai ukurannya, serta nilai dari probabilitasnya.
Algoritma yang bekerja dalam model YOLO adalah dengan membagi citra yang

diberikan menjadi S x S dengan S adalah jumlah dari sel.
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Gambar 2.4 Pembagian Citra S x S (Redmon, et al. 2016)

YOLOv8 merupakan salah satu perkembangan dari YOLO yang dirilis pada
bulan Januari tahun 2023 dan dikembangkan oleh tim dari perusahaan Ultralytics,



sebuah perusahaan teknologi yang juga telah mengembangkan YOLOV5
sebelumnya. Terdapat 5 jenis versi YOLOV8 yang tersedia, yaitu YOLOv8n (nano),
YOLOVS8s (small), YOLOv8m (medium), YOLOVSI (large), dan YOLOv8X (extra-
large). Keseluruhan versi YOLOV8 menunjukkan ukuran dan kemampuan model
YOLOV8, mulai dari YOLOV8n yang terkecil serta ringan, hingga YOLOV8x yang
terbesar dan berat. Namun, secara keseluruhan YOLOv8 mampu mendukung
kemampuan computer vision seperti object detection, image segmentation, pose

estimation, tracking, dan classification (Terven, J., et al. 2023).
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Gambar 2.5 Arsitektur YOLOV8 (Huang, H., 2024)

YOLOvV11 merupakan versi terbaru yang juga dikembangkan oleh tim
Ultralytics dan dirilis pada September 2024. Terdapat 5 versi YOLOv11 yang
tersedia, yaitu YOLOv1ln (nano), YOLOv1ls (small), YOLOv1im (medium),
YOLOv11l (large), dan YOLOv1lx (extra-large). YOLOv1l memiliki
kemampuan untuk meningkatkan akurasi melalui mAP sebesar 22% dengan jumlah
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parameter lebih sedikit ketika dibandingkan dengan YOLOv8m. Perkembangan
terbaru arsitektur YOLOv1l pada backbone, neck dan peningkatan pada
kemampuan feature extraction dapat membawa memberikan akurasi yang lebih

baik yang berpengaruh pada diagnosis kanker (Awad, et al, 2024).

Backbone Neck Head

et e

Gambar 2.6 Arsitektur YOLOv11 (Rao, S. N., 2024)

2.2 Implementasi Artificial Intelligence

Industri 4.0 berarti bahwa industri telah berevolusi dan saat ini beralih
menuju yang keempat kalinya. Revolusi industri yang pertama terjadi pada 1784 di
Inggris, ketika mesin uap pertama kali ditemukan untuk menggantikan tenaga
manusia. Revolusi dari industri yang keempat ini diperkasai oleh negara Jerman
yang menjadikan industri sebagai kebijakan pembangunannya. Pada akhirnya,
beberapa negara lain juga menyusul menerapkan industri 4.0 ini dengan nama-nama
lain seperti Smart Industry, Internet of Things, dan lain-lain. Sesuai dengan revolusi
industri pertama di Inggris, revolusi industri keempat ini juga masih melihat bidang
industri sebagai porosnya dengan contohnya adalah kecepatan produksi,
fleksibilitas produksi, dan hal lain yang berkaitan dengan bidang industri
manufaktur dan pada akhirnya dapat membawa perkembangan dari sebuah negara.

Dilihat dari industri penerapannya, maka bidang industri manufakturlah yang
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memiliki peran besar (Prasetyo dan Sutopo, 2018). Disisi lain, terdapat bidang
industri otomotif, kesehatan, energi, logistik, hingga industri pertanian yang terkena
dampak revolusi industri 4.0 dan menuntut hal seperti kecepatan dan fleksibilitas.

Seiring perkembangan teknologi, muncul artificial intelligence atau
kecerdasan buatan yang cerdas dan dapat membantu berbagai keperluan yang ada.
Dilihat dari perspektif positf, tantangan industri yang kompleks justru membuka
peluang bagi kemampuan unik yang dimiliki teknologi kecerdasan buatan
dibandingkan dengan alat dan pendekatan konvensional (Arinez, et al, 2020).
Kemampuan dari kecerdasan buatan dalam memaksimalkan industri sangat
beragam, dari meningkatkan produktivitas, fleksibilitas, keamanan, kualitas hingga
mengurangi biaya produksi.

IImu kecerdasan buatan telah digunakan dalam lini produksi, kesehatan
hingga logistik dan pertanian, contohnya adalah optimisasi produksi, deteksi cacat
pada produk, identifikasi hingga prediksi downtime dari suatu mesin, diagnosis
penyakit dari citra x-ray, smart watch dengan sistem pemantauan dan
rekomendasinya, rekomendasi rute logistik, rekomendasi warehouse stock
management, dan deteksi dini penyakit pada tumbuhan melalui citra satelit serta
sistem irigasi cerdas untuk industri pertanian. Hasil dari implementasi kecerdasan
buatan ini telah terbukti meningkatkan produktivitas dan kualitas dari industri.
Keuntungan lain dari kecerdasan buatan dalam industri adalah membuat industri
berjalan dengan lebih mudah, cepat dan fleksibel untuk perputaran industrinya.
Menurut Lubis (2021), implementasi kecerdasan buatan pada pengerjaan manusia
dapat menghasilkan kinerja optimal dengan waktu proses yang cepat dan hasil

maksimal.

2.2.1 Model Optimization

Sebuah model pada deep learning tentunya memiliki layer yang sangat kaya
akan pengetahuan atau knowledge base untuk mencapai kecerdasan yang sesuai
dengan keinginan atau training pada dataset yang telah dilakukan sebelumnya.
Model dari YOLO yang memiliki kemampuan object detection secara real-time
dengan akurasi tinggi tentunya akan memiliki knowledge base yang juga sangat

luas, sehingga ukuran dari model ini cukup besar. Proses training bertujuan agar
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model memiliki knowledge base sesuai dengan yang diharapkan, sedangkan untuk
menggunakan model tersebut agar dapat melakukan task seperti prediction pada
data baru dibutuhkan satu buah tools yang dapat membantu deployment dari model
tersebut. Tools yang dapat membantu proses deployment model agar dapat
melakukan task yang diinginkan dari model disebut dengan inference frameworks.

Sebuah inference frameworks memiliki kemampuan untuk melakukan
model deployment dan model optimization yang dibutuhkan untuk meningkatkan
efektivitas model. Dalam penggunaan industri, tentunya penggunaan model YOLO
tidak semata-mata melakukan task atau inference satu kali saja, tetapi secara
berulang dengan menggunakan edge device yang memiliki spesifikasi atau sumber
daya terbatas. Dari sinilah muncul kebutuhan untuk melakukan optimasi untuk
mengurangi ukuran dari model agar lebih ringan tanpa mengurangi knowledge yang
dimiliki oleh model tersebut, sehingga model dapat berjalan dengan efisien dan
maksimal. Terdapat beberapa teknik yang dapat diterapkan untuk mengoptimalkan
sebuah model tanpa mengganggu kinerja model tersebut. Quantization merupakan
teknik untuk merubah angka yang memiliki keakuratan tinggi atau high-precision
floating-point yang dalam neural networks menjadi angka yang memiliki
keakuratan lebih rendah atau low-precision seperti contohnya 0.56 menjadi 78.
Dengan mengurangi tingkat keakuratan sebuah angka, maka model tentunya
menjadi lebih sederhana dan berukuran lebih kecil yang dapat mengurangi

penggunaan memory consumption selama proses inference.

QUANTIZATION

—

Gambar 2.7 llustrasi Quantization
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Pruning merupakan teknik untuk menghapus jaringan neuron atau filter
yang dianggap tidak penting pada model. Tujuan dari pruning adalah untuk
mengurangi kompleksitas model dan mempercepat proses inference. Pruning
menghilangkan jaringan neuron yang memiliki beban kecil atau kurang
mempengaruhi output model agar mendapatkan ukuran model yang lebih ringan
dengan memory consumption yang lebih sedikit. Keuntungan yang didapat dari
teknik ini selain ukuran yang lebih kecil adalah dengan struktur model yang lebih
sederhana dapat mencegah terjadinya ketidakmampuan model mendeteksi data
baru (overfitting) karena memiliki knowledge yang lebih general. Teknik pruning
dapat mempercepat proses inference tanpa mengorbankan akurasi dari model.

before pruning after pruning

pruning __ __
EyNapses

pruning __
neurans

Gambar 2.8 Ilustrasi Pruning

Knowledge distillation adalah teknik untuk transfer knowledge dari model
besar kepada model yang lebih kecil. Solusi optimisasi yang disampaikan Hinton,
et al disebut sebagai distillation yang berarti menggunakan output dari model besar
beserta rincian jaringannya untuk melatih model yang lebih kecil agar dapat meniru

hasil dari model yang besar (2015).
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Gambar 2.9 llustrasi Knowledge Distillation
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Fusing layers merupakan teknik yang mampu menggabungkan beberapa
layer menjadi satu untuk mengurangi memory consumption agar performa inference
dapat ditingkatkan. Ditemukan bahwa menggabungkan beberapa layer yang paling
sama antara satu dan lainnya dapat memberikan performa yang setara dengan model
aslinya (O’Neill, et al. 2020).

Teknik quantization, pruning, knowledge distillation, fusing layer saat ini
tidak perlu dilakukan secara manual dan terpisah dikarenakan sudah terdapat
beberapa tools untuk inference yang telah disediakan. Beberapa frameworks
popular yang sudah tersedia untuk melakukan inference adalah TensorRT oleh
NVIDIA, ONNX-runtime oleh Microsoft, OpenVINO oleh Intel, MXNet oleh
Apache. Seluruh inference frameworks dikembangkan sesuai dengan algoritma
masing-masing yang unik. Inference framework yang cukup popular adalah milik
NVIDIA, yaitu TensorRT yang melakukan optimisasi menggunakan hardware
GPU (Graphic Processing Unit) milik NVIDIA yang dikenal dengan kecepatan
inferensi, sehingga sesuai jika digunakan dalam kebutuhan komputasi dengan
performa tinggi. Pada sisi lainnya, OpenVINO yang dikembangkan oleh Intel
memiliki kemampuan komputasi pada CPU (Central Processing Unit). Kedua
inference framework memiliki kelebihan masing-masing untuk kebutuhan yang
berbeda. Perbedaan arsitektur inference framework dan penggunaan hardware yang
cukup signifikan pada proses komputasi milik TensorRT dan OpenVINO
menjadikan keduanya perbandingan yang sesuai untuk mengetahui kemampuan
inference framework berdarkan hardware yang berbeda dan sesuai untuk real-time
detection.

Masing-masing inference framework memiliki arsitektur dan algoritma
tertentu untuk mencapai tujuan tertentu. Sehingga pada setiap inference framework
dapat menghasilkan hasil yang berbeda untuk satu kasus yang sama. TensorRT
yang merupakan inference framework dengan dasar pengembangan GPU NVIDIA
tentunya akan lebih optimal ketika digunakan untuk kasus spesifik yang
membutuhkan GPU dalam komputasinya dan lebih baik jika menggunakan GPU
milik NVIDIA. Di sisi lain, penggunaan OpenVINO akan lebih optimal pada kasus

komputasi dengan CPU dan CPU milik Intel. Kelebihan dari inference framework
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milik TensorRT adalah peningkatan performa sebesar 3.5 jika dibandingkan dengan
model yang tidak dioptimasi, Frame per Second (FPS) yang lebih tinggi dalam
melakukan real-time detection, optimasi memory untuk penggunaan Embedded
System, mendukung format Open Neural Network Exchange (ONNX) untuk
kemampuan penggunaan pada berbagai platform, dan kemampuan untuk
melakukan penyesuaian melalui Compute Unified Device Architecture (CUDA) (Al
Ghadani, et al, 2020). Penggunaan TensorRT sebagai inference framework dengan
segala kelebihannya, tentunya juga memiliki kekurangan. Menurut Assuncdo, et al
(2022), kekurangan dari TensorRT adalah kehilangan akurasi dari 75% menjadi
64% pada mIOU (mean Intersection over Union) ketika menggunakan depth
multiplier sebesar 0.5, kompleksitas hyperparameter tuning, ketergantungan pada
perangkat NVIDIA yang memiliki CUDA, kebutuhan memory spesifik yang
disebabkan oleh konfigurasi yang dilakukan, dan overfitting karena kemampuan
model dalam melakukan optimisasi yang berlebihan. Inference framework
OpenVINO milik Intel juga menawarkan kelebihan seperti, performa optimal
ketika menggunakan perangkat Intel, peningkatan performa sebesar 3,3 kali pada
perangkat Intel dengan quantization sebesar 75%, multi-platform compatibility
mulai dari edge device hingga cloud dan berbagai framework lain seperti
TensorFlow dan PyTorch, high throughput dengan low latency yang membuatnya
sesuai dengan real-time detection, hemat daya atau dapat dijalankan pada perangkat
dengan daya yang rendah, hingga kemudahaan penggunaanya (Ahn, et al, 2023).
OpenVINO juga memiliki kekurangan, seperti yang dijelaskan oleh Mani, et al
(2024) seperti, penggunaannya akan terlimit jika tidak menggunakan perangkat
Intel, kurangnya fleksibilitas pada penggunaan framework selain TensorFlow dan
PyTorch, rumit pada konfigurasi, tidak semua model support OpenVINO.
Terdapat beberapa indikator perbandingan untuk mengetahui performa
masing-masing inference framework adalah dengan melihat inference speed,
memory consumption, power consumption, model size, loading time, dan accuracy.
Namun, tidak semua indikator sesuai dan memiliki kualitas yang sama ketika
melakukan perbandingan performa inference framework pada tiap kasus. Pada

penelitian ini, terdapat lima indikator yang dirasa sesuai dan tepat dengan
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kebutuhan real-time object detection. Kelimanya adalah inference speed, memory

consumption, model size, loading time, dan accuracy yang melihat dari nilai mAP

atau mean Average Precision.

1.

Inference speed merupakan satu indikator penting untuk menilai
efektivitas inference framework dalam melakukan task secara real-time.
Inference speed merupakan waktu yang dibutuhkan inference
framework dalam memproses dan menghasilkan prediksi dari data
masukkan yang diberikan yang pada umumnya diukur dengan satuan
millisecond. Dalam konteks penelitian ini, inference speed dievaluasi
berdasarkan kemampuan inference framework untuk menyelesaikan
task object detection pada satu data masukkan. Semakin cepat atau
semakin kecil inference speed dalam menyelesaikan task pada data
masukkan, semakin efektif inference framework dalam mendukung
real-time object detection.

Memory consumption menjadi indikator perbandingan yang penting
dalam menilai skalabilitas dan efektivitas sebuah inference framwork
secara khusus jika digunakan pada hardware dengan spesifikasi yang
lebih terbatas sesuai dengan kebutuhan. Memory consumption berarti
jumlah sumber daya memori yang digunakan oleh inference framework
selama proses inference dilakukan yang berdampak secara langsung
pada kemampuan system melakukan task. Pada penelitian ini, memory
consumption dapat dievaluasi dengan melihat penggunaan RAM
(Random Access Memory) mulai dari inference framework menerima
data masukkan hingga menyelesaikan task object detection. Semakin
rendah atau kecil memory consumption selama proses inference
dilakukan, maka semakin efektif inference framework tersebut dalam
mendukung real-time object detection.

Model size dapat menjadi indikator perbandingan berikutnya yang
sesuai dalam menilai skalabilitas inference framework yang secara
khusus digunakan pada hardware dengan spesifikasi terbatas untuk

mengoptimalkan infrastruktur penyimpanannya. Model size merupakan
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ukuran file dari inference framework yang dapat diukur dengan satuan
megabyte (MB) atau gigabyte (GB) yang dapat menjadi indikator
penting dari kompleksitas dan efektifitas suatu inference framework.
Dalam penelitian ini model size dapat dievaluasi berdasarkan ukuran
penyimpanannya. Semakin rendah atau kecil model size yang dimiliki
inference framework, maka semakin baik efektifitas inference
framework dalam melakukan inference tanpa mengorbankan kebutuhan
hardware.

