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Abstrak

Penyakit busuk pangkal batang akibat jamur Ganoderma Boninense
merupakan ancaman signifikan bagi industri kelapa sawit di Indonesia,
menyebabkan kerugian ekonomi substansial karena sulitnya untuk dideteksi. Gejala
visualnya seringkali tidak terlihat hingga infeksi mencapai tahap lanjut, membuat
metode inspeksi konvensional tidak efektif. Penelitian ini bertujuan mengatasi
keterbatasan tersebut dengan memanfaatkan citra udara dari UAV yang
dikombinasikan dengan metode deep learning untuk mendeteksi anomali.

Pada penelitian ini, digunakan model Aufoencoder, ideal untuk deteksi
anomali di mana data pohon sakit berlabel terbatas. Model dilatih pada citra pohon
sehat dan mengidentifikasi anomali dari hasil reconstruction error yang tinggi.
Secara spesifik, penelitian ini membandingkan arsitektur Convolutional
Autoencoder (CAE) dan Convolutional Variational Autoencoder (CVAE),
menganalisis performa keduanya terhadap dataset pohon sakit yang terakumulasi
selama lima bulan.

Hasil penelitian menunjukkan bahwa CVAE terbukti lebih unggul dan
konsisten dalam mendeteksi anomali. Analisis kuantitatif berdasarkan metrik
Bhattacharyya Distance (BD) dan Jensen-Shannon Divergence (JSD)
menunjukkan bahwa CVAE mampu menjaga nilai BD yang stabil (sekitar 0.4
hingga 0.6) dan nilai JSD yang rendah (di bawah 0.2) sepanjang periode lima bulan.
Stabilitas ini memungkinkan CVAE mendeteksi anomali hingga lima bulan
sebelum pohon tumbang. Di sisi lain, CAE menunjukkan performa yang tidak
konsisten dengan fluktuasi nilai BD yang signifikan (misalnya, melonjak dari 0.419
pada bulan ketiga ke 0.740 pada bulan kelima), dan nilai JSD yang lebih tinggi.
Performa CAE hanya efektif hingga dua bulan sebelum pohon tumbang. Dengan
demikian, penelitian ini menyimpulkan bahwa CVAE adalah solusi optimal untuk
deteksi dini Ganoderma karena konsistensinya yang terbukti lebih unggul.

Kata kunci: Convolutional Autoencoder, Convolutional Variational Autoencoder,
Deteksi Dini, Ganoderma Boninense, Penginderaan Jauh



COMPARISON OF CONVOLUTIONAL AUTOENCODER AND
VARIATIONAL AUTOENCODER MODELS FOR EARLY DETECTION
OF GANODERMA-INFECTED OIL PALM TREES USING REMOTE
SENSING IMAGERY

Natanael Missionday Gloryant, Kestrilia Rega Prilianti, Hendry Setiawan
Ma Chung University

Abstract

Basal stem rot disease caused by the Ganoderma Boninense fungus poses a
significant threat to Indonesia's oil palm industry, leading to substantial economic
losses due to the difficulty of early detection. Its visual symptoms are often not
apparent until the infection reaches an advanced stage, making conventional
inspection methods ineffective. This study aims to overcome this limitation by
utilizing aerial imagery from UAVs combined with deep learning methods to detect
anomalies.

This research employs an Autoencoder model, which is ideal for anomaly
detection where labeled data for sick trees is limited. The model is trained on images
of healthy trees and identifies anomalies from a high reconstruction error.
Specifically, this study compares the architectures of the Convolutional
Autoencoder (CAE) and the Conditional Variational Autoencoder (CVAE),
analyzing the performance of both on a dataset of diseased trees accumulated over
five months.

The research findings show that CVAE is proven to be superior and more
consistent in detecting anomalies. Quantitative analysis based on the Bhattacharyya
Distance (BD) and Jensen-Shannon Divergence (JSD) metrics shows that CVAE
maintains stable BD values (around 0.4 to 0.6) and low JSD values (below 0.2)
throughout the five-month period. This stability allows CVAE to detect anomalies
up to five months before a tree collapses. In contrast, CAE shows inconsistent
performance with significant fluctuations in BD values (for example, jumping from
0.419 in the third month to 0.740 in the fifth month), and higher JSD values. CAE's
performance is only effective up to two months before a tree collapses. Therefore,
this study concludes that CVAE is the optimal solution for early Ganoderma
detection due to its superior consistency.

Keywords: Convolutional Autoencoder, Convolutional Variational Autoencoder,
Early Detection, Ganoderma Boninense, Remote Sensing
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BAB 1
PENDAHULUAN

1.1 Latar Belakang Masalah

Industri kelapa sawit berperan signifikan dalam perekonomian Indonesia,
berkontribusi besar terhadap pendapatan nasional dan penyediaan lapangan kerja
bagi jutaan penduduk. Sebagai penghasil devisa utama, sektor ini menjadi tulang
punggung ekonomi nasional, terutama dalam ekspor minyak sawit mentah dan
turunannya (PSI Perkebunan, 2023). Luasnya lahan perkebunan kelapa sawit di
Indonesia juga mencerminkan potensi besar dalam meningkatkan kesejahteraan
masyarakat dan pembangunan daerah. Namun, tantangan teknis dan lingkungan
yang kompleks menuntut perhatian serius untuk menjamin keberlanjutan sektor ini

(PSI Perkebunan, 2023).

Penyakit busuk pangkal batang (BPB) yang disebabkan oleh jamur
Ganoderma boninense merupakan ancaman serius bagi perkebunan kelapa sawit di
Indonesia - (Santoso, 2020). Ganoderma dapat menyebabkan penurunan
produktivitas hingga 50% dan berpotensi menimbulkan kerugian ekonomi yang
signifikan. Ganoderma menyerang tanaman kelapa sawit pada semua umur,
menyebabkan pembusukan pada pangkal batang dan akhirnya kematian tanaman
(Rahmana et al., 2024). Penyebaran Ganoderma yang cepat dan luas ini menuntut

adanya upaya pengendalian yang efektif dan efisien.

Deteksi dini pohon kelapa sawit yang terinfeksi Ganoderma sangatlah
penting. Langkah ini tidak hanya penting untuk mengurangi kerugian ekonomi
signifikan akibat pohon yang harus ditebang, tetapi juga krusial untuk menjaga
keberlanjutan produksi kelapa sawit di lahan perkebunan yang terbatas (Kurihara
dkk., 2020). Namun, tantangannya adalah gejala awal infeksi seringkali tidak jelas
terlihat, menyulitkan petani untuk mendeteksi penyakit secara visual hingga
mencapai tahap akhir. Secara konvensional, identifikasi kelapa sawit yang
terinfeksi Ganoderma dapat dilakukan dengan mengamati gejala fisik seperti
perubahan warna daun, daun tombak yang tidak terbuka, serta pembusukan pada

pangkal batang. Namun, penelitian ini akan berfokus secara spesifik pada gejala
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perubahan warna daun. Penulis berasumsi bahwa infeksi Ganoderma mengganggu
sistem transportasi air dan nutrisi tanaman ke bagian atas pohon, yang pada
akhirnya menyebabkan daun menguning. Oleh karena itu, dalam penelitian ini,

daun kuning akan diinterpretasikan sebagai indikator adanya infeksi Ganoderma.

Untuk mengatasi keterbatasan deteksi visual, teknologi penginderaan jauh,
seperti penggunaan Unmanned Aerial Vehicle (UAV) atau drone misalnya, telah
terbukti efektif dalam memantau kesehatan tanaman (Santoso, 2020). Studi oleh
Wicaksono dkk. (2022) menunjukkan bahwa citra UAV yang diproses
menggunakan algoritma Convolutional Neural Network (CNN) dapat mendeteksi
pokok pohon kelapa sawit dengan akurasi yang baik. Selanjutnya, mereka berhasil
menggunakan model Artificial Neural Network (ANN) untuk memprediksi status
infeksi Ganoderma pada tiap pokok pohon dengan akurasi mencapai 94% untuk
data uji. Meskipun akurasi belum mencapai 100%, metode ini sudah dianggap
cukup memadai bagi pengelola perkebunan untuk mengambil tindakan pencegahan

dini terhadap serangan Ganoderma.

Meskipun CNN telah menunjukkan performa yang sangat baik dalam tugas
deteksi dan klasifikasi gambar, seperti yang terlihat pada penelitian sebelumnya,
salah satu kelemahan utama CNN adalah kebutuhan akan dataset pelatihan yang
sangat besar untuk mencapai akurasi yang tinggi. Mengingat tantangan dalam
mengumpulkan data anomali dalam jumlah besar yang bervariasi di lapangan,
pendekatan alternatif yang lebih efisien data sangat dibutuhkan. Oleh karena itu,
dalam penelitian ini, penulis akan menganalisis penggunaan Autoencoder (AE)
untuk mengidentifikasi Ganoderma pada kelapa sawit. AE menawarkan
keunggulan signifikan karena dapat dilatth menggunakan data tanpa label,
menjadikannya ideal saat data berlabel terbatas atau tidak tersedia. Dengan
demikian, AE mampu menemukan pola tersembunyi dalam data dengan
merekonstruksi input, sekaligus mengidentifikasi anomali melalui error

rekonstruksi yang tinggi pada data yang menyimpang dari pola normal (S P. , 2023).

Secara spesifik, penulis akan mengeksplorasi dan membandingkan dua
variasi arsitektur AE, yaitu Convolutional Autoencoder (CAE) dan Convolutional

Variational Autoencoder (CVAE). CAE adalah AE yang menggunakan lapisan
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konvolusi untuk efektif mempelajari representasi data spasial, menjadikannya
pilihan kuat dalam deteksi anomali berbasis citra (Jana at al., 2022). Di sisi lain,
VAE memperkenalkan pendekatan probabilistik ke ruang latennya, memungkinkan
model ini menghasilkan sampel data baru dari distribusi yang dipelajari serta lebih
baik dalam menangkap variasi anomali (Neloy dan Turgeon, 2024). Conditional
Variational Autoencoder (CVAE) sendiri merupakan variasi dari VAE yang
menggabungkan VAE dengan lapisan konvolusi, membuatnya efektif untuk data

gambar.

1.2 Identifikasi Masalah

Berdasarkan latar belakang, masalah utama yang akan dibahas adalah
potensi penyebaran Ganoderma yang dapat menyebabkan kerugian signifikan bagi
industri kelapa sawit jika tidak ditangani secara tepat. Infeksi yang tidak terdeteksi
sejak dini akan menyebar ke pohon sehat lainnya, yang pada akhirnya
menyebabkan menurunnya produktivitas hingga tumbangnya pohon dan

menimbulkan kerugian ekonomi besar.

1.3  Batasan Masalah

Adapun batasan masalah penelitian berikut adalah:

1. Citra input diperoleh dari PT. Perkebunan Nusantara (PTPN)
menggunakan UAV atau drone yang terbang pada ketinggian 500 meter.

2. Data citra yang digunakan terbatas pada periode Januari hingga Juni
2023.

3. Format warna citra input adalah RGB.

4. Penelitian ini akan berfokus pada penggunaan algoritma YOLO untuk
deteksi pohon kelapa sawit, dan mengeksplorasi serta membandingkan
arsitektur CAE dan CVAE untuk deteksi anomali pada pohon kelapa
sawit yang sakit, guna menentukan model yang paling optimal.

5. Pengambilan data deteksi dini terbatas pada periode Juni 2023 mundur
hingga Januari 2023, yaitu data yang dikumpulkan selama enam bulan

sebelum dan selama masa pemantauan.
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1.4

1.5

1.6

1.7

Perumusan Masalah

Berdasarkan paparan latar belakang, identifikasi permasalahan, dan batasan
masalah yang telah dijelaskan sebelumnya, disusunlah rumusan masalah
yang menjadi inti pembahasan dalam laporan tugas akhir ini adalah sebagai

berikut:

1. Apakah deteksi dini Ganoderma pada pohon sawit melalui perubahan
warna daun dapat dilakukan menggunakan model deep learning?

2. Seberapa jauh ke belakang (dalam hitungan bulan) model deep learning
mampu mendeteksi anomali Ganoderma sebelum pohon kelapa sawit

akhirnya tumbang?

Tujuan Penelitian

Tujuan dilakukannya penelitian ini adalah sebagai berikut:

1. Mengembangkan model deep learning CAE dan CVAE yang mampu
mendeteksi dini anomali infeksi Ganoderma pada pohon sawit.

2. Menganalisis sejauh mana batas kemampuan deteksi model CAE atau
CVAE dalam mengidentifikasi anomali akibat Ganoderma berdasarkan

urutan waktu (timeseries).

Luaran

Hasil yang diharapkan dari penelitian ini adalah sebagai berikut:

1. Model deteksi dini berbasis CAE dan CVAE yang dapat mengenali
anomali Ganoderma pada pohon sawit

2. Publikasi artikel dijurnal ilmiah berindeks SINTA.

Manfaat Penelitian
a) Bagi Penulis:
1. Kesempatan untuk belajar dan memperluas pengetahuan,

pemahaman dan menajamkan kemampuan dalam bidang kecerdasan
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1.8

buatan, remote sensing, algoritma CAE dan CVAE serta

penerapannya.

b) Bagi PT. Perkebunan Nusantara, dan Petani Sawit:

1. Hasil dari penelitian ini dapat digunakan untuk mendeteksi dini
Ganoderma pada pohon sawit agar petani sawit dan perusahaan

industri kelapa sawit dapat menghidari kerugian besar.

¢) Bagi Universitas dan Kelompok Riset:

1. Memperoleh acuan untuk penelitian selanjutnya untuk membuat
program yang mampu mendeteksi dini Ganoderma pada pohon
sawit.

2. Membantu menghasilkan lulusan yang kompeten melalui penelitian

yang terpercaya.

Sistematika Penulisan

Penulisan laporan tugas akhir ini ditulis dengan sistematika penulisan

sebagai berikut.

1.

Bab I, Pendahuluan

Membahas latar belakang penelitian mengenai pentingnya deteksi dini
Ganoderma pada pohon kelapa sawit, dampak ekonomi yang
ditimbulkan, serta bagaimana penginderaan jauh dapat digunakan
sebagai solusi. Selain itu, bab ini juga mencakup rumusan masalah,
tujuan penelitian, manfaat penelitian, dan sistematika penulisan.

Bab II, Tinjauan Pustaka

Berisi landasan teori yang mendukung penelitian, termasuk kajian
tentang Ganoderma pada kelapa sawit, konsep penginderaan jauh dalam
bidang pertanian, serta teori mengenai algoritma AE dan variasinya.
Selain itu, penelitian terdahulu yang relevan dengan topik ini juga
dibahas untuk memberikan gambaran tentang perkembangan studi
terkait.

Bab III, Analisis dan Perancangan Sistem

Berisi penjelasan mulai dari pengumpulan data citra penginderaan jauh,

proses preprocessing data, perancangan model CAE dan CVAE, serta
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metode evaluasi yang digunakan untuk menilai kinerja model dalam

mendeteksi pohon kelapa sawit yang terinfeksi Ganoderma.

. Bab IV, Hasil dan Pembahasan

Membahas hasil penelitian yang diperoleh setelah pengujian model
dilakukan. Hasil yang ditampilkan meliputi performa model CAE dan
CVAE dalam mendeteksi pohon sawit yang terinfeksi, serta analisis
terhadap efektivitas metode yang digunakan. Evaluasi dilakukan dengan
membandingkan hasil model terhadap data yang telah dikumpulkan.

. Bab V, Simpulan dan Saran

Berisi kesimpulan dari penelitian yang telah dilakukan, termasuk
ringkasan hasil utama dan implikasi dari temuan penelitian. Selain itu,
saran diberikan untuk pengembangan lebih lanjut, baik dalam
peningkatan akurasi model maupun penerapan sistem dalam skala yang

lebih luas.
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BAB 11
TINJAUAN PUSTAKA

2.1 Industri Kelapa Sawit

Kelapa sawit (Gambar 2.1) merupakan tanaman tropis penghasil minyak
sawit mentah (CPO) dan minyak inti sawit (PKO) yang digunakan secara luas
dalam berbagai industry, termasuk pangan (minyak goreng, margarin), kosmetik,
hingga bahan bakar seperti biodiesel. Dengan produktivitasnya yang tinggi,
menjadikan kelapa sawit sebagai sumber minyak nabati paling efisien dibanding

tanaman penghasil minyak lainnya.

Gambar 2.1 Tanaman Kelapa Sawit

(Sumber: https://www.sawitsetara.co/yuk-pahami-ciri-ciri-pohon-
kelapa-sawit-yang-sehat/)

Di Indonesia, kelapa sawit menjadi salah satu komoditas perkebunan yang
memiliki peran yang signifikan dalam perekonomian nasional. Sebagai pemasok
minyak kelapa sawit terbesar di dunia sejak tahun 2007, Indonesia telah menguasai
58% pangsa pasar global pada tahun 2020 (Xin af al., 2022) dan pada tahun 2023,
volume ekspor kelapa sawit telah mencapai 27,537,847 Ton dan nilai ekspor
mencapai 24,008 ribu US$ (Kementerian Pertanian Republik Indonesia, 2025).

Dengan kontribusi besarnya terhadap ekspor dan perekonomian nasional, menjadi
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hal yang sangat penting untuk menjaga keberlanjutan dan produktivitas kelapa
sawit, sehingga baik petani maupun perusahaan perkebunan kelapa sawit harus
mengambil langkah strategis guna tidak hanya menjaga, tetapi juga meningkatkan

produktivitas tanaman yang mereka kelola agar hasilnya optimal dan efisien.

