
Implementasi Plugin Agent Reinforcement Learning

Menggunakan Metode A2C dan PPO di Platform

Godot

LAPORAN TUGAS AKHIR

Oleh:

Marvin Adinata

312110009

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2025



LEMBAR PENGESAHAN TUGAS AKHIR

Implementasi Plugin Agent Reinforcement Learning Menggunakan

Metode A2C dan PPO di Platform Godot

Oleh:

Marvin Adinata

NIM. 312110009

dari:

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan

dan berhak mendapatkan gelar Sarjana S.Kom.

Dosen Pembimbing 1,

Paulus Lucky Tirma Irawan,

S.Kom., MT.

NIP. 20100005

Dosen Pembimbing 2,

Mochamad Subianto,

S.Kom., M.Cs.

NIP. 20100002

Dekan Fakultas Teknologi dan Desain

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd.

NIP. 20070035

I



KATA PENGANTAR

Puji syukur dipanjatkan kehadirat Tuhan Yang Maha Esa, yang atas

restu-Nya sehingga Tugas Akhir inidapat diselesaikan dengan baik. Laporan ini

berisikan hasil dari Tugas Akhir selama kurang lebih enam bulan. Pada

kesempatan kali ini penulis mengucapkan terima kasih kepada seluruh

pihak-pihak yang telah membantu selama proses pelaksanaan Tugas Akhir

maupun dalam penyusunan laporannya, di antaranya:

1. Kedua orang tua terkasih, yang telah memberikan dukungan dan semangat

selama menjalani kegiatan TA,

2. Paulus Lucky Tirma Irawan, S.Kom., MT. & Mochamad Subianto,

S.Kom., M.Cs. sebagai pembimbing Tugas Akhir,

3. Bapak Dr. Eng. Romy Budhi Widodo selaku Dekan dari Fakultas

Teknologi dan Desain Universitas,

4. Serta teman-teman yang telah memberikan dukungan selama proses

penyelesaian kegiatan TA ini.

Laporan ini disusun berdasarkan hasil kegiatan Tugas Akhir yang

dilaksanakan selama enam bulan. Tugas Akhir ini merupakan kewajiban

mahasiswa Teknik Informatika Universitas Ma Chung sebagai prasyarat

kelulusan.

Malang, 27 Oktober 2025

Marvin Adinata

II



DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIR I

KATA PENGANTAR II

DAFTAR ISI III

DAFTAR GAMBAR IV

DAFTAR TABEL V

BAB I
PENDAHULUAN 1

1.1 Latar Belakang 1
1.2 Identifikasi Masalah 2
1.3 Batasan Masalah 3
1.4 Rumusan Masalah 3
1.5 Tujuan Penelitian 3
1.6 Manfaat Penelitian 3
1.7 Luaran 3
1.8 Sistematika Penelitian 4

BAB II
TINJAUAN PUSTAKA 5

2.1 Godot Engine 5
2.2 Reinforcement Learning 7
2.3 Advantage Actor Critic 8
2.4 Proximal Policy Optimization 10
2.5 StableBaseline3 11
2.6 AgentRL Plugin 13
2.7 Uji T 15

BAB III
ANALISIS DAN PERANCANGAN SISTEM 17

3.1 Alur Penelitian 17
3.2 Studi Literatur 19

3.2.1 Reinforcement Learning (RL) 19
3.2.2 Algoritma Advantage Actor-Critic (A2C) 19
3.2.3 Algoritma Proximal Policy Optimization (PPO) 20
3.2.4 Uji T 20

3.2.5 AgentRL Plugin di Godot 20
3.2.6 CartPole 21
3.2.7 CliffWalking 22

3.3 Perancangan Sistem 23
3.3.1 Game CartPole 23

III



3.3.2 Game CliffWalking 28
3.4 Evaluasi 32

BAB IV 34
HASIL DAN PEMBAHASAN 34

4.1 Implementasi Sistem 34
4.2 Hasil Pengujian 39

4.2.1 CartPole 40
4.2.2 CliffWalking 50

4.3 Analisis dan Pembahasan 59
BAB V 63
KESIMPULAN DAN SARAN 63

5.1 Kesimpulan 63
5.2 Saran 63

Daftar Pustaka 65

III



DAFTAR GAMBAR

Gambar 2.1 Diagram Reinforcement Learning 8
Gambar 2.2 Arsitektur Algoritma A2C 9
Gambar 2.3 Arsitektur Algoritma PPO 11
Gambar 2.4 Diagram Plugin AgentRL 14
Gambar 3.1 Flowchart Alur Penelitian 17
Gambar 3.2 Plugin AgentRL di Godot 21
Gambar 3.3 Environment Game CartPole 22
Gambar 3.4 Environment Game CliffWalking 22
Gambar 3.5 Game CartPole di Godot 23
Gambar 3.6 SceneTree Game CartPole 24
Gambar 3.7 Objek Cart dan Pole 25
Gambar 3.8 Objek Ground dan Batas Arena 26
Gambar 3.9 Code Action Space CartPole 26
Gambar 3.10 Code Action Space CliffWalking 27
Gambar 3.11 Game CliffWalking di Godot 28
Gambar 3.12 Scene Tree CliffWalking 29
Gambar 3.13 Tilemap Arena CliffWalking 30
Gambar 3.14 Player dan Agen CliffWalking 31
Gambar 3.15 Code Action Space CliffWalking 31
Gambar 3.16 Kode Observation Space CliffWalking 32
Gambar 4.1 Menu AssetLib di Godot 34
Gambar 4.2 Implementasi Node AIController 34
Gambar 4.3 Potongan Kode AIController 35
Gambar 4.4 Konfigurasi Node Sync 36
Gambar 4.5 Grafik ep_len_mean Algoritma PPO hasil training CartPole 40
Gambar 4.6 Grafik ep_len_mean Algoritma PPO hasil training CartPole 41
Gambar 4.7 Grafik entropy_loss hasil training CartPole 42
Gambar 4.8 Grafik value_loss hasil training CartPole 43
Gambar 4.9 Grafik train loss hasil training CartPole 44
Gambar 4.10 Grafik policy_loss hasil training CartPole 45
Gambar 4.11 Grafik policy_gradient_loss hasil training CartPole 46
Gambar 4.12 Agen CartPole Dengan Algoritma PPO Setiap 100 Frame 50
Gambar 4.13 Grafik ep_len_mean Algoritma A2C hasil training CliffWalking50
Gambar 4.14 Grafik ep_len_mean Algoritma PPO hasil training CliffWalking51
Gambar 4.15 Grafik ep_rew_mean Algoritma A2C hasil training CliffWalking52
Gambar 4.16 Grafik ep_rew_mean Algoritma PPO hasil training CliffWalking53
Gambar 4.17 Grafik entropy_loss hasil training CliffWalking 54

IV



Gambar 4.18 Grafik value_loss hasil training CliffWalking 55
Gambar 4.19 Grafik train loss hasil training CliffWalking 56
Gambar 4.20 Grafik policy_loss hasil training CliffWalking 57
Gambar 4.21 Grafik policy_gradient_loss hasil training CliffWalking 58
Gambar 4.22 Jalur Algoritma PPO Agen CliffWalking 59
Gambar 4.21 Hasil Uji T ep_len_mean CartPole Menggunakan Python 60
Gambar 4.22 Hasil Uji T ep_len_mean CliffWalking Menggunakan Python61
Gambar 4.23 Hasil Uji T ep_rew_mean CliffWalking Menggunakan Python62

IV



DAFTAR TABEL

Tabel 2.1 Persentase Total Game yang Teridentifikasi di Itch.io 6
Tabel 2.2 Perbedaan SB3 Dengan Framework Lainnya 13
Tabel 4.1 Hyperparameter Algoritma A2C dan PPO 37
Tabel 4.2 Hasil ep_len_mean Training Game CartPole 59
Tabel 4.3 Hasil ep_len_mean Training Game CliffWalking 60
Tabel 4.4 Hasil ep_rew_mean Training Game CliffWalking 61

V



BAB I

PENDAHULUAN
1.1 Latar Belakang

Perkembangan teknologikecerdasan buatan (Artificial Intelligence atau

AI) telah mengalami kemajuan yang pesat dan semakin banyak diterapkan di

berbagai bidang, termasuk dalam industri game. Dalam dunia game, AI memiliki

peran yang sangat penting, seperti mengatur perilaku karakter non-pemain

(non-player character/NPC), mengendalikan musuh, serta menciptakan tantangan

yang seimbang dan menarik bagi pemain (Millington & Funge, 2016).

Salah satu pendekatan AI yang berkembang pesatadalah Reinforcement

Learning (RL), yang merupakan salah satu cabang dari pembelajaran mesin

(machine learning). RL memungkinkan agen untuk belajar dari pengalaman

melalui interaksi dengan lingkungan, di mana agen tersebut menerima umpan

balik berupa reward (penghargaan) atau punishment (hukuman) atas tindakan

yang dilakukan (Sutton & Barto, 2018). Dengan mekanisme ini, agen dapat

mempelajari strategi optimal untuk mencapai tujuan tertentu tanpa perlu diberikan

instruksi eksplisit.

Berbeda dengan AI konvensionaldalam game yang umumnya berbasis

pada aturan statis (rule-based) atau skrip yang telah diprogram sebelumnya,AI

berbasis Reinforcement Learning bersifat adaptif dan dapat belajar dari

pengalaman. AI konvensional cenderung bersifat deterministik dan mudah ditebak

perilakunya,sedangkan agen RL mampu mengeksplorasi berbagai kemungkinan

aksi dan menyesuaikan strateginya secara dinamis (Julianiet al., 2018). Hal ini

membuat RL sangat potensial untuk menciptakan pengalaman bermain yang lebih

alami, tidak repetitif, dan menantang.

Dalam bidang reinforcementlearning,pemilihan algoritma yang mampu

belajar secara stabildan efisien dari interaksi dengan lingkungan menjadi sangat

penting. Salah satu pendekatan yang cukup populer adalah Advantage

Actor-Critic (A2C), yaitu versi sinkron dari Asynchronous Advantage Actor-Critic

(A3C) yang diperkenalkan oleh Mnih et al. (2016). A2C merupakan

pengembangan darimetode Actor-Critic yang menggabungkan dua pendekatan

utama policy-based (actor)dan value-based (critic).Komponen actor bertugas

1



memilih aksi berdasarkan distribusi probabilitas dari suatu policy, sementara critic

mengevaluasi aksi tersebut dengan menghitung nilai keunggulan (advantage) dari

aksi terhadap nilai state. Nilai advantage ini kemudian digunakan untuk

memperbaiki policy agar semakin optimal dari waktu ke waktu.

Proximal Policy Optimization (PPO)adalah salah satu algoritma dalam

metode Reinforcement Learning yang dikembangkan untuk mengatasi kelemahan

dari algoritma policy gradient konvensionalyang cenderung tidak stabil saat

pelatihan. PPO diperkenalkan oleh OpenAI dalam jurnal “Proximal Policy

Optimization Algorithms” (Schulman et al., 2017) sebagai solusi yang lebih

sederhana dan efisien dibandingkan metode seperti Trust Region Policy

Optimization (TRPO), yang memerlukan komputasi kompleks. Inti dari PPO

terletak pada penggunaan fungsi objektif dengan mekanisme clipping, yang

membatasi perubahan kebijakan agar tidak terlalu ekstrem dari kebijakan

sebelumnya.Dengan cara ini, PPO dapat menjaga stabilitas pelatihan sekaligus

memungkinkan pembaruan kebijakan secara lebih fleksibel.

Untuk memfasilitasi eksperimen ini, game CartPole dan CliffWalking

dikembangkan menggunakan game engine Godot. Proses pelatihan agen RL

dilakukan melalui plugin AgentRL oleh (Beeching et al., 2021), yang

memungkinkan integrasi antara Godot dan Python secara real-time. Dengan

kombinasi ini, pelatihan agen dapat berjalan dalam lingkungan visual yang

interaktif, sekaligus menggunakan framework model RL di backend Python.

Penelitian ini bertujuan untuk mengimplementasikan algoritma A2C dan

PPO dalam game CartPole dan Cliff Walking menggunakan Godot dan AgentRL,

serta mengevaluasi performa agen dalam menyelesaikan tugas. Harapannya, hasil

dari penelitian ini dapat memberikan wawasan dalam pengembangan AIpada

game serta menjadi pijakan untuk penelitian lebih lanjut dalam penerapan

Reinforcement Learning menggunakan game engine Godot dan plugin AgentRL.

