Implementasi Plugin Agent Reinforcement Learning
Menggunakan Metode A2C dan PPO di Platform
Godot

LAPORAN TUGAS AKHIR

4

UNIVERSITAS

MA CHUNG

Oleh:
Marvin Adinata
312110009

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG
MALANG
2025

LEMBAR PENGESAHAN TUGAS AKHIR

Implementasi Plugin Agent Reinforcement Learning Menggunakan
Metode A2C dan PPO di Platform Godot

Oleh:
Marvin Adinata
NIM. 312110009

dari:
PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan

dan berhak mendapatkan gelar Sarjana S.Kom.

Dosen Pembimbing 1, Dosen Pembimbing 2,

KATA PENGANTAR

Puji syukur dipanjatkan kehadirat Tuhan Yang Maha Esa, yang atas
restu-Nya sehingga Tugas Akhir inidapat diselesaikan dengan baik. Laporan ini
berisikan hasil dari Tugas Akhir selama kurang lebih enam bulan. Pada
kesempatan kali ini penulis mengucapkan terima kasih kepada seluruh
pihak-pihak yang telah membantu selama proses pelaksanaan Tugas Akhir
maupun dalam penyusunan laporannya, di antaranya:

1. Kedua orang tua terkasih, yang telah memberikan dukungan dan semangat
selama menjalani kegiatan TA,
2. Paulus Lucky Tirma Irawan, S.Kom., MT. & Mochamad Subianto,

S.Kom., M.Cs. sebagai pembimbing Tugas Akhir,

3. Bapak Dr. Eng. Romy Budhi Widodo selaku Dekan dari Fakultas

Teknologi dan Desain Universitas,

4. Serta teman-teman yang telah memberikan dukungan selama proses
penyelesaian kegiatan TA ini.

Laporan ini disusun berdasarkan hasil kegiatan Tugas Akhir yang
dilaksanakan selama enam bulan. Tugas Akhir ini merupakan kewajiban
mahasiswa Teknik Informatika Universitas Ma Chung sebagai prasyarat

kelulusan.

Malang, 27 Oktober 2025

BEITES

Marvin Adinata

II

DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIR
KATA PENGANTAR

DAFTAR ISI

DAFTAR GAMBAR

DAFTAR TABEL

BAB1
PENDAHULUAN

1.1 Latar Belakang

1.2 Identifikasi Masalah
1.3 Batasan Masalah

1.4 Rumusan Masalah

1.5 Tujuan Penelitian

1.6 Manfaat Penelitian
1.7 Luaran

1.8 Sistematika Penelitian

BAB 11
TINJAUAN PUSTAKA

2.1 Godot Engine

2.2 Reinforcement Learning

2.3 Advantage Actor Critic

2.4 Proximal Policy Optimization
2.5 StableBaseline3

2.6 AgentRL Plugin

27UjiT

BAB III
ANALISIS DAN PERANCANGAN SISTEM

3.1 Alur Penelitian
3.2 Studi Literatur
3.2.1 Reinforcement Learning (RL)
3.2.2 Algoritma Advantage Actor-Critic (A2C)

3.2.3 Algoritma Proximal Policy Optimization (PPO)

324UjiT
3.2.5 AgentRL Plugin di Godot
3.2.6 CartPole
3.2.7 CliftWalking

3.3 Perancangan Sistem
3.3.1 Game CartPole

11
I
v

B W W W W W N =

~N D W

11
13
15

17
17
19
19
19
20
20
20
21
22
23
23

III

3.3.2 Game CliffWalking
3.4 Evaluasi
BAB 1V
HASIL DAN PEMBAHASAN
4.1 Implementasi Sistem
4.2 Hasil Pengujian
4.2.1 CartPole
4.2.2 CliffWalking
4.3 Analisis dan Pembahasan
BAB YV
KESIMPULAN DAN SARAN
5.1 Kesimpulan
5.2 Saran
Daftar Pustaka

28
32
34
34
34
39
40
50
59
63
63
63
63
65

III

DAFTAR GAMBAR

Gambar 2.1 Diagram Reinforcement Learning 8
Gambar 2.2 Arsitektur Algoritma A2C

Gambar 2.3 Arsitektur Algoritma PPO 11
Gambar 2.4 Diagram Plugin AgentRL 14
Gambar 3.1 Flowchart Alur Penelitian 17
Gambar 3.2 Plugin AgentRL di Godot 21
Gambar 3.3 Environment Game CartPole 22
Gambar 3.4 Environment Game CliffWalking 22
Gambar 3.5 Game CartPole di Godot 23
Gambar 3.6 SceneTree Game CartPole 24
Gambar 3.7 Objek Cart dan Pole 25
Gambar 3.8 Objek Ground dan Batas Arena 26
Gambar 3.9 Code Action Space CartPole 26
Gambar 3.10 Code Action Space CliffWalking 27
Gambar 3.11 Game CliffWalking di Godot 28
Gambar 3.12 Scene Tree CliffWalking 29
Gambar 3.13 Tilemap Arena CliffWalking 30
Gambar 3.14 Player dan Agen CliffWalking 31
Gambar 3.15 Code Action Space CliffWalking 31
Gambar 3.16 Kode Observation Space CliffWalking 32
Gambar 4.1 Menu AssetLib di Godot 34
Gambar 4.2 Implementasi Node AlController 34
Gambar 4.3 Potongan Kode AlController 35
Gambar 4.4 Konfigurasi Node Sync 36

Gambar 4.5 Grafik ep_len_mean Algoritma PPO hasil training CartPole 40
Gambar 4.6 Grafik ep len _mean Algoritma PPO hasil training CartPole 41

Gambar 4.7 Grafik entropy_loss hasil training CartPole 42
Gambar 4.8 Grafik value loss hasil training CartPole 43
Gambar 4.9 Grafik train loss hasil training CartPole 44
Gambar 4.10 Grafik policy loss hasil training CartPole 45
Gambar 4.11 Grafik policy gradient loss hasil training CartPole 46

Gambar 4.12 Agen CartPole Dengan Algoritma PPO Setiap 100 Frame 50
Gambar 4.13 Grafik ep _len_mean Algoritma A2C hasil training CliffWalkihg
Gambar 4.14 Grafik ep _len_mean Algoritma PPO hasil training CliffWalkihg
Gambar 4.15 Grafik ep_rew_mean Algoritma A2C hasil training CliffWalkdg
Gambar 4.16 Grafik ep_rew_mean Algoritma PPO hasil training CliffWalkdig
Gambar 4.17 Grafik entropy loss hasil training CliffWalking 54

1Y%

Gambar 4.18 Grafik value loss hasil training CliffWalking 55

Gambar 4.19 Grafik train loss hasil training CliffWalking 56
Gambar 4.20 Grafik policy loss hasil training CliffWalking 57
Gambar 4.21 Grafik policy gradient loss hasil training CliffWalking 58
Gambar 4.22 Jalur Algoritma PPO Agen CliffWalking 59

Gambar 4.21 Hasil Uji T ep_len_mean CartPole Menggunakan Python 60
Gambar 4.22 Hasil Uji T ep_len_mean CliffWalking Menggunakan Python61
Gambar 4.23 Hasil Uji T ep_rew_mean CliffWalking Menggunakan Pytho62

1Y%

DAFTAR TABEL

Tabel 2.1 Persentase Total Game yang Teridentifikasi di Itch.io
Tabel 2.2 Perbedaan SB3 Dengan Framework Lainnya

Tabel 4.1 Hyperparameter Algoritma A2C dan PPO

Tabel 4.2 Hasil ep len_mean Training Game CartPole

Tabel 4.3 Hasil ep_len_mean Training Game CliffWalking
Tabel 4.4 Hasil ep_rew_mean Training Game CliffWalking

13
37
59
60
61

BAB I

PENDAHULUAN
1.1 Latar Belakang

Perkembangan teknologikecerdasan buatan (Artificial Intelligence atau
Al) telah mengalami kemajuan yang pesat dan semakin banyak diterapkan di
berbagai bidang, termasuk dalam industri game. Dalam dunia game, Al memiliki
peran yang sangat penting, seperti mengatur perilaku karakter non-pemain
(non-player character/NPC), mengendalikan musuh, serta menciptakan tantangan
yang seimbang dan menarik bagi pemain (Millington & Funge, 2016).

Salah satu pendekatan Al yang berkembang pesatadalah Reinforcement
Learning (RL), yang merupakan salah satu cabang dari pembelajaran mesin
(machine learning). RL memungkinkan agen untuk belajar dari pengalaman
melalui interaksi dengan lingkungan, di mana agen tersebut menerima umpan
balik berupa reward (penghargaan) atau punishment (hukuman) atas tindakan
yang dilakukan (Sutton & Barto, 2018). Dengan mekanisme ini, agen dapat
mempelajari strategi optimal untuk mencapai tujuan tertentu tanpa perlu diberikan
instruksi eksplisit.

Berbeda dengan Al konvensionaldalam game yang umumnya berbasis
pada aturan statis (rule-based) atau skrip yang telah diprogram sebelumnyaI
berbasis Reinforcement Learning bersifat adaptif dan dapat belajar dari
pengalaman. Al konvensional cenderung bersifat deterministik dan mudah ditebak
perilakunya,sedangkan agen RL mampu mengeksplorasi berbagai kemungkinan
aksi dan menyesuaikan strateginya secara dinamis (Juliamit al., 2018). Hal ini
membuat RL sangat potensial untuk menciptakan pengalaman bermain yang lebih
alami, tidak repetitif, dan menantang.

Dalam bidang reinforcementlearning, pemilihan algoritma yang mampu
belajar secara stabildan efisien dari interaksi dengan lingkungan menjadi sangat
penting. Salah satu pendekatan yang cukup populer adalah Advantage
Actor-Critic (A2C), yaitu versi sinkron dari Asynchronous Advantage Actor-Critic
(43C) yang diperkenalkan oleh Mnih et al. (2016). A2C merupakan
pengembangan darimetode Actor-Critic yang menggabungkan dua pendekatan

utama policy-based (actor)dan value-based (critic). Komponen actor bertugas

1

memilih aksi berdasarkan distribusi probabilitas dari suatu policy, sementara critic
mengevaluasi aksi tersebut dengan menghitung nilai keunggulan (advantage) dari
aksi terhadap nilai state. Nilai advantage ini kemudian digunakan untuk
memperbaiki policy agar semakin optimal dari waktu ke waktu.

Proximal Policy Optimization (PPO)adalah salah satu algoritma dalam
metode Reinforcement Learning yang dikembangkan untuk mengatasi kelemahan
dari algoritma policy gradient konvensional yang cenderung tidak stabil saat
pelatihan. PPO diperkenalkan oleh OpenAl dalam jurnal “Proximal Policy
Optimization Algorithms” (Schulman et al., 2017) sebagai solusi yang lebih
sederhana dan efisien dibandingkan metode seperti 7rust Region Policy
Optimization (TRPO), yang memerlukan komputasi kompleks. Inti dari PPO
terletak pada penggunaan fungsi objektif dengan mekanisme clipping, yang
membatasi perubahan kebijakan agar tidak terlalu ekstrem dari kebijakan
sebelumnya. Dengan cara ini, PPO dapat menjaga stabilitas pelatihan sekaligus
memungkinkan pembaruan kebijakan secara lebih fleksibel.

Untuk memfasilitasi eksperimen ini, game CartPole dan CliffWalking
dikembangkan menggunakan game engine Godot. Proses pelatihan agen RL
dilakukan melalui plugin AgentRL oleh (Beeching et al., 2021), yang
memungkinkan integrasi antara Godot dan Python secara real-time. Dengan
kombinasi ini, pelatihan agen dapat berjalan dalam lingkungan visual yang
interaktif, sekaligus menggunakan framework model RL di backend Python.

Penelitian ini bertujuan untuk mengimplementasikan algoritma A2C dan
PPO dalam game CartPole dan Cliff Walking menggunakan Godot dan AgentRL,
serta mengevaluasi performa agen dalam menyelesaikan tugas. Harapannya, hasil
dari penelitian ini dapat memberikan wawasan dalam pengembangan Alpada
game serta menjadi pijakan untuk penelitian lebih lanjut dalam penerapan

Reinforcement Learning menggunakan game engine Godot dan plugin AgentRL.

1.2 Identifikasi Masalah
Berdasarkan latar belakang yang telah dijelaskan, permasalahan yang
diidentifikasi dalam penelitian ini antara lain:

1. Bagaimana implementasi plugin AgentRL di platform Godot?

2. Bagaimana performa algoritma A2C dan PPO sebagai agen RL di Godot?

1.3 Batasan Masalah
Agar penelitian ini tetap fokus dan terarah, terdapat beberapa batasan masalah
yang ditetapkan, yaitu:

1. Penelitian dilakukan di platform Godot dengan bantuan plugin AgentRL

2. Pengujian algoritma dilakukan pada 2 jenis game yakni CartPole dan
CliffWalking

1.4 Rumusan Masalah
Berdasarkan identifikasi dan batasan masalah yang telah dijelaskan, rumusan
masalah dalam penelitian ini adalah:

1. Bagaimana hasil implementasinya AgentRL di Godot?

2. Algoritma mana yang lebih baik?

1.5 Tujuan Penelitian
Penelitian ini bertujuan untuk:
1. Cara implementasi RL di Godot
2. Mengevaluasi hasil implementasi RL di godot dengan algoritma A2C dan
PPO

1.6 Manfaat Penelitian
Hasil dari penelitian ini diharapkan memberikan manfaat di antaranya:
1. Memperlihatkan bagaimana implementasi RL di Godot
2. Hasil implementasi RL di godot dapat dijadikan referensi jika ingin
mengembangkan game dengan RL di Godot
3. Memberi kontribusi ilmiah dalam penerapan RL di Godot

1.7 Luaran

Penelitian ini diharapkan menghasilkan luaran berupa:
1. Game CartPole dan CliffWalking dengan RL
2. Publikasi ilmiah

1.8 Sistematika Penelitian

Sistematika penulisan Tugas Akhir ini dibagi menjadi lima bab seperti berikut ini.

