

ANALISIS KINERJA TENSORRT DAN OPENVINO SEBAGAI

INFERENCE FRAMEWORK UNTUK PEMODELAN DEEP LEARNING

TUGAS AKHIR

LOUIS AXEL TJOKRO ATMODJO

312110008

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2024

i

LEMBAR PENGESAHAN TUGAS AKHIR

ANALISIS KINERJA TENSORRT DAN OPENVINO SEBAGAI

INFERENCE FRAMEWORK UNTUK PEMODELAN DEEP LEARNING

Oleh:

LOUIS AXEL TJOKRO ATMODJO

NIM. 312110008

dari:

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan

dan berhak mendapatkan gelar Sarjana S.Kom.

Dosen Pembimbing 1,

Dr. Kestrilia Rega Prilianti, M.Si.
NIP. 20120035

Dosen Pembimbing 2,

Hendry Setiawan, ST, M.Kom.,
NIP. 20100006

Dekan Fakultas Sains dan Teknologi

Dr. Eng. Romy Budhi, ST, M.T.
NIP. 20070035

Stamp

i

LEMBAR PENGESAHAN TUGAS AKHIR

ANALISIS KINERJA TENSORRT DAN OPENVINO SEBAGAI

INFERENCE FRAMEWORK UNTUK PEMODELAN DEEP LEARNING

Oleh:

LOUIS AXEL TJOKRO ATMODJO

NIM. 312110008

dari:

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan

dan berhak mendapatkan gelar Sarjana S.Kom.

Dosen Pembimbing 1,

Dr. Kestrilia Rega Prilianti, M.Si.
NIP. 20120035

Dosen Pembimbing 2,

Hendry Setiawan, ST, M.Kom.,
NIP. 20100006

Dekan Fakultas Sains dan Teknologi

Dr. Eng. Romy Budhi, ST, M.T.
NIP. 20070035

Stamp

ii

PERNYATAAN KEASLIAN TUGAS AKHIR

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan dari

Tugas Akhir saya dengan judul “Analisis Kinerja TensorRT dan OpenVINO

sebagai Inference Framework untuk Pemodelan Deep Learning” adalah benar

benar hasil karya intelektual mandiri tanpa menggunakan bahan-bahan yang tidak

diizinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya

sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap

pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia

menerima sanksi sesuai peraturan yang berlaku.

Jakarta, 13 Januari 2024

Louis Axel Tjokro Atmodjo

iii

ANALISIS KINERJA TENSORRT DAN OPENVINO SEBAGAI

INFERENCE FRAMEWORK UNTUK PEMODELAN DEEP LEARNING

Louis Axel Tjokro Atmodjo, Kestrilia Rega Prilianti, Hendry Setiawan

Universitas Ma Chung

Abstrak

 Deep Learning berusaha meniru kemampuan manusia melalui Artificial

Neural Network untuk melakukan task yang lebih kompleks dari sekedar

mengambil keputusan. Deep learning yang lebih kompleks, tentunya membutuhkan

data dan komputasi lebih kompleks juga. Inference framework mampu

mengoptimalkan deep learning agar lebih efisien tanpa mengorbankan akurasi.

Namun, tiap model deep learning membutuhkan inference framework yang tepat

agar mendapatkan performa optimal.

 Metode computer vision dengan training dataset dilakukan terhadap dataset

citra yang dikumpulkan dalam pencahayaan redup hingga sangat terang menjadi

dua buah model deep learning, yaitu YOLOv8n dan YOLOv11n yang kemudian

dioptimalkan menjadi inference framework TensorRT yang memiliki keunggulan

dalam pengolahan dengan GPU dari NVIDIA dan OpenVINO yang unggul dengan

pengolahan menggunakan CPU dari Intel. Pengujian statistik T-Test dan Two-Way

ANOVA digunakan dalam penelitian ini untuk melihat performa kedua inference

framework secara terukur dan ilmiah.

 TensorRT memiliki rata-rata inference speed sebesar 0.006 detik dan rata-

rata model load time selama 0.0007 detik sehingga sesuai untuk penggunaan real-

time processing dan unggul daripada OpenVINO. Sedangkan OpenVINO memiliki

rata-rata memory consumption sebesar 617841.9 MB dan rata-rata model size

sebesar 6 MB sehingga sesuai untuk penggunaan yang memiliki keterbatasan pada

perangkat, karena unggul dari TensorRT. Accuracy dari kedua inference framework

dan tiap model menunjukkan bahwa YOLOv11n lebih unggul sebesar 1% dari

YOLOv8n dan OpenVINO mampu mengoptimalkan model yang lebih kompleks

dengan lebih baik.

Kata kunci : deep learning, inference framework, OpenVINO, TensorRT

iv

PERFORMANCE ANALYSIS OF TENSORRT AND OPENVINO AS

INFERENCE FRAMEWORK FOR DEEP LEARNING MODELS

Louis Axel Tjokro Atmodjo, Kestrilia Rega Prilianti, Hendry Setiawan

Universitas Ma Chung

Abstract

 Deep Learning seeks to mimic human abilities through Artificial Neural

Network to perform more complex tasks than just simple task decision-making,

such as object recognition. The more complex deep learning, requires larger data

and more sophisticated computations. Inference framework can optimize the deep

learning models to become more efficient without compromising the accuracy of

models. However, each deep learning model requires the correct inference

framwork to achieve optimal performance.

 Computer vision with training dataset applied to images dataset that

captured under low to very bright light conditions, resulting in two deep learning

models YOLOv8n and YOLOv11n. Then these models were optimized using

TensorRT inference framwork which excels in using GPU with NVIDIA and

OpenVINO which superior in working with CPU and Intel. Statistical analysis, such

as T-Test and Two-Way ANOVA were utilized in this study to evaluate the

performance of both inference framworks in a measurable and scientific manner.

 TensorRT has an average inference speed of 0.006 seconds and an average

model load time of 0.0007 seconds, making it suitable for real-time processing and

superior to OpenVINO in this regard. On the other hand, OpenVINO has an average

memory consumption of 617841.9 MB and an average model size of 6 MB, making

it more appropriate for devices with limited resources, as it outperforms TensorRT.

The accuracy of both inference frameworks and each model demonstrates that

YOLOv11n surpasses YOLOv8n by 1%, while OpenVINO also give better results

at optimizing more complex models.

Keywords : deep learning, inference framework, OpenVINO, TensorRT

v

Kata Pengantar

Puji syukur dipanjatkan kehadirat Tuhan Yang Maha Esa karena atas rahmat

dan restu-Nya sehingga tugas akhir dengan judul “Analisis Kinerja TensorRT dan

OpenVINO sebagai Inference Framework untuk Pemodelan Deep Learning” ini

dapat diselesaikan dengan baik. Laporan ini disusun untuk menjelaskan hasil

pengerjaan Tugas Akhir yang telah selesai dilaksanakan. Tugas Akhir merupakan

salah satu mata kuliah wajib bagi mahasiswa dari Prodi Teknik Informatika

Universitas Ma Chung Malang sebagai salah satu prasyarat kelulusan.

Pada kesempatan ini, penulis menyampaikan ucapan terima kasih sebesar-

besarnya kepada seluruh pihak yang telah memberikan bantuan dan dukungan

kepada penulis dalam proses pengerjaan Tugas Akhir hingga selesai. Ucapan terima

kasih disampaikan kepada seluruh pihak terkait yang telah membantu, mendukung,

dan membimbing kegiatan Tugas Akhir hingga selesai, di antaranya :

1. Kepala Departemen ITE dari PT. XYZ yang telah menyediakan tempat untuk

pelaksanaan penelitian,

2. Bapak Dr. Eng. Romy Budhi, ST, M.T. selaku Dekan Fakultas Teknologi dan

Desain Universitas Ma Chung,

3. Bapak Hendry Setiawan, ST, M.Kom, selaku Kepala Program Studi Teknik

Informatika dan Dosen Pembimbing 2 Tugas Akhir,

4. Ibu Dr. Kestrilia Rega Prilianti, M.Si. selaku Dosen Pembimbing 1 Tugas Akhir,

5. Seluruh Tim Data Science selaku Pembimbing Lapangan,

6. Keluarga terkasih yang telah memberikan dukungan dan semangat selama

pengerjaan Tugas Akhir ini,

7. Serta teman-teman yang telah memberikan dukungan untuk menyelesaikan

pengerjaan Tugas Akhir.

Laporan ini disusun berdasarkan hasil penelitian di PT. XYZ selama enam

bulan dengan judul “Analisis Kinerja TensorRT dan OpenVINO sebagai Inference

Framework untuk Pemodelan Deep Learning”.

Jakarta, 13 Januari 2024

 Louis Axel Tjokro Atmodjo

vi

Daftar Isi

LEMBAR PENGESAHAN TUGAS AKHIR ... i

PERNYATAAN KEASLIAN TUGAS AKHIR ... ii

Abstrak ... iii

Abstract .. iv

Kata Pengantar .. v

Daftar Isi... vi

Daftar Gambar .. ix

Daftar Tabel .. 1

BAB I Pendahuluan .. 1

1.1 Latar Belakang .. 1

1.2 Identifikasi Masalah .. 3

1.3 Batasan Masalah.. 3

1.4 Rumusan Masalah ... 4

1.5 Tujuan ... 4

1.6 Manfaat ... 4

1.7 Luaran ... 4

1.8 Sistematika Penelitian ... 4

BAB II Tinjauan Pustaka .. 6

2.1 Artificial Intelligence .. 6

2.1.1 Machine Learning .. 7

2.1.2 Deep Learning .. 8

2.1.2.1 YOLO ... 8

2.2 Implementasi Artificial Intelligence ... 11

2.2.1 Model Optimization ... 12

2.3 Pengujian Statistik ... 20

BAB III Analisis dan Perancangan Sistem ... 23

vii

3.1 Alur Penelitian .. 23

3.2 Analisis Kebutuhan ... 24

3.2.1 Kebutuhan Pengguna ... 24

3.2.2 Kebutuhan Eksperimen .. 25

3.3 Studi Literatur ... 26

3.4 Pembuatan Dataset.. 28

3.5 Training Model ... 31

3.6 Export Model .. 33

3.7 Perbandingan Kinerja .. 34

BAB IV Hasil dan Pembahasan .. 37

4.1 Persiapan Perangkat .. 37

4.2 Dataset .. 37

4.3 Training Model ... 39

4.3.1 Hasil Training Model ... 40

4.3.1.1 Hasil Training YOLOv8n .. 40

4.3.1.2 Hasil Training YOLOv11n .. 41

4.4 Export Model .. 42

4.5 Pembahasan Perbandingan Kinerja ... 48

4.5.1 Perbandingan Rata-rata .. 48

4.5.1.1 Inference Speed .. 48

4.5.1.2 Memory Consumption .. 49

4.5.1.3 Model Size .. 49

4.5.1.4 Load Time .. 50

4.5.1.5 Accuracy ... 50

4.5.2 Uji T ... 50

viii

4.5.2.1 Hasil Uji Levene T-Test .. 51

4.5.2.2 Hasil Uji T .. 54

4.5.3 Uji ANOVA ... 59

4.5.3.1 Hasil Uji Levene ANOVA ... 59

4.5.3.2 Hasil Uji Two-Way ANOVA ... 61

4.5.4 Pembahasan Hasil Pengujian ... 65

BAB V Simpulan dan Saran ... 72

5.1 Kesimpulan ... 72

5.2 Saran .. 73

Daftar Pustaka ... 74

1

Daftar Tabel

Tabel 3.1 Studi Literatur ... 27

Tabel 3.2 Hyperparameter Tuning .. 32

Tabel 3.3 Indikator Perbandingan ... 35

Tabel 4.1 Hasil Training YOLOv8n ... 40

Tabel 4.2 Hasil Training YOLOv11n ... 41

Tabel 4.3 Hasil Export Model Replikasi 1 .. 43

Tabel 4.4 Hasil Export Model Replikasi 2 .. 44

Tabel 4.5 Hasil Export Model Replikasi 3 .. 45

Tabel 4.6 Hasil Export Model Replikasi 4 .. 46

Tabel 4.7 Hasil Export Model Replikasi 5 .. 47

Tabel 4.8 Perbandingan Rata-rata Inference Speed .. 48

Tabel 4.9 Perbandingan Rata-rata Memory Consumption 49

Tabel 4.10 Perbandingan Rata-rata Model Size .. 49

Tabel 4.11 Perbandingan Rata-rata Load Time ... 50

Tabel 4.12 Perbandingan Rata-rata Accuracy ... 50

Tabel 4.13 Hasil Uji Levene T-Test... 52

Tabel 4.14 Hasil T-Test YOLOv8n ... 54

Tabel 4.15 Hasil T-Test YOLOv11n ... 56

Tabel 4.16 Hasil Uji Levene Two-Way ANOVA .. 60

Tabel 4.17 Hasil Uji Two-Way ANOVA .. 62

ix

Daftar Gambar

Gambar 2.1 Ilustrasi Pembuatan Model .. 7

Gambar 2.2 Arsitektur YOLO .. 8

Gambar 2.3 Ilustrasi Bounding Box .. 9

Gambar 2.4 Pembagian Citra S x S ... 9

Gambar 2.5 Arsitektur YOLOv8 .. 10

Gambar 2.6 Arsitektur YOLOv11 .. 11

Gambar 2.7 Ilustrasi Quantization .. 13

Gambar 2.8 Ilustrasi Pruning .. 14

Gambar 2.9 Ilustrasi Knowledge Distillation .. 14

Gambar 2.10 Ilustrasi Intersection over Union (IoU) 50%................................... 19

Gambar 3.1 Alur Penelitian... 23

Gambar 3.2 Ilustrasi Dataset Box Satu SKU .. 29

Gambar 3.3 Ilustrasi Dataset Box Universal SKU.. 30

Gambar 3.4 Ilustrasi Anotasi pada Dataset Box Satu SKU 31

Gambar 3.5 Snapshot Kode Python Pengukuran Indikator 36

Gambar 3.6 Contoh Hasil Pengukuran Indikator .. 36

Gambar 4.1 Pengukuran Pencahayaan; (a) Pengumpulan dataset pada kondisi

gelap, (b) Pengumpulan dataset pada kondisi terang 38

Gambar 4.2 Ilustrasi Anotasi dataset; (a) Noise pada anotasi box, (b) Anotasi tidak

noise ... 39

Gambar 4.3 Perbandingan Inference Speed .. 63

Gambar 4.4 Perbandingan Model Size .. 64

Gambar 4.5 Grafik Perbandingan Rata-rata Inference Speed 66

Gambar 4.6 Grafik Perbandingan Rata-rata Memory Consumption 67

Gambar 4.7 Grafik Perbandingan Rata-rata Model Size 68

Gambar 4.8 Grafik Perbandingan Rata-rata Model Load Time 69

Gambar 4.9 Grafik Perbandingan Rata-rata Accuracy .. 70

1

BAB I

Pendahuluan

1.1 Latar Belakang

Kecerdasan buatan atau yang sering dikenal dengan Artificial Intelligence

(AI) merupakan teknologi terbaru yang menjadi revolusi teknologi yang sangat

pesat dalam beberapa tahun terakhir. Teknologi artificial intelligence pertama kali

dicetuskan pada 1956 oleh John McCarthy yang membuat memulai riset mengenai

sistem atau mesin yang dapat berpikir layaknya manusia. Artificial intelligence

bermula pada sebuah rule-based system yang berjalan pada task yang sederhana.

Pada beberapa tahun terakhir, artificial intelligence sudah mampu melakukan task

yang lebih kompleks dengan kecepatan yang tinggi, algoritma perhitungan yang

kompleks, serta pengolahan data dalam jumlah besar. Kemampuan artificial

intelligence yang sangat baik ini hingga saat ini mampu diaplikasikan pada task

yang lebih kompleks juga dan dapat menyesuaikan dengan berbagai bidang seperti

kesehatan, keuangan, otomasi, pengolahan bahasa, pembuatan teks, pengenalan

objek, hingga prediksi dan pengambilan keputusan.

Artificial intelligence yang dapat diaplikasikan pada beragam bidang ini

juga dapat diintegrasikan pada perangkat-perangkat sederhana seperti ponsel

genggam dan menjadi personal assistant. Dengan ini, artificial intelligence menjadi

sebuah sistem yang dapat membantu manusia yang mudah diakses dalam

melakukan task untuk mengoptimalkan kinerja manusia pada hal-hal lain yang

membutuhkan perhatian lebih. AI yang berusaha meniru kecerdasan manusia ini

membutuhkan data dalam jumlah besar untuk dijadikan pengetahuan dasar atau

knowledge base bagi sistem AI tersebut.

Pada beberapa tahun terakhir, Machine Learning (ML) yang menjadi salah

satu cabang ilmu dari artificial intelligence menjadi populer karena kemampuannya

untuk mengajarkan komputer untuk mengambil keputusan berdasarkan data yang

diberikan. Melalui algoritmanya, machine learning dapat mempelajari pola-pola

yang terdapat pada data-data untuk melakukan prediksi atau rekomendasi. Machine

learning memiliki beberapa dasar metode untuk mengajarkan mesin untuk memiliki

2

kecerdasan, seperti reinforcement learning, supervised learning, unsupervised

learning. Metode-metode pengajaran mesin tersebut diberlakukan sesuai dengan

kebutuhan masing-masing untuk mendapatkan hasil optimal.

Deep Learning (DL) merupakan cabang lanjutan dari machine learning

yang secara mendalam memaksimalkan potensi artificial intelligence, hingga

sampai pada meniru struktur dan fungsi dari otak manusia sebagai kecerdasan

manusia untuk mendapatkan kecerdasan buatan melalui Artificial Neural Networks.

Melalui deep learning, sistem artificial intelligence mampu melakukan task yang

lebih kompleks daripada machine learning yang berfokus pada pengenalan pola dan

data. Deep learning mampu melakukan task seperti pengenalan objek atau citra

melalui Computer Vision, pengolahan Bahasa melalui Natural Language

Processing, dan hal lainnya dengan akurasi yang lebih baik daripada model milik

machine learning. Model milik deep learning mampu mempelajari data secara

otomatis dengan baik tanpa campur tangan manusia. Namun, kecerdasan dan

akurasi ini tentunya datang dengan tantangan besar juga, seperti kebutuhan data

yang besar hingga proses komputasi yang sangat berat.

Inference Framework merupakan framework yang membantu model deep

learning yang sangat besar agar dapat digunakan dengan lebih mudah tanpa

mengorbankan akurasi pada aplikasinya secara nyata. Inference framework

memiliki kemampuan untuk meningkatkan kemampuan model deep learning untuk

penggunaan secara real-time dan membuat proses inference lebih efektif pada

berbagai hardware platform sesuai kebutuhan. Hingga saat ini, terdapat beberapa

inference framework yang populer dengan keahliannya yang terpolarisasi, yaitu

TensorRT yang merupakan hasil pengembangan tim NVIDIA dan OpenVINO yang

merupakan hasil pengembangan tim Intel. Kedua inference framework memiliki

base architecture yang berbeda secara signifikan, dimana TensorRT dioptimalkan

secara khusus untuk melakukan komputasi pada Graphic Processing Unit (GPU)

milik NVIDIA, sedangkan OpenVINO dirancang khusus untuk melakukan

komputasi pada Central Processing Unit (CPU). Kedua inference framework ini

sangatlah penting dalam aplikasinya secara nyata, dimana kecepatan, efektivitas,

hingga akurasi menjadi kunci dari keberhasilan sistem Artificial Intelligence.

3

Melalui penelitian yang telah dilakukan Zhou dan Yang (2022), didapatkan

hasil bahwa model ONNX yang dikonversi menjadi TensorRT mampu

meningkatkan kemampuan real-time inference tanpa mengorbankan akurasi.