1.2 Identifikasi Masalah

Berdasarkan latar belakang yang telah dijelaskan, permasalahan yang

diidentifikasi dalam penelitian ini antara lain:

1. Bagaimana implementasi plugin AgentRL di platform Godot?

2



2. Bagaimana performa algoritma A2C dan PPO sebagai agen RL di Godot?

1.3 Batasan Masalah

Agar penelitian ini tetap fokus dan terarah, terdapat beberapa batasan masalah

yang ditetapkan, yaitu:

1. Penelitian dilakukan di platform Godot dengan bantuan plugin AgentRL

2. Pengujian algoritma dilakukan pada 2 jenis game yakni CartPole dan

CliffWalking

1.4 Rumusan Masalah

Berdasarkan identifikasi dan batasan masalah yang telah dijelaskan, rumusan

masalah dalam penelitian ini adalah:

1. Bagaimana hasil implementasinya AgentRL di Godot?

2. Algoritma mana yang lebih baik?

1.5 Tujuan Penelitian

Penelitian ini bertujuan untuk:

1. Cara implementasi RL di Godot

2. Mengevaluasi hasil implementasi RL di godot dengan algoritma A2C dan

PPO

1.6 Manfaat Penelitian

Hasil dari penelitian ini diharapkan memberikan manfaat di antaranya:

1. Memperlihatkan bagaimana implementasi RL di Godot

2. Hasil implementasi RL di godot dapat dijadikan referensi jika ingin

mengembangkan game dengan RL di Godot

3. Memberi kontribusi ilmiah dalam penerapan RL di Godot

1.7 Luaran

Penelitian ini diharapkan menghasilkan luaran berupa:

1. Game CartPole dan CliffWalking dengan RL

2. Publikasi ilmiah

3



1.8 Sistematika Penelitian

Sistematika penulisan Tugas Akhir ini dibagi menjadi lima bab seperti berikut ini.

Bab I Pendahuluan

Bab ini terdiri dari latar belakang, identifikasi masalah,

rumusan masalah, Batasan masalah, tujuan penelitian,

manfaat penelitian, luaran tugas akhir, dan sistematika

penelitian.

Bab II Tinjauan Pustaka

Bab ini berisi urutan sistematis terkait literatur yang

digunakan dalam proses penyusunan laporan Tugas Akhir

sehingga diperoleh landasan teori terkait Implementasi

Plugin Agent Reinforcement Learning Menggunakan

Metode A2C dan PPO di platform Godot.

Bab III Analisis dan Perancangan

Bab ini menjelaskan mengenai tahapan pengerjaan serta

analisis dari penelitian yang akan dilakukan. Tahapan

pengerjaan meliputi alur penelitian studi literatur, hingga

perancangan sistem dan evaluasi.

Bab IV Hasil dan Pembahasan

Bab ini menjelaskan mengenai hasil dari implementasi dan

pengujian ReinforcementLearning menggunakan metode

A2C dan PPO pada dua jenis permainan, yaitu CartPole

dan CliffWalking.Pembahasan dilakukan berdasarkan data

hasil pelatihan agen.

Bab V Kesimpulan dan Saran

Bab ini menjelaskan kesimpulan dari hasil penelitian yang

telah dilakukan serta memberikan saran untuk

pengembangan lebih lanjut di masa depan.

4



BAB II

TINJAUAN PUSTAKA

2.1 Godot Engine

Godot Engine merupakan sebuah platform pengembangan game sumber

terbuka (open-source) yang mendukung pengembangan game 2D maupun 3D.

Godot dikembangkan oleh komunitas global dengan lisensi MIT, sehingga bebas

digunakan untuk keperluan komersial maupun non-komersial tanpa biaya lisensi.

Godot menyediakan lingkungan pengembangan terpadu (IDE)yang dilengkapi

dengan fitur drag and drop, sistem scene dan node,serta bahasa pemrograman

internal yang disebut GDScript.

Salah satu kekuatan Godot adalah sistem hierarki scene dan node yang

modular dan fleksibel. Pengembang dapat membuat unit-unit fungsional kecil

(node) yang dapat dikombinasikan menjadiscene, dan kemudian scene tersebut

dapat digunakan kembali dalam scene lainnya. Sistem ini memudahkan

pengembangan aplikasi interaktif dengan struktur yang terorganisir.

Selain GDScript, Godot juga mendukung bahasa pemrograman lain seperti

C#, dan C++ melalui GDNative. Fitur cross-platform export memungkinkan

game yang dikembangkan di Godot dapat dijalankan di berbagai platform seperti

Windows, Linux, Android, iOS, dan Web HTML5.

Kemampuan Godot dalam berintegrasi dengan sistem eksternal seperti

Python, ONNX, maupun komunikasi TCP/UDP menjadikannya platform yang

fleksibel untuk implementasi Reinforcement Learning. Dalam penelitian berbasis

pembelajaran agen,Godot dapat digunakan sebagailingkungan simulasitempat

agen melakukan interaksi dan belajar dari hasil aksinya. Ketersediaan

dokumentasiyang terus berkembang dan dukungan komunitas open-source juga

mempermudah proses pengembangan dan eksperimen akademik. Oleh karena itu,

Godot Engine dinilai relevan dan potensial untuk digunakan sebagai basis

pengembangan simulasi interaktif dalam penelitian reinforcement learning

berbasis game.

5



Tabel 2.1 Persentase Total Game yang Teridentifikasi di Itch.io

Game Engine 2018 2022 2023

Unity 47.3% ▲49.75% ▼46.33%

Construct 12.3% ▲13.12% ▼13.82%

GameMaker 11.0% ▼7.32% ▼6.95%

Twine 6.2% ▼5.35% ▲6.03%

RPG Maker 3.9% ▼2.74% ▲2.76%

Bitsy 3.3% ▼3.11% ▼3.18%

PICO-8 2.9% ▼2.68% ▼2.60%

Unreal 2.8% ▲2.92% ▲3.01%

Godot 2.5% ▲5.55% ▲7.51%

Ren’Py 2.0% ▲2.07% ▲2.07%

Other 5.9% ▼5.55% ▲5.75%

Tabel 2.1 diambil dari “On the relevance of the Godot Engine in the indie

game development industry” (Holfeld, 2023) menunjukkan persentase

penggunaan berbagai game engine berdasarkan total jumlah game yang diunggah

di platform itch.io pada tahun 2018, 2022, dan 2023. Data ini dikumpulkan pada

periode 30 September 2022 hingga 21 Oktober 2023 dan memberikan gambaran

tren penggunaan engine dalam komunitas pengembang game independen.

Dari data tersebut, Unity masih menjadiengine paling dominan,dengan

kontribusi sebesar 47.3% pada 2018 dan meningkat signifikan sebesar 49.75%

pada 2022, meskipun kemudian mengalami penurunan menjadi 46.33% pada

2023. Construct juga menunjukkan tren yang menarik, yaitu peningkatan sebesar

13.12% pada 2022, namun turun menjadi 13.82% pada 2023.GameMaker dan

Twine mengalamipenurunan dan kenaikan bergantian,sedangkan engine seperti

RPG Maker, Unreal, dan Ren'Py menunjukkan perubahan yang relatif kecil dari

tahun ke tahun.

6



Penggunaan Godotmengalamipertumbuhan yang positif dan konsisten:

dari 2.5% di tahun 2018 meningkat 5.55% di 2022 dan naik lagi menjadi 7.51% di

2023. Hal ini menunjukkan bahwa Godot semakin populer, kemungkinan karena

sifatnya yang open-source,ringan, dan tanpa biaya lisensi, sehingga menarik bagi

pengembang game indie. Peningkatan ini juga menunjukkan relevansi dan potensi

Godot sebagai alternatif yang layak bagi engine komersial dalam pengembangan

game, termasuk untuk kebutuhan eksperimen akademik atau penelitian.

Dengan kata lain, tren ini mencerminkan pergeseran preferensi komunitas

terhadap game engine yang lebih terbuka dan dapat diakses secara gratis seperti

Godot, terutama di tengah meningkatnya kekhawatiran terhadap biaya dan

kebijakan lisensi dari engine komersial.

2.2 Reinforcement Learning

ReinforcementLearning (RL) merupakan salah satu pendekatan dalam

pembelajaran mesin di mana agen belajar melalui interaksi langsung dengan

lingkungan untuk memaksimalkan reward kumulatifjangka panjang (Sutton &

Barto, 2018). Dalam RL, agen mengambil tindakan berdasarkan kondisi

lingkungan, kemudian menerima umpan balik dalam bentuk reward dan

mengubah kebijakannya berdasarkan pengalaman tersebut.Pendekatan RL telah

diaplikasikan secara luas dalam berbagaipermasalahan,termasuk pengendalian

sistem dinamis seperti robotika dan game. Salah satu formulasi yang umum

digunakan dalam RL adalah Markov Decision Process (MDP),yang terdiri atas

state, action, transition, dan reward.

Dalam eksperimen yang kompleks, penggunaan RL sering dikombinasikan

dengan pembelajaran mendalam (deep learning), menghasilkan pendekatan Deep

Reinforcement Learning (DRL). Mnih et al. (2016) memperkenalkan metode

asynchronousyang mampu mempercepatdan menstabilkan pembelajaran agen

melalui penggunaan banyak thread pelatihan secara paralel.

7



Gambar 2.1 Diagram Reinforcement Learning

Gambar 2.1 merupakan arsitektur dasar dari proses Reinforcement

Learning (RL) yang diambildari “ArtificialIntuitions of Generative Design: An

Approach Based on Reinforcement Learning” (Wang et al., 2021) yang

merupakan kerangka kerja pembelajaran di mana agen belajar mengambil

tindakan dalam suatu lingkungan untuk memaksimalkan totalreward kumulatif

(Sutton & Barto, 2018).

Dalam skema ini, terdapat dua komponen utama, yaitu agent dan

environment. Agent menerima state saat ini (St) dan reward (Rt) dari environment,

kemudian merespons dengan memilih suatu action (At). Aksi tersebut

memengaruhi kondisi environment yang kemudian menghasilkan state berikutnya

(St+1) dan reward baru (Rt+1). Siklus ini berlangsung berulang dalam proses

interaktif antara agent dan environment, di mana tujuan utama agent adalah

mempelajari kebijakan yang memaksimalkan reward jangka panjang.

Gambar 2.1 menekankan bahwa proses RL adalah bentuk pembelajaran

berbasis pengalaman langsung,berbeda dengan pembelajaran supervised learning

yang mengandalkan data berlabel. Dengan pendekatan ini, agent dapat

mengembangkan perilaku optimal secara bertahap melalui eksplorasi dan evaluasi

hasil dari setiap aksi yang diambil.

2.3 Advantage Actor Critic

Advantage Actor Critic (A2C) merupakan pengembangan darimetode

Actor-Critic yang menggabungkan keunggulan dari dua pendekatan utama dalam

RL, yaitu policy-based dan value-based. Kelebihan utama dari A2C adalah

kemampuannya dalam mengurangi varians dan mempercepat konvergensi melalui

8



penggunaan advantage function, yaitu selisih antara estimasi nilai sebenarnya dan

estimasi nilai rata-rata.Metode ini juga menggunakan pendekatan sinkron dalam

pelatihan, yang membedakannya dari Asynchronous Advantage Actor-Critic

(A3C) yang bersifat asynchronous. Kinerja A2C dievaluasi berdasarkan

akumulasi reward rata-rata per episode.

Gambar 2.2 Arsitektur Algoritma A2C

Gambar 2.2 merupakan representasi arsitektur algoritma Advantage

Actor-Critic (A2C) yang diambil dari “ReinforcementLearning: A Technical

Introduction – Part I” (Ramstedt, 2019). Dalam algoritma A2C, terdapat dua

komponen utama, yaitu Actor dan Critic. Actor bertugas untuk memilih aksi

berdasarkan kondisilingkungan saatini (state), sedangkan Critic bertugas untuk

mengevaluasi aksi yang diambil Actor dengan memberikan nilai (value) dari suatu

kondisi.