Loading time sebuah inference framework berperan penting dalam
menunjukkan efektifitas inference framework secara khusus pada
penggunaan dalam task real-time object detection. Loading time
merupakan indikator yang menunjukkan waktu yang diperlukan untuk
memuat inference framework ke dalam memori sebelum melakukan
inference pada data masukkan. Loading time dapat dipengaruhi oleh
arsitektur, metode optimization yang dilakukan oleh inference
framework. Dalam penelitian ini loading time dapat dievaluasi melalui
kecepatan inference framework dimuat pada memori sebelum inference
mulai dilakukan. Semakin rendah atau cepat loading time suatu
inference framework, maka semakin efektif suatu inference framework
untuk melakukan task real-time object detection terutama pada
kebutuhan kecepatan inisiasi.

. Accuracy tentunya menjadi indikator utama dalam melihat kemampuan
inference framework melakukan task yang diberikan pada berbagai
kondisi yang ada. Accuracy yang dimiliki oleh inference framework
biasanya diukur melalui mean Average Precision (mAP) yang
menunjukkan kemampuan inference framework dalam melakukan task
yang diberikan. Pada penelitian ini, mAP digunakan sebagai indikator
utama dalam mengukur performa inference framework pada presisi
Intersection over Union (loU) 50%. loU 50% dapat diartikan bahwa
hasil prediksi bounding box mengalami tumpang tindih dengan

bounding box dari ground truth deteksinya sebesar minimal 50%.
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Ground Truth

Prediksi

Gambar 2.10 llustrasi Intersection over Union (loU) 50%

Semakin besar atau tinggi nilai dari mAP(50%) suatu inference
framework, maka semakin akurat inference framework dalam
melakukan task yang diberikan secara konsisten dengan threshold loU
50%.

Penelitian ini dilakukan dengan melihat performa inference framework pada
dua hardware yang berbeda dengan tujuan untuk memperkaya wawasan mengenai
performa masing-masing inference framework sesuai dengan desain arsitekturnya.
Hardware yang pertama adalah komputer dengan CPU Intel(R) Gold Intel(R)
Xeon(R) Gold 5218 CPU @ 2.30GHz yang memiliki storage sebesar 2.5 terrabyte
berupa Hard Disk Drive (HDD) CPU 64 core dan Random Access Memory (RAM)
sebesar 130 gigabyte. Hardware kedua adalah milik NVIDIA dengan spesifikasi
CPU Arm® Cortex®-AT78AE v8.2 64-bit yang memiliki 12 core dengan storage
sebesar 256 gigabyte dan memiliki RAM sebesar 64 gigabyte 256-bit LPDDR5
yang memiliki kecepatan 204.8 gigabyte/second dengan GPU NVIDIA Ampere
architecture dengan 2045 NVIDIA® CUDA® cores dan 64 Tensor cores.

Kedua hardware memiliki perbedaan yang signifikan dengan ciri khas
masing-masing. Hardware pertama milik Intel yang prosesnya difokuskan pada
CPU miliknya, sedangkan hardware kedua milik NVIDIA yang computing
background miliknya difokuskan pada GPU. Python 3.8 digunakan pada kedua
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hardware untuk mengetahui kinerja masing-masing inference framework untuk
mendapatkan perbandingan yang setara dengan operating system LINUX
UBUNTU.

2.3 Pengujian Statistik

Dalam melakukan perbandingan yang membutuhkan pengambilan
kesimpulan berdasarkan data numerik yang tersedia, diperlukan suatu metode
pengujian yang terukur untuk mengetahui hasil perbandingan secara terukur dengan
metode sesuai. Pengujian statistik merupakan suatu metode pengujian yang terukur
secara ilmiah untuk menarik kesimpulan berdasarkan data yang diberikan.
Pengujian statistik memungkinkan peneliti untuk melihat dan menarik kesimpulan
mengenai perbedaan antar data hingga mengetahui hubungan antar variabel secara
pada data atau antar data. Metode statistik ini dapat memberikan hasil yang
signifikan berdasarkan ketentuan yang ditentukan secara mandiri. Tujuan dari
pengujian statistik adalah untuk melakukan komparasi dan melihat interaksi antara
kelompok data yang mencakup perbedaan rata-rata, interaksi hingga variabel dan
dampak perlakuan tertentu pada kelompok data tertentu. Selain itu, pengujian
statistik juga penting dilakukan untuk mengetahui reliabilitas data agar dapat
dipertanggungjawabkan, mengetahui jenis data, memberikan pemahaman atas
faktor tertentu terhadap data tertentu yang berujung pada kebutuhan pengambilan
keputusan atau kesimpulan berdasarkan analisis data yang objektif. Metode uji
statistik memiliki beberapa teknik pengujian yang dapat digunakan untuk
mengambil kesimpulan (Ramadhani, dkk, 2022).

Terdapat dua metode pengujian statistik yang umum digunakan, yaitu T-
Test dan ANOVA (Analysis of Variance). Uji statistik uji T dapat digunakan untuk
mencari tahu apakah terdapat perbedaan signifikan pada data dengan cara
membandingkan nilai rata-rata dari satu atau dua data yang tersedia. Dalam uji T
sendiri terdapat beberapa jenis bergantung dengan karakteristik dari data. Uji T
yang pertama adalah one-sample T-Test, untuk jenis uji T ini tujuan utamanya
adalah mengetahui apakah terdapat perbedaan signifikan antara satu nilai dengan
rata-rata dari satu set data, contohnya adalah untuk mengetahui apakah terdapat

perbedaan signifikan dari rata-rata tinggi satu kelas dengan tinggi seorang siswa.
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Jenis uji T berikutnya adalah independent T-Test yang biasa digunakan untuk
mengetahui apakah terdapat perbedaan signifikan antara dua set data dengan syarat
kedua data tidak memiliki hubungan. Contoh dari independent T-Test ini adalah
untuk mengetahui apakah terdapat perbedaan signifikan antara rata-rata kecepatan
berlari laki-laki dengan rata-rata kecepatan berlari wanita, dimana kedua data tidak
memiliki relasi. Berikutnya, terdapat paired / dependent T-Test yang bertujuan
untuk mengetahui apakah terdapat perbedaan signifikan dari rata-rata dua set data
yang memiliki relasi. Paired / dependent T-Test dapat digunakan untuk mengetahui
apakah terdapat perbedaan rata-rata berat badan harian seseorang ketika sebelum
berolahraga secara rutin dan sesudah berolahraga secara rutin, dimana terdapat
relasi antara keduanya yaitu pada subjek pengamatan. Pada uji statistik independent
T-Test, diperlukan data dan jenis variance dari kedua data independen. Data
variance merupakan data yang menunjukkan homogenitas antara setiap nilai pada
data dengan rata-rata maupun nilai tengah pada data. Apabila variance
menunjukkan terdapat homogenitas pada data, maka dapat diartikan bahwa varians
data pada kelompok tidak berbeda secara signifikan. Uji homogenitas pada data
atau uji variance dapat dijadikan sebagai penentu berikutnya untuk metode
independent T-Test. Apabila data disebut homogen melalui uji variance, maka
dapat langsung menggunakan independent T-Test, sebaliknya jika data tidak
homogen, maka akan menggunakan Welch’s T-Test. Untuk melakukan uji
homogenitas data, dapat dilakukan uji levene.

ANOVA vyang merupakan singkatan dari Analysis of Variance yang
merupakan salah satu uji statistik dengan yang bertujuan untuk menguji perbedaan
secara signifikan pada rata-rata antara dua faktor atau lebih pada data. Pada
dasarnya, uji ANOVA memiliki tujuan yang sama dengan uji T, tetapi uji ANOVA
memiliki keunggulan dalam kemampuannya untuk menguji perbedaan secara
signifikan pada kelompok data yang memiliki faktor uji. Pada uji ANOVA, terdapat
dua jenis uji yang dapat dilakukan, yaitu One-Way ANOVA dan Two-Way
ANOVA. Uji One-Way ANOVA merupakan pengujian statistik yang serupa
dengan T-Test dengan dua set data, tetapi lebih kompleks pada metode statistiknya,

sehingga hasil yang disajikan uji ANOVA juga lebih kompleks dan disajikan dalam
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bentuk tabel atau yang dikenal dengan tabel F. Perhitungan statistik yang di lakukan
pada One-Way ANOVA dengan menghitung rata-rata atau mean, standar deviasi,
standar error rata-rata, nilai maksimum, nilai minimum, selang kepercayaan rata-
rata, dan uji levene untuk setiap set data. Pada metode Two-Way ANOVA dapat
dilakukan pada kebutuhan perhitungan yang lebih kompleks dan dilakukan untuk
mengetahui perbedaan secara signifikan antar set data yang diberikan pada faktor
tertentu. Sederhananya, Two-Way ANOVA tidak hanya menguji perbedaan
signifikan pada variabel dalam set data, tetapi juga melakukan pengujian antara set
data untuk mengetahui interaksi antar set data yang diberikan untuk mengetahui
faktor yang berinteraksi satu sama lain pada data. Pada penelitian ini digunakan dua
buah inference framework, yaitu TensorRT dan OpenVINO sebagai faktor pertama
dan pada dua model yang berbeda, yaitu YOLOv8n dan YOLOv11n sebagai faktor
kedua, sehingga perlu dikaji juga secara mendalam pada data untuk tiap kategori
atau indikator perbandingan serta antar model pada tiap inference framework untuk
melihat interaksi pada model untuk tiap inference framework. Berdasarkan kondisi
datadan kebutuhan kajian, maka dalam penelitian ini akan digunakan Two-Way
ANOVA yang mampu menguji faktor tertentu dalam set data dan variabel antar set
data. Sama dengan pengujian statistik menggunakan T-Test perlu dilakukan

pengujian terhadap homogenitas data dengan menggunakan uji levene.
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BAB III

Analisis dan Perancangan Sistem

3.1 Alur Penelitian

Proyek Tugas Akhir ini memiliki tujuan untuk mengetahui perbandingan
performa dari inference framework yang disediakan oleh OpenVINO yang
dikembangkan Intel dan inference framework TensorRT yang disediakan oleh
NVIDIA. Alur penelitian dari proyek ini dapat dilihat pada gambar 3.1.

Analiziz Kebutuhan

.

Studi Literatur

.

Pembuatan Dafaser

.

Training Model

¥ ¥
YOLOvE YOLOv1L
I I
¥
Export Model
[
] ¥
TenzorRT COpenVING
I [
L ]

Perbandingan Kinerja

Gambar 3.1 Alur Penelitian
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3.2 Analisis Kebutuhan

Dalam penelitian untuk menganalisis perbandingan performa antara
inference framework milik OpenVINO dan TensorRT, dibutuhkan analisis agar
penelitian dapat berjalan dengan lancar dan optimal. Analisis kebutuhan yang
dilakukan dalam menganalisis perbandingan performa kedua inference framework
mencakup analisis kebutuhan dari sisi pengguna dan peneliti.
3.2.1 Kebutuhan Pengguna

Analisis kebutuhan dapat dimulai dengan mengidentifikasi masalah utama
yang dihadapi, yaitu keperluan mencari alternatif yang efisien dari TensorRT milik
NVIDIA. TensorRT merupakan framework dikenal optimal dalam melakukan
inference menggunakan GPU, terutama untuk keperluan seperti object detection,
hingga counting box secara real-time. Namun, penggunaan GPU yang intensif
menjadi tantangan, terutama karena konsumsi sumber daya yang besar, yang
terkadang tidak sebanding dengan kebutuhan atau keterbatasan infrastruktur pada
khususnya dalam dunia industri. Oleh karena itu, penting untuk menemukan solusi
lain yang lebih cost saving dalam penggunaan sumber daya maupun secara
komputasi, dengan tetap mampu mempertahankan performa yang dibutuhkan.

Salah satu alternatif yang dapat dipertimbangkan adalah framework
inference yang tidak hanya bergantung pada GPU, tetapi juga memungkinkan
penggunaan CPU secara optimal. Intel menawarkan solusi komputasi berbasis CPU
dengan nama OpenVINO vyang dapat menjadi alternatif menarik untuk
menggantikan TensorRT dalam konteks object detection, hingga counting box
secara real-time. Penggunaan CPU ini diharapkan mampu mengurangi
ketergantungan pada GPU dan memberikan efektivitas yang lebih baik dalam hal
cost saving.

Framework yang berbasis CPU ini juga memiliki potensi untuk diterapkan
di berbagai lingkungan yang mungkin tidak memiliki akses ke GPU dengan
spesifikasi tinggi. Dengan begitu, solusi ini dapat memperluas jangkauan
penggunaan teknologi counting box dalam skenario real-time yang lebih luas. Di
sisi lain, penerapan framework CPU tentu juga memiliki tantangan, terutama dalam
hal memastikan bahwa performa tetap optimal tanpa kehilangan kecepatan atau

akurasi yang diharapkan dan mampu dipenuhi oleh GPU. Oleh karena itu,
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penelitian ini bertujuan untuk mengevaluasi dan membandingkan kinerja inference
framework alternatif milik OpenVINO dengan TensorRT. Hasil dari penelitian ini
diharapkan dapat memberikan gambaran yang jelas mengenai apakah solusi
berbasis CPU dapat menjadi pilihan yang layak untuk keperluan counting box
secara real-time. Implementasi dari penelitian ini juga akan diguanakan oleh PT.
XYZ sebagai bahan pertimbangan mengenai penggunaan inference framework
utnuk optimisasi Kkinerja counting box secara real-time untuk membantu

meningkatkan sistem perhitungan yang saat ini diterapkan.

3.2.2 Kebutuhan Eksperimen

Dalam melakukan penelitian, penulis membutuhkan dukungan perangkat
keras dan perangkat lunak agar penelitian dapat berjalan dengan baik dan optimal.
Pemilihan perangkat keras atau hardware perlu dilakukan dengan benar sesuai
dengan kondisi yang ada dan kebutuhan dari masing-masing inference framework.
Kesalahan pemilihan hardware dapat mengakibatkan kesalahan analisis dan
membuat hasil tidak optimal. Pemilihan perangkat lunak atau software juga tidak
dapat dilakukan tanpa adanya dasar yang baik. Akibat dari kesalahan pemilihan
software dapat menyebabkan kegagalan program. Berikut adalah hardware dan

software yang dibutuhkan berdasarkan pemilihan untuk menunjang penelitian ini.

1. Perangkat Keras (Hardware) :
a. Komputer A:

i. Processor . Intel(R) Gold Intel(R) Xeon(R) Gold
5218 2.30GHz
ii. GPU : 130 gigabyte
iii. Memory : Hard Disk Drive 2.5 terrabyte 64
core

iv. Operating system : Linux UBUNTU
b. Komputer B:

i. Processor : Arm® Cortex®-A78AE v8.2 64-bit
12 core
ii. GPU : 64 gigabyte 256-bit LPDDR5 204.8
gigabyte/second
iii. Memory : Solid State Drive 256 gigabyte
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iv. Operating system : Linux UBUNTU
2. Perangkat Lunak (software):
a. Python3
Visual Studio Code

i

Supervision
You Only Look Once (YOLO)

Pandas

e o

@

f.  Numpy
g. Torch

3.3 Studi Literatur

Pada tahapan studi literatur, akan dilakukan studi mengenai penelitian-
penelitian terdahulu, buku hingga jurnal artikel mengenai topik terkait yang
sekiranya dapat dijadikan sebagai bahan referensi dalam menyelesaikan
permasalahan. Topik-topik pada penelitian terdahulu yang dapat dijadikan sebagai
bahan referensi adalah mengenai arsitektur dari model YOLO mulai dari arsitektur
dari YOLO hingga perbedaan antara YOLOV8 dengan YOLOv11, teknik-teknik
yang dapat dilakukan untuk melakukan optimisasi model, dan arsitektur dari
OpenVINO dan TensorRT dalam melakukan optimisasi. Studi literatur terhadap
teknik optimasi model dapat dijadikan sebagai acuan dalam mengetahui cara teknik
yang dapat dilakukan dalam mengoptimalkan kinerja model. Kajian topik arsitektur
YOLO hingga arsitektur dari YOLOv8 dan YOLOv1l difokuskan untuk
mengetahui perbedaan arsitektur dari kedua model. Studi literatur yang berkaitan
dengan arsitektur dari OpenVINO dan TensorRT akan berfokus menyelesaikan
permasalahan yang terdapat pada penggunaan CPU dan GPU dalam meningkatkan
kinerja model. Studi literatur terhadap perbandingan juga dibutuhkan agar
penelitian ini dapat terukur dengan baik. Proses studi literatur ini ditujukan untuk
mempelajari langkah serta metode yang sesuai dengan penelitian agar dapat
dilakukan analisis yang selaras sehingga mendapatkan hasil yang baik. Studi
literatur akan mencakup penjelasan mengenai kedua inference framework dalam
mengoptimalkan kinerja model. Ringkasan dari studi literatur yang dilakukan
terdapat pada tabel 3.1.
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Tabel 3.1 Studi Literatur

No Topik Pengetahuan Temuan
YOLO YOLO merupakan object YOLO mampu
detector yang akurat. mempertahankan
1. kemampuannya pada kasus
real-time. (Redmon, et al,
2016).