Bab I Pendahuluan
Bab ini terdiri dari latar belakang, identifikasi masalah,
rumusan masalah, Batasan masalah, tujuan penelitian,
manfaat penelitian, luaran tugas akhir, dan sistematika
penelitian.

Bab 11 Tinjauan Pustaka
Bab ini berisi urutan sistematis terkait literatur yang
digunakan dalam proses penyusunan laporan Tugas Akhir
sehingga diperoleh landasan teori terkait Implementasi
Plugin Agent Reinforcement Learning Menggunakan
Metode A2C dan PPO di platform Godot.

Bab I1I Analisis dan Perancangan
Bab ini menjelaskan mengenaitahapan pengerjaan serta
analisis dari penelitian yang akan dilakukan. Tahapan
pengerjaan meliputi alur penelitian studi literatur, hingga
perancangan sistem dan evaluasi.

Bab IV Hasil dan Pembahasan
Bab ini menjelaskan mengenai hasil dari implementasi dan
pengujian Reinforcement Learning menggunakan metode
A2C dan PPO pada dua jenis permainan, yaitu CartPole
dan CliffWalking Pembahasan dilakukan berdasarkan data
hasil pelatihan agen.

Bab V Kesimpulan dan Saran
Bab ini menjelaskan kesimpulan dari hasil penelitian yang
telah dilakukan serta memberikan saran untuk

pengembangan lebih lanjut di masa depan.

BAB 11
TINJAUAN PUSTAKA

2.1 Godot Engine

Godot Engine merupakan sebuah platform pengembangan game sumber
terbuka (open-source) yang mendukung pengembangan game 2D maupun 3D.
Godot dikembangkan oleh komunitas global dengan lisensi MIT, sehingga bebas
digunakan untuk keperluan komersial maupun non-komersial tanpa biaya lisensi.
Godot menyediakan lingkungan pengembangan terpadu (IDEyang dilengkapi
dengan fitur drag and drop, sistem scene dan node,serta bahasa pemrograman
internal yang disebut GDScript.

Salah satu kekuatan Godot adalah sistem hierarki scene dan node yang
modular dan fleksibel. Pengembang dapat membuat unit-unit fungsional kecil
(node) yang dapat dikombinasikan menjadiscene, dan kemudian scene tersebut
dapat digunakan kembali dalam scene lainnya. Sistem ini memudahkan
pengembangan aplikasi interaktif dengan struktur yang terorganisir.

Selain GDScript, Godot juga mendukung bahasa pemrograman lain seperti
C#, dan C++ melalui GDNative. Fitur cross-platform export memungkinkan
game yang dikembangkan di Godot dapat dijalankan di berbagai platform seperti
Windows, Linux, Android, iOS, dan Web HTMLS.

Kemampuan Godot dalam berintegrasi dengan sistem eksternal seperti
Python, ONNX, maupun komunikasi 7CP/UDP menjadikannya platform yang
fleksibel untuk implementasi Reinforcement Learning. Dalam penelitian berbasis
pembelajaran agen, Godot dapat digunakan sebagailingkungan simulasitempat
agen melakukan interaksi dan belajar dari hasil aksinya. Ketersediaan
dokumentasiyang terus berkembang dan dukungan komunitas open-source juga
mempermudah proses pengembangan dan eksperimen akademik. Oleh karena itu,
Godot Engine dinilai relevan dan potensial untuk digunakan sebagai basis
pengembangan simulasi interaktif dalam penelitian reinforcement learning

berbasis game.

Tabel 2.1 Persentase Total Game yang Teridentifikasi di Itch.io

Game Engine 2018 2022 2023
Unity 473% A49.75% V46.33%
Construct 12.3% A13.12% V13.82%

GameMaker 11.0% V¥732% V¥6.95%
Twine 6.2% V¥535% A6.03%

RPG Maker 39% V274% A2.76%

Bitsy 33% V¥3.11% V¥3.18%
PICO-8 29% V92.68% ¥2.60%
Unreal 28% A292% A3.01%
Godot 2.5% A555% AT51%
Ren’Py 20% A2.07% A2.07%
Other 59% V555% AS5.75%

Tabel 2.1 diambil dari “On the relevance of the Godot Engine in the indie
game development industry” (Holfeld, 2023) menunjukkan persentase
penggunaan berbagai game engine berdasarkan total jumlah game yang diunggah
di platform itch io pada tahun 2018, 2022, dan 2023. Data ini dikumpulkan pada
periode 30 September 2022 hingga 21 Oktober 2023 dan memberikan gambaran
tren penggunaan engine dalam komunitas pengembang game independen.

Dari data tersebut, Unify masih menjadiengine paling dominan,dengan
kontribusi sebesar 47.3% pada 2018 dan meningkat signifikan sebesar 49.75%
pada 2022, meskipun kemudian mengalami penurunan menjadi 46.33% pada
2023. Construct juga menunjukkan tren yang menarik, yaitu peningkatan sebesar
13.12% pada 2022, namun turun menjadi 13.82% pada 2023. GameMaker dan
Twine mengalamipenurunan dan kenaikan bergantiansedangkan engine seperti
RPG Maker, Unreal, dan Ren'Py menunjukkan perubahan yang relatif kecil dari

tahun ke tahun.

Penggunaan Godotmengalamipertumbuhan yang positif dan konsisten:
dari 2.5% di tahun 2018 meningkat 5.55% di 2022 dan naik lagi menjadi 7.51% di
2023. Hal ini menunjukkan bahwa Godot semakin populer, kemungkinan karena
sifatnya yang open-sourceringan, dan tanpa biaya lisensi, sehingga menarik bagi
pengembang game indie. Peningkatan ini juga menunjukkan relevansi dan potensi
Godot sebagai alternatif yang layak bagi engine komersial dalam pengembangan
game, termasuk untuk kebutuhan eksperimen akademik atau penelitian.

Dengan kata lain, tren ini mencerminkan pergeseran preferensi komunitas
terhadap game engine yang lebih terbuka dan dapat diakses secara gratis seperti
Godot, terutama di tengah meningkatnya kekhawatiran terhadap biaya dan

kebijakan lisensi dari engine komersial.

2.2 Reinforcement Learning

Reinforcement Learning (RL) merupakan salah satu pendekatan dalam
pembelajaran mesin di mana agen belajar melalui interaksi langsung dengan
lingkungan untuk memaksimalkan reward kumulatifangka panjang (Sutton &
Barto, 2018). Dalam RL, agen mengambil tindakan berdasarkan kondisi
lingkungan, kemudian menerima umpan balik dalam bentuk reward dan
mengubah kebijakannya berdasarkan pengalaman tersebiRendekatan RL telah
diaplikasikan secara luas dalam berbagaipermasalahan,termasuk pengendalian
sistem dinamis seperti robotika dan game. Salah satu formulasi yang umum
digunakan dalam RL adalah Markov Decision Process (MDP)yang terdiri atas
state, action, transition, dan reward.

Dalam eksperimen yang kompleks, penggunaan RL sering dikombinasikan
dengan pembelajaran mendalam (deep learning), menghasilkan pendekatan Deep
Reinforcement Learning (DRL). Mnih et al. (2016) memperkenalkan metode
asynchronous yang mampu mempercepatdan menstabilkan pembelajaran agen

melalui penggunaan banyak thread pelatihan secara paralel.

"J Agent ||

state reward

action
5 R, A,
i R f
P Enwrunment]<

Gambar 2.1 Diagram Reinforcement Learning

Gambar 2.1 merupakan arsitektur dasar dari proses Reinforcement
Learning (RL) yang diambildari “Artificial Intuitions of Generative Design: An
Approach Based on Reinforcement Learning” (Wang et al., 2021) yang
merupakan kerangka kerja pembelajaran di mana agen belajar mengambil
tindakan dalam suatu lingkungan untuk memaksimalkan totateward kumulatif
(Sutton & Barto, 2018).

Dalam skema ini, terdapat dua komponen utama, yaitu agent dan
environment. Agent menerima state saat ini (St) dan reward (Rt) dari environment,
kemudian merespons dengan memilih suatu action (At). Aksi tersebut
memengaruhi kondisi environment yang kemudian menghasilkan stafe berikutnya
(St+1) dan reward baru (Rt+1). Siklus ini berlangsung berulang dalam proses
interaktif antara agent dan environment, di mana tujuan utama agent adalah
mempelajari kebijakan yang memaksimalkan reward jangka panjang.

Gambar 2.1 menekankan bahwa proses RL adalah bentuk pembelajaran
berbasis pengalaman langsungherbeda dengan pembelajaran supervised learning
yang mengandalkan data berlabel. Dengan pendekatan ini, agent dapat
mengembangkan perilaku optimal secara bertahap melalui eksplorasi dan evaluasi

hasil dari setiap aksi yang diambil.

2.3 Advantage Actor Critic

Advantage Actor Critic (A2C) merupakan pengembangan darimetode
Actor-Critic yang menggabungkan keunggulan dari dua pendekatan utama dalam
RL, yaitu policy-based dan value-based. Kelebihan utama dari A2C adalah

kemampuannya dalam mengurangi varians dan mempercepat konvergensi melalui

penggunaan advantage function, yaitu selisih antara estimasi nilai sebenarnya dan
estimasi nilai rata-rata. Metode ini juga menggunakan pendekatan sinkron dalam
pelatihan, yang membedakannya dari Asynchronous Advantage Actor-Critic
(A3C) yang bersifat asynchronous. Kinerja A2C dievaluasi berdasarkan

akumulasi reward rata-rata per episode.

Reward

Environment

Y

Action

Gambar 2.2 Arsitektur Algoritma A2C

Gambar 2.2 merupakan representasi arsitektur algoritma Advantage
Actor-Critic (A2C) yang diambil dari “ReinforcementLearning: A Technical
Introduction — Part I’ (Ramstedt, 2019). Dalam algoritma A2C, terdapat dua
komponen utama, yaitu Actor dan Critic. Actor bertugas untuk memilih aksi
berdasarkan kondisilingkungan saatini (state), sedangkan Critic bertugas untuk
mengevaluasi aksi yang diambil Actor dengan memberikan nilai (value) dari suatu
kondisi.

Proses dimulai ketika lingkungan (environment) memberikan kondisi
(state) kepada agen. Berdasarkan kondisi ini, Acfor memilih aksi yang akan
diambil. Aksi tersebut kemudian dikirimkan kembalike lingkungan yang akan
merespons dengan kondisibaru dan reward. Reward ini digunakan oleh Critic
untuk memperbarui estimasi nilai kondisi, yang kemudian dikirim kembalike

Actor sebagai dasar pembelajaran dalam memilih aksi berikutnya.

Gambar 2.2 menggambarkan bagaimana interaksi antara Actor dan Critic
terjadi secara simultan dan saling memperkuat satu sama lain dalam proses
pembelajaran.Pendekatan ini memberikan kestabilan dalam pembaruan kebijakan
dan efisiensi dalam pembelajaran karena pemisahan peran eksplorasi (Actor) dan
evaluasi (Critic), serta penggunaan keunggulan (advantage) sebagai sinyal

pelatihan untuk mengurangi variasi.

2.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) adalah algoritma RL yang
dikembangkan oleh Schulman et al. (2017) untuk mengatasi instabilitas yang
sering muncul pada algoritma policy gradient. PPO menggunakan teknik clipped
surrogate objective, yang membatasi perubahan drastis pada kebijakan selama
proses pelatihan, sehingga menghasilkan pembelajaran yang lebih stabil dan
andal. PPO saat ini menjadi salah satu algoritma paling populer di kalangan
praktisi karena keseimbangan antara performa, stabilitas, dan kemudahan
implementasi.Selain itu, PPO banyak digunakan dalam berbagai platform seperti
OpenAl Gym, Unity ML-Agents, dan juga diadaptasi dalam plugin Godot
AgentRL. Kalkulasi performa PPO mencakup reward rata-rata, stabilitas
pembelajaran (dilihat dari grafik reward terhadap episode), dan waktu
konvergensi. Berdasarkan hasil dari Schulman etal. (2017), PPO menunjukkan
hasil superior dalam berbagai lingkungan, termasuk Atari dan Mujoco, karena
stabil dan mudah diimplementasikan.

Gambar 2.3 memperlihatkan arsitektur dari algoritma Proximal Policy
Optimization (PPO) yang diambil dari “On Improving Cross-dataset
Generalization of Deepfake Detectors” (Nadimpalli et al., 2022), yang merupakan
salah satu algoritma policy gradient paling stabil dan efisien dalam reinforcement
learning. PPO merupakan pengembangan dari metode Actor-Critic yang
dirancang untuk memperbaiki kebijakan secara stabil tanpa memerlukan
algoritma kompleks seperti Trust Region Policy Optimization (TRPO) (Schulman
etal., 2017).

Dalam gambat 2.3, agen terdiri dari dua komponen utama, yaitu Actor dan

Critic. Actor bertugas menghasilkan kebijakan n(st) yang digunakan untuk

10

memilih aksiat berdasarkan keadaan saatini st. Sementara itu, Critic berfungsi
untuk mengevaluasi seberapa baik aksi tersebut melalui estimasi fungsi nilai Q(st,
at). Lingkungan memberikan umpan balik berupa reward (rt) dan keadaan baru
(st+1) setelah aksi dilakukan.

&

Agent

Rewards
Te

Critic Q (5,4,
T L

k4

-

E Environment
£
=
0
Actor) {
L m(s) ﬁ:uun

PPO

Gambar 2.3 Arsitektur Algoritma PPO

PPO menggunakan mekanisme pembaruan kebijakan yang menghindari
perubahan drastis (over-updating) melalui kliping (clipping) fungsi objektif.
Gambar 2.3 juga menampilkan entropi (entropy) sebagai bagian dari sinyal
pembelajaran tambahan untuk menjaga eksplorasikebijakan agar tidak terlalu
deterministik. Pendekatan ini menghasilkan pembelajaran yang lebih stabilan

efisien dibanding metode pendahulunya.