Salah satu tantangan utama dalam perkebunan kelapa sawit adalah serangan
penyakit tanaman, khususnya penyakit busuk pangkal batang yang pada umumnya
disebabkan oleh jamur Ganoderma boninense. Ganoderma umumnya menyerang
tanaman kelapa sawit yang berumur lebih dari 10 tahun, terutama pada kebun yang
tidak menerapkan sanitasi lahan yang baik sehingga dapat mengakibatkan
penurunan produktivitas hingga kerugian besar. Upaya penanggulangan
Ganoderma sendiri masih menjadi tantangan besar, karena belum ditemukannya
metode yang efektif untuk mengatasi jamur dari tanah. Metode yang saat ini
digunakan bersifat pencegahan dan pengendalian dini seperti penggunaan tanaman
penutup tanah (cover crops), isolasi tanaman sakit, biofungisida, serta pemantauan

visual dan laboratorium secara berkala.

2.1.1 Penyakit Busuk Pangkal Batang

Penyakit busuk pangkal batang merupakan salah satu penyakit pada
tanaman kelapa sawit yang pada umumnya disebabkan oleh jamur Ganoderma
Boninense (Gambar 2.2). Jamur ini menginfeksi jaringan akar lalu menyebar ke
dalam batang bagian bawah tanaman. Infeksi dapat terjadi melalui kontak akar antar
tanaman atau spora yang terbawa angin maupun air. Kemudian, jamur tumbuh
secara perlahan tetapi progresif, menyebabkan jaringan dalam kayu mengalami
pelapukan dan pembusukan. Kerusakan ini utamanya terjadi pada jaringan xilem di
dalam batang, yang berfungsi sebagai pembuluh angkut utama untuk air dan nutrisi
dari akar ke seluruh bagian tanaman. Ketika xilem lapuk dan membusuk, saluran
transportasi ini menjadi tersumbat dan rusak, secara efektif mengganggu aliran vital
air dan mineral. Akibatnya, tanaman tidak dapat memperoleh sumber daya yang
cukup untuk fotosintesis dan pertumbuhan, yang pada akhirnya menyebabkan

gejala fisik seperti daun menguning kemudian layu, penurunan produksi tandan
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buah segar, hingga kematian tanaman (Baharim at al., 2023, cit. Daranagama &

Takeuchi, 2025).

Gambar 2.2 Tanaman kelapa sawit terinfeksi Ganoderma
(Sumber: https://gdm.id/ganoderma/)

Menurut laporan Palm Oil Agribusiness Strategic Policy Institute (PASPI),
tergantung tingkat keparahan infeksi, serangan Ganoderma dapat menurunkan
produktivitas Tandan Buah Segar (TBS) hingga 50% (Sipayung, 2024). Disamping
itu, masa produktif tanaman kelapa sawit juga berpotensi menurun hingga setengah
dari usia ekonomis yang seharusnya (Sipayung, 2024). Dalam beberapa kasus,
tanaman dapat roboh tanpa menunjukkan gejala apa pun sebelumnya (Ginting &
Wiratmoko, 2021). Jika Ganoderma tidak segera ditangani, terutama pada
perkebunan tua maka akan terjadi penurunan produktivitas. Dalam kondisi yang
parah, Ganoderma bahkan dapat menyebabkan kematian tanaman dan

menimbulkan kerugian besar bagi petani maupun pelaku industri kelapa sawit.

2.1.2 Deteksi Dini Ganoderma

Penyakit busuk pangkal batang yang disebabkan oleh jamur Ganoderma
boninense merupakan salah satu ancaman serius terhadap produktivitas kelapa
sawit di Indonesia. Infeksi jamur ini dapat secara signifikan menyebabkan
penurunan hasil panen, bahkan berujung pada kematian tanaman, terutama pada
tanaman yang berumur tua (Soetopo dkk., 2022). Kerugian yang ditimbulkan tidak

hanya berdampak pada penurunan hasil produksi, tetapi juga memberikan tekanan
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ekonomi yang signifikan bagi petani dan pelaku industri kelapa sawit (Azmi ef al.,
2020). Oleh karena itu, deteksi dini terhadap infeksi Ganoderma menjadi langkah
krusial untuk mencegah penyebaran dan memfasilitasi tindakan pengendalian yang

lebih efektif sebelum penyakit meluas ke tanaman lainnya.

Sebagai respon terhadap urgensi tersebut, berbagai pendekatan deteksi dini
telah dirancang guna mengindentifikasi infeksi Ganoderma dengan Tingkat akurasi
dan efisiensi yang tinggi. Salah satu inovasi yang telah dikembangkan adalah
eNose-g, yang merupakan teknologi sensor elektronik portabel yang membedakan
tanaman sehat dan terinfeksi berdasarkan profil aroma spesifik, memberikan hasil
deteksi cepat dan akurat (Badan Pengelola Dana Perkebunan Kelapa Sawit, 2021).
Selain itu, metode berbasis fisika seperti Radal SIL memanfaatkan perubahan sifat
dielektrik pada batang pohon untuk mendeteksi infeksi secara non-destruktif dan
cepat (Liaghat at al., 2014). Selain itu, seiring dengan perkembangan teknologi
penginderaan jauh, UAV telah dimanfaatkan untuk mengambil citra tanaman yang
dari ekstraksi guna memperoleh informasi penting sebagai data analisis. Lebih
lanjut, pendekatan berbasis UAV yang dikombinasikan dengan CNN telah terbukti
efektif dalam mendeteksi pohon yang terinfeksi Ganoderma melalui analisis citra
udara, bahkan sebelum munculnya gejala visual pada tanaman (Kurihara at al.,
2020). Seluruh pendekatan tersebut mencerminkan peran signifikan kemajuan
teknologi dalam mendukung strategi pengelolaan Ganoderma yang lebih presisi,
efisien, dan berkelanjutan, guna menjaga produktivitas serta keberlanjutan industry

kelapa sawit di era modern.

2.2 Penginderaan Jauh

Penginderaan jauh adalah teknik pengumpulan data suatu objek, fenomena,
atau wilayah tanpa melakukan kontak secara langsung atau jarak jauh, seperti
melalui satelit, pesawat atau UAV. Dengan adanya teknologi ini, pengawasan
terhadap kondisi lingkungan dapat dilakukan secara efektif dan menyeluruh.
Misalnya, penelitian oleh Kosasih dkk. (2020) yang menggunakan citra satelit

Lansat 8 untuk menganalisis kerapatan vegetasi dan suhu permukaan tanah serta
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penelitian oleh Junarto dkk. (2020) yang menggunakan UAV untuk pemetaan

kadaster.

Penginderaan jauh telah menjadi komponen vital dalam pemantauan
perkebunan kelapa sawit, terkhusus dalam mendeteksi penyakit busuk pangkal
batang yang disebabkan oleh jamur Ganoderma boninense. Dengan teknologi ini,
pemantauan lahan yang sebelumnya memakan banyak waktu dan tenaga kini dapat
dilakukan secara lebih efisien dan mencakup area yang lebih luas. Studi yang
dilakukan oleh Kurihara at al. (2020) menunjukkan bahwa penggunaan citra
hiperspektral dari UAV dapat mengklasifikasikan tingkat infeksi busuk pangkal
batang pada pohon kelapa sawit dengan akurasi tinggi, bahkan pada tahap awal
infeksi. Hal ini menunjukkan potensi besar penginderaan jauh dalam mendukung

manajemen perkebunan kelapa sawit secara berkelanjutan.

Studi oleh Lee af al. (2022) menggunakan citra hiperspektral dari UAV
untuk mendeteksi infeksi busuk pangkal batang pada pohon kelapa sawit sebelum
gejala visual muncul dengan hasil efektivitas yang signifikan. Pendekatan ini
memungkinkan untuk intervensi lebih awal, yang penting untuk mencegah

penyebaran penyakit dan kerugian ekonomi yang lebih besar.

2.3 Infrensi citra pengindraan jauh dengan AI

Pengintegrasian penginderaan jarak jauh dengan kecerdasan buatan telah
mengubah cara pemantauan dan pengelolaan lahan pertanian. Teknologi ini
memungkinkan deteksi dini terhadap berbagai kondisi tanaman, seperti serangan
hama, penyakit, dan stress lingkungan, melalui analisis cirta satelit atau UAV. Studi
oleh Aziz at al. (2025) menunjukkan bahwa penggunaan kecerdasan buatan dalam
penginderaan jauh dapat meningkatkan efisiensi pemantauan lahan, dan kesehatan
tanaman, serta memungkinkan pengambilan keputusan yang lebih cepat dan tepat
dalam manajemen pertanian. Selain itu, model Bayesian Probabilistic Updating
Model (BPUM) yang dikembangkan oleh Shi ar al. (2025) memanfaatkan data
historis dan citra satelit secara real-time untuk identifikasi awal tanaman dengan

akurasi tinggi, demi mendukung ketahanan pangan global.
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24 Implementasi Maching Learning (ML)

Machine Learning (ML) telah menjadi alat penting dalam bidang pertanian
modern. Algoritma-algoritma ML digunakan untuk mengolah data besar dari
berbagai sumber, seperti sensor tanah, cuaca, dan citra tanaman, guna memprediksi
hasil panen, mendeteksi penyakit, dan mengoptimalkan penggunaan sumber daya.
Studi oleh Arawjo at al. (2023) menyoroti tren terkini dalam penerapan ML di
pertanian, termasuk tantangan dan perspektif masa depan. Mereka menekankan
pentingnya infrasturktur siber yang mendukung pengumpulan, pemrosesan, dan
pelatihan model ML dengan dataset multimodal untuk mempercepat inovasi di

bidang pertanian.

2.5 Implementasi Deep Learning (DL)

Deep learning (DL) telah menjadi teknologi kunci dalam transformasi
pertanian modern. Dengan kemampuannya dalam menganalisis data besar dan
kompleks, DL. memungkinkan identifikasi pola yang tidak terlihat oleh metode
konvensional. Dalam bidang pertanian, DL telah digunakan untuk berbagai aplikasi
seperti klasifikasi tanaman, deteksi penyakit, prediksi hasil panen, dan manajemen
sumber daya. Studi oleh KesKes (2025) menyoroti bahwa integrasi DL dalam
pertanian dapat meningkatkan efisiensi produksi dan mendukung pertanian

berkelanjutan.

Salah satu arsitektur DL yang paling umum digunakan adalah CNN yang
terdiri dari beberapa lapisan konvolusi yang menggunakan fungsi aktivasi seperti
ReLU untuk mengekstrasi fitur dari data input. CNN efektif dalam menganalisis
data citra, seperti citra satelit atau UAV untuk mendeteksi penyakit tanaman,
klasifikasi dan klasifikasi lahan. Dalam konteks pertanian cerdas, CNN
menunjukkan dapat digunakan untuk mengklasifikasikan gulma dan penyakit

tanaman secara akurat (Faisal et al., 2025 ).

Selain CNN, arsitektur DL lainnya yang juga memiliki peran penting dalam
pengolahan data citra pertanian adalah AE (Gambar 2.3). AE merupakan jenis
jaringan saraf tiruan (JST) yang digunakan dalam mendeteksi anomali. AE

memiliki dua bagian, yaitu:
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a. Encoder

Bertujuan untuk mengubah gambar input menjadi representasi berdimensi
lebih rendah yang melibatkan serangkaian lapisan terhubung yang secara bertahap
mengurangi dimensi data. Kemudian informasi yang diperoleh disimpan dalam

bottleneck, yang menjadi inti dari representasi fitur yang lebih padat dan bermakna.

b.  Decoder

Bertugas untuk membalikkan proses encoder, yaitu merekonstruksi ulang
data dari representasi laten menjadi bentu yang menyerupai input asli dan
memastikan bahwa hanya informasi pending dari data yang berhasil di pertahankan
dan dipelajari. Kinerja AE dinilai dari seberapa kecil nilai loss reconstruction, yaitu

nilai selisih antara input awal dan hasil rekonstruksi.

Encoder Latent Decoder
4+——> Space <4———Pp

Input Data Encoded Data Reconstructed Data

Gambar 2.3 Arsitektur Autoencoder
(Sumber: https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/)

Salah satu hal yang membuat AE menarik adalah pada proses pelatihan, AE
membutuhkan data fraining lebih sedikit bila dibandingkan dengan CNN. CNN
membutuhkan ribuan bahkan ratusan gambar, Sementara itu AE dapat dilatih
menggunakan data tanpa label, menjadikannya ideal saat data berlabel terbatas atau
tidak tersedia yang dalam kasus penelitian yang datanya sulit untuk dikumpulkan

dalam jumlah besar menjadi daya tarik atau keunggulan tersendiri.
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Dalam perkembangannya, beberapa variasi AE telah dikembangkan guna
memenuhi berbagai kebutuhan dan karakteristik data. Dua diantaranya adalah,
Convolutional Autoencoder (CAE) dan Convolutional Variational Autoencoder
(CVAE). VAE memperluas konsep dasar dari AE dengan mengintegrasikan metode
probabilistik ke dalam tahap encoding, yang memungkinkan dihasilkannya
representasi laten dengan distribusi statistik yang lebih baik. Kemampuan ini
menjadikannya sangat berguna dalam membuat model generatif atau ketika kita
membutuhkan representasi data yang lebih bervariasi namun tetap informatif. Saat
lapisan konvolusi ditambahkan, model ini dikenal sebagai CVAE, yang efektif

untuk memproses data gambar.

Sementara itu, CAE (Gambar 2.4) dirancang secara khusus untuk
menangani data berbentuk citra (image-based data) dengan menerapkan lapisan
konvolusi (convolutional layers) pada bagian encoder dan decoder. Penggunaan
lapisan konvolusi memungkinkan CAE untuk menangkap fitur spasial dan pola
lokal dalam citra dengan lebih efektif dibandingkan AE biasa yang menggunakan
lapisan dense atau fully connected. Oleh karena itu, CAE sangat cocok digunakan
untuk pemrosesan citra beresolusi tinggi seperti citra satelit atau UAV dalam

konteks penginderaan jauh (remote sensing).

Encoder Decoder

Gambar 2.4 Arsitektur Convolutional AutoEncoder
(Sumber: https://www.researchgate.net/figure/The-proposed-
architecture-of-the-CAE _fig3 352777611)

Dalam penginderaan jauh, CAE telah banyak dimanfaatkan untuk berbagai
aplikasi, seperti klasifikasi tutupan lahan, deteksi perubahan (change detection),
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serta deteksi anomali pada lahan pertanian. Kemampuannya untuk melakukan
ekstraksi fitur yang efisien dari citra beresolusi tinggi menjadikan CAE sangat
relevan dalam mendeteksi pola-pola tak biasa yang muncul akibat infeksi penyakit
pada tanaman, termasuk infeksi Ganoderma pada kelapa sawit. CAE juga memiliki
keunggulan dalam melakukan rekonstruksi citra secara presisi, sehingga nilai error
rekonstruksi yang dihasilkan dapat dijadikan indikator awal untuk mengenali

keberadaan anomali atau gangguan pada vegetasi.

Selain itu, CAE dalam mendeteksi anomali pada infeksi Ganoderma hanya
perlu dilatih dengan menggunakan data pohon sehat. Nantinya ketika diinputkan
data terinfeksi, hasil rekonstruksinya menunjukkan nilai error yang lebih tinggi,
sehingga anomali dapat dikenali berdasarkan besarnya nilai error rekonstruksi.
Dalam penelitiannya Xiang at al. (2024) memanfaatkan pendekatan AE berbasis
piksel untuk mendeteksi anomali dalam citra hiperspektral, yang menunjukkan
efektivitas yang tinggi dalam mengindentifikasi area yang tidak biasa dalam data

penginderaan jauh.

Dalam upaya mengevaluasi performa dari CAE dan CVAE, beberapa
metrik yang umum digunakan adalah Mean Absolute Error (MAE), Mean Squared
Error (MSE), dan Structural Similarity Index Measure (SSIM). MAE menghitung
rata-rata selisih absolut antara nilai piksel input dan hasil rekonstruksi, sementara
MSE menghitung rata-rata kuadrat selisih antara nilai piksel input dengan hasil
rekonstruksi, yang mengukur sejauh mana informasi asli dipertahankan Nilai MSE
yang rendah menunjukkan bahwa rekonstruksi mendekati input aslinya. Namun,
karena MSE mengkuadratkan kesalahan, ia sangat sensitif terhadap outlier (nilai
piksel yang sangat berbeda) dan dapat mengabaikan struktur spasial penting dalam
citra. Sebagai alternatif yang lebih tangguh terhadap outlier, digunakan MAE. MAE
menghitung rata-rata selisih absolut antar piksel, sehingga ia memberikan bobot
yang sama untuk semua kesalahan dan tidak membesarkan nilai-nilai ekstrem. Ini
menjadikannya pilihan yang baik saat noise atau nilai piksel yang tidak biasa hadir

dalam data.

Untuk mengatasi kelemahan metrik berbasis piksel seperti MSE dan MAE,

digunakan SSIM. SSIM mengevaluasi kemiripan struktural antara dua gambar
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berdasarkan luminansi, kontras, dan struktur spasial, memberikan perspektif yang
lebih dekat dengan persepsi visual manusia. SSIM memberikan skor antara 0 dan
1, di mana nilai mendekati 1 menunjukkan kemiripan struktural yang tinggi (Wang
et al., 2004). Dengan menggunakan kombinasi metrik ini, kita bisa mendapatkan
gambaran evaluasi yang lebih komprehensif, mencakup akurasi numerik dan

kemiripan struktural dari hasil rekonstruksi.