Penelitian lain yang telah dilakukan oleh Zhongyi, et al (2019) menunjukkan bahwa

OpenVINO mendapatkan hasil memuaskan pada kemampuannya melakukan

detection secara real-time ketika menggunakan model ringan seperti MobileNet,

ResNet, dan SqueezeNet. Namun, belum ada penelitian terbaru mengenai

kemampuan inference framework pada model yang lebih modern saat ini, yaitu

YOLO. YOLOv8 mampu melampaui akurasi YOLO terdahulu karena kombinasi

pada arsitekturnya (Reis, et al, 2024) . Hingga saat ini YOLO telah mengeluarkan

YOLOv11 yang dikenalkan mampu memberikan akurasi lebih baik dari YOLOv8.

Penelitian kali ini akan berfokus pada analisis kinerja dari TensorRT milik NVIDIA

dan OpenVINO milik Intel sebagai sebuah inference framework untuk pemodelan

dari Deep Learning.

1.2 Identifikasi Masalah

Melalui latar belakang masalah yang telah disampaikan, dapat diperoleh

identifikasi masalah bahwa inference framework milik TensorRT dan OpenVINO

memiliki ciri khas masing-masing dengan variasi kinerja yang berbeda, sehingga

diperlukan penelitian komprehensif untuk mengetahui kinerja secara real-time

antara keduanya. Selain itu, penggunaan GPU dan CPU menjadi tantangan baru

untuk menemukan performa inference framework yang sesuai pada aplikasi secara

nyata.

1.3 Batasan Masalah

Berikut merupakan batasan masalah yang ditetapkan pada Tugas Akhir ini:

a) Jenis model yang digunakan dalam penelitian ini adalah YOLOv8 dan

YOLOv11

b) Ukuran model yang digunakan pada penelitian ini adalah ukuran nano (n)

c) Optimasi model berfokus pada model conversion

d) Hyperparameter tuning untuk training model pada penelitian ini disamakan

4

1.4 Rumusan Masalah

Bagaimana kinerja TensorRT dan OpenVINO sebagai inference framework

untuk pemodelan Deep Learning pada kasus perhitungan atau counting box secara

real-time.

1.5 Tujuan

Tujuan dari dilakukannya penelitian ini adalah untuk mengetahui

perbandingan kinerja TensorRT dan OpenVINO sebagai inference framework

untuk pemodelan Deep Learning.

1.6 Manfaat

Manfaat yang dapat diperoleh dalam penelitian ini adalah sebagai berikut:

1. Bagi praktik industri, manfaat yang didapatkan adalah mengetahui alternatif

format model yang menggunakan CPU untuk melakukan object detection

secara real-time.

2. Bagi penulis, maanfaat yang didapatkan adalah memperluas wawasan

mengenai ragam format model dalam YOLO untuk melakukan object detection

secara real-time.

3. Bagi Universitas Ma Chung, khususnya Program Studi Teknik Informatika,

manfaat yang didapatkan adalah dapat mempersiapkan lulusan yang kompeten

dan siap kerja dengan memberikan bekal kepada mahasiswa melalui proses

pembelajaran selama Tugas Akhir.

1.7 Luaran

Luaran dalam penelitian ini penjelasan mengenai perbandingan kinerja

TensorRT dan OpenVINO sebagai inference framework untuk pemodelan deep

learning beserta beserta analisis serta dilanjutkan dengan publikasi ilmiah ke jurnal.

1.8 Sistematika Penelitian

 Sistematika penulisan proposal Tugas Akhir ini dibagi menjadi tiga bab

seperti berikut ini.

Bab I Pendahuluan

5

Bab ini terdiri dari latar belakang, identifikasi masalah,

rumusan masalah, Batasan masalah, tujuan penelitian,

manfaat peneltian, luaran tugas akhir, dan sistematika

penelitian.

Bab II Tinjauan Pustaka

Bab ini berisi urutan sistematis terkait literatur yang

digunakan dalam proses penyusunan laporan Tugas Akhir

sehingga diperoleh landasan teori terkait dengan TensorRT

dan OpenVINO sebagai inference framework, teknik

optimasi model, dan pemodelan deep learning.

Bab III Metodologi Penelitian

Bab ini menjelaskan mengenai tahapan pengerjaan serta

analisis dari penelitian yang akan dilakukan. Tahapan

pengerjaan meliputi identifikasi masalah, studi literatur,

pembuatan data, training model, export model, hingga

perbandingan kinerja.

Bab IV Hasil dan Pembahasan

Bab ini membahas mengenai hasil dari penelitian yang telah

dilakukan untuk menganalisis perbandingan kinerja

TensorRT dan OpenVINO sebagai inference framework

untuk pemodelan deep learning.

Bab V Kesimpulan dan Saran

Bab ini berisi simpulan dari hasil penelitian yang telah

dilakukan serta saran mengenai yang mungkin dapat

memperbaiki kinerja atau penelitian selanjutnya.

6

BAB II

Tinjauan Pustaka

2.1 Artificial Intelligence

Artificial Intelligence atau dalam bahasa Indonesia berarti kecerdasan

buatan merupakan kecerdasan yang ditanamkan pada suatu sistem sehingga dapat

diatur sedemikian rupa. Penelitian mengenai artificial intelligence telah dimulai

pada tahun 1956 oleh John McCarthy dan Marvin Minsky yang menjalankan

penelitian selama 8 bulan, yaitu Dartmouth Summer Research Project on Artificial

Intelligence (DSRPAI) di kampus Dartmouth, New Hampshire (Haenlein, M.,

Kaplan, A., 2019). Tujuan dari diadakannya DSRPAI adalah untuk mengumpulkan

para peneliti untuk akhirnya dapat membangun sebuah mesin yang memiliki

kemampuan mensimulasikan kecerdasan manusia. Pada dasarnya artificial

intelligence ini ditanamkan pada sebuah komputer, agar komputer dapat menjadi

cerdas untuk dapat meniru beberapa perilaku manusia seperti perhitungan,

pengolahan bahasa, pengetahuan, identifikasi, pemecahan masalah hingga

pengambilan suatu keputusan. Dalam jurnalnya, Haenlein, M. Dan Kaplan, A. juga

menjelaskan bahwa kecerdasan buatan adalah sebuah sistem yang mampu untuk

menafsirkan data eksternal dan belajar dari data tersebut serta menggunakan hasil

pembelajarannya untuk mencapai tujuan tertentu (2019).

Latar belakang dari artificial intelligence adalah sebuah sistem yang

melakukan pengambilan keputusan hingga pemikiran berdasarkan sebuah reason

atau knowledge base dan sebuah rule-based system. Namun, sistem sederhana ini

sangat terbatas pada beberapa penggunaan yang lebih kompleks dan membutuhkan

penyesuaian yang meluas pada skala tertentu. Hingga saat ini, banyak sekali task

yang dapat dilakukan oleh artificial intelligence seperti pengenalan objek pada

gambar, melakukan prediksi, dan lain-lain. Kemampuan artificial intelligence yang

paling populer saat ini adalah Generative Artificial Intelligence bersamaan dengan

Large Language Model yang dapat melakukan interaksi dengan manusia seperti

tanya jawab, membuat kesimpulan dari suatu paragraf, hingga hal lain.

Kemampuan-kemampuan ini muncul berkat adanya pengembangan dari sistem atau

7

ide dasar dari artificial intelligence sendiri melalui machine learning dan deep

learning yang terus berkembang dengan sangat pesat hingga saat ini. Artificial

intelligence telah menunjukkan kemampuannya sebagai alat bantu yang berharga

dalam melakukan beragam task mulai dari analisis, memberikan wawasan melalui

motif, dan gaya bahasa yang dapat dilewatkan oleh manusia (Swathi, M.,

Dhayalakrishnan, R., 2024).

2.1.1 Machine Learning

 Machine Learning merupakan bagian dari artificial intelligence yang

mencakup ilmu dalam membuat algoritma yang akan membuat mesin mempelajari

data dan terus berkembang secara pertahap. Kemampuan machine learning ini

berbeda dengan program atau sistem pada umumnya yang perlu memerlukan

campur tangan manusia. Konsep dasar dari sebuah machine learning adalah mesin

atau sistem yang mampu mempelajari data hingga mengenali pola yang terdapat

pada data untuk akhirnya membuat sebuah prediksi atau pengambilan keputusan

untuk data baru diluar data sebelumnya. Terdapat beberapa metode dalam machine

learning, seperti supervised learning, unsupervised learning, semi-supervised

learning, dan reinforcement learning. Machine learning dengan beragam

metodenya masih kesulitan dalam menangani data yang kompleks untuk melakukan

feature extraction atau mencari pola dan hubungan pada data. Sehingga, machine

learning masih membutuhkan bantuan manusia dalam melakukan feature

extraction yang akan digunakan nantinya untuk membuat algoritmanya.

Gambar 2.1 Ilustrasi Pembuatan Model (Janiesch, C, et al. 2021)

8

2.1.2 Deep Learning

 Perkembangan lebih lanjut dari machine learning adalah Deep Learning

yang berusaha menirukan jaringan saraf manusia. Berbeda dengan machine

learning yang lebih sederhana, deep learning memiliki lapisan dalam jumlah

banyak untuk menjawab kekurangan dari machine learning. Deep learning

memiliki lapisan atau layer ini adalah bagian yang memuat informasi pola hingga

relasi yang terdapat pada data. Ciri khas deep learning adalah kemampuannya

untuk mengenali pola hingga relasi pada data secara mandiri dan memperbaiki hasil

keluarannya. Pada algoritma sederhana, jika ingin melakukan perubahan pada

model, dibutuhkan banyak penyesuaian, sedangkan deep learning hanya perlu

melakukan penyesuaian pada parameter (Hao, 2018).

2.1.2.1 YOLO

 You Only Look Once (YOLO) merupakan sebuah algoritma Deep learning

yang umum digunakan sebagai pendeteksi objek yang memiliki kelebihan dalam

hal kecepatan dan akurasi. Algoritma ini dapat mendeteksi objek secara real-time

dengan pendekatan Convolutional Neural Network (CNN). CNN mampu membagi

suatu citra menjadi beberapa bagian (dalam pixel) dan memprediksi setiap kotak

yang kemudian dibandingkan dengan probabilitas yang diprediksi. Model dari

YOLO menggunakan deep learning untuk meningkatkan kecepatan dan akurasi

dalam melakukan deteksi dan klasifikasi objek.

Gambar 2.2 Arsitektur YOLO (Redmon, J., et al. 2016)

Arsitektur dari YOLO menggunakan 24 convolutional layers dengan 2 fully

connected layers. Secara bergantian 1 x 1 convolutional layers mengurangi fitur

9

yang terdapat pada layer sebelumnya. YOLO juga melakukan pre-train pada

convolutional layers pada ImageNet classification sebesar setengah dari resolusi

citra dan kemudian menggandakannya untuk deteksi (Redmon, J., et al. 2016)

YOLO dapat memberikan informasi koordinat dari bounding box atau kotak

pembatas (area yang dideteksi sebagai objek) dan mengklasifikasikan objek yang

dideteksi. Bounding box memberikan informasi x dan y sebagai pusat dari bounding

box dan height dan width sebagai ukurannya, serta nilai dari probabilitasnya.

Algoritma yang bekerja dalam model YOLO adalah dengan membagi citra yang

diberikan menjadi S x S dengan S adalah jumlah dari sel.

Gambar 2.3 Ilustrasi Bounding Box

Gambar 2.4 Pembagian Citra S x S (Redmon, et al. 2016)

 YOLOv8 merupakan salah satu perkembangan dari YOLO yang dirilis pada

bulan Januari tahun 2023 dan dikembangkan oleh tim dari perusahaan Ultralytics,

10

sebuah perusahaan teknologi yang juga telah mengembangkan YOLOv5

sebelumnya. Terdapat 5 jenis versi YOLOv8 yang tersedia, yaitu YOLOv8n (nano),

YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), dan YOLOv8x (extra-

large). Keseluruhan versi YOLOv8 menunjukkan ukuran dan kemampuan model

YOLOv8, mulai dari YOLOv8n yang terkecil serta ringan, hingga YOLOv8x yang

terbesar dan berat. Namun, secara keseluruhan YOLOv8 mampu mendukung

kemampuan computer vision seperti object detection, image segmentation, pose

estimation, tracking, dan classification (Terven, J., et al. 2023).

Gambar 2.5 Arsitektur YOLOv8 (Huang, H., 2024)

 YOLOv11 merupakan versi terbaru yang juga dikembangkan oleh tim

Ultralytics dan dirilis pada September 2024. Terdapat 5 versi YOLOv11 yang

tersedia, yaitu YOLOv11n (nano), YOLOv11s (small), YOLOv11m (medium),

YOLOv11l (large), dan YOLOv11x (extra-large). YOLOv11 memiliki

kemampuan untuk meningkatkan akurasi melalui mAP sebesar 22% dengan jumlah

11

parameter lebih sedikit ketika dibandingkan dengan YOLOv8m. Perkembangan

terbaru arsitektur YOLOv11 pada backbone, neck dan peningkatan pada

kemampuan feature extraction dapat membawa memberikan akurasi yang lebih

baik yang berpengaruh pada diagnosis kanker (Awad, et al, 2024).

Gambar 2.6 Arsitektur YOLOv11 (Rao, S. N., 2024)

2.2 Implementasi Artificial Intelligence

 Industri 4.0 berarti bahwa industri telah berevolusi dan saat ini beralih

menuju yang keempat kalinya. Revolusi industri yang pertama terjadi pada 1784 di

Inggris, ketika mesin uap pertama kali ditemukan untuk menggantikan tenaga

manusia. Revolusi dari industri yang keempat ini diperkasai oleh negara Jerman

yang menjadikan industri sebagai kebijakan pembangunannya. Pada akhirnya,

beberapa negara lain juga menyusul menerapkan industri 4.0 ini dengan nama-nama

lain seperti Smart Industry, Internet of Things, dan lain-lain. Sesuai dengan revolusi

industri pertama di Inggris, revolusi industri keempat ini juga masih melihat bidang

industri sebagai porosnya dengan contohnya adalah kecepatan produksi,

fleksibilitas produksi, dan hal lain yang berkaitan dengan bidang industri

manufaktur dan pada akhirnya dapat membawa perkembangan dari sebuah negara.

Dilihat dari industri penerapannya, maka bidang industri manufakturlah yang

12

memiliki peran besar (Prasetyo dan Sutopo, 2018). Disisi lain, terdapat bidang

industri otomotif, kesehatan, energi, logistik, hingga industri pertanian yang terkena

dampak revolusi industri 4.0 dan menuntut hal seperti kecepatan dan fleksibilitas.

Seiring perkembangan teknologi, muncul artificial intelligence atau

kecerdasan buatan yang cerdas dan dapat membantu berbagai keperluan yang ada.

Dilihat dari perspektif positf, tantangan industri yang kompleks justru membuka

peluang bagi kemampuan unik yang dimiliki teknologi kecerdasan buatan

dibandingkan dengan alat dan pendekatan konvensional (Arinez, et al, 2020).

Kemampuan dari kecerdasan buatan dalam memaksimalkan industri sangat

beragam, dari meningkatkan produktivitas, fleksibilitas, keamanan, kualitas hingga

mengurangi biaya produksi.

Ilmu kecerdasan buatan telah digunakan dalam lini produksi, kesehatan

hingga logistik dan pertanian, contohnya adalah optimisasi produksi, deteksi cacat

pada produk, identifikasi hingga prediksi downtime dari suatu mesin, diagnosis

penyakit dari citra x-ray, smart watch dengan sistem pemantauan dan

rekomendasinya, rekomendasi rute logistik, rekomendasi warehouse stock

management, dan deteksi dini penyakit pada tumbuhan melalui citra satelit serta

sistem irigasi cerdas untuk industri pertanian. Hasil dari implementasi kecerdasan

buatan ini telah terbukti meningkatkan produktivitas dan kualitas dari industri.

Keuntungan lain dari kecerdasan buatan dalam industri adalah membuat industri

berjalan dengan lebih mudah, cepat dan fleksibel untuk perputaran industrinya.

Menurut Lubis (2021), implementasi kecerdasan buatan pada pengerjaan manusia

dapat menghasilkan kinerja optimal dengan waktu proses yang cepat dan hasil

maksimal.

2.2.1 Model Optimization

Sebuah model pada deep learning tentunya memiliki layer yang sangat kaya

akan pengetahuan atau knowledge base untuk mencapai kecerdasan yang sesuai

dengan keinginan atau training pada dataset yang telah dilakukan sebelumnya.

Model dari YOLO yang memiliki kemampuan object detection secara real-time

dengan akurasi tinggi tentunya akan memiliki knowledge base yang juga sangat

luas, sehingga ukuran dari model ini cukup besar. Proses training bertujuan agar

13

model memiliki knowledge base sesuai dengan yang diharapkan, sedangkan untuk

menggunakan model tersebut agar dapat melakukan task seperti prediction pada

data baru dibutuhkan satu buah tools yang dapat membantu deployment dari model

tersebut. Tools yang dapat membantu proses deployment model agar dapat

melakukan task yang diinginkan dari model disebut dengan inference frameworks.

Sebuah inference frameworks memiliki kemampuan untuk melakukan

model deployment dan model optimization yang dibutuhkan untuk meningkatkan

efektivitas model. Dalam penggunaan industri, tentunya penggunaan model YOLO

tidak semata-mata melakukan task atau inference satu kali saja, tetapi secara

berulang dengan menggunakan edge device yang memiliki spesifikasi atau sumber

daya terbatas. Dari sinilah muncul kebutuhan untuk melakukan optimasi untuk

mengurangi ukuran dari model agar lebih ringan tanpa mengurangi knowledge yang

dimiliki oleh model tersebut, sehingga model dapat berjalan dengan efisien dan

maksimal. Terdapat beberapa teknik yang dapat diterapkan untuk mengoptimalkan

sebuah model tanpa mengganggu kinerja model tersebut. Quantization merupakan

teknik untuk merubah angka yang memiliki keakuratan tinggi atau high-precision

floating-point yang dalam neural networks menjadi angka yang memiliki

keakuratan lebih rendah atau low-precision seperti contohnya 0.56 menjadi 78.

Dengan mengurangi tingkat keakuratan sebuah angka, maka model tentunya

menjadi lebih sederhana dan berukuran lebih kecil yang dapat mengurangi

penggunaan memory consumption selama proses inference.

Gambar 2.7 Ilustrasi Quantization

14

Pruning merupakan teknik untuk menghapus jaringan neuron atau filter

yang dianggap tidak penting pada model. Tujuan dari pruning adalah untuk

mengurangi kompleksitas model dan mempercepat proses inference. Pruning

menghilangkan jaringan neuron yang memiliki beban kecil atau kurang

mempengaruhi output model agar mendapatkan ukuran model yang lebih ringan

dengan memory consumption yang lebih sedikit. Keuntungan yang didapat dari

teknik ini selain ukuran yang lebih kecil adalah dengan struktur model yang lebih

sederhana dapat mencegah terjadinya ketidakmampuan model mendeteksi data

baru (overfitting) karena memiliki knowledge yang lebih general. Teknik pruning

dapat mempercepat proses inference tanpa mengorbankan akurasi dari model.

Gambar 2.8 Ilustrasi Pruning

Knowledge distillation adalah teknik untuk transfer knowledge dari model

besar kepada model yang lebih kecil. Solusi optimisasi yang disampaikan Hinton,

et al disebut sebagai distillation yang berarti menggunakan output dari model besar

beserta rincian jaringannya untuk melatih model yang lebih kecil agar dapat meniru

hasil dari model yang besar (2015).

Gambar 2.9 Ilustrasi Knowledge Distillation

15

Fusing layers merupakan teknik yang mampu menggabungkan beberapa

layer menjadi satu untuk mengurangi memory consumption agar performa inference

dapat ditingkatkan. Ditemukan bahwa menggabungkan beberapa layer yang paling

sama antara satu dan lainnya dapat memberikan performa yang setara dengan model

aslinya (O’Neill, et al. 2020).