YOLOv8 YOLOv8 memiliki  Arsitektur milik YOLOv8
arsitektur yang serupa yang menggabungkan FAN
dengan pendahulunya. dan PAN serta peningkatan

2. post-processing membuat
YOLOV8 lebih unggul dari
pendahulunya (Reis, et al,
2024)

YOLOv11 YOLOv1l merupakan YOLOv11 dapat memberikan
versi terbaru dari YOLO akurasi yang sedikit lebih baik

3. yang menawarkan akurasi daripada YOLOv8  pada

tinggi dengan parameter diagnosis kanker (Awad, et al,
lebih sedikit. 2024).

Model Model optimization Teknik  optimasi  seperti

Optimization dibutuhkan untuk quantization, pruning, dan
mengaplikasikan ~ deep knowledge distillation mampu

4. learning pada real-world meningkatkan efektivitas

application.

model tanpa mengorbankan
performanya (Kim, et al,
2021).
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Tabel 3.1 Lanjutan Studi Literatur

No Topik Pengetahuan Temuan
5. OpenVINO Inference framework Model optimization
untuk membantu OpenVINO mampu

mengoptimalkan  model meningkatkan akurasi  dari
pada CPU yang model (Biswas, et al, 2020).
dikembangkan oleh Intel

TensorRT Inference framework TensorRT meningkatkan

milik NVIDIA yang kemampuan komputasi dan

6. mengoptimalkan model kecepatan model sebesar tiga
pada GPU NVIDIA kali lipat (Chaturvedi, et al,

2022)
Indikator Indikator dalam Beberapa indikator

perbandingan melakukan perbandingan perbandingan dapat digunakan

inference untuk inference untuk menemukan kekuatan

framework framework dan kelemahan dari tiap
inference framework (Pochelu,
2022)

3.4 Pembuatan Dataset

Data didapatkan dari PT. XYZ yang merupakan sebuah perusahaan
manufaktur. Total data yang digunakan adalah sejumlah 1976 gambar kardus yang
terdiri dari 9 jenis box yang berbeda. Kesembilan jenis box yang dijadikan dataset
terbagi menjadi 6 buah dataset foto kardus milik PT. XYZ yang memiliki identitas
material dan tidak memiliki identitas material, serta 3 buah dataset foto kardus
milik anak perusahaan PT. XYZ yang memiliki identitas material dan multi
identitas material.

Proses pengumpulan data dilakukan oleh tim produksi dan tim office.
Pengambilan data dilakukan dengan mengambil gambar kardus dari berbagai sudut
dan tingkat kecerahan yang juga beragam. Anotasi data dilakukan dengan bantuan
aplikasi Computer Vision Annotation Tool (CVAT) yang memiliki service untuk
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anotasi data dengan cepat dengan menggunakan 2D bounding box, polygon, point
polylinesi yang programnya terdapat pada komputer A.

Tahapan anotasi data menggunakan CVAT mebutuhkan beberapa langkah
terlebih dahulu hingga akhirnya data dapat digunakan sebagai dataset untuk
training model. Pertama adalah membuat dengan proyek baru dan kemudian
menyiapkan kelas-kelas yang akan digunakan dengan tools yang sudah disiapkan
CVAT. Setelah seluruh data dianotasi, barulah dataset dapat digunakan sebagai
dataset training untuk modeling. Dalam penelitian ini, terdapat lima kelas object
yang dibutuhkan. Kelas-kelas tersebut adalah box universal SKU, box satu SKU,
universal SKU, SKU, dan flag. Setelah membuat kelas-kelas yang dibutuhkan
dalam object detection untuk penelitian ini, dilakukan proses labeling atau anotasi
data dengan bantuan CVAT sesuai dengan kelasnya masing-masing pada setiap
dataset. Pada penelitian ini, anotasi data kali ini menggunakan bounding box
dengan bentuk rectangle karena sesuai dengan bentuk dari data gambar, yaitu box.
Tahapan anotasi data yang dilakukan pada keseluruhan gambar dibantu oleh tim
outsource. Terdapat dua jenis box utama dalam penelitian ini, yang pertama adalah
box dengan satu identitas atau satu SKU yang tercetak pada box, dan box universal
dengan beberapa identitas atau universal SKU yang berati terdapat beberapa SKU
yang tercetak pada box, dimana identitas sebenarnya ditandai dengan object flag.

Gambar 3.2 Ilustrasi Dataset Box Satu SKU
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Gambar 3.3 merupakan ilustrasi dari gambar box dengan satu identitas atau
satu SKU yang dimiliki oleh PT. XYZ, sedangkan gambar 3.4 merupakan ilustrasi
dari gambar box universal yang memiliki beberapa identitas atau universal SKU.
Desain kotak multi SKU dirancang agar lebih efisien saat memproduksi variasi lain
dari suatu produk. Untuk box dengan SKU universal, terdapat tanda atau flag
sebagai penunjuk identitas kotak sebenarnya. Flag ini menandai kotak yang berisi
produk yang sedang diproduksi. Lokasi flag berada di sisi kanan kode batang yang
terletak di bagian tengah kotak dengan SKU sebenarnya terletak di sisi kiri dari
kode batang tersebut. Desain box ini membantu untuk mempermudah identifikasi
produk dalam box yang sedang diproduksi. Box universal ini memungkinkan PT.
XYZ memproduksi berbagai produk tanpa perlu mengubah desain kotak secara
signifikan. Penggunaan flag menjadi kunci dalam membedakan antara satu produk
dengan produk lainnya, atau biasanya satu produk yang memiliki varian yang
beragam. Efisiensi dalam penggunaan kotak multi SKU meningkatkan
produktivitas dan fleksibilitas dalam produksi. Hal ini membuat proses produksi

menjadi lebih optimal dan cost saving.
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Gambar 3.3 llustrasi Dataset Box Universal SKU
Dataset untuk train dan validation terbagi menjadi 1580 gambar untuk train

dataset dan 396 gambar untuk validation dataset. Train dan validation dari seluruh

dataset menggunakan bantuan YOLOv8 dan YOLOv11 dengan outputnya adalah
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best.pt yang merupakan model dari proyek ini. Pada penelitian ini, model yang
berupa best.pt akan diberlakukan task export menjadi best.openvino yang
merupakan inference framework dari OpenVINO untuk inference milik Intel dan
menjadi best.engine yang untuk inference menggunakan TensorRT yang
merupakan inference framework milik NVIDIA. Train dan validation dilakukan di
komputer A karena dataset sudah disiapkan pada komputer A. Untuk task export
model dilakukan pada masing-masing komputer sesuai dengan arsitektur inference
framework. Gambar 3.5 dan gambar 3.6 merupakan ilustrasi dari hasil anotasi atau
gambar yang telah diberi label pada dataset.

Gambar 3.4 llustrasi Anotasi pada Dataset Box Satu SKU

3.5 Training Model

Para tahapan pelatihan model atau training model yang akan dilakukan
menggunakan komputer A, perlu dilakukan beberapa hal terlebih dahulu. Setelah
selesai melakukan anotasi data, perlu dilakukan split antara data training dan data
untuk test. Pada penlitian ini digunakan perbandingan 80% untuk data training dan
20% untuk data testing, sehingga total data untuk training adalah 1580 dan total
data untuk testing adalah 396 data. Tahapan pertama setelah anotasi dan split data
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adalah melakukan anotasi data yang sudah dijelaskan sebelumnya. Berikutnya
adalah melakukan review terhadap dataset yang sudah dianotasi. Review dataset ini
berguna untuk memastikan agar model tidak overfit dan dataset yang digunakan
memiliki kualitas yang baik secara ukuran hingga variasi data. Apabila terdapat
kekurangan pada dataset, maka tahapan pengumpulan data akan dilakukan kembali
untuk melengkapi data-data gambar yang kurang bervariasi. Setelah dataset
disiapkan, perlu dilakukan konversi dari seluruh dataset menjadi satu buah file yang
memiliki format .yaml untuk mempermudah melakukan training model. Konversi
format ini dapat dilakukan dengan menggunakan tools bawaan dari CVAT setelah
proses anotasi data selesai dilakukan.

Setelah disiapkan dataset dengan format .yaml, barulah dapat diberlakukan
tahapan training model pada menggunakan YOLOvV8 dan YOLOv1l. Proses
training dilakukan menggunakan komputer A dengan bantuan program python dan
library seperti ultralytics dan YOLO dengan parameter seperti pada tabel 3.2.

Tabel 3.2 Hyperparameter Tuning

Parameter Penjelasan Singkat Nilai
imgsize Mengubah ukuran citra 640
Batch Untuk pengaturan batch size 64
Epochs Total epoch 8000
Pretrained Pretrained model dari COCO True
Ir0 Learning Rate awal 0.01
Irl Learning Rate akhir 0.1
momentum Faktor momentum 0.937
weight_decay L2 untuk menghindari overfit 0.0005
warmup_epochs Learning rate untuk fase 3
warmup
warmup_momentum Momentum untuk warmup 0.8
warmup_bias_Ir Learning rate untuk warmup 0.1
box Beban dari box loss 0.05
cls Beban dari classification loss 0.3
iou Intersection over Union 0.2
threshold
hsv_h Penyesuaian hue 0.015
hsv_s Penyesuaian saturation 0.7
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Tabel 3.2 Lanjutan Hyperparameter Tuning

Parameter Penjelasan Singkat Nilai
hsv_v Penyesuaian value 0.4
degrees Rotasi citra 45.0
translate Transalasi citra 0.2
scale Skala citra 0.5
shear Memotong citra 5.0
perspective Transformasi citra acak 0.0001
flipud Memutar balikkan citra atas 0.25
bawah
fliplr Memutar balikkan citra Kiri 0.1
kanan
mosaic Mengombinasikan 4 citra train 0.0
mixup Mencampur citra 0.0
dropout Dropout 0.2
patience Jumlah epoch tanpa 300
perkembangan

Melalui tabel 3.2 dapat dilihat bahwa terdapat proses preprocessing yang
diberlakukan pada dataset. Diantaranya adalah resize, penyesuaian warna HSV,
translate, scale, shear, flipud, fliplr. Tujuan dari proses preprocessing pada tahapan
training model ini adalah untuk memperkaya pengetahuan knowledge base dengan
menambah variasi pada dataset. Parameter pretrained diatur menjadi True dengan
dataset dari COCO yang memiliki kelas yang banyak seperti orang, kendaraan
mobil, sepeda, dan objek lainnya.

3.6 Export Model

Tahapan export model bertujuan agar model yang sudah diberlakukan
training dengan dataset sebelumnya dapat digunakan untuk melakukan task sesuai
dengan keinginan. Dengan memberlakukan export, model dapat digunakan untuk
detection, segmentation, classify, pose estimation, dan Oriented Bounding Boxes
(OBB) object detection. Selain agar dapat digunakan untuk inference, export model
dapat membuat model menjadi lebih optimal dengan memberlakukan model
optimization pada model best.pt yang didapatkan dari training model. Terdapat
beberapa teknik optimisasi model yang ada, tetapi sudah terdapat beberapa tools

untuk mempermudah melakukan model optimization yang telah disediakan.
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Beberapa inference framework yang dapat digunakan sebagai tools untuk
mempermudah model optimization adalah OpenVINO, TensorRT, ONNX, hingga
TF Lite. Masing-masing inference framework tersebut sudah memiliki metode-
metodenya sendiri untuk melakukan model optimization dengan cara yang khas dan
memiliki tujuan yang berbeda sesuai dengan arsitektur tiap inference framework.
Library YOLO yang digunakan dalam penelitian ini telah menawarkan cara
mudah untuk melakukan export model. YOLO menyediakan mode untuk
melakukan export model menjadi inference framework sesuai dengan keinginan
dan kebutuhan yang berbeda. Sebagai contohnya untuk inference framework pada
mobile device dapat mengguankan format TF Lite. Tiap versi dari YOLO
menyediakan inference framework yang berbeda, tetapi terdapat beberapa inference
framework yang selalu ada, yaitu OpenVINO dan TensorRT. Inference framework
milik OpenVINO menawarkan arsitektur yang membuat model dapat
menggunakan CPU dengan tiga kali lebih cepat, sedangkan TensorRT menawarkan
arsitektur yang mampu mendorong kemampuan GPU hingga lima Kkali lipat. Pada
penelitian yang berfokus melihat potensi CPU sebagai alternatif dari GPU, tentunya
akan menggunakan inference framework dari OpenVINO untuk CPU dan
TensorRT untuk mengetahui performa inference framework menggunakan GPU.

3.7 Perbandingan Kinerja

Pada tahapan perbandingan kinerja akan dilakukan eksperimen dan
membandingkan serta menganalisis hasil dari dua inference framework yang
berbeda, yaitu OpenVINO dan TensorRT. Kedua inference framework akan
diimplementasikan menggunakan model yang telah diberlakukan training dengan
dataset yang sama pada YOLOv8 dan YOLOv1l. Masing-masing inference
framework memiliki kemampuan untuk mengubah format model agar dapat
diberlakukan task lain seperti prediction, classification, hingga detection dan dapat
mengoptimalkan kinerja dari model tersebut. Perbedaan antara OpenVINO dan
TensorRT sangat mendasar, terletak pada arsitekturnya. OpenVINO yang
dikembangkan oleh Intel mengoptimalkan kinerja model dan dirancang untuk
dijalankan pada perangkat milik CPU milik Intel dan FPGA. Inference framework
TensorRT yang dikembangkan oleh NVIDIA dirancang dan disesuaikan sehingga

mampu mengoptimalkan kinerja model pada hardware GPU milik NVIDIA.
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Perbandingan kinerja pada penelitian kali ini mencakup beberapa hal agar
penelitian tetap sesuai dengan keinginan, yaitu untuk mengetahui performa
inference framework pada kebutuhan object detection secara real-time khususnya
untuk objek box yang berjalan pada belt conveyor. Indikator perbandingan untuk
melihat Kkinerja dari masing-masing inference framework adalah inference speed,
memory consumption, model size, loading time, dan accuracy yang melihat dari
nilai mAP atau mean Average Precision. Dengan melakukan perbandingan antara
inference framework dari OpenVINO dan TensorRT menggunakan kelima
indikator tersebut, diharapkan dapat memberikan wawasan yang sesuai pada trade-
off antara performa keduanya berdasarkan resource dan arstiketur masing-masing
ketika kedua inference framework diterapkan pada model YOLOv8 dan YOLOv11

yang telah melalui proses training dengan dataset yang sama.

Tabel 3.3 Indikator Perbandingan

TensorRT OpenVINO
Indikator
YOLOvV8 YOLOv11 YOLOvV8 YOLOv11
Inference
speed (S)
Memory

consumption
(MB)

Model size
(MB)
Loading time
(s)
Accuracy (%)

Indikator inference speed akan didapatkan dari melakukan model validation
menggunakan fungsi val() dari ultralytics yang dapat memberikan informasi
lengkap mulai dari preprocess, inference speed, loss, dan postprocess tiap citra
pada dataset test. Indikator memory consumption didapatkan dari pengukuran
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jumlah memory yang digunakan saat program dijalankan dengan bantuan library
psutils yang memiliki fungsi Process() dan memiliki getter berupa memory_info()
dan Resident Set Size (RSS) yang memberikan informasi penggunaan memory
dalam satuan kilobyte (KB). Indikator model size didapatkan dari melihat ukuran
model setelah dioptimisasi dengan cara klik kanan dan memilih properties pada
model. Indikator loading time didapatkan dari memberikan timestamp pada start
dan end untuk proses load model dengan bantuan library time yang memberikan
informasi waktu dalam satuan detik. Indikator accuracy dengan mAP50 didapatkan
dari fungsi metrics dan box secara spesifik mAP50 untuk mendapatkan akurasi
berdasarkan mAP50.

n ultralytics

load_time = .time()
model = YOLO("pa )
end_load =t .time() - load_time

metrics = model.val(data="dat
map5@ = metrics.box.map5@
mem_usage = til.F ess().memory_info().rss

print('l time:', end_load)
print( mor , mem_usage)

print('ma , map50)

Gambar 3.5 Snapshot Kode Python Pengukuran Indikator

Gambar 3.5 merupakan potongan kode program python yang digunakan
dalam penelitian ini untuk mendapatkan indikator inference speed, memory
consumption, load time, dan accuracy. Gambar 3.6 merupakan contoh keluaran dari
program python yang merupakan hasil dari pengukuran indikator pada penelitian

ini.