Proses dimulai ketika lingkungan (environment) memberikan kondisi

(state) kepada agen. Berdasarkan kondisi ini, Actor memilih aksi yang akan

diambil. Aksi tersebut kemudian dikirimkan kembalike lingkungan yang akan

merespons dengan kondisibaru dan reward. Reward ini digunakan oleh Critic

untuk memperbarui estimasi nilai kondisi, yang kemudian dikirim kembalike

Actor sebagai dasar pembelajaran dalam memilih aksi berikutnya.

9



Gambar 2.2 menggambarkan bagaimana interaksi antara Actor dan Critic

terjadi secara simultan dan saling memperkuat satu sama lain dalam proses

pembelajaran.Pendekatan ini memberikan kestabilan dalam pembaruan kebijakan

dan efisiensi dalam pembelajaran karena pemisahan peran eksplorasi (Actor) dan

evaluasi (Critic), serta penggunaan keunggulan (advantage) sebagai sinyal

pelatihan untuk mengurangi variasi.

2.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) adalah algoritma RL yang

dikembangkan oleh Schulman et al. (2017) untuk mengatasi instabilitas yang

sering muncul pada algoritma policy gradient. PPO menggunakan teknik clipped

surrogate objective, yang membatasi perubahan drastis pada kebijakan selama

proses pelatihan, sehingga menghasilkan pembelajaran yang lebih stabil dan

andal. PPO saat ini menjadi salah satu algoritma paling populer di kalangan

praktisi karena keseimbangan antara performa, stabilitas, dan kemudahan

implementasi.Selain itu, PPO banyak digunakan dalam berbagai platform seperti

OpenAI Gym, Unity ML-Agents, dan juga diadaptasi dalam plugin Godot

AgentRL. Kalkulasi performa PPO mencakup reward rata-rata, stabilitas

pembelajaran (dilihat dari grafik reward terhadap episode), dan waktu

konvergensi.Berdasarkan hasildari Schulman et al. (2017), PPO menunjukkan

hasil superior dalam berbagai lingkungan, termasuk Atari dan Mujoco, karena

stabil dan mudah diimplementasikan.

Gambar 2.3 memperlihatkan arsitektur dari algoritma Proximal Policy

Optimization (PPO) yang diambil dari “On Improving Cross-dataset

Generalization of Deepfake Detectors” (Nadimpalli et al., 2022), yang merupakan

salah satu algoritma policy gradient paling stabil dan efisien dalam reinforcement

learning. PPO merupakan pengembangan dari metode Actor-Critic yang

dirancang untuk memperbaiki kebijakan secara stabil tanpa memerlukan

algoritma kompleks seperti Trust Region Policy Optimization (TRPO) (Schulman

et al., 2017).

Dalam gambat 2.3, agen terdiri dari dua komponen utama, yaitu Actor dan

Critic. Actor bertugas menghasilkan kebijakan π(st) yang digunakan untuk

10



memilih aksi at berdasarkan keadaan saatini st. Sementara itu,Critic berfungsi

untuk mengevaluasi seberapa baik aksi tersebut melalui estimasi fungsi nilai Q(st,

at). Lingkungan memberikan umpan balik berupa reward (rt) dan keadaan baru

(st+1) setelah aksi dilakukan.

Gambar 2.3 Arsitektur Algoritma PPO

PPO menggunakan mekanisme pembaruan kebijakan yang menghindari

perubahan drastis (over-updating) melalui kliping (clipping) fungsi objektif.

Gambar 2.3 juga menampilkan entropi (entropy) sebagai bagian dari sinyal

pembelajaran tambahan untuk menjaga eksplorasikebijakan agar tidak terlalu

deterministik.Pendekatan ini menghasilkan pembelajaran yang lebih stabildan

efisien dibanding metode pendahulunya.

2.5 StableBaseline3

Stable-Baselines3 (SB3) merupakan kerangka kerja (framework)

open-source yang menyediakan implementasialgoritma reinforcementlearning

(RL) yang stabil dan dapat direproduksi.Framework ini ditulis dalam bahasa

Python dan dibangun di atas PyTorch untuk memudahkan proses pelatihan dan

evaluasi agen RL secara konsisten.Raffin et al. (2021) menyebutkan bahwa SB3

hadir sebagai perbaikan dari proyek sebelumnya, Stable-Baselines, dengan

mengedepankan modularitas,dokumentasi yang lebih lengkap, dan integrasi yang

11



baik dengan ekosistem RL modern. Framework ini mendukung berbagai

algoritma populer seperti Proximal Policy Optimization (PPO)dan Advantage

Actor-Critic (A2C). Keandalan SB3 juga diperkuat dengan serangkaian pengujian

unit dan eksperimen yang sistematis, menjadikannya sebagaisalah satu acuan

utama dalam penelitian maupun pengembangan aplikasi berbasis RL. Kemudahan

penggunaan, fleksibilitas dalam konfigurasi hyperparameter,serta komunitas

aktif menjadikan SB3 sangat relevan untuk digunakan baik oleh peneliti maupun

praktisi dalam mengembangkan agen RL yang efisien dan dapat dikontrol.

Tabel 2.2 diambil dari “Stable-Baselines3: Reliable Reinforcement

Learning Implementations” (Raffin et al., 2021). Stable-Baselines3 (SB3)

menunjukkan performa yang unggul dibandingkan pustaka reinforcement learning

lainnya seperti OpenAI Baselines, PFRL, RLlib, Tianshou, Acme, dan Tensorforce.

Berdasarkan data perbandingan dari Raffin et al. (2021), SB3 dibangun

menggunakan PyTorch, yang saat ini menjadi backend populer dalam

pengembangan model machine learning. SB3 memiliki dokumentasi API dan

panduan pengguna yang lengkap, yang menjadi aspek penting dalam kemudahan

pemakaian oleh peneliti maupun praktisi. Fitur benchmarking dan pretrained

models juga tersedia, memperkuatposisinya sebagaipustaka RL yang aplikatif

dan siap pakai.

Dalam hal kualitas kode, SB3 memiliki tingkat cakupan pengujian (test

coverage) hingga 95%, jauh di atas beberapa pustaka lain seperti OpenAI

Baselines (49%) atau Acme (74%). SB3 juga menyediakan sistem pemeriksaan

tipe (type checking) dan template untuk pelaporan isu atau pengajuan perubahan

kode (pull request), yang menandakan pengelolaan proyek yang profesional.

Selain itu, frekuensipembaruan proyek SB3 cukup tinggi, dengan komit terbaru

selalu dalam rentang kurang dari satu minggu, menunjukkan komunitas yang

aktif. Dalam enam bulan terakhir, SB3 juga mencatatkan 75 pull request yang

disetujui, jauh melampaui pustaka seperti PFRL (13) atau Acme (5).

Tabel 2.2 Perbedaan SB3 Dengan Framework Lainnya

SB3 OAI
Baselines PFRL RLlib Tianshou Acme Tensorforce

12



Backend PyTorch TF PyTorch PyTorch
/TF PyTorch Jax/TF TF

User Guide /
Tutorials ✓✓ – ✓✓ ✓✓ ✓✓ ✓✓ ✓

API
Documentation ✓ ✗ ✓ ✓ – ✓ ✓

Benchmark ✓ ✗ ✓ ✓ ✓ ✓ ✗

Pretrained
models ✓ ✗ ✗ ✓ ✗ ✓ ✗

Test Coverage 95% 49% ? ? 94% 74% 81%

Type Checking ✓ ✗ ✓ ✓ ✓ ✓ ✓

Issue / PR
Template ✓ ✗ ✗ ✓ ✓ ✓ ✓

Last Commit
(age)

< 1
week

> 6
months

< 1
month

< 1
week < 1 week < 1

week < 1 month

Approved PRs
(6 mo.) 75 0 13 222 85 5 7

Secara keseluruhan, SB3 menonjol sebagai pustaka RL yang matang,

terdokumentasidengan baik, serta secara aktif dikembangkan dan didukung oleh

komunitas. Kelebihan-kelebihan ini menjadikannya pilihan utama dalam

penelitian dan pengembangan sistem reinforcement learning.

2.6 AgentRL Plugin

AgentRL merupakan plugin open-source yang memungkinkan pengguna

mengintegrasikan algoritma reinforcement learning ke dalam game engine Godot

(Torrado et al., 2021). Plugin ini mendukung berbagai jenis lingkungan simulasi

dan kompatibel dengan algoritma seperti PPO dan A2C melalui antarmuka

Python TCP yang terhubung dengan backend seperti Stable-Baselines3.

Plugin AgentRL di Godot bekerja dengan cara mengirimkan data observasi

dan reward dari agen ke server Python melalui koneksi TCP. Di sisi Python, data

13



tersebut diterima, diekstrak, lalu diproses oleh model untuk menentukan aksi

selanjutnya. Hasil aksi ini kemudian dikirim kembali ke Godot melalui TCP,

diekstrak, dan digunakan untuk memperbarui kondisi environment di Godot

sehingga episode dapat berlanjut, proses ini berulang hingga batas timesteps

tercapai.

Gambar 2.4 Diagram Plugin AgentRL

Gambar 2.4 menggambarkan arsitektur paralel dalam AgentRL yang

diambil dari (Beeching et al., 2021). Arsitektur ini mengadopsi pendekatan

terdistribusi untuk meningkatkan efisiensi pelatihan dalam Reinforcement

Learning dengan memisahkan komponen utama ke dalam tiga bagian utama:

Learner, Actor, dan Environment.

1. Learner

Learner merupakan komponen pusat yang bertugas mengelola proses

pelatihan. Ia menerima batch trajektori (trajectory batches) dari para

actor, melakukan pembaruan model, dan menyinkronkan parameter

terbaru ke semua actor.Ini memungkinkan proses pelatihan yang efisien

dan terpusat.

2. Actors

Setiap actor menerima salinan model dari learner dan menjalankan proses

interaksi dengan lingkungan secara paralel.Mereka mengumpulkan data

interaksi (state, action, reward) dari lingkungan dan mengirimkannya

kembali ke learner dalam bentuk batch. Proses ini mempercepat

eksplorasi ruang aksi karena dilaksanakan secara simultan oleh banyak

actor.

3. Environments dan Agents

Setiap actor terhubung dengan satu atau lebih environment, yang di

14



dalamnya terdapat satu atau lebih agent. Para agen inilah yang melakukan

aksi dalam lingkungan berdasarkan kebijakan yang ditentukan oleh model.

Sinkronisasiantara actor dan agent mencakup pertukaran observasidan

aksi.

2.7 Uji T

Uji t adalah metode statistik yang digunakan untuk membandingkan

rata-rata dua kelompok,guna menentukan apakah perbedaan tersebutsignifikan

secara statistik atau hanya terjadi karena variasi acak. Uji t pertama kali

diperkenalkan oleh William Sealy Gossetpada tahun 1908 dengan nama pena

"Student",sehingga dikenal juga sebagai Student’s t-test (Gosset, 1908). Menurut

Montgomery dan Runger (2014), terdapat beberapa varian uji t:

● Independent t-test: Membandingkan rata-rata dua kelompok independen.

● Paired t-test: Digunakan jika data berpasangan (misalnya sebelum dan

sesudah perlakuan).

● Welch’s t-test: Versi modifikasi independent t-test yang tidak

mengasumsikan varians kedua kelompok sama.

Welch (1947) memperkenalkan metode ini untuk mengatasi perbedaan

varians antar sampelsehingga lebih fleksibeldigunakan dalam data eksperimen

yang heterogen. Seperti dijelaskan oleh Ruxton (2006),uji t memilikibeberapa

asumsi penting:

● Data berskala interval atau rasio.

● Distribusi mendekati normal (untuk ukuran sampel kecil).

● Observasi antar sampel independen.

Namun, Welch’s t-test dianggap lebih robust terhadap pelanggaran asumsi

kesamaan varians, sehingga banyak digunakan dalam eksperimen komputer,

termasuk pembelajaran mesin dan RL. Demšar (2006) dalam Statistical

Comparisons of Classifiers over Multiple Data Sets menyebutkan bahwa uji t

banyak digunakan untuk membandingkan performa algoritma pembelajaran

mesin, meskipun harus hati-hati terhadap kesalahan tipe I jika dilakukan berulang

kali. Dalam RL, Colas et al. (2019) juga merekomendasikan uji t atau alternatif

non-parametrik untuk membandingkan metode.