2.5 StableBaseline3

Stable-Baselines3 (SB3) merupakan kerangka kerja (framework)
open-source yang menyediakan implementasalgoritma reinforcementlearning
(RL) yang stabil dan dapat direproduksi. Framework ini ditulis dalam bahasa
Python dan dibangun di atas PyTorch untuk memudahkan proses pelatihan dan
evaluasi agen RL secara konsistenRaffin et al. (2021) menyebutkan bahwa SB3
hadir sebagai perbaikan dari proyek sebelumnya, Stable-Baselines, dengan

mengedepankan modularitagdokumentasi yang lebih lengkap, dan integrasi yang

11

baik dengan ekosistem RL modern. Framework ini mendukung berbagai
algoritma populer seperti Proximal Policy Optimization (PPO)dan Advantage
Actor-Critic (A2C). Keandalan SB3 juga diperkuat dengan serangkaian pengujian
unit dan eksperimen yang sistematis, menjadikannya sebagaisalah satu acuan
utama dalam penelitian maupun pengembangan aplikasi berbasis RL. Kemudahan
penggunaan, fleksibilitas dalam konfigurasi hyperparameter,serta komunitas
aktif menjadikan SB3 sangat relevan untuk digunakan baik oleh peneliti maupun
praktisi dalam mengembangkan agen RL yang efisien dan dapat dikontrol.

Tabel 2.2 diambil dari “Stable-Baselines3: Reliable Reinforcement
Learning Implementations” (Raffin et al., 2021). Stable-Baselines3 (SB3)
menunjukkan performa yang unggul dibandingkan pustaka reinforcement learning
lainnya seperti OpenAl Baselines, PFRL, RLIib, Tianshou, Acme, dan Tensorforce.
Berdasarkan data perbandingan dari Raffin et al. (2021), SB3 dibangun
menggunakan PyTorch, yang saat ini menjadi backend populer dalam
pengembangan model machine learning. SB3 memiliki dokumentasi API dan
panduan pengguna yang lengkap, yang menjadi aspek penting dalam kemudahan
pemakaian oleh peneliti maupun praktisi. Fitur benchmarking dan pretrained
models juga tersedia, memperkuatposisinya sebagaipustaka RL yang aplikatif
dan siap pakai.

Dalam hal kualitas kode, SB3 memiliki tingkat cakupan pengujian (fest
coverage) hingga 95%, jauh di atas beberapa pustaka lain seperti OpenAl
Baselines (49%) atau Acme (74%). SB3 juga menyediakan sistem pemeriksaan
tipe (¢ype checking) dan template untuk pelaporan isu atau pengajuan perubahan
kode (pull request), yang menandakan pengelolaan proyek yang profesional.
Selain itu, frekuensipembaruan proyek SB3 cukup tinggi, dengan komit terbaru
selalu dalam rentang kurang dari satu minggu, menunjukkan komunitas yang
aktif. Dalam enam bulan terakhir, SB3 juga mencatatkan 75 pull request yang
disetujui, jauh melampaui pustaka seperti PFRL (13) atau Acme (5).

Tabel 2.2 Perbedaan SB3 Dengan Framework Lainnya

OAI

SB3 Baselines

PFRL RLIib Tianshou Acme Tensorforce

12

PyTorch

Backend PyTorch TF PyTorch TF PyTorch Jax/TF TF
User Guide/ ,, Y Y Y WV
Tutorials

API

Documentation X v v B v v
Benchmark N4 X N4 N4 N v X
Pretrained

models v X X v X v X
Test Coverage 95% 49% ? ? 94% 74% 81%
Type Checking Vv X v v v v v
Issue / PR

Template v i 4 v v v A
Last Commit <1 >6 <1 <1 <1

(age) week months month week o1 wadk week 1 month
Approved PRs 5 0 13 222 85 5 7

(6 mo.)

Secara keseluruhan, SB3 menonjol sebagai pustaka RL yang matang,
terdokumentasidengan baik, serta secara aktif dikembangkan dan didukung oleh
komunitas. Kelebihan-kelebihan ini menjadikannya pilihan utama dalam

penelitian dan pengembangan sistem reinforcement learning.

2.6 AgentRL Plugin

AgentRL merupakan plugin open-source yang memungkinkan pengguna
mengintegrasikan algoritma reinforcement learning ke dalam game engine Godot
(Torrado etal., 2021). Plugin ini mendukung berbagai jenis lingkungan simulasi
dan kompatibel dengan algoritma seperti PPO dan 42C melalui antarmuka
Python TCP yang terhubung dengan backend seperti Stable-Baselines3.

Plugin AgentRL di Godot bekerja dengan cara mengirimkan data observasi

dan reward dari agen ke server Python melalui koneksi TCP. Di sisi Python, data

13

tersebut diterima, diekstrak, lalu diproses oleh model untuk menentukan aksi
selanjutnya. Hasil aksi ini kemudian dikirim kembali ke Godot melalui TCP,
diekstrak, dan digunakan untuk memperbarui kondisi environment di Godot
sehingga episode dapat berlanjut, proses ini berulang hingga batas timesteps

tercapai.

Sync model/traj. Sync actionfobs. batches Sync action/obs.
—t ey
N . —*{ Agent1 |

Actor 1 Environment 1 g |

B . | Agent1 |
Actor 2 < Environment 2 —Agenin |

Learner

—t—
a
L
)
-
j—-
o
P>
_

} - . } =| Agent1 I
Actorn | ~| Environment n :
- :I Agent n I

Gambar 2.4 Diagram Plugin AgentRL
Gambar 2.4 menggambarkan arsitektur paralel dalam AgenfRL yang
diambil dari (Beeching et al., 2021). Arsitektur ini mengadopsi pendekatan
terdistribusi untuk meningkatkan efisiensi pelatihan dalam Reinforcement
Learning dengan memisahkan komponen utama ke dalam tiga bagian utama:
Learner, Actor, dan Environment.
1. Learner
Learner merupakan komponen pusat yang bertugas mengelola proses
pelatihan. Ia menerima batch trajektori (trajectory batches) dari para
actor, melakukan pembaruan model, dan menyinkronkan parameter
terbaru ke semua actor.Ini memungkinkan proses pelatihan yang efisien
dan terpusat.
2. Actors
Setiap actor menerima salinan model dari learner dan menjalankan proses
interaksi dengan lingkungan secara paralel Mereka mengumpulkan data
interaksi (state, action, reward) dari lingkungan dan mengirimkannya
kembali ke learner dalam bentuk batch. Proses ini mempercepat
eksplorasi ruang aksi karena dilaksanakan secara simultan oleh banyak
actor.
3. Environments dan Agents

Setiap actor terhubung dengan satu atau lebih environment, yang di

14

dalamnya terdapat satu atau lebih agent. Para agen inilah yang melakukan
aksi dalam lingkungan berdasarkan kebijakan yang ditentukan oleh model.
Sinkronisasiantara actor dan agent mencakup pertukaran observasitan

aksi.

27Uji T

Uji t adalah metode statistik yang digunakan untuk membandingkan

rata-rata dua kelompok,guna menentukan apakah perbedaan tersebusignifikan

secara statistik atau hanya terjadi karena variasi acak. Uji t pertama kali

diperkenalkan oleh William Sealy Gossetpada tahun 1908 dengan nama pena

"Student",sehingga dikenal juga sebagai Student’s t-test (Gosset, 1908). Menurut

Montgomery dan Runger (2014), terdapat beberapa varian uji t:

Independent t-test: Membandingkan rata-rata dua kelompok independen.
Paired t-test: Digunakan jika data berpasangan (misalnya sebelum dan
sesudah perlakuan).

Welch’s t-test: Versi modifikasi independent t-test yang tidak
mengasumsikan varians kedua kelompok sama.

Welch (1947) memperkenalkan metode ini untuk mengatasi perbedaan

varians antar sampelsehingga lebih fleksibeldigunakan dalam data eksperimen

yang heterogen. Seperti dijelaskan oleh Ruxton (2006),uji t memilikibeberapa

asumsi penting:

Data berskala interval atau rasio.
Distribusi mendekati normal (untuk ukuran sampel kecil).
Observasi antar sampel independen.

Namun, Welch’s t-test dianggap lebih robust terhadap pelanggaran asumsi

kesamaan varians, sehingga banyak digunakan dalam eksperimen komputer,

termasuk pembelajaran mesin dan RL. Demsar (2006) dalam Statistical

Comparisons of Classifiers over Multiple Data Sets menyebutkan bahwa ujit

banyak digunakan untuk membandingkan performa algoritma pembelajaran

mesin, meskipun harus hati-hati terhadap kesalahan tipe I jika dilakukan berulang

kali. Dalam RL, Colas et al. (2019) juga merekomendasikan uji t atau alternatif

non-parametrik untuk membandingkan metode.

15

BAB III
ANALISIS DAN PERANCANGAN SISTEM

3.1 Alur Penelitian

Studi Literatur

|

Y

—_——

Perancangan
Lingkungan Simulasi

| ——

Y

Integrasi Plugin
AgentRL

S

Y

r

Implementasi Algaritra
A2C dan PPO

|

h 4

— ¥

Pelatinan Agent

| S—

Y

—_—

Evaluasi Kinerja

L —

h J

r

Analisis dan
Kesimpulan

Gambar 3.1 Flowchart Alur Penelitian

Penelitian ini dilakukan dengan beberapa tahapan sistematis yang
bertujuan untuk mengimplementasikan dan menguji algoritma Advantage
Actor-Critic (A2C) dan Proximal Policy Optimization (PPO) menggunakan plugin
AgentRL diplatform GodotEngine. Adapun tahapan alur penelitian secara garis
besar dijelaskan sebagai berikut:

1. Studi Literatur

Tahap awal dimulai dengan mengkaji berbagai referensi dan literatur yang

relevan mengenaireinforcement learningalgoritma A2C dan PPO, game

CartPole dan CliffWalking, serta plugin AgentRL di Godot Engine.

16

Sumber yang digunakan antara lain dari Sutton & Barto (2018), Schulman
et al. (2017), dan Torrado et al. (2021).

. Perancangan Lingkungan Simulasi

Lingkungan permainan (game environment) disiapkan menggunakan
Godot Engine. Dua lingkungan yang digunakan adalah CartPole dan
CliffWalking, masing-masing dirancang menggunakan node seperti
CharacterBody2D, StaticBody2D, Camera2D, dan skrip Al yang
mengontrol agen.

. Integrasi Plugin AgentRL

Plugin AgentRL yang dikembangkan oleh Torrado et al. (2021)
diintegrasikan ke dalam Godot. Plugin ini memungkinkan komunikasi dua
arah antara Godot dan Python melalui protokol TCP, sehingga model
reinforcement learning dapat dilatih secara eksternal.

. Implementasi Algoritma A2C dan PPO

Algoritma A2C dan PPO diimplementasikan menggunakan
Stable-Baselines3 (Raffin etal., 2021), yang menyediakan pustaka RL
berbasis PyTorch. Model dilatih dengan data observasi dan reward dari
lingkungan simulasi Godot, yang dikirim melalui plugin AgentRL.

. Pelatihan Agen

Proses pelatihan dilakukan dengan menjalankan simulasi secara berulang
hingga agen berhasil belajar menyelesaikan tugasnyBelatihan dilakukan
untuk kedua game CartPole dan CliftWalking dengan menggunakan kedua
algoritma A2C dan PPO. Parameter pelatihan sepertiearning rate, total
timesteps, dan n_steps disesuaikan untuk setiap eksperimen.

. Evaluasi Kinerja

Setelah model RL dilatih, dilakukan evaluasiberdasarkan metrik seperti
total reward per episode. Hasil dari algoritma A2C dan PPO dibandingkan
untuk masing-masing game untuk mengetahuefektivitas masing-masing
metode.

. Analisis dan Kesimpulan

Dari hasil evaluasi, dilakukan analisis untuk menentukan keunggulan

masing-masing algoritma dalam menyelesaikan dua jenis lingkungan.

17

Penelitian ini ditutup dengan kesimpulan mengenai efektivitas penggunaan
A2C dan PPO di platform Godot menggunakan plugin AgentRL serta

saran untuk penelitian selanjutnya.

3.2 Studi Literatur
3.2.1 Reinforcement Learning (RL)

ReinforcementLearning (RL) merupakan metode pembelajaran mesin di
mana agen belajar mengambil keputusan melaluiinteraksi dengan lingkungan.
Agen bertindak berdasarkan stafe yang diamatinya,memilih aksi tertentu, dan
menerima reward sebagai umpan balik (Sutton & Barto, 2018). Tujuan agen
adalah memaksimalkan akumulasireward jangka panjang dengan membentuk
kebijakan (policy) yang optimal.

Dalam konteks pengembangan game dan simulasRL banyak diterapkan
pada lingkungan interaktif seperti CartPole dan CliffWalking karena kedua kasus
tersebut merepresentasikan tantangan kontrol dan eksplorasi (Juliani et al., 2018;
Millington & Funge, 2009).

3.2.2 Algoritma Advantage Actor-Critic (A2C)

A2C adalah algoritma pengembangan dari metode Actor-Critic yang
bekerja secara sinkron. Algoritma ini memisahkan proses pengambilan keputusan
(policy network) dan evaluasi nilai (value network), namun keduanya dilatih
bersamaan. Keunggulan A2C dibanding Actor-Critic biasa adalah stabilitas dan
efisiensi pembelajaran yang lebih baik karena pendekatan advantage, yaitu selisih
antara estimasinilai tindakan aktualdan rata-rata nilai semua tindakan (Mnih et
al., 2016).

Dalam lingkungan CartPole, A2C mampu belajar menjaga keseimbangan
tiang dengan cepat melalui pembaruan berbasis reward yang diberikan setiap
langkah. Sementara itu, pada CliffWalking, A2C menghadapi tantangan besar
karena tingginya penaltidari jurang, namun dengan pendekatan advantage dan

pembaruan sinkron, agen tetap dapat membentuk strategi optimal secara bertahap.

18

3.2.3 Algoritma Proximal Policy Optimization (PPO)

PPO merupakan salah satu algoritma policy gradient paling populer
karena stabilitas dan efisiensinya dalam pelatihanPPO memperbaruikebijakan
dengan membatasi perubahan dari kebijakan sebelumnya, sehingga mencegah
perubahan drastis yang dapat menyebabkan kerugian perfornidal ini dilakukan
melalui fungsi klip (clipping function) dalam optimasi kebijakan (Schulman et al.,
2017).