Speed: 1.2ms preprocess, 17.3ms inference, ©.ems loss, ©.8ms postprocess per image
Results saved to runs/detect/val

load time: ©.882273082733154297
memory: 2428084224
map50: ©.9523533877162062

Gambar 3.6 Contoh Hasil Pengukuran Indikator
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BAB IV

Hasil dan Pembahasan

4.1 Persiapan Perangkat

Perangkat keras yang digunakan merupakan aset milik PT. XYZ yang
digunakan sesuai dengan izin yang diperoleh. Komputer A dan komputer B pada
saat yang bersamaan digunakan untuk kebutuhan Perusahaan PT. XYZ, sehingga
untuk penelitian ini, dibutuhkan koordinasi jadwal. Setelah mendapatkan izin dan
jadwal penggunaan komputer A, peneliti baru dapat melanjutkan penelitiannya,
mulai dari anotasi dataset hingga proses optimisasi model dan eksperimen.
Perangkat lunak yang digunakan didapatkan dengan mudah, karena perangkat
lunaknya bersifat open source yang dapat diakses dengan mudah. Persiapan
perangkat lunak dilakukan dengan melakukan instalasi library pada kedua

perangkat keras.

4.2 Dataset

Pembuatan dataset dibantu oleh tim produksi di lapangan untuk
mengumpulkan data berdasarkan arahan peneliti. Ketentuan dataset yang
dibutuhkan untuk penelitian ini adalah gambar box dengan berbagai sudut dengan
pencahayaan ruangan yang cukup variatif dalam keadaan cenderung gelap maupun
terang dengan berbagai desain box yang tersedia. Variasi pencahayaan dalam
melakukan pengumpulan dataset ada pada pencahayaan gelap sebesar 76 lux pada
pencahayaan normal ruangan di gudang dan area produksi hingga pencahayaan
terang sebesar 2208 lux pada pencahayaan normal ruangan kerja menggunakan

aplikasi android Illuminance — Lux Light Meter.
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Gambar 4.1 Pengukuran Pencahayaan; (a) Pengumpulan dataset pada kondisi

gelap, (b) Pengumpulan dataset pada kondisi terang

Setelah dataset dikumpulkan dalam google drive, peneliti melakukan proses
review untuk memperhatikan kualitas dataset sesuai permintaan. Apabila terdapat
data yang tidak variatif pada sudut pengambilan gambar dan desain, maka data akan
dihapus dan meminta bantuan tim produksi untuk menambah beberapa data sesuai
kebutuhan.

Setelah melalui proses review dan dataset sudah cukup variatif, maka proses
selanjutnya adalah mengunduh data dan mengunggahnya untuk disiapkan di
komputer A yang kemudian dilakukan anotasi data. Anotasi data dilakukan
menggunakan bantuan software aplikasi Computer Vision Annotation Tools
(CVAT) yang terdapat pada komputer A. Proses anotasi dataset dibantu oleh tim
outsource untuk mempercepat proses anotasi. Tim outsource merupakan pihak
eksternal yang dipekerjakan secara profesional secara khusus untuk tugas tertentu
maupun project tertentu dengan tujuan mengoptimalkan efisiensi profesional dan

mengurangi biaya. Setelah anotasi data selesai dilakukan, akan kembali dilakukan
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review untuk perbaikan agar tidak terdapat noise pada anotasi data. Anotasi yang
dianggap memiliki noise adalah anotasi yang melewati sisi samping dari box
maupun SKU dan flag seperti yang tertera pada gambar 4.1.

(@) (b)

Gambar 4.2 llustrasi Anotasi dataset; (a) Noise pada anotasi box, (b) Anotasi

tidak noise

4.3 Training Model

Pada proses training model, diperlukan dataset train dan dataset test yang
sudah dipisahkan. Untuk melakukan train test split, digunakan function
train_test_split milik library SKLearn dengan proporsi 80:20 yang berarti terdapat
1580 data untuk training dan 396 data untuk test atau validation. Training model
dilakukan menggunakan komputer A dikarenakan komputer A memiliki storage
yang lebih besar dengan RAM dan GPU yang lebih besar dibandingkan komputer
B, sehingga sesuai untuk kebutuhan proses training. Proses training dilakukan
sebanyak masing-masing lima kali, untuk model YOLOv8n dan YOLOv11n untuk
mendapatkan variasi hasil guna memperkaya data pada penelitian ini. Proses
training model menggunakan hyperparameter yang sama antara YOLOv8n dan
YOLOv11n seperti pada tabel 3.2.

Hyperparameter yang digunakan pada penelitian kali ini telah disesuaikan
untuk mendapatkan hasil yang maksimal. Parameter imgsz dijadikan sebesar 640
guna mengurangi jumlah pixel dari gambar asli, tetapi tidak menjadikannya terlalu
rendah. Pada batch digunakan batch size sebesar 64 untuk membagi dataset

menjadi 64 data tiap epoch agar proses training terbagi dan menjadi lebih ringan
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untuk mendapatkan gradien hasil yang stabil. Parameter pretrain diatur menjadi
True untuk menjadikannya transfer learning model original dengan dataset dari
COCO milik ultralytics. Parameter learning rate diatur 0.01 dan 0.1 agar weight
dari model terus diperbaiki. Parameter weight dan dropout diatur menjadi 0.0005
dan 0.2 untuk mencegah terjadinya overfit pada model. Preprocessing tentunya
juga dibutuhkan untuk menambah variasi pada data, sehingga diterapkan beberapa
parameter seperti flip, scale, translate, hsv. Parameter patience diatur menjadi 300
epochs, sehingga setelah 300 epochs tidak terdapat perubahan pada mAP, maka
proses training akan dihentikan untuk mempercepat proses training model.
4.3.1 Hasil Training Model

Training model untuk YOLOv8n dan YOLOv11n dilakukan sebanyak lima
kali untuk memperkaya data dalam penelitian ini. Kedua model diberlakukan
training dengan pengatruan hyperparameter yang sama dan dataset yang sama.

4.3.1.1 Hasil Training YOLOvV8n
Tabel 4.1 Hasil Training YOLOv8n

No mAP(50%) Precision Recall Total epochs
1. 95.67 94.58 92.65 1033
2 95.65 94.52 92.65 1033
3 95.65 94.59 92.65 1033
4. 95.65 94.58 92.65 1033
5 95.67 94.58 92.65 1033

Pada tabel 4.1 menunjukkan hasil training model YOLOvV8n sebanyak lima
kali yang memuat nilai dari mAP(50%), precision, recall, dan total epochs. Hasil
training yang menggunakan 1580 total data ini memberikan performa yang cukup
konsisten pada setiap kali melakukan training. Nilai mAP(50%) mendapatkan
rentang nilai antara 95.65% dan 95.67%, dengan precision berada pada rentang
94.52% hingga 94.59% dan nilai recall yang konsisten pada 92.65%. Melalui data
akurasi pada tabel 4.1 dapat disimpulkan bahwa model YOLOv8n dapat melakukan

task object detection dengan baik untuk setiap dataset train yang diberikan.
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Seluruh repetisi training untuk YOLOv8n berakhir pada epoch 1033 yang
menandakan bahwa tidak terdapat perubahan hasil setelah 300 epoch hingga
diakhiri pada epoch yang ke 1033.  Perbedaan hasil pada tiap repetisi training
yang tidak signifikan ini dapat diartikan bahwa YOLOv8n memiliki kemampuan
yang baik sehingga tetap konsisten pada tiap repetisinya.
4.3.1.2 Hasil Training YOLOv11n

Tabel 4.2 Hasil Training YOLOv11n

No mAP(50%) Precision Recall Total epochs
1. 96.83 95.35 93.91 1074
2 96.83 95.35 93.91 1074
3 96.83 95.35 93.91 1074
4. 96.83 95.35 93.91 1074
5 96.83 95.35 93.91 1074

Pada tabel 4.2 menunjukkan hasil training model YOLOv11n sebanyak
lima kali yang memuat nilai dari mAP(50%), precision, recall, dan total epochs.
Hasil training dengan 1580 total data ini memberikan performa yang sangat
konsisten pada setiap kali melakukan training. Nilai mAP(50%) mendapatkan nilai
96.83%, dengan precision berada pada 95.35, dan nilai recall yang konsisten pada
93.91%. Melalui data akurasi pada tabel 4.2 dapat disimpulkan bahwa model
YOLOv11n dapat melakukan task object detection dengan baik untuk setiap dataset
train yang diberikan.

Seluruh repetisi training untuk YOLOv11n berakhir pada epoch 1074 yang
menandakan bahwa tidak terdapat perubahan hasil setelah 300 epoch hingga
diakhiri pada epoch yang ke 1074. Setelah lima kali repetisi training pada model
YOLOv11n dengan dataset yang sama, didapatkan hasil yang sama untuk setiap
repetisinya, sehingga dapat diartikan bahwa YOLOv11n sangat stabil dan konsisten
untuk tiap repetisinya.

Dalam perbandingan melalui accuracy yang dihasilkan dari YOLOv8n dan
YOLOv11n dapat dilihat bahwa YOLOv11ln memiliki selisih 1.21%. Diketahui

pada penelitian terdahulu bahwa YOLOv8n telah mengalami kenaikan accuracy
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dibandingkan dengan pendahulunya seperti YOLOv6n yang sebesar 89.8%
menjadi 90.6% atau kenaikan sebesar 0.89% (Liu, dan Li, 2024). Dari sini dapat
dilihat bahwa YOLO selalu konsisten memperbarui model miliknya dari segi
arsitekturnya, sehingga membawa perubahan dan peningkatan pada setiap versinya,
sesuai dengan temuan pada hasil training YOLOv11n pada penelitian ini.

4.4 Export Model

Pada proses export model, atau mengoptimalkan model menjadi TensorRT
dan OpenVINO pada penelitian ini diberlakukan pada setiap model yang sudah
selesai proses training. Seluruh model yang ada akan dioptimalkan dengan cara
export model menjadi format engine untuk TensorRT dan openvino yang memiliki
XML untuk network topology, BIN yang menjelaskan weights dan biases, Mapping
untuk OpenVINO. Proses export model YOLO menjadi format engine untuk pada
TensorRT dilakukan menggunakan komputer B yang memiliki GPU dari NVIDIA,
sehingga sesuai dengan teknik optimisasi TensorRT yang secara spesifik
menggunakan GPU milik NVIDIA. Sedangkan untuk export model menjadi format
openvino, dilakukan menggunakan komputer A yang memiliki processor Intel
XEON, sehingga sesuai dengan teknik optimasi dari OpenVINO yang
menggunakan perangkat CPU milik Intel.

Dalam melakukan optimisasi model melalui export ini, terdapat parameter
yang dapat disesuaikan untuk masing-masing metode, baik dari TensorRT maupun
dari OpenVINO. Tujuan dari menyesuaikan parameter ini adalah mengaktifkan dan
menyesuaikan teknik-teknik optimisasi model yang dimiliki oleh masing-masing
inference framework. Seperti contohnya pada TensorRT, terdapat format untuk
menentukan format inference framework, INT8 untuk mengaktifkan quantization
menjadi INT8, half untuk mengaktifkan half-precision floating-point menjadi
FP16, simplify untuk menghilangkan nodes yang tidak digunakan, workspace untuk
mengalokasikan jumlah maksimal dari memory yang akan digunakan untuk
optimization dan inference, batch untuk memberikan batch secara spesifik. Pada
OpenVINO, terdapat parameter yang lebih sederhana untuk mengaktifkan teknik
optimisasinya, yaitu format untuk menentukan inference framework, imgsz untuk
mengaktifkan resize pada input, half untuk mengaktifkan quantization menjadi
FP16, INT8 untuk mengaktifkan quantization menjadi INT8, batch untuk
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memberikan batch secara spesifik, dynamic untuk mengaktifkan kemampuan
inference untuk berbagai ukuran input. Pada penelitian ini, untuk export menjadi
TensorRT, diaktifkan format menjadi engine, half menjadi True, simplify menjadi
True, dan workspace menjadi 50 serta menggunakan device 0. Pada export model
menjadi OpenVINO, diberikan parameter imgsz menjadi 640, half menjadi True,
dan dynamic menjadi True. Tabel 4.3 hingga tabel 4.7 merupakan tabel rekapitulasi
indikator perbandingan dari lima kali export model terhadap lima model yang telah
diberlakukan training sebelumnya.
Tabel 4.3 Hasil Export Model Replikasi 1

TensorRT OpenVINO
Indikator
YOLOv8 YOLOv11 YOLOvV8 YOLOv1l
Inference
0.0059 0.0066 0.0173 0.0168
speed (S)
Memory
consumption 4175.36 4176.77 2428.08 3178.16
(MB)
Model size
8.3 7.8 MB 6.4 5.6
(MB)
Loading time
© 0.0006589 0.0009272 0.002273 0.0032367
S
Accuracy (%) 95.27 96.32 95.23 96.22

Hasil export model pada replikasi pertama untuk melakukan perbandingan
kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11ln pada
beberapa indikator pengujian disajikan pada tabel 4.3. Seperti contohnya pada
inference speed, TensorRT memiliki kecepatan yang lebih baik dibandingkan
dengan OpenVINO pada YOLOv8n dan YOLOvlln, pada indikator memory
consumption OpenVINO memiliki kemampuan lebih baik karena membutuhkan
RAM vyang lebih sedikit ketika melakukan inference, pada model size untuk
replikasi pertama ini OpenVINO lebih unggul karena ukuran model yang lebih kecil
dan ringan serta adanya penurunan model size pada model YOLOv1ln. Pada
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indikator loading time terlihat bahwa TensorRT memiliki kecepatan load model
lebih cepat, sedangkan pada accuracy tidak terlihat perbedaan signifikan pada
kedua inference framework, tetapi terlihat adanya sedikit kenaikan accuracy jika

menggunakan model YOLOv11n.

Tabel 4.4 Hasil Export Model Replikasi 2

TensorRT OpenVINO
Indikator
YOLOvV8 YOLOv11 YOLOvV8 YOLOv11
Inference
0.0057 0.0068 0.0171 0.0166
speed (S)
Memory
consumption 4081.616 4077.600 2674.860 3172.896
(MB)
Model size
8.3 7.9 6.4 5.6
(MB)
Loading time
. 0.00069713 0.0007345 0.0035126 0.0036258
S
Accuracy (%) 95.26 96.3 95.23 96.22

Hasil export model pada replikasi kedua untuk melakukan perbandingan
kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv1ln pada
beberapa indikator pengujian disajikan pada tabel 4.4. Pada indikator inference
speed terlihat TensorRT memiliki kecepatan yang lebih baik dibandingkan dengan
OpenVINO pada YOLOv8n dan YOLOv11n, pada indikator memory consumption
OpenVINO memiliki kemampuan lebih baik karena membutuhkan RAM yang
lebih sedikit ketika melakukan inference, pada model size untuk replikasi kedua
OpenVINO masih lebih unggul karena ukuran model yang lebih kecil dan ringan
serta adanya penurunan model size pada model YOLOv11n sama seperti replikasi
sebelumnya. Pada indikator loading time terlihat bahwa TensorRT memiliki
kecepatan load model lebih cepat, sedangkan pada accuracy tidak terlihat
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perbedaan signifikan pada kedua inference framework, tetapi tetap terlihat adanya
kenaikan accuracy jika menggunakan model YOLOv11n.