15



BAB III

ANALISIS DAN PERANCANGAN SISTEM

3.1 Alur Penelitian

Gambar 3.1 Flowchart Alur Penelitian

Penelitian ini dilakukan dengan beberapa tahapan sistematis yang

bertujuan untuk mengimplementasikan dan menguji algoritma Advantage

Actor-Critic (A2C) dan Proximal Policy Optimization (PPO) menggunakan plugin

AgentRL di platform GodotEngine. Adapun tahapan alur penelitian secara garis

besar dijelaskan sebagai berikut:

1. Studi Literatur

Tahap awal dimulai dengan mengkaji berbagai referensi dan literatur yang

relevan mengenaireinforcement learning,algoritma A2C dan PPO, game

CartPole dan CliffWalking, serta plugin AgentRL di Godot Engine.

16



Sumber yang digunakan antara lain dari Sutton & Barto (2018), Schulman

et al. (2017), dan Torrado et al. (2021).

2. Perancangan Lingkungan Simulasi

Lingkungan permainan (game environment) disiapkan menggunakan

Godot Engine. Dua lingkungan yang digunakan adalah CartPole dan

CliffWalking, masing-masing dirancang menggunakan node seperti

CharacterBody2D, StaticBody2D, Camera2D, dan skrip AI yang

mengontrol agen.

3. Integrasi Plugin AgentRL

Plugin AgentRL yang dikembangkan oleh Torrado et al. (2021)

diintegrasikan ke dalam Godot. Plugin ini memungkinkan komunikasi dua

arah antara Godot dan Python melalui protokol TCP, sehingga model

reinforcement learning dapat dilatih secara eksternal.

4. Implementasi Algoritma A2C dan PPO

Algoritma A2C dan PPO diimplementasikan menggunakan

Stable-Baselines3 (Raffin et al., 2021), yang menyediakan pustaka RL

berbasis PyTorch.Model dilatih dengan data observasi dan reward dari

lingkungan simulasi Godot, yang dikirim melalui plugin AgentRL.

5. Pelatihan Agen

Proses pelatihan dilakukan dengan menjalankan simulasi secara berulang

hingga agen berhasil belajar menyelesaikan tugasnya.Pelatihan dilakukan

untuk kedua game CartPole dan CliffWalking dengan menggunakan kedua

algoritma A2C dan PPO. Parameter pelatihan sepertilearning rate, total

timesteps, dan n_steps disesuaikan untuk setiap eksperimen.

6. Evaluasi Kinerja

Setelah model RL dilatih, dilakukan evaluasiberdasarkan metrik seperti

total reward per episode. Hasil dari algoritma A2C dan PPO dibandingkan

untuk masing-masing game untuk mengetahuiefektivitas masing-masing

metode.

7. Analisis dan Kesimpulan

Dari hasil evaluasi, dilakukan analisis untuk menentukan keunggulan

masing-masing algoritma dalam menyelesaikan dua jenis lingkungan.

17



Penelitian ini ditutup dengan kesimpulan mengenai efektivitas penggunaan

A2C dan PPO di platform Godot menggunakan plugin AgentRL serta

saran untuk penelitian selanjutnya.

3.2 Studi Literatur

3.2.1 Reinforcement Learning (RL)

ReinforcementLearning (RL) merupakan metode pembelajaran mesin di

mana agen belajar mengambilkeputusan melalui interaksi dengan lingkungan.

Agen bertindak berdasarkan state yang diamatinya,memilih aksi tertentu, dan

menerima reward sebagai umpan balik (Sutton & Barto, 2018). Tujuan agen

adalah memaksimalkan akumulasireward jangka panjang dengan membentuk

kebijakan (policy) yang optimal.

Dalam konteks pengembangan game dan simulasi,RL banyak diterapkan

pada lingkungan interaktif seperti CartPole dan CliffWalking karena kedua kasus

tersebut merepresentasikan tantangan kontrol dan eksplorasi (Juliani et al., 2018;

Millington & Funge, 2009).

3.2.2 Algoritma Advantage Actor-Critic (A2C)

A2C adalah algoritma pengembangan dari metode Actor-Critic yang

bekerja secara sinkron. Algoritma ini memisahkan proses pengambilan keputusan

(policy network) dan evaluasi nilai (value network), namun keduanya dilatih

bersamaan.Keunggulan A2C dibanding Actor-Critic biasa adalah stabilitas dan

efisiensi pembelajaran yang lebih baik karena pendekatan advantage, yaitu selisih

antara estimasinilai tindakan aktualdan rata-rata nilai semua tindakan (Mnih et

al., 2016).

Dalam lingkungan CartPole, A2C mampu belajar menjaga keseimbangan

tiang dengan cepat melalui pembaruan berbasis reward yang diberikan setiap

langkah. Sementara itu, pada CliffWalking, A2C menghadapi tantangan besar

karena tingginya penalti dari jurang, namun dengan pendekatan advantage dan

pembaruan sinkron, agen tetap dapat membentuk strategi optimal secara bertahap.

18



3.2.3 Algoritma Proximal Policy Optimization (PPO)

PPO merupakan salah satu algoritma policy gradient paling populer

karena stabilitas dan efisiensinya dalam pelatihan.PPO memperbaruikebijakan

dengan membatasi perubahan dari kebijakan sebelumnya,sehingga mencegah

perubahan drastis yang dapat menyebabkan kerugian performa.Hal ini dilakukan

melalui fungsi klip (clipping function) dalam optimasi kebijakan (Schulman et al.,

2017).

Dalam percobaan pada CartPole, PPO dikenal mampu mencapai performa

optimal dalam waktu pelatihan yang relatif singkat. Untuk CliffWalking,PPO

lebih tahan terhadap jebakan reward negatif karena kemampuannya mengontrol

perubahan kebijakan, memungkinkan agen menghindari cliff sambil tetap

mencapai tujuan (Torrado et al., 2021).

3.2.4 Uji T

Uji t adalah salah satu metode statistik yang paling umum digunakan

untuk menentukan apakah perbedaan rata-rata dua kelompok signifikan secara

statistik. Metode ini diperkenalkan oleh Gosset(1908) dan memiliki beberapa

varian seperti independentt-test, paired t-test, dan Welch’s t-test (Welch, 1947)

yang tidak memerlukan asumsi kesamaan varians. Uji ini banyak diterapkan

dalam penelitian berbasis eksperimen, termasuk pembandingan algoritma

pembelajaran mesin dan reinforcement learning (Demšar, 2006; Colas et al.,

2019). Untuk memastikan validitas,uji t memerlukan asumsiindependensidata

dan distribusimendekatinormal, meskipun Welch’s t-testlebih toleran terhadap

perbedaan varians (Ruxton, 2006).

3.2.5 AgentRL Plugin di Godot

Plugin AgentRL untuk Godot dapat di menyediakan kerangka kerja

modular berbasis Python dan TCP yang memungkinkan integrasialgoritma RL

eksternal seperti A2C dan PPO dengan lingkungan simulasi Godot (Torrado et al.,

2021). Plugin ini memisahkan sisi pelatihan di Python dan simulasi di Godot

Engine, serta memungkinkan eksperimen menggunakan visualisasi real-time dan

desain level yang fleksibel.

19



Gambar 3.2 Plugin AgentRL di Godot

Lingkungan CartPole dapat direplikasi di Godot menggunakan objek

fisika 2D, dengan feedback berupa posisitiang dan kecepatan kereta dikirim ke

Python melalui TCP. Demikian pula, CliffWalking dapat dikonstruksi

menggunakan tile map sederhana, di mana posisi agen, aksi, dan reward dikontrol

secara sinkron antara Godot dan Python.

Dengan menggunakan plugin AgentRL, pelatihan A2C dan PPO dapat

dimonitor secara interaktif,sekaligus menjaga fleksibilitas pengembangan visual

di dalam GodotEngine. Hal ini menjadikan AgentRL sebagai solusi ideal untuk

pengujian dan visualisasi algoritma RL dalam proyek berbasis game engine.

3.2.6 CartPole

CartPole merupakan salah satu lingkungan klasik dalam reinforcement

learning. Lingkungan ini sering digunakan sebagaibenchmark karena memiliki

dinamika fisika sederhana, tetapi cukup menantang untuk menguji algoritma

penguatan. Dalam CartPole, tugas agen adalah menjaga tiang (pole) tetap

seimbang di atas kereta (cart) dengan cara memberikan gaya ke kiri atau ke

kanan. Lingkungan ini termasuk dalam kategori continuous control problem yang

di diskretisasi ke dalam dua aksi.

20



Gambar 3.3 Environment Game CartPole

Menurut Sutton dan Barto (2018), lingkungan seperti CartPole sangat

cocok digunakan untuk menguji algoritma policy gradient seperti A2C, dan PPO,

karena lingkungan ini menyediakan umpan balik langsung terhadap perubahan

kebijakan. Beberapa studi seperti Schulman et al. (2017) juga menggunakan

CartPole sebagai bagian dari eksperimen awal saat memperkenalkan PPO, untuk

menunjukkan efisiensi konvergensi dan stabilitas algoritma.

3.2.7 CliffWalking

Gambar 3.4 Environment Game CliffWalking

CliffWalking merupakan lingkungan diskrit berbasis grid yang

diperkenalkan dalam buku “Reinforcement Learning: An Introduction” oleh

Sutton dan Barto (2018). Lingkungan inimenyerupaipapan grid di mana agen

harus mencapaititik tujuan sambilmenghindari"jurang" di sisi bawah lintasan.

21



Jika agen jatuh ke jurang, maka akan mendapatkan penalti besar dan episode akan

diulang dari titik awal.

Lingkungan ini sering digunakan untuk menekankan pentingnya

exploration dengan exploitation serta untuk menguji efektivitas algoritma berbasis

nilai seperti Q-learning dan SARSA.Namun, CliffWalking juga dapat digunakan

untuk algoritma policy-based seperti A2C dan PPO, khususnya untuk melihat

bagaimana agen belajar menghindari jebakan melalui optimasi kebijakan

langsung.

Lingkungan CliffWalking memberikan tantangan unik karena adanya

sparse reward dan penalti besar, yang membuat proses pelatihan lebih sulit

dibanding CartPole. Ini menjadikannya pilihan yang baik untuk menguji

ketahanan dan efisiensi dari algoritma yang diuji.

3.3 Perancangan Sistem

3.3.1 Game CartPole

Gambar 3.5 Game CartPole di Godot

CartPole adalah simulasi klasik dalam reinforcement learning yang

merepresentasikan masalah pengendalian sistem dinamis.Dalam permainan ini,

sebuah tiang vertikal (pole) dipasang pada sebuah kereta (cart) yang dapat

bergerak ke kiri atau kanan pada lintasan datar.Agen yang mengendalikan cart

22



harus memberikan aksiyang tepat, yaitu mendorong cartke kiri atau ke kanan,

untuk menjaga keseimbangan tiang. Jika tiang jatuh terlalu miring hingga

melebihi batas sudut tertentu, atau jika cart bergerak terlalu jauh dari pusat

lintasan, maka episode akan berakhir.

Gambar 3.6 SceneTree Game CartPole

Dalam perancangan sistem game CartPole menggunakan GodotEngine,

digunakan sebuah node utama yang dinamakan arena. Arena ini berfungsi sebagai

wadah utama yang menampung seluruh elemen yang terlibat dalam simulasi.Di

dalam arena terdapat beberapa elemen penting, antara lain kamera yang

digunakan untuk mengikuti pergerakan cart, serta sebuah scene bernama Cart

yang berisi objek-objek utama dalam simulasi.

Scene Cart ini terdiri dari tiga komponen utama, yaitu cart

(RigidBody2D),pole (RigidBody2D), dan sebuah sambungan engsel (pinjoint2D)

yang menghubungkan keduanya. Cart dan pole adalah objek yang bergerak secara

fisik, sementara pinjoint memungkinkan pole untuk berayun secara bebas di atas

cart, menyerupaisistem pendulum terbalik.Selain itu, terdapat juga permukaan

Ground sebagailandasan tempat cart bergerak.Permukaan ini bersifat statis dan

tidak memiliki gesekan, sesuai dengan asumsi dasar dari simulasi CartPole klasik.