Sementara itu, untuk mengevaluasi model probabilistik seperti VAE, metrik
yang fokus pada perbandingan distribusi juga menjadi sangat penting. Dua di
antaranya adalah Jensen-Shannon Divergence (JSD) dan Bhattacharyya Distance
(BD). JSD adalah metrik yang mengukur kesamaan antara dua distribusi
probabilitas dan sering digunakan untuk mengevaluasi seberapa baik distribusi
laten yang dipelajari VAE mendekati distribusi target yang diinginkan (Deasy et
al., 2020). JSD memiliki nilai yang terikat dan simetris, menjadikannya pilihan
yang kuat. Demikian pula, BD mengukur tingkat tumpang tindih antara dua
distribusi probabilitas, mengukur seberapa dekat keduanya (Chawla, 2024). BD
secara efektif mengukur jarak antara distribusi encoder dan distribusi prior dalam
ruang laten VAE. Nilai BD yang lebih rendah menunjukkan bahwa kedua distribusi
lebih mirip, menandakan bahwa VAE berhasil mempelajari representasi laten yang

terdistribusi dengan baik dan efisien.

Dalam upaya meningkatkan akurasi dan efisiensi dalam pelatihan model
DL, telah dikembangkan berbagai teknik optimasi. Salah satu metode optimasi
paling populer dalam DL adalah Adaptive Moment Estimation (Adam) yang
mengkombinasikan  keunggulan dari momentum dan RMSProp untuk
menyesuaikan learning rate secara adaptif terhadap parameter, sehingga
mempercepat konvergensi dan menghindari jebakan pada minimum lokal (Kingma
& Ba, 2014). Selain itu, Nesterov-accelerated Adaptive Moment Estimation
(Nadam) merupakan penyempurnaan dari Adam dengan menambahkan lookahead
gradient yang mempercepat konvergensi di banyak kasus (Dozat, 2016). Teknik
lain seperti SGD dengan Momentum, Adagrad, dan RMSProp juga masih relevan,
tergantung pada jenis dataset dan arsitektur jaringan yang digunakan. Pemilihan
algoritma optimasi yang tepat sangat berpengaruh terhadap stabilitas pelatihan,
kecepatan konvergensi, dan kualitas generalisasi model.
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Selanjutnya, terdapat fungsi aktivasi dalam JST yang memegang peranan
penting dalam memperkenalkan non-linearitas pada jaringan. Tanpa fungsi
aktivasi, jaringan hanya akan mempelajari relasi linear yang berakibatkan
terbatasnya kemampuan dalam menyelesaikan masalah kompleks seperti
klasifikasi citra. Fungsi aktivasi yang umum digunakan adalah ReLU, yang
sederhana namun sangat efektif untuk menghindari masalah vanishing gradient.
ReLU memiliki bentuk fungsi f(x) = max(0, x) yang membuatnya sangat efisien
dalam propagasi maju dan mundur. Varian dari ReLU seperti Leaky ReLU dan
Parametric ReLU (PReLU) diperkenalkan untuk menangani kelemahan ReLU
dalam mengabaikan nilai negatif. Selain itu, untuk arsitektur seperti CAE, Sigmoid

atau Tanh juga digunakan pada lapisan output, tergantung pada skala data input.

2.6  Citra Spasial

Citra spasial merupakan representasi visual dari permukaan bumi yang
diperoleh melalui sensor pada satelit atau UAV. Dalam pertanian, terkhusus pada
monitoring tanaman, citra spasial berperan penging dalam mendeteksi kondisi
tanaman, identifikasi penyakit dan pengelolaan lahan secara presisi. Dengan
menggunakan citra spasial, memungkinkan untuk memantau area yang luas denga

efisien serta memberikan informasi yang akurat dalam suatu lahan pertanian.

2.7 Pra-pemrosesan Citra Spasial (UAYV)
Sebelum citra UAV dapat digunakan untuk analisis lebih lanjut, diperlukan
serangkaian proses pra-pemrosesan untuk memastikan kualitas dan akurasi data.

Tahapan utama dalam pra-pemrosesan citra UAV meliputi:

a. Stitching (Mosaicking)

Proses penggabungan beberapa citra individu menjadi satu citra utuh
(orthomosaic) yang mencakup area yang lebih luas. Teknik ini penting untuk
menghasilkan peta yang kontinu dan konsisten, serta mempermudah analisis

spasial. Angel at al. (2020) mengembangkan metode otomatis untuk georektifikasi
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dan mosaicking citra hiperspektral berbasis UAV, yang meningkatkan efisiensi
dalam pengolahan data citra.
b. Georeferencing

Penyesuaian posisi citra agar sesuai dengan koordinat geospasial di
permukaan bumi. Proses ini biasanya dibantu dengan data GPS atau Ground
Control Points (GCP) untuk memastikan akurasi spasial yang tinggi. Studi oleh
Angel at al. (2020) menunjukkan bahwa integrasi georeferencing dalam workflow
pra-pemrosesan citra UAV dapat meningkatkan akurasi spasial hingga tingkat yang
signifikan.
¢.  Radiometric Correction

Koreksi nilai piksel citra untuk menghilangkan pengaruh pencahayaan,
bayangan, atau atmosfer yang dapat memengaruhi hasil analisis. Proses ini penting
untuk memastikan bahwa nilai reflektansi yang diperoleh mencerminkan kondisi
sebenarnya di lapangan. Angel at al. (2020) menekankan pentingnya koreksi
radiometric dalam meningkatkan kualitas citra UAV untuk aplikasi pertanian.

d.  Noise Removal

Penghapusan data citra yang tidak relevan atau gangguan (seperti kabut,
noise sensor, atau objek luar tanaman) untuk meningkatkan akurasi ekstraksi fitur.
Proses ini memastikan bahwa analisis yang dilakukan hanya berdasarkan data yang

valid dan relevan.
e. Resampling dan Cropping

Penyesuaian ukuran dan resolusi piksel agar selaras dengan skala
pengolahan, serta pemotongan area yang tidak dibutuhkan untuk fokus pada area
analisis yang relevan. Tahapan ini mempermudah proses analisis dan mengurangi

beban komputasi.

2.8 Ruang warna RGB
Ruang warna RGB (Gambar 2.5) merupakan sistem representasi warna
dalam citra digital yang menggunakan tiga warna, yaitu Merah (Red), Hijau

(Green), dan Biru (Blue) (Pamungkas, 2023). Dengan menambahkan intensitas
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cahaya, RGB dapat menghasilkan berbagai warna lainnya karena sifatnya aditif.
Dalam citra digital, setiap warna memiliki intensitas antara 0 hingga 255, dimana 0
berarti tidak ada intensitas warna sedangkan 255 berarti intensitas penuh warna

(Pamungkas, 2023).

Additive color mixing

Yellow

White

an  Green

ety ozsso

Gambar 2.5 Ruang warna RGB
(Sumber: https://www.shutterstock.com/image-vector/additive-color-

mixing-scheme-rgb-colors-1439873501)

2.9 Python

Python adalah bahasa pemrograman yang dikembangkan sebagai penerus
dari bahasa pemrograman ABC oleh Guido van Rossum pada akhir tahun 1980-an
dan kemudian dirilis secara publik pada tahun 1991 (Wikipedia contributors, 2025).
Python mendukung berbagai paradigma pemrograman seperti objektif, prosedural
dan fungsional (Python Software Foundation, 2025). Python menawarkan fitur
seperti modul, pengecualian, pengetikan dan tipe data dinamis, serta kelas dengan
sintaksis yang sederhana namun jelas dan kuat serta dapat diintegrasikan dengan
pustaka eksternal, sistem operasi dan dapat diperluas menggunakan bahasa C atau

C++ (Python Software Foundation, 2025).
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2.9.1 NumPy

Numerical Python (NumPy) adalah pustaka python open-source yang
menyediakan fungsi-fungsi matematika sampai operasi numerik dan struktur data
array multidimensi. NumPy menjadi alat fundamental untuk memanipulasi data
raster, seperti citra satelit atau UAV, karena kemampuannya dalam menangani
array besar dengan efisien pada pengolahan citra dan penginderaan jauh. NumPy
memungkinkan konversi array numerik dari citra raster sehingga, memudahkan
proses seperti normalisasi nilai piksel, perhitungan indeks vegetasi (NDVI), dan

deteksi perubahan tutupan lahan.

Dalam studi oleh Fuentes-Pefailillo at al. (2024), intergrasi antara loT,
penginderaan jauh, dan kecerdasan buatan dalam pertanian digital menunjukkan
bahwa penggunaan NumPy dalam pra-pemrosesan data citra meningkatkan akurasi
prediksi hasil panen. Selain itu, NumPy mampu melakukan operasi matematika
kompleks, seperti transformasi Fourier dan dekomposisi matriks, juga mendukung
analisis spasial lanjutan dalam penginderaan jauh. Dengan demikian, NumPy
menjadi komponen kunci dalam pipeline pemrosesan data geospasial, dari tahap

pra-pemrosesan hingga analisis dan visualisasi (Mulkar, H., 2024).

2.9.2 Matplotlib

Matplotlib merupakan pustaka visualisasi data 2D dan 3D dalam bahasa
pemrograman Python yang sangat populer di kalangan ilmian data dan peneliti.
Matplotlib digunakan dalam penginderaan jarak jauh dan pertanian presisi untuk
memvisualisasikan data citra satelit hasil klasifikasi serta analisis spasial lainnya.
kemampuannya dalam menghasilkan berbagai jenis grafik seperti peta sebaran
histogram dan grafik timeseries menjadikan matplotlib alat yang esensial dalam

interpretasi data geospasial.

Dalam praktiknya, Matplotlib sering digunakan bersama pustaka lain
seperti NumPy dan Rasterio untuk memproses dan menampilkan citra penginderaan
jauh. Misalnya, dalam analisis indeks vegetasi normalisasi (NDVI), Matplotlib

dapat digunakan untuk memvisualisasikan distribusi nilai NDVI pada lahan
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pertanian, membantu dalam monitoring kesehatan tanaman dan deteksi dini

penyakit.

Selain itu, Matplotlib juga digunakan dalam pelatihan dan evaluasi model
DL untuk deteksi objek dalam citra pertanian. Visualisasi hasil prediksi model,
seperti bounding box pada objek yang terdeteksi, memungkinkan peneliti untuk
menilai kinerja model secara intuitif. Dengan demikian, Matplotlib tidak hanya
berfungsi sebagai alat visualisasi, tetapi juga sebagai komponen integral dalam

pipeline analisis data penginderaan jauh dan pertanian presisi.

210 QGIS

Quantum geographic information system (QGIS) merupakan perangkat
lunak open-source berbasis Sistem Informasi Geografis (SIG) yang digunakan
untuk pengolahan, analisis, visualisasi dan memetakan data spasial. Dalam bidang
pertanian, QGIS berperan pending dalam pemrosesan data penginderaan jauh,
seperti citra dart UAV atau satelit, untuk memantau kesehatan tanaman, mendeteksi

penyakit, dan mengelola lahan.

Salah satu keunggulan QGIS adalah integrasi dengan plugin tambahan yang
mendukung analisis lanjutan. Misalnya, plugin Deepness memungkinkan pengguna
menerapkan model DL langsung pada layer raster di QGIS, memfasilitasi tugas-
tugas seperi segmentasi dan deteksi objek dalam citra penginderaan jauh
(Aszkowski et al., 2023). Selain itu, plugin Modules for Land Use Change
Simulations (MOLUSCE) digunakan untuk menganalisis perubahan penggunaan
lahan dan memprediksi scenario perubahan di masa depan, yang sangat berguna

dalam perencanaan pertanian berkelanjutan (Muhammad et al., 2022).

2.11 Roboflow

Roboflow adalah platform cloud komputasi visual yang menyediakan solusi
end-to-end untuk pengembangan model deteksi objek, mulai dari anotasi data,
augmentasi, pelatihan model, hingga deployment. Platform ini mendukung berbagai

model DL, sepertt YOLOvVS dan yang terbaru YOLOvI11, yang memungkinkan
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pengguna membangun serta menerapkan model deteksi objek secara efisien. Dalam
sektor pertanian, Roboflow telah dimanfaatkan untuk mengidentifikasi penyakit
tanaman, mendeteksi gulma, dan memantau perkembangan tanaman melalui citra
UAV maupun satelit. Salah satu contohnya adalah ketersediaan dataset publik
seperti PlantDoc, yang memuat 2.598 gambar guna membantu proses identifikasi

penyakit tanaman (Roboflow, 2025).

Di samping itu, Roboflow Universe menyediakan beragam dataset dan
model pra-latih yang dapat dimanfaatkan untuk meningkatkan efisiensi pertanian,
menurunkan biaya produksi, serta mendorong peningkatan hasil panen (Roboflow,
2025). Platform ini juga mendukung integrasi dengan model seperti YOLOVS, yang
telah terbukti memiliki tingkat presisi tinggi—mencapai 90% dalam mendeteksi
penyakit pada daun padi (Kanna et al., 2024). Dengan kemampuannya dalam
menangani seluruh siklus pengembangan model deteksi objek, Roboflow menjadi
salah satu alat penting dalam implementasi teknologi penginderaan jauh untuk

mendukung pertanian presisi.

Dalam penelitian ini, Roboflow dimanfaatkan untuk mempersiapkan
dataset melalui fitur dataset preprocessing, yang berperan dalam meningkatkan
kualitas data sehingga dapat mendukung proses pelatihan model secara lebih

optimal. Preproses yang dilakukan seperti:

1. Mengubah ukuran citra agar konsisten dengan input model dan generalisasi
skala objek pada citra.

2. Menyesuaikan orientasi gambar agar memiliki orientasi yang sama semua.

3. Augmentasi data seperti membalikkan citra secara horizontal atau vertikal

guna menambah variasi data, memutar citra guna membantu mobel
mengenali objek dari berbagai sudut, dan pemotongan citra dengan tujuan
memusatkan perhatian pada bagian tertentu dari citra guna meningkatkan

detail analisis.

2.12 Google Colaboratory
Google Colaboratory atau singkatannya Google Colab merupakan layanan

cloud dari Google yang dapat digunakan untuk menulis, menjalankan dan berbagi
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kode Python langsung dari web-browser tanpa memerlukan perangkat lunak
tambahan (Revou, 2025). Dengan menyediakan akses gratis ke sumber daya
komputasi seperti GPU dan TPU, Google Colab mmemudahkan praktisi data
science, machine learning, serta kalangan pendidikan dalam menjalankan berbagai

kebutuhan komputasi (Google Colab, 2025).

2.13 TensorFlow

TensorFlow merupakan salah satu pustaka open-source yang
dikembangkan oleh Google untuk kebutuhan ML dan DL. Salah satu kekuatan
utama TensorFlow adalah fleksibilitasnya dalam mengatur dan menjalankan data
flow graph yang dapat menangani operasi tensor kompleks. TensorFlow
memungkinkan pengguna membangun dan menyesuaikan arsitektur model,
mengatur proses pelatihan, serta melakukan evaluasi dan deployment model pada

perangkat edge hingga cloud.

Dalam praktik pengembangan model DL modern, TensorFlow umumnya
digunakan bersama dengan Keras, yang merupakan API tingkat tinggi untuk
membangun dan melatih jaringan saraf tiruan. Sejak TensorFlow 2.0, Keras telah
terintegrasi secara penuh sebagai default high-level APl yang memudahkan proses
pengembangan model, tanpa mengorbankan performa. Dengan menggunakan
Keras, pengguna dapat membuat model DL secara lebih cepat dan efisien
menggunakan antarmuka berbasis Python yang intuitif. Arsitektur seperti AE,
CNN, dan LSTM dapat dirancang hanya dengan beberapa baris kode melalui

pendekatan Sequential atau Functional API.

2.14 Ultralytics

Ultralytics adalah sebuah platform pengembangan yang secara khusus
dikenal sebagai pengembang utama dan penyedia implementasi model-model You
Only Look Once (YOLO) (Ultralytics, 2023 ). Sebagai entitas di balik versi-versi
populer seperti YOLOvS dan YOLOVS, Ultralytics menyediakan kerangka kerja

yang efisien dan mudah digunakan untuk pelatihan, validasi, dan inferensi model
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deteksi objek. Platform ini memfasilitasi penelitian dan aplikasi praktis dalam visi
komputer dengan menawarkan kode sumber terbuka, model pra-terlatih, dan alat

pendukung yang mengoptimalkan kinerja dan kecepatan deteksi objek.