Teknik quantization, pruning, knowledge distillation, fusing layer saat ini

tidak perlu dilakukan secara manual dan terpisah dikarenakan sudah terdapat

beberapa tools untuk inference yang telah disediakan. Beberapa frameworks

popular yang sudah tersedia untuk melakukan inference adalah TensorRT oleh

NVIDIA, ONNX-runtime oleh Microsoft, OpenVINO oleh Intel, MXNet oleh

Apache. Seluruh inference frameworks dikembangkan sesuai dengan algoritma

masing-masing yang unik. Inference framework yang cukup popular adalah milik

NVIDIA, yaitu TensorRT yang melakukan optimisasi menggunakan hardware

GPU (Graphic Processing Unit) milik NVIDIA yang dikenal dengan kecepatan

inferensi, sehingga sesuai jika digunakan dalam kebutuhan komputasi dengan

performa tinggi. Pada sisi lainnya, OpenVINO yang dikembangkan oleh Intel

memiliki kemampuan komputasi pada CPU (Central Processing Unit). Kedua

inference framework memiliki kelebihan masing-masing untuk kebutuhan yang

berbeda. Perbedaan arsitektur inference framework dan penggunaan hardware yang

cukup signifikan pada proses komputasi milik TensorRT dan OpenVINO

menjadikan keduanya perbandingan yang sesuai untuk mengetahui kemampuan

inference framework berdarkan hardware yang berbeda dan sesuai untuk real-time

detection.

Masing-masing inference framework memiliki arsitektur dan algoritma

tertentu untuk mencapai tujuan tertentu. Sehingga pada setiap inference framework

dapat menghasilkan hasil yang berbeda untuk satu kasus yang sama. TensorRT

yang merupakan inference framework dengan dasar pengembangan GPU NVIDIA

tentunya akan lebih optimal ketika digunakan untuk kasus spesifik yang

membutuhkan GPU dalam komputasinya dan lebih baik jika menggunakan GPU

milik NVIDIA. Di sisi lain, penggunaan OpenVINO akan lebih optimal pada kasus

komputasi dengan CPU dan CPU milik Intel. Kelebihan dari inference framework

16

milik TensorRT adalah peningkatan performa sebesar 3.5 jika dibandingkan dengan

model yang tidak dioptimasi, Frame per Second (FPS) yang lebih tinggi dalam

melakukan real-time detection, optimasi memory untuk penggunaan Embedded

System, mendukung format Open Neural Network Exchange (ONNX) untuk

kemampuan penggunaan pada berbagai platform, dan kemampuan untuk

melakukan penyesuaian melalui Compute Unified Device Architecture (CUDA) (Al

Ghadani, et al, 2020). Penggunaan TensorRT sebagai inference framework dengan

segala kelebihannya, tentunya juga memiliki kekurangan. Menurut Assunção, et al

(2022), kekurangan dari TensorRT adalah kehilangan akurasi dari 75% menjadi

64% pada mIOU (mean Intersection over Union) ketika menggunakan depth

multiplier sebesar 0.5, kompleksitas hyperparameter tuning, ketergantungan pada

perangkat NVIDIA yang memiliki CUDA, kebutuhan memory spesifik yang

disebabkan oleh konfigurasi yang dilakukan, dan overfitting karena kemampuan

model dalam melakukan optimisasi yang berlebihan. Inference framework

OpenVINO milik Intel juga menawarkan kelebihan seperti, performa optimal

ketika menggunakan perangkat Intel, peningkatan performa sebesar 3,3 kali pada

perangkat Intel dengan quantization sebesar 75%, multi-platform compatibility

mulai dari edge device hingga cloud dan berbagai framework lain seperti

TensorFlow dan PyTorch, high throughput dengan low latency yang membuatnya

sesuai dengan real-time detection, hemat daya atau dapat dijalankan pada perangkat

dengan daya yang rendah, hingga kemudahaan penggunaanya (Ahn, et al, 2023).

OpenVINO juga memiliki kekurangan, seperti yang dijelaskan oleh Mani, et al

(2024) seperti, penggunaannya akan terlimit jika tidak menggunakan perangkat

Intel, kurangnya fleksibilitas pada penggunaan framework selain TensorFlow dan

PyTorch, rumit pada konfigurasi, tidak semua model support OpenVINO.

Terdapat beberapa indikator perbandingan untuk mengetahui performa

masing-masing inference framework adalah dengan melihat inference speed,

memory consumption, power consumption, model size, loading time, dan accuracy.

Namun, tidak semua indikator sesuai dan memiliki kualitas yang sama ketika

melakukan perbandingan performa inference framework pada tiap kasus. Pada

penelitian ini, terdapat lima indikator yang dirasa sesuai dan tepat dengan

17

kebutuhan real-time object detection. Kelimanya adalah inference speed, memory

consumption, model size, loading time, dan accuracy yang melihat dari nilai mAP

atau mean Average Precision.

1. Inference speed merupakan satu indikator penting untuk menilai

efektivitas inference framework dalam melakukan task secara real-time.

Inference speed merupakan waktu yang dibutuhkan inference

framework dalam memproses dan menghasilkan prediksi dari data

masukkan yang diberikan yang pada umumnya diukur dengan satuan

millisecond. Dalam konteks penelitian ini, inference speed dievaluasi

berdasarkan kemampuan inference framework untuk menyelesaikan

task object detection pada satu data masukkan. Semakin cepat atau

semakin kecil inference speed dalam menyelesaikan task pada data

masukkan, semakin efektif inference framework dalam mendukung

real-time object detection.

2. Memory consumption menjadi indikator perbandingan yang penting

dalam menilai skalabilitas dan efektivitas sebuah inference framwork

secara khusus jika digunakan pada hardware dengan spesifikasi yang

lebih terbatas sesuai dengan kebutuhan. Memory consumption berarti

jumlah sumber daya memori yang digunakan oleh inference framework

selama proses inference dilakukan yang berdampak secara langsung

pada kemampuan system melakukan task. Pada penelitian ini, memory

consumption dapat dievaluasi dengan melihat penggunaan RAM

(Random Access Memory) mulai dari inference framework menerima

data masukkan hingga menyelesaikan task object detection. Semakin

rendah atau kecil memory consumption selama proses inference

dilakukan, maka semakin efektif inference framework tersebut dalam

mendukung real-time object detection.

3. Model size dapat menjadi indikator perbandingan berikutnya yang

sesuai dalam menilai skalabilitas inference framework yang secara

khusus digunakan pada hardware dengan spesifikasi terbatas untuk

mengoptimalkan infrastruktur penyimpanannya. Model size merupakan

18

ukuran file dari inference framework yang dapat diukur dengan satuan

megabyte (MB) atau gigabyte (GB) yang dapat menjadi indikator

penting dari kompleksitas dan efektifitas suatu inference framework.

Dalam penelitian ini model size dapat dievaluasi berdasarkan ukuran

penyimpanannya. Semakin rendah atau kecil model size yang dimiliki

inference framework, maka semakin baik efektifitas inference

framework dalam melakukan inference tanpa mengorbankan kebutuhan

hardware.

4. Loading time sebuah inference framework berperan penting dalam

menunjukkan efektifitas inference framework secara khusus pada

penggunaan dalam task real-time object detection. Loading time

merupakan indikator yang menunjukkan waktu yang diperlukan untuk

memuat inference framework ke dalam memori sebelum melakukan

inference pada data masukkan. Loading time dapat dipengaruhi oleh

arsitektur, metode optimization yang dilakukan oleh inference

framework. Dalam penelitian ini loading time dapat dievaluasi melalui

kecepatan inference framework dimuat pada memori sebelum inference

mulai dilakukan. Semakin rendah atau cepat loading time suatu

inference framework, maka semakin efektif suatu inference framework

untuk melakukan task real-time object detection terutama pada

kebutuhan kecepatan inisiasi.

5. Accuracy tentunya menjadi indikator utama dalam melihat kemampuan

inference framework melakukan task yang diberikan pada berbagai

kondisi yang ada. Accuracy yang dimiliki oleh inference framework

biasanya diukur melalui mean Average Precision (mAP) yang

menunjukkan kemampuan inference framework dalam melakukan task

yang diberikan. Pada penelitian ini, mAP digunakan sebagai indikator

utama dalam mengukur performa inference framework pada presisi

Intersection over Union (IoU) 50%. IoU 50% dapat diartikan bahwa

hasil prediksi bounding box mengalami tumpang tindih dengan

bounding box dari ground truth deteksinya sebesar minimal 50%.

19

Gambar 2.10 Ilustrasi Intersection over Union (IoU) 50%

Semakin besar atau tinggi nilai dari mAP(50%) suatu inference

framework, maka semakin akurat inference framework dalam

melakukan task yang diberikan secara konsisten dengan threshold IoU

50%.

Penelitian ini dilakukan dengan melihat performa inference framework pada

dua hardware yang berbeda dengan tujuan untuk memperkaya wawasan mengenai

performa masing-masing inference framework sesuai dengan desain arsitekturnya.

Hardware yang pertama adalah komputer dengan CPU Intel(R) Gold Intel(R)

Xeon(R) Gold 5218 CPU @ 2.30GHz yang memiliki storage sebesar 2.5 terrabyte

berupa Hard Disk Drive (HDD) CPU 64 core dan Random Access Memory (RAM)

sebesar 130 gigabyte. Hardware kedua adalah milik NVIDIA dengan spesifikasi

CPU Arm® Cortex®-A78AE v8.2 64-bit yang memiliki 12 core dengan storage

sebesar 256 gigabyte dan memiliki RAM sebesar 64 gigabyte 256-bit LPDDR5

yang memiliki kecepatan 204.8 gigabyte/second dengan GPU NVIDIA Ampere

architecture dengan 2045 NVIDIA® CUDA® cores dan 64 Tensor cores.

Kedua hardware memiliki perbedaan yang signifikan dengan ciri khas

masing-masing. Hardware pertama milik Intel yang prosesnya difokuskan pada

CPU miliknya, sedangkan hardware kedua milik NVIDIA yang computing

background miliknya difokuskan pada GPU. Python 3.8 digunakan pada kedua

20

hardware untuk mengetahui kinerja masing-masing inference framework untuk

mendapatkan perbandingan yang setara dengan operating system LINUX

UBUNTU.

2.3 Pengujian Statistik

Dalam melakukan perbandingan yang membutuhkan pengambilan

kesimpulan berdasarkan data numerik yang tersedia, diperlukan suatu metode

pengujian yang terukur untuk mengetahui hasil perbandingan secara terukur dengan

metode sesuai. Pengujian statistik merupakan suatu metode pengujian yang terukur

secara ilmiah untuk menarik kesimpulan berdasarkan data yang diberikan.

Pengujian statistik memungkinkan peneliti untuk melihat dan menarik kesimpulan

mengenai perbedaan antar data hingga mengetahui hubungan antar variabel secara

pada data atau antar data. Metode statistik ini dapat memberikan hasil yang

signifikan berdasarkan ketentuan yang ditentukan secara mandiri. Tujuan dari

pengujian statistik adalah untuk melakukan komparasi dan melihat interaksi antara

kelompok data yang mencakup perbedaan rata-rata, interaksi hingga variabel dan

dampak perlakuan tertentu pada kelompok data tertentu. Selain itu, pengujian

statistik juga penting dilakukan untuk mengetahui reliabilitas data agar dapat

dipertanggungjawabkan, mengetahui jenis data, memberikan pemahaman atas

faktor tertentu terhadap data tertentu yang berujung pada kebutuhan pengambilan

keputusan atau kesimpulan berdasarkan analisis data yang objektif. Metode uji

statistik memiliki beberapa teknik pengujian yang dapat digunakan untuk

mengambil kesimpulan (Ramadhani, dkk, 2022).

Terdapat dua metode pengujian statistik yang umum digunakan, yaitu T-

Test dan ANOVA (Analysis of Variance). Uji statistik uji T dapat digunakan untuk

mencari tahu apakah terdapat perbedaan signifikan pada data dengan cara

membandingkan nilai rata-rata dari satu atau dua data yang tersedia. Dalam uji T

sendiri terdapat beberapa jenis bergantung dengan karakteristik dari data. Uji T

yang pertama adalah one-sample T-Test, untuk jenis uji T ini tujuan utamanya

adalah mengetahui apakah terdapat perbedaan signifikan antara satu nilai dengan

rata-rata dari satu set data, contohnya adalah untuk mengetahui apakah terdapat

perbedaan signifikan dari rata-rata tinggi satu kelas dengan tinggi seorang siswa.

21

Jenis uji T berikutnya adalah independent T-Test yang biasa digunakan untuk

mengetahui apakah terdapat perbedaan signifikan antara dua set data dengan syarat

kedua data tidak memiliki hubungan. Contoh dari independent T-Test ini adalah

untuk mengetahui apakah terdapat perbedaan signifikan antara rata-rata kecepatan

berlari laki-laki dengan rata-rata kecepatan berlari wanita, dimana kedua data tidak

memiliki relasi. Berikutnya, terdapat paired / dependent T-Test yang bertujuan

untuk mengetahui apakah terdapat perbedaan signifikan dari rata-rata dua set data

yang memiliki relasi. Paired / dependent T-Test dapat digunakan untuk mengetahui

apakah terdapat perbedaan rata-rata berat badan harian seseorang ketika sebelum

berolahraga secara rutin dan sesudah berolahraga secara rutin, dimana terdapat

relasi antara keduanya yaitu pada subjek pengamatan. Pada uji statistik independent

T-Test, diperlukan data dan jenis variance dari kedua data independen. Data

variance merupakan data yang menunjukkan homogenitas antara setiap nilai pada

data dengan rata-rata maupun nilai tengah pada data. Apabila variance

menunjukkan terdapat homogenitas pada data, maka dapat diartikan bahwa varians

data pada kelompok tidak berbeda secara signifikan. Uji homogenitas pada data

atau uji variance dapat dijadikan sebagai penentu berikutnya untuk metode

independent T-Test. Apabila data disebut homogen melalui uji variance, maka

dapat langsung menggunakan independent T-Test, sebaliknya jika data tidak

homogen, maka akan menggunakan Welch’s T-Test. Untuk melakukan uji

homogenitas data, dapat dilakukan uji levene.

ANOVA yang merupakan singkatan dari Analysis of Variance yang

merupakan salah satu uji statistik dengan yang bertujuan untuk menguji perbedaan

secara signifikan pada rata-rata antara dua faktor atau lebih pada data. Pada

dasarnya, uji ANOVA memiliki tujuan yang sama dengan uji T, tetapi uji ANOVA

memiliki keunggulan dalam kemampuannya untuk menguji perbedaan secara

signifikan pada kelompok data yang memiliki faktor uji. Pada uji ANOVA, terdapat

dua jenis uji yang dapat dilakukan, yaitu One-Way ANOVA dan Two-Way

ANOVA. Uji One-Way ANOVA merupakan pengujian statistik yang serupa

dengan T-Test dengan dua set data, tetapi lebih kompleks pada metode statistiknya,

sehingga hasil yang disajikan uji ANOVA juga lebih kompleks dan disajikan dalam

22

bentuk tabel atau yang dikenal dengan tabel F. Perhitungan statistik yang di lakukan

pada One-Way ANOVA dengan menghitung rata-rata atau mean, standar deviasi,

standar error rata-rata, nilai maksimum, nilai minimum, selang kepercayaan rata-

rata, dan uji levene untuk setiap set data. Pada metode Two-Way ANOVA dapat

dilakukan pada kebutuhan perhitungan yang lebih kompleks dan dilakukan untuk

mengetahui perbedaan secara signifikan antar set data yang diberikan pada faktor

tertentu. Sederhananya, Two-Way ANOVA tidak hanya menguji perbedaan

signifikan pada variabel dalam set data, tetapi juga melakukan pengujian antara set

data untuk mengetahui interaksi antar set data yang diberikan untuk mengetahui

faktor yang berinteraksi satu sama lain pada data. Pada penelitian ini digunakan dua

buah inference framework, yaitu TensorRT dan OpenVINO sebagai faktor pertama

dan pada dua model yang berbeda, yaitu YOLOv8n dan YOLOv11n sebagai faktor

kedua, sehingga perlu dikaji juga secara mendalam pada data untuk tiap kategori

atau indikator perbandingan serta antar model pada tiap inference framework untuk

melihat interaksi pada model untuk tiap inference framework. Berdasarkan kondisi

datadan kebutuhan kajian, maka dalam penelitian ini akan digunakan Two-Way

ANOVA yang mampu menguji faktor tertentu dalam set data dan variabel antar set

data. Sama dengan pengujian statistik menggunakan T-Test perlu dilakukan

pengujian terhadap homogenitas data dengan menggunakan uji levene.

23

BAB III

Analisis dan Perancangan Sistem

3.1 Alur Penelitian

 Proyek Tugas Akhir ini memiliki tujuan untuk mengetahui perbandingan

performa dari inference framework yang disediakan oleh OpenVINO yang

dikembangkan Intel dan inference framework TensorRT yang disediakan oleh

NVIDIA. Alur penelitian dari proyek ini dapat dilihat pada gambar 3.1.

Gambar 3.1 Alur Penelitian

24

3.2 Analisis Kebutuhan

Dalam penelitian untuk menganalisis perbandingan performa antara

inference framework milik OpenVINO dan TensorRT, dibutuhkan analisis agar

penelitian dapat berjalan dengan lancar dan optimal. Analisis kebutuhan yang

dilakukan dalam menganalisis perbandingan performa kedua inference framework

mencakup analisis kebutuhan dari sisi pengguna dan peneliti.

3.2.1 Kebutuhan Pengguna

 Analisis kebutuhan dapat dimulai dengan mengidentifikasi masalah utama

yang dihadapi, yaitu keperluan mencari alternatif yang efisien dari TensorRT milik

NVIDIA. TensorRT merupakan framework dikenal optimal dalam melakukan

inference menggunakan GPU, terutama untuk keperluan seperti object detection,

hingga counting box secara real-time. Namun, penggunaan GPU yang intensif

menjadi tantangan, terutama karena konsumsi sumber daya yang besar, yang

terkadang tidak sebanding dengan kebutuhan atau keterbatasan infrastruktur pada

khususnya dalam dunia industri. Oleh karena itu, penting untuk menemukan solusi

lain yang lebih cost saving dalam penggunaan sumber daya maupun secara

komputasi, dengan tetap mampu mempertahankan performa yang dibutuhkan.

Salah satu alternatif yang dapat dipertimbangkan adalah framework

inference yang tidak hanya bergantung pada GPU, tetapi juga memungkinkan

penggunaan CPU secara optimal. Intel menawarkan solusi komputasi berbasis CPU

dengan nama OpenVINO yang dapat menjadi alternatif menarik untuk

menggantikan TensorRT dalam konteks object detection, hingga counting box

secara real-time. Penggunaan CPU ini diharapkan mampu mengurangi

ketergantungan pada GPU dan memberikan efektivitas yang lebih baik dalam hal

cost saving.

Framework yang berbasis CPU ini juga memiliki potensi untuk diterapkan

di berbagai lingkungan yang mungkin tidak memiliki akses ke GPU dengan

spesifikasi tinggi. Dengan begitu, solusi ini dapat memperluas jangkauan

penggunaan teknologi counting box dalam skenario real-time yang lebih luas. Di

sisi lain, penerapan framework CPU tentu juga memiliki tantangan, terutama dalam

hal memastikan bahwa performa tetap optimal tanpa kehilangan kecepatan atau

akurasi yang diharapkan dan mampu dipenuhi oleh GPU. Oleh karena itu,

25

penelitian ini bertujuan untuk mengevaluasi dan membandingkan kinerja inference

framework alternatif milik OpenVINO dengan TensorRT. Hasil dari penelitian ini

diharapkan dapat memberikan gambaran yang jelas mengenai apakah solusi

berbasis CPU dapat menjadi pilihan yang layak untuk keperluan counting box

secara real-time. Implementasi dari penelitian ini juga akan diguanakan oleh PT.

XYZ sebagai bahan pertimbangan mengenai penggunaan inference framework

utnuk optimisasi kinerja counting box secara real-time untuk membantu

meningkatkan sistem perhitungan yang saat ini diterapkan.

3.2.2 Kebutuhan Eksperimen

 Dalam melakukan penelitian, penulis membutuhkan dukungan perangkat

keras dan perangkat lunak agar penelitian dapat berjalan dengan baik dan optimal.

Pemilihan perangkat keras atau hardware perlu dilakukan dengan benar sesuai

dengan kondisi yang ada dan kebutuhan dari masing-masing inference framework.