Untuk menampilkan informasi selama simulasi,sistem dilengkapi dengan

antarmuka pengguna (UI) yang menampilkan nilai-nilai penting seperti posisi

23



cart, sudut pole, kecepatan, dan steps. Informasi ini berguna dalam proses

pengamatan dan evaluasi performa agen selama pelatihan.

Sebagai komponen pengendali,terdapat sebuah node agen yang bertugas

memberikan aksi pada sistem berdasarkan hasil perhitungan dari algoritma

reinforcementlearning. Agen ini berinteraksi langsung dengan lingkungan dan

menerima masukan berupa kondisi sistem yang sedang berlangsung.

Agar komunikasi antara Godot dan sistem eksternal berbasis Python dapat

berjalan, ditambahkan sebuah node sinkronisasiyaitu Sync. Node ini bertugas

untuk mengirim dan menerima data observasi serta aksi melalui koneksi jaringan

TCP. Dengan adanya sinkronisasi ini, model yang dilatih di Python dapat

digunakan untuk mengontrolpergerakan cartsecara langsung di dalam simulasi

Godot.

Gambar 3.7 Objek Cart dan Pole

Cart (RigidBody2D)platform dasar tempat pole berdiri dan objek yang

digerakkan oleh agen secara horizontal.

● Lebar: 40 unit

● Tinggi: 20 unit

● Massa: 1 kg

● Center Impulse Force: 5 unit

Pole (RigidBody2D) sebagai pole yang harus dijaga agar tetap tegak oleh

sistem.

24



● Lebar: 10 unit

● Tinggi: 100 unit

● Massa: 0.1 kg

Pin Joint (PinJoint2D) menghubungkan cart dan pole sebagai sumbu

rotasi yang memungkinkan pole berayun bebas tergantung gaya horizontal pada

cart.

Gambar 3.8 Objek Ground dan Batas Arena

Ground (StaticBody2D) memastikan hanya gaya horizontal dan gaya

gravitasi yang berpengaruh dalam simulasi. Tidak memiliki gesekan (frictionless).

Arena (Node2D) Menentukan batas ruang gerak cart dari rentang posisi sumbu x:

dari -240 unit hingga 240 unit. Jika cart melewati batas ini, maka episode simulasi

dinyatakan gagal atau berakhir.

Gambar 3.9 Code Action Space CartPole

Pada permainan CartPole, action space bersifat diskrit dan terdiri dari dua

kemungkinan aksi. Dengan kata lain, agen hanya bisa memilih antara dua

tindakan setiap step.

25



● 0 → mendorong kereta ke kiri

● 1 → mendorong kereta ke kanan

Gambar 3.10 Code Action Space CliffWalking

Observation space adalah vektorberisi informasi dari lingkungan yang

diamati oleh agen. Dalam CartPole, terdapat empat nilai kontinu yang

membentuk observasi:

1. Posisi kereta (cart position): posisi horizontal dari cart (unit)

2. Kecepatan kereta (cart velocity): laju horizontal cart (unit)

3. Sudut tiang (pole angle): kemiringan tiang terhadap vertikal (dalam

radian)

4. Kecepatan sudut tiang (pole angular velocity): laju perubahan sudut tiang

Pada game CartPole,agen menerima reward sebesar 1 poin untuk setiap

langkah yang berhasil dilalui tanpa menjatuhkan tiang atau keluar dari batas

lintasan. Artinya, reward diberikan secara konstan setiap langkah hingga episode

berakhir. Karena reward selalu bernilai 1 per langkah, maka total reward yang

diperoleh agen dalam satu episode akan sama dengan panjang episode tersebut.

Misalnya, jika agen bertahan selama 500 langkah, maka total reward-nya juga

adalah 500 poin. Dengan demikian, nilai ep_rew_mean akan sama dengan

ep_len_mean.

26



Setiap episode dimulai dengan kondisi awal yang diacak dalam rentang

kecil di sekitaran keadaan seimbang. Artinya sistem memulai dalam posisi hampir

seimbang, namun dengan sedikit gangguan acak yang harus dikendalikan agen.

● Posisi kereta (cart position) ± 5 unit

● Kecepatan (cart velocity) ± 5 unit

● Sudut tiang (pole angle) ± 0.05 radians

● Kecepatan sudut (pole angular velocity) ± 0.05 radians

Episode dalam CartPole akan berakhir apabila terjadi salah satu dari

kondisi berikut:

1. Posisi kereta keluar dari batas: ± 240 unit dari pusat.

2. Sudut tiang melebihi ± 12° (sekitar ± 0.21 radians).

3. Jumlah langkah telah mencapai 500 step yang berarti agen berhasil

menjaga keseimbangan dalam waktu maksimal.

3.3.2 Game CliffWalking

Gambar 3.11 Game CliffWalking di Godot

CliffWalking adalah lingkungan gridworld 2D berukuran 4x12 yang

digunakan untuk mengujikemampuan agen dalam eksplorasidan pengambilan

keputusan di bawah risiko. Agen memulai dari titik (3, 0) dan bertujuan mencapai

titik (3, 11). Di antara titik start dan goal terdapat area berbahaya yang disebut

jurang (cliff), yaitu sel sepanjang tepi bawah grid dari (3, 1) hingga (3, 10). Aksi

yang tersedia adalah bergerak ke atas, bawah, kiri, atau kanan.

27



CliffWalking merupakan permainan simulasi reinforcement learning

berbasis grid yang terdiri dari sebuah arena berukuran 12x4.Arena ini terbagi

menjadi beberapa jenis tile yang memiliki peran dan aturan tertentu dalam

permainan.Tujuan utama dari game ini adalah agar pemain (agen) dapat bergerak

dari titik start menuju titik finish sambil menghindari tile berbahaya yang disebut

cliff.

Gambar 3.12 Scene Tree CliffWalking

Gambar 3.4.2.2 menunjukkan struktur Scene Tree dari game CliffWalking

yang dibuat menggunakan Godot Engine dalam mode 2D. Struktur ini

menggambarkan susunan node yang merepresentasikan elemen-elemen dalam

satu skena permainan. Node utama dari scene ini adalah Node2D Arena,yang

berfungsi sebagai wadah atau root dari seluruh elemen dalam skena.Di dalam

Arena, terdapat beberapa node anak:

Ground (Tilemap) terdiri atas 12 kolom (lebar) dan 4 baris (tinggi), dengan

sistem koordinatposisi berbentuk (x,y), di mana x adalah kolom (0–11) dan y

adalah baris (0–3). Komponen-komponen penting pada arena ini meliputi:

● Tile Start (putih): Titik awal pemain berada di posisi (0, 3), yaitu pojok

kiri bawah arena.

● Tile Finish (kuning): Titik tujuan berada di posisi (11, 3), yaitu pojok

kanan bawah arena. Jika pemain memasuki tile ini, agen dianggap berhasil

mencapai finish dan episode berakhir.

28



● Tile Cliff (merah):Rentetan jurang berada disepanjang baris bawah dari

(1, 3) hingga (10, 3). Jika pemain memasuki tile ini, agen akan dianggap

jatuh ke jurang dan posisinya akan di-reset ke tile start.

● Tile Ground (hijau): Semua posisi dari (0, 0) hingga (11, 2) merupakan

area ground biasa yang dapat dilalui.

● Tile Wall (biru tua): Dinding pembatas mengelilingiseluruh arena agar

pemain tidak dapat bergerak keluar dari batas arena.

Gambar 3.13 Tilemap Arena CliffWalking

Player (CharacterBody2D)adalah node utama untuk karakter pemain

merupakan CharacterBody2D yang menanganipergerakan dan fisika pemain.

Pemain atau agen memiliki kemampuan untuk bergerak ke empatarah utama,

yaitu atas, bawah, kiri, dan kanan. Namun, gerakannya dibatasioleh beberapa

aturan:

● Pemain dapat melintasi tile ground, cliff, dan finish.

● Pemain tidak dapat bergerak ke tile wall (pembatas arena).

● Ketika pemain melangkah ke tile cliff, permainan akan memberikan

penalti besar, dan posisi pemain akan di-reset ke tile start.

● Ketika pemain mencapai tile finish, permainan juga akan di-reset ke start,

menandai akhir dari satu episode.

29



Gambar 3.14 Player dan Agen CliffWalking

Game ini dirancang untuk menguji kemampuan agen dalam belajar

kebijakan optimal untuk mencapai tujuan dengan risiko minimum, terutama

menghindari tile cliff yang memberikan konsekuensi buruk.

Gambar 3.15 Code Action Space CliffWalking

CliffWalking memiliki4 aksi diskrit, aksi-aksi ini memungkinkan agen

untuk bergerak ke empat arah utama dalam grid.

● 0→atas (up)

● 1→kanan (right)

● 2→bawah (down)

● 3→kiri (left)

Observation space adalah vektorberisi informasi dari lingkungan yang

diamati oleh agen. Dalam CliffWalking, terdapat empat nilai kontinu yang

membentuk observasi:

1. Posisi player di pada grid di sumbu x

2. Posisi player di pada grid di sumbu y

Tujuan pembelajaran adalah menghindari cliff sambil mencapai finish

dengan jumlah penalti seminimal mungkin.

● Agen mendapatkan reward -1 setiap berada di tile ground.

● Agen mendapatkan reward -10 setiap mencoba melangkah ke tile wall.

● Agen mendapatkan reward -100 jika jatuh ke tile cliff.

30



● Agen mendapatkan reward 100 jika berada di tile finish.

Agen selalu memulai dari pojok kiri bawah grid, yaitu posisi (0, 3).

Episode berakhir jika agen mencapai tile finish, yaitu pojok kanan bawah grid (11,

3).

Gambar 3.16 Kode Observation Space CliffWalking

3.4 Evaluasi

Evaluasi dalam penelitian ini menggunakan pendekatan kuantitatif,

dengan tujuan untuk membandingkan performa dua algoritma reinforcement

learning,yaitu Advantage Actor-Critic (A2C) dan Proximal Policy Optimization

(PPO). Pengukuran dilakukan berdasarkan hasilpelatihan agen pada dua jenis

lingkungan permainan, yaitu CartPole dan CliffWalking.

Selama proses pelatihan, metrik performa akan dicatat dan

divisualisasikan menggunakan TensorBoard. Visualisasi ini memudahkan analisis

terhadap stabilitas,konvergensi,dan efisiensi pelatihan algoritma.Adapun dua

metrik utama yang digunakan dalam evaluasi adalah sebagai berikut:

● ep_len_mean

Menunjukkan rata-rata panjang episode (dalam jumlah langkah)selama

pelatihan. Nilai ini memberikan gambaran seberapa lama agen mampu

bertahan dalam lingkungan sebelum episode berakhir.

● ep_rew_mean

Menunjukkan rata-rata reward yang diterima agen per episode. Metrik ini

menjadi indikator utama dalam menilai efektivitas kebijakan yang

dipelajari oleh agen. Nilai reward yang lebih tinggi mengindikasikan

kebijakan yang lebih optimal.

31



Evaluasi dilakukan dengan menggunakan ujit dua sampel (independent

t-test) untuk mengetahui apakah terdapat perbedaan yang signifikan secara

statistik antara performa algoritma A2C dan PPO. Uji t dipilih karena kedua

algoritma menghasilkan data numerik yang bersifatindependen dan berasal dari

dua kelompok berbeda. Dalam proses ini, ditentukan dua hipotesis:

● Hipotesis nol (H₀): Tidak terdapat perbedaan signifikan antara performa

A2C dan PPO.

● Hipotesis alternatif(H₁): Terdapat perbedaan signifikan antara performa

A2C dan PPO.

Lima hasil pelatihan (run) diambil dari masing-masing algoritma sebagai

data uji. Pengujian dilakukan menggunakan Python dengan pendekatan Welch’s

t-test untuk mengakomodasi kemungkinan perbedaan varians antar kelompok

data. Setelah pengujian dilakukan, hasil dianalisis untuk menentukan apakah

perbedaan performa yang diamati bersifat signifikan secara statistik atau tidak.

32



BAB IV

HASIL DAN PEMBAHASAN

4.1 Implementasi Sistem

Gambar 4.1 Menu AssetLib di Godot

Plugin AgentRL bisa diinstal langsung melaluiAssetLib bawaan Godot,

sehingga pengguna tidak perlu mengunduh file secara manual. Cukup buka menu

AssetLib di dalam editor, cari AgentRL, lalu klik unduh dan pasang. Setelah

terpasang, plugin ini akan muncul di daftar plugin proyek dan bisa diaktifkan

melalui menu Project Settings → Plugins.