2.15 Penelitian terdahulu

Dalam deep learning, AE telah menjadi teknik penting dalam pengolahan
citra dan penginderaan jauh. Pada sektor pertanian, AE dapat digunakan untuk
klasifikasi dan segmentasi citra tanaman, serta mendeteksi dini penyakit pada
tanaman. Dalam penelitiannya, Isinkaye at al. (2025) mengembangkan model
hybrid yang mengkombinasikan Variational Autoencoder (VAE) dan Vision
Transformer (ViT) untuk meningkatkan akurasi dan ketahanan dalam
mendiagnosis penyakit pada tanaman. Model tersebut mampu untuk
mengklasifikasikan berbagai jenis penyakit tanaman melalui analisis citra daun.
Selain itu, penelitian yang dilakukan oleh Bedi dan Gole (2021) memperkenalkan
model Aybrid yang mengkombinasikan CAE dengan CNN untuk mendeteksi
penyakit pada tanaman secara otomatis. Dengan akurasi ujicoba yang mencapai

98.83%, model ini layak untuk dipertimbangkan dalam aplikasi pertanian presisi

Di sisi lain, berbagai pendekatan kecerdasan buatan dalam mendeteksi
infeksi Ganoderma pada tanaman kelapa sawit telah memperlihatkan performa
yang menjanjikan serta prospek pengembangan yang luas di masa mendatang.
Penelitian yang dilakukan oleh Ahmadi af al. (2020) memanfaatkan citra UAV dan
model Artificial Neural Network (ANN) dalam mendeteksi infeksi Ganoderma
pada tanaman kelapa sawit yang berhasil mengidentifikasi tingkat keparahan
infeksi dengan akurasi yang tinggi. Secara umum, berbagai penelitian yang
sebelumnya telah menunjukkan bahwa AE dan teknik deep learning lainnya
memiliki potensi dalam melakukan klasifikasi, segmentasi, serta mendeteksi dini

penyakit pada tanaman, termasuk infeksi Ganoderma pada tanaman kelapa sawit.

Berbagai penelitian terdahulu menunjukkan bahwa model deep learning,
khususnya Autoencoder (AE), menawarkan potensi dalam dalam implementasi
pertanian presisi. Model AR terbukti efektif untuk klasifikasi, segmentasi, dan
deteksi dini penyakit tanaman. Pendekatan hybrid yang mengkombinasikan AR
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dengan arsitektur lain seperti Convolutional Autoencoder (CNN) atau Vision
Transformer (ViT), telah mencapai akurasi tinggi dalam mendiagnosis penyakit
melalui analisis citra. Sejalan dengan temuan tersebut, penelitian ini mengadopsi
prinsip dasar model AE untuk mengembangkan model yang mampu mendeteksi
dini infeksi Ganoderma pada pohon kelapa sawit. Pendekatan ini memanfaatkan
kemampuan AE dalam mempelajari representasi data normal mengidentifikasi
anomali visual pada citra penginderaan jauh, sebuah strategi yang didasarkan pada

kesuksesan model Al sebelumnya dalam mendeteksi infeksi Ganoderma.
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BAB III
ANALISIS DAN PERANCANGAN SISTEM

3.1 Alur Penelitian

Penelitian tugas akhir ini bertujuan untuk mengembangkan dan menerapkan
algoritma atau arsitektur AE guna mendeteksi infeksi Ganoderma secara dini pada
pohon kelapa sawit dengan memanfaatkan citra yang diambil menggunakan UAV.

Berikut adalah alur penelitian (Gambar 3.1) untuk penelitian tugas akhir ini.

Identifikasi Masalah

Analisis Kebutuhan

Studi Pustaka

Desain Sistem

Evaluasi Kinerja

Gambar 3.1 Alur penelitian

3.2 Identifikasi Masalah

Dalam perkebunan kelapa sawit saat ini masalah yang muncul adalah
bagaimana mendeteksi atau memperkirakan pohon sawit mana yang kemungkinan
akan terinfeksi Ganoderma sehingga bisa dilakukan pencegahan. Dengan luas
wilayah perkebunan yang sangat luas, membutuhkan waktu yang signifikan untuk
melakukan monitoring kondisi setiap pohon kelapa sawit. Oleh karena itu,
dibutuhkan sebuah sistem yang akurat dalam memprediksikan kemungkinan
terjadinya infeksi Ganoderma pada citra UAV bulan selanjutnya dengan

memanfaatkan citra UAV pada bulan-bulan sebelumnya.
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33 Analisis Kebutuhan

Dalam rangka mendukung kelancaran penelitian ini, analisis kebutuhan
sangat penting untuk memastikan bahwa semua aspek yang diperlukan dapat
disiapkan dengan baik. Analisis kebutuhan dilakukan dengan tujuan merancang dan
mengembangkan model AE yang efektif, serta menilai perangkat keras dan lunak
yang diperlukan baik oleh peneliti maupun oleh pengguna yang akan menggunakan

model tersebut.

3.3.1 Kebutuhan Pengguna

Kebutuhan pengguna dalam penelitian ini berfokus pada pengembangan
model deep learning yang mampu mendeteksi dini infeksi Ganoderma pada
tanaman kelapa sawit berdasarkan anomali visual (warna daun). Model ini
dirancang sebagai inti dari sebuah sistem yang dapat mengidentifikasi pohon yang
terinfeksi oleh Ganoderma. Meskipun demikian, pengembangan aplikasi deteksi
yang akan mengintegrasikan model ini secara penuh akan menjadi fokus utama

pada penelitian lanjutan.

3.3.2 Kebutuhan Peneliti
Berikut merupakan beberapa perangkat keras dan perangkat lunak yang

digunakan oleh peneliti dalam melakukan penelitian ini.

1. Perangkat Keras

a. Laptop
i. CPU : Intel i7-1165G7
ii. GPU : NVIDIA GeForce MX350
iii. RAM : 8GB
iv. SSD : 1 TB
v. Sistem Operasi : Windows 10 Home

2. Perangkat Lunak
a. Google Colaboratory c. Python
b. Google Drive d. QGIS
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e. Roboflow

3.4

Studi Pustaka

/. Ultralytics

Dalam tahap ini, peneliti melakukan studi pustaka terhadap penelitian-

penelitian terdahulu yang berkaitan dengan penelitian ini. Penelitian terdahulu yang

dijadikan referensi merupakan penelitian yang berkaitan dengan deteksi dini infeksi

Ganoderma pada tanaman kelapa sawit khususnya menggunakan kecerdasan

buatan serta penelitian yang berkaitan dengan penginderaan jauh.

Tabel 3.1 Ringkasan hasil penelitian terdahulu

No Topik Pengetahuan Temuan

1. Deteksi Pemanfaatan data Reflektansi spektrum NIR dari
Ganoderma citra hiperspektral pelepah kelapa sawit
pada bibit VIS-NIR dan menunjukkan perbedaan yang
sawit algoritma SVM signifikan antara bibit yang tidak
menggunakan untuk deteksi dan diinokulasi dengan patogen
hiperspektral  infeksi G. boninense. Melalui
VIS-NIR dan Ganoderma pada penerapan  algoritma  Fine
SVM. bibit sawit. Gaussian SVM,  diperoleh

tingkat  akurasi  klasifikasi
sebesar 93% dengan
menggunakan 35 band NIR
(Azmi et al., 2020).

2. Deteksi Analisis citra Penelitian oleh Anuar er al.
Ganoderma multispektral dan (2021), menyatakan bahwa
dan hama hiperspektral pencitraan multispektral mampu
penggerek untuk deteksi membedakan antara kondisi
batang pada infeksi sehat, infeksi sedang, dan infeksi
kelapa sawit Ganoderma dan parah dengan akurasi
menggunakan hama pada kelapa keseluruhan lebih dari 90%
spektrum sawit. namun tidak dengan infeksi
reflektansi ringan atau awal  infeksi
penginderaan Ganoderma. Sementara itu,
jauh. pencitraan hiperspektral mampu

membedakan antara kondisi
sehat, infeksi ringan, dan tingkat
keparahan lainnya dari infeksi
Ganoderma pada kelapa sawit.
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Tabel 3.2 Lanjutan

No Topik Pengetahuan Temuan

3. Identifikasi Memantaatkan Dalam  penelitiannya, Ong
penyakit pada AE sebagai (2021) menerapkan dua lapis
tanaman ekstraksi fitur arsitektur AE untuk
menggunakan otomatis dalam mengekstraksi fitur dari citra,
Autoencoder  menentukan dengan menggunakan sebanyak
(AE). tingkat keparahan 122 gambar untuk proses

penyakit busuk pelatthan = dan  pengujian.
daun dini dan Hasilnya, model  tersebut
busuk daun akhir berhasil mengklasifikasikan
pada daun tomat.  tingkat keparahan penyakit
tanaman dengan akurasi
keseluruhan sebesar 72,7%.

4. Deteksi Pendekatan Pendekatan hybrid yang
penyakit model hybrid mengombinasikan CAE dengan
tanaman CAE dan CNN CNN telah dikembangkan untuk
menggunakan untuk deteksi mendeteksi penyakit pada
model hybrid otomatis penyakit tanaman secara otomatis. Model
Convolutional pada tanaman. menunjukkan akurasi pelatihan
Autoencoder dan pengujian yang tinggi,
(CAE) dan masing-masing sebesar 99,35%
Convolutional dan 98,83%, dengan total
Neural parameter  pelatthan  yang
Network digunakan sebanyak 9.914.
(CNN).

Berdasarkan berbagai penelitian terdahulu, deteksi infeksi Ganoderma pada

kelapa sawit telah menunjukkan keberhasilan, khususnya dengan memanfaatkan

citra hiperspektral yang sensitif terhadap perubahan spektrum Near-Infrared (NIR)

pada pelepah, memungkinkan deteksi pada tahap awal infeksi (Azmi at al., 2020;

Anuar at al., 2021). Meskipun demikian, citra multispektral yang lebih umum

cenderung kurang efektif dalam mengidentifikasi gejala dini penyakit. Sebagai

alternatif dari metode penginderaan jauh yang kompleks, model deep learning

menawarkan solusi yang menjanjikan. Autoencoder (AE), misalnya, terbukti efektif

sebagai ekstraktor fitur otomatis untuk klasifikasi penyakit tanaman, bahkan

dengan jumlah data yang terbatas (Ong, 2021). Pendekatan ini diperkuat oleh
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keberhasilan model hybrid yang mengkombinasikan CAE dengan CNN, yang
menunjukkan akurasi sangat tinggi dalam deteksi penyakit tanaman secara
otomatis. Hal ini menegaskan bahwa pendekatan berbasis AE adalah metode yang
valid dan efektif untuk mengidentifikasi anomali yang mengindikasikan infeksi

Ganoderma.

3.5  Desain Penelitian
Desain penelitian (Gambar 3.2) merupakan tahapan yang menggambarkan
keseluruhan proses pengembangan model deep learning yang mampu mendeteksi
anomali infeksi Ganoderma pada kelapa sawit. Pada bagian ini, proses dimulai dari
pemilihan Region of Interest (ROI) hingga menghasilkan model yang mampu
mendeteksi anomali pada pohon kelapa sawit. Desain ini dibuat untuk memastikan
setiap tahapan saling terintegrasi dan mendukung pencapaian tujuan penelitian.
Berikut penjelasan setiap tahapan:
e Pemilihan Region of Interest (ROI)
Proses diawali dengan pemilihan satu area (region) spesifik sebagai fokus
penelitian.
e Pemotongan Citra untuk Dataset YOLO
Citra dari area yang dipilih kemudian dipotong ke dalam blok-blok kecil
guna membentuk Dataset YOLO, yang dibahas pada Subbab 3.5.1.1.
Tahapan ini penting untuk memperkaya jumlah data pelatihan serta
memungkinkan model mendeteksi objek pohon pada skala yang lebih detail.
e Latih YOLO: Identifikasi Pohon
Dataset hasil pemotongan kemudian digunakan untuk melatih model
deteksi objek YOLO yang berfungsi untuk mengidentifikasi posisi pohon
kelapa sawit. Proses ini dijelaskan dalam Subbab 3.5.2.1. Hasil pelatihan
berupa koordinat bounding box pada masing-masing pohon dalam citra.
e Pemotongan Citra untuk Dataset AE
Berdasarkan anotasi (bounding box) dari model YOLO, setiap pohon kelapa

sawit dalam citra dipotong satu per satu dan digunakan untuk membentuk
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dataset AE. Dataset ini digunakan untuk pelatihan model deteksi anomali
dan dijelaskan pada Subbab 3.5.1.2.

Persiapan dan Pengambilan Dataset Timeseries

Citra diidentifikasi dan ditandai pohon-pohon kelapa sawit yang telah
tumbang. Kemudian dilacak mundur pada citra dari bulan-bulan
sebelumnya dan pohon-pohon yang sama diambil dari setiap bulan tersebut
untuk membentuk dataset timeseries, yang akan digunakan untuk analisis
perkembangan penyakit dari waktu ke waktu. Proses ini dibahas pada
Subbab 3.5.1.3.

Latih CAE: Deteksi Ganoderma

Citra pohon yang sudah terpotong digunakan untuk melatih model CAE dan
VAE dalam mendeteksi anomali visual yang mengindikasikan keberadaan
Ganoderma. Proses pelatihan model ini dibahas pada Subbab 3.5.2.2.
Model

Output terakhir dari penelitian adalah model yang mampu mendeteksi

anomali infeksi Ganoderma pada pohon kelapa sawit.

Pemilihan Region of
Interest

J

Pemotongan Citra
untuk Dataset YOLO

d

Latih YOLO:
Identifikasi Pohon

J,

Pemotongan Citra
untuk Dataset AE

l

Persiapan dan
Pengambilan Dataset
Timeseries

d

Latih CAE:
Deteksi Ganoderma

J

Model

Gambar 3.2 Alur desain penelitian
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3.5.1 Penyusunan Dataset

Dalam proses pengembangan model CAE guna mendeteksi dini infeksi
Ganoderma pada pohon kelapa sawit berbasis kecerdasan buatan, tahapan
penyusunan dataset memegang peranan yang sangat penting. Dataset menjadi
fondasi utama dalam pelatihan dan pengujian model yang akan digunakan, baik
untuk deteksi objek maupun untuk identifikasi anomali. Oleh karena itu, diperlukan
pembagian dataset yang sistematis sesuai dengan kebutuhan dan karakteristik dari
masing-masing model yang akan dikembangkan. Berikut Gambar 3.3 menjelaskan
mengenai serangkaian proses penyusunan dataset yang akan diimplementasikan

pada penelitian ini.

Penentuan Region Of
Start e ’
Ifl!ews‘ {l{L)l}

b

Prapemroscsan 2 Anotasi pohon

Citra kelapa sawil

Pembentukan E
data time-series

Gambar 3.3 Alur Penyusunan Dataset

Dataset yang digunakan dalam penelitian ini merupakan citra udara
berukuran 50064 x 77179 piksel dengan 4 band (gambar 3.4) yang diperoleh
menggunakan UAV pada ketinggian + 500 meter di wilayah perkebunan kelapa
sawit PT. Perkebunan Nusantara (PTPN) di Gunung Bayu, Medan, Sumatera Utara.
Data ini diperoleh sebagai dalam rangka kolaborasi dengan Kelompok Riset
Precision Agriculture (KRPA). Proses pengambilan citra dilakukan secara berkala
dalam rentang waktu mulai dari bulan Januari — Juni 2023 dan diproses serta
dikategorikan ke dalam beberapa subset sesuai dengan tujuan analisis. Citra UAV
bulan Juni 2023 akan digunakan sebagai dataset pelatihan untuk pengembangan
dan pembelajaran model, sementara citra bulan Januari — Mei 2023 akan digunakan
untuk dataset timeseries untuk uji coba dan evaluasi kinerja model. Model YOLO

memerlukan dataset dengan anotasi khusus untuk mengidentifikasi objek pohon
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kelapa sawit, sementara model CAE dan CVAE difokuskan untuk mendeteksi

anomali dengan hanya dilatih menggunakan citra pohon sehat.

Gambar 3.4 Kebun kelapa sawit milik PTPN

Selain itu, citra UAV dari bulan Januari hingga Juni 2023 juga dimanfaatkan
sebagai dataset time-series yang merepresentasikan dinamika kondisi tanaman dari
waktu ke waktu. Dataset ini memiliki peran krusial dalam pengembangan sistem
deteksi dini Ganoderma berbasis citra UAV, karena memungkinkan model untuk
mempelajari dan mengenali perubahan visual yang terjadi secara bertahap pada
tanaman yang mengalami infeksi. Untuk mengevaluasi batas kemampuan deteksi
model, disusun pula dataset timeseries dengan pendekatan penelusuran mundur
terhadap pohon-pohon yang telah diketahui mengalami infeksi berat atau
kerusakan. Pendekatan ini bertujuan untuk mengidentifikasi titik awal perubahan
visual yang dapat dikenali oleh model CAE dan CVAE, sehingga dapat diuji sejauh
mana model mampu mendeteksi gejala awal sebelum munculnya tanda-tanda yang
kasatmata. Pembagian dan penyusunan dataset dijelaskan secara rinci dalam tiga

subbab berikut.
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3.5.1.1 Dataset YOLO

Dataset ini disusun dengan tujuan utama untuk mendukung proses deteksi
objek menggunakan model YOLO yang tugasnya mengenali dan mendeteksi objek
menggunakan model YOLO yang bertugas mengenali dan mendeteksi keberadaan
pohon kelapa sawit dalam citra UAV. Proses ini diawali dengan menggunakan
QGIS untuk menentukan Region of Interest (ROI), yaitu wilayah pada kebun kelapa
sawit yang diidentifikasi memiliki kepadatan pohon sawit tinggi, serta potensi
adanya pohon kelapa sawit yang sakit atau tumbang (Gambar 3.5). Penentuan ROI
ini bertujuan untuk memfokuskan proses anotasi dan pelatihan model hanya pada
area-area yang relevan, sehingga efisiensi dan akurasi dalam proses deteksi objek

dapat ditingkatkan.