Tabel 4.5 Hasil Export Model Replikasi 3

TensorRT OpenVINO
Indikator
YOLOvV8 YOLOv11 YOLOv8 YOLOv11
Inference
0.005 0.0067 0.0171 0.0167
speed (S)
Memory
consumption 2096.992 4079.976 2809.352 3248.260
(MB)
Model size
8.2 7.7 6.4 5.6
(MB)
Loading time
© 0.0006437 0.0006775 0.0027019 0.0030105
S
Accuracy (%) 95.21 96.17 95.23 96.22

Hasil export model pada replikasi ketiga untuk melakukan perbandingan
kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv1ln pada
beberapa indikator pengujian disajikan pada tabel 4.5. Pada indikator inference
speed masih sama seperti dua replikasi sebelumnya, yaitu terlihat TensorRT lebih
cepat melakukan inference jika dibandingkan dengan OpenVINO pada YOLOv8n
dan YOLOvlln. Pada indikator memory consumption terlihat perubahan
kemampuan pada inference framework TensorRT khususnya pada model
YOLOvV8n yang mengalami penurunan signifikan pada, tetapi tidak terlihat pada
model YOLOv1ln, sedangkan pada OpenVINO juga tidak terlihat perubahan
signifikan jika dibandingkan dengan dua replikasi sebelumnya. Pada model size
untuk replikasi ketiga OpenVINO masih lebih unggul karena ukuran model yang
lebih kecil dan ringan serta adanya penurunan model size pada model YOLOv11n
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sama seperti replikasi sebelumnya. Pada indikator loading time terlihat bahwa
TensorRT memiliki kecepatan load model lebih cepat, sedangkan pada accuracy
tidak terlihat perbedaan signifikan pada kedua inference framework, tetapi tetap

terlihat adanya kenaikan accuracy jika menggunakan model YOLOv11n.

Tabel 4.6 Hasil Export Model Replikasi 4

TensorRT OpenVINO
Indikator
YOLOvV8 YOLOv11 YOLOvV8 YOLOv11
Inference
0.0055 0.0068 0.0173 0.0165
speed (S)
Memory
consumption 2102.776 4075.564 2947.048 3293.976
(MB)
Model size
8.4 7.7 6.4 5.6
(MB)
Loading time
. 0.0007231 0.0006728 0.0028142 0.0026895
S
Accuracy (%) 95.27 96.30 95.23 96.22

Hasil export model pada replikasi keempat untuk melakukan perbandingan
kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv1ln pada
beberapa indikator pengujian disajikan pada tabel 4.3. Pada indikator inference
speed masih sama seperti tiga replikasi sebelumnya, yaitu terlihat TensorRT lebih
cepat melakukan inference jika dibandingkan dengan OpenVINO pada model
YOLOv8n dan YOLOv1ln. Penurunan memory consumption pada YOLOvS8n
dengan inference framework TensorRT kembali terlihat di replikasi keempat ini,
sedangkan pada model YOLOv1ln dan kedua model dengan OpenVINO tidak
terlihat adanya perubahan signifikan. Pada model size untuk replikasi keempat
OpenVINO kembali unggul dengan ukuran model yang lebih kecil dan ringan serta
adanya penurunan model size pada model YOLOv11ln sama seperti replikasi
sebelumnya. Pada indikator loading time terlihat bahwa TensorRT lebih cepat
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dalam kemampuan load model, sedangkan pada accuracy masih tidak terlihat
perbedaan signifikan pada kedua inference framework, tetapi tetap terlihat adanya

kenaikan accuracy jika menggunakan model YOLOv11n.

Tabel 4.7 Hasil Export Model Replikasi 5

TensorRT OpenVINO
Indikator
YOLOvV8 YOLOv11 YOLOvV8 YOLOv11
Inference
0.0051 0.0063 0.0169 0.0166
speed (S)
Memory
consumption 2098.904 4073.968 3026.500 3352.200
(MB)
Model size
8.0 7.7 6.4 5.6
(MB)
Loading time
. 0.0006904 0.0006697 0.0030753 0.0032799
S
Accuracy (%) 95.24 96.31 95.23 96.22

Hasil export model pada replikasi kelima untuk melakukan perbandingan
kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv1ln pada
beberapa indikator pengujian disajikan pada tabel 4.3. Pada indikator inference
speed masih sama seperti empat replikasi sebelumnya, yaitu terlihat TensorRT lebih
cepat jika dibandingkan dengan OpenVINO pada model YOLOv8n dan
YOLOv11n. Penurunan memory consumption pada YOLOv8n dengan inference
framework TensorRT kembali terjadi di replikasi keempat ini yang menandakan
bahwa replikasi export model membawa dampak, sedangkan pada model
YOLOv1ln dan kedua model dengan OpenVINO masih tidak terlihat adanya
perubahan signifikan. Pada model size untuk replikasi kelima OpenVINO kembali
unggul dengan ukuran model yang lebih kecil dan ringan sekitar 1 MB dari
TensorRT, serta adanya penurunan model size pada model YOLOv11n sama seperti
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replikasi sebelumnya. Pada indikator loading time terlihat bahwa TensorRT masih
unggul dalam kemampuan load model, sedangkan pada accuracy masih tidak
terlihat perbedaan signifikan setelah lima kali replikasi pada kedua inference
framework, tetapi tetap terlihat adanya kenaikan accuracy jika menggunakan model
YOLOv11n dengan selisih sekitar 1%.

Melalui rekapitulasi hasil export model dengan replikasi lima kali, belum
dapat dilihat hasil signifikan pada kedua inference framework dengan variasi model
YOLOv8n dan YOLOv11n. Maka dari itu diperlukan kajian lebih mendalam pada
hasil export model dengan replikasi lima kali ini.

4.5 Pembahasan Perbandingan Kinerja

Pada sub bab ini akan membahas lebih mendalam mengenai hasil dari
export model YOLOv8n dan YOLOvVI 1n menjadi inference framework TensorRT
dan OpenVINO. Pada perbandingan kinerja ini akan dilakukan tiga metode
pengujian agar didapatkan hasil dengan pembahasan yang lebih mendalam. Ketiga
metode pengujian adalah melalui rata-rata, kemudian melalui uji T independent
untuk melihat perbedaan rata-rata kedua kelompok signifikan atau tidak, dan uji
two-way ANOV A untuk mencari tahu relasi atau interaksi pada kombinasi tertentu
antara model dengan inference framework.
4.5.1 Perbandingan Rata-rata

Perbandingan rata-rata atau mean dapat dilakukan dengan cukup sederhana
melalui perhitungan rata-rata dari indikator perbandingan terhadap model dan

inference framework yang telah dilakukan dengan replikasi sebanyak lima kali.

4.5.1.1 Inference Speed

Tabel 4.8 Perbandingan Rata-rata Inference Speed

Model TensorRT OpenVINO
YOLOvV8n 0.00544 s 0.01714 s
YOLOv1ln 0.00664 s 0.01664 s

Tabel 4.8 menyajikan data rata-rata inference speed untuk TensorRT dan
OpenVINO saat menggunakan model YOLOv8n dan YOLOvlln. Dalam

penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata inference
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speed untuk model YOLOv8n adalah 0.00544 detik dan untuk YOLOv11n adalah
0.00664 detik dengan selisih antara kedua inference speed pada kedua model adalah
sebesar 0.0012 detik. Pada inference framework OpenVINO, terlihat bahwa
menggunakan model YOLOv8n adalah 0.0171 detik, sedangkan saat menggunakan
YOLOv11n inference speed mengalami peningkatan menjadi 0.0166 detik dengan
selisih sebesar 0.0005 detik.

4.5.1.2 Memory Consumption

Tabel 4.9 Perbandingan Rata-rata Memory Consumption

Model TensorRT OpenVINO
YOLOV8n 2891.557 MB 2765.787 MB
YOLOv1ln 4077.197 MB 3234.202 MB

Tabel 4.9 menyajikan perbandingan rata-rata dari memory consumption
untuk TensorRT dan OpenVINO pada saat melakukan inference menggunakan
model YOLOv8n dan YOLOv1ln. Dalam penggunaan inference framework
TensorRT, dapat dilihat bahwa rata-rata memory consumption untuk model
YOLOv8n adalah 2891.557 MB dan untuk YOLOv11n adalah 4077.197 MB yang
menunjukkan bahwa penggunaan TensorRT pada model YOLOv8n. Pada
OpenVINO didapatkan memory consumption sebesar 2765.787 MB untuk
YOLOv8n dan 3234.202 MB untuk YOLOv11n.

4.5.1.3 Model Size
Tabel 4.10 Perbandingan Rata-rata Model Size

Model TensorRT OpenVINO
YOLOvV8n 8.24 MB 6.4 MB
YOLOv1ln 7.76 MB 5.6 MB

Tabel 4.10 menyajikan perbandingan rata-rata dari model size untuk
TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n.
Dalam penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata
model size untuk model YOLOv8n adalah 8.24 MB dan untuk YOLOv11n adalah

7.76 MB yang memiliki selisih sebesar 0.48 MB. Pada inference framework
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OpenVINO, terlihat bahwa rata-rata model size untuk YOLOv8n adalah 6.4 MB
dan pada YOLOv11n adalah 5.6 MB yang memiliki selisih 0.8 MB.

4.5.1.4 Load Time
Tabel 4.11 Perbandingan Rata-rata Load Time

Model TensorRT OpenVINO
YOLOv8n  0.000682646s 0.0028754 s
YOLOv1ln  0.00073634s 0.00316848s

Tabel 4.11 menyajikan perbandingan rata-rata dari load time untuk
TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n.
Dalam penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata
load time untuk model YOLOv8n adalah 0.00068 detik dan untuk YOLOv1ln
adalah 0.00073 detik. Pada inference framework OpenVINO, terlihat bahwa
YOLOv8n membutuhkan waktu 0.00287 detik, sedangkan untuk YOLOv1ln
membutuhkan waktu 0.00316 detik untuk melakukan load model.

4.5.1.5 Accuracy

Tabel 4.12 Perbandingan Rata-rata Accuracy

Model TensorRT OpenVINO
YOLOVS8n 95.25 % 95.23 %
YOLOv1ln 96.28 % 96.22 %

Tabel 4.12 menyajikan perbandingan rata-rata dari accuracy dengan
mMAP50 untuk TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan
YOLOv11n. Dapat dilihat bahwa rata-rata accuracy saat menggunakan TensorRT
untuk model YOLOv8n adalah 95.25% dan untuk YOLOv11n adalah 96.28%
dengan selisih sebesar 1.03%. Pada inference framework OpenVINO terlihat
bahwa YOLOvV8n memberikan accuracy sebesar 95.23% dan YOLOvlln
menghasilkan accuracy sebesar 96.22% dengan selisih accuracy sebesar 0.99%.
452Uj5i T

Data yang dimiliki pada penelitian ini merupakan dua set data, maka one-

sample T-Test tidak sesuai dengan kondisi data. Setelah itu, pilihan uji T hanya pada

50



independent T-Test atau paired T-Test dilihat dari kondisi relasi pada data. Data
pertama dengan data kedua tidak memiliki relasi yang saling berkaitan, karena
variabel pengamatan yang berbeda, yaitu inference framework TensorRT dan
OpenVINO yang memiliki arsitektur masing-masing yang khas dan tidak berkaitan.
Maka jenis uji T yang sesuai untuk pengujian perbedaan signifikan antara kedua
data dari inference framework adalah independent T-Test.

Uji levene yang digunakan pada penelitian ini adalah menggunakan
pemrograman python dengan library scipy, yaitu levene. Parameter yang digunakan
pada uji levene pada penelitian ini adalah kedua data dan function pengujiannya
yaitu mean atau rata-rata dari data. Dengan kembalian nilai dari fungsi levene ini
adalah hasil uji statistiknya dan p-value untuk menentukan tolak Ho yang berarti
tidak ada homogenitas pada data atau gagal tolak Ho yang berarti terdapat
homogenitas pada data. Penentuan tolak Ho atau gagal tolak Ho dapat dilihat dari
membandingkan nilai alpha dengan nilai p-value, jika p-value < alpha maka akan
tolak Ho yang berarti tidak ada homogenitas pada data dan jika sebaliknya maka

gagak tolak Ho yang berarti terdapat homogenitas pada data.
4.5.2.1 Hasil Uji Levene T-Test

Uji levene pada penelitian ini dilakukan dengan tujuan untuk menentukan
metode yang tepat dalam melakukan T-Test yang akan dilakukan berikutnya. Pada
penelitian ini, uji levene dilakukan dengan menggunakan bahasa pemrograman
python dengan bantuan library scipy dengan fungsi levene(). Fungsi levene()
menerima dua buah parameter yang terdiri atas set data yang akan diuji dan metode
pengujiannya atau center. Parameter metode pengujian atau center pada uji levene
dengan scipy bertujuan untuk menghitung pusat distribusi data, umumnya akan
digunakan mean atau rata-rata dari data untuk mendapatkan pusat distribusi data.
Pada penelitian ini, dua set data yang digunakan adalah model YOLOv8n dan
YOLOv11n ketika menggunakan inference framework TensorRT dan OpenVINO,
dengan masing-masing indikator perbandingan dan center menggunakan mean.
Pengujian masing-masing dilakukan dengan melihat homogenitas antara data
indikator perbandingan dengan model tertentu ketika menggunakan TensorRT dan
OpenVINO, sehingga total dilakukan sepuluh kali pengujian dengan rincian lima

kali untuk YOLOV8n dengan lima indikator perbandingan dan YOLOv11n dengan
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lima indikator perbandingan. Dalam uji levene untuk penelitian ini, ditetapkan nilai
threshold alpha adalah 0.05 dengan hipotesis nol adalah tidak ada perbedaan

signifikan antara dua set data atau homogen.

Tabel 4.13 Hasil Uji Levene T-Test

Model Category p-value Status Levene
YOLOv8 Inference speed 0.0557 Gagal Tolak HO True
YOLOv8  Memory consumption 0.0002 Tolak HO False
YOLOvS8 Model size 0.0191 Tolak HO False
YOLOvS Load time 0.0314 Tolak HO False
YOLOvS8 mAP50 0.0065 Tolak HO False
YOLOv11 Inference speed 0.3101 Gagal Tolak HO True
YOLOv1l Memory consumption 0.0079 Tolak HO False
YOLOv11 Model size 0.0033 Tolak HO False
YOLOv11 Load time 0.0931 Gagal Tolak HO True
YOLOv11 mAP50 0.0315 Tolak HO False

Pada kedua model, untuk indikator inference speed didapatkan bahwa p-
value bernilai lebih dari threshold alpha, maka tidak ditemukan adanya perbedaan
variance secara signifikan atau dapat disebut data homogen dan levene menjadi
bernilai True untuk parameter T-Test. Berikutnya, pada indikator memory
consumption ditemukan bahwa p-value dari pengujian ini kurang dari threshold
alpha yang berarti ditemukan perbedaan data signifikan atau dapat disebut data
tidak homogen dan levene menjadi bernilai False. Untuk indikator model size
kembali ditemukan bahwa p-value kurang dari threshold alpha yang berarti
perbedaan pada data TensorRT dan OpenVINO signifikan atau dapat diartikan
bahwa data bukan data homogen untuk model YOLOv8n dan YOLOv11n. Pada
indikator perbandingan load time, ditemukan perbedaan hasil uji levene di model
YOLOvV8n dan YOLOv1ln. Untuk model YOLOv8n, p-value dari uji levene
kurang dari threshold alpha yang berarti tidak ditemukan perbedaan signifikan pada

load time menggunakan TensorRT ataupun OpenVINO sehingga dapat disebut data
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homogen, sedangkan pada YOLOv1ln, ditemukan bahwa p-value lebih dari
threshold alpha yang berarti terdapat perbedaan signifikan pada load time untuk
inference framework TensorRT dan OpenVINO sehingga data disebut tidak
homogen. Indikator accuracy pada kedua model dengan data inference framework
TensorRT dan OpenVINO ditemukan bahwa p-value hasil uji levene kurang dari
threshold alpha, sehingga ditemukan perbedaan signifikan pada kedua data atau
data tidak bersifat homogen.