Gambar 4.2 Implementasi Node AIController

Setelah plugin diinstal, node AIController dapat ditambahkan ke agen

yang ingin digerakkan. Node ini berfungsi sebagai penghubung antara agen

dengan node Sync agar agen dapat menerima aksi dari Python dan

menggunakannya untuk bergerak sesuai action space.

33



Gambar 4.3 Potongan Kode AIController

Setelah itu, script pada node AIController perlu di-extend untuk

mengimplementasikan beberapa fungsi antarmuka yang dibutuhkan, yaitu

get_obs(), get_reward(),get_action_space(),dan set_action(). Fungsi-fungsiini

bertanggung jawab untuk menyediakan data observasi dari environment,

mendapatkan reward, mendefinisikan ruang aksi yang tersedia,serta menerapkan

aksi yang dikirimkan oleh model pembelajaran ke agen di dalam game.

34



Gambar 4.4 Konfigurasi Node Sync

Node Sync ditambahkan ke dalam scene yang digunakan sebagai arena

pelatihan agen. Pada node ini, pengaturan ControlMode harus diubah menjadi

Training agar proses pelatihan dapat berjalan.Selain itu, nilai Action Repeat diset

ke 1, yang berarti Godot akan mengirim dan menerima data dengan Python

melalui koneksi TCP setiap satu frame.

Langkah berikutnya adalah melakukan konfigurasi Python di VSCode

dengan membuatvirtual environmentterlebih dahulu. Setelah environment aktif,

instal paket AgentRL beserta framework Stable Baselines3 (SB3) dan TensorFlow

untuk kebutuhan visualisasi data menggunakan perintah “pip install

godot-rl[sb3]”. Selanjutnya, instal pustaka Microsoft.ML.OnnxRuntimeuntuk

mendukung proses inferensi model ONNX dengan perintah “dotnet add package

Microsoft.ML.OnnxRuntime”

Setelah semua paket terpasang, buat kode Python untuk menjalankan

proses pelatihan model. Hasil pelatihan dapat divisualisasikan menggunakan

TensorBoard dengan menjalankan “tensorboard --logdir ./logs/sb3”. Ketika

pelatihan selesai, model yang dihasilkan dapat langsung digunakan di Godot.

Dengan mengubah Control Mode pada Node Sync menjadi ONNX Inference dan

menetapkan path ke file model ONNX yang dihasilkan.

35



Tabel 4.1 Hyperparameter Algoritma A2C dan PPO

Hyperparameter
CartPole

A2C

CartPole

PPO

CliffWalking

A2C

CliffWalking

PPO

total_timesteps 1000000 1000000 50000 50000

n_steps 5 32 32 32

learning_rate 0.0007 0.0003 0.0007 0.0003

gamma 0.99 0.99 0.99 0.99

gae_lambda 1.0 0.95 1.0 0.95

ent_coef 0.0 0.0 0.0 0.0

vf_coef 0.5 0.5 0.5 0.5

max_grad_norm 0.5 0.5 0.5 0.5

batch_size - 64 - 64

n_epochs - 10 - 10

clip_range - 0.2 - 0.2

Tabel 4.1.1 adalah hyperparameter yang digunakan dalam pelatihan agen

dengan algoritma A2C dan PPO pada game CartPole dan CliffWalking.

1. total_timesteps

Menentukan jumlah total langkah interaksi agen dengan lingkungan

selama pelatihan. Nilai ini menunjukkan seberapa lama agen belajar.

Semakin besar nilainya,semakin banyak pengalaman yang dikumpulkan

agen, yang biasanya menghasilkan performa yang lebih baik, namun juga

membutuhkan waktu komputasi lebih lama. Dalam grafik pelatihan,

sumbu-x biasanya menunjukkan progres hingga mencapai total timesteps

tersebut.

36



2. n_steps

Menentukan jumlah langkah interaksiagen dengan lingkungan sebelum

data disimpan ke dalam buffer untuk proses pelatihan. Nilai ini

berpengaruh terhadap ukuran buffer yang akan digunakan untuk

menghitung nilai advantage dan melakukan pembaruan kebijakan.

3. learning_rate

Menentukan seberapa cepat model memperbaruibobotnya berdasarkan

error yang didapat. Nilai ini cukup umum digunakan karena memberikan

keseimbangan antara stabilitas dan kecepatan belajar.

4. batch_size

Ukuran data yang digunakan dalam satu kali pembaruan gradien.Batch

yang lebih besar bisa membuatpembaruan lebih stabil,sementara batch

yang lebih kecil mempercepat iterasi tapi meningkatkan variansi.

5. n_epochs

Jumlah pengulangan proses optimisasi untuk setiap batch data. Nilai yang

lebih besar memungkinkan model lebih maksimal memanfaatkan data

yang dikumpulkan, namun terlalu tinggi bisa menyebabkan overfitting

terhadap data yang sama.

6. gamma

Faktor diskon untuk menghitung reward masa depan. Nilai ini

menandakan bahwa agen tetap mempertimbangkan imbalan jangka

panjang dalam pengambilan keputusan.

7. gae_lambda

Parameter dalam perhitungan Generalized Advantage Estimation (GAE).

Nilai ini mengatur keseimbangan antara bias dan variansi.Angka 0.95

umumnya menghasilkan pelatihan yang lebih stabil.

8. clip_range

Digunakan untuk membatasi perubahan besar pada kebijakan selama

proses pelatihan.Dengan adanya batas ini, pembaruan kebijakan menjadi

lebih aman dan tidak terlalu drastis, sehingga mengurangi risiko pelatihan

yang tidak stabil.

37



9. ent_coef

Koefisien entropi yang mengatur seberapa besar dorongan agen untuk

mengeksplorasi aksi baru. Jika diatur ke 0, agen hanya fokus pada

eksploitasi dari kebijakan yang telah dipelajari.

10. vf_coef

Koefisien yang mengatur kontribusifungsi nilai terhadap totalkerugian.

Digunakan untuk menyeimbangkan pembelajaran antara bagian actor dan

critic.

11. max_grad_norm

Digunakan untuk melakukan gradient clipping, yaitu membatasi nilai

maksimum gradien agar tidak terlalu besar. Hal ini penting untuk menjaga

stabilitas proses pelatihan, terutama saat terjadi perubahan besar dalam

jaringan.

Parameter-parametertersebut sebagian besar dipilih berdasarkan nilai

default dari SB3 dan disesuaikan dengan praktik umum dalam pelatihan agen

pada lingkungan yang relatif sederhana sepertiCartPole dan CliffWalking. Nilai

total timesteps yang digunakan sama untuk kedua algoritma,agar perbandingan

performa menjadi adil.

4.2 Hasil Pengujian

Setelah model selesai dilatih, hasilnya dianalisis menggunakan

TensorBoard.Tool ini membantu melihatperkembangan performa agen secara

visual, seperti seberapa panjang agen bisa bertahan (ep_len_mean) dan seberapa

besar reward yang didapat (ep_rew_mean). Dengan tampilan grafik yang

interaktif, TensorBoard memudahkan dalam membandingkan kinerja algoritma

A2C dan PPO, sekaligus memberikan gambaran yang jelas tentang bagaimana

agen belajar dan berkembang seiring waktu.

38



4.2.1 CartPole

Gambar 4.5 Grafik ep_len_mean Algoritma PPO hasil training CartPole

Gambar 4.5 menunjukkan grafik panjang episode (ep_len_mean) selama

proses pelatihan algoritma Advantage Actor-Critic (A2C). Sumbu horizontal

menunjukkan jumlah langkah step, sedangkan sumbu vertikal menunjukkan

panjang rata-rata episode yang berhasildiselesaikan oleh agen.Semakin tinggi

nilai ep_len_mean,maka semakin lama agen dapatbertahan dalam satu episode

sebelum dinyatakan gagal, yang dalam konteks CartPole berarti semakin baik

kemampuan agen menjaga keseimbangan pole di atas cart. Grafik ini

merepresentasikan hasil pelatihan kedua algoritma pada lingkungan CartPole

hingga mencapai 1 juta langkah interaksi antara agen dan lingkungan.Algoritma

A2C mengalamipeningkatan yang lebih lambatdan tidak stabil. Pola fluktuatif

pada garis A2C juga menunjukkan bahwa agen lebih rentan terhadap

ketidakkonsistenan dalam kebijakan yang dipelajari, sehingga kesulitan untuk

mempertahankan performa tinggi secara stabil.

39



Gambar 4.6 Grafik ep_len_mean Algoritma PPO hasil training CartPole

Gambar 4.6 menunjukkan grafik panjang episode (ep_len_mean) selama

proses pelatihan algoritma Proximal Policy Optimization (PPO). Dari grafik

tersebut terlihat bahwa algoritma PPO secara konsisten menunjukkan performa

yang lebih baik dibandingkan A2C. PPO memperlihatkan peningkatan rerata

panjang episode yang lebih cepat dan stabil sejak awal pelatihan, serta

mempertahankan performa tinggidengan fluktuasi yang tidak terlalu ekstrem

hingga akhir pelatihan. Hal ini menunjukkan bahwa agen yang dilatih dengan

PPO hampir mencapai batas maksimal panjang episode dalam lingkungan

CartPole.Sebaliknya,algoritma A2C mengalamipeningkatan yang lebih lambat

dan tidak stabil. Pola fluktuatif pada garis A2C juga menunjukkan bahwa agen

lebih rentan terhadap ketidakkonsistenan dalam kebijakan yang dipelajari,

sehingga kesulitan untuk mempertahankan performa tinggi secara stabil.

Secara keseluruhan, grafik ini menunjukkan bahwa PPO lebih unggul

dibandingkan A2C dalam konteks pelatihan pada lingkungan CartPole.Hal ini

sesuai dengan karakteristik PPO yang mengutamakan kestabilan dalam

40



pembaruan kebijakan melalui mekanisme kliping, sehingga proses belajarnya

lebih terarah dan efisien. Sementara itu, A2C yang tidak memiliki mekanisme

pengendali serupa, cenderung menghasilkan performa yang kurang stabildalam

lingkungan dinamis seperti CartPole.

Gambar 4.7 Grafik entropy_loss hasil training CartPole

Gambar 4.7 memberikan gambaran mengenai tingkat eksplorasi agen

selama proses pelatihan. Dalam konteks reinforcement learning, entropy

digunakan sebagai ukuran seberapa acak keputusan yang diambil oleh agen. Nilai

entropy yang tinggi menunjukkan bahwa agen masih aktif mencoba berbagai aksi

(eksplorasi), sedangkan nilai yang rendah mengindikasikan bahwa agen mulai

menetapkan pilihan aksi yang konsisten (eksploitasi).Berdasarkan grafik yang

dihasilkan, algoritma PPO memperlihatkan nilaientropy loss yang lebih rendah

41



secara konsisten dibandingkan A2C, namun tetap dalam rentang yang stabil. Hal

ini menandakan bahwa PPO menjaga eksplorasi dengan lebih hati-hati dan

seimbang. Sementara itu, A2C terlihat cepat menurunkan nilai entropy-nya di

awal pelatihan, sehingga agen cenderung terlalu cepat melakukan eksploitasi.

Penurunan eksplorasiyang terlalu dini dapat menyebabkan agen belajar strategi

yang kurang optimalkarena belum sempatmencoba cukup banyak variasiaksi.

Dengan demikian,pada aspek ini, PPO menunjukkan pendekatan eksplorasi yang

lebih adaptif dan stabil sepanjang pelatihan.

Gambar 4.8 Grafik value_loss hasil training CartPole

Gambar 4.8 merepresentasikan seberapa besar kesalahan prediksiyang

dilakukan oleh komponen critic dalam memperkirakan nilai suatu keadaan (state).