Gambar 3.5 Penentuan ROI

Setelah ROI ditentukan, citra yang mengandung ROI dipotong terlebih
dahulu menjadi 10 bagian atau blok yang berukuran 2283 x 1653 piksel
menggunakan skrip Python kustom yang dirancang khusus untuk mempermudah
proses anotasi seperti pada Gambar 3.6. Pemotongan ini bertujuan agar setiap blok

mencakup bagian citra yang lebih fokus dan manageable.
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Gambar 3.6 Pembagian citra ROI

Selanjutnya, proses penganotasian pohon kelapa sawit dilakukan
menggunakan Roboflow, di mana setiap objek pohon diberi bounding box secara
manual untuk keperluan pelatihan model deteksi. Setiap pohon kelapa sawit dalam
citra ditandai menggunakan bounding box untuk menunjukkan posisi dan batas

objek secara presisi (Gambar 3.7).

Pada tahap ini, hanya objek pohon kelapa sawit yang diberikan anotasi,
sedangkan objek lain seperti bayangan, semak, maupun vegetasi selain kelapa sawit
diabaikan dan tidak dianotasi. Selain itu, proses anotasi dilakukan tanpa label
kondisi kesehatan pohon, sehingga klasifikasi objek dalam dataset ini terbatas pada
identifikasi pohon kelapa sawit yang terdapat dalam citra UAV. Pendekatan ini
memungkinkan model YOLO mempelajari karakteristik umum dari pohon kelapa
sawit dan membedakannya dari elemen-elemen lain dalam lingkungan sekitar

secara cepat dan efisien.

Gambar 3.7 Anotasi pohon kelapa sawit sehat tanpa label
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Proses anotasi ini merupakan tahap krusial dalam penyusunan dataset
karena secara langsung memengaruhi kualitas pembelajaran model. Anotasi yang
akurat dan konsisten akan membantu model memahami pola visual objek target
secara efektif dan meningkatkan performa deteksi di kondisi lapangan yang

kompleks.

3.5.1.2 Dataset Autoencoder

Dataset AE ini merupakan kelanjutan dari dataset YOLO yang telah
dianotasi sebelumnya. Jika pada dataset YOLO anotasi dilakukan tanpa
memperhatikan kondisi kesehatan pohon, maka pada dataset AE proses
penganotasian dilakukan dengan penambahan label yang mencakup informasi
kesehatan pohon kelapa sawit, seperti label sehat dan terinfeksi. Informasi ini
diperoleh dari data koordinat pohon yang mengalami infeksi hingga tumbang telah

disediakan oleh PTPN dalam bentuk file shapefile (.shp).

Setiap pohon kelapa sawit dalam citra diberi label berdasarkan kondisinya,
dengan bounding box berwarna hijau untuk pohon sehat, dan bounding box
berwarna merah untuk pohon terinfeksi seperti yang ditampilkan pada Gambar 3.8.
Label ini memudahkan proses klasifikasi dan menjadi dasar dalam tahapan pra-
pemrosesan, yaitu cropping citra berdasarkan bounding box untuk menghasilkan

potongan citra individual dari masing-masing pohon.

e e

Hiis ;

Chen gl B
iRl

Gambar 3.8 Anotasi pohon kelapa sawit dengan label sakit dan sehat
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Proses cropping bertujuan agar model CAE dan CVAE dapat mempelajari
karakteristik visual normal pohon sawit sehat secara fokus, sehingga saat diuji
dengan citra lain atau dalam kasus ini citra pohon sawit sakit, model dapat
mendeteksi anomali visual yang mengindikasikan infeksi atau perubahan kondisi

pohon.

3.5.1.3 Dataset Timeseries

Proses pembentukan dataset dilakukan dengan memilih pohon kelapa sawit
yang telah teridentifikasi telah tumbang pada bulan Juni 2023. Selanjutnya,
dikumpulkan citra UAV dari bulan-bulan sebelumnya (Mei-Januari 2023) yang
menampilkan pohon kelapa sawit yang sama. Tujuannya adalah untuk menyusun
dataset berurutan (timeseries) yang dapat menunjukkan perubahan kondisi visual
pohon dari waktu ke waktu. Dengan pendekatan ini, model dapat mempelajari

perubahan visual bertahap dari kondisi sakit sebelum akhirnya tumbang.

Gambar 3.9 Contoh citra timeseries pohon sawit

Dataset timeseries ini digunakan untuk mengevaluasi kemampuan AE
mendeteksi anomali pada tahap awal infeksi dan mengukur batas deteksi (/imit
detection) model, yaitu sejauh mana model dapat mengenali tanda-tanda awal

infeksi sebelum gejala muncul secara visual.

3.5.2 Desain Model
Pada penelitian ini, untuk mencapai tujuan deteksi dini infeksi ganoderma

pada pohon kelapa sawit berbasis citra UAV, digunakan tiga model yaitu, model
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YOLO, CAE, dan CVAE. Model YOLO berfungsi sebagai pendeteksi objek yang
tujuannya mengidentifikasi dan menganotasikan citra pohon kelapa sawit dari citra
UAV secara otomatis. Sementara itu, dua variasi model AE akan digunakan untuk
menganalisis citra hasil anotasi tersebut guna mendeteksi adanya indikasi dini

infeksi Ganoderma. Berikut adalah penjelasan mengenai masing-masing model.

3.5.2.1 Model YOLO

Model YOLO merupakan algoritma deteksi objek berbasis DL yang
dirancang untuk mendeteksi dan mengklasifikasikan objek dalam sebuah citra
dengan cepat dan akurat. Dalam penelitian ini, model YOLOv11n (nano) dipilih
karena arsitekturnya yang sederhana dan efisien bila dibandingkan dengan varian
YOLOvl1 lainnya. Model ini menawarkan keseimbangan optimal antara
kecepatan, komputasi, dan akurasi, menjadikannya ideal untuk inferensi cepat serta
implementasi pada perangkat dengan sumber daya terbatas. YOLOV11n nantinya
akan digunakan untuk mengidentifikasi lokasi pohon kelapa sawit dalam citra

UAYV, dengan memanfaatkan bounding box sebagai penanda posisi objek.

Model YOLOvI 1n dibangun dan dilatih menggunakan kombinasi platform
Roboflow untuk anotasi data serta Ultralytics beserta Google Colab untuk
pelatihan. Proses pelatihan dilakukan dengan menginputkan dataset YOLO ke
dalam model dan dengan data 70% untuk pelatihan, 20% untuk validasi, dan 10%

untuk pengujian.

Gambar 3.10 Pemilihan Dataset dan Pelatihan Model di Ultralytics

Output yang diharapkan dari model ini berupa koordinat bounding box
pohon kelapa sawit, yang kemudian digunakan sebagai input bagi model CAE dan
CVAE, dengan tujuan mengevaluasi kondisi kesehatan masing-masing pohon

secara individual.
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Decoder —d

3.5.2.2 Model Autoencoder (AE)
Dalam penelitian ini, penulis akan menggunakan dua variasi arsitektur AE,
yaitu CAE dan CVAE. Kedua model ini dikembangkan melalui pendekatan

eksperimental untuk mengidentifikasi konfigurasi layer yang paling optimal.

3.5.2.2.1 Convolutional Autoencoder (CAE)

CAE dikembangkan secara mandiri oleh penulis, mengacu pada pustaka
TensorFlow (Tensorflow, 2024) dan repositori GitHub (aaryadev, 2024).
Arsitekturnya diuji dalam tiga konfigurasi encoder yang berbeda, masing-masing
dengan satu, dua, atau tiga layer Conv2D. Setiap /ayer Conv2D diikuti oleh fungsi
aktivasi ReLU dan MaxPooling2D untuk mengurangi dimensi spasial gambar
secara bertahap. Bagian decoder CAE dirancang secara simetris, menggunakan
satu, dua, atau tiga layer Conv2DTranspose yang masing-masing diikuti oleh
aktivasi ReLU dan UpSampling2D untuk mengembalikan dimensi gambar ke

ukuran aslinya.

Layer (type) output shape Param # Layer (type) Output Shape Param #
input_layer 17 (InputLayer) (None, 128, 128, 3) 0 input_layer (Inputiayer) (Hone, 125, 123, 3) 719
conv2d_30 (Conv2D) ( , 128, 128, 32) 806 conv2d (CanvaD) (ane, 128, 128, &) 228
re_lu_27 (Relb) ( . 128, 32) re_lu (Rell) (Mone, 128, 128, 8) ]
max_pooling2d_13 (MaxPooling2D) | ( , 64, 64, 32) ° max_pooling2d (MaxPooling2D) ( , 64, 64, 8) [}
conv2d_transpose_13 (None, 64, 64, 32) 9,248 conv2d 1 (Conv2D) (tone, B4, 64, 16) 1,163
(Conv2DTranspose)

re_lu_1 (Rell) (Mane, 64, 64, 16) [
re_lu 28 (RelU) ( , 64, 64, 32) ) - .

max_pooling2d_1 (MaxPooling2D) ( , 32, 32, 16) @
up_sampling2d_13 (UpSampling2D) ( 128, 128, 32)

conv2d_2 (ConvaD) (tone, 32, 32, 32) 4,648
convad_31 (Conv2n) ( , 128, 128, 1) 867

re_lu 2 (Rell) (Mone, 32, 32, 32) [

(a) max_pooling2d_2 (MaxPooling2D) ( , 16, 16, 32) @ =
conv2d_transpose (Mone, 16, 16, 32) 9,248 |=~
Layer (type) Output Shape Param # (Conv2DTranspose)

__| input_layer (Inputlayer) (Mone, 128, 128, 3) o re_lu_3 (Rell) (Mone, 16, 16, 32) [
conv2d (Conv2p) ( , 128, 128, 16) 448 up_sampling2d (UpSampling2D) ( , 32, 32, 32) [:]
re_lu (RelU) (Mone, 128, 128, 16) e conv2d_transpose_1 (None, 32, 32, 16) 4,624

(Conv2DTranspose)
Encoder max_pooling2d (MaxPooling2p) (lone, 64, 64, 16) o
re_lu_4 (Rell) ( , 32, 32, 16) [ L. Decoder
conv2d 1 (ConvaD) (Mone, 64, 64, 32) 4,640
up_sampling2d_1 (UpSampling2D) ( , 64, 64, 16) [:]
re_lu_1 (RelU) (Mone, 64, 64, 32) ]
conv2d_transpose_2 (None, B4, 64, 32) 4,648

~=| max_pooling2d 1 (MaxPooling2D) ( , 32, 32, 32) 8 {Conv2DTranspose)

__| conv2d_transpose (Mone, 32, 32, 32) 9,248 re_lu_5 (Rell) (Mone, 64, 64, 32) [
(Conv2DTranspose)

up_sampling2d_2 (UpSampling2D) ( , 128, 128, 32) [:]
re_lu_2 (RelU) (None, 32, 32, 32) o
conv2d_3 (Conv2D) (Mone, 128, 128, 3) 867 |7
up_sampling2d (UpSampling2D) (Mone, 64, 64, 32) ]
conv2d_transpose_1 (None, 64, 64, 16) 4,624 I
(Conv2DTranspose)
re_lu_3 (RelU) (None, 64, 64, 16) o
up_sampling2d_1 (UpSampling2D) | (Mone, 128, 123, 16) ]
—| conv2d 2 (Conv2D) (None, 128, 128, 3) 435

(b)
Gambar 3.11 CAE satu layer (a), dua layer (b), dan tiga layer (c)
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3.5.2.2.2 Convolutional Variational Autoencoder (CVAE)

CVAE  dikembangkan  berdasarkan artikel = Tensorflow  yang
mendemonstrasikan pelatthan model VAE yang telah dimodifikasi dengan
menambahkan convolutional layers agar dapat mendukung dataset MNIST
(Tensorflow, 2024). Arsitektur dasar CVAE yang mirip dengan CAE namun
dengan dua /ayer tambahan krusial. Pertama adalah Sampling layer (Gambar 3.12),
yang mengimplementasikan Reparameterization Trick. Layer ini memungkinkan
pengambilan sampel dari distribusi laten yang dipelajari encoder dengan cara yang
dapat di-backpropagate, memisahkan komponen acak dari parameter yang

dipelajari untuk memungkinkan perhitungan gradien yang efektif.

Akeras.saving.register_keras_serializable()
class Sampling(tf.keras.layers.lLayer):
def call(self, inputs):

z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[o]
dim = tf.shape(z_mean)[1]
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 % z_log_var) * epsilon

Gambar 3. 12 Sampling Layer

Kedua adalah KL Divergence Layer, sebuah layer kustom yang menghitung
dan menambahkan KL Divergence Loss ke model. Layer ini berfungsi sebagai
regularisasi, memastikan bahwa distribusi laten yang dipelajari oleh encoder tetap
mirip dengan distribusi normal standar, sehingga memaksa ruang laten menjadi
lebih halus dan terstruktur. Ini krusial untuk kemampuan CVAE dalam

menghasilkan data baru yang bermakna.

okeras.saving.register keras_serializable()
class KLDivergenceLayer(tf.keras.layers.Layer):
def _ init_ (self, input_pixels, sxkwargs):
super().__init_ (sxkwargs)
self.input_pixels = tf.cast(input_pixels, tf.float32)

def call(self, inputs):
z_mean, z_log_var = inputs

kl_loss_per_sample = -0.5 % tf.reduce_sum(z_log_var - tf.square(z_mean) - tf.exp(tf.exp(z_log_var)) + 1, axis=1) # Corrected exp(z_log_var)

kl_loss_normalized = kl_loss_per_sample / self.input_pixels
self.add_loss(tf.reduce_mean{kl_loss_normalized))
return inputs

Gambar 3.13 KL Divergence Layer
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Dalam implementasinya, model dibangun menggunakan Functional API
Keras. Dimulai dengan encoder, ia menerima citra input berukuran 128x128x3 dan
secara berurutan melewati tiga layer Conv2D. Konfigurasi ini memungkinkan
fleksibilitas dalam kedalaman model: untuk satu layer, hanya filter 32 yang
digunakan; untuk dua layer, filter 32 dan 64 akan aktif; sedangkan untuk tiga /ayer,
ketiga filter 32, 64, dan 128 digunakan secara berurutan. Output konvolusional ini
kemudian di-flatten dan diumpankan ke dua /layer dense terpisah untuk
menghasilkan z mean dan z log var, yang merupakan parameter distribusi
Gaussian di ruang laten. Sampling layer kemudian mengambil z mean dan

z log var ini untuk menghasilkan sampel z, yang menjadi representasi laten.

Secara bersamaan, KL DivergencelLayer menghitung KL Divergence Loss
dariz_mean dan z_log var dan menambahkannya ke total /oss model. Selanjutnya,
Decoder mengambil sampel z dari ruang laten, mengembangkannya kembali
menggunakan /ayer dense dan reshape ke dimensi spasial dan jumlah filter yang
cocok dengan bottleneck encoder (16x16x128). Kemudian, tiga Ilayer
Conv2DTranspose secara bertahap memperbesar dimensi citra kembali ke
128x128x3, dan aktivasi sigmoid pada layer output terakhir memastikan nilai piksel

berada dalam rentang 0 hingga 1.

LN
def build_vae(input_shape=(128, 128, 3), latent_dim=8):
print(f*\n— Building VAE with input_shape: {input_shape} and latent_dim: {latent_dim} —*")

# — Encoder —

encoder_inputs = tf.keras.Input(shape=input_shape, name="encoder_input")

% = tf.keras.layers.Conv2D{filters=32, kernel size-3, strides=(2, 2), activation='relu’, padding='same', name="enc convi')(encoder_inputs) #satu layer
% = tf.keras.layers.Conv20(filters=64, kernel_size=3, strides=(2, 2), activation='relu’, padding='same', name="enc_conv2")(x) #dua layer

% = tf.keras.layers.Conv2D(filters=128, kernel_size=3, strides=(2, 2), activation='relu’, padding='same', name="enc_conv3")(x) #tiga layer

output_spatial dim = input_shape[0] // (2%%3)
filters_at_bottleneck = 128

x = tf.keras.layers.Flatten{name="enc_flatten”)(x)
z_mean = tf.keras.layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = tf.keras.layers.Dense(latent_dim, name="z_Log_var”)(x}

z = sampling(name="z_sampling")([z_mean, z_log_varl)

input_pixels = input_shape[a] * input_shape[1] = input_shape[2]
_ = KLpDivergenceLayer(input_pixels=input_pixels, name="kl_divergence_loss")([z_mean, z_log_varl)

encoder = tf.keras.Model(encoder_inputs, [z_mean, 2_log_var, z], name='encoder")

# — Decoder —
latent_inputs = Lf.keras.Input(shape=(latent_dim,), name="decoder input"}

initial_dense_units = output_spatial_dim = output_spatial_dim » filters_at_bottleneck

% = tf.keras.layers.Dense(units=initial_dense_units, activation=tf.nn.relu, name="dec_dense”)(latent_inputs)
% = tf.keras.layers.Reshape(target_shape=(output_spatial_dim, output_spatial_dim, filters_at_bottleneck))(x)

% = tf.keras.layers.Conv20Transpose(filters=64, kernel_size=3, strides=2, padding='same', activation='relu', name="dec_canvt1")(x) #satu layer
% = tf.keras.layers.Conv2DTranspose(filters=32, kernel_size=3, strides=2, padding='same', activation='relu', name="dec_convt2")(x) #dua layer
% = tf.keras.layers.ConvzDiranspose(filters=32, kernel size-3, strides-2, padding-'same’, activation='relu’, name="dec convi3")(x) #tiga layer

decoder_outputs = tf.keras.layers.Conv2DTranspose( filters=input_shape[-1], kernel_size=3, strides=1, padding='same', activation='sigmeid’, name="decoder output")(x}
decoder = tf.keras.Model(latent_inputs, decoder_outputs, name="decoder”)

outputs = decoder(encoder(encader_inputs)[2])
vae = tf.keras.Model{encoder_inputs, outputs, name="vae")

return vae, encoder, decoder

Gambar 3.14 CVAE satu sampai tiga layer
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Setelah kedua model dibuat, model akan dilatih dengan tiga variasi nilai
learning rate (0,01; 0,001; dan 0,0005) serta tiga jumlah epochs yang berbeda (50,
100, dan 150). Pemilihan skenario pelatihan ini didasarkan pada prinsip
hyperparameter tuning untuk menemukan konfigurasi model yang paling optimal.
Learning rate merupakan parameter krusial yang menentukan seberapa cepat model
menyesuaikan bobotnya saat belajar dari data. Pengujian dengan nilai bervariasi
(0,01; 0,001; dan 0,0005) bertujuan untuk menemukan laju pembelajaran yang
ideal: nilai yang terlalu tinggi dapat menyebabkan model melewati titik optimal,
sementara nilai yang terlalu rendah dapat membuat proses pelatihan menjadi sangat
lambat. Di sisi lain, jumlah epochs menentukan seberapa banyak kali model melihat
seluruh dataset pelatihan. Pengujian dengan variasi 50, 100, dan 150 epochs
dilakukan untuk mengamati keseimbangan antara underfitting (model belum cukup
belajar) dan overfitting (model terlalu menghafal data latihan). Oleh karena itu,
pengujian kombinasi dari kedua parameter ini secara sistematis memungkinkan
peneliti untuk mengidentifikasi titik optimal di mana model dapat mencapai akurasi
tertinggi tanpa mengorbankan efisiensi waktu atau kemampuan generalisasinya

pada data baru.