Kesalahan pemilihan hardware dapat mengakibatkan kesalahan analisis dan

membuat hasil tidak optimal. Pemilihan perangkat lunak atau software juga tidak

dapat dilakukan tanpa adanya dasar yang baik. Akibat dari kesalahan pemilihan

software dapat menyebabkan kegagalan program. Berikut adalah hardware dan

software yang dibutuhkan berdasarkan pemilihan untuk menunjang penelitian ini.

1. Perangkat Keras (Hardware) :

a. Komputer A:

i. Processor : Intel(R) Gold Intel(R) Xeon(R) Gold

5218 2.30GHz

ii. GPU : 130 gigabyte

iii. Memory : Hard Disk Drive 2.5 terrabyte 64

core

iv. Operating system : Linux UBUNTU

b. Komputer B:

i. Processor : Arm® Cortex®-A78AE v8.2 64-bit

12 core

ii. GPU : 64 gigabyte 256-bit LPDDR5 204.8

gigabyte/second

iii. Memory : Solid State Drive 256 gigabyte

26

iv. Operating system : Linux UBUNTU

2. Perangkat Lunak (software):

a. Python3

b. Visual Studio Code

c. Supervision

d. You Only Look Once (YOLO)

e. Pandas

f. Numpy

g. Torch

3.3 Studi Literatur

Pada tahapan studi literatur, akan dilakukan studi mengenai penelitian-

penelitian terdahulu, buku hingga jurnal artikel mengenai topik terkait yang

sekiranya dapat dijadikan sebagai bahan referensi dalam menyelesaikan

permasalahan. Topik-topik pada penelitian terdahulu yang dapat dijadikan sebagai

bahan referensi adalah mengenai arsitektur dari model YOLO mulai dari arsitektur

dari YOLO hingga perbedaan antara YOLOv8 dengan YOLOv11, teknik-teknik

yang dapat dilakukan untuk melakukan optimisasi model, dan arsitektur dari

OpenVINO dan TensorRT dalam melakukan optimisasi. Studi literatur terhadap

teknik optimasi model dapat dijadikan sebagai acuan dalam mengetahui cara teknik

yang dapat dilakukan dalam mengoptimalkan kinerja model. Kajian topik arsitektur

YOLO hingga arsitektur dari YOLOv8 dan YOLOv11 difokuskan untuk

mengetahui perbedaan arsitektur dari kedua model. Studi literatur yang berkaitan

dengan arsitektur dari OpenVINO dan TensorRT akan berfokus menyelesaikan

permasalahan yang terdapat pada penggunaan CPU dan GPU dalam meningkatkan

kinerja model. Studi literatur terhadap perbandingan juga dibutuhkan agar

penelitian ini dapat terukur dengan baik. Proses studi literatur ini ditujukan untuk

mempelajari langkah serta metode yang sesuai dengan penelitian agar dapat

dilakukan analisis yang selaras sehingga mendapatkan hasil yang baik. Studi

literatur akan mencakup penjelasan mengenai kedua inference framework dalam

mengoptimalkan kinerja model. Ringkasan dari studi literatur yang dilakukan

terdapat pada tabel 3.1.

27

Tabel 3.1 Studi Literatur

No Topik Pengetahuan Temuan

1.

YOLO YOLO merupakan object

detector yang akurat.

YOLO mampu

mempertahankan

kemampuannya pada kasus

real-time. (Redmon, et al,

2016).

2.

YOLOv8 YOLOv8 memiliki

arsitektur yang serupa

dengan pendahulunya.

Arsitektur milik YOLOv8

yang menggabungkan FAN

dan PAN serta peningkatan

post-processing membuat

YOLOv8 lebih unggul dari

pendahulunya (Reis, et al,

2024)

3.

YOLOv11 YOLOv11 merupakan

versi terbaru dari YOLO

yang menawarkan akurasi

tinggi dengan parameter

lebih sedikit.

YOLOv11 dapat memberikan

akurasi yang sedikit lebih baik

daripada YOLOv8 pada

diagnosis kanker (Awad, et al,

2024).

4.

Model

Optimization

Model optimization

dibutuhkan untuk

mengaplikasikan deep

learning pada real-world

application.

Teknik optimasi seperti

quantization, pruning, dan

knowledge distillation mampu

meningkatkan efektivitas

model tanpa mengorbankan

performanya (Kim, et al,

2021).

28

Tabel 3.1 Lanjutan Studi Literatur

No Topik Pengetahuan Temuan

5. OpenVINO Inference framework

untuk membantu

mengoptimalkan model

pada CPU yang

dikembangkan oleh Intel

Model optimization

OpenVINO mampu

meningkatkan akurasi dari

model (Biswas, et al, 2020).

6.

TensorRT Inference framework

milik NVIDIA yang

mengoptimalkan model

pada GPU NVIDIA

TensorRT meningkatkan

kemampuan komputasi dan

kecepatan model sebesar tiga

kali lipat (Chaturvedi, et al,

2022)

7.

Indikator

perbandingan

inference

framework

Indikator dalam

melakukan perbandingan

untuk inference

framework

Beberapa indikator

perbandingan dapat digunakan

untuk menemukan kekuatan

dan kelemahan dari tiap

inference framework (Pochelu,

2022)

3.4 Pembuatan Dataset

 Data didapatkan dari PT. XYZ yang merupakan sebuah perusahaan

manufaktur. Total data yang digunakan adalah sejumlah 1976 gambar kardus yang

terdiri dari 9 jenis box yang berbeda. Kesembilan jenis box yang dijadikan dataset

terbagi menjadi 6 buah dataset foto kardus milik PT. XYZ yang memiliki identitas

material dan tidak memiliki identitas material, serta 3 buah dataset foto kardus

milik anak perusahaan PT. XYZ yang memiliki identitas material dan multi

identitas material.

Proses pengumpulan data dilakukan oleh tim produksi dan tim office.

Pengambilan data dilakukan dengan mengambil gambar kardus dari berbagai sudut

dan tingkat kecerahan yang juga beragam. Anotasi data dilakukan dengan bantuan

aplikasi Computer Vision Annotation Tool (CVAT) yang memiliki service untuk

29

anotasi data dengan cepat dengan menggunakan 2D bounding box, polygon, point

polylinesi yang programnya terdapat pada komputer A.

Tahapan anotasi data menggunakan CVAT mebutuhkan beberapa langkah

terlebih dahulu hingga akhirnya data dapat digunakan sebagai dataset untuk

training model. Pertama adalah membuat dengan proyek baru dan kemudian

menyiapkan kelas-kelas yang akan digunakan dengan tools yang sudah disiapkan

CVAT. Setelah seluruh data dianotasi, barulah dataset dapat digunakan sebagai

dataset training untuk modeling. Dalam penelitian ini, terdapat lima kelas object

yang dibutuhkan. Kelas-kelas tersebut adalah box universal SKU, box satu SKU,

universal SKU, SKU, dan flag. Setelah membuat kelas-kelas yang dibutuhkan

dalam object detection untuk penelitian ini, dilakukan proses labeling atau anotasi

data dengan bantuan CVAT sesuai dengan kelasnya masing-masing pada setiap

dataset. Pada penelitian ini, anotasi data kali ini menggunakan bounding box

dengan bentuk rectangle karena sesuai dengan bentuk dari data gambar, yaitu box.

Tahapan anotasi data yang dilakukan pada keseluruhan gambar dibantu oleh tim

outsource. Terdapat dua jenis box utama dalam penelitian ini, yang pertama adalah

box dengan satu identitas atau satu SKU yang tercetak pada box, dan box universal

dengan beberapa identitas atau universal SKU yang berati terdapat beberapa SKU

yang tercetak pada box, dimana identitas sebenarnya ditandai dengan object flag.

Gambar 3.2 Ilustrasi Dataset Box Satu SKU

30

Gambar 3.3 merupakan ilustrasi dari gambar box dengan satu identitas atau

satu SKU yang dimiliki oleh PT. XYZ, sedangkan gambar 3.4 merupakan ilustrasi

dari gambar box universal yang memiliki beberapa identitas atau universal SKU.

Desain kotak multi SKU dirancang agar lebih efisien saat memproduksi variasi lain

dari suatu produk. Untuk box dengan SKU universal, terdapat tanda atau flag

sebagai penunjuk identitas kotak sebenarnya. Flag ini menandai kotak yang berisi

produk yang sedang diproduksi. Lokasi flag berada di sisi kanan kode batang yang

terletak di bagian tengah kotak dengan SKU sebenarnya terletak di sisi kiri dari

kode batang tersebut. Desain box ini membantu untuk mempermudah identifikasi

produk dalam box yang sedang diproduksi. Box universal ini memungkinkan PT.

XYZ memproduksi berbagai produk tanpa perlu mengubah desain kotak secara

signifikan. Penggunaan flag menjadi kunci dalam membedakan antara satu produk

dengan produk lainnya, atau biasanya satu produk yang memiliki varian yang

beragam. Efisiensi dalam penggunaan kotak multi SKU meningkatkan

produktivitas dan fleksibilitas dalam produksi. Hal ini membuat proses produksi

menjadi lebih optimal dan cost saving.

Gambar 3.3 Ilustrasi Dataset Box Universal SKU

Dataset untuk train dan validation terbagi menjadi 1580 gambar untuk train

dataset dan 396 gambar untuk validation dataset. Train dan validation dari seluruh

dataset menggunakan bantuan YOLOv8 dan YOLOv11 dengan outputnya adalah

31

best.pt yang merupakan model dari proyek ini. Pada penelitian ini, model yang

berupa best.pt akan diberlakukan task export menjadi best.openvino yang

merupakan inference framework dari OpenVINO untuk inference milik Intel dan

menjadi best.engine yang untuk inference menggunakan TensorRT yang

merupakan inference framework milik NVIDIA. Train dan validation dilakukan di

komputer A karena dataset sudah disiapkan pada komputer A. Untuk task export

model dilakukan pada masing-masing komputer sesuai dengan arsitektur inference

framework. Gambar 3.5 dan gambar 3.6 merupakan ilustrasi dari hasil anotasi atau

gambar yang telah diberi label pada dataset.

Gambar 3.4 Ilustrasi Anotasi pada Dataset Box Satu SKU

3.5 Training Model

 Para tahapan pelatihan model atau training model yang akan dilakukan

menggunakan komputer A, perlu dilakukan beberapa hal terlebih dahulu. Setelah

selesai melakukan anotasi data, perlu dilakukan split antara data training dan data

untuk test. Pada penlitian ini digunakan perbandingan 80% untuk data training dan

20% untuk data testing, sehingga total data untuk training adalah 1580 dan total

data untuk testing adalah 396 data. Tahapan pertama setelah anotasi dan split data

32

adalah melakukan anotasi data yang sudah dijelaskan sebelumnya. Berikutnya

adalah melakukan review terhadap dataset yang sudah dianotasi. Review dataset ini

berguna untuk memastikan agar model tidak overfit dan dataset yang digunakan

memiliki kualitas yang baik secara ukuran hingga variasi data. Apabila terdapat

kekurangan pada dataset, maka tahapan pengumpulan data akan dilakukan kembali

untuk melengkapi data-data gambar yang kurang bervariasi. Setelah dataset

disiapkan, perlu dilakukan konversi dari seluruh dataset menjadi satu buah file yang

memiliki format .yaml untuk mempermudah melakukan training model. Konversi

format ini dapat dilakukan dengan menggunakan tools bawaan dari CVAT setelah

proses anotasi data selesai dilakukan.

 Setelah disiapkan dataset dengan format .yaml, barulah dapat diberlakukan

tahapan training model pada menggunakan YOLOv8 dan YOLOv11. Proses

training dilakukan menggunakan komputer A dengan bantuan program python dan

library seperti ultralytics dan YOLO dengan parameter seperti pada tabel 3.2.

Tabel 3.2 Hyperparameter Tuning

Parameter Penjelasan Singkat Nilai

imgsize Mengubah ukuran citra 640

Batch Untuk pengaturan batch size 64

Epochs Total epoch 8000

Pretrained Pretrained model dari COCO True

lr0 Learning Rate awal 0.01

lr1 Learning Rate akhir 0.1

momentum Faktor momentum 0.937

weight_decay L2 untuk menghindari overfit 0.0005

warmup_epochs Learning rate untuk fase

warmup

3

warmup_momentum Momentum untuk warmup 0.8

warmup_bias_lr Learning rate untuk warmup 0.1

box Beban dari box loss 0.05

cls Beban dari classification loss 0.3

iou Intersection over Union

threshold

0.2

hsv_h Penyesuaian hue 0.015

hsv_s Penyesuaian saturation 0.7

33

Tabel 3.2 Lanjutan Hyperparameter Tuning

Parameter Penjelasan Singkat Nilai

hsv_v Penyesuaian value 0.4

degrees Rotasi citra 45.0

translate Transalasi citra 0.2

scale Skala citra 0.5

shear Memotong citra 5.0

perspective Transformasi citra acak 0.0001

flipud Memutar balikkan citra atas

bawah

0.25

fliplr Memutar balikkan citra kiri

kanan

0.1

mosaic Mengombinasikan 4 citra train 0.0

mixup Mencampur citra 0.0

dropout Dropout 0.2

patience Jumlah epoch tanpa

perkembangan

300

Melalui tabel 3.2 dapat dilihat bahwa terdapat proses preprocessing yang

diberlakukan pada dataset. Diantaranya adalah resize, penyesuaian warna HSV,

translate, scale, shear, flipud, fliplr. Tujuan dari proses preprocessing pada tahapan

training model ini adalah untuk memperkaya pengetahuan knowledge base dengan

menambah variasi pada dataset. Parameter pretrained diatur menjadi True dengan

dataset dari COCO yang memiliki kelas yang banyak seperti orang, kendaraan

mobil, sepeda, dan objek lainnya.

3.6 Export Model

 Tahapan export model bertujuan agar model yang sudah diberlakukan

training dengan dataset sebelumnya dapat digunakan untuk melakukan task sesuai

dengan keinginan. Dengan memberlakukan export, model dapat digunakan untuk

detection, segmentation, classify, pose estimation, dan Oriented Bounding Boxes

(OBB) object detection. Selain agar dapat digunakan untuk inference, export model

dapat membuat model menjadi lebih optimal dengan memberlakukan model

optimization pada model best.pt yang didapatkan dari training model. Terdapat

beberapa teknik optimisasi model yang ada, tetapi sudah terdapat beberapa tools

untuk mempermudah melakukan model optimization yang telah disediakan.

34

Beberapa inference framework yang dapat digunakan sebagai tools untuk

mempermudah model optimization adalah OpenVINO, TensorRT, ONNX, hingga

TF Lite. Masing-masing inference framework tersebut sudah memiliki metode-

metodenya sendiri untuk melakukan model optimization dengan cara yang khas dan

memiliki tujuan yang berbeda sesuai dengan arsitektur tiap inference framework.

 Library YOLO yang digunakan dalam penelitian ini telah menawarkan cara

mudah untuk melakukan export model. YOLO menyediakan mode untuk

melakukan export model menjadi inference framework sesuai dengan keinginan

dan kebutuhan yang berbeda. Sebagai contohnya untuk inference framework pada

mobile device dapat mengguankan format TF Lite. Tiap versi dari YOLO

menyediakan inference framework yang berbeda, tetapi terdapat beberapa inference

framework yang selalu ada, yaitu OpenVINO dan TensorRT. Inference framework

milik OpenVINO menawarkan arsitektur yang membuat model dapat

menggunakan CPU dengan tiga kali lebih cepat, sedangkan TensorRT menawarkan

arsitektur yang mampu mendorong kemampuan GPU hingga lima kali lipat. Pada

penelitian yang berfokus melihat potensi CPU sebagai alternatif dari GPU, tentunya

akan menggunakan inference framework dari OpenVINO untuk CPU dan

TensorRT untuk mengetahui performa inference framework menggunakan GPU.

3.7 Perbandingan Kinerja

 Pada tahapan perbandingan kinerja akan dilakukan eksperimen dan

membandingkan serta menganalisis hasil dari dua inference framework yang

berbeda, yaitu OpenVINO dan TensorRT. Kedua inference framework akan

diimplementasikan menggunakan model yang telah diberlakukan training dengan

dataset yang sama pada YOLOv8 dan YOLOv11. Masing-masing inference

framework memiliki kemampuan untuk mengubah format model agar dapat

diberlakukan task lain seperti prediction, classification, hingga detection dan dapat

mengoptimalkan kinerja dari model tersebut. Perbedaan antara OpenVINO dan

TensorRT sangat mendasar, terletak pada arsitekturnya. OpenVINO yang

dikembangkan oleh Intel mengoptimalkan kinerja model dan dirancang untuk

dijalankan pada perangkat milik CPU milik Intel dan FPGA. Inference framework

TensorRT yang dikembangkan oleh NVIDIA dirancang dan disesuaikan sehingga

mampu mengoptimalkan kinerja model pada hardware GPU milik NVIDIA.

35

 Perbandingan kinerja pada penelitian kali ini mencakup beberapa hal agar

penelitian tetap sesuai dengan keinginan, yaitu untuk mengetahui performa

inference framework pada kebutuhan object detection secara real-time khususnya

untuk objek box yang berjalan pada belt conveyor. Indikator perbandingan untuk

melihat kinerja dari masing-masing inference framework adalah inference speed,

memory consumption, model size, loading time, dan accuracy yang melihat dari

nilai mAP atau mean Average Precision. Dengan melakukan perbandingan antara

inference framework dari OpenVINO dan TensorRT menggunakan kelima

indikator tersebut, diharapkan dapat memberikan wawasan yang sesuai pada trade-

off antara performa keduanya berdasarkan resource dan arstiketur masing-masing

ketika kedua inference framework diterapkan pada model YOLOv8 dan YOLOv11

yang telah melalui proses training dengan dataset yang sama.

Tabel 3.3 Indikator Perbandingan

Indikator
TensorRT OpenVINO

YOLOv8 YOLOv11 YOLOv8 YOLOv11

Inference

speed (s)

Memory

consumption

(MB)

Model size

(MB)

Loading time

(s)

Accuracy (%)

 Indikator inference speed akan didapatkan dari melakukan model validation

menggunakan fungsi val() dari ultralytics yang dapat memberikan informasi

lengkap mulai dari preprocess, inference speed, loss, dan postprocess tiap citra

pada dataset test. Indikator memory consumption didapatkan dari pengukuran

36

jumlah memory yang digunakan saat program dijalankan dengan bantuan library

psutils yang memiliki fungsi Process() dan memiliki getter berupa memory_info()

dan Resident Set Size (RSS) yang memberikan informasi penggunaan memory

dalam satuan kilobyte (KB). Indikator model size didapatkan dari melihat ukuran

model setelah dioptimisasi dengan cara klik kanan dan memilih properties pada

model. Indikator loading time didapatkan dari memberikan timestamp pada start

dan end untuk proses load model dengan bantuan library time yang memberikan

informasi waktu dalam satuan detik. Indikator accuracy dengan mAP50 didapatkan

dari fungsi metrics dan box secara spesifik mAP50 untuk mendapatkan akurasi

berdasarkan mAP50.

Gambar 3.5 Snapshot Kode Python Pengukuran Indikator

Gambar 3.5 merupakan potongan kode program python yang digunakan

dalam penelitian ini untuk mendapatkan indikator inference speed, memory

consumption, load time, dan accuracy. Gambar 3.6 merupakan contoh keluaran dari

program python yang merupakan hasil dari pengukuran indikator pada penelitian

ini.

Gambar 3.6 Contoh Hasil Pengukuran Indikator

37

BAB IV

Hasil dan Pembahasan

4.1 Persiapan Perangkat

 Perangkat keras yang digunakan merupakan aset milik PT. XYZ yang

digunakan sesuai dengan izin yang diperoleh. Komputer A dan komputer B pada

saat yang bersamaan digunakan untuk kebutuhan Perusahaan PT. XYZ, sehingga

untuk penelitian ini, dibutuhkan koordinasi jadwal. Setelah mendapatkan izin dan

jadwal penggunaan komputer A, peneliti baru dapat melanjutkan penelitiannya,

mulai dari anotasi dataset hingga proses optimisasi model dan eksperimen.