Hasil uji levene yang menunjukkan adanya sifat homogenitas pada data,
memberikan arti bahwa keseluruhan data cenderung memiliki nilai yang sama
bahkan mirip, sehingga dapat dikatakan bahwa data lebih stabil. Sebagai contoh
pada indikator load time, ditemukan bahwa pengujian levene untuk data YOLOv8n
dengan TensorRT dan OpenVINO ditemukan sifat tidak homogen pada data, dan
pada YOLOv1ln ditemukan sifat homogen pada data inference framework
TensorRT dan OpenVINO, yang berarti model YOLOv11n dapat dengan mudah
dimuat ketika menggunakan inference framework TensorRT maupun OpenVINO
oleh komputer. Pada hasil uji levene, ditambahkan kolom levene yang terdiri dari
True dan False yang dapat digunakan sebagai parameter untuk T-Test. Jika levene
bernilai True, maka data disebut homogen dan jika False, maka data disebut tidak
homogen.

Melalui uji levene pada setiap inference framework dengan penggunaan
model yang berbeda, dapat diambil kesimpulan dini mengenai kedua model dengan
inference framework yang berbeda. Model YOLOv8n dan YOLOvlln
menunjukkan inference speed yang memiliki variance homogen, sehingga
mencerminkan konsistensi performa pada dua inference framework. Pada data
memory consumption, model YOLOv11n cenderung memiliki variance yang lebih
rendah pada dua inference framework dibandingkan dengan model YOLOvS8n,
sehingga YOLOv11n dapat diandalkan pada berbagai kondisi. Namun, pada model
size, ditemukan variance inference framework yang lebih besar pada YOLOv11n,
sehingga perlu mempertimbangkan storage untuk penyimpanan. Di sisi lain,
YOLOv11n lebih stabil dalam melakukan load time, baik ketika menggunakan
TensorRT maupun OpenVINO, jika dibandingkan dengan kemampuan load time

dari YOLOv8n. Pada indikator accuracy melalui uji levene, ditemukan bahwa
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variance pada YOLOv1ln lebih kecil ketika menggunakan TensorRT maupun
OpenVINO, yang berarti model YOLOv11n cenderung stabil.

4522 Hasil Uji T

Pada penelitian ini, pengujian T-Test dilakukan dengan bantuan program
python dengan library scipy, yang memiliki sebuah fungsi ttest ind(). Fungsi
ttst_ind() ini menerima dua parameter, yang pertama adalah set data untuk
pengujian dan penanda sifat data homogen. Set data yang dijadikan parameter pada
penelitian ini adalah inference framework TensorRT dengan OpenVINO dan
menggunakan category atau indikator perbandingan sebagai variabelnya,
sedangkan True atau False sebagai penanda sifat homogen pada data yang
disiapkan melalui hasil uji levene. Pada tabel 4.14 disajikan hasil dari T-Test yang
membandingkan performa dari inference framework TensorRT milik NVIDIA
dengan OpenVINO milik Intel dengan pemodelan YOLOv8n. T-Test pada
penelitian kali ini dilakukan terhadap lima indikator perbandingan yang telah
disebutkan sebelumnya, sehingga total hasil dari T-Test ini adalah lima baris data
hasil pengujian terhadap lima indikator perbandingan. Pada T-Test penelitian ini,
threshold alpha ditetapkan menjadi 0.05 dengan hipotesis nol bahwa tidak terdapat
perbedaan pada rata-rata pada kedua inference framework dengan masing-masing

kelompok data indikator perbandingan.

Tabel 4.14 Hasil T-Test YOLOVS8n

Mean Mean

Model Category p-value  Status
TensorRT OpenVINO

YOLO Inference
0.0000 Tolak HO 0.00544 s 0.01714 s

v8n speed
YOLO Memory 0.8072 Gagal 2891.557 2765.787
v8n consumption ' Tolak HO MB MB
YOLO
o Model size  0.0000 Tolak HO  8.24 MB 6.4 MB
v8n
YOLO
o Load time 0.0000 Tolak HO  0.00068 s 0.00287 s
v8n
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YOLO Gagal
mAP50 0.1175 95.25 % 95.23 %
v8n Tolak HO

Pada Tabel 4.14 disajikan hasil dari T-Test yang membandingkan performa
dari inference framework TensorRT milik NVIDIA dengan OpenVINO milik Intel
dengan pemodelan YOLOv8N. T-Test pada penelitian kali ini dilakukan terhadap
lima indikator perbandingan yang telah disebutkan sebelumnya, sehingga total hasil
dari T-Test ini adalah lima baris data hasil pengujian terhadap lima indikator
perbandingan. Pada T-Test penelitian ini, threshold alpha ditetapkan menjadi 0.05
dengan hipotesis nol bahwa tidak terdapat perbedaan pada rata-rata pada kedua
inference framework dengan masing-masing kelompok data indikator
perbandingan.

Pada indikator perbandingan inference speed dengan model YOLOv8n
didapatkan bahwa p-value kurang dari threshold alpha, yang berarti terdapat
perbedaan signifikan pada rata-rata inference speed untuk inference framework
TensorRT dan OpenVINO, jika melihat nilai rata-ratanya, maka dapat disimpulkan
bahwa TensorRT lebih unggul tiga kali lipat dalam inference speed. Hasil dari T-
Test pada kedua inference framework untuk indikator memory consumption adalah
p-value lebih dari threshold alpha, sehingga dapat disimpulkan bahwa tidak
terdapat perbedaan signifikan pada kedua rata-rata jumlah memory consumption
untuk model YOLOv8n. Pada indikator model size, p-value untuk hasil T-Test
adalah kurang dari threshold alpha, yang berarti bahwa terdapat perbedaan
signifikan antara model size YOLOv8n dengan inference framework TensorRT dan
OpenVINO dengan OpenVINO lebih unggul dalam ukuran yang ringan, sehingga
dapat lebih meringankan beban pada storage komputer. Pada indikator load time,
hasil dari T-Test menyatakan bahwa nilai p-value kurang dari threshold alpha, yang
menunjukkan bahwa terdapat perbedaan signifikan antara load time pada kedua
inference framework dengan TensorRT yang unggul hampir empat kali lebih cepat,
sehingga TensorRT dapat memberi keuntungan untuk kebutuhan kecepatan dalam
tahap deployment. Pada indikator accuracy berdasarkan nilai mAP50 dari kedua
inference framework, hasil T-Test menunjukkan bahwa p-value lebih dari threshold
alpha, sehingga dapat disimpulkan bahwa tidak terdapat perbedaan signifikan pada
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accuracy kedua inference framework, meskipun terlihat TensorRT unggul 0.02%
dari OpenVINO.

Secara keseluruhan untuk YOLOV8n, inference framework TensorRT lebih
unggul pada kategori inference speed sebesar tiga kali lipat daripada OpenVINO,
sehingga sangat sesuai untuk penggunaan yang sangat mempertimbangkan
kecepatan dalam melakukan inference atau pada kasus real-time processing. Untuk
memory consumption pada kedua inference framework tidak begitu signifikan,
sehingga keduanya tidak menjadi masalah dalam hal batasan perangkat keras secara
khusus pada RAM. Berikutnya pada kategori model size, dapat dilihat bahwa
OpenVINO memiliki kemampuan yang sedikit lebih unggul daripada TensorRT
karena mampu melakukan konversi model dengan optimal sehingga membuat
model size lebih kecil dan membuat OpenVINO sesuai untuk kebutuhan perangkat
yang terbatas pada ukuran storage. Pada kategori load time, TensorRT ternyata
lebih unggul 0.00219 detik daripada menggunakan OpenVINO, sehingga kembali
mendukung kebutuhan kecepatan inference daripada menggunakan OpenVINO.
Namun, pada indikator accuracy dengan mAP50 tidak ditemukan perbedaan yang
signifikan dari kedua inference framework dalam penggunaannya pada model
YOLOvV8N.

Tabel 4.15 Hasil T-Test YOLOv11ln

Mean Mean

Model Category p-value  Status
TensorRT OpenVINO

YOLO Inference
0.0000 Tolak HO 0.00664 s 0.01664 s

v1lin speed
YOLO Memory 4077.197 3234.202
0.0000 Tolak HO

vlin  consumption MB MB
YOLO

Model size  0.0000 Tolak HO  7.76 MB 5.6 MB
vlln
YOLO
1 Load time  0.0000 Tolak HO  0.00073s 0.00316 s
vllin
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YOLO Gagal
mAP50 0.0626 96.28 % 96.22 %
vlin Tolak HO

Tabel 4.15 menunjukkan hasil dari T-Test yang membandingkan performa
dari inference framework TensorRT milik NVIDIA dengan OpenVINO milik Intel
dengan pemodelan YOLOv11ln. T-Test kali kali ini dilakukan terhadap lima
indikator perbandingan sama seperti T-Test untuk YOLOv8n dengan total hasil dari
T-Test ini adalah lima baris data hasil pengujian terhadap lima indikator
perbandingan. Pada T-Test YOLOv11n ini, threshold alpha ditetapkan menjadi
0.05 dengan hipotesis nol bahwa tidak terdapat perbedaan pada rata-rata pada kedua
inference framework dengan masing-masing kelompok data indikator
perbandingan. Pada indikator perbandingan inference speed dengan model
YOLOv1ln, didapatkan bahwa p-value kurang dari threshold alpha yang
ditentukan, hal ini berarti bahwa terdapat perbedaan signifikan pada rata-rata
inference speed untuk inference framework TensorRT dan OpenVINO.
Berdasarkan nilai rata-rata yang diperoleh, dapat disimpulkan bahwa TensorRT
lebih unggul hampir sebesar tiga kali lipat dalam inference speed jika dibandingkan
OpenVINO, menjadikannya lebih ideal untuk kebutuhan yang memprioritaskan
real-time processing. Pada indikator memory consumption, melalui hasil T-Test,
ditemukan bahwa p-value kurang dari threshold alpha, yang menunjukkan adanya
perbedaan signifikan pada rata-rata memory consumption antara TensorRT dan
OpenVINO. OpenVINO menunjukkan penggunaan memory yang lebih baik
dengan konsumsi memori yang lebih rendah sekitar 800.000 MB dibandingkan
dengan TensorRT, sehingga lebih sesuai untuk kebutuhan tertentu yang memiliki
keterbatasan pada memory. Pada indikator model size, p-value hasil T-Test juga
kurang dari threshold alpha yang telah ditentukan, yang berarti terdapat perbedaan
signifikan antara model size dari YOLOv11n yang dihasilkan oleh TensorRT dan
OpenVINO, dengan OpenVINO kembali unggul dengan model size yang lebih kecil
dibandingkan TensorRT, memberikan keunggulan dalam hal penghematan storage
dan fleksibilitas dalam deployment pada perangkat dengan sumber daya terbatas.
Pada indikator load time, hasil T-Test menunjukkan bahwa p-value kurang dari

threshold alpha, yang mengindikasikan terdapat perbedaan signifikan antara load
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time model pada kedua inference framework. TensorRT terbukti hampir empat kali
lebih cepat dibandingkan OpenVINO, memberikan keunggulan yang signifikan
untuk kebutuhan deployment model yang cepat. Pada indikator accuracy
berdasarkan mAP50, melalui T-Test, didapatkan bahwa p-value lebih dari threshold
alpha yang menunjukkan tidak terdapat perbedaan yang signifikan pada accuracy
antara kedua inference framework, meskipun TensorRT lebih unggul dengan selisih
0.06% dibandingkan dengan OpenVINO.

Secara keseluruhan untuk YOLOv1ln, inference framework TensorRT
kembali unggul pada kategori inference speed daripada menggunakan OpenVINO,
sehingga sesuai untuk penggunaan yang sangat mempertimbangkan kecepatan
dalam melakukan inference. Pada indikator memory consumption untuk kedua
inference framework, terlihat perbedaan yang cukup signifikan dimana OpenVINO
unggul karena OpenVINO menggunakan RAM yang lebih sedikit saat melakukan
inference, sehingga hal ini dapat dijadikan pertimbangan untuk kebutuhan
perangkat yang terbatas pada RAM. Selanjutnya, pada kategori model size, dapat
dilihat bahwa OpenVINO kembali unggul daripada TensorRT karena mampu
melakukan konversi model dengan lebih optimal, sehingga membuat model size
lebih ringan dengan selisih antara ukuran TensorRT dan OpenVINO adalah sekitar
2 MB dan membuat OpenVINO sesuai untuk kebutuhan perangkat yang terbatas
pada ukuran storage. TensorRT lebih unggul daripada OpenVINO pada indikator
load time, sehingga masih mendukung dalam segi kebutuhan untuk kecepatan
inference daripada menggunakan OpenVINO. Namun, pada indikator accuracy
dengan mAP50 kembali tidak ditemukan perbedaan signifikan antara kedua
inference framework dalam penggunaannya pada model YOLOv11n.

Dari kedua T-Test untuk inference framework dalam penggunaan model
YOLOv8n dan YOLOvV11n, terdapat beberapa kesamaan. Kesimpulan yang dapat
diambil dari T-Test ini adalah bahwa inference speed untuk TensorRT sangat
unggul dibandingkan dengan OpenVINO baik ketika menggunakan model
YOLOvV8n maupun YOLOv11ln. Kemudian untuk memory consumption, ternyata
TensorRT dan OpenVINO tidak memiliki perbedaan signifikan pada YOLOv8n,
sedangkan pada model yang lebih kompleks seperti YOLOv11ln, OpenVINO

unggul dalam penggunaan RAM ketika melakukan inference, karena OpenVINO
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hanya menggunakan RAM yang lebih sedikit. Berikutnya untuk indikator model
size, OpenVINO selalu unggul baik saat menggunakan YOLOv8n maupun
YOLOv11n. Hal ini mengindikasikan bahwa OpenVINO mampu mengoptimalkan
kedua model menjadi lebih sederhana dibandingkan dengan inference framework
TensorRT. Dari indikator load time model, TensorRT menunjukkan keunggulan,
karena kemampuannya untuk mengunggah model yang lebih cepat daripada
OpenVINO pada model YOLOv8n dan YOLOv11n. Berikutnya dari sisi accuracy
dengan menggunakan mAP50, ditemukan bahwa TensorRT maupun OpenVINO
sama-sama memiliki kemampuan baik dalam melakukan konversi atau export
model karena mampu mengoptimalkan model YOLOv8n dan YOLOv11n tanpa
mengorbankan accuracy secara signifikan. Secara keseluruhan model YOLOv11n
tetap menunjukkan accuracy yang lebih baik saat menggunakan kedua inference
framework, meskipun OpenVINO sedikit menunjukkan penurunan accuracy
sekitar 0.04% secara rata-rata. Accuracy dari model yang diberlakukan optimization
dengan inference framework OpenVINO ternyata mengalami sedikit penurunan
accuracy sebesar 0.021% pada YOLOvV8n dan 0.062% pada YOLOv11n. Hal ini
bertentangan dengan penelitian terdahulu yang dilakukan oleh Biswas, et al (2020)
yang menyatakan bahwa OpenVINO lebih unggul secara accuracy.

4.5.3 Uji ANOVA

Seperti yang dilakukan pada 7-Test, sebelum melakukan uji ANOVA perlu
dilakukan uji /evene untuk mengetahui variance pada data agar pengujian untuk
ANOVA dapat sesuai dengan kondisi data sehingga hasil dari pengujian dapat
disebut valid.