Proses pelatihan model dilakukan dengan memanfaatkan platform Google
Colaboratory, dan seluruh hasil pelatihan disimpan secara otomatis pada layanan
penyimpanan Google Drive. Dataset yang digunakan dalam tahap ini adalah data
healthy yang berasal dari citra pohon kelapa sawit pada bulan Juni 2023 dan
dilakukan menggunakan algoritma optimasi Adam dengan pembagian data sebesar
80% untuk pelatihan, 20% untuk validasi. Dalam proses deteksi anomali, kedua
model memanfaatkan perbandingan antara citra asli dan citra hasil rekonstruksi
dengan mengukur nilai MAE, MSE dan SSIM. Nilai-nilai tersebut kemudian
dianalisis dan dibandingkan distribusi datanya antar model guna mengevaluasi
efektivitas masing-masing dalam mengidentifikasi pohon kelapa sawit yang
berpotensi terinfeksi Ganoderma boninense menggunakan dua metrik: Jensen-

Shannon Distance (JSD) dan Bhattacharyya Distance (BD).
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3.5.3 Evaluasi Kinerja

Pada tahap ini, dilakukan evaluasi terhadap kinerja dari tiga model yang

dikembangkan, yaitu YOLO sebagai model deteksi objek dan 2 Variasi AE sebagai

model deteksi anomali visual pada pohon kelapa sawit. Evaluasi dilakukan guna

mengukur sejauh mana efektivitas dan akurasi dari masing-masing model dalam

menjalankan tugasnya. Selain itu, dilakukan juga evaluasi terhadap kemampuan

deteksi dini (Limit Detection) dari model CAE dan CVAE, guna mengetahui

seberapa jauh model mampu mengenali gejala infeksi Ganoderma sebelum tanda

visual terlihat secara nyata. Metriks evaluasi yang digunakan disesuaikan dengan

karakteristik keluaran dari masing-masing model.

3.5.3.1 Model YOLO

Model YOLO dievaluasi dengan menggunakan tiga metrik, yaitu:
Precision, mengukur sejauh mana model dapat mengidentifikasi pohon

kelapa sawit dengan benar tanpa menghasilkan terlalu banyak deteksi palsu.

True Positive (TP)
True Positive+False Positive (FP)

Precision = (3-1)

Recall, menunjukkan kemampuan model dalam menangkap semua pohon

kelapa sawit yang benar-benar ada dalam citra.

True Positive (TP)
True Positive+False Negative (FN)

Recall = (3-2)

F1-Score, merupakan rata-rata harmonis dari precision dan recall, yang
memberikan gambaran menyeluruh terhadap keseimbangan antara

keduanya.

F1 — Score = 2 X Precision XRecall (3_3)

Precision+Recall

3.5.3.2 Dataset Autoencoder

Evaluasi model CAE dan CVAE dilakukan dengan dua metrik, yaitu MSE

dan SSIM.

MAE mengukur rata-rata kesalahan rekonstruksi absolut antara citra input

dan hasil rekonstruksi model. Nilai MAE yang rendah menandakan bahwa
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citra direkonstruksi dengan baik, sedangkan nilai tinggi mengindikasikan

n
1
MAE = —Z |x; —x
n .
=1

potensi anomali.

e MSE mengukur rata-rata kesalahan rekonstruksi antara citra input dan hasil
rekonstruksi model. Nilai MSE yang rendah menandakan bahwa citra
direkonstruksi dengan baik, sedangkan nilai tinggi mengindikasikan potensi

anomali.

n
1 3
MSE = ;Z(Yi a5 (3-5)
i=1

e SSIM mengevaluasi kesamaan struktural antara dua citra, memberikan
gambaran yang lebih manusiawi terhadap perbedaan visual yang penting.
Nilai SSIM berkisar antara -1 hingga 1, dengan nilai mendekati 1

menunjukkan kemiripan yang tinggi.

(2uety + C1)(204, + C,)
(u2 +p2 + Cy) (02 + 02 + C,)

SSIM(x,y) = (3-6)

3.5.3.3 Limit Detection

Evaluasi limit detection bertujuan untuk menguji kemampuan model CAE
dalam mendeteksi infeksi Ganoderma pada tahap awal, sebelum gejala visual
muncul secara jelas. Untuk itu, digunakan dataset timeseries selama lima bulan
(Januari—Mei 2023) yang memuat citra pohon sawit sebelum tumbang di bulan Juni

2023.

Untuk menilai batas kemampuan deteksi model dalam membedakan citra
sawit sehat dan sakit, penulis akan menganalisis perbedaan distribusi metrik MAE,
MSE dan SSIM menggunakan dua metrik: Jensen-Shannon Distance (JSD) dan
Bhattacharyya Distance (BD). JSD, dengan rentang 0-1, akan menunjukkan adanya

perbedaan signifikan jika nilainya mendekati 1. Sementara itu, nilai BD di atas 1
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akan menjadi indikator pemisahan data yang sangat baik, karena menunjukkan

tingkat tumpang tindih distribusi yang minimal.

Dengan pendekatan ini, dapat diidentifikasi batas waktu terawal (/imit
detection) di mana model pertama kali mengenali perubahan visual sebagai indikasi
infeksi. Hasil evaluasi ini sangat penting dalam konteks penerapan sistem deteksi
dini, karena menggambarkan sejauh mana model dapat membantu pengambilan

keputusan sebelum infeksi menyebar lebih luas.
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4.1

BAB IV
HASIL DAN PEMBAHASAN

Dataset

Dalam penelitian ini, penulis menggunakan serangkaian dataset yang

dikumpulkan dan disiapkan khusus untuk melatih dan menguji model-model deep

learning dengan peruntukannya masing-masing. Berikut rincian komposisi dari

masing-masing dataset:

1.

4.2

Dataset Pertama (YOLO): Terdiri dari 10 potongan gambar ROI dengan
jumlah total 1767 gambar pohon kelapa sawit. Dataset ini secara spesifik
dialokasikan untuk melatih model deteksi YOLO. Tujuannya adalah agar
model YOLO mampu secara akurat mengenali dan mendeteksi lokasi pohon
kelapa sawit dalam citra.

Dataset Kedua (AE): Berjumlah 1722 gambar pohon sehat. Dataset ini
merupakan fokus utama untuk melatih dan menguji model CAE dan CVAE.
Tujuan utamanya adalah untuk memungkinkan model-model ini
mendeteksi secara dini adanya anomali yang mengindikasikan infeksi
infeksi Ganoderma pada pohon kelapa sawit, dengan membedakan pola
gambar pohon sehat dari pola gambar pohon yang terinfeksi.

Dataset Ketiga (Timeseries): Dataset ini mencakup 205 titik data, yang
merupakan akumulasi pengamatan selama lima bulan sebelum pohon
kelapa sawit tumbang, dengan masing-masing 41 titik data per bulan.
Dataset ini digunakan untuk menguji kemampuan deteksi dini model

autoencoder mulai dari satu bulan hingga lima bulan sebelum tumbang.

Table 4.1 Rincian dataset

Dataset Jumlah Gambar
YOLO 1767
AE 1722
Time-series 205

Pelatihan Model

Model penelitian ini terdiri dari dua komponen utama: satu arsitektur YOLO

untuk deteksi objek dan dua variasi arsitektur CAE dan CVAE untuk deteksi
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anomali. Proses pelatihan model YOLO menggunakan 9 potongan gambar ROI
yang dibagi menjadi 80% untuk pelatihan, 20% untuk validasi. Sementara itu, untuk
pelatihan CAE dan CVAE, penulis memanfaatkan 1.722 gambar pohon sawit sehat,

di mana 80% digunakan sebagai data pelatihan dan 20% sebagai data validasi.

4.2.1 Pelatihan Model YOLO

Berdasarkan hasil pelatthan model YOLO, penggunaan model pretrain
menunjukkan performa yang jauh lebih baik dibandingkan dengan pelatihan tanpa
pretrain. Hal ini terbukti pada Gambar 4.1 yang memvisualisasikan proses
pembelajaran model. Pada awal pelatihan (epoch 0-8) nilai precision dan recall
menunjukkan model masih dalam tahap adaptasi. Kinerja model sempat membaik
pada epoch 9-13, namun kemudian menurun kembali pada epoch ke-14 yang
mungkin menandakan model sementara kehilangan bobot optimal akibat
penyesuaian bobot. Setelah itu, nilai precision dan recall kembali naik secara

signifikan dengan fluktuasi pada epoch 19-99.

Q. . B o b D e ol Rk A D b ek A A b R D
LT T T S L S . P T e R

EpOC}“l
Gambar 4.1 Grafik performa model pretrain pada 100 epochs

Sebaliknya, model yang dilatih tanpa pretrain mengalami kesulitan
mencapai performa yang baik pada jumlah epochs yang sama. Seperti yang
ditunjukkan pada Gambar 4.2, model ini memerlukan waktu yang jauh lebih lama
untuk belajar. Model tidak menunjukkan adanya perkembangan atau stagnan
hingga epoch 80 dan baru mulai menunjukkan perbaikan atau perkembangan pada

epoch 81-99.
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Gambar 4.2 Grafik performa model tanpa pretrain pada 100 epochs

Berdasarkan hasil keduanya pada 100 epochs (Tabel 4.2), model dengan
pretrain mendapatkan nilai precision, recall, dan F1 score yang sangat tinggi dan
stabil pada data pelatihan dan validasi, dengan F1 score di atas 0.97. Hal ini
menunjukkan kemampuan deteksi yang akurat, dengan kesalahan prediksi yang
sangat minim. Sementara itu, model tanpa pretrain mendapat nilai F1 score pada
data validasi hanya 0.45, dengan precision dan recall yang relatif rendah,

menunjukkan bahwa model sering salah mendeteksi objek atau melewatkan objek

sebenarnya.
Table 4.2 Hasil pelatihan model YOLO pada 100 epochs
Pretrain  Epochs Train Validation
P R Fls P R Fls
Yes 100 0.9777 0.9640 0.9078 0.9950 0.9740 0.9844
No 0.4624 0.6293 0.5331 0.3800 0.5588 0.4524

Untuk mengatasi masalah tersebut, penulis mencoba meningkatkan
performa model tanpa pretrain dengan menaikkan jumlah epoch menjadi 1000
untuk kedua model. Tujuannya adalah memberi kesempatan bagi model tanpa
pretrain untuk belajar dari awal dan menyesuaikan bobot sepenuhnya dengan

karakteristik dataset kelapa sawit tanpa dipengaruhi pola dari dataset umum.
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Berkat early stopping dengan patience 100, model tanpa pretrain berhenti
di epoch ke-641 (Gambar 4.3). Model tanpa pretrain menunjukkan perkembangan
yang lambat diawal dengan tidak adanya perkembangan signifikan pada epoch 0-
63. Namun pada epoch 65-76 terjadi konvergensi yang diikuti oleh fluktuasi
panjang hingga epoch 553, sebelum akhirnya berhenti

P ey @ w e @@ oo e @ g g ww oWy wwweeedee do

Gambar 4.3 Grafik performa model tanpa pretrain pada 1000 epochs

Sebaliknya, model pretrain berhenti jauh lebih cepat yaitu pada epoch 343
(Gambar 4.4), hampir separuh waktu pelatihan model tanpa pretrain. Menariknya,
meskipun model ini tampak tidak stabil diawal dengan fluktuasi acak hingga epoch
134, model berhasil mencapai nilai precision dan recall yang tinggi pada epoch 92
dan 118. Setelah fluktuasi tersebut, model mulai stabil dan mempertahankan kinerja

optimalnya hingga epoch ke-343.

Epoch

Gambar 4.4 Grafik performa model pretrain pada 1000 epochs

Kemudian dengan naiknya epoch, model tanpa pretrain berhasil mencapai

F1 Score sebesar 0.9864 pada data validasi, berhasil melampaui F1 Score model
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pretrain yang dilatih pada 100 epochs (0.9844). Namun demikian, peningkatan
jumlah epochs hingga 10 kali lipat pada model tanpa pretrain menunjukkan
kebutuhan waktu pelatihan yang jauh lebih lama dan sumber daya komputasi yang
lebih besar. Sementara itu, model pretrain hanya mengalami peningkatan performa
yang relatif kecil saat epoch dinaikkan 10 kali lipat, mengindikasikan bahwa bobot
pretrain sudah sangat optimal bahkan pada jumlah epoch yang lebih kecil.

Tabel 4.3 Perbandingan hasil pelatihan
model YOLO pada 100 dan 1000 epochs

. Train Validation
Pretrain  Epochs P R s P R s
Yes 100 0.9777 0.9640 0.9078 0.9950 0.9740 0.9844
No 0.4624 0.6293 0.5331 0.3800 0.5588 0.4524
Yes 1000 0.9768 0.9827 0.9798 0.9947 0.9926 0.9937
No 0.9692 0.9870 0.9781 0.9874 0.9853 0.9864

Kesimpulannya, meskipun model pretrain menunjukkan fluktuasi yang
besar diawal, model tetap berhasil mencapai bobot optimal jauh lebih cepat
dibandingkan model tanpa pretrain yang membutuhkan waktu pelatihan dan epoch
yang lebih banyak untuk belajar dan stabil. Perbedaan ini menegaskan bahwa
dengan pretrain dapat membantu model memanfaatkan pengetahuan sebelumnya
untuk mengenali fitur penting pada citra kelapa sawit, sehingga proses pelatihan
lebih cepat konvergen, lebih akurat dan stabil. Selain itu, penggunaan pretrained
secara signifikan mempersingkat waktu pengembangan model dan memaksimalkan

hasil deteksi meskipun dengan keterbatasan sumber daya pelatihan.

4.2.2 Pelatihan Model Convolutional Autoencoder (CAE)

Untuk arsitektur CAE, hasil eksperimen dengan satu /ayer, menunjukkan
penurunan Joss dan validation loss yang sangat cepat di epoch 0-20, mencapai
konvergensi dengan baik dalam waktu singkat. Penurunan ini konsisten di berbagai
konfigurasi epoch dan learning rate. Misalnya, dengan 100 epochs dan learning
rate 0.0005, /oss turun dari 0.0046 menjadi 0.00014 hanya dalam 8 epochs (epoch

0-7). Meskipun konvergensi terjadi dengan sangat cepat, penambahan epoch lebih
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dari 50 epochs tidak memberikan peningkatan yang signifikan karena model telah

Imencapai performal optimalnya.
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Gambar 4.5 Grafik performa model CAE satu /ayer dengan konfigurasi (a) 100
Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100
Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150
Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50
Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (1) 50
Epoch dan Learning Rate 0.01.

Secara umum, model satu /ayer menunjukkan performa yang sangat stabil
dan akurat. validation loss terbaik tercatat sebesar 0.000026 pada learning rate
0.0005 dengan 150 epochs, yang membuktikan kemampuan rekonstruksi yang luar
biasa. Semakin kecil learning rate yang digunakan, semakin rendah pula validation
loss yang dicapai. Namun, learning rate yang terlalu besar (seperti 0.01)

menyebabkan performa menurun secara signifikan dan tidak stabil, yang
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ditunjukkan oleh validation loss yang lebih tinggi (sekitar 0.000501 - 0.000197).
Hal ini mengindikasikan bahwa model satu layer sangat sensitif terhadap learning

rate.

Selanjutnya, pada dua layer, hasil menunjukkan pola penurunan /oss dan
validation loss yang serupa dengan model satu layer, yaitu cepat di awal dan
kemudian melambat. Meskipun penambahan layer kedua bertujuan untuk
menangkap representasi data yang lebih kompleks, performa model ini tidak selalu
lebih baik. Nilai loss dan validation loss akhir memang sedikit lebih rendah
dibandingkan model satu layer, yang menunjukkan bahwa model ini mampu belajar
fitur yang lebih akurat. Sebagai contoh, dengan 100 epochs dan learning rate
0.0005, nilai /oss dan validation loss sudah berada di bawah 0.00056 pada epoch
ke-8, dan penurunan terus berlanjut secara perlahan hingga paling rendah mencapai

0.00027.