Perangkat lunak yang digunakan didapatkan dengan mudah, karena perangkat

lunaknya bersifat open source yang dapat diakses dengan mudah. Persiapan

perangkat lunak dilakukan dengan melakukan instalasi library pada kedua

perangkat keras.

4.2 Dataset

 Pembuatan dataset dibantu oleh tim produksi di lapangan untuk

mengumpulkan data berdasarkan arahan peneliti. Ketentuan dataset yang

dibutuhkan untuk penelitian ini adalah gambar box dengan berbagai sudut dengan

pencahayaan ruangan yang cukup variatif dalam keadaan cenderung gelap maupun

terang dengan berbagai desain box yang tersedia. Variasi pencahayaan dalam

melakukan pengumpulan dataset ada pada pencahayaan gelap sebesar 76 lux pada

pencahayaan normal ruangan di gudang dan area produksi hingga pencahayaan

terang sebesar 2208 lux pada pencahayaan normal ruangan kerja menggunakan

aplikasi android Illuminance – Lux Light Meter.

38

(a) (b)

Gambar 4.1 Pengukuran Pencahayaan; (a) Pengumpulan dataset pada kondisi

gelap, (b) Pengumpulan dataset pada kondisi terang

Setelah dataset dikumpulkan dalam google drive, peneliti melakukan proses

review untuk memperhatikan kualitas dataset sesuai permintaan. Apabila terdapat

data yang tidak variatif pada sudut pengambilan gambar dan desain, maka data akan

dihapus dan meminta bantuan tim produksi untuk menambah beberapa data sesuai

kebutuhan.

 Setelah melalui proses review dan dataset sudah cukup variatif, maka proses

selanjutnya adalah mengunduh data dan mengunggahnya untuk disiapkan di

komputer A yang kemudian dilakukan anotasi data. Anotasi data dilakukan

menggunakan bantuan software aplikasi Computer Vision Annotation Tools

(CVAT) yang terdapat pada komputer A. Proses anotasi dataset dibantu oleh tim

outsource untuk mempercepat proses anotasi. Tim outsource merupakan pihak

eksternal yang dipekerjakan secara profesional secara khusus untuk tugas tertentu

maupun project tertentu dengan tujuan mengoptimalkan efisiensi profesional dan

mengurangi biaya. Setelah anotasi data selesai dilakukan, akan kembali dilakukan

39

review untuk perbaikan agar tidak terdapat noise pada anotasi data. Anotasi yang

dianggap memiliki noise adalah anotasi yang melewati sisi samping dari box

maupun SKU dan flag seperti yang tertera pada gambar 4.1.

 (a) (b)

Gambar 4.2 Ilustrasi Anotasi dataset; (a) Noise pada anotasi box, (b) Anotasi

tidak noise

4.3 Training Model

 Pada proses training model, diperlukan dataset train dan dataset test yang

sudah dipisahkan. Untuk melakukan train test split, digunakan function

train_test_split milik library SKLearn dengan proporsi 80:20 yang berarti terdapat

1580 data untuk training dan 396 data untuk test atau validation. Training model

dilakukan menggunakan komputer A dikarenakan komputer A memiliki storage

yang lebih besar dengan RAM dan GPU yang lebih besar dibandingkan komputer

B, sehingga sesuai untuk kebutuhan proses training. Proses training dilakukan

sebanyak masing-masing lima kali, untuk model YOLOv8n dan YOLOv11n untuk

mendapatkan variasi hasil guna memperkaya data pada penelitian ini. Proses

training model menggunakan hyperparameter yang sama antara YOLOv8n dan

YOLOv11n seperti pada tabel 3.2.

Hyperparameter yang digunakan pada penelitian kali ini telah disesuaikan

untuk mendapatkan hasil yang maksimal. Parameter imgsz dijadikan sebesar 640

guna mengurangi jumlah pixel dari gambar asli, tetapi tidak menjadikannya terlalu

rendah. Pada batch digunakan batch size sebesar 64 untuk membagi dataset

menjadi 64 data tiap epoch agar proses training terbagi dan menjadi lebih ringan

40

untuk mendapatkan gradien hasil yang stabil. Parameter pretrain diatur menjadi

True untuk menjadikannya transfer learning model original dengan dataset dari

COCO milik ultralytics. Parameter learning rate diatur 0.01 dan 0.1 agar weight

dari model terus diperbaiki. Parameter weight dan dropout diatur menjadi 0.0005

dan 0.2 untuk mencegah terjadinya overfit pada model. Preprocessing tentunya

juga dibutuhkan untuk menambah variasi pada data, sehingga diterapkan beberapa

parameter seperti flip, scale, translate, hsv. Parameter patience diatur menjadi 300

epochs, sehingga setelah 300 epochs tidak terdapat perubahan pada mAP, maka

proses training akan dihentikan untuk mempercepat proses training model.

4.3.1 Hasil Training Model

 Training model untuk YOLOv8n dan YOLOv11n dilakukan sebanyak lima

kali untuk memperkaya data dalam penelitian ini. Kedua model diberlakukan

training dengan pengatruan hyperparameter yang sama dan dataset yang sama.

4.3.1.1 Hasil Training YOLOv8n

Tabel 4.1 Hasil Training YOLOv8n

No mAP(50%) Precision Recall Total epochs

1. 95.67 94.58 92.65 1033

2. 95.65 94.52 92.65 1033

3. 95.65 94.59 92.65 1033

4. 95.65 94.58 92.65 1033

5. 95.67 94.58 92.65 1033

Pada tabel 4.1 menunjukkan hasil training model YOLOv8n sebanyak lima

kali yang memuat nilai dari mAP(50%), precision, recall, dan total epochs. Hasil

training yang menggunakan 1580 total data ini memberikan performa yang cukup

konsisten pada setiap kali melakukan training. Nilai mAP(50%) mendapatkan

rentang nilai antara 95.65% dan 95.67%, dengan precision berada pada rentang

94.52% hingga 94.59% dan nilai recall yang konsisten pada 92.65%. Melalui data

akurasi pada tabel 4.1 dapat disimpulkan bahwa model YOLOv8n dapat melakukan

task object detection dengan baik untuk setiap dataset train yang diberikan.

41

Seluruh repetisi training untuk YOLOv8n berakhir pada epoch 1033 yang

menandakan bahwa tidak terdapat perubahan hasil setelah 300 epoch hingga

diakhiri pada epoch yang ke 1033. Perbedaan hasil pada tiap repetisi training

yang tidak signifikan ini dapat diartikan bahwa YOLOv8n memiliki kemampuan

yang baik sehingga tetap konsisten pada tiap repetisinya.

4.3.1.2 Hasil Training YOLOv11n

Tabel 4.2 Hasil Training YOLOv11n

No mAP(50%) Precision Recall Total epochs

1. 96.83 95.35 93.91 1074

2. 96.83 95.35 93.91 1074

3. 96.83 95.35 93.91 1074

4. 96.83 95.35 93.91 1074

5. 96.83 95.35 93.91 1074

Pada tabel 4.2 menunjukkan hasil training model YOLOv11n sebanyak

lima kali yang memuat nilai dari mAP(50%), precision, recall, dan total epochs.

Hasil training dengan 1580 total data ini memberikan performa yang sangat

konsisten pada setiap kali melakukan training. Nilai mAP(50%) mendapatkan nilai

96.83%, dengan precision berada pada 95.35, dan nilai recall yang konsisten pada

93.91%. Melalui data akurasi pada tabel 4.2 dapat disimpulkan bahwa model

YOLOv11n dapat melakukan task object detection dengan baik untuk setiap dataset

train yang diberikan.

Seluruh repetisi training untuk YOLOv11n berakhir pada epoch 1074 yang

menandakan bahwa tidak terdapat perubahan hasil setelah 300 epoch hingga

diakhiri pada epoch yang ke 1074. Setelah lima kali repetisi training pada model

YOLOv11n dengan dataset yang sama, didapatkan hasil yang sama untuk setiap

repetisinya, sehingga dapat diartikan bahwa YOLOv11n sangat stabil dan konsisten

untuk tiap repetisinya.

Dalam perbandingan melalui accuracy yang dihasilkan dari YOLOv8n dan

YOLOv11n dapat dilihat bahwa YOLOv11n memiliki selisih 1.21%. Diketahui

pada penelitian terdahulu bahwa YOLOv8n telah mengalami kenaikan accuracy

42

dibandingkan dengan pendahulunya seperti YOLOv6n yang sebesar 89.8%

menjadi 90.6% atau kenaikan sebesar 0.89% (Liu, dan Li, 2024). Dari sini dapat

dilihat bahwa YOLO selalu konsisten memperbarui model miliknya dari segi

arsitekturnya, sehingga membawa perubahan dan peningkatan pada setiap versinya,

sesuai dengan temuan pada hasil training YOLOv11n pada penelitian ini.

4.4 Export Model

 Pada proses export model, atau mengoptimalkan model menjadi TensorRT

dan OpenVINO pada penelitian ini diberlakukan pada setiap model yang sudah

selesai proses training. Seluruh model yang ada akan dioptimalkan dengan cara

export model menjadi format engine untuk TensorRT dan openvino yang memiliki

XML untuk network topology, BIN yang menjelaskan weights dan biases, Mapping

untuk OpenVINO. Proses export model YOLO menjadi format engine untuk pada

TensorRT dilakukan menggunakan komputer B yang memiliki GPU dari NVIDIA,

sehingga sesuai dengan teknik optimisasi TensorRT yang secara spesifik

menggunakan GPU milik NVIDIA. Sedangkan untuk export model menjadi format

openvino, dilakukan menggunakan komputer A yang memiliki processor Intel

XEON, sehingga sesuai dengan teknik optimasi dari OpenVINO yang

menggunakan perangkat CPU milik Intel.

Dalam melakukan optimisasi model melalui export ini, terdapat parameter

yang dapat disesuaikan untuk masing-masing metode, baik dari TensorRT maupun

dari OpenVINO. Tujuan dari menyesuaikan parameter ini adalah mengaktifkan dan

menyesuaikan teknik-teknik optimisasi model yang dimiliki oleh masing-masing

inference framework. Seperti contohnya pada TensorRT, terdapat format untuk

menentukan format inference framework, INT8 untuk mengaktifkan quantization

menjadi INT8, half untuk mengaktifkan half-precision floating-point menjadi

FP16, simplify untuk menghilangkan nodes yang tidak digunakan, workspace untuk

mengalokasikan jumlah maksimal dari memory yang akan digunakan untuk

optimization dan inference, batch untuk memberikan batch secara spesifik. Pada

OpenVINO, terdapat parameter yang lebih sederhana untuk mengaktifkan teknik

optimisasinya, yaitu format untuk menentukan inference framework, imgsz untuk

mengaktifkan resize pada input, half untuk mengaktifkan quantization menjadi

FP16, INT8 untuk mengaktifkan quantization menjadi INT8, batch untuk

43

memberikan batch secara spesifik, dynamic untuk mengaktifkan kemampuan

inference untuk berbagai ukuran input. Pada penelitian ini, untuk export menjadi

TensorRT, diaktifkan format menjadi engine, half menjadi True, simplify menjadi

True, dan workspace menjadi 50 serta menggunakan device 0. Pada export model

menjadi OpenVINO, diberikan parameter imgsz menjadi 640, half menjadi True,

dan dynamic menjadi True. Tabel 4.3 hingga tabel 4.7 merupakan tabel rekapitulasi

indikator perbandingan dari lima kali export model terhadap lima model yang telah

diberlakukan training sebelumnya.

Tabel 4.3 Hasil Export Model Replikasi 1

Indikator
TensorRT OpenVINO

YOLOv8 YOLOv11 YOLOv8 YOLOv11

Inference

speed (s)
0.0059 0.0066 0.0173 0.0168

Memory

consumption

(MB)

4175.36 4176.77 2428.08 3178.16

Model size

(MB)
8.3 7.8 MB 6.4 5.6

Loading time

(s)
0.0006589 0.0009272 0.002273 0.0032367

Accuracy (%) 95.27 96.32 95.23 96.22

Hasil export model pada replikasi pertama untuk melakukan perbandingan

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada

beberapa indikator pengujian disajikan pada tabel 4.3. Seperti contohnya pada

inference speed, TensorRT memiliki kecepatan yang lebih baik dibandingkan

dengan OpenVINO pada YOLOv8n dan YOLOv11n, pada indikator memory

consumption OpenVINO memiliki kemampuan lebih baik karena membutuhkan

RAM yang lebih sedikit ketika melakukan inference, pada model size untuk

replikasi pertama ini OpenVINO lebih unggul karena ukuran model yang lebih kecil

dan ringan serta adanya penurunan model size pada model YOLOv11n. Pada

44

indikator loading time terlihat bahwa TensorRT memiliki kecepatan load model

lebih cepat, sedangkan pada accuracy tidak terlihat perbedaan signifikan pada

kedua inference framework, tetapi terlihat adanya sedikit kenaikan accuracy jika

menggunakan model YOLOv11n.

Tabel 4.4 Hasil Export Model Replikasi 2

Indikator
TensorRT OpenVINO

YOLOv8 YOLOv11 YOLOv8 YOLOv11

Inference

speed (s)
0.0057 0.0068 0.0171 0.0166

Memory

consumption

(MB)

4081.616 4077.600 2674.860 3172.896

Model size

(MB)
8.3 7.9 6.4 5.6

Loading time

(s)
0.00069713 0.0007345 0.0035126 0.0036258

Accuracy (%) 95.26 96.3 95.23 96.22

Hasil export model pada replikasi kedua untuk melakukan perbandingan

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada

beberapa indikator pengujian disajikan pada tabel 4.4. Pada indikator inference

speed terlihat TensorRT memiliki kecepatan yang lebih baik dibandingkan dengan

OpenVINO pada YOLOv8n dan YOLOv11n, pada indikator memory consumption

OpenVINO memiliki kemampuan lebih baik karena membutuhkan RAM yang

lebih sedikit ketika melakukan inference, pada model size untuk replikasi kedua

OpenVINO masih lebih unggul karena ukuran model yang lebih kecil dan ringan

serta adanya penurunan model size pada model YOLOv11n sama seperti replikasi

sebelumnya. Pada indikator loading time terlihat bahwa TensorRT memiliki

kecepatan load model lebih cepat, sedangkan pada accuracy tidak terlihat

45

perbedaan signifikan pada kedua inference framework, tetapi tetap terlihat adanya

kenaikan accuracy jika menggunakan model YOLOv11n.

Tabel 4.5 Hasil Export Model Replikasi 3

Indikator
TensorRT OpenVINO

YOLOv8 YOLOv11 YOLOv8 YOLOv11

Inference

speed (s)
0.005 0.0067 0.0171 0.0167

Memory

consumption

(MB)

2096.992 4079.976 2809.352 3248.260

Model size

(MB)
8.2 7.7 6.4 5.6

Loading time

(s)
0.0006437 0.0006775 0.0027019 0.0030105

Accuracy (%) 95.21 96.17 95.23 96.22

Hasil export model pada replikasi ketiga untuk melakukan perbandingan

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada

beberapa indikator pengujian disajikan pada tabel 4.5. Pada indikator inference

speed masih sama seperti dua replikasi sebelumnya, yaitu terlihat TensorRT lebih

cepat melakukan inference jika dibandingkan dengan OpenVINO pada YOLOv8n

dan YOLOv11n. Pada indikator memory consumption terlihat perubahan

kemampuan pada inference framework TensorRT khususnya pada model

YOLOv8n yang mengalami penurunan signifikan pada, tetapi tidak terlihat pada

model YOLOv11n, sedangkan pada OpenVINO juga tidak terlihat perubahan

signifikan jika dibandingkan dengan dua replikasi sebelumnya. Pada model size

untuk replikasi ketiga OpenVINO masih lebih unggul karena ukuran model yang

lebih kecil dan ringan serta adanya penurunan model size pada model YOLOv11n

46

sama seperti replikasi sebelumnya. Pada indikator loading time terlihat bahwa

TensorRT memiliki kecepatan load model lebih cepat, sedangkan pada accuracy

tidak terlihat perbedaan signifikan pada kedua inference framework, tetapi tetap

terlihat adanya kenaikan accuracy jika menggunakan model YOLOv11n.

Tabel 4.6 Hasil Export Model Replikasi 4

Indikator
TensorRT OpenVINO

YOLOv8 YOLOv11 YOLOv8 YOLOv11

Inference

speed (s)
0.0055 0.0068 0.0173 0.0165

Memory

consumption

(MB)

2102.776 4075.564 2947.048 3293.976

Model size

(MB)
8.4 7.7 6.4 5.6

Loading time

(s)
0.0007231 0.0006728 0.0028142 0.0026895

Accuracy (%) 95.27 96.30 95.23 96.22

Hasil export model pada replikasi keempat untuk melakukan perbandingan

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada

beberapa indikator pengujian disajikan pada tabel 4.3. Pada indikator inference

speed masih sama seperti tiga replikasi sebelumnya, yaitu terlihat TensorRT lebih

cepat melakukan inference jika dibandingkan dengan OpenVINO pada model

YOLOv8n dan YOLOv11n. Penurunan memory consumption pada YOLOv8n

dengan inference framework TensorRT kembali terlihat di replikasi keempat ini,

sedangkan pada model YOLOv11n dan kedua model dengan OpenVINO tidak

terlihat adanya perubahan signifikan. Pada model size untuk replikasi keempat

OpenVINO kembali unggul dengan ukuran model yang lebih kecil dan ringan serta

adanya penurunan model size pada model YOLOv11n sama seperti replikasi

sebelumnya. Pada indikator loading time terlihat bahwa TensorRT lebih cepat

47

dalam kemampuan load model, sedangkan pada accuracy masih tidak terlihat

perbedaan signifikan pada kedua inference framework, tetapi tetap terlihat adanya

kenaikan accuracy jika menggunakan model YOLOv11n.

Tabel 4.7 Hasil Export Model Replikasi 5

Indikator
TensorRT OpenVINO

YOLOv8 YOLOv11 YOLOv8 YOLOv11

Inference

speed (s)
0.0051 0.0063 0.0169 0.0166

Memory

consumption

(MB)

2098.904 4073.968 3026.500 3352.200

Model size

(MB)
8.0 7.7 6.4 5.6

Loading time

(s)
0.0006904 0.0006697 0.0030753 0.0032799

Accuracy (%) 95.24 96.31 95.23 96.22

Hasil export model pada replikasi kelima untuk melakukan perbandingan

kinerja antara TensorRT dan OpenVINO pada YOLOv8n dan YOLOv11n pada

beberapa indikator pengujian disajikan pada tabel 4.3. Pada indikator inference

speed masih sama seperti empat replikasi sebelumnya, yaitu terlihat TensorRT lebih

cepat jika dibandingkan dengan OpenVINO pada model YOLOv8n dan

YOLOv11n. Penurunan memory consumption pada YOLOv8n dengan inference

framework TensorRT kembali terjadi di replikasi keempat ini yang menandakan

bahwa replikasi export model membawa dampak, sedangkan pada model

YOLOv11n dan kedua model dengan OpenVINO masih tidak terlihat adanya

perubahan signifikan. Pada model size untuk replikasi kelima OpenVINO kembali

unggul dengan ukuran model yang lebih kecil dan ringan sekitar 1 MB dari

TensorRT, serta adanya penurunan model size pada model YOLOv11n sama seperti

48

replikasi sebelumnya. Pada indikator loading time terlihat bahwa TensorRT masih

unggul dalam kemampuan load model, sedangkan pada accuracy masih tidak

terlihat perbedaan signifikan setelah lima kali replikasi pada kedua inference

framework, tetapi tetap terlihat adanya kenaikan accuracy jika menggunakan model

YOLOv11n dengan selisih sekitar 1%.

Melalui rekapitulasi hasil export model dengan replikasi lima kali, belum

dapat dilihat hasil signifikan pada kedua inference framework dengan variasi model

YOLOv8n dan YOLOv11n. Maka dari itu diperlukan kajian lebih mendalam pada

hasil export model dengan replikasi lima kali ini.