Dalam percobaan pada CartPole, PPO dikenal mampu mencapai performa
optimal dalam waktu pelatihan yang relatif singkat. Untuk CliffWalking,PPO
lebih tahan terhadap jebakan reward negatif karena kemampuannya mengontrol
perubahan kebijakan, memungkinkan agen menghindari c/iff sambil tetap

mencapai tujuan (Torrado et al., 2021).

324 Uji T
Uji t adalah salah satu metode statistik yang paling umum digunakan

untuk menentukan apakah perbedaan rata-rata dua kelompok signifikan secara
statistik. Metode ini diperkenalkan oleh Gosset(1908) dan memiliki beberapa
varian seperti independentt-test, paired t-test, dan Welch’s t-test (Welch, 1947)
yang tidak memerlukan asumsi kesamaan varians. Uji ini banyak diterapkan
dalam penelitian berbasis eksperimen, termasuk pembandingan algoritma
pembelajaran mesin dan reinforcement learning (Demsar, 2006; Colas et al.,
2019). Untuk memastikan validitaspji t memerlukan asumsiindependensidata
dan distribusi mendekatinormal, meskipun Welch’s t-testlebih toleran terhadap

perbedaan varians (Ruxton, 2006).

3.2.5 AgentRL Plugin di Godot

Plugin AgentRL untuk Godot dapat di menyediakan kerangka kerja
modular berbasis Python dan TCP yang memungkinkan integrasalgoritma RL
eksternal seperti A2C dan PPO dengan lingkungan simulasi Godot (Torrado et al.,
2021). Plugin ini memisahkan sisipelatihan di Python dan simulasi di Godot
Engine, serta memungkinkan eksperimen menggunakan visualisasi real-time dan

desain level yang fleksibel.

19

B Godot RL Agents

Godot RL Agents

Gambar 3.2 Plugin AgentRL di Godot

Lingkungan CartPole dapat direplikasi di Godot menggunakan objek
fisika 2D, dengan feedback berupa posisitiang dan kecepatan kereta dikirim ke
Python melalui TCP. Demikian pula, CliffWalking dapat dikonstruksi
menggunakan tile map sederhana, di mana posisi agen, aksi, dan reward dikontrol
secara sinkron antara Godot dan Python.

Dengan menggunakan plugin AgentRL,pelatihan A2C dan PPO dapat
dimonitor secara interaktifsekaligus menjaga fleksibilitas pengembangan visual
di dalam Godot Engine. Hal ini menjadikan AgentRL sebagai solusi ideal untuk

pengujian dan visualisasi algoritma RL dalam proyek berbasis game engine.

3.2.6 CartPole

CartPole merupakan salah satu lingkungan klasik dalam reinforcement
learning. Lingkungan ini sering digunakan sebagaibenchmark karena memiliki
dinamika fisika sederhana, tetapi cukup menantang untuk menguji algoritma
penguatan. Dalam CartPole, tugas agen adalah menjaga tiang (pole) tetap
seimbang di atas kereta (cart) dengan cara memberikan gaya ke kiri atau ke
kanan. Lingkungan ini termasuk dalam kategori continuous control problem yang

di diskretisasi ke dalam dua aksi.

20

Gambar 3.3 Environment Game CartPole

Menurut Sutton dan Barto (2018), lingkungan seperti CartPole sangat
cocok digunakan untuk menguji algoritma policy gradient seperti A2C, dan PPO,
karena lingkungan ini menyediakan umpan balik langsung terhadap perubahan
kebijakan. Beberapa studi seperti Schulman et al. (2017) juga menggunakan
CartPole sebagai bagian dari eksperimen awal saat memperkenalkan PPO, untuk

menunjukkan efisiensi konvergensi dan stabilitas algoritma.

3.2.7 CliffWalking

Gambar 3.4 Environment Game CliffWalking
CliffWalking merupakan lingkungan diskrit berbasis grid yang
diperkenalkan dalam buku “Reinforcement Learning: An Introduction’ oleh
Sutton dan Barto (2018). Lingkungan inimenyerupaipapan grid di mana agen

harus mencapaititik tujuan sambilmenghindari"jurang" di sisi bawah lintasan.

21

Jika agen jatuh ke jurang, maka akan mendapatkan penalti besar dan episode akan
diulang dari titik awal.

Lingkungan ini sering digunakan untuk menekankan pentingnya
exploration dengan exploitation serta untuk menguji efektivitas algoritma berbasis
nilai seperti Q-learning dan SARSA Namun, CliffWalking juga dapat digunakan
untuk algoritma policy-based seperti A2C dan PPO, khususnya untuk melihat
bagaimana agen belajar menghindari jebakan melalui optimasi kebijakan
langsung.

Lingkungan CliffWalking memberikan tantangan unik karena adanya
sparse reward dan penalti besar, yang membuat proses pelatihan lebih sulit
dibanding CartPole. Ini menjadikannya pilihan yang baik untuk menguji

ketahanan dan efisiensi dari algoritma yang diuji.

3.3 Perancangan Sistem
3.3.1 Game CartPole

Gambar 3.5 Game CartPole di Godot

CartPole adalah simulasi klasik dalam reinforcement learning yang
merepresentasikan masalah pengendalian sistem dinamiddalam permainan ini,
sebuah tiang vertikal (pole) dipasang pada sebuah kereta (cart) yang dapat

bergerak ke kiri atau kanan pada lintasan datar.Agen yang mengendalikan cart

22

harus memberikan aksiyang tepat, yaitu mendorong cartke kiri atau ke kanan,
untuk menjaga keseimbangan tiang. Jika tiang jatuh terlalu miring hingga
melebihi batas sudut tertentu, atau jika cart bergerak terlalu jauh dari pusat

lintasan, maka episode akan berakhir.

O Arena ¥ O & dar
& Camera2D ® sprite2D
© Cart O collisionShape2D
- L
O AlController

& pole

3 Ground

® Sprite2D

® Sprite2D

O cCollisionshape2D
O Ul
4 Label

ne2l

oo
- 5':\1'”'-_

©@ @ © 0 00 0 0 © 0

® RightForce

Gambar 3.6 Scenelree Game CartPole

Dalam perancangan sistem game CartPole menggunakan Goddingine,
digunakan sebuah node utama yang dinamakan arena. Arena ini berfungsi sebagai
wadah utama yang menampung seluruh elemen yang terlibat dalam simulafd1
dalam arena terdapat beberapa elemen penting, antara lain kamera yang
digunakan untuk mengikuti pergerakan cart, serta sebuah scene bernama Cart
yang berisi objek-objek utama dalam simulasi.

Scene Cart ini terdiri dari tiga komponen utama, yaitu cart
(RigidBody2D)pole (RigidBody2D), dan sebuah sambungan engsel (pinjoint2D)
yang menghubungkan keduanya. Cart dan pole adalah objek yang bergerak secara
fisik, sementara pinjoint memungkinkan pole untuk berayun secara bebas di atas
cart, menyerupaisistem pendulum terbalik.Selain itu, terdapat juga permukaan
Ground sebagailandasan tempat cart bergerakPermukaan ini bersifat statis dan
tidak memiliki gesekan, sesuai dengan asumsi dasar dari simulasi CartPole klasik.

Untuk menampilkan informasi selama simulasistem dilengkapi dengan

antarmuka pengguna (UI) yang menampilkan nilai-nilai penting seperti posisi

23

cart, sudut pole, kecepatan, dan steps. Informasi ini berguna dalam proses
pengamatan dan evaluasi performa agen selama pelatihan.

Sebagai komponen pengendaliterdapat sebuah node agen yang bertugas
memberikan aksi pada sistem berdasarkan hasil perhitungan dari algoritma
reinforcementlearning. Agen ini berinteraksilangsung dengan lingkungan dan
menerima masukan berupa kondisi sistem yang sedang berlangsung.

Agar komunikasi antara Godot dan sistem eksternal berbasis Python dapat
berjalan, ditambahkan sebuah node sinkronisasiyaitu Sync. Node ini bertugas
untuk mengirim dan menerima data observasi serta aksi melalui koneksi jaringan
TCP. Dengan adanya sinkronisasi ini, model yang dilatih di Python dapat
digunakan untuk mengontropergerakan cartsecara langsung di dalam simulasi
Godot.

Gambar 3.7 Objek Cart dan Pole

Cart (RigidBody2D)platform dasar tempat pole berdiri dan objek yang
digerakkan oleh agen secara horizontal.
e [ebar: 40 unit
e Tinggi: 20 unit
e Massa: 1 kg
e Center Impulse Force: 5 unit
Pole (RigidBody2D) sebagai pole yang harus dijaga agar tetap tegak oleh

sistem.

24

e [ebar: 10 unit
e Tinggi: 100 unit
e Massa: 0.1 kg
Pin Joint (PinJoint2D) menghubungkan cart dan pole sebagai sumbu
rotasi yang memungkinkan pole berayun bebas tergantung gaya horizontal pada

cart.

Gambar 3.8 Objek Ground dan Batas Arena

Ground (StaticBody2D) memastikan hanya gaya horizontal dan gaya
gravitasi yang berpengaruh dalam simulasi. Tidak memiliki gesekan (frictionless).
Arena (Node2D) Menentukan batas ruang gerak cart dari rentang posisi sumbu x:
dari -240 unit hingga 240 unit. Jika cart melewati batas ini, maka episode simulasi

dinyatakan gagal atau berakhir.

Gambar 3.9 Code Action Space CartPole

Pada permainan CartPole, action space bersifat diskrit dan terdiri dari dua
kemungkinan aksi. Dengan kata lain, agen hanya bisa memilih antara dua

tindakan setiap step.

25

e (0 — mendorong kereta ke kiri

e | — mendorong kereta ke kanan

15() — Dictionary:

_player.global_position.x,
_player.linear_velocity.x,
_player.pole.global_rotation,

_player.pole.angular_veloclty,

return {"obs": obs}

Gambar 3.10 Code Action Space CliffWalking

Observation space adalah vektorberisi informasi dari lingkungan yang
diamati oleh agen. Dalam CartPole, terdapat empat nilai kontinu yang
membentuk observasi:

1. Posisi kereta (cart position): posisi horizontal dari cart (unit)

2. Kecepatan kereta (cart velocity): 1aju horizontal cart (unit)

3. Sudut tiang (pole angle): kemiringan tiang terhadap vertikal (dalam
radian)

4. Kecepatan sudut tiang (pole angular velocity): laju perubahan sudut tiang

Pada game CartPole,agen menerima reward sebesar 1 poin untuk setiap
langkah yang berhasil dilalui tanpa menjatuhkan tiang atau keluar dari batas
lintasan. Artinya, reward diberikan secara konstan setiap langkah hingga episode
berakhir. Karena reward selalu bernilai 1 per langkah, maka total reward yang
diperoleh agen dalam satu episode akan sama dengan panjang episode tersebut.
Misalnya, jika agen bertahan selama 500 langkah, maka total reward-nya juga
adalah 500 poin. Dengan demikian, nilai ep rew mean akan sama dengan

ep len mean.

26

Setiap episode dimulai dengan kondisi awal yang diacak dalam rentang
kecil di sekitaran keadaan seimbang. Artinya sistem memulai dalam posisi hampir
seimbang, namun dengan sedikit gangguan acak yang harus dikendalikan agen.

e Posisi kereta (cart position) = 5 unit

e Kecepatan (cart velocity) £ 5 unit

e Sudut tiang (pole angle) + 0.05 radians

o Kecepatan sudut (pole angular velocity) + 0.05 radians

Episode dalam CartPole akan berakhir apabila terjadi salah satu dari

kondisi berikut:
1. Posisi kereta keluar dari batas: + 240 unit dari pusat.
2. Sudut tiang melebihi + 12° (sekitar + 0.21 radians).
3. Jumlah langkah telah mencapai 500 step yang berarti agen berhasil

menjaga keseimbangan dalam waktu maksimal.

3.3.2 Game CliffWalking

Gambar 3.11 Game CliffWalking di Godot

CliffWalking adalah lingkungan gridworld 2D berukuran 4x12 yang
digunakan untuk mengujikemampuan agen dalam eksplorasidan pengambilan
keputusan di bawah risiko. Agen memulai dari titik (3, 0) dan bertujuan mencapai
titik (3, 11). Di antara titik start dan goal terdapatarea berbahaya yang disebut
jurang (cliff), yaitu sel sepanjang tepi bawah grid dari (3, 1) hingga (3, 10). Aksi

yang tersedia adalah bergerak ke atas, bawah, kiri, atau kanan.

27

ClifftWalking merupakan permainan simulasi reinforcement learning
berbasis grid yang terdiri dari sebuah arena berukuran 12x4. Arena ini terbagi
menjadi beberapa jenis tile yang memiliki peran dan aturan tertentu dalam
permainan.Tujuan utama dari game ini adalah agar pemain (agen) dapat bergerak
dari titik start menuju titik finish sambil menghindari zile berbahaya yang disebut
cliff.

O Arena

g+ Ground

% Player

o CamerazD

& oy
- 5_':;'”'-_

Gambar 3.12 Scene Tree CliffWalking

Gambar 3.4.2.2 menunjukkan struktur Scene Tree dari game CliffWalking
yang dibuat menggunakan Godot Engine dalam mode 2D. Struktur ini
menggambarkan susunan node yang merepresentasikan elemen-elemen dalam
satu skena permainan. Node utama dari scene ini adalah Node2D Arena,yang
berfungsi sebagai wadah atau root dari seluruh elemen dalam skena.Di dalam
Arena, terdapat beberapa node anak:

Ground (Tilemap) terdiri atas 12 kolom (lebar) dan 4 baris (tinggi), dengan
sistem koordinatposisi berbentuk (x,y), di mana x adalah kolom (0—11) dan y
adalah baris (0-3). Komponen-komponen penting pada arena ini meliputi:

e Tile Start (putih): Titik awal pemain berada diposisi (0, 3), yaitu pojok

kiri bawah arena.

e Tile Finish (kuning): Titik tujuan berada di posisi (11, 3), yaitu pojok
kanan bawah arena. Jika pemain memasuki fi/e ini, agen dianggap berhasil

mencapai finish dan episode berakhir.