4.5.3.1 Hasil Uji Levene ANOVA

Uji levene pada untuk Two-Way ANOVA pada penelitian ini dilakukan
dengan tujuan untuk menentukan metode yang tepat dalam melakukan Two-Way
ANOVA yang akan dilakukan berikutnya. Pada penelitian ini, uji levene dilakukan
dengan menggunakan bahasa pemrograman python dengan bantuan library scipy
dengan fungsi levene(). Fungsi levene() menerima dua buah parameter yang terdiri
atas set data yang akan diuji dan metode pengujiannya atau center. Parameter
metode pengujian atau center pada uji levene dengan scipy bertujuan untuk

menghitung pusat distribusi data, umumnya akan digunakan mean atau rata-rata
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dari data untuk mendapatkan pusat distribusi data. Pada penelitian ini, untuk
menguji levene dengan empat set data, data yang digunakan adalah model
YOLOv8n dan YOLOv11n ketika menggunakan inference framework TensorRT
dan OpenVINO, dengan tiap indikator perbandingan dan center menggunakan
mean. Pengujian masing-masing dilakukan dengan melihat homogenitas antara
data indikator perbandingan dengan model tertentu ketika menggunakan TensorRT
dan OpenVINO serta YOLOv8n dan YOLOv11n, sehingga total dilakukan lima
kali pengujian dengan rincian lima indikator perbandingan. Dalam uji levene untuk
penelitian ini, ditetapkan nilai threshold alpha adalah 0.05 dengan hipotesis nol
adalah tidak ada perbedaan rata-rata signifikan pada data masing-masing atau

homogen.
Tabel 4.16 Hasil Uji Levene Two-Way ANOVA
Category p-value Status Levene
Inference speed 0.03210 Tolak HO False
Memory consumption 0.00000 Tolak HO False
Model size 0.00323 Tolak HO False
Load time 0.03307 Tolak HO False
mAP50 0.00842 Tolak HO False

Pada tabel 4.16, disajikan data yang merupakan hasil dari uji levene untuk
Two-Way ANOVA denan masing-masing merupakan pengujian terhadap variable
indikator perbandingan dengan empat set data, TensorRT dengan YOLOvSn,
OpenvVINO dengan YOLOvV8n, TensorRT dengan YOLOv1i1n, OpenvVINO
dengan YOLOv11n. Pada indikator inference speed, hasil uji levene menunjukkan
bahwa p-value kurang dari nilai threshold alpha, yang berarti terdapat perbedaan
signifikan pada keempat data yang diberikan atau data tidak bersifat homogen.
Berikutnya pada indikator memory consumption juga didapatkan hasil p-value
kurang dari threshold alpha, yang berarti pada data terdapat perbedaan yang
signifikan atau data tidak bersifat homogen. Berikutnya melalui indikator model
size kembali didapatkan nilai p-value yang kurang dari threshold alpha yang
menunjukkan bahwa terdapat perbedaan signifikan pada keempat data atau data
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tidak bersifat homogen. Pada indikator load time juga menghasilkan nilai p-value
yang kurang dari threshold alpha dari uji levene, yang berarti ditemukan adanya
perbedaan signifikan pada keempat data atau data tidak bersifat homogen. Dari uji
levene untuk indikator accuracy melalui mAP50 kembali memberikan p-value yang
kurang dari threshold alpha yang telah ditentukan, yang berarti ditemukan

perbedaan signifikan pada keempat data atau data tidak bersifat homogen.

4.5.3.2 Hasil Uji Two-Way ANOVA

Melalui uji levene untuk Two-Way ANOVA, ditemukan bahwa pada
keempat data ditemukan perbedaan yang signifikan atau seluruh data tidak bersifat
homogen pada setiap pengujian indikator perbandingannya, sehingga pengujian
Two-Way ANOVA dilakukan metode non parametrik. Pada penelitian ini, Two-
Way ANOVA dengan metode non parametrik dilakukan dengan bantuan program
python dengan library pingouin dan fungsi anova(). Fungsi anova() milik pingouin
menerima empat buah parameter, yaitu data, dependent variable atau dv, faktor uji
atau between, dan detailed untuk merincikan hasil pengujian dalam bentuk tabel.
Parameter data untuk penelitian ini adalah data dari keempat kombinasi data
bersama dengan nilai dari indikator perbandingannya, keempat kombinasi data
adalah TensorRT dengan YOLOvV8n, OpenVINO dengan YOLOvV8Nn, TensorRT
dengan YOLOv11n, OpenvVINO dengan YOLOv11n. Indikator perbandingannya
akan menjadi dependent variable, kemudian membuat model dan inference
framework sebagai parameter between. Pada parameter detailed akan diberi nilai
True agar keluaran dari uji Two-Way ANOVA tersaji dalam bentuk tabel terperinci.

Pada tabel 4.17 disajikan hasil dari Two-Way ANOVA vyang
membandingkan performa dari inference framework TensorRT milik NVIDIA
dengan OpenVINO milik Intel dengan setiap pemodelan YOLOv8n dan
YOLOv11n. Two-Way ANOVA pada penelitian kali ini dilakukan terhadap setiap
indikator perbandingan atau category yang telah disebutkan sebelumnya, sehingga
total hasil dari Two-Way ANOVA ini adalah lima baris data hasil pengujian
terhadap lima indikator perbandingan. Pada Two-Way ANOVA untuk penelitian
ini, threshold alpha ditetapkan menjadi 0.05 dengan hipotesis nol bahwa tidak
terdapat interaksi pada rata-rata dengan inference framework dan model tertentu

terhadap setiap indikator perbandingan.
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Tabel 4.17 Hasil Uji Two-Way ANOVA

Category p-value Status Interaksi
Inference speed 0.00000 Tolak HO Ada
Memory consumption 0.17109 Gagal Tolak HO Tidak Ada

Model size 0.00090 Tolak HO Ada
Load time 0.37492 Gagal Tolak HO Tidak Ada
mAP50 0.20110 Gagal Tolak HO Tidak Ada

Pada tabel 4.17 dapat dilihat bahwa indikator inference speed memiliki p-
value yang kurang dari threshold alpha melalui uji Two-Way ANOVA untuk data
kombinasi antara TensorRT dengan YOLOv8n, OpenvVINO dengan YOLOv8n,
TensorRT dengan YOLOv1ln, OpenvVINO dengan YOLOv11n, yang berarti
terdapat interaksi yang signifikan antara inference framework dengan model
tertentu terhadap rata-rata dari inference speed. Dengan kata lain, inference speed
pada inference framework tertentu ternyata dipengaruhi oleh model tertentu. Pada
indikator memory consumption ditemukan bahwa p-value bernilai 0.171 yang
berarti lebih dari threshold alpha dan menunjukkan bahwa tidak ada interaksi
signifikan pada memory consumption antara inference framework dengan model.
Tidak adanya interaksi pada variabel memory consumption memiliki arti bahwa
inference framework pada setiap model menunjukkan hasil yang konsisten pada
indikator memory consumption. Melalui uji Two-Way ANOV A untuk model size,
didapatkan hasil p-value kurang dari threshold alpha, yang berarti bahwa terdapat
interaksi signifikan antara inference framework dengan model tertentu atau dapat
dipahami bahwa model size berpengaruh terhadap sebuah inference framework
yang memiliki model spesifik. Pada indikator /oad time didapatkan hasil p-value
yang lebih dari threshold alpha yang dapat diartikan bahwa tidak terdapat interaksi
signifikan dari dependent variable load time terhadap kombinasi data yang juga
menunjukkan bahwa load time untuk setiap kombinasi inference framework dan
model konsisten. Pada uji Two-Way ANOVA untuk accuracy dengan mAP50,
didapatkan p-value yang juga lebih dari threshold alpha yang telah ditentukan
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sebelumnya dan mengindikasikan tidak ada interaksi signifikan. Dalam hal ini,
ditemukan bahwa performa accuracy cukup konsisten ketika menggunakan tiap
inference framework dengan tiap model.

Setelah mendapatkan hasil Two-Way ANOVA, untuk mengetahui
keberadaan dan kejelasan mengenai interaksi antara inference framework dengan
model untuk setiap indikator perbandingan, perlu dilakukan kajian lebih mendalam
mengenai interaksi yang terdapat pada beberapa indikator untuk mengetahui
performa inference framework secara signifikan. Pada indikator inference speed
dan model size, ditemukan interaksi antara inference framework dengan model,
sehingga perlu dikaji lebih lanjut mengenai kedua indikator perbandingan ini untuk

mengetahui performa kedua inference framework.
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Gambar 4.3 Perbandingan Inference Speed

Gambar 4.7 menunjukkan rata-rata inference speed untuk TensorRT dan
OpenVINO pada model YOLOv8n dengan YOLOv1ln. Garis berwarna biru
menunjukkan rata-rata dari inference speed ketika menggunakan YOLOv8n dan
YOLOv11n, sedangkan garis berwarna merah menunjukkan inference speed ketika
menggunakan inference framework OpenVINO. TensorRT menunjukkan inference
speed yang bertambah dari 0.0054 ketika menggunakan YOLOv8n menjadi 0.0066
ketika menggunakan YOLOv1ln. Hal ini mengindikasikan bahwa dalam
menggunakan model yang lebih sederhana, TensorRT lebih cepat dalam melakukan
inference dan sedikit lebih lambat ketika menggunakan model yang lebih kompleks
seperti YOLOv11n. Berikutnya untuk inference framework OpenVINO, berlaku
kebalikan dari TensorRT. Inference speed dari OpenVINO ketika menggunakan
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model YOLOv11ln mengalami penurunan dari YOLOv8n yang awalnya 0.017
menjadi 0.016 pada YOLOv1ln. Penurunan inference speed pada YOLOv1ln
menunjukkan bahwa OpenVINO mampu melakukan inference lebih baik atau lebih
cepat ketika menggunakan model yang lebih kompleks. Namun, selisih inference
speed OpenVINO YOLOv8n dan YOLOv1ln sangatlah sedikit dengan selisih
hanya sebesar 0.001 yang juga menunjukkan bahwa OpenVINO lebih konsisten
daripada TensorRT untuk model yang lebih kompleks, walaupun secara
keseluruhan inference framework TensorRT masih lebih cepat sekitar tiga kali lipat
daripada OpenVINO. Dengan ini, inference framework TensorRT tetap dapat
menjadi pertimbangan untuk kebutuhan kecepatan inference seperti pada kasus
real-time processing, sedangkan OpenVINO dapat digunakan untuk kebutuhan
penggunaan model yang lebih kompleks tanpa mempertimbangkan kebutuhan real-
time processing.

Melalui penelitian ini, tedapat temuan mengenai inference speed dari model
YOLOv8n dan model YOLOv1ln saat menggunakan inference framework
TensorRT dan OpenVINO yang menunjukkan kestabilan dari kemampuan

TensorRT untuk melakukan inference dengan baik dan kecepatan yang tinggi
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Gambar 4.4 Perbandingan Model Size

Gambar 4.4 menunjukkan rata-rata dari model size untuk TensorRT dan
OpenVINO ketika menggunakan model YOLOv8n dan YOLOvliln. Garis
berwarna biru menunjukkan rata-rata dari model size ketika menggunakan

YOLOvV8n dan YOLOv11n, sedangkan garis berwarna merah menunjukkan model
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size ketika menggunakan inference framework OpenVINO. Melalui gambar 4.8,
dapat dilihat bahwa kedua inference framework mengalami penurunan ukuran
model ketika menggunakan model YOLOv11n yang menujukkan bahwa dengan
kompleksitas model milik YOLOv11n, ternyata tidak membuat model YOLOv11n
berukuran lebih besar daripada model milik YOLOvVS8n setelah dilakukan export
menjadi inference framework. Hal ini mengindikasikan bahwa YOLOv11n lebih
efisien daripada YOLOv8n. Kajian lebih mendalam mengenai perbandingan kedua
inference framework ini dapat dilihat dari selisih ukuran dari model milik
YOLOvV8n dan YOLOv1in ketika menggunakan TensorRT dan OpenVINO.
Selisih model size dari ketika menggunakan TensorRT dari YOLOv8n dan
YOLOv1ln adalah sebesar 0.48 MB, sedangkan pada penggunaan inference
framework OpenVINO selisihnya adalah 0.8 MB. Hal ini menunjukkan bahwa
OpenVINO mampu melakukan konversi model atau export model lebih baik
daripada TensorRT pada model yang kompleks, karena mampu membuat ukuran
model YOLOv11ln menjadi lebih kecil daripada YOLOv8n dengan penurunan
ukuran sebesar 0.8 MB. Secara keseluruhan, inference framework OpenVINO
mengindikasikan adanya keunggulan pada model size, sehingga sesuai untuk
kebutuhan perangkat yang terbatas pada storage serta OpenVINO juga unggul
dalam melakukan konversi atau export model yang kompleks dengan lebih

maksimal daripada TensorRT.

4.5.4 Pembahasan Hasil Pengujian

Melalui pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA
dapat dilihat bahwa pada inference framework TensorRT memberikan performa
yang lebih optimal pada indikator inference speed dibandingkan dengan
OpenVINO. Melalui kajian lebih mendalam berdasarkan data pada tabel 4.8 juga
ditemukan bahwa TensorRT lebih unggul 0.0012 detik secara inference speed pada
model YOLOvV8n dibandingkan YOLOv1ln dengan inference framework
TensorRT, sedangkan OpenVINO unggul ketika menggunakan YOLOv11n sebesar
0.0005 detik dibandingkan YOLOv8n dengan OpenVINO.
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Gambar 4.5 Grafik Perbandingan Rata-rata Inference Speed

Melalui gambar 4.5 dapat dilihat bahwa TensorRT dapat melakukan
inference dengan cepat untuk YOLOv8n maupun untukYOLOv11n dibandingkan
dengan OpenVINO dengan selisih sekitar tiga kali lipat lebih cepat.. Disisi lain,
dapat dipahami juga bahwa OpenVINO memiliki kemampuan yang lebih stabil jika
dibandingkan dengan TensorRT dalam melakukan optimization terhadap model
yang sederhana maupun kompleks, dilihat dari selisih pada inference speed
OpenVINO antara kedua model yang lebih kecil daripada selisih inference speed
pada TensorRT. Pada indikator inferefence speed, dapat disimpulkan bahwa
TensorRT lebih unggul dan sesuai untuk kebutuhan real-time processing terlebih
jika menggunakan model yang sederhana seperti YOLOvVS8N, tetapi jika ingin
menggunakan model yang lebih kompleks tanpa mempertimbangkan inference
speed, OpenVINO dapat menjadi pilihan yang sesuai. Hal ini sesuai dengan temuan
dari penelitian Chaturvedi (2022) mengenai TensorRT yang mampu melakukan

inference tiga kali lebih cepat.

Hasil pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA
menunjukkan bahwa pada inference framework TensorRT dan OpenVINO
ditemukan suatu persamaan pada indikator memory consumption, dimana saat
menggunakan model yang lebih kompleks seperti YOLOv11n, kebutuhan akan
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memory meningkat cukup signifikan hingga setidaknya 500000 MB pada
OpenVINO dan lebih dari 1000000 MB pada TensorRT. Dari data memory
consumption pada tabel 4.9 saat menggunakan TensorRT dan OpenVINO, dapat
dipahami bahwa meskipun kedua inference framework mengindikasikan adanya
peningkatan memory consumption pada model yang lebih kompleks seperti
YOLOv11n dibandingkan model lebih sederhana seperti YOLOV8n, tetapi
kenaikan memory consumption ketika menggunakan OpenVINO hanya sekitar 16

% sedangkan saat menggunakan TensorRT kenaikannya adalah sekitar 41%.
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Gambar 4.6 Grafik Perbandingan Rata-rata Memory Consumption

Melalui gambar 4.6 dapat dilihat bahwa TensorRT dan OpenVINO sama-
sama mengalami peningkatan memory consumption saat menggunakan model yang
lebih  kompleks. Namun, melalui indikator memory consumption, dapat
disimpulkan bahwa OpenVINO sedikit lebih unggul baik untuk model sederhana
maupun kompleks seperti YOLOv11n dan lebih sesuai untuk kebutuhan processing
yang memiliki Kketerbatasan pada perangkat keras seperti RAM dikarenakan
kemampuan OpenVINO dalam mengoptimalkan model sederhana dan kompleks
yang lebih stabil dibandingkan dengan TensorRT dengan peningkatan sebesar 16%
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untuk OpenVINO dan 40% untuk TensorRT Ketika menggunakan model yang
lebih kompleks.

Hasil dari pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA
menunjukkan bahwa TensorRT dan OpenVINO mampu melakukan optimization
pada model dengan baik, terlebih pada model YOLOv1ln yang terbilang lebih
kompleks dibandingkan dengan YOLOv8n. Hal ini menunjukkan bahwa
YOLOv11n dengan kompleksitasnya ternyata tidak mempengaruhi ukuran model.
Dari data model size pada tabel 4.10 saat menggunakan TensorRT dan OpenVINO,
dapat dipahami bahwa OpenVINO mampu melakukan konversi atau export model
deep learning dengan lebih baik saat menggunakan YOLOv8n maupun YOLOv11n
karena hasil konversi modelnya lebih ringan daripada saat menggunakan inference

framework TensorRT.
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Gambar 4.7 Grafik Perbandingan Rata-rata Model Size

Gambar 4.7 menujukkan perbandingan yang signifikan antara inference
framework TensorRT dan OpenVINO pada indikator model size, dimana TensorRT
lebih konsisten dalam melakukan konversi model menjadi lebih ringan
dibandingkan dengan OpenVINO karena memiliki selisih hanya sebesar 0.48 MB
ketika menggunakan model sederhana maupun kompleks. Dari data juga dapat
disimpulkan bahwa OpenVINO sangat sesuai untuk kebutuhan yang

mempertimbangkan perangkat keras khususnhya storage. Model YOLOvlln
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dengan kompleksitasnya ternyata juga tidak menujukkan peningkatan pada model
size, tetapi justru menawarkan model size yang lebih ringan. Pada penelitian ini,
mengenai memory consumption dan model size terbukti selaras dengan penelitian
terdahulu oleh Li (2022) yang juga menyatakan bahwa secara keseluruhan,
OpenVINO mampu memberikan performa yang lebih baik dan power efficiency
pada banyak skenario.