Dalam algoritma reinforcement learning, critic memiliki peran penting dalam

mengevaluasi seberapa baik suatu aksi yang diambil berdasarkan nilai yang

42



diharapkan.Dari hasil grafik,terlihat bahwa algoritma A2C mengalami fluktuasi

value loss yang sangat tinggi dan tidak stabil. Beberapa lonjakan nilainya bahkan

mencapai,yang menandakan bahwa estimasinilai yang dihasilkan oleh jaringan

critic pada A2C sering kali meleset jauh dari target sebenarnya. Sebaliknya,

meskipun PPO juga menunjukkan lonjakan pada value loss, pola yang dihasilkan

lebih stabil dan terkendali, dengan variasi yang cenderung lebih konsisten

sepanjang pelatihan.Nilai rata-rata yang lebih tinggi pada PPO sebenarnya tidak

selalu buruk, karena kestabilan pola menjadi indikator penting dalam proses

pembelajaran yang sehat. Berdasarkan pengamatan ini, dapat disimpulkan bahwa

PPO lebih mampu menjaga kestabilan dalam pembaruan fungsi nilai

dibandingkan A2C, yang cenderung mengalami ketidakteraturan akibat

pembaruan yang agresif dan tanpa mekanisme pengendali seperti clipping.

Gambar 4.9 Grafik train loss hasil training CartPole

Gambar 4.9 menunjukkan nilai keseluruhan dari fungsi kerugian yang

digunakan selama pelatihan model.Pada algoritma PPO, train loss merupakan

kombinasi dari beberapa komponen, yaitu policy loss, value loss, dan penalti

43



entropy. Dari grafik yang ditampilkan,terlihat bahwa nilai train loss mengalami

fluktuasi selama proses pelatihan,dengan beberapa lonjakan yang cukup tajam

pada titik-titik tertentu. Meskipun demikian,pola keseluruhannya tetap berada

dalam batas yang wajar dan tidak menunjukkan tanda-tanda divergence,yaitu

kondisi di mana nilai loss meningkat secara tidak terkendali. Nilai train loss yang

naik turun secara periodik merupakan hal yang umum dalam pelatihan

reinforcement learning, terutama karena dinamika interaksi agen dengan

lingkungan yang berubah seiring dengan perkembangan kebijakan.Selain itu,

stabilitas garis smoothed menunjukkan bahwa meskipun terdapatvariasi, model

PPO tetap mampu menjaga arah pembelajaran yang konsisten dan tidak terganggu

oleh perubahan sesaat. Secara keseluruhan,train loss pada PPO mencerminkan

proses pelatihan yang relatif stabil dan menunjukkan kemajuan yang sejalan

dengan peningkatan performa agen.

Gambar 4.10 Grafik policy_loss hasil training CartPole

Gambar 4.10 mencerminkan seberapa besar kesalahan kebijakan yang

terjadi selama pelatihan,yaitu seberapa jauh distribusi aksi yang dipilih oleh agen

44



menyimpang dari arah kebijakan yang diharapkan berdasarkan nilaiadvantage.

Pada algoritma A2C, grafik ini menunjukkan fluktuasiyang sangat tinggi dan

tidak stabil sepanjang proses pelatihan.Nilai policy loss sering kali mengalami

spike negatif yang besar. Pola ini menunjukkan bahwa pembaruan kebijakan yang

dilakukan oleh A2C sering kali terlalu drastis atau tidak terarah.Tidak adanya

mekanisme pembatasan seperti clipping, sebagaimana terdapat dalam PPO,

membuat A2C lebih rentan terhadap perubahan kebijakan yang ekstrim akibat

sinyal pelatihan yang bervariasi. Meskipun pada beberapa titik nilai smoothed dari

policy loss tampak mendekati nol, hal ini tidak sepenuhnya mencerminkan

stabilitas,karena fluktuasiyang ekstrim tetap terjadisecara berkala.Kondisi ini

menunjukkan bahwa A2C lebih sulit mencapai konvergensi kebijakan yang stabil

dibandingkan PPO. Oleh karena itu, policy loss pada A2C menjadi indikator

kelemahan dalam menjaga konsistensi arah pembelajaran kebijakan secara jangka

panjang.

Gambar 4.11 Grafik policy_gradient_loss hasil training CartPole

Gambar 4.11 menggambarkan besarnya pembaruan yang dilakukan

terhadap kebijakan (policy) agen selama pelatihan, khususnya dalam konteks

45



algoritma PPO. Nilai loss ini berasal dari hasil perhitungan gradien kebijakan

yang digunakan untuk memperbarui model, dan berperan penting dalam

mengarahkan agen menuju kebijakan yang lebih optimal. Dari hasil grafik,

terlihat bahwa nilai policy gradient loss berada pada kisaran yang sangat kecil dan

secara bertahap menurun seiring berjalannya pelatihan.Hal ini mengindikasikan

bahwa kebijakan yang dimiliki agen telah semakin stabil, sehingga tidak lagi

membutuhkan pembaruan yang besar.Nilai smoothed yang mendekatinol pada

tahap akhir pelatihan menunjukkan bahwa proses pembelajaran telah mencapai

titik konvergensi, di mana agen sudah menemukan strategiyang efektif dalam

menyelesaikan tugas pada lingkungan CartPole. Stabilitas ini merupakan ciri khas

dari PPO yang memiliki mekanisme clipping, yaitu pembatasan terhadap

perubahan kebijakan yang terlalu drastis.Dengan demikian,policy gradient loss

yang rendah dan stabil ini menjadi indikator bahwa PPO berhasil membangun

kebijakan yang efisien dan konsisten.

46



47



48



Gambar 4.12 Agen CartPole Dengan Algoritma PPO Setiap 100 Frame

4.2.2 CliffWalking

Gambar 4.13 Grafik ep_len_mean Algoritma A2C hasil training CliffWalking

Gambar 4.13 memperlihatkan grafik hasilpelatihan algoritma A2C pada

lingkungan game CliffWalking. Pada grafik tersebut, sumbu vertikal

merepresentasikan rata-rata panjang episode, sementara sumbu horizontal

49



menunjukkan jumlah langkah pelatihan (steps). Di tahap awal pelatihan, algoritma

A2C masih berada dalam fase eksplorasi,yang ditandai dengan panjang episode

yang cukup tinggi. Kondisi ini mengindikasikan bahwa agen belum berhasil

menemukan jalur tercepat menuju tile finish. Namun, setelah melewati sekitar

5.000 langkah pelatihan, terjadi penurunan tajam pada panjang episode.

Penurunan ini menunjukkan bahwa agen mulai menemukan jalur optimal dan

mulai menyelesaikan tugas dengan cara yang lebih efisien.

Gambar 4.14 Grafik ep_len_mean Algoritma PPO hasil training CliffWalking

Gambar 4.14 menunjukkan grafik hasil pengujian algoritma PPO di game

CliffWalking.Di awal pelatihan, algoritma PPO masih menjalankan eksplorasi

dengan panjang episode yang relatif tinggi. Hal ini menunjukkan agen belum

mampu menemukan jalur optimal menuju tujuan tile finish sama seperti algoritma

A2C. Setelah sekitar 5.000 langkah, terjadi penurunan drastis pada panjang

50



episode, menandakan bahwa agen sudah menemukan lokasi tile finish dan mulai

belajar untuk menyelesaikan tugas dengan lebih efisien.

Gambar 4.15 Grafik ep_rew_mean Algoritma A2C hasil training CliffWalking

Gambar 4.15 menunjukkan grafik perkembangan rata-rata reward yang

diterima oleh agen selama pelatihan. Di awal pelatihan, reward masih sangat

rendah. Ini disebabkan oleh agen yang masih mengeksplorasi lingkungan dan

sering terkena penalti karena jatuh ke tile cliff. Setelah sekitar 10.000 langkah,

baik A2C mulai menunjukkan peningkatan signifikan dalam rata-rata reward.

51



Gambar 4.16 Grafik ep_rew_mean Algoritma PPO hasil training CliffWalking

Gambar 4.16 menunjukkan grafik perkembangan rata-rata reward yang

diterima oleh agen selama pelatihan. Di awal pelatihan (0–25.000 langkah),

reward masih tidak ada. Ini disebabkan oleh agen yang masih mengeksplorasi

lingkungan dan sering terkena penaltikarena jatuh ke tile cliff. Setelah sekitar

30.000 langkah, baik A2C maupun PPO mulai menunjukkan peningkatan

signifikan dalam rata-rata reward.

PPO sempat mengalamikenaikan dan fluktuasiyang lebih tajam, namun

setelah 35.000 langkah keduanya mencapai stabilitas performa. Pada akhir

pelatihan,kedua algoritma menghasilkan rata-rata reward yang tinggi dan serupa

(sekitar 68–70 poin), menandakan bahwa agen berhasil mempelajari strategi

optimal untuk mencapai tujuan sambil menghindari penalti.

52



Gambar 4.17 Grafik entropy_loss hasil training CliffWalking

Gambar 4.17 menampilkan grafik entropy loss selama proses pelatihan

model pada lingkungan CliffWalking. Pada awal pelatihan, kedua algoritma

mengalami penurunan entropy loss yang signifikan,yang menunjukkan tingginya

eksplorasi. Seiring waktu, entropy loss meningkat perlahan mendekati nol,

menandakan bahwa agen mulai mengambil tindakan dengan lebih pasti

berdasarkan pengetahuan yang diperoleh.Nilai rata-rata entropy loss dari PPO

sedikit lebih rendah daripada A2C, meskipun perbedaannya tidak terlalu besar.

53



Gambar 4.18 Grafik value_loss hasil training CliffWalking

Gambar 4.18 menampilkan grafik value loss selama proses pelatihan

model pada lingkungan CliffWalking. Dari grafik terlihat bahwa kedua algoritma

mengalami fluktuasi nilai value loss yang cukup besar, terutama di awal pelatihan,

yang kemudian secara bertahap mulai mengecil seiring bertambahnya langkah

pelatihan. Meskipun demikian, PPO cenderung menghasilkan value loss yang

lebih tinggi secara keseluruhan dibandingkan A2C.Nilai value loss yang lebih

tinggi pada PPO menunjukkan bahwa estimasi nilai dari model tersebut

cenderung memilikideviasi yang lebih besar terhadap nilai target, dibandingkan

dengan A2C. Meskipun begitu, perbedaan ini tidak serta-merta menunjukkan

keunggulan mutlak dari salah satu algoritma, karena efektivitas pembelajaran juga

54



dipengaruhi oleh faktor lain seperti stabilitas kebijakan dan kemampuan

eksplorasi. Secara keseluruhan, grafik ini menggambarkan dinamika pembelajaran

fungsi nilai oleh kedua algoritma,dengan pola fluktuasi tinggi yang wajar dalam

pelatihan pembelajaran penguatan, terutama di lingkungan seperti CliffWalking.

Gambar 4.19 Grafik train loss hasil training CliffWalking

Gambar 4.19 menampilkan grafik train loss selama proses pelatihan

model pada lingkungan CliffWalking. Grafik memperlihatkan bahwa kedua

algoritma mengalamifluktuasinilai loss yang cukup tinggi, terutama pada tahap

awal pelatihan. Nilai train loss perlahan menurun dan mulai stabil seiring

bertambahnya langkah pelatihan,menandakan bahwa modelmulai belajar dari

lingkungan secara lebih konsisten.Pada tahap akhir pelatihan PPO menunjukkan

penurunan variasi loss. Secara keseluruhan, grafik ini menunjukkan algoritma

berhasil belajar dan menunjukkan tren penurunan train loss,dengan perbedaan

performa yang tidak terlalu mencolok.Fluktuasi tinggi di awal mengindikasikan

55



proses eksplorasi dan penyesuaian terhadap lingkungan,yang kemudian stabil

seiring meningkatnya jumlah langkah pelatihan.

Gambar 4.20 Grafik policy_loss hasil training CliffWalking

Gambar 4.20 menampilkan grafik policy loss selama proses pelatihan

algoritma A2C pada lingkungan CliffWalking.Sumbu horizontalmenunjukkan

jumlah langkah pelatihan (steps),sedangkan sumbu vertikalmenunjukkan nilai

policy loss. Secara umum, policy loss mencerminkan seberapa besar kesalahan

dalam kebijakan yang diambil oleh agen, semakin rendah nilainya (mendekati nol

dari arah negatif), semakin baik performa agen dalam memilih tindakan.