28

e Tile Cliff (merah): Rentetan jurang berada disepanjang baris bawah dari

(1, 3) hingga (10, 3). Jika pemain memasuki tile ini, agen akan dianggap

jatuh ke jurang dan posisinya akan di-reset ke tile start.

e Tile Ground (hijau): Semua posisi dari (0, 0) hingga (11, 2) merupakan

area ground biasa yang dapat dilalui.

o Tile Wall (biru tua): Dinding pembatas mengelilingiseluruh arena agar

pemain tidak dapat bergerak keluar dari batas arena.

Gambar 3.13 Tilemap Arena CliffWalking

Player (CharacterBody2D)adalah node utama untuk karakter pemain

merupakan CharacterBody2D yang menanganipergerakan dan fisika pemain.

Pemain atau agen memiliki kemampuan untuk bergerak ke empatarah utama,

yaitu atas, bawah, kiri, dan kanan. Namun, gerakannya dibatasioleh beberapa

aturan:

Pemain dapat melintasi tile ground, cliff, dan finish.

Pemain tidak dapat bergerak ke tile wall (pembatas arena).

Ketika pemain melangkah ke file cliff, permainan akan memberikan
penalti besar, dan posisi pemain akan di-reset ke tile start.

Ketika pemain mencapai tile finish, permainan juga akan di-reset ke start,

menandai akhir dari satu episode.

29

Gambar 3.14 Player dan Agen CliffWalking

Game ini dirancang untuk menguji kemampuan agen dalam belajar
kebijakan optimal untuk mencapai tujuan dengan risiko minimum, terutama

menghindari file cliff yang memberikan konsekuensi buruk.

ion_space() -> Dictionary:

return {

"movement": {"size": 4, "action_type": "discrete"},

Gambar 3.15 Code Action Space CliffWalking

CliffWalking memiliki4 aksi diskrit, aksi-aksi ini memungkinkan agen
untuk bergerak ke empat arah utama dalam grid.
e (—atas (up)
e 1—kanan (right)
e 2—bawah (down)
o 3—kiri (left)

Observation space adalah vektorberisi informasi dari lingkungan yang
diamati oleh agen. Dalam CliffWalking, terdapat empat nilai kontinu yang
membentuk observasi:

1. Posisi player di pada grid di sumbu x
2. Posisi player di pada grid di sumbu 'y

Tujuan pembelajaran adalah menghindari c/iff sambil mencapai finish

dengan jumlah penalti seminimal mungkin.
e Agen mendapatkan reward -1 setiap berada di tile ground.
e Agen mendapatkan reward -10 setiap mencoba melangkah ke tile wall.

e Agen mendapatkan reward -100 jika jatuh ke tile cliff.

30

e Agen mendapatkan reward 100 jika berada di tile finish.
Agen selalu memulai dari pojok kiri bawah grid, yaitu posisi (0, 3).
Episode berakhir jika agen mencapai tile finish, yaitu pojok kanan bawah grid (11,
3).

get_obs() -» Dictionary:

observations: A

player.current

player.current_position_in_tile.y,
]

return {"obs": observations}

Gambar 3.16 Kode Observation Space CliffWalking

3.4 Evaluasi

Evaluasi dalam penelitian ini menggunakan pendekatan kuantitatif,
dengan tujuan untuk membandingkan performa dua algoritma reinforcement
learning, yaitu Advantage Actor-Critic (A2C) dan Proximal Policy Optimization
(PPO). Pengukuran dilakukan berdasarkan hasilpelatihan agen pada dua jenis
lingkungan permainan, yaitu CartPole dan CliffWalking.

Selama proses pelatihan, metrik performa akan dicatat dan
divisualisasikan menggunakan TensorBoard. Visualisasi ini memudahkan analisis
terhadap stabilitas, konvergensi,dan efisiensi pelatihan algoritma. Adapun dua
metrik utama yang digunakan dalam evaluasi adalah sebagai berikut:

® ¢p len mean

Menunjukkan rata-rata panjang episode (dalam jumlah langkah}yelama

pelatihan. Nilai ini memberikan gambaran seberapa lama agen mampu

bertahan dalam lingkungan sebelum episode berakhir.
® ¢p rew _mean

Menunjukkan rata-rata reward yang diterima agen per episode. Metrik ini

menjadi indikator utama dalam menilai efektivitas kebijakan yang

dipelajari oleh agen. Nilai reward yang lebih tinggi mengindikasikan

kebijakan yang lebih optimal.

31

Evaluasi dilakukan dengan menggunakan ujit dua sampel (independent
t-test) untuk mengetahui apakah terdapat perbedaan yang signifikan secara
statistik antara performa algoritma A2C dan PPO. Uji t dipilih karena kedua
algoritma menghasilkan data numerik yang bersifamdependen dan berasal dari
dua kelompok berbeda. Dalam proses ini, ditentukan dua hipotesis:

e Hipotesis nol (Ho): Tidak terdapat perbedaan signifikan antara performa

A2C dan PPO.

e Hipotesis alternatif(H:): Terdapat perbedaan signifikan antara performa

A2C dan PPO.

Lima hasil pelatihan (run) diambil dari masing-masing algoritma sebagai
data uji. Pengujian dilakukan menggunakan Python dengan pendekatan Welch's
t-test untuk mengakomodasi kemungkinan perbedaan varians antar kelompok
data. Setelah pengujian dilakukan, hasil dianalisis untuk menentukan apakah

perbedaan performa yang diamati bersifat signifikan secara statistik atau tidak.

32

BAB IV
HASIL DAN PEMBAHASAN

4.1 Implementasi Sistem

2D ¥B3D K Script . Game

Sort: Recently Updated

Godot RL Agents

Gambar 4.1 Menu AssetLib di Godot

Plugin AgentRL bisa diinstal langsung melaluidssetLib bawaan Godot,
sehingga pengguna tidak perlu mengunduh file secara manual. Cukup buka menu
AssetLib di dalam editor, cari AgentRL, lalu klik unduh dan pasang. Setelah
terpasang, plugin ini akan muncul di daftar plugin proyek dan bisa diaktifkan

melalui menu Project Settings — Plugins.

& Cart
® Sprite2D

O collisionsShape2D

O AlController

Gambar 4.2 Implementasi Node AIController

Setelah plugin diinstal, node AIController dapat ditambahkan ke agen
yang ingin digerakkan. Node ini berfungsi sebagai penghubung antara agen
dengan node Sync agar agen dapat menerima aksi dari Python dan

menggunakannya untuk bergerak sesuai action space.

33

ne AIController
s AIController2D

.global_position.x,
.linear_velocity.x,
".pole.global_rotation,

pole.angular_velocity,

return {"obs": obs}

return reward

1c get_action_s) — Dictionary:

return 1

"move_action" : {"size": 2, "action_type": "discrete"},

set_action(action) — wvoid:
#print(_player.ep : : ", action)

move_action = action["move_action"]

Gambar 4.3 Potongan Kode AIController

Setelah itu, script pada node AlController perlu di-extend untuk
mengimplementasikan beberapa fungsi antarmuka yang dibutuhkan, yaitu
get_obs(),get_reward(),get_action_space() dan set_action(). Fungsi-fungsiini
bertanggung jawab untuk menyediakan data observasi dari environment,
mendapatkan reward, mendefinisikan ruang aksi yang tersedserta menerapkan

aksi yang dikirimkan oleh model pembelajaran ke agen di dalam game.

34

O Arena
“ 4 sync.gd
¥ CamerazD
& Cart

[3 Ground

O Ul ..'_IF-;.-'-.-.'-..-: U p ;I.El

Mode Training

Action Repeat £) 1

& Sync (ModelPH) sb Ei_p |j:|[j_] M_10.

Gambar 4.4 Konfigurasi Node Sync

Node Sync ditambahkan ke dalam scene yang digunakan sebagai arena
pelatihan agen. Pada node ini, pengaturan ControlMode harus diubah menjadi
Training agar proses pelatihan dapat berjalaiselain itu, nilai Action Repeat diset
ke 1, yang berarti Godot akan mengirim dan menerima data dengan Python
melalui koneksi TCP setiap satu frame.

Langkah berikutnya adalah melakukan konfigurasi Python di VSCode
dengan membuatvirtual environmentterlebih dahulu. Setelah environment aktif,
instal paket AgentRL beserta framework Stable Baselines3 (SB3) dan TensorFlow
untuk kebutuhan visualisasi data menggunakan perintah “pip install
godot-rl[sb3]”. Selanjutnya, instal pustaka Microsoft. ML.OnnxRuntimeuntuk
mendukung proses inferensi model ONNX dengan perintah “dotnet add package
Microsoft. ML.OnnxRuntime”

Setelah semua paket terpasang, buat kode Python untuk menjalankan
proses pelatihan model. Hasil pelatihan dapat divisualisasikan menggunakan
TensorBoard dengan menjalankan “tensorboard --logdir ./logs/sb3”. Ketika
pelatihan selesai, model yang dihasilkan dapat langsung digunakan di Godot.
Dengan mengubah Control Mode pada Node Sync menjadi ONNX Inference dan
menetapkan path ke file model ONNX yang dihasilkan.

35

Tabel 4.1 Hyperparameter Algoritma A2C dan PPO

CartPole CartPole CliffWalking CliffWalking

Hyperparameter A2C PPO A2C PPO
total timesteps 1000000 1000000 50000 50000
n_steps 5 32 32 32
learning_rate 0.0007 0.0003 0.0007 0.0003
gamma 0.99 0.99 0.99 0.99
gae lambda 1.0 0.95 1.0 0.95
ent_coef 0.0 0.0 0.0 0.0
vf coef 0.5 0.5 0.5 0.5
max_grad norm 0.5 0.5 0.5 0.5
batch_size - 64 - 64
n_epochs - 10 - 10
clip_range - 0.2 - 0.2

Tabel 4.1.1 adalah hyperparameter yang digunakan dalam pelatihan agen
dengan algoritma A2C dan PPO pada game CartPole dan CliffWalking.
1. total timesteps

Menentukan jumlah total langkah interaksi agen dengan lingkungan
selama pelatihan. Nilai ini menunjukkan seberapa lama agen belajar.
Semakin besar nilainya,semakin banyak pengalaman yang dikumpulkan
agen, yang biasanya menghasilkan performa yang lebih baik, namun juga
membutuhkan waktu komputasi lebih lama. Dalam grafik pelatihan,
sumbu-x biasanya menunjukkan progres hingga mencapai fotal timesteps

tersebut.

36

. n_steps

Menentukan jumlah langkah interaksiagen dengan lingkungan sebelum
data disimpan ke dalam buffer untuk proses pelatihan. Nilai ini
berpengaruh terhadap ukuran buffer yang akan digunakan untuk
menghitung nilai advantage dan melakukan pembaruan kebijakan.

. learning_rate

Menentukan seberapa cepat model memperbaruibobotnya berdasarkan
error yang didapat. Nilai ini cukup umum digunakan karena memberikan
keseimbangan antara stabilitas dan kecepatan belajar.

. batch_size

Ukuran data yang digunakan dalam satu kali pembaruan gradien.Batch
yang lebih besar bisa membuat pembaruan lebih stabil,sementara batch
yang lebih kecil mempercepat iterasi tapi meningkatkan variansi.

. n_epochs

Jumlah pengulangan proses optimisasi untuk setiap batch data. Nilai yang
lebih besar memungkinkan model lebih maksimal memanfaatkan data
yang dikumpulkan, namun terlalu tinggi bisa menyebabkan overfitting

terhadap data yang sama.

. gamma

Faktor diskon untuk menghitung reward masa depan. Nilai ini
menandakan bahwa agen tetap mempertimbangkan imbalan jangka
panjang dalam pengambilan keputusan.

. gae_lambda

Parameter dalam perhitungan Generalized Advantage Estimation (GAE).
Nilai ini mengatur keseimbangan antara bias dan variansi. Angka 0.95
umumnya menghasilkan pelatihan yang lebih stabil.

. clip_range

Digunakan untuk membatasi perubahan besar pada kebijakan selama
proses pelatihan.Dengan adanya batas ini, pembaruan kebijakan menjadi
lebih aman dan tidak terlalu drastis, sehingga mengurangi risiko pelatihan

yang tidak stabil.

37

9. ent_coef

Koefisien entropi yang mengatur seberapa besar dorongan agen untuk

mengeksplorasi aksi baru. Jika diatur ke 0, agen hanya fokus pada

eksploitasi dari kebijakan yang telah dipelajari.
10. vf_coef

Koefisien yang mengatur kontribusifungsi nilai terhadap total kerugian.

Digunakan untuk menyeimbangkan pembelajaran antara bagian acfor dan

critic.

11. max_grad_norm

Digunakan untuk melakukan gradient clipping, yaitu membatasi nilai

maksimum gradien agar tidak terlalu besar. Hal ini penting untuk menjaga

stabilitas proses pelatihan, terutama saat terjadi perubahan besar dalam
jaringan.

Parameter-parametertersebut sebagian besar dipilih berdasarkan nilai
default dari SB3 dan disesuaikan dengan praktik umum dalam pelatihan agen
pada lingkungan yang relatif sederhana sepertCartPole dan CliffWalking. Nilai
total timesteps yang digunakan sama untuk kedua algoritmaggar perbandingan

performa menjadi adil.

4.2 Hasil Pengujian

Setelah model selesai dilatih, hasilnya dianalisis menggunakan
TensorBoard. Tool ini membantu melihatperkembangan performa agen secara
visual, seperti seberapa panjang agen bisa bertahan (ep_len_mean) dan seberapa
besar reward yang didapat (ep rew mean). Dengan tampilan grafik yang
interaktif, TensorBoard memudahkan dalam membandingkan kinerja algoritma
A2C dan PPO, sekaligus memberikan gambaran yang jelas tentang bagaimana

agen belajar dan berkembang seiring waktu.