Melalui hasil pengujian statistik dengan T-Test dan Two-Way ANOVA
ditemukan bahwa OpenVINO membutuhkan waktu yang lebih lama dalam
melakukan load model dibandingkan dengan TensorRT. Namun, pada kedua
inference framework ditemukan kesamaan bahwa model yang lebih kompleks
seperti YOLOv11n membutuhkan waktu lebih lama untuk load model daripada
model lebih sederhana seperti YOLOv8n. Dari data load time pada tabel 4.11 saat
menggunakan TensorRT dan OpenVINO, dapat dipahami bahwa TensorRT
mampu melakukan membuat model deep learning lebih cepat untuk dimuat sekitar
300%, baik saat menggunakan model YOLOv8n maupun YOLOv1ln

dibandingkan dengan menggunakan inference framework OpenVINO.

4 0.0035 h

0.003

0.0025

0.002

0.0015 [ TensorRT

Load Time

0.001 E OpenVINO

0.0005

0

YOLOv8 YOLOv11l
Model

Gambar 4.8 Grafik Perbandingan Rata-rata Model Load Time

Dari gambar 4.8 dapat dilihat dengan lebih jelas mengenai performa
TensorRT dalam memuat model. Load time untuk model ketika menggunakan
inference framework TensorRT sangat baik untuk model sederhana seperti

YOLOvV8n maupun kompleks seperti YOLOv11n. TensorRT juga stabil dalam
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melakukan load model, yang dapat dilihat dari selisih load time untuk model
sederhana maupun kompleks sebesar 0.00015 detik, sedangkan 0.003 detik untuk
OpenVINO. Hal ini dapat diartikan bahwa TensorRT unggul ketika membutuhkan
kecepatan dalam proses deployment. Hasil dari penelitian yang dilakukan oleh Zhou
dan Yang (2022) kembali selaras dengan temuan pada penelitian ini bahwa
TensorRT mampu memberikan inference speed dan load time model yang sangat

baik sehingga sesuai dengan kebutuhan performa atau kecepatan inference yang

tinggi.

Dari pengujian statistik yang melalui T-Test dan Two-Way ANOVA,
ditemukan bahwa pada inference framwork TensorRT dan OpenVINO terlihat hal
yang sama pada accuracy yang meningkat pada penggunaannya untuk model yang
lebih kompleks seperti YOLOv11n. Dari data accuracy dengan mAP50 saat
menggunakan TensorRT dan OpenVINO, dapat dipahami bahwa YOLOv11n
memberikan accuracy yang lebih tinggi dibandingkan dengan YOLOv8n. Dari sini
dapat diartikan bahwa dengan kompleksitas yang dimiliki YOLOv11n, ternyata
mampu membawa dampak peningkatan dalam segi accuracy melalui mAP50 jika
dibandingkan dengan YOLOv8n.

4 0.964 R

0.962

0.96
0.958
0.956

0.954 [l TensorRT

Accuracy : mAP50

0.952 E OpenVINO
0.95

0.948

0.946
YOLOv8 YOLOv11

Model

Gambar 4.9 Grafik Perbandingan Rata-rata Accuracy

Gambar 4.9 menunjukkan bahwa dengan jelas bahwa accuracy TensorRT
pada YOLOv8n sedikit lebih tinggi dibandingkan menggunakan OpenVINO. Saat
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menggunakan YOLOv11n, terlihat hal yang sama, dimana TensorRT memberikan
accuracy yang lebih tinggi. Namun, OpenVINO mampu melakukan konversi yang
cukup stabil pada model yang lebih sederhana seperti YOLOv8n dan model yang
lebih kompleks seperti YOLOv11n dengan selisih sebesar 0.99% jika dibandingkan
selisih pada TensorRT pada model yang lebih kompleks sebesar 1.03%. Dari
gambar dapat disimpulkan bahwa inference framework TensorRT mampu
memberikan performa accuracy yang sedikit lebih tinggi jika dibandingkan dengan
OpenVINO pada model sederhana seperti YOLOv8n maupun model yang lebih
kompleks seperti YOLOv11n. Peningkatan accuracy yang ditemukan pada
penelitian ini dari perbandingan YOLOv8n dan YOLOv11n juga selaras dengan
temuan pada penelitian-penelitian terdahulu. YOLOv11l memberikan performa
optimal yang seimbang antara accuracy, efficiency, dan secara model size (Jegham,
et al, 2024) dan penelitian oleh Khanam dan Hussein (2024) yang turut menyatakan
bahwa YOLOv11 merupakan perkembangan dari feature extraction, optimized

performance, dan kemampuannya pada berbagai task dalam computer vision.
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BAB V

Simpulan dan Saran

5.1 Kesimpulan

Pada penelitian tugas akhir dengan judul “Analisis Kinerja TensorRT dan
OpenVINO sebagai Inference Framework untuk Pemodelan Deep Learning” telah
berjalan dengan baik. Melalui penelitian yang telah dilakukan, dapat diperoleh
beberapa kesimpulan sebagai berikut.

1. Inference framework TensorRT lebih unggul dibandingkan OpenVINO
jika dilihat performa inference speed dan load time. Sehingga TensorRT
sangat sesuai untuk kebutuhan aplikasi model deep learning yang sangat
memperhatikan ~ kecepatan atau  real-time  processing tanpa
memperhatikan batasan perangkat seperti storage dan memory.

2. Inference framework OpenVINO lebih unggul dibandingkan TensorRT
jika melihat performa memory consumption dan model size. OpenVINO
ditemukan membutuhkan RAM dan storage yang lebih sedikit
dikarenakan kemampuan OpenVINO untuk melakukan export model
menjadi lebih sederhana. OpenVINO sesuai untuk kebutuhan aplikasi
deep learning yang mempertimbangkan keterbatasan pada perangkat
keras seperti storage dan memory dengan mengesampingkan inference
speed.

3. Untuk indikator perbandingan accuracy dengan menggunakan mAP50,
tidak dapat dilihat perbedaan yang signifikan. Namun, dengan
kompleksitas modelnya, = YOLOv1lln selalu mampu memberikan
performa yang 1% lebih baik dan OpenVINO yang memiliki accuracy
lebih rendah dari TensorRT sebesar 0.04%.

4. Melalui pengujian Two-Way ANOVA, ditemukan bahwa terdapat
interaksi yang cukup signifikan pada indikator inference speed dan model
size antara model dengan inference framework. TensorRT memang lebih
baik dari indikator inference speed, tetapi ketika digunakan pada model
yang lebih kompleks, TensorRT akan sedikit mengalami kemunduran
dalam inference speed, sedangkan OpenVINO akan mengalami kemajuan
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atau lebih cepat dalam inference speed saat menggunakan model yang
lebih kompleks. OpenVINO memiliki kemampuan konversi model yang
jauh lebih baik dibandingkan TensorRT, tetapi secara khsus, OpenVINO
yang digunakan pada model yang kompleks mampu menghasilkan model
yang lebih ringan.

5. TensorRT secara keseluruhan lebih sesuai untuk kasus counting box
secara real-time pada conveyor belt yang sedang diterapkan oleh PT. XYZ
dikarenakan keunggulannya dalam melakukan inference secara real-time
yang berkaitan dengan kecepatan dari conveyor belt keluaran produksi.
Namun, apabila terdapat kendala dalam cost untuk pengadaan computing
device dan kebutuhan real-time counting dapat dikesampingkan, maka

OpenVINO dapat menjadi opsi yang bisa dipertimbangkan oleh PT. XYZ.
5.2 Saran

Melalui kesimpulan dari penelitian yang telah disebutkan sebelumnya,
terdapat beberapa saran yang dapat dilakukan untuk memperbaiki dan

mengembangkan penelitian ini.

1. PT. XYZ disarankan menggunakan inference framework milik TensorRT
dengan computing device GPU NVIDIA dan model YOLOv8n
dikarenakan terdapat kebutuhan counting box secara real-time pada
conveyor belt keluaran produksi, karena TensorRT mampu melakukan
inference dengan rata-rata kecepatan sebesar 0.006 detik dan memiliki
memory consumption yang lebih rendah daripada penggunaan
YOLOv11n.

2. Dalam penelitian ini, pemodelan deep learning yang digunakan adalah
YOLOv8n dengan YOLOv11n yang sama-sama dikembangkan oleh tim
ultralytics. Akan lebih baik jika dalam penelitian berikutnya, pemodelan
deep learning yang digunakan memiliki arsitektur yang berbeda
signifikan, agar hasil perbedaan terlihat lebih jelas.

3. Pada penelitian ini, validasi terhadap datanya dilakukan melalui metode
val() yang merupakan fungsi dari ultralytics, disarankan validasi data
untuk penelitian berikutnya adalah menggunakan data nyata, atau real-

world use case.

73



Daftar Pustaka

Ahn, H., Chen, T., Alnaasan, N., Shafi, A., Abduljabbar, M., Subramoni, H., Panda,
D. K. (2023). Performance Characterization of using Quantization for DNN
Inference on Edge Devices: Extended Version. ArXiv, 1-5.

Al Ghadani, A. K. A., Mateen, W., Ramaswamy, R. G. (2020). Tensor-Based
CUDA Optimization for ANN Inferencing Using Parallel Acceleration on
Embedded GPU. Springer Nature Switzerland AG, 2-9.

Arinez, J. F., Chang, Q., Gao, R. X,, Xu, C., Zhang, J. (2020). Artificial Intelligence
in Advanced Manufacturing: Current Status and Future Outlook. J. Manuf.
Sci. Eng, 2-3.

Assuncdo, E., Gaspar, P. D., Mesquita, R., Simdes, M. P., Alibabaei, K., Veiros,
A., Proenga, H. (2022). Real-Time Weed Control Application Using a
Jetson Nano Edge Device and a Spray Mechanism. Remote Sensing, 8-17.

Ats-Tsauri, M. |., Setiawan, R., dan Wiyatno, T. (2021). Tinjauan Literatur
Sistematis Implementasi Total Quality Management pada Industri
Manufaktur - Tren Terkini dan Arahan Masa Depan. Jurnal Teknik Industri,
65.

Awad, A., Hegazy, M., Aly, S. A. (2024). Early Diagnoses of Acute Lymphoblastic
Leukemia Using YOLOvV8 and YOLOv11 Deep Learning Models. ArXiv,
4,

Biswas, R., Basu, A., Nandy, A., Deb, A., Chowdhury, R., Chanda, D. (2020).
Identification of Pathological Disease in Plants using Deep Neural
Networks - Powered by Intel® Distribution of OpenVINO™ Toolkit. Indo-
Taiwan 2nd International Conference on Computing, Analytics and
Networks (Indo-Taiwan ICAN) (pp. 45-48). Punjab, India: IEEE.

Chaturvedi, P., Khan, A., Tian, M., Huerta, E. A., Zheng, H. (2022). Inference-
optimized Al and High Performance Computing for Gravitational Wave
Detection at Scale. ArXiv, 11.

Du, Y., Chen, Z., J, C., Yin, X., Zheng, T., Li, C., Du, Y., Jiang, Y. (2022). SVTR:

Scene Text Recognition with a Single Visual Model. arXiv, 6.

74



Haenlein, M., Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the
Past, Present, and Future of Artificial Intelligence. California Management
Review, 1-10.

Hao, Z. (2018). Deep Learning Review and Discussion of Its Future Development.
MATEC Web of Conferences, 2.

Hinton, G., Vinyals, O., Dean, J. (2015). Distilling the Knowledge in a Neural
Network. ArXiv, 2.

Huang, H. (2023, April 18). open-mmlab. Retrieved from GitHub:
https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8
Janiesch, C., Zschech, P., Heinrich, K. (2021). Machine learning and Deep

Learning. Springer, 5.

Jegham, N., Koh, C. Y., Abdelatti, M., Hendawi, A. (2024). Evaluating the
Evolution of YOLO (You Only Look Once) Models: A Comprehensive
Benchmark Study of YOLO11 and Its Predecessors. ArXiv, 18.

Khanam, R., Hussain, M. (2024). YOLOv1l: An Overview of the Key
Architectural Enhancements. ArXiv, 8.

Kim, J., Chang, S., Kwak, N. (2021). PQK: Model Compression via Pruning,
Quantization, and Knowledge Distillation. ArXiv, 1-2.

Li, H. (2022). Acceleration of Deep Learning Applications using Intel Distribution
of OpenVINO Toolkit. University of lllinois Urbana-Champaign, 35.

Liu, X., Li, Y. (2024). A Multiscale Grouped Convolution and Lightweight
Adaptive Downsampling-Based Detection of Protective Equipment for
Power Workers. Electronics, 17.

Lubis, M. S. (2021). Implementasi Artificial Intelligence pada System Manufaktur
Terpadu. Jurnal Teknologi Industri, Fakultas Teknik - Universitas
Tarumanegara, 7.

Luo, B., Kou, Z., Han, C., Wu, J. (2023). A “Hardware-Friendly” Foreign Object
Identification Method for Belt Conveyors Based on Improved YOLOVS.
Appl. Sci, 17.

Mani, C., Paul, T. S., Archambault, P. M., Marois, A. (2024). Machine Learning
Workflow for Edge Computed Arrhytmia Detection in Exploration Class

Missions. Microgravity, 7.

75



O'Neill, J., Ver Steeg, G., Galstyan, A. (2020). Compressing Deep Neural Networks
via Layer Fusion. ArXiv, 7.

Pochelu, P. (2022). Deep Learning Inference Frameworks Benchmark. ArXiv, 1.

Prasetyo H. dan Sutopo, W. (2018). Industri 4.0: Telaah Klasifikasi Aspek dan Arah
Perkembangan Riset. J@ti Undip: Jurnal Teknik Industri, 24.

Ramadhani, A., Polem, A. M., Zahra, S. S. (2022). Konsep Dasar Uji T Dalam
Statistika Pendidikan. Al Ittihadu, 1.

Rao, S. N. (2024, October 23). YOLOv11l Architecture Explained: Next-Level
Object Detection with Enhanced Speed and Accuracy. Retrieved from
Medium: https://medium.com/@nikhil-rao-20/yolov11-explained-next-
level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71

Redmon, J. Divvala, S., Girshick, R., Farhadi, A. (2016). You Only Look Once :
Unified, Real-Time Object Detection. Computer Vision Pattern and
Recognition, 780-781.

Reis, D., Hong, J., Kupec, J., Daoudi, A. (2024). Real-Time Flying Object
Detection with YOLOVS. ArXiv, 8-9.

Swathi, M., Dhayalakrishnan, R. (2024). Bots and Books: How Artificial
Intelligence is Shaping Contemporary Literature. Contemporaneity of
English Language and Literature in the Robotized Millennium, 4.

Szeliski, R. (2011). Recognition. In: Computer Vision. Texts in Computer Science.
Springer, 575.

Terven, J., Cordova-Esparza, D., Romero-Gonzales, J. (2023). A Comprehensive
Review of YOLO Architectures in Computer Vision: From YOLOv1 to
YOLOvV8 and YOLO-NAS. Machine Learning & Knowledge Extraction,
17012-1703.

Zhongyi, L., Yih, M., Ota, J. M., Owens, J. D., Muyan-Ozcelik, P. (2019).
Benchmarking Deep Learning Frameworks and Investigating FPGA
Deployment for Traffic Sign Classification and Detection. IEEE, 11.

Zhou, Y., Yang, K. (2022). Exploring TensorRT to Improve Real-Time Inference
for Deep Learning. IEEE, 8.

76