Namun, model dua /ayer ini tampaknya lebih sensitif terhadap learning
rate. Nilai validation loss terbaik (0.000234) tercapai pada kombinasi learning rate
0.001 dan 150 epochs, yang sedikit lebih tinggi dibandingkan model satu layer.
Performa memburuk secara signifikan saat learning rate dinaikkan menjadi 0.01,
dengan validation loss yang jauh lebih tinggi (0.000800 - 0.000712). Ini
menunjukkan bahwa learning rate yang terlalu besar membuat model dua layer
lebih sulit beradaptasi. Meskipun penambahan epochs membantu menurunkan
validation loss, penurunannya tidak setajam pada model satu /ayer, menegaskan
adanya peningkatan kompleksitas yang tidak selalu berbanding lurus dengan

peningkatan performa optimal.

Terakhir, hasil eksperimen dengan tiga layer (Gambar 4.7) menunjukkan
performa yang paling stabil dan nilai /oss terendah dibandingkan model lain,
dengan penurunan /oss dan validation loss yang konsisten bahkan pada epochs yang
lebih tinggi. Hal ini mengindikasikan kemampuannya untuk mengekstrak fitur yang
lebih mendalam, yang menghasilkan rekonstruksi data paling akurat. Sebagai
contoh, dengan 100 epochs dan learning rate 0.0005, nilai loss dan validation loss
sudah mencapai 0.0018 dan 0.0017 pada epoch ke-7. Model ini juga menunjukkan

kemampuan untuk terus memperbaiki diri di epoch selanjutnya dengan 0.0009 pada
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loss dan validation loss pada epoch ke-99, menjadikannya pilihan ideal untuk tugas

rekonstruksi yang lebih kompleks.
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Gambar 4.6 Grafik performa model CAE dua /ayer dengan konfigurasi (a) 100
Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (¢) 100
Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150
Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50
Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50
Epoch dan Learning Rate 0.01.

Namun, model ini tampak paling rentan terhadap overfitting atau kesulitan

konvergensi, terutama pada learning rate yang tinggi. Saat learning rate diatur ke

0.01, training loss tidak mengalami perubahan di 0.257887 pada 50 epochs, dan

validation loss yang stagnan. Bahkan dengan learning rate yang lebih kecil

(0.0005) dan 150 epochs, validation loss terbaik hanya mencapai 0.000829, yang

masih lebih tinggi dari arsitektur dengan /ayer lebih sedikit. Kompleksitas arsitektur

tiga layer tampaknya tidak sebanding dengan rezim pelatihan atau jumlah data yang
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ada, dan bahkan dengan learning rate kecil, peningkatannya terbatas. Hal ini
menunjukkan bahwa tiga /ayer mungkin tidak optimal untuk tugas yang dihadapi

model ini.

Secara keseluruhan, hasil eksperimen pada CAE dengan variasi satu, dua,
dan tiga layer, dapat disimpulkan bahwa tingkat learning rate memiliki pengaruh
yang paling signifikan terhadap konvergensi dan performa model. Secara konsisten,
penggunaan learning rate yang terlalu tinggi (0.01) mengakibatkan model gagal
konvergen atau menunjukkan training loss yang tidak stabil atau bahkan tidak ada
peningkatan, sementara tingkat yang lebih rendah (0.001 dan 0.0005) terbukti jauh
lebih efektif. Dari ketiga konfigurasi layer, learning rate 0.001 secara umum
menunjukkan performa yang paling optimal dalam pelatithan model, dengan hasil
validation loss terendah dan paling stabil di setiap eksperimen. Hal ini
menunjukkan bahwa pemilihan learning rate yang tepat adalah kunci untuk

mencapai kinerja terbaik, terlepas dari jumlah /ayer konvolusi yang digunakan.

4.2.3 Pelatihan Model Convolutional Variational Autoencoder (CVAE)
Eksperimen yang dilakukan pada arsitektur CVAE dengan konfigurasi satu
layer menunjukkan sensitivitas tinggi terhadap pemilihan learning rate. Hasil
pengujian secara jelas mengindikasikan bahwa nilai learning rate yang lebih rendah
(0.0005 dan 0.001) secara signifikan lebih unggul dibandingkan nilai yang lebih
besar (0.01). Secara konsisten, learning rate yang lebih kecil ini menghasilkan
minimal validation loss yang jauh lebih rendah dan stabil, berada pada kisaran
optimal 1.1483 hingga 1.1484. Kontrasnya, penggunaan learning rate 0.01
menyebabkan kinerja yang stagnan, di mana validation loss cenderung tertahan

pada level yang lebih tinggi, yaitu sekitar 1.151 hingga 1.152.

Secara spesifik, konfigurasi dengan learning rate = 0.0005 yang dilatih
selama 100 epochs terbukti menjadi titik optimal, mencatatkan nilai validation loss
terendah sebesar 1.1472. Menariknya, ketika proses pelatihan diperpanjang hingga
150 epochs, terjadi fenomena peningkatan validation loss menjadi sekitar 1.152—
1.153. Peningkatan ini, meskipun kecil, merupakan indikasi adanya gejala

overfitting ringan. Hal ini dikonfirmasi oleh tren training loss yang terus menurun
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(mencapai minimum =~1.1411), menunjukkan bahwa model terus menghafal data

pelatihan namun mulai kehilangan kemampuan untuk menggeneralisasi secara

efektif pada data validasi yang belum pernah dilihat sebelumnya.
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Gambar 4.7 Grafik performa model CAE tiga /ayer dengan konfigurasi (a) 100
Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100
Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150
Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50
Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50
Epoch dan Learning Rate 0.01.

Adapun learning rate 0.01 menunjukkan hasil yang paling buruk. Bahkan

setelah 150 epochs, model ini gagal menunjukkan perbaikan signifikan dan

mencatat validation loss tertinggi (=1.1524). Kinerja yang buruk ini menyiratkan

bahwa nilai 0.01 terlalu besar, menyebabkan model gagal melakukan konvergensi

yang efektif atau bahkan terperangkap dalam local minima yang suboptimal dan

tinggi di permukaan energi (fungsi loss). Oleh karena itu, untuk arsitektur CVAE

69




ini, learning rate yang rendah sangat krusial untuk memastikan proses

pembelajaran yang akurat dan terhindar dari perilaku yang tidak stabil.

Train vs Validation Loss per Skenario
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Gambar 4.8 Grafik performa model CVAE satu /ayer dengan konfigurasi (a) 100
Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100
Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150
Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50
Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50
Epoch dan Learning Rate 0.01.

Sedangkan pada dua /ayer, menguatkan temuan yang didapat dari model
satu layer, yakni adanya ketergantungan kritis pada pemilihan learning rate.
Kinerja terbaik dari model dua layer ini tercapai pada learning rate 0.0005. Pada
konfigurasi ini, validation loss mencapai nilai terendah sekitar 1.1475 setelah 100
epochs, menandakan bahwa model telah mencapai konvergensi yang optimal.
Peningkatan jumlah epochs menjadi 150 ternyata tidak menghasilkan perbaikan

kinerja yang signifikan. Sebaliknya, hal ini justru memicu gejala overfitting ringan,
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yang terlihat dari sedikit kenaikan pada final validation loss meskipun minimum
training loss menunjukkan penurunan yang lebih substansial. Ini menggarisbawahi

pentingnya early stopping untuk mencegah model menghafal data pelatihan.

Secara garis besar, model CVAE dua /ayer menunjukkan kinerja yang
sedikit lebih unggul dibandingkan model satu /ayer. Hal ini terlihat dari minimum
validation loss yang sedikit lebih rendah, berkisar antara 1.1481-1.1482. Konsisten
dengan temuan sebelumnya, learning rate yang rendah (0.0005 dan 0.001) secara
konsisten menghasilkan performa terbaik. Sebaliknya, penggunaan [learning
rate=0.01 kembali terbukti menjadi penghalang utama bagi proses pelatihan. Nilai
yang terlalu tinggi ini menyebabkan model gagal berkonvergensi secara efektif,
dengan validation loss yang tetap stagnan pada level tinggi di sekitar 1.1524. Hasil

ini menegaskan bahwa, meskipun penambahan layer pada model dua layer
Train vs Validation Loss per Skenario
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Gambar 4.9 Grafik performa model CVAE dua layer dengan konfigurasi (a) 100
Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100
Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150
Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50
Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (1) 50
Epoch dan Learning Rate 0.01.

71



memberikan kapasitas representasional tambahan yang sedikit meningkatkan
kemampuan generalisasi, model tersebut tetap sangat sensitif terhadap parameter

learning rate dan rentan terhadap overfitting jika dilatih terlalu lama.

Terakhir pada tiga layer, tren perilaku model yang rentan terhadap
overfitting semakin jelas terlihat. Meskipun peningkatan kapasitas model ini
memungkinkan minimum validation loss mencapai nilai yang sangat rendah—
berkisar antara 1.1483 hingga 1.1484, yang setara dengan kinerja model dua
layer—validation loss akhir setelah pelatihan yang diperpanjang justru cenderung
lebih tinggi. Gejala overfitting ini menjadi lebih nyata, terutama ketika dilatih
menggunakan jumlah epochs yang lebih banyak dan learning rate yang kecil.
Learning rate yang kecil memungkinkan model untuk menyesuaikan bobotnya
secara fine-tuning, namun ketika dikombinasikan dengan kedalaman lapisan yang
lebih besar, hal ini meningkatkan risiko penghafalan data pelatihan secara

berlebihan.

Kinerja terbaik dari model tiga layer ini dicapai pada learning rate 0.0005,
di mana validation loss terendah tercatat pada nilai 1.1470 setelah 100 epochs. Nilai
ini merupakan validation loss terendah di antara semua konfigurasi lapisan yang
diuji (satu, dua, dan tiga layer), mengindikasikan bahwa model tiga layer memiliki
kapasitas representasional tertinggi untuk belajar fitur-fitur yang kompleks.
Namun, pencapaian loss minimum yang sangat rendah ini disertai dengan
peringatan: struktur tiga /ayer menuntut pengawasan hyperparameter yang lebih
ketat. Karena kerentanan yang lebih tinggi terhadap overfitting, strategi seperti
early stopping menjadi sangat krusial untuk mencegah degradasi kinerja
generalisasi pada data yang tidak terlihat, yang mana ditunjukkan dengan kenaikan

validation loss pada akhir pelatihan.

Seperti pola yang sudah terlihat pada model-model sebelumnya, learning
rate 0.001 juga menunjukkan konvergensi yang baik dengan validation loss sedikit
lebih tinggi (sekitar 1.1479). Namun, learning rate 0.01 kembali gagal berfungsi
secara efektif, menyebabkan validation loss tetap tinggi dan tidak stabil (~1.1522).
Penambahan epochs hingga 150 pada learning rate kecil juga tidak memberikan

keuntungan signifikan dan justru menunjukkan tanda-tanda overfitting, di mana
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final training loss turun drastis (~1.1412) namun final validation loss malah naik
(~1.153). Ini menunjukkan bahwa arsitektur tiga /ayer terlalu kompleks sehingga

model mulai "menghafal" data pelatihan, yang berdampak buruk pada performa
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Gambar 4.10 Grafik performa model CVAE tiga /layer dengan konfigurasi (a) 100
Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100
Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150
Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50
Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (1) 50
Epoch dan Learning Rate 0.01.

Secara keseluruhan, hasil eksperimen pada CVAE menunjukkan pola yang
konsisten di semua jumlah /ayer (satu, dua, dan tiga). Berbeda dengan CAE, variasi
learning rate dan peningkatan epochs tidak secara signifikan memperbaiki
validation loss, yang cenderung stagnan pada nilai tinggi di sekitar 1.15. Meskipun
training loss menunjukkan sedikit penurunan, validation loss yang tidak bergeming

mengindikasikan bahwa model CVAE dengan konfigurasi yang diuji kesulitan

73



dalam mempelajari representasi yang efektif untuk generalisasi data, atau mungkin
terjebak dalam Jlocal minima. Penambahan kedalaman lapisan juga tidak

memberikan kontribusi positif yang signifikan terhadap kinerja validasi.

4.3 Evaluasi Model
Setelah pelatihan model YOLO, CAE dan CVAE selesai, setiap model akan
dievaluasi dengan menggunakan data pengujian untuk mengukur kinerjanya sesuai

dengan tujuan perancangannya masing-masing.

4.3.1 Evaluasi Model YOLO

Model YOLO akan diuji menggunakan data pengujian (10%) yang
sebelumnya sudah dipisahkan dan belum pernah dilihat oleh model. Model
dievaluasi menggunakan tiga metrik yakni, precision, recall dan F1 Score guna
melihat seberapa baik model dalam mendeteksi objek pohon kelapa sawit dalam

sebuah citra.

P

Gambar 4.11 Gambar data pengujian YOLO (10%)

Pada 100 epochs, model dengan pretrain mendapatkan nilai precision, recall,
dan F1 score yang sangat tinggi diatas 0.98. Hal ini menunjukkan kemampuan
deteksi yang akurat, dengan kesalahan prediksi yang sangat minim. Sementara itu,
model tanpa pretrain mendapat nilai F1 score pada data uji hanya 0.59, dengan
precision dan recall yang relatif rendah, menunjukkan bahwa model sering salah

mendeteksi objek atau melewatkan objek sebenarnya.
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Table 4.4 Hasil pengujian model YOLO pada 100 epohcs

Pretrain  Epochs Train Validation Test
P R Fls P R Fls P R Fls
Yes 100 0.9777 0.9640 0.9078 0.9950 0.9740 0.9844 0.9870 0.9912 0.9891
No 0.4624 0.6293 0.5331 0.3800 0.5588 0.4524 0.5233 0.6836 _0.5936

Kemudian dengan bertambahnya jumlah epoch, model tanpa pretrain
berhasil mencapai F1 Score sebesar 0.9866 pada data pengujian, mendekati F1
Score model pretrain yang dilatih pada 1000 epochs (0.9885) maupun 100 epochs
(0.9891). Namun demikian, peningkatan jumlah epochs hingga 10 kali lipat pada
model tanpa pretrain menunjukkan kebutuhan waktu pelatihan yang jauh lebih
lama dan sumber daya komputasi yang lebih besar. Sementara itu, model pretrain
hanya mengalami peningkatan performa yang relatif kecil saat epoch dinaikkan 10
kali lipat, mengindikasikan bahwa bobot pretrain sudah sangat optimal bahkan

pada jumlah epoch yang lebih kecil.

Table 4.5 Perbandingan hasil pengujian model YOLO
pada 100 dan 1000 epochs

Pretrain  Epochs Train Validation Test
P R Fls P R Fls P R Fls
Yes 100 0.9777 0.9640 09078 0.9950 0.9740 0.9844 0.9870 0.9912 0.9891
No 0.4624 0.6293 0.5331 0.3800 0.5588 0.4524 0.5233 0.6856 0.5936
Yes 1000 09768 0.9827 09798 0.9947 0.9926 0.9937 0.9858 0.9913 0.9885
No 0.9692 0.9870 0.9781 0.9874 0.9853 0.9864 0.9820 0.9913 0.9866

Dengan demikian, dapat disimpulkan bahwa penerapan pretrained weight
pada YOLO sangat direkomendasikan karena mampu meningkatkan efisiensi
pelatihan, mengurangi risiko underfitting, bahkan dengan data terbatas mampu

mencapai performa yang tinggi dengan jumlah epoch yang lebih relatif sedikit.

4.3.2 Evaluasi Model Convolutional Autoencoder (CAE)

Model akan diuji pada 41 citra yang diambil satu bulan sebelum pohon
kelapa sawit tumbang. Pengujian ini bertujuan melihat kemampuan model dalam
mendeteksi anomali pada citra sakit. Evaluasi dilakukan menggunakan metrik

MAE, MSE, dan SSIM. Nilai MAE dan MSE yang tinggi akan menunjukkan
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kesulitan model dalam merekonstruksi citra sakit, sebab model hanya dilatih
dengan citra sehat. Sementara itu, nilai SSIM yang rendah akan mengonfirmasi
adanya perbedaan signifikan antara citra asli dan citra hasil rekonstruksi, yang

menjadi indikator keberhasilan deteksi anomali.

Pada CAE satu layer, model dengan [learning rate 0.01 konsisten
menghasilkan nilai MAE dan MSE yang tinggi (rata-rata MAE 0.0159-0.0291) dan
SSIM yang rendah (rata-rata 0.928-0.969), yang mengindikasikan model kesulitan
merekonstruksi citra yang tidak sesuai dengan pola citra sehat. Sementara itu,
model dengan learning rate 0.001 dan 0.0005 menghasilkan nilai MAE dan MSE
yang jauh lebih rendah dan SSIM yang sangat tinggi (di atas 0.993) yang

mengindikasikan model merekonstruksi citra dengan sangat baik.