38

4.2.1 CartPole

rollout/ep_len_mean X ::

200 V

Q0

70

&0

50

40

30

0 100k 200k 300k 400k 500k 600k 700k BODk 900k 1000000

Run + Smoothed Value Step Relative

aZchaZe_1 63.1747 49.54 1,000,000 4.642 hr
]

aZchaZc_2 79.739 76.48 1,000,000 4.621 hr

aZchaZc_3 1032761 73.23 1,000,000 4.618 hr
]

aZchaZc_4 114.8798 78.55 1,000,000 4.658 hr
. aZchaZc_b 64.23503 101.01 1,000,000 4.63 hr
®

Gambar 4.5 Grafik ep_len _mean Algoritma PPO hasil training CartPole

Gambar 4.5 menunjukkan grafik panjang episode (ep len mean) selama
proses pelatihan algoritma Advantage Actor-Critic (A2C). Sumbu horizontal
menunjukkan jumlah langkah step, sedangkan sumbu vertikal menunjukkan
panjang rata-rata episode yang berhasildiselesaikan oleh agen.Semakin tinggi
nilai ep _len _mean,maka semakin lama agen dapatbertahan dalam satu episode
sebelum dinyatakan gagal, yang dalam konteks CartPole berarti semakin baik
kemampuan agen menjaga keseimbangan pole di atas cart. Grafik ini
merepresentasikan hasil pelatihan kedua algoritma pada lingkungan CartPole
hingga mencapai 1 juta langkah interaksi antara agen dan lingkungahlgoritma
A2C mengalamipeningkatan yang lebih lambatdan tidak stabil. Pola fluktuatif
pada garis A2C juga menunjukkan bahwa agen lebih rentan terhadap
ketidakkonsistenan dalam kebijakan yang dipelajari, sehingga kesulitan untuk

mempertahankan performa tinggi secara stabil.

39

rollout/ep_len_mean X oz

300

200 gl x7
e g L S

100

€0 !
50 H
40
30 E
0 100k 200k 300k 400k 500k 600k 700k BOOk 900k 1 D[JUiiDD

Run + Smoothed Value Step Relative
ppoi\ppo_1 214.4204 104.34 1,000,000 4.629 hr

. ppo\ppo_2 196.4321 310.34 1,000,000 4637 hr
ppo\ppo_3 174.2058 211.64 1,000,000 4.63 hr

¢ ppo\ppo_4 232175 168.82 1,000,000 4761 hr

¢ ppo\ppo_5 147.763 127.06 1,000,000 4724 hr

Gambar 4.6 Grafik ep_len_mean Algoritma PPO hasil training CartPole

Gambar 4.6 menunjukkan grafik panjang episode (ep len mean) selama
proses pelatihan algoritma Proximal Policy Optimization (PPO). Dari grafik
tersebut terlihat bahwa algoritma PPO secara konsisten menunjukkan performa
yang lebih baik dibandingkan A2C. PPO memperlihatkan peningkatan rerata
panjang episode yang lebih cepat dan stabil sejak awal pelatihan, serta
mempertahankan performa tinggi dengan fluktuasi yang tidak terlalu ekstrem
hingga akhir pelatihan. Hal ini menunjukkan bahwa agen yang dilatih dengan
PPO hampir mencapai batas maksimal panjang episode dalam lingkungan
CartPole. Sebaliknya,algoritma A2C mengalamipeningkatan yang lebih lambat
dan tidak stabil. Pola fluktuatif pada garis A2C juga menunjukkan bahwa agen
lebih rentan terhadap ketidakkonsistenan dalam kebijakan yang dipelajari,
sehingga kesulitan untuk mempertahankan performa tinggi secara stabil.

Secara keseluruhan, grafik ini menunjukkan bahwa PPO lebih unggul
dibandingkan A2C dalam konteks pelatihan pada lingkungan CartPold]al ini

sesuai dengan karakteristik PPO yang mengutamakan kestabilan dalam

40

pembaruan kebijakan melalui mekanisme kliping, sehingga proses belajarnya
lebih terarah dan efisien. Sementara itu, A2C yang tidak memiliki mekanisme
pengendali serupa, cenderung menghasilkan performa yang kurang stabdalam

lingkungan dinamis seperti CartPole.

train/entropy_loss I

ra
L

-0.2
-0.4
0.6
0 100k 200k 300k 400k 500k 600k 70Ok BOOKk 900k 100015!]]
Run Smoothed Value Step Relative
aZchaZc_] -0.0615 -0.0175 1,000,000 4.642 hr
¢ aZchaZc_2 -0.1437 -0.0001 1,000,000 4.621 hr
]
aZchaZc_3 -0.1086 -0.1677 1,000,000 4618 hr
¢ aZc\aZc_4 -0.1822 -0.0983 1,000,000 4.658 hr
ot aZchaZc_5 -0.1033 -0.0519 1,000,000 463 hr
ppoippo_1 -0.2823 -0.307 1,000,000 4.629 hr
]
ppo\ppo_2 -0.2763 -0.3084 1,000,000 4.637 hr
ppo\ppo_3 -0.2607 -0.1591 1,000,000 463 hr
ot ppo‘\ppo_4 -0.2347 -0.1515 1,000,000 4.767 hr
]
ppo\ppo_5 -0.1849 -0.4088 1,000,000 4724 hr
*®

Gambar 4.7 Grafik entropy loss hasil training CartPole

Gambar 4.7 memberikan gambaran mengenai tingkat eksplorasi agen
selama proses pelatihan. Dalam konteks reinforcement learning, entropy
digunakan sebagai ukuran seberapa acak keputusan yang diambil oleh agen. Nilai
entropy yang tinggi menunjukkan bahwa agen masih aktif mencoba berbagai aksi
(eksplorasi), sedangkan nilai yang rendah mengindikasikan bahwa agen mulai
menetapkan pilihan aksi yang konsisten (eksploitasi). Berdasarkan grafik yang

dihasilkan, algoritma PPO memperlihatkan nilaentropy loss yang lebih rendah

41

secara konsisten dibandingkan A2C, namun tetap dalam rentang yang stabil. Hal
ini menandakan bahwa PPO menjaga eksplorasi dengan lebih hati-hati dan
seimbang. Sementara itu, A2C terlihat cepat menurunkan nilai entropy-nya di
awal pelatihan, sehingga agen cenderung terlalu cepat melakukan eksploitasi.
Penurunan eksplorasiyang terlalu dini dapat menyebabkan agen belajar strategi
yang kurang optimalkarena belum sempatmencoba cukup banyak variasiaksi.
Dengan demikianpada aspek ini, PPO menunjukkan pendekatan eksplorasi yang

lebih adaptif dan stabil sepanjang pelatihan.

ra
La

train/value_loss 1;-[

2000

700
400

200

40

20

7

4

a 100k 200k 300k 400k 500k 600k 700k BOOK 900k 1 U[JUEII]I]

Run *+ Smoothed Value Step Relative

aZchaZe 1 42.0291 3.5337 1,000,000 4.642 hr
® aZchaZc_2 75.0039 0.1543 1,000,000 4.621 hr
® aZchaZc_3 2434027 2.1675 1,000,000 4618 hr
® aZchaZc_4 212.2284 0.0904 1,000,000 4.658 hr
g aZchaZc_5 2577273 0.0011 1,000,000 4.63 hr

ppo\ppo_1 52.1795 52.9352 1,000,000 4.629 hr
® ppo\ppo_2 71.4952 0.0213 1,000,000 4.637 hr

ppo\ppo_3 43.0616 23.6319 1,000,000 4.63 hr
g ppo\ppo_4 87.8966 5.923 1,000,000 4761 hr
: ppo\ppo_5 48.0227 9.67198 1,000,000 4724 hr

Gambar 4.8 Grafik value_loss hasil training CartPole

Gambar 4.8 merepresentasikan seberapa besar kesalahan prediksiyang
dilakukan oleh komponen critic dalam memperkirakan nilai suatu keadaan (state).
Dalam algoritma reinforcement learning, critic memiliki peran penting dalam

mengevaluasi seberapa baik suatu aksi yang diambil berdasarkan nilai yang

42

diharapkan.Dari hasil grafik,terlihat bahwa algoritma A2C mengalami fluktuasi
value loss yang sangat tinggi dan tidak stabil. Beberapa lonjakan nilainya bahkan
mencapai, yang menandakan bahwa estimasnilai yang dihasilkan oleh jaringan
critic pada A2C sering kali meleset jauh dari target sebenarnya. Sebaliknya,
meskipun PPO juga menunjukkan lonjakan pada value loss, pola yang dihasilkan
lebih stabil dan terkendali, dengan variasi yang cenderung lebih konsisten
sepanjang pelatihan.Nilai rata-rata yang lebih tinggi pada PPO sebenarnya tidak
selalu buruk, karena kestabilan pola menjadi indikator penting dalam proses
pembelajaran yang sehat. Berdasarkan pengamatan ini, dapat disimpulkan bahwa
PPO lebih mampu menjaga kestabilan dalam pembaruan fungsi nilai
dibandingkan A2C, yang cenderung mengalami ketidakteraturan akibat

pembaruan yang agresif dan tanpa mekanisme pengendali seperti clipping.

train/loss J;[

ra
La
'
'
L]

40
20
0 100k 200k 300k 400k 500k 600k 7OOk BOOk 900k 10[]01;II]I]
Run + Smoothed Value Step Relative
ppoippo_1 21.0685 22.8405 1,000,000 4.629 hr
L]
ppo\ppo_2 306374 -0.0083 1,000,000 4.637 hr
ppoh\ppo_3 16.4538 7.0975 1,000,000 4.63 hr
L]
ppo\ppo_4 38.9738 1.8125 1,000,000 4.761 hr
L]
ppo\ppo_5 20.4025 3.4402 1,000,000 4724 hr
[]

Gambar 4.9 Grafik train loss hasil training CartPole

Gambar 4.9 menunjukkan nilai keseluruhan dari fungsi kerugian yang
digunakan selama pelatihan model.Pada algoritma PPO, train loss merupakan

kombinasi dari beberapa komponen, yaitu policy loss, value loss, dan penalti

43

entropy. Dari grafik yang ditampilkan,terlihat bahwa nilai train loss mengalami
fluktuasi selama proses pelatihan, dengan beberapa lonjakan yang cukup tajam
pada titik-titik tertentu. Meskipun demikian,pola keseluruhannya tetap berada
dalam batas yang wajar dan tidak menunjukkan tanda-tanda divergenceyaitu
kondisi di mana nilai loss meningkat secara tidak terkendali. Nilai train loss yang
naik turun secara periodik merupakan hal yang umum dalam pelatihan
reinforcement learning, terutama karena dinamika interaksi agen dengan
lingkungan yang berubah seiring dengan perkembangan kebijakan. Selain itu,
stabilitas garis smoothed menunjukkan bahwa meskipun terdapatariasi, model
PPO tetap mampu menjaga arah pembelajaran yang konsisten dan tidak terganggu
oleh perubahan sesaat. Secara keseluruhan,train loss pada PPO mencerminkan
proses pelatihan yang relatif stabil dan menunjukkan kemajuan yang sejalan

dengan peningkatan performa agen.

train/policy_loss X o

a 100k 200k 300k 400k 500k 600k 700k BOOk 900k 1000000

Run ™ Smoothed Value Step Relative

aZchaZc_l -0.228 -0.0046 1,000,000 4.642 hr
e aZc\a2c_2 -0.2876 0 1,000,000 4621 hr

aZc\aZc_3 -0.4481 0.71033 1,000,000 4618 hr
® aZc\aZc_4 -0.5674 0.0044 1,000,000 4.658 hr
g aZch\aZc_5 -0.4278 0.024 1,000,000 4.63 hr

Gambar 4.10 Grafik policy loss hasil training CartPole

Gambar 4.10 mencerminkan seberapa besar kesalahan kebijakan yang

terjadi selama pelatihanyaitu seberapa jauh distribusi aksi yang dipilih oleh agen

44

menyimpang dariarah kebijakan yang diharapkan berdasarkan nilaazdvantage.
Pada algoritma A2C, grafik ini menunjukkan fluktuasiyang sangat tinggi dan
tidak stabil sepanjang proses pelatihan.Nilai policy loss sering kali mengalami
spike negatif yang besar. Pola ini menunjukkan bahwa pembaruan kebijakan yang
dilakukan oleh A2C sering kali terlalu drastis atau tidak terarah.Tidak adanya
mekanisme pembatasan seperti clipping, sebagaimana terdapat dalam PPO,
membuat A2C lebih rentan terhadap perubahan kebijakan yang ekstrim akibat
sinyal pelatihan yang bervariasi. Meskipun pada beberapa titik nilai smoothed dari
policy loss tampak mendekati nol, hal ini tidak sepenuhnya mencerminkan
stabilitas, karena fluktuasiyang ekstrim tetap terjadisecara berkala. Kondisi ini
menunjukkan bahwa A2C lebih sulit mencapai konvergensi kebijakan yang stabil
dibandingkan PPO. Oleh karena itu, policy loss pada A2C menjadi indikator

kelemahan dalam menjaga konsistensi arah pembelajaran kebijakan secara jangka

panjang.
train/policy_gradient_loss 1}"- H
0 A :
o PP S WSS,
-0.01 :
0.02
0 100k 200k 300k 400k 500k 600k 700k 8OOk 900k 1000000
Run * Smoothed Value Step Relative
ppo\ppo_1 -0.005 -0.0014 1,000,000 4629 hr
L]
ppo\ppo_2 -0.0038 -0.0053 1,000,000 4.637 hr
ppo\ppo_3 -0.0033 0.0024 1,000,000 4.63 hr
®
ppo\ppo_4 -0.0041 -0.0059 1,000,000 4.761 hr
¢ ppo\ppo_5 -0.0033 -0.0004 1,000,000 4724 hr

Gambar 4.11 Grafik policy gradient loss hasil training CartPole

Gambar 4.11 menggambarkan besarnya pembaruan yang dilakukan

terhadap kebijakan (policy) agen selama pelatihan, khususnya dalam konteks

45

algoritma PPO. Nilai loss ini berasal dari hasil perhitungan gradien kebijakan
yang digunakan untuk memperbarui model, dan berperan penting dalam
mengarahkan agen menuju kebijakan yang lebih optimal. Dari hasil grafik,
terlihat bahwa nilai policy gradient loss berada pada kisaran yang sangat kecil dan
secara bertahap menurun seiring berjalannya pelatihartal ini mengindikasikan
bahwa kebijakan yang dimiliki agen telah semakin stabil, sehingga tidak lagi
membutuhkan pembaruan yang besarNilai smoothed yang mendekatinol pada
tahap akhir pelatihan menunjukkan bahwa proses pembelajaran telah mencapai
titik konvergensi, di mana agen sudah menemukan strategi yang efektif dalam
menyelesaikan tugas pada lingkungan CartPole. Stabilitas ini merupakan ciri khas
dari PPO yang memiliki mekanisme clipping, yaitu pembatasan terhadap
perubahan kebijakan yang terlalu drastisDengan demikianpolicy gradient loss
yang rendah dan stabil ini menjadi indikator bahwa PPO berhasil membangun

kebijakan yang efisien dan konsisten.