4.5 Pembahasan Perbandingan Kinerja

Pada sub bab ini akan membahas lebih mendalam mengenai hasil dari

export model YOLOv8n dan YOLOv11n menjadi inference framework TensorRT

dan OpenVINO. Pada perbandingan kinerja ini akan dilakukan tiga metode

pengujian agar didapatkan hasil dengan pembahasan yang lebih mendalam. Ketiga

metode pengujian adalah melalui rata-rata, kemudian melalui uji T independent

untuk melihat perbedaan rata-rata kedua kelompok signifikan atau tidak, dan uji

two-way ANOVA untuk mencari tahu relasi atau interaksi pada kombinasi tertentu

antara model dengan inference framework.

4.5.1 Perbandingan Rata-rata

 Perbandingan rata-rata atau mean dapat dilakukan dengan cukup sederhana

melalui perhitungan rata-rata dari indikator perbandingan terhadap model dan

inference framework yang telah dilakukan dengan replikasi sebanyak lima kali.

4.5.1.1 Inference Speed

Tabel 4.8 Perbandingan Rata-rata Inference Speed

Model TensorRT OpenVINO

YOLOv8n 0.00544 s 0.01714 s

YOLOv11n 0.00664 s 0.01664 s

Tabel 4.8 menyajikan data rata-rata inference speed untuk TensorRT dan

OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n. Dalam

penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata inference

49

speed untuk model YOLOv8n adalah 0.00544 detik dan untuk YOLOv11n adalah

0.00664 detik dengan selisih antara kedua inference speed pada kedua model adalah

sebesar 0.0012 detik. Pada inference framework OpenVINO, terlihat bahwa

menggunakan model YOLOv8n adalah 0.0171 detik, sedangkan saat menggunakan

YOLOv11n inference speed mengalami peningkatan menjadi 0.0166 detik dengan

selisih sebesar 0.0005 detik.

4.5.1.2 Memory Consumption

Tabel 4.9 Perbandingan Rata-rata Memory Consumption

Model TensorRT OpenVINO

YOLOv8n 2891.557 MB 2765.787 MB

YOLOv11n 4077.197 MB 3234.202 MB

Tabel 4.9 menyajikan perbandingan rata-rata dari memory consumption

untuk TensorRT dan OpenVINO pada saat melakukan inference menggunakan

model YOLOv8n dan YOLOv11n. Dalam penggunaan inference framework

TensorRT, dapat dilihat bahwa rata-rata memory consumption untuk model

YOLOv8n adalah 2891.557 MB dan untuk YOLOv11n adalah 4077.197 MB yang

menunjukkan bahwa penggunaan TensorRT pada model YOLOv8n. Pada

OpenVINO didapatkan memory consumption sebesar 2765.787 MB untuk

YOLOv8n dan 3234.202 MB untuk YOLOv11n.

4.5.1.3 Model Size

Tabel 4.10 Perbandingan Rata-rata Model Size

Model TensorRT OpenVINO

YOLOv8n 8.24 MB 6.4 MB

YOLOv11n 7.76 MB 5.6 MB

Tabel 4.10 menyajikan perbandingan rata-rata dari model size untuk

TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n.

Dalam penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata

model size untuk model YOLOv8n adalah 8.24 MB dan untuk YOLOv11n adalah

7.76 MB yang memiliki selisih sebesar 0.48 MB. Pada inference framework

50

OpenVINO, terlihat bahwa rata-rata model size untuk YOLOv8n adalah 6.4 MB

dan pada YOLOv11n adalah 5.6 MB yang memiliki selisih 0.8 MB.

4.5.1.4 Load Time

Tabel 4.11 Perbandingan Rata-rata Load Time

Model TensorRT OpenVINO

YOLOv8n 0.000682646 s 0.0028754 s

YOLOv11n 0.00073634 s 0.00316848 s

Tabel 4.11 menyajikan perbandingan rata-rata dari load time untuk

TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan YOLOv11n.

Dalam penggunaan inference framework TensorRT, dapat dilihat bahwa rata-rata

load time untuk model YOLOv8n adalah 0.00068 detik dan untuk YOLOv11n

adalah 0.00073 detik. Pada inference framework OpenVINO, terlihat bahwa

YOLOv8n membutuhkan waktu 0.00287 detik, sedangkan untuk YOLOv11n

membutuhkan waktu 0.00316 detik untuk melakukan load model.

4.5.1.5 Accuracy

Tabel 4.12 Perbandingan Rata-rata Accuracy

Model TensorRT OpenVINO

YOLOv8n 95.25 % 95.23 %

YOLOv11n 96.28 % 96.22 %

Tabel 4.12 menyajikan perbandingan rata-rata dari accuracy dengan

mAP50 untuk TensorRT dan OpenVINO saat menggunakan model YOLOv8n dan

YOLOv11n. Dapat dilihat bahwa rata-rata accuracy saat menggunakan TensorRT

untuk model YOLOv8n adalah 95.25% dan untuk YOLOv11n adalah 96.28%

dengan selisih sebesar 1.03%. Pada inference framework OpenVINO terlihat

bahwa YOLOv8n memberikan accuracy sebesar 95.23% dan YOLOv11n

menghasilkan accuracy sebesar 96.22% dengan selisih accuracy sebesar 0.99%.

4.5.2 Uji T

 Data yang dimiliki pada penelitian ini merupakan dua set data, maka one-

sample T-Test tidak sesuai dengan kondisi data. Setelah itu, pilihan uji T hanya pada

51

independent T-Test atau paired T-Test dilihat dari kondisi relasi pada data. Data

pertama dengan data kedua tidak memiliki relasi yang saling berkaitan, karena

variabel pengamatan yang berbeda, yaitu inference framework TensorRT dan

OpenVINO yang memiliki arsitektur masing-masing yang khas dan tidak berkaitan.

Maka jenis uji T yang sesuai untuk pengujian perbedaan signifikan antara kedua

data dari inference framework adalah independent T-Test.

 Uji levene yang digunakan pada penelitian ini adalah menggunakan

pemrograman python dengan library scipy, yaitu levene. Parameter yang digunakan

pada uji levene pada penelitian ini adalah kedua data dan function pengujiannya

yaitu mean atau rata-rata dari data. Dengan kembalian nilai dari fungsi levene ini

adalah hasil uji statistiknya dan p-value untuk menentukan tolak H0 yang berarti

tidak ada homogenitas pada data atau gagal tolak H0 yang berarti terdapat

homogenitas pada data. Penentuan tolak H0 atau gagal tolak H0 dapat dilihat dari

membandingkan nilai alpha dengan nilai p-value, jika p-value < alpha maka akan

tolak H0 yang berarti tidak ada homogenitas pada data dan jika sebaliknya maka

gagak tolak H0 yang berarti terdapat homogenitas pada data.

4.5.2.1 Hasil Uji Levene T-Test

 Uji levene pada penelitian ini dilakukan dengan tujuan untuk menentukan

metode yang tepat dalam melakukan T-Test yang akan dilakukan berikutnya. Pada

penelitian ini, uji levene dilakukan dengan menggunakan bahasa pemrograman

python dengan bantuan library scipy dengan fungsi levene(). Fungsi levene()

menerima dua buah parameter yang terdiri atas set data yang akan diuji dan metode

pengujiannya atau center. Parameter metode pengujian atau center pada uji levene

dengan scipy bertujuan untuk menghitung pusat distribusi data, umumnya akan

digunakan mean atau rata-rata dari data untuk mendapatkan pusat distribusi data.

Pada penelitian ini, dua set data yang digunakan adalah model YOLOv8n dan

YOLOv11n ketika menggunakan inference framework TensorRT dan OpenVINO,

dengan masing-masing indikator perbandingan dan center menggunakan mean.

Pengujian masing-masing dilakukan dengan melihat homogenitas antara data

indikator perbandingan dengan model tertentu ketika menggunakan TensorRT dan

OpenVINO, sehingga total dilakukan sepuluh kali pengujian dengan rincian lima

kali untuk YOLOv8n dengan lima indikator perbandingan dan YOLOv11n dengan

52

lima indikator perbandingan. Dalam uji levene untuk penelitian ini, ditetapkan nilai

threshold alpha adalah 0.05 dengan hipotesis nol adalah tidak ada perbedaan

signifikan antara dua set data atau homogen.

Tabel 4.13 Hasil Uji Levene T-Test

Model Category p-value Status Levene

YOLOv8 Inference speed 0.0557 Gagal Tolak H0 True

YOLOv8 Memory consumption 0.0002 Tolak H0 False

YOLOv8 Model size 0.0191 Tolak H0 False

YOLOv8 Load time 0.0314 Tolak H0 False

YOLOv8 mAP50 0.0065 Tolak H0 False

YOLOv11 Inference speed 0.3101 Gagal Tolak H0 True

YOLOv11 Memory consumption 0.0079 Tolak H0 False

YOLOv11 Model size 0.0033 Tolak H0 False

YOLOv11 Load time 0.0931 Gagal Tolak H0 True

YOLOv11 mAP50 0.0315 Tolak H0 False

Pada kedua model, untuk indikator inference speed didapatkan bahwa p-

value bernilai lebih dari threshold alpha, maka tidak ditemukan adanya perbedaan

variance secara signifikan atau dapat disebut data homogen dan levene menjadi

bernilai True untuk parameter T-Test. Berikutnya, pada indikator memory

consumption ditemukan bahwa p-value dari pengujian ini kurang dari threshold

alpha yang berarti ditemukan perbedaan data signifikan atau dapat disebut data

tidak homogen dan levene menjadi bernilai False. Untuk indikator model size

kembali ditemukan bahwa p-value kurang dari threshold alpha yang berarti

perbedaan pada data TensorRT dan OpenVINO signifikan atau dapat diartikan

bahwa data bukan data homogen untuk model YOLOv8n dan YOLOv11n. Pada

indikator perbandingan load time, ditemukan perbedaan hasil uji levene di model

YOLOv8n dan YOLOv11n. Untuk model YOLOv8n, p-value dari uji levene

kurang dari threshold alpha yang berarti tidak ditemukan perbedaan signifikan pada

load time menggunakan TensorRT ataupun OpenVINO sehingga dapat disebut data

53

homogen, sedangkan pada YOLOv11n, ditemukan bahwa p-value lebih dari

threshold alpha yang berarti terdapat perbedaan signifikan pada load time untuk

inference framework TensorRT dan OpenVINO sehingga data disebut tidak

homogen. Indikator accuracy pada kedua model dengan data inference framework

TensorRT dan OpenVINO ditemukan bahwa p-value hasil uji levene kurang dari

threshold alpha, sehingga ditemukan perbedaan signifikan pada kedua data atau

data tidak bersifat homogen.

Hasil uji levene yang menunjukkan adanya sifat homogenitas pada data,

memberikan arti bahwa keseluruhan data cenderung memiliki nilai yang sama

bahkan mirip, sehingga dapat dikatakan bahwa data lebih stabil. Sebagai contoh

pada indikator load time, ditemukan bahwa pengujian levene untuk data YOLOv8n

dengan TensorRT dan OpenVINO ditemukan sifat tidak homogen pada data, dan

pada YOLOv11n ditemukan sifat homogen pada data inference framework

TensorRT dan OpenVINO, yang berarti model YOLOv11n dapat dengan mudah

dimuat ketika menggunakan inference framework TensorRT maupun OpenVINO

oleh komputer. Pada hasil uji levene, ditambahkan kolom levene yang terdiri dari

True dan False yang dapat digunakan sebagai parameter untuk T-Test. Jika levene

bernilai True, maka data disebut homogen dan jika False, maka data disebut tidak

homogen.

 Melalui uji levene pada setiap inference framework dengan penggunaan

model yang berbeda, dapat diambil kesimpulan dini mengenai kedua model dengan

inference framework yang berbeda. Model YOLOv8n dan YOLOv11n

menunjukkan inference speed yang memiliki variance homogen, sehingga

mencerminkan konsistensi performa pada dua inference framework. Pada data

memory consumption, model YOLOv11n cenderung memiliki variance yang lebih

rendah pada dua inference framework dibandingkan dengan model YOLOv8n,

sehingga YOLOv11n dapat diandalkan pada berbagai kondisi. Namun, pada model

size, ditemukan variance inference framework yang lebih besar pada YOLOv11n,

sehingga perlu mempertimbangkan storage untuk penyimpanan. Di sisi lain,

YOLOv11n lebih stabil dalam melakukan load time, baik ketika menggunakan

TensorRT maupun OpenVINO, jika dibandingkan dengan kemampuan load time

dari YOLOv8n. Pada indikator accuracy melalui uji levene, ditemukan bahwa

54

variance pada YOLOv11n lebih kecil ketika menggunakan TensorRT maupun

OpenVINO, yang berarti model YOLOv11n cenderung stabil.

4.5.2.2 Hasil Uji T

Pada penelitian ini, pengujian T-Test dilakukan dengan bantuan program

python dengan library scipy, yang memiliki sebuah fungsi ttest_ind(). Fungsi

ttst_ind() ini menerima dua parameter, yang pertama adalah set data untuk

pengujian dan penanda sifat data homogen. Set data yang dijadikan parameter pada

penelitian ini adalah inference framework TensorRT dengan OpenVINO dan

menggunakan category atau indikator perbandingan sebagai variabelnya,

sedangkan True atau False sebagai penanda sifat homogen pada data yang

disiapkan melalui hasil uji levene. Pada tabel 4.14 disajikan hasil dari T-Test yang

membandingkan performa dari inference framework TensorRT milik NVIDIA

dengan OpenVINO milik Intel dengan pemodelan YOLOv8n. T-Test pada

penelitian kali ini dilakukan terhadap lima indikator perbandingan yang telah

disebutkan sebelumnya, sehingga total hasil dari T-Test ini adalah lima baris data

hasil pengujian terhadap lima indikator perbandingan. Pada T-Test penelitian ini,

threshold alpha ditetapkan menjadi 0.05 dengan hipotesis nol bahwa tidak terdapat

perbedaan pada rata-rata pada kedua inference framework dengan masing-masing

kelompok data indikator perbandingan.

Tabel 4.14 Hasil T-Test YOLOv8n

Model Category p-value Status
Mean

TensorRT

Mean

OpenVINO

YOLO

v8n

Inference

speed
0.0000 Tolak H0 0.00544 s 0.01714 s

YOLO

v8n

Memory

consumption
0.8072

Gagal

Tolak H0

2891.557

MB

2765.787

MB

YOLO

v8n
Model size 0.0000 Tolak H0 8.24 MB 6.4 MB

YOLO

v8n
Load time 0.0000 Tolak H0 0.00068 s 0.00287 s

55

YOLO

v8n
mAP50 0.1175

Gagal

Tolak H0
95.25 % 95.23 %

Pada Tabel 4.14 disajikan hasil dari T-Test yang membandingkan performa

dari inference framework TensorRT milik NVIDIA dengan OpenVINO milik Intel

dengan pemodelan YOLOv8n. T-Test pada penelitian kali ini dilakukan terhadap

lima indikator perbandingan yang telah disebutkan sebelumnya, sehingga total hasil

dari T-Test ini adalah lima baris data hasil pengujian terhadap lima indikator

perbandingan. Pada T-Test penelitian ini, threshold alpha ditetapkan menjadi 0.05

dengan hipotesis nol bahwa tidak terdapat perbedaan pada rata-rata pada kedua

inference framework dengan masing-masing kelompok data indikator

perbandingan.

 Pada indikator perbandingan inference speed dengan model YOLOv8n

didapatkan bahwa p-value kurang dari threshold alpha, yang berarti terdapat

perbedaan signifikan pada rata-rata inference speed untuk inference framework

TensorRT dan OpenVINO, jika melihat nilai rata-ratanya, maka dapat disimpulkan

bahwa TensorRT lebih unggul tiga kali lipat dalam inference speed. Hasil dari T-

Test pada kedua inference framework untuk indikator memory consumption adalah

p-value lebih dari threshold alpha, sehingga dapat disimpulkan bahwa tidak

terdapat perbedaan signifikan pada kedua rata-rata jumlah memory consumption

untuk model YOLOv8n. Pada indikator model size, p-value untuk hasil T-Test

adalah kurang dari threshold alpha, yang berarti bahwa terdapat perbedaan

signifikan antara model size YOLOv8n dengan inference framework TensorRT dan

OpenVINO dengan OpenVINO lebih unggul dalam ukuran yang ringan, sehingga

dapat lebih meringankan beban pada storage komputer. Pada indikator load time,

hasil dari T-Test menyatakan bahwa nilai p-value kurang dari threshold alpha, yang

menunjukkan bahwa terdapat perbedaan signifikan antara load time pada kedua

inference framework dengan TensorRT yang unggul hampir empat kali lebih cepat,

sehingga TensorRT dapat memberi keuntungan untuk kebutuhan kecepatan dalam

tahap deployment. Pada indikator accuracy berdasarkan nilai mAP50 dari kedua

inference framework, hasil T-Test menunjukkan bahwa p-value lebih dari threshold

alpha, sehingga dapat disimpulkan bahwa tidak terdapat perbedaan signifikan pada

56

accuracy kedua inference framework, meskipun terlihat TensorRT unggul 0.02%

dari OpenVINO.

 Secara keseluruhan untuk YOLOv8n, inference framework TensorRT lebih

unggul pada kategori inference speed sebesar tiga kali lipat daripada OpenVINO,

sehingga sangat sesuai untuk penggunaan yang sangat mempertimbangkan

kecepatan dalam melakukan inference atau pada kasus real-time processing. Untuk

memory consumption pada kedua inference framework tidak begitu signifikan,

sehingga keduanya tidak menjadi masalah dalam hal batasan perangkat keras secara

khusus pada RAM. Berikutnya pada kategori model size, dapat dilihat bahwa

OpenVINO memiliki kemampuan yang sedikit lebih unggul daripada TensorRT

karena mampu melakukan konversi model dengan optimal sehingga membuat

model size lebih kecil dan membuat OpenVINO sesuai untuk kebutuhan perangkat

yang terbatas pada ukuran storage. Pada kategori load time, TensorRT ternyata

lebih unggul 0.00219 detik daripada menggunakan OpenVINO, sehingga kembali

mendukung kebutuhan kecepatan inference daripada menggunakan OpenVINO.

Namun, pada indikator accuracy dengan mAP50 tidak ditemukan perbedaan yang

signifikan dari kedua inference framework dalam penggunaannya pada model

YOLOv8n.

Tabel 4.15 Hasil T-Test YOLOv11n

Model Category p-value Status
Mean

TensorRT

Mean

OpenVINO

YOLO

v11n

Inference

speed
0.0000 Tolak H0 0.00664 s 0.01664 s

YOLO

v11n

Memory

consumption
0.0000 Tolak H0

4077.197

MB

3234.202

MB

YOLO

v11n
Model size 0.0000 Tolak H0 7.76 MB 5.6 MB

YOLO

v11n
Load time 0.0000 Tolak H0 0.00073 s 0.00316 s

57

YOLO

v11n
mAP50 0.0626

Gagal

Tolak H0
96.28 % 96.22 %

Tabel 4.15 menunjukkan hasil dari T-Test yang membandingkan performa

dari inference framework TensorRT milik NVIDIA dengan OpenVINO milik Intel

dengan pemodelan YOLOv11n. T-Test kali kali ini dilakukan terhadap lima

indikator perbandingan sama seperti T-Test untuk YOLOv8n dengan total hasil dari

T-Test ini adalah lima baris data hasil pengujian terhadap lima indikator

perbandingan. Pada T-Test YOLOv11n ini, threshold alpha ditetapkan menjadi

0.05 dengan hipotesis nol bahwa tidak terdapat perbedaan pada rata-rata pada kedua

inference framework dengan masing-masing kelompok data indikator

perbandingan. Pada indikator perbandingan inference speed dengan model

YOLOv11n, didapatkan bahwa p-value kurang dari threshold alpha yang

ditentukan, hal ini berarti bahwa terdapat perbedaan signifikan pada rata-rata

inference speed untuk inference framework TensorRT dan OpenVINO.