56



Pada awal pelatihan, sebagian besar run menunjukkan nilai policy loss

yang sangat rendah, yang menandakan bahwa agen masih banyak melakukan

kesalahan dalam menentukan tindakan. Namun, seiring berjalannya waktu,

terlihat adanya tren peningkatan nilaipolicy loss yang mendekatinol, terutama

setelah melewati 10.000 langkah. Hal ini menunjukkan bahwa agen mulai belajar

dari pengalaman dan melakukan pembaruan kebijakan yang lebih efektif.

Gambar 4.21 Grafik policy_gradient_loss hasil training CliffWalking

Gambar 4.21 menunjukkan grafik policy gradient loss selama proses

pelatihan algoritma pada lingkungan CliffWalking. Dari grafik terlihat bahwa nilai

policy gradient loss untuk kedua algoritma berfluktuasicukup tinggi sepanjang

proses pelatihan.Meskipun keduanya memiliki rentang fluktuasi yang mirip, nilai

smoothed loss dari PPO sedikit lebih rendah dibandingkan dengan A2C,yang

menunjukkan bahwa PPO melakukan pembaruan kebijakan yang cenderung lebih

kecil secara rata-rata. Fluktuasi tinggi ini merupakan hal yang umum dalam

57



pelatihan agen pembelajaran penguatan karena agen terus-menerus menyesuaikan

tindakannya berdasarkan pengalaman baru. Secara keseluruhan, grafik ini

menunjukkan bahwa baik A2C maupun PPO berhasil menjalankan proses

pembaruan kebijakan,meskipun masih terdapat dinamika yang tidak stabil hingga

akhir pelatihan.

Gambar 4.22 Jalur Algoritma PPO Agen CliffWalking

4.3 Analisis dan Pembahasan

Pengujian signifikansi statistik dilakukan menggunakan Welch’s t-test

dengan tingkat signifikansi 5% (α = 0.05). Jika nilai p-value < 0.05, maka terdapat

perbedaan yang signifikan antara hasil algoritma A2C dan PPO. Sebaliknya,jika

p-value ≥ 0.05, maka perbedaan yang ada tidak signifikan secara statistik.

Hipotesis yang digunakan adalah sebagai berikut:

● H₀: Rata-rata hasil A2C sama dengan rata-rata hasil PPO (tidak ada

perbedaan signifikan).

● H₁: Rata-rata hasil A2C berbeda dengan rata-rata hasil PPO (terdapat

perbedaan signifikan).

Tabel 4.2 Hasil ep_len_mean Training Game CartPole

Run 1 2 3 4 5 Mean

A2C 50.32 88.06 69.46 85.86 103.90 79.52

58



PPO 126.82 305.03 220.83 199 125.59 195.45

Deviasi 76.50 216.97 151.37 113.14 21.69 115.93

Gambar 4.21 Hasil Uji T ep_len_mean CartPole Menggunakan Python

Berdasarkan hasilperhitungan menghasilkan nilait sebesar -3,35 dengan

p-value 0,023. Karena nilai p lebih kecil dari tingkat signifikansi0,05, maka

perbedaan hasil rata-rata lamanya agen dalam satu episode antara metode A2C

dan PPO dinyatakan signifikan secara statistik. Hal ini menunjukkan bahwa

performa PPO secara konsisten lebih tinggi atau dapat menyeimbangkan tiang

lebih lama dibandingkan A2C pada game CartPole dengan rata-rata deviasi

sebanyak 115.93 lebih lama.

Tabel 4.3 Hasil ep_len_mean Training Game CliffWalking

Run 1 2 3 4 5 Mean

A2C 19.98 20.41 21.53 21.94 20.49 20.87

PPO 15.87 15.07 13.22 16 13.25 14.68

Deviasi 4.11 5.34 8.31 5.94 7.24 6.19

59



Gambar 4.22 Hasil Uji T ep_len_mean CliffWalking Menggunakan Python

Berdasarkan hasilperhitungan menghasilkan nilait sebesar 8.66 dengan

p-value 0,00008. Karena nilai p lebih kecil dari tingkat signifikansi0,05, maka

perbedaan hasil rata-rata lamanya agen dalam satu episode antara metode A2C

dan PPO dinyatakan signifikan secara statistik dalam game CliffWalking.

Tabel 4.4 Hasil ep_rew_mean Training Game CliffWalking

Run 1 2 3 4 5 Mean

A2C 55.82 49.89 45.97 39.16 48.41 47.85

PPO 70.23 76.78 74.5 83.65 73.73 75.78

Deviasi 14.41 26.89 28.53 44.49 25.32 27.93

60



Gambar 4.23 Hasil Uji T ep_rew_mean CliffWalking Menggunakan Python

Berdasarkan hasilperhitungan menghasilkan nilait sebesar -7,95 dengan

p-value 0,00005. Karena nilai p lebih kecil dari tingkat signifikansi0,05, maka

perbedaan hasil rata-rata reward per episode antara metode A2C dan PPO

dinyatakan signifikan secara statistik. Hal ini menunjukkan bahwa PPO

mendapatkan reward lebih banyak per episode daripada algoritma A2C dalam

game CliffWalking dengan rata-rata deviasi sebanyak 27.93 reward.

61



BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasilimplementasidan evaluasi yang telah dilakukan,dapat

disimpulkan bahwa plugin AgentRL berhasil diimplementasikanpada game

CartPole dan CliffWalking menggunakan dua algoritma pembelajaran penguatan,

yaitu A2C (Advantage Actor-Critic) dan PPO (Proximal Policy Optimization).

Hasil pelatihan menunjukkan bahwa pada game CartPole, algoritma PPO

memberikan performa dalam menyeimbangkan tiang lebih baik dibandingkan

A2C dengan rata-rata deviasi 115.93 lebih lama.

Sementara itu, pada game CliffWalking, kedua algoritma tidak

menunjukkan perbedaan yang signifikan dalam hal panjang episode. Namun,

terdapat perbedaan signifikan pada nilaireward per episode antara keduanya,di

mana algoritma PPO memperoleh rata-rata deviasi durasi episode 6.19 lebih

pendek dan deviasi reward 27.93 lebih banyak daripada A2C. Hal ini

mengindikasikan bahwa PPO memilikiperforma yang lebih baik dibandingkan

dengan A2C, terutama dalam game CartPole dan CliffWalking.

5.2 Saran

Penelitian ini dapat dikembangkan lebih lanjut dengan menerapkan

pendekatan yang sama pada jenis permainan atau environment lainnya yang

memiliki tingkat kompleksitas berbeda, seperti permainan berbasis strategi,

navigasi dalam peta labirin, atau simulasi robotika. Hal ini bertujuan untuk

menguji sejauh mana fleksibilitas Godotdan plugin AgentRL dalam menangani

berbagai skenario reinforcementlearning. Selain itu, disarankan untuk menguji

algoritma RL lainnya seperti Deep Q-Network (DQN) dan Soft Actor-Critic (SAC)

guna membandingkan performa dan efisiensi masing-masing algoritma dalam

menyelesaikan tugas yang lebih kompleks.

62



Daftar Pustaka

Barto, A. G., & Sutton, R. S. (1983). Neuronlike adaptive elements that can solve

difficult learning control problems.

http://incompleteideas.net/papers/barto-sutton-anderson-83.pdf

Colas, C., Sigaud, O., & Oudeyer, P. Y. (2019). A Hitchhiker's Guide to Statistical

Comparisons of Reinforcement Learning Algorithms.

https://arxiv.org/abs/1904.06979

Demšar, J. (2006). Statisticalcomparisons of classifiers over multiple data sets.

Journal of Machine Learning Research.

https://www.jmlr.org/papers/volume7/demsar06a/demsar06a.pdf

Diederichs,E. (2019). Reinforcement learning: A technical introduction – Part I.

ResearchGate.

https://www.researchgate.net/publication/335242067_Reinforcement_Learnin

g_-_A_Technical_Introduction

Godot documentation – Latest stable release. https://docs.godotengine.org

Gosset, W. S. (1908). The probable error of a mean. Biometrika, 6(1).

https://www.jstor.org/stable/2331554

Holfeld, J. (2023). On the relevance of the Godot Engine in the indie game

development industry. arXiv preprint arXiv:2401.01909.

https://www.researchgate.net/publication/383116776_On_the_relevance_of_th

e_Godot_Engine_in_the_indie_game_development_industry

Juliani, A., Berges, V. P., Vckay, E., Gao, Y., Henry, H., Mattar, M., & Lange, D.

(2018). Unity: A general platform for intelligent agents. arXiv preprint

arXiv:1809.02627. https://arxiv.org/pdf/1809.02627

Kumar, S. (2020). Balancing a CartPole system with reinforcement learning – A

tutorial. arXiv preprint arXiv:2006.04938. https://arxiv.org/pdf/2006.04938

Millington, I., & Funge, J. (2009). Artificial intelligence for games (2nd ed.).

CRC Press.

https://spada.uns.ac.id/pluginfile.php/629724/mod_resource/content/1/gameng

_AIFG.pdf

63



Mishra, S., & Arora, A. (2024, March 21). Balancing a Cart Pole using

reinforcement learning in OpenAI Gym environment. Proceedings of the

International Conference on Innovative Computing & Communication (ICICC

2024). SSRN. https://ssrn.com/abstract=4768234

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lillicrap, T., Silver, D.,

& Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement

learning. arXiv preprint arXiv:1602.01783. https://arxiv.org/pdf/1602.01783

Montgomery,D. C., & Runger, G. C. (2014). Applied Statistics and Probability

for Engineers. Wiley.

Nadimpalli, A. V., & Rattani, A. (2022). On improving cross-dataset

generalization of deepfake detectors. ResearchGate.

https://www.researchgate.net/publication/359881391_On_Improving_Cross-d

ataset_Generalization_of_Deepfake_Detectors

Raffin, A., Hill, A., Gleave, A., Kanervisto,A., Ernestus,M., & Dormann, N.

(2021). Stable-Baselines3:Reliable reinforcementlearning implementations.

Journal of Machine Learning Research, 22(268), 1–8.

https://www.jmlr.org/papers/volume22/20-1364/20-1364.pdf

Rahim, A. A., Siregar, R. H., & Rahim, R. (2022). Performance comparison of

reinforcement learning algorithms in the CartPole game using Unity

ML-Agents. Journal of Theoretical and Applied Information Technology,

102(16), 218–227.

https://www.jatit.org/volumes/Vol102No16/7Vol102No16.pdf

Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to

Student's t-test and the Mann–Whitney U test. Behavioral Ecology.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).

Proximal policy optimization algorithms.arXiv preprint arXiv:1707.06347.

https://arxiv.org/pdf/1707.06347

Surriani,A., & Santoso, B. (2021). Reinforcement learning for cart pole inverted

pendulum system. ResearchGate.

https://www.researchgate.net/profile/Atikah-Surriani/publication/357438224_

Reinforcement_Learning_for_Cart_Pole_Inverted_Pendulum_System

64



Sutton, R. S., & Barto, A. G. (2018). Reinforcementlearning:An introduction

(2nd ed.). MIT Press.

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2nd

Ed.pdf

Torrado, R. R., Royo, D. M., Cabañes, A. G., Gómez, J. A. M., Martínez, H. R., &

Julián, V. (2021). Godot reinforcement learning agents. arXiv preprint

arXiv:2112.03636. https://arxiv.org/pdf/2112.03636

Towers, M., Gao, Z., Krummenacher,J., Kumar, P., & Schulman, J. (2024).

Gymnasium:A standard interface for reinforcementlearning environments.

arXiv preprint arXiv:2407.17032. https://doi.org/10.48550/arXiv.2407.17032

Wang, D., & Snooks, R. (2021). Artificial intuitions of generative design:An

approach based on reinforcementlearning. Dalam Proceedings of the 2020

DigitalFUTURES (hal. 189–198). Springer Singapore.

https://doi.org/10.1007/978-981-33-4400-6_18

Welch, B. L. (1947). The generalization of Student's problem when several

different population variances are involved. Biometrika.

Wu, Y., Tucker, G., & Nachum, O. (2022). A2C is a special case of PPO. arXiv

preprint arXiv:2205.09123. https://arxiv.org/pdf/2205.09123

Zhong, L. (2023). Comparison of Q‑learning and SARSA reinforcement learning

models on Cliff Walking problem.In Proceedings of DAI‑23. Atlantis Press.

https://www.atlantis-press.com/proceedings/dai-23/125998063

65


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73