Episode: 0

Step: 1

Cart position: (-0.080821, -9.727777)

Cart velocity: (-4.849289, 16.33333)

Pole Angle: 0.00

Pole linear velocity: (-1.423774, 16.33333)

Pole angular velocity: 0.07 radians

46

Episode: 0

Step: 101

Cart position: (1.072308, -9.727777)

Cart velocity: (4.691015, 0.0)

Pole Angle: -0.00

Pole linear velocity: (1.915591, 0.002456)
Pole angular velocity: -0.06 radians

Episode: 0

Step: 201

Cart position: (1.846471, -9.727777)

Cart velocity: (-5.076362, -0.0)

Pole Angle: 0.00

Pole linear velocity: (-1.293035, 0.016807)

Pole angular velocity: 0.08 radians

47

Episode: 0

Step: 301

Cart position: (3.404935, -9.727777)

Cart velocity: (4.46481, 0.0)

Pole Angle: -0.00

Pole linear velocity: (1.618951, 0.009497)

Pole angular velocity: -0.06 radians

Episode: 0

Step: 402

Cart position: (3.82613, -9.727777)

Cart velocity: (-0.434887, -0.0)

Pole Angle: 0.00

Pole linear velocity: (0.114124, 0.004666)

Pole angular velocity: 0.01 radians

48

Episode: 0

Step: 500

Cart position: (4.979428, -9.727777)

Cart velocity: (-0.583593, 0.0)

Pole Angle: 0.00

Pole linear velocity: (0.342344, 0.002361)

Pole angular velocity: 0.02 radians

Gambar 4.12 Agen CartPole Dengan Algoritma PPO Setiap 100 Frame

4.2.2 CliffWalking
rollout/ep_len_mean B o
150
100
50
5,000 10k 15k 20k 25k 30k 35k 40k 4sk 50016
Run Value Step Relative
azc\aZc_1 19.98 48,000 2.5 min
® aZc\aZc_2 2041 48,000 2.503 min
®
a2c\aZc_3 21.53 48,000 2.51 min
g aZc\aZc_4 2194 48,000 2.493 min
® aZc\aZc_5 20.49 48,000 2.518 min
®

Gambar 4.13 Grafik ep_len_mean Algoritma A2C hasil training CliffWalking
Gambar 4.13 memperlihatkan grafik hasipelatihan algoritma A2C pada

lingkungan game CliffWalking. Pada grafik tersebut, sumbu vertikal

merepresentasikan rata-rata panjang episode, sementara sumbu horizontal

49

menunjukkan jumlah langkah pelatihan (szeps). Di tahap awal pelatihan, algoritma
A2C masih berada dalam fase eksplorasiyang ditandai dengan panjang episode
yang cukup tinggi. Kondisi ini mengindikasikan bahwa agen belum berhasil
menemukan jalur tercepat menuju tile finish. Namun, setelah melewati sekitar
5.000 langkah pelatihan, terjadi penurunan tajam pada panjang episode.
Penurunan ini menunjukkan bahwa agen mulai menemukan jalur optimal dan

mulai menyelesaikan tugas dengan cara yang lebih efisien.

rollout/ep_len_mean I ::
-\
300
200
80
60
40
30
20
0 5,000 10k 15k 20k 25k 30k 35k 40k 45k EDD‘-lﬁ
Run + Value Step Relative
ppo\ppo_1 15.87 50,016 13.53 min
ot ppo\ppo_2 15.07 50,016 13.26 min
® ppoippo_3 13.22 50,016 13.63 min
ppoi\ppo_4 16 50,016 13.31 min
ppoippo_5 13.25 50,016 13.78 min
L

Gambar 4.14 Grafik ep_len_mean Algoritma PPO hasil training CliffWalking

Gambar 4.14 menunjukkan grafik hasil pengujian algoritma PPO di game
ClifftWalking.Di awal pelatihan, algoritma PPO masih menjalankan eksplorasi
dengan panjang episode yang relatif tinggi. Hal ini menunjukkan agen belum
mampu menemukan jalur optimal menuju tujuan tile finish sama seperti algoritma

A2C. Setelah sekitar 5.000 langkah, terjadi penurunan drastis pada panjang

50

episode, menandakan bahwa agen sudah menemukan lokasi tile finish dan mulai

belajar untuk menyelesaikan tugas dengan lebih efisien.

rollout/ep_rew_mean I

-500

-1000

5,000 10k 15k 20k 25k A0k 35k A0k 45k 50016

Run + Value Step Relative

azchae 55.82 48,000 2.5min
® aZchaZc_2 49.89 48,000 2.503 min
. aZchaZc_3 4597 48,000 2.571 min
® aZc\aZc_4 39.16 48,000 2.493 min
: aZc\alc_h 48.47 48,000 2.5718 min

Gambar 4.15 Grafik ep_rew_mean Algoritma A2C hasil training CliffWalking

Gambar 4.15 menunjukkan grafik perkembangan rata-rata reward yang
diterima oleh agen selama pelatihan. Di awal pelatihan, reward masih sangat
rendah. Ini disebabkan oleh agen yang masih mengeksplorasi lingkungan dan
sering terkena penalti karena jatuh ke file cliff. Setelah sekitar 10.000 langkah,

baik A2C mulai menunjukkan peningkatan signifikan dalam rata-rata reward.

51

rollout/ep_rew_mean I

80 T
60 h T ::_‘f'i
L)

40 :
30 !
20 :
8 :
& 4

L]

4 !
; !

0 5,000 10k 15k 20k 25k 30k 35k 40k 45k 50016

Run Value Step Relative

ppoh\ppo_1 70.23 50,016 13.53 min
ot ppoippo_2 7373 50,016 13.26 min
@ ppoippo_3 76.78 50,016 13.63 min

ppo\ppo_4 74.5 50,016 13.37 min
s ppoi\ppo_5 83.65 50,016 13.78 min

Gambar 4.16 Grafik ep_rew_mean Algoritma PPO hasil training CliffWalking

Gambar 4.16 menunjukkan grafik perkembangan rata-rata reward yang
diterima oleh agen selama pelatihan. Di awal pelatihan (0-25.000 langkah),
reward masih tidak ada. Ini disebabkan oleh agen yang masih mengeksplorasi
lingkungan dan sering terkena penalti karena jatuh ke tile cliff. Setelah sekitar
30.000 langkah, baik A2C maupun PPO mulai menunjukkan peningkatan
signifikan dalam rata-rata reward.

PPO sempat mengalamikenaikan dan fluktuasiyang lebih tajam, namun
setelah 35.000 langkah keduanya mencapai stabilitas performa. Pada akhir
pelatihan, kedua algoritma menghasilkan rata-rata reward yang tinggi dan serupa
(sekitar 68—70 poin), menandakan bahwa agen berhasil mempelajari strategi

optimal untuk mencapai tujuan sambil menghindari penalti.

52

train/entropy_loss] &’ 3

0.5
-1
i} 5,000 10k 15k 20k 25k 30k 35k A0k 45k 500‘-I6

Run *+ Smoothed Value Step Relative

aZchaZe -0.5714 -0.2741 48,000 2.5 min
. aZchalc_2 -0.6174 -0.3104 48,000 2.503 min
¢ aZchaZc_3 -0.6622 -0.4126 438,000 2.57 min
ot aZchaZc 4 -0.6676 -0.4158 48,000 2.493 min
. azchaZc_5 -0.5906 -0.3594 48,000 2.578 min
. ppoippo_l -0.1904 01175 50,016 13.71 min
ot ppoh\ppo_2 -0.1394 -0.1096 50,016 13.92 min
. ppo\ppo_3 -0.0681 -0.0214 50,016 14.33 min

ppoi\ppo_4 -0.2593 01726 50,016 13.89 min
s ppo\ppo_5 -0.0432 -0.0217 50,016 13.88 min

Gambar 4.17 Grafik entropy loss hasil training CliffWalking
Gambar 4.17 menampilkan grafik entropy loss selama proses pelatihan
model pada lingkungan CliffWalking. Pada awal pelatihan, kedua algoritma
mengalami penurunan entropy loss yang signifikapang menunjukkan tingginya
eksplorasi. Seiring waktu, entropy loss meningkat perlahan mendekati nol,
menandakan bahwa agen mulai mengambil tindakan dengan lebih pasti
berdasarkan pengetahuan yang diperolehNilai rata-rata entropy loss dari PPO

sedikit lebih rendah daripada A2C, meskipun perbedaannya tidak terlalu besar.

53

train/value_loss 1;-[La

- IR o

6000 k | | 1‘

4000 m\ Y ;
ST I T T

2000 T

i,

- .
R T o]
]

0 5,000 10k 15k 20k 25k 30k 35k 40k 45k 50016

Run + Smoothed Value Step Relative

aZchalc_l 7102.7153 1,696.0582 48,000 2.5min
¢ aZchaZc_2 7,273.8555 1,921.6986 48,000 2.503 min
o aZchae_3 6,936.8505 1,753.9438 48,000 2.57 min
ot aZchalc_4 6,125.4765 2980.532 48,000 2.493 min
@ aZchaZc_5 5,910.0757 7,354.6948 48,000 2.578 min
® ppoippo_T 1,262.476 307.4618 50,016 13.71 min
ot ppo\ppo_2 653.7473 5.3383 30,016 13.92 min
@ ppoh\ppo_3 3,707.8242 2.3959 50,016 14.33 min

ppo\ppo_4 1,438.3974 176.4784 50,016 13.89 min
. ppo\ppo_5 16,795.1625 18,551.9063 50,016 13.88 min

Gambar 4.18 Grafik value loss hasil training CliffWalking

Gambar 4.18 menampilkan grafik value loss selama proses pelatihan
model pada lingkungan CliffWalking. Dari grafik terlihat bahwa kedua algoritma
mengalami fluktuasi nilai value loss yang cukup besar, terutama di awal pelatihan,
yang kemudian secara bertahap mulai mengecil seiring bertambahnya langkah
pelatihan. Meskipun demikian, PPO cenderung menghasilkan value loss yang
lebih tinggi secara keseluruhan dibandingkan A2C.Nilai value loss yang lebih
tinggi pada PPO menunjukkan bahwa estimasi nilai dari model tersebut
cenderung memilikideviasi yang lebih besar terhadap nilai target, dibandingkan
dengan A2C. Meskipun begitu, perbedaan ini tidak serta-merta menunjukkan

keunggulan mutlak dari salah satu algoritma, karena efektivitas pembelajaran juga

54

dipengaruhi oleh faktor lain seperti stabilitas kebijakan dan kemampuan
eksplorasi. Secara keseluruhan, grafik ini menggambarkan dinamika pembelajaran
fungsi nilai oleh kedua algoritmagdengan pola fluktuasi tinggi yang wajar dalam

pelatihan pembelajaran penguatan, terutama di lingkungan seperti CliffWalking.

train/loss I r

4000

3000

lI
2000 #\
I"_,,-f"f.

1000

L s
e T o]
]

1} 5,000 10k 15k 20k 25k 30k 35k 40k 45k 50016

Run + Smoothed Value Step Relative

ppo‘\ppo_1 630.009 149.8497 50,016 13.71 min
® ppoippo_2 324.1914 2.5312 50,016 13.92 min
@ ppo'\ppo_3 1,822.7204 1.0395 50,016 14.33 min

ppo'\ppo_4 717.4022 87.6395 50,016 13.89 min
o ppo\ppo_5 8,383.7947 9,7265.6689 50,016 13.88 min

Gambar 4.19 Grafik train loss hasil training CliffWalking

Gambar 4.19 menampilkan grafik train loss selama proses pelatihan
model pada lingkungan CliffWalking. Grafik memperlihatkan bahwa kedua
algoritma mengalamifluktuasinilai /oss yang cukup tinggi, terutama pada tahap
awal pelatihan. Nilai train loss perlahan menurun dan mulai stabil seiring
bertambahnya langkah pelatihan,menandakan bahwa modelmulai belajar dari
lingkungan secara lebih konsistenPada tahap akhir pelatihan PPO menunjukkan
penurunan variasi loss. Secara keseluruhan, grafik ini menunjukkan algoritma
berhasil belajar dan menunjukkan tren penurunan train loss,dengan perbedaan

performa yang tidak terlalu mencolokFluktuasi tinggi di awal mengindikasikan

55

proses eksplorasi dan penyesuaian terhadap lingkungan,yang kemudian stabil

seiring meningkatnya jumlah langkah pelatihan.

train/policy_loss T -

-50
-100
5,000 10k 15k 20k 25k 30k 35k 40k 45'480(:‘11}]
Run + Smoothed Value Step Relative
aZchale_ -10.4074 8.2653 48,000 2.5 min
. aZchale_2 B8.84817 18.4567 48,000 2.503 min
o a2chaZec_3 -21.7787 6.26017 43,000 2.51 min
ot aZchalc_4 -11.1946 22.5424 48,000 2.493 min
®
aZchalec_5 -9.4351 -10.5603 48,000 2.518 min
»

Gambar 4.20 Grafik policy loss hasil training CliffWalking

Gambar 4.20 menampilkan grafik policy loss selama proses pelatihan
algoritma A2C pada lingkungan CliffWalking.Sumbu horizontal menunjukkan
jumlah langkah pelatihan (steps),sedangkan sumbu vertikalmenunjukkan nilai
policy loss. Secara umum, policy loss mencerminkan seberapa besar kesalahan
dalam kebijakan yang diambil oleh agen, semakin rendah nilainya (mendekati nol

dari arah negatif), semakin baik performa agen dalam memilih tindakan.