Berdasarkan nilai rata-rata yang diperoleh, dapat disimpulkan bahwa TensorRT

lebih unggul hampir sebesar tiga kali lipat dalam inference speed jika dibandingkan

OpenVINO, menjadikannya lebih ideal untuk kebutuhan yang memprioritaskan

real-time processing. Pada indikator memory consumption, melalui hasil T-Test,

ditemukan bahwa p-value kurang dari threshold alpha, yang menunjukkan adanya

perbedaan signifikan pada rata-rata memory consumption antara TensorRT dan

OpenVINO. OpenVINO menunjukkan penggunaan memory yang lebih baik

dengan konsumsi memori yang lebih rendah sekitar 800.000 MB dibandingkan

dengan TensorRT, sehingga lebih sesuai untuk kebutuhan tertentu yang memiliki

keterbatasan pada memory. Pada indikator model size, p-value hasil T-Test juga

kurang dari threshold alpha yang telah ditentukan, yang berarti terdapat perbedaan

signifikan antara model size dari YOLOv11n yang dihasilkan oleh TensorRT dan

OpenVINO, dengan OpenVINO kembali unggul dengan model size yang lebih kecil

dibandingkan TensorRT, memberikan keunggulan dalam hal penghematan storage

dan fleksibilitas dalam deployment pada perangkat dengan sumber daya terbatas.

Pada indikator load time, hasil T-Test menunjukkan bahwa p-value kurang dari

threshold alpha, yang mengindikasikan terdapat perbedaan signifikan antara load

58

time model pada kedua inference framework. TensorRT terbukti hampir empat kali

lebih cepat dibandingkan OpenVINO, memberikan keunggulan yang signifikan

untuk kebutuhan deployment model yang cepat. Pada indikator accuracy

berdasarkan mAP50, melalui T-Test, didapatkan bahwa p-value lebih dari threshold

alpha yang menunjukkan tidak terdapat perbedaan yang signifikan pada accuracy

antara kedua inference framework, meskipun TensorRT lebih unggul dengan selisih

0.06% dibandingkan dengan OpenVINO.

Secara keseluruhan untuk YOLOv11n, inference framework TensorRT

kembali unggul pada kategori inference speed daripada menggunakan OpenVINO,

sehingga sesuai untuk penggunaan yang sangat mempertimbangkan kecepatan

dalam melakukan inference. Pada indikator memory consumption untuk kedua

inference framework, terlihat perbedaan yang cukup signifikan dimana OpenVINO

unggul karena OpenVINO menggunakan RAM yang lebih sedikit saat melakukan

inference, sehingga hal ini dapat dijadikan pertimbangan untuk kebutuhan

perangkat yang terbatas pada RAM. Selanjutnya, pada kategori model size, dapat

dilihat bahwa OpenVINO kembali unggul daripada TensorRT karena mampu

melakukan konversi model dengan lebih optimal, sehingga membuat model size

lebih ringan dengan selisih antara ukuran TensorRT dan OpenVINO adalah sekitar

2 MB dan membuat OpenVINO sesuai untuk kebutuhan perangkat yang terbatas

pada ukuran storage. TensorRT lebih unggul daripada OpenVINO pada indikator

load time, sehingga masih mendukung dalam segi kebutuhan untuk kecepatan

inference daripada menggunakan OpenVINO. Namun, pada indikator accuracy

dengan mAP50 kembali tidak ditemukan perbedaan signifikan antara kedua

inference framework dalam penggunaannya pada model YOLOv11n.

Dari kedua T-Test untuk inference framework dalam penggunaan model

YOLOv8n dan YOLOv11n, terdapat beberapa kesamaan. Kesimpulan yang dapat

diambil dari T-Test ini adalah bahwa inference speed untuk TensorRT sangat

unggul dibandingkan dengan OpenVINO baik ketika menggunakan model

YOLOv8n maupun YOLOv11n. Kemudian untuk memory consumption, ternyata

TensorRT dan OpenVINO tidak memiliki perbedaan signifikan pada YOLOv8n,

sedangkan pada model yang lebih kompleks seperti YOLOv11n, OpenVINO

unggul dalam penggunaan RAM ketika melakukan inference, karena OpenVINO

59

hanya menggunakan RAM yang lebih sedikit. Berikutnya untuk indikator model

size, OpenVINO selalu unggul baik saat menggunakan YOLOv8n maupun

YOLOv11n. Hal ini mengindikasikan bahwa OpenVINO mampu mengoptimalkan

kedua model menjadi lebih sederhana dibandingkan dengan inference framework

TensorRT. Dari indikator load time model, TensorRT menunjukkan keunggulan,

karena kemampuannya untuk mengunggah model yang lebih cepat daripada

OpenVINO pada model YOLOv8n dan YOLOv11n. Berikutnya dari sisi accuracy

dengan menggunakan mAP50, ditemukan bahwa TensorRT maupun OpenVINO

sama-sama memiliki kemampuan baik dalam melakukan konversi atau export

model karena mampu mengoptimalkan model YOLOv8n dan YOLOv11n tanpa

mengorbankan accuracy secara signifikan. Secara keseluruhan model YOLOv11n

tetap menunjukkan accuracy yang lebih baik saat menggunakan kedua inference

framework, meskipun OpenVINO sedikit menunjukkan penurunan accuracy

sekitar 0.04% secara rata-rata. Accuracy dari model yang diberlakukan optimization

dengan inference framework OpenVINO ternyata mengalami sedikit penurunan

accuracy sebesar 0.021% pada YOLOv8n dan 0.062% pada YOLOv11n. Hal ini

bertentangan dengan penelitian terdahulu yang dilakukan oleh Biswas, et al (2020)

yang menyatakan bahwa OpenVINO lebih unggul secara accuracy.

4.5.3 Uji ANOVA

Seperti yang dilakukan pada T-Test, sebelum melakukan uji ANOVA perlu

dilakukan uji levene untuk mengetahui variance pada data agar pengujian untuk

ANOVA dapat sesuai dengan kondisi data sehingga hasil dari pengujian dapat

disebut valid.

4.5.3.1 Hasil Uji Levene ANOVA

Uji levene pada untuk Two-Way ANOVA pada penelitian ini dilakukan

dengan tujuan untuk menentukan metode yang tepat dalam melakukan Two-Way

ANOVA yang akan dilakukan berikutnya. Pada penelitian ini, uji levene dilakukan

dengan menggunakan bahasa pemrograman python dengan bantuan library scipy

dengan fungsi levene(). Fungsi levene() menerima dua buah parameter yang terdiri

atas set data yang akan diuji dan metode pengujiannya atau center. Parameter

metode pengujian atau center pada uji levene dengan scipy bertujuan untuk

menghitung pusat distribusi data, umumnya akan digunakan mean atau rata-rata

60

dari data untuk mendapatkan pusat distribusi data. Pada penelitian ini, untuk

menguji levene dengan empat set data, data yang digunakan adalah model

YOLOv8n dan YOLOv11n ketika menggunakan inference framework TensorRT

dan OpenVINO, dengan tiap indikator perbandingan dan center menggunakan

mean. Pengujian masing-masing dilakukan dengan melihat homogenitas antara

data indikator perbandingan dengan model tertentu ketika menggunakan TensorRT

dan OpenVINO serta YOLOv8n dan YOLOv11n, sehingga total dilakukan lima

kali pengujian dengan rincian lima indikator perbandingan. Dalam uji levene untuk

penelitian ini, ditetapkan nilai threshold alpha adalah 0.05 dengan hipotesis nol

adalah tidak ada perbedaan rata-rata signifikan pada data masing-masing atau

homogen.

Tabel 4.16 Hasil Uji Levene Two-Way ANOVA

Category p-value Status Levene

Inference speed 0.03210 Tolak H0 False

Memory consumption 0.00000 Tolak H0 False

Model size 0.00323 Tolak H0 False

Load time 0.03307 Tolak H0 False

mAP50 0.00842 Tolak H0 False

 Pada tabel 4.16, disajikan data yang merupakan hasil dari uji levene untuk

Two-Way ANOVA denan masing-masing merupakan pengujian terhadap variable

indikator perbandingan dengan empat set data, TensorRT dengan YOLOv8n,

OpenvVINO dengan YOLOv8n, TensorRT dengan YOLOv11n, OpenvVINO

dengan YOLOv11n. Pada indikator inference speed, hasil uji levene menunjukkan

bahwa p-value kurang dari nilai threshold alpha, yang berarti terdapat perbedaan

signifikan pada keempat data yang diberikan atau data tidak bersifat homogen.

Berikutnya pada indikator memory consumption juga didapatkan hasil p-value

kurang dari threshold alpha, yang berarti pada data terdapat perbedaan yang

signifikan atau data tidak bersifat homogen. Berikutnya melalui indikator model

size kembali didapatkan nilai p-value yang kurang dari threshold alpha yang

menunjukkan bahwa terdapat perbedaan signifikan pada keempat data atau data

61

tidak bersifat homogen. Pada indikator load time juga menghasilkan nilai p-value

yang kurang dari threshold alpha dari uji levene, yang berarti ditemukan adanya

perbedaan signifikan pada keempat data atau data tidak bersifat homogen. Dari uji

levene untuk indikator accuracy melalui mAP50 kembali memberikan p-value yang

kurang dari threshold alpha yang telah ditentukan, yang berarti ditemukan

perbedaan signifikan pada keempat data atau data tidak bersifat homogen.

4.5.3.2 Hasil Uji Two-Way ANOVA

 Melalui uji levene untuk Two-Way ANOVA, ditemukan bahwa pada

keempat data ditemukan perbedaan yang signifikan atau seluruh data tidak bersifat

homogen pada setiap pengujian indikator perbandingannya, sehingga pengujian

Two-Way ANOVA dilakukan metode non parametrik. Pada penelitian ini, Two-

Way ANOVA dengan metode non parametrik dilakukan dengan bantuan program

python dengan library pingouin dan fungsi anova(). Fungsi anova() milik pingouin

menerima empat buah parameter, yaitu data, dependent variable atau dv, faktor uji

atau between, dan detailed untuk merincikan hasil pengujian dalam bentuk tabel.

Parameter data untuk penelitian ini adalah data dari keempat kombinasi data

bersama dengan nilai dari indikator perbandingannya, keempat kombinasi data

adalah TensorRT dengan YOLOv8n, OpenVINO dengan YOLOv8n, TensorRT

dengan YOLOv11n, OpenvVINO dengan YOLOv11n. Indikator perbandingannya

akan menjadi dependent variable, kemudian membuat model dan inference

framework sebagai parameter between. Pada parameter detailed akan diberi nilai

True agar keluaran dari uji Two-Way ANOVA tersaji dalam bentuk tabel terperinci.

Pada tabel 4.17 disajikan hasil dari Two-Way ANOVA yang

membandingkan performa dari inference framework TensorRT milik NVIDIA

dengan OpenVINO milik Intel dengan setiap pemodelan YOLOv8n dan

YOLOv11n. Two-Way ANOVA pada penelitian kali ini dilakukan terhadap setiap

indikator perbandingan atau category yang telah disebutkan sebelumnya, sehingga

total hasil dari Two-Way ANOVA ini adalah lima baris data hasil pengujian

terhadap lima indikator perbandingan. Pada Two-Way ANOVA untuk penelitian

ini, threshold alpha ditetapkan menjadi 0.05 dengan hipotesis nol bahwa tidak

terdapat interaksi pada rata-rata dengan inference framework dan model tertentu

terhadap setiap indikator perbandingan.

62

Tabel 4.17 Hasil Uji Two-Way ANOVA

Category p-value Status Interaksi

Inference speed 0.00000 Tolak H0 Ada

Memory consumption 0.17109 Gagal Tolak H0 Tidak Ada

Model size 0.00090 Tolak H0 Ada

Load time 0.37492 Gagal Tolak H0 Tidak Ada

mAP50 0.20110 Gagal Tolak H0 Tidak Ada

 Pada tabel 4.17 dapat dilihat bahwa indikator inference speed memiliki p-

value yang kurang dari threshold alpha melalui uji Two-Way ANOVA untuk data

kombinasi antara TensorRT dengan YOLOv8n, OpenvVINO dengan YOLOv8n,

TensorRT dengan YOLOv11n, OpenvVINO dengan YOLOv11n, yang berarti

terdapat interaksi yang signifikan antara inference framework dengan model

tertentu terhadap rata-rata dari inference speed. Dengan kata lain, inference speed

pada inference framework tertentu ternyata dipengaruhi oleh model tertentu. Pada

indikator memory consumption ditemukan bahwa p-value bernilai 0.171 yang

berarti lebih dari threshold alpha dan menunjukkan bahwa tidak ada interaksi

signifikan pada memory consumption antara inference framework dengan model.

Tidak adanya interaksi pada variabel memory consumption memiliki arti bahwa

inference framework pada setiap model menunjukkan hasil yang konsisten pada

indikator memory consumption. Melalui uji Two-Way ANOVA untuk model size,

didapatkan hasil p-value kurang dari threshold alpha, yang berarti bahwa terdapat

interaksi signifikan antara inference framework dengan model tertentu atau dapat

dipahami bahwa model size berpengaruh terhadap sebuah inference framework

yang memiliki model spesifik. Pada indikator load time didapatkan hasil p-value

yang lebih dari threshold alpha yang dapat diartikan bahwa tidak terdapat interaksi

signifikan dari dependent variable load time terhadap kombinasi data yang juga

menunjukkan bahwa load time untuk setiap kombinasi inference framework dan

model konsisten. Pada uji Two-Way ANOVA untuk accuracy dengan mAP50,

didapatkan p-value yang juga lebih dari threshold alpha yang telah ditentukan

63

sebelumnya dan mengindikasikan tidak ada interaksi signifikan. Dalam hal ini,

ditemukan bahwa performa accuracy cukup konsisten ketika menggunakan tiap

inference framework dengan tiap model.

 Setelah mendapatkan hasil Two-Way ANOVA, untuk mengetahui

keberadaan dan kejelasan mengenai interaksi antara inference framework dengan

model untuk setiap indikator perbandingan, perlu dilakukan kajian lebih mendalam

mengenai interaksi yang terdapat pada beberapa indikator untuk mengetahui

performa inference framework secara signifikan. Pada indikator inference speed

dan model size, ditemukan interaksi antara inference framework dengan model,

sehingga perlu dikaji lebih lanjut mengenai kedua indikator perbandingan ini untuk

mengetahui performa kedua inference framework.

Gambar 4.3 Perbandingan Inference Speed

 Gambar 4.7 menunjukkan rata-rata inference speed untuk TensorRT dan

OpenVINO pada model YOLOv8n dengan YOLOv11n. Garis berwarna biru

menunjukkan rata-rata dari inference speed ketika menggunakan YOLOv8n dan

YOLOv11n, sedangkan garis berwarna merah menunjukkan inference speed ketika

menggunakan inference framework OpenVINO. TensorRT menunjukkan inference

speed yang bertambah dari 0.0054 ketika menggunakan YOLOv8n menjadi 0.0066

ketika menggunakan YOLOv11n. Hal ini mengindikasikan bahwa dalam

menggunakan model yang lebih sederhana, TensorRT lebih cepat dalam melakukan

inference dan sedikit lebih lambat ketika menggunakan model yang lebih kompleks

seperti YOLOv11n. Berikutnya untuk inference framework OpenVINO, berlaku

kebalikan dari TensorRT. Inference speed dari OpenVINO ketika menggunakan

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

YOLOv8 YOLOv11

In
fe

re
n

ce
 S

p
e

e
d

Model

TensorRT

OpenVINO

64

model YOLOv11n mengalami penurunan dari YOLOv8n yang awalnya 0.017

menjadi 0.016 pada YOLOv11n. Penurunan inference speed pada YOLOv11n

menunjukkan bahwa OpenVINO mampu melakukan inference lebih baik atau lebih

cepat ketika menggunakan model yang lebih kompleks. Namun, selisih inference

speed OpenVINO YOLOv8n dan YOLOv11n sangatlah sedikit dengan selisih

hanya sebesar 0.001 yang juga menunjukkan bahwa OpenVINO lebih konsisten

daripada TensorRT untuk model yang lebih kompleks, walaupun secara

keseluruhan inference framework TensorRT masih lebih cepat sekitar tiga kali lipat

daripada OpenVINO. Dengan ini, inference framework TensorRT tetap dapat

menjadi pertimbangan untuk kebutuhan kecepatan inference seperti pada kasus

real-time processing, sedangkan OpenVINO dapat digunakan untuk kebutuhan

penggunaan model yang lebih kompleks tanpa mempertimbangkan kebutuhan real-

time processing.

 Melalui penelitian ini, tedapat temuan mengenai inference speed dari model

YOLOv8n dan model YOLOv11n saat menggunakan inference framework

TensorRT dan OpenVINO yang menunjukkan kestabilan dari kemampuan

TensorRT untuk melakukan inference dengan baik dan kecepatan yang tinggi

Gambar 4.4 Perbandingan Model Size

 Gambar 4.4 menunjukkan rata-rata dari model size untuk TensorRT dan

OpenVINO ketika menggunakan model YOLOv8n dan YOLOv11n. Garis

berwarna biru menunjukkan rata-rata dari model size ketika menggunakan

YOLOv8n dan YOLOv11n, sedangkan garis berwarna merah menunjukkan model

5

5.5

6

6.5

7

7.5

8

8.5

YOLOv8 YOLOv11

M
o

d
e

l S
iz

e

Model

TensorRT

OpenVINO

65

size ketika menggunakan inference framework OpenVINO. Melalui gambar 4.8,

dapat dilihat bahwa kedua inference framework mengalami penurunan ukuran

model ketika menggunakan model YOLOv11n yang menujukkan bahwa dengan

kompleksitas model milik YOLOv11n, ternyata tidak membuat model YOLOv11n

berukuran lebih besar daripada model milik YOLOv8n setelah dilakukan export

menjadi inference framework. Hal ini mengindikasikan bahwa YOLOv11n lebih

efisien daripada YOLOv8n. Kajian lebih mendalam mengenai perbandingan kedua

inference framework ini dapat dilihat dari selisih ukuran dari model milik

YOLOv8n dan YOLOv11n ketika menggunakan TensorRT dan OpenVINO.

Selisih model size dari ketika menggunakan TensorRT dari YOLOv8n dan

YOLOv11n adalah sebesar 0.48 MB, sedangkan pada penggunaan inference

framework OpenVINO selisihnya adalah 0.8 MB. Hal ini menunjukkan bahwa

OpenVINO mampu melakukan konversi model atau export model lebih baik

daripada TensorRT pada model yang kompleks, karena mampu membuat ukuran

model YOLOv11n menjadi lebih kecil daripada YOLOv8n dengan penurunan

ukuran sebesar 0.8 MB. Secara keseluruhan, inference framework OpenVINO

mengindikasikan adanya keunggulan pada model size, sehingga sesuai untuk

kebutuhan perangkat yang terbatas pada storage serta OpenVINO juga unggul

dalam melakukan konversi atau export model yang kompleks dengan lebih

maksimal daripada TensorRT.

4.5.4 Pembahasan Hasil Pengujian

Melalui pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA

dapat dilihat bahwa pada inference framework TensorRT memberikan performa

yang lebih optimal pada indikator inference speed dibandingkan dengan

OpenVINO. Melalui kajian lebih mendalam berdasarkan data pada tabel 4.8 juga

ditemukan bahwa TensorRT lebih unggul 0.0012 detik secara inference speed pada

model YOLOv8n dibandingkan YOLOv11n dengan inference framework

TensorRT, sedangkan OpenVINO unggul ketika menggunakan YOLOv11n sebesar

0.0005 detik dibandingkan YOLOv8n dengan OpenVINO.