56

Pada awal pelatihan, sebagian besar run menunjukkan nilai policy loss
yang sangat rendah, yang menandakan bahwa agen masih banyak melakukan
kesalahan dalam menentukan tindakan. Namun, seiring berjalannya waktu,
terlihat adanya tren peningkatan nilaipolicy loss yang mendekatinol, terutama
setelah melewati 10.000 langkah. Hal ini menunjukkan bahwa agen mulai belajar

dari pengalaman dan melakukan pembaruan kebijakan yang lebih efektif.

train/policy_gradient_loss I r
0,002 ;
-0.003 :
0.004 L
-0.005 T
-0.006 :

0 5000 1ok 15k 20k 25k 30k 35k 40k 45k 50016

Run + Smoothed Value Step Relative
ppo\ppo_1 -0.0056 0.0015 50,016 13.71 min

ot ppo\ppo_2 -0.00449 -0.0064 50,016 13.92 min

&
ppoi\ppo_3 -0.0039 -0.0001 50,016 14.33 min
ppo\ppo_4 -0.0051 -0.0154 50,016 13.89 min
ppo\ppo_5 -0.0072 -0.0001 50,016 13.88 min

»

Gambar 4.21 Grafik policy gradient loss hasil training CliffWalking

Gambar 4.21 menunjukkan grafik policy gradient loss selama proses
pelatihan algoritma pada lingkungan CliffWalking. Dari grafik terlihat bahwa nilai
policy gradient loss untuk kedua algoritma berfluktuasicukup tinggi sepanjang
proses pelatihan Meskipun keduanya memiliki rentang fluktuasi yang mirip, nilai
smoothed loss dari PPO sedikit lebih rendah dibandingkan dengan A2C,yang
menunjukkan bahwa PPO melakukan pembaruan kebijakan yang cenderung lebih

kecil secara rata-rata. Fluktuasi tinggi ini merupakan hal yang umum dalam

57

pelatihan agen pembelajaran penguatan karena agen terus-menerus menyesuaikan
tindakannya berdasarkan pengalaman baru. Secara keseluruhan, grafik ini
menunjukkan bahwa baik A2C maupun PPO berhasil menjalankan proses
pembaruan kebijakanmeskipun masih terdapat dinamika yang tidak stabil hingga
akhir pelatihan.

Gambar 4.22 Jalur Algoritma PPO Agen CliffWalking

4.3 Analisis dan Pembahasan
Pengujian signifikansi statistik dilakukan menggunakan Welch’s t-test
dengan tingkat signifikansi 5% (a = 0.05). Jika nilai p-value < 0.05, maka terdapat
perbedaan yang signifikan antara hasil algoritma A2C dan PPO. Sebaliknyzka
p-value >0.05, maka perbedaan yang ada tidak signifikan secara statistik.
Hipotesis yang digunakan adalah sebagai berikut:
e Ho: Rata-rata hasil A2C sama dengan rata-rata hasil PPO (tidak ada
perbedaan signifikan).
e Hi: Rata-rata hasil A2C berbeda dengan rata-rata hasil PPO (terdapat

perbedaan signifikan).

Tabel 4.2 Hasil ep len _mean Training Game CartPole

Run 1 2 3 4 5 Mean

A2C 50.32 88.06 69.46 85.86 103.90 79.52

58

PPO 126.82 305.03 220.83 199 125.59 195.45

Deviasi 76.50 21697 151.37 113.14 21.69 11593

import scipy.stats as stats

a2c = [50.32, 88.06, 69.46, 85.86, 103.90]
ppo = [126.82, 385.83, 220.83, 199, 125.59]

t_stat, p_value = stats.ttest_ind(a2c, ppo, equal_wvar=
print{"C p len_mean™)

print({"t c:", t_stat)

print{“p-value:", p_wvalue)

CartPole ep_len_mean
t-statistic: -3.352572217194514
p-value: B8.8238712272974500802

Gambar 4.21 Hasil Uji T ep_len_mean CartPole Menggunakan Python

Berdasarkan hasilperhitungan menghasilkan nilat sebesar -3,35 dengan
p-value 0,023. Karena nilai p lebih kecil dari tingkat signifikansi0,05, maka
perbedaan hasil rata-rata lamanya agen dalam satu episode antara metode A2C
dan PPO dinyatakan signifikan secara statistik. Hal ini menunjukkan bahwa
performa PPO secara konsisten lebih tinggi atau dapat menyeimbangkan tiang
lebih lama dibandingkan A2C pada game CartPole dengan rata-rata deviasi
sebanyak 115.93 lebih lama.

Tabel 4.3 Hasil ep _len _mean Training Game CliffWalking

Run 1 2 3 4 5 Mean
A2C 19.98 20.41 21.53 21.94 20.49 20.87
PPO 15.87 15.07 13.22 16 13.25 14.68
Deviasi 4.11 5.34 8.31 5.94 7.24 6.19

59

import scipy.stats as stats

aZc = [19.98, 20.41, 21.53, 21.94, 28.49]
ppo = [15.87, 15.87, 13.22, 16, 13.25]

t_stat, p_value tats.ttest_ind(a2c, ppo, equal_var=

print("CliffWalking ep len mean"}
print{"t '
print{“p

CliffWalking ep_len_mean
t-statistic: 8.658288723363953
p-value: 7.B872547278649721e-B5

Gambar 4.22 Hasil Uji T ep_len_mean CliffWalking Menggunakan Python

Berdasarkan hasil perhitungan menghasilkan nilat sebesar 8.66 dengan
p-value 0,00008. Karena nilaip lebih kecil dari tingkat signifikansi0,05, maka
perbedaan hasil rata-rata lamanya agen dalam satu episode antara metode A2C

dan PPO dinyatakan signifikan secara statistik dalam game CliffWalking.

Tabel 4.4 Hasil ep_rew _mean Training Game CliffWalking

Run 1 2 3 4 5 Mean
A2C 55.82 49.89 45.97 39.16 48.41 47.85
PPO 70.23 76.78 74.5 83.65 73.73 75.78

Deviasi 14.41 26.89 28.53 44.49 2532 27.93

60

import scipy.stats as state

a2c
ppo =

c: stat)
', p_wvalue)

CliffWalking ep rew _mean
t-statistic: -7.953B66781567552
p-value: 5.579634215648081e-05

Gambar 4.23 Hasil Uji T ep_rew_mean CliffWalking Menggunakan Python

Berdasarkan hasilperhitungan menghasilkan nilat sebesar -7,95 dengan
p-value 0,00005. Karena nilai p lebih kecil dari tingkat signifikansi0,05, maka
perbedaan hasil rata-rata reward per episode antara metode A2C dan PPO
dinyatakan signifikan secara statistik. Hal ini menunjukkan bahwa PPO
mendapatkan reward lebih banyak per episode daripada algoritma A2C dalam
game CliffWalking dengan rata-rata deviasi sebanyak 27.93 reward.

61

BABYV
KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasilimplementasidan evaluasi yang telah dilakukandapat
disimpulkan bahwa plugin AgentRL berhasil diimplementasikanpada game
CartPole dan CliffWalking menggunakan dua algoritma pembelajaran penguatan,
yaitu A2C (Advantage Actor-Critic) dan PPO (Proximal Policy Optimization).
Hasil pelatihan menunjukkan bahwa pada game CartPole, algoritma PPO
memberikan performa dalam menyeimbangkan tiang lebih baik dibandingkan
A2C dengan rata-rata deviasi 115.93 lebih lama.

Sementara itu, pada game CliffWalking, kedua algoritma tidak
menunjukkan perbedaan yang signifikan dalam hal panjang episode. Namun,
terdapat perbedaan signifikan pada nilareward per episode antara keduanyagli
mana algoritma PPO memperoleh rata-rata deviasi durasi episode 6.19 lebih
pendek dan deviasi reward 27.93 lebih banyak daripada A2C. Hal ini
mengindikasikan bahwa PPO memilikiperforma yang lebih baik dibandingkan
dengan A2C, terutama dalam game CartPole dan CliffWalking.

5.2 Saran

Penelitian ini dapat dikembangkan lebih lanjut dengan menerapkan
pendekatan yang sama pada jenis permainan atau environment lainnya yang
memiliki tingkat kompleksitas berbeda, seperti permainan berbasis strategi,
navigasi dalam peta labirin, atau simulasi robotika. Hal ini bertujuan untuk
menguji sejauh mana fleksibilitas Godotdan plugin AgentRL dalam menangani
berbagai skenario reinforcementlearning. Selain itu, disarankan untuk menguji
algoritma RL lainnya seperti Deep Q-Network (DQON) dan Soft Actor-Critic (SAC)
guna membandingkan performa dan efisiensi masing-masing algoritma dalam

menyelesaikan tugas yang lebih kompleks.

62

Daftar Pustaka

Barto, A. G., & Sutton, R. S. (1983). Neuronlike adaptive elements that can solve
difficult learning control problems.
http://incompleteideas.net/papers/barto-sutton-anderson-83.pdf

Colas, C., Sigaud, O., & Oudeyer, P. Y. (2019). A Hitchhiker's Guide to Statistical
Comparisons of Reinforcement Learning Algorithms.
https://arxiv.org/abs/1904.06979

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research.
https://www. jmlr.org/papers/volume7/demsar06a/demsar06a.pdf

Diederichs,E. (2019). Reinforcement learning: A technical introduction — Part I.

ResearchGate.

g - A_Technical Introduction

Godot documentation — Latest stable release. https://docs.godotengine.org

Gosset, W. S. (1908). The probable error of a mean. Biometrika, 6(1).
https://www.jstor.org/stable/2331554

Holfeld, J. (2023). On the relevance of the Godot Engine in the indie game
development industry. arXiv preprint arXiv:2401.01909.
https://www.researchgate.net/publication/383116776 _On_the relevance of th

_ - e infl 3 | infie

Juliani, A., Berges, V. P.,, Vckay, E., Gao, Y., Henry, H., Mattar, M., & Lange, D.
(2018). Unity: A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627 https://arxiv.org/pdf/1809.02627

Kumar, S. (2020). Balancing a CartPole system with reinforcement learning — A
tutorial. arXiv preprint arXiv:2006.04938. https://arxiv.org/pdf/2006.04938

Millington, I., & Funge, J. (2009). Artificial intelligence for games (2nd ed.).
CRC Press.
https://spada.uns.ac.id/pluginfile php/629724/mod_resource/content/1/gameng
_AIFG.pdf

63

Mishra, S., & Arora, A. (2024, March 21). Balancinga Cart Pole using
reinforcement learning in OpenAl Gym environment. Proceedings of the
International Conference on Innovative Computing & Communication (ICICC
2024). SSRN_https://ssrn.com/abstract=4768234

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Harley, T., Lillicrap, T., Silver, D.,
& Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement
learning. arXiv preprint arXiv:1602.01783. https://arxiv.org/pdf/1602.01783

Montgomery,D. C., & Runger, G. C. (2014). Applied Statistics and Probability
for Engineers. Wiley.

Nadimpalli, A. V., & Rattani, A. (2022). On improving cross-dataset
generalization of deepfake detectors. ResearchGate.
https://www researchgate net/publication/359881391 On_Improving Cross-d
ataset Generalization of Deepfake Detectors

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N.
(2021). Stable-Baselines3:Reliable reinforcemenflearning implementations.
Journal ~of Machine Learning Research, 22(268), 1-8.
https://www jmlr.org/papers/volume22/20-1364/20-1364.pdf

Rahim, A. A., Siregar, R. H., & Rahim, R. (2022). Performance comparison of
reinforcement learning algorithms in the CartPole game using Unity
ML-Agents. Journal of Theoretical and Applied Information Technology,
102(16), 218-227.
https://www.jatit.org/volumes/Vol102No16/7Vol 102Nol6.pdf

Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to
Student's t-test and the Mann—Whitney U test. Behavioral Ecology.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms.arXiv preprint arXiv:1707.06347.
https://arxiv.org/pdf/1707.06347

Surriani, A., & Santoso, B. (2021). Reinforcement learning for cart pole inverted
pendulum system. ResearchGate.
https://www.researchgate net/profile/Atikah-Surriani/publication/357438224
Reinforcement [.earning for Cart Pole Inverted Pendulum System

64

Sutton, R. S., & Barto, A. G. (2018). Reinforcementlearning: An introduction
(2nd ed.). MIT Press.
i Book2nd

Torrado, R. R., Royo, D. M., Cabaiies, A. G., Gomez, J. A. M., Martinez, H. R., &
Julian, V. (2021). Godot reinforcement learning agents. arXiv preprint
arXiv:2112.03636. https://arxiv.org/pdf/2112.03636

Towers, M., Gao, Z., Krummenacher,J., Kumar, P., & Schulman, J. (2024).
Gymnasium: A standard interface for reinforcementlearning environments.
arXiv preprint arXiv:2407.17032. hitps://doi.org/10.48550/arXiv.2407.17032

Wang, D., & Snooks, R. (2021). Artificial intuitions of generative design: An
approach based on reinforcementlearning. Dalam Proceedings of the 2020
Digital FUTURES (hal. 189-198). Springer Singapore.
https://doi.org/10.1007/978-981-33-4400-6_18

Welch, B. L. (1947). The generalization of Student's problem when several
different population variances are involved. Biometrika.

Wu, Y., Tucker, G., & Nachum, O. (2022). A2C is a special case of PPO. arXiv
preprint arXiv:2205.09123._https://arxiv.org/pdf/2205.09123

Zhong, L. (2023). Comparison of Q-learning and SARSA reinforcement learning
models on Cliff Walking problemIn Proceedings of DAI-23. Atlantis Press.

https://www atlantis-press com/proceedings/dai-23/125998063

65

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73