66

Gambar 4.5 Grafik Perbandingan Rata-rata Inference Speed

 Melalui gambar 4.5 dapat dilihat bahwa TensorRT dapat melakukan

inference dengan cepat untuk YOLOv8n maupun untukYOLOv11n dibandingkan

dengan OpenVINO dengan selisih sekitar tiga kali lipat lebih cepat.. Disisi lain,

dapat dipahami juga bahwa OpenVINO memiliki kemampuan yang lebih stabil jika

dibandingkan dengan TensorRT dalam melakukan optimization terhadap model

yang sederhana maupun kompleks, dilihat dari selisih pada inference speed

OpenVINO antara kedua model yang lebih kecil daripada selisih inference speed

pada TensorRT. Pada indikator inferefence speed, dapat disimpulkan bahwa

TensorRT lebih unggul dan sesuai untuk kebutuhan real-time processing terlebih

jika menggunakan model yang sederhana seperti YOLOv8n, tetapi jika ingin

menggunakan model yang lebih kompleks tanpa mempertimbangkan inference

speed, OpenVINO dapat menjadi pilihan yang sesuai. Hal ini sesuai dengan temuan

dari penelitian Chaturvedi (2022) mengenai TensorRT yang mampu melakukan

inference tiga kali lebih cepat.

Hasil pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA

menunjukkan bahwa pada inference framework TensorRT dan OpenVINO

ditemukan suatu persamaan pada indikator memory consumption, dimana saat

menggunakan model yang lebih kompleks seperti YOLOv11n, kebutuhan akan

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

YOLOv8 YOLOv11

In
fe

re
n

ce
 S

p
e

e
d

Model

TensorRT

OpenVINO

67

memory meningkat cukup signifikan hingga setidaknya 500000 MB pada

OpenVINO dan lebih dari 1000000 MB pada TensorRT. Dari data memory

consumption pada tabel 4.9 saat menggunakan TensorRT dan OpenVINO, dapat

dipahami bahwa meskipun kedua inference framework mengindikasikan adanya

peningkatan memory consumption pada model yang lebih kompleks seperti

YOLOv11n dibandingkan model lebih sederhana seperti YOLOv8n, tetapi

kenaikan memory consumption ketika menggunakan OpenVINO hanya sekitar 16

% sedangkan saat menggunakan TensorRT kenaikannya adalah sekitar 41%.

Gambar 4.6 Grafik Perbandingan Rata-rata Memory Consumption

 Melalui gambar 4.6 dapat dilihat bahwa TensorRT dan OpenVINO sama-

sama mengalami peningkatan memory consumption saat menggunakan model yang

lebih kompleks. Namun, melalui indikator memory consumption, dapat

disimpulkan bahwa OpenVINO sedikit lebih unggul baik untuk model sederhana

maupun kompleks seperti YOLOv11n dan lebih sesuai untuk kebutuhan processing

yang memiliki keterbatasan pada perangkat keras seperti RAM dikarenakan

kemampuan OpenVINO dalam mengoptimalkan model sederhana dan kompleks

yang lebih stabil dibandingkan dengan TensorRT dengan peningkatan sebesar 16%

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

YOLOv8 YOLOv11

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

Model

TensorRT

OpenVINO

68

untuk OpenVINO dan 40% untuk TensorRT Ketika menggunakan model yang

lebih kompleks.

Hasil dari pengujian statistik T-Test yang diikuti dengan Two-Way ANOVA

menunjukkan bahwa TensorRT dan OpenVINO mampu melakukan optimization

pada model dengan baik, terlebih pada model YOLOv11n yang terbilang lebih

kompleks dibandingkan dengan YOLOv8n. Hal ini menunjukkan bahwa

YOLOv11n dengan kompleksitasnya ternyata tidak mempengaruhi ukuran model.

Dari data model size pada tabel 4.10 saat menggunakan TensorRT dan OpenVINO,

dapat dipahami bahwa OpenVINO mampu melakukan konversi atau export model

deep learning dengan lebih baik saat menggunakan YOLOv8n maupun YOLOv11n

karena hasil konversi modelnya lebih ringan daripada saat menggunakan inference

framework TensorRT.

Gambar 4.7 Grafik Perbandingan Rata-rata Model Size

 Gambar 4.7 menujukkan perbandingan yang signifikan antara inference

framework TensorRT dan OpenVINO pada indikator model size, dimana TensorRT

lebih konsisten dalam melakukan konversi model menjadi lebih ringan

dibandingkan dengan OpenVINO karena memiliki selisih hanya sebesar 0.48 MB

ketika menggunakan model sederhana maupun kompleks. Dari data juga dapat

disimpulkan bahwa OpenVINO sangat sesuai untuk kebutuhan yang

mempertimbangkan perangkat keras khususnya storage. Model YOLOv11n

0

1

2

3

4

5

6

7

8

9

YOLOv8 YOLOv11

M
o

d
e

l S
iz

e

Model

TensorRT

OpenVINO

69

dengan kompleksitasnya ternyata juga tidak menujukkan peningkatan pada model

size, tetapi justru menawarkan model size yang lebih ringan. Pada penelitian ini,

mengenai memory consumption dan model size terbukti selaras dengan penelitian

terdahulu oleh Li (2022) yang juga menyatakan bahwa secara keseluruhan,

OpenVINO mampu memberikan performa yang lebih baik dan power efficiency

pada banyak skenario.

Melalui hasil pengujian statistik dengan T-Test dan Two-Way ANOVA

ditemukan bahwa OpenVINO membutuhkan waktu yang lebih lama dalam

melakukan load model dibandingkan dengan TensorRT. Namun, pada kedua

inference framework ditemukan kesamaan bahwa model yang lebih kompleks

seperti YOLOv11n membutuhkan waktu lebih lama untuk load model daripada

model lebih sederhana seperti YOLOv8n. Dari data load time pada tabel 4.11 saat

menggunakan TensorRT dan OpenVINO, dapat dipahami bahwa TensorRT

mampu melakukan membuat model deep learning lebih cepat untuk dimuat sekitar

300%, baik saat menggunakan model YOLOv8n maupun YOLOv11n

dibandingkan dengan menggunakan inference framework OpenVINO.

Gambar 4.8 Grafik Perbandingan Rata-rata Model Load Time

 Dari gambar 4.8 dapat dilihat dengan lebih jelas mengenai performa

TensorRT dalam memuat model. Load time untuk model ketika menggunakan

inference framework TensorRT sangat baik untuk model sederhana seperti

YOLOv8n maupun kompleks seperti YOLOv11n. TensorRT juga stabil dalam

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

YOLOv8 YOLOv11

Lo
ad

 T
im

e

Model

TensorRT

OpenVINO

70

melakukan load model, yang dapat dilihat dari selisih load time untuk model

sederhana maupun kompleks sebesar 0.00015 detik, sedangkan 0.003 detik untuk

OpenVINO. Hal ini dapat diartikan bahwa TensorRT unggul ketika membutuhkan

kecepatan dalam proses deployment. Hasil dari penelitian yang dilakukan oleh Zhou

dan Yang (2022) kembali selaras dengan temuan pada penelitian ini bahwa

TensorRT mampu memberikan inference speed dan load time model yang sangat

baik sehingga sesuai dengan kebutuhan performa atau kecepatan inference yang

tinggi.

Dari pengujian statistik yang melalui T-Test dan Two-Way ANOVA,

ditemukan bahwa pada inference framwork TensorRT dan OpenVINO terlihat hal

yang sama pada accuracy yang meningkat pada penggunaannya untuk model yang

lebih kompleks seperti YOLOv11n. Dari data accuracy dengan mAP50 saat

menggunakan TensorRT dan OpenVINO, dapat dipahami bahwa YOLOv11n

memberikan accuracy yang lebih tinggi dibandingkan dengan YOLOv8n. Dari sini

dapat diartikan bahwa dengan kompleksitas yang dimiliki YOLOv11n, ternyata

mampu membawa dampak peningkatan dalam segi accuracy melalui mAP50 jika

dibandingkan dengan YOLOv8n.

Gambar 4.9 Grafik Perbandingan Rata-rata Accuracy

 Gambar 4.9 menunjukkan bahwa dengan jelas bahwa accuracy TensorRT

pada YOLOv8n sedikit lebih tinggi dibandingkan menggunakan OpenVINO. Saat

0.946

0.948

0.95

0.952

0.954

0.956

0.958

0.96

0.962

0.964

YOLOv8 YOLOv11

A
cc

u
ra

cy
 :

 m
A

P
5

0

Model

TensorRT

OpenVINO

71

menggunakan YOLOv11n, terlihat hal yang sama, dimana TensorRT memberikan

accuracy yang lebih tinggi. Namun, OpenVINO mampu melakukan konversi yang

cukup stabil pada model yang lebih sederhana seperti YOLOv8n dan model yang

lebih kompleks seperti YOLOv11n dengan selisih sebesar 0.99% jika dibandingkan

selisih pada TensorRT pada model yang lebih kompleks sebesar 1.03%. Dari

gambar dapat disimpulkan bahwa inference framework TensorRT mampu

memberikan performa accuracy yang sedikit lebih tinggi jika dibandingkan dengan

OpenVINO pada model sederhana seperti YOLOv8n maupun model yang lebih

kompleks seperti YOLOv11n. Peningkatan accuracy yang ditemukan pada

penelitian ini dari perbandingan YOLOv8n dan YOLOv11n juga selaras dengan

temuan pada penelitian-penelitian terdahulu. YOLOv11 memberikan performa

optimal yang seimbang antara accuracy, efficiency, dan secara model size (Jegham,

et al, 2024) dan penelitian oleh Khanam dan Hussein (2024) yang turut menyatakan

bahwa YOLOv11 merupakan perkembangan dari feature extraction, optimized

performance, dan kemampuannya pada berbagai task dalam computer vision.

72

BAB V

Simpulan dan Saran

5.1 Kesimpulan

 Pada penelitian tugas akhir dengan judul “Analisis Kinerja TensorRT dan

OpenVINO sebagai Inference Framework untuk Pemodelan Deep Learning” telah

berjalan dengan baik. Melalui penelitian yang telah dilakukan, dapat diperoleh

beberapa kesimpulan sebagai berikut.

1. Inference framework TensorRT lebih unggul dibandingkan OpenVINO

jika dilihat performa inference speed dan load time. Sehingga TensorRT

sangat sesuai untuk kebutuhan aplikasi model deep learning yang sangat

memperhatikan kecepatan atau real-time processing tanpa

memperhatikan batasan perangkat seperti storage dan memory.

2. Inference framework OpenVINO lebih unggul dibandingkan TensorRT

jika melihat performa memory consumption dan model size. OpenVINO

ditemukan membutuhkan RAM dan storage yang lebih sedikit

dikarenakan kemampuan OpenVINO untuk melakukan export model

menjadi lebih sederhana. OpenVINO sesuai untuk kebutuhan aplikasi

deep learning yang mempertimbangkan keterbatasan pada perangkat

keras seperti storage dan memory dengan mengesampingkan inference

speed.

3. Untuk indikator perbandingan accuracy dengan menggunakan mAP50,

tidak dapat dilihat perbedaan yang signifikan. Namun, dengan

kompleksitas modelnya, YOLOv11n selalu mampu memberikan

performa yang 1% lebih baik dan OpenVINO yang memiliki accuracy

lebih rendah dari TensorRT sebesar 0.04%.

4. Melalui pengujian Two-Way ANOVA, ditemukan bahwa terdapat

interaksi yang cukup signifikan pada indikator inference speed dan model

size antara model dengan inference framework. TensorRT memang lebih

baik dari indikator inference speed, tetapi ketika digunakan pada model

yang lebih kompleks, TensorRT akan sedikit mengalami kemunduran

dalam inference speed, sedangkan OpenVINO akan mengalami kemajuan

73

atau lebih cepat dalam inference speed saat menggunakan model yang

lebih kompleks. OpenVINO memiliki kemampuan konversi model yang

jauh lebih baik dibandingkan TensorRT, tetapi secara khsus, OpenVINO

yang digunakan pada model yang kompleks mampu menghasilkan model

yang lebih ringan.

5. TensorRT secara keseluruhan lebih sesuai untuk kasus counting box

secara real-time pada conveyor belt yang sedang diterapkan oleh PT. XYZ

dikarenakan keunggulannya dalam melakukan inference secara real-time

yang berkaitan dengan kecepatan dari conveyor belt keluaran produksi.

Namun, apabila terdapat kendala dalam cost untuk pengadaan computing

device dan kebutuhan real-time counting dapat dikesampingkan, maka

OpenVINO dapat menjadi opsi yang bisa dipertimbangkan oleh PT. XYZ.

5.2 Saran

 Melalui kesimpulan dari penelitian yang telah disebutkan sebelumnya,

terdapat beberapa saran yang dapat dilakukan untuk memperbaiki dan

mengembangkan penelitian ini.

1. PT. XYZ disarankan menggunakan inference framework milik TensorRT

dengan computing device GPU NVIDIA dan model YOLOv8n

dikarenakan terdapat kebutuhan counting box secara real-time pada

conveyor belt keluaran produksi, karena TensorRT mampu melakukan

inference dengan rata-rata kecepatan sebesar 0.006 detik dan memiliki

memory consumption yang lebih rendah daripada penggunaan

YOLOv11n.

2. Dalam penelitian ini, pemodelan deep learning yang digunakan adalah

YOLOv8n dengan YOLOv11n yang sama-sama dikembangkan oleh tim

ultralytics. Akan lebih baik jika dalam penelitian berikutnya, pemodelan

deep learning yang digunakan memiliki arsitektur yang berbeda

signifikan, agar hasil perbedaan terlihat lebih jelas.

3. Pada penelitian ini, validasi terhadap datanya dilakukan melalui metode

val() yang merupakan fungsi dari ultralytics, disarankan validasi data

untuk penelitian berikutnya adalah menggunakan data nyata, atau real-

world use case.

74

Daftar Pustaka

Ahn, H., Chen, T., Alnaasan, N., Shafi, A., Abduljabbar, M., Subramoni, H., Panda,

D. K. (2023). Performance Characterization of using Quantization for DNN

Inference on Edge Devices: Extended Version. ArXiv, 1-5.

Al Ghadani, A. K. A., Mateen, W., Ramaswamy, R. G. (2020). Tensor-Based

CUDA Optimization for ANN Inferencing Using Parallel Acceleration on

Embedded GPU. Springer Nature Switzerland AG, 2-9.

Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., Zhang, J. (2020). Artificial Intelligence

in Advanced Manufacturing: Current Status and Future Outlook. J. Manuf.

Sci. Eng, 2-3.

Assunção, E., Gaspar, P. D., Mesquita, R., Simões, M. P., Alibabaei, K., Veiros,

A., Proença, H. (2022). Real-Time Weed Control Application Using a

Jetson Nano Edge Device and a Spray Mechanism. Remote Sensing, 8-17.

Ats-Tsauri, M. I., Setiawan, R., dan Wiyatno, T. (2021). Tinjauan Literatur

Sistematis Implementasi Total Quality Management pada Industri

Manufaktur - Tren Terkini dan Arahan Masa Depan. Jurnal Teknik Industri,

65.

Awad, A., Hegazy, M., Aly, S. A. (2024). Early Diagnoses of Acute Lymphoblastic

Leukemia Using YOLOv8 and YOLOv11 Deep Learning Models. ArXiv,

4.

Biswas, R., Basu, A., Nandy, A., Deb, A., Chowdhury, R., Chanda, D. (2020).

Identification of Pathological Disease in Plants using Deep Neural

Networks - Powered by Intel® Distribution of OpenVINO™ Toolkit. Indo-

Taiwan 2nd International Conference on Computing, Analytics and

Networks (Indo-Taiwan ICAN) (pp. 45-48). Punjab, India: IEEE.

Chaturvedi, P., Khan, A., Tian, M., Huerta, E. A., Zheng, H. (2022). Inference-

optimized AI and High Performance Computing for Gravitational Wave

Detection at Scale. ArXiv, 11.

Du, Y., Chen, Z., J, C., Yin, X., Zheng, T., Li, C., Du, Y., Jiang, Y. (2022). SVTR:

Scene Text Recognition with a Single Visual Model. arXiv, 6.

75

Haenlein, M., Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the

Past, Present, and Future of Artificial Intelligence. California Management

Review, 1-10.

Hao, Z. (2018). Deep Learning Review and Discussion of Its Future Development.

MATEC Web of Conferences, 2.

Hinton, G., Vinyals, O., Dean, J. (2015). Distilling the Knowledge in a Neural

Network. ArXiv, 2.

Huang, H. (2023, April 18). open-mmlab. Retrieved from GitHub:

https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8

Janiesch, C., Zschech, P., Heinrich, K. (2021). Machine learning and Deep

Learning. Springer, 5.

Jegham, N., Koh, C. Y., Abdelatti, M., Hendawi, A. (2024). Evaluating the

Evolution of YOLO (You Only Look Once) Models: A Comprehensive

Benchmark Study of YOLO11 and Its Predecessors. ArXiv, 18.

Khanam, R., Hussain, M. (2024). YOLOv11: An Overview of the Key

Architectural Enhancements. ArXiv, 8.

Kim, J., Chang, S., Kwak, N. (2021). PQK: Model Compression via Pruning,

Quantization, and Knowledge Distillation. ArXiv, 1-2.

Li, H. (2022). Acceleration of Deep Learning Applications using Intel Distribution

of OpenVINO Toolkit. University of Illinois Urbana-Champaign, 35.

Liu, X., Li, Y. (2024). A Multiscale Grouped Convolution and Lightweight

Adaptive Downsampling-Based Detection of Protective Equipment for

Power Workers. Electronics, 17.

Lubis, M. S. (2021). Implementasi Artificial Intelligence pada System Manufaktur

Terpadu. Jurnal Teknologi Industri, Fakultas Teknik - Universitas

Tarumanegara, 7.

Luo, B., Kou, Z., Han, C., Wu, J. (2023). A “Hardware-Friendly” Foreign Object

Identification Method for Belt Conveyors Based on Improved YOLOv8.

Appl. Sci, 17.

Mani, C., Paul, T. S., Archambault, P. M., Marois, A. (2024). Machine Learning

Workflow for Edge Computed Arrhytmia Detection in Exploration Class

Missions. Microgravity, 7.

76

O'Neill, J., Ver Steeg, G., Galstyan, A. (2020). Compressing Deep Neural Networks

via Layer Fusion. ArXiv, 7.

Pochelu, P. (2022). Deep Learning Inference Frameworks Benchmark. ArXiv, 1.

Prasetyo H. dan Sutopo, W. (2018). Industri 4.0: Telaah Klasifikasi Aspek dan Arah

Perkembangan Riset. J@ti Undip: Jurnal Teknik Industri, 24.

Ramadhani, A., Polem, A. M., Zahra, S. S. (2022). Konsep Dasar Uji T Dalam

Statistika Pendidikan. Al Ittihadu, 1.

Rao, S. N. (2024, October 23). YOLOv11 Architecture Explained: Next-Level

Object Detection with Enhanced Speed and Accuracy. Retrieved from

Medium: https://medium.com/@nikhil-rao-20/yolov11-explained-next-

level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71

Redmon, J. Divvala, S., Girshick, R., Farhadi, A. (2016). You Only Look Once :

Unified, Real-Time Object Detection. Computer Vision Pattern and

Recognition, 780-781.

Reis, D., Hong, J., Kupec, J., Daoudi, A. (2024). Real-Time Flying Object

Detection with YOLOv8. ArXiv, 8-9.

Swathi, M., Dhayalakrishnan, R. (2024). Bots and Books: How Artificial

Intelligence is Shaping Contemporary Literature. Contemporaneity of

English Language and Literature in the Robotized Millennium, 4.

Szeliski, R. (2011). Recognition. In: Computer Vision. Texts in Computer Science.

Springer, 575.

Terven, J., Cordova-Esparza, D., Romero-Gonzales, J. (2023). A Comprehensive

Review of YOLO Architectures in Computer Vision: From YOLOv1 to

YOLOv8 and YOLO-NAS. Machine Learning & Knowledge Extraction,

17012-1703.

Zhongyi, L., Yih, M., Ota, J. M., Owens, J. D., Muyan-Ozcelik, P. (2019).

Benchmarking Deep Learning Frameworks and Investigating FPGA

Deployment for Traffic Sign Classification and Detection. IEEE, 11.

Zhou, Y., Yang, K. (2022). Exploring TensorRT to Improve Real-Time Inference

for Deep Learning. IEEE, 8.