Table 4.6 Hasil metrik CAE satu layer

. N MAE MSE SSIM
E IR MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN
1.0.E-02 0.029100% 0.0508933 0.0190448 0.0014968 0.0039860 0.0006137 09280846 0.9626345 0.8628805,
50 1.0.E-03 0.0053026 0.0097783 0.0034054 0.0000541 0.0001780 0.0000202 0.9946886 0.9964128 0.9887602
5.0.E-04 0.0064393 0.0167661 0.0040190 0.0000864 0.0004897 0.0000277 0.9931487 0.9955962 0.9776033
1.0.E-02 0.0159856 0.0374636 0.0100322 0.0005767 0.0023411 0.0001679 0.9697638 0.9869571 0.9249511
100 1.0.E-03 0.0059284 0.0162965 0.0035723 0.0000814 0.0005377 0.0000227 0.9938686 0.9965344 0.9775697
5.0.E-04 0.0050853 0.0109028 0.0033226 0.0000521 0.0002280 0.0000198 0.9948239 0.9965324 0.9821800
1.0.E-02 0.0237413 0.0436353 0.0136480 0.0011587 0.0033291 0.0003303 0.9482757 0.9742580 0.8713512
150 1.0.E-03 0.0064293 0.0230489 0.0036246 0.0001123 0.0009735 0.0000231 0.9935313 0.9966439 0.9736260
5.0.E-04 0.0053652 0.0143994 0.0033661 0.0000615 0.0003620 0.0000194 0.9951870 0.9969813 0.9832013
Mean 0.0114864 0.0247983 0.0071150 0.0004089 0.0013806 0.0001383 0.9790413 0.9891723 0.9491248

Max 0.0291008 0.0508933 0.0190448 0.0014968 0.0039860 0.0006137 0.9951870 0.9969813 0.9887602
Min 0.0050853 0.0097783 0.0033226_0.0000521 0.0001780 0.0000194 0.9280846 0.9626345 0.8628805
“Epochs

b ]
Learning Rate

Hal ini menunjukkan bahwa model dengan learning rate tinggi lebih efektif
dalam mendeteksi anomali pada citra sakit dibandingkan learning rate rendah.
Meskipun demikian, rata-rata nilai SSIM yang tetap sangat tinggi untuk citra sakit
(sekitar 0.98) menunjukkan bahwa dengan satu /ayer, model masih cenderung
merekonstruksi citra sakit dengan terlalu baik, sehingga kemampuan dalam
mendeteksi anomali terbatas. Dengan kata lain, dengan hanya satu /ayer, model
belum mampu membedakan secara signifikan antara citra sehat dan sakit. Namun,
dari keseluruhan sembilan model satu layer yang diuji, model dengan 50 epochs

dan learning rate 0.01 menunjukkan performa unggul dalam mendeteksi anomali.
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Di sisi lain, pada dua layer, hasil yang diperoleh kurang lebih sama dengan
pada satu layer. Model dengan learning rate yang tinggi (0.01) menunjukkan
performa yang baik, di mana nilai MAE dan MSE rata-rata tinggi (0.1064998 dan
0.0180233) pada 150 epochs. Sebaliknya, nilai SSIM rendah (0.2654537),
menunjukkan ketidakmampuannya untuk merekonstruksi citra anomali yang
menyimpang dari pola normal. Sementara itu, model dengan learning rate yang
lebih rendah (0.0005 dan 0.001) secara konsisten menghasilkan performa yang
buruk dengan nilai MAE dan MSE rata-rata jauh lebih rendah, sementara SSIM

rata-rata meningkat signifikan hingga di atas 0.95.

Table 4.7 Hasil metrik CAE dua layer

. N MAE MSE SSIM

E° IR MEAN _ MAX MIN _ MEAN _ MAX MIN __ MEAN __ MAX MIN
1.0.E-02 0.0368840 0.0606399 0.0220426 0.0023627 0.0057163 0.0008997 0.8487958 0.0238936 0.7532483

50 1.0.E-03 0.0173975 0.0315913 0.0094228 0.0005764 0.0018948 0.0001612 0.9437362 0.9746487 0.8968823
5.0.E-04 0.0181260 0.0387363 0.0102792 0.0006559 0.0029929 0.0001929 0.9433996 09715394 0.9033336
1.0.E-02 0.0401871 0.0683397 0.0248747 0.0027846 0.0071091 0.0010365 0.8404465 0.9148577 0.7436457

100 1.0.E-03 0.0161503 0.0276971 0.0089204 0.0004896 0.0013015 0.0001409 0.9524089 09787521 0.9163683
5.0.E-04 0.0150350 0.0238504 0.0083971 0.0004131 0.0009609 0.0001296 0.9547492 09782998 0.9265554
1.0.E-02 0.1064998 0.1883111 0.0706209 0.0180233 0.0476277 0.0080314 0.2654537 0.4236528 0.1463703

150 1.0.E-D3 0.0161065 0.0367035 0.0080597 0.0005546 0.0024037 0.0001212 0.9550238 0.9805025 0.9209028
5.0.E-04 0.0160282 0.0352326 0.0091700 0.0005136 0.0023404 0.0001483 0.9545258 09778696 0.9106013
Mean  0.0313794 0.0567893 0.0191875 0.0029304 0.0080386 0.0012068 0.8509488 0.9026685 0.7908811

Max 0.1064998 0.1883111 0.0706209 0.0180233 0.0476277 0.0080314 0.9550238 0.9805025 0.9265554
Min 0.0150350 0.0238504 0.0080597 0.0004131 0.0009609 0.0001212 0.2654537 0.4236528 0.1463703
“Epochs
° Learning Rate

Ini menunjukkan bahwa model dengan learning rate tinggi lebih efektif
dalam mendeteksi pola anomali pada citra sakit. Secara keseluruhan, model CAE
dua /ayer menunjukkan perkembangan yang sigfinikan dalam mendeteksi anomali
bila dibandingkan dengan satu /ayer. Khususnya pada 150 epochs dengan learning
rate 0.01 dengan nilai SSIM yang rendah (sekitar 0.2654537) yang menunjukkan
bahwa ketidakmampuan model untuk merekonstruksi citra anomali yang
menyimpang dari pola normal. Meskipun demikian, rata-rata nilai SSIM yang
diperoleh masih relatif tinggi (sektiar 0.902) untuk citra sakit menunjukkan bahwa

model tiga layer ini masih merekonstruksi citra sakit dengan cukup baik,

Terakhir, pada tiga layer, sama seperti layer-layer sebelumnya, model
dengan learning rate yang tinggi (0.01) menunjukkan kinerja yang sangat baik

dalam mendeteksi anomali. Dengan nilai rata-rata MAE dan MSE pada 50 epochs
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mencapai 0.537 dan 0.658, sementara SSIM anjlok drastis hingga 0.0001174. Hasil
ini mengindikasikan bahwa model gagal total dalam merekonstruksi citra anomali
yang menyimpang dari pola normal sesuai dengan harapan. Akan tetapi, performa
buruk ini secara langsung disebabkan oleh stagnasi validation loss selama pelatihan
(Gambar 4.7 (i)), yang menunjukkan bahwa model tidak belajar secara efektif

sehingga tidak dapat diandalkan.

Table 4.8 Hasil metrik CAE tiga layer

MAE MSE SSIM
MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

E* LR®
1.0.E-02
50 1.0.E-03 0.0354195 0.0544404 0.0219398 0.0021722 0.0046068 0.0008537 0.7541202 0.8711751 0.6666439
5.0.E-04 0.0368844 0.0581810 0.0240467 0.0023766 0.0053795 0.0010347 0.7393722 0.8549247 0.6531300
1.0.E-02 0.1062139 0.1882612 0.0702753 0.0179363 0.0475009 0.0079693 0.2654977 0.4237297 0.1464336
100 1.0.E-03 0.0332566 0.0530898 0.0205093 0.0019104 0.0042883 0.0007535 0.7873200 0.8829123 0.7024419
5.0.E-04 0.0336915 0.0513413 0.0212084 0.0019623 0.0041900 0.0008139 0.7716227 0.8758828 0.6875070
1.0.E-02 0.0648296 0.1034472 0.0430323 0.0069161 0.0155034 0.0030778 0.4738924 0.6715034 0.3486413
150 1.0.E-03 0.0316384 0.0514826 0.0189021 0.0017545 0.0041015 0.0006716 0.8025794 0.8909420 0.7369564
5.0.E-04 0.0317475 0.0494779 0.0196195 0.0017504 0.0038490 0.0006923 0.7949409 0.8840991 0.7167462
Mean  0.1012711 0.1408856 0.0766516 0.0382206 0.0608259 0.0266952 0.5988292 0.7061526 0.5176182

Max 0.5377582 0.6582488 0.4503308 0.3072069 0.4580136 0.2243897 0.8025794 0.8909420 0.7369564
Min 0.0316384 0.0494779 0.0189021 0.0017504 0.0038490 0.0006716 0.0001174 0.0002042 0.0000638
“Epochs

b .
Learning Rate

Oleh karena itu, dipilih model alternatif yang menunjukkan performa
terbaik berikutnya dalam mendeteksi anomali. Model dengan 100 epochs pada
learning rate yang sama dipilih karena memberikan keseimbangan optimal dengan
nilai MAE rata-rata 0.106, MSE rata-rata 0.018, dan SSIM rata-rata 0.265. Angka-
angka ini tetap menunjukkan tingkat error rekonstruksu yang tinggi dan kemiripan

struktural yang rendah, yang merupakan indikator kuat untuk deteksi anomali.

Analisis menunjukkan bahwa learning rate tinggi secara konsisten
menghasilkan performa terbaik untuk deteksi anomali. Menariknya, rata-rata nilai
SSIM secara keseluruhan menurun secara signifikan menjadi 0.59, jauh dari rata-
rata 0.85 yang tercatat pada model dua /ayer. Penurunan ini didorong oleh model-
model dengan learning rate 0.01, yang memiliki nilai MAE rata-rata melonjak
hingga 0.101 dan MSE rata-rata 0.038, sementara rata-rata SSIM-nya anjlok hingga
0.59. Hal ini menunjukkan bahwa dengan tiga /ayer, CAE akhirnya mampu untuk

mengidentifikasi anomali pada citra sakit.
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Gambar 4.12 Grafik Perbandingan Nilai MAE, MSE, dan SSIM CAE

Berdasarkan hasil dari ketiga /ayer pada citra pohon sawit sakit satu bulan
sebelum tumbang, dapat disimpulkan bahwa model dengan dua /ayer (150 epochs,
learning rate 0.01) merupakan model yang paling efektif dalam mendeteksi
anomali. Hal ini terlihat dari nilai MAE (0.1065) dan MSE (0.0180) yang jauh lebih
tinggi dibandingkan model lainnya, serta nilai SSIM yang sangat rendah
(0.2654537).

Nilai MAE dan MSE yang tinggi ini menunjukkan bahwa model kesulitan
besar dalam merekonstruksi citra yang terinfeksi, menandakan perbedaan
signifikan antara citra asli dan citra yang direkonstruksi. Sebaliknya, model satu
layer (50 epochs, learning rate 0.01) dan tiga layer (100 epochs, learning rate 0.01)
menunjukkan performa yang sangat berbeda. Model satu layer memiliki nilai MAE
dan MSE yang sangat rendah, serta SSIM yang sangat tinggi (sekitar 0.9281).
Kondisi ini mengindikasikan bahwa model tersebut merekonstruksi citra dengan
sangat baik, sehingga kurang efektif dalam mendeteksi anomali karena tidak

mampu membedakan citra sehat dan sakit secara signifikan.
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4.3.3 Evaluasi Model Convolutional Variational Autoencoder (CVAE)

Sama seperti CAE, CVAE akan diuji menggunakan 41 citra satu bulan
sebelum tumbang pada data timeseries yang telah disiapkan sebelumnya. Model
akan dievaluasi menggunakan tiga metrik yang sama yakni, MAE, MSE dan SSIM
guna melihat seberapa baik model dapat mengidentifikasi anomali pada pohon

kelapa sawit sakit sebelum pohon tersebut tumbang.

Hasil pengujian pada model CVAE satu layer menunjukkan bahwa model
ini dengan sangat efektif dalam mendeteksi anomali pada citra pohon sawit sakit.
Secara umum, model konsisten menghasilkan nilai MAE dan MSE yang tinggi
(rata-rata MAE 0.1038; rata-rata MSE 0.0173), yang mengindikasikan bahwa
model kesulitan merekonstruksi citra yang tidak sesuai dengan pola normal.
Terlihat juga bahwa SSIM rata-rata pada seluruh pengujian berada pada angka yang
sangat rendah (0.2288), jauh dari nilai 1.

Table 4.9 Hasil metrik CVAE satu layer

. b MAE MSE SSIM
E LR MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN

1.0.E02 0.1074842 0.1914445 0.0703306 0.0184337 0.0494772 0.0079601 0.2653537 0.4236035 0.1462796

50 1.0.E-03 0.0994282 0.1575642 0.0661049 0.0158465 0.0364041 0.0071531 0.2289199 0.3550258 0.1132856

S.0.E04 0.1002738 0.1613902 0.0693336 0.0162404 0.0388016 0.0078244 0.2263245 0.3253515 0.1117504

1.0.E-02 0.1070666 0.1905993 0.0702375 0.0182764 0.0489064 0.0079524 0.2654072 0.4236671 0.1463388

100 1.0.E03 0.1000467 0.1532561 0.0671255 0.0160090 0.0353326 0.0073812 0.2138735 0.3129877 0.0995519

5.0.E-04 0.1038975 0.1669004 0.0698052 0.0175081 0.0414243 0.0079254 0.2012646 0.2851507 0.0975272

1.0.E-02 0.1069838 0.1945314 0.0692525 0.0183778 0.0512632 0.0077089 0.2665539 0.4278922 0.1483714

150 1.0.E-03 0.1049213 0.1532674 0.0724759 0.0178502 0.0361477 0.0085587 0.1990285 0.2816541 0.0935445

5.0.E-04 0.1044065 0.1577373 0.0746399 0.0177221 0.0380221 0.0089699 0.1933260 0.2843523 0.0852789

Mean 0.1038343 0.1696323 0.0699451 0.0173627 0.0417532 0.0079371 0.2288947 0.3466316 0.1157698

Max 0.1074842 0.1945314 0.0746399 0.0184337 0.0512632 0.0089699 0.2665539 0.4278922 0.1483714
Min 0.0994282 0.1532561 0.0661049 0.0158465 0.0353326 0.0071531 0.1933260 0.2816541 0.0852789
d
Epochs

M .
Learning Rate

Analisis lebih mendalam menunjukkan bahwa jumlah epochs dan tingkat
learning rate tidak memberikan dampak sebesar pada model CAE. Meskipun
terdapat sedikit perbedaan, seluruh konfigurasi menunjukkan nilai MAE dan MSE
yang tinggi dan SSIM yang rendah. Dengan nilai rata-rata MAE (0.1074) dan MSE
(0.0184) tertinggi, model dengan 50 epochs dan learning rate 0.01 menunjukkan
tingkat reconstruction error yang paling ekstrem serta salah satu nilai rata-rata
SSIM terendah (0.2653). Hal ini mengindikasikan bahwa arsitektur CVAE

memiliki kapasitas bawaan yang kuat untuk membedakan anomali, bahkan dengan
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konfigurasi yang paling sederhana (satu layer, epochs sedikit, dan learning rate
tinggi).

Sementara itu, bila jumlah layer ditambahkan, data pengujian menunjukkan
kinerja yang sama efektifnya seperti satu /ayer dalam mendeteksi anomali. Model
ini secara konsisten menghasilkan nilai MAE dan MSE yang tinggi,
mengindikasikan ketidakmampuannya untuk merekonstruksi citra anomali yang
menyimpang dari pola normal. Mirip dengan CVAE satu layer, model CVAE dua
layer ini juga tidak terlalu sensitif terhadap jumlah epochs dan learning rate
dibandingkan dengan model CAE. Hasilnya, seluruh konfigurasi model CVAE dua
layer menunjukkan pola yang sama: nilai MAE dan MSE yang tinggi sejalan
dengan nilai SSIM yang rendah, mengonfirmasi kemampuannya untuk mendeteksi
anomali. Akan tetapi, bila diteliti lebih lanjut, rata-rata nilai MAE (0.10333) dan
MSE (0.0172) sedikit menurun bila dibandingkan rata-rata nilai MAE (0.10383)
dan MSE (0.0173) darit CVAE satu layer. Di antara semua konfigurasi tersebut,
model dengan 50 epochs dan learning rate 0.01 terbukti menjadi yang paling
efektif.

Table 4.10 Hasil metrik CVAE dua layer

. N MAE MSE SSIM
E° IR MEAN __ MAX MIN ___ MEAN __ MAX MIN __ MEAN ___ MAX MIN

1.0.E-02 0.1078510 0.1929928 0.0703332 0.0185969 0.0501858 0.0079837 0.2653363 04236583 0.1462958

50 1.0.E-03 0.1003229 0.1585354 0.0711501 0.0162984 0.0377217 0.0081676 0.2135366 0.3309862 0.1047667

5.0.E-04 0.0992959 0.1566563 0.0692126 0.0158965 0.0354711 0.0076943 02207192 03363079 0.1276968

1.0.E-02 0.1073630 0.1954307 0.0694064 0.0185340 0.0516901 0.0077708 0.2656059 04257325 0.1481489

100 1.0.E-03 0.1003623 0.1585258 0.0679566 0.0162211 0.0363438 0.0075075 0.2116430 03253886 0.0847475

5.0.E-04 0.1032886 0.1623113 0.0722683 0.0172550 0.0390203 0.0083528 0.2015938 03083330 0.0966824

1.OE 02 0.1065022 0.1931994 0.0691029 0.0181800 0.0504058 0.0076959 0.2667841 04279463 0.1462277

150 1.0.E.03 0.1018437 0.1610080 0.0705368 0.0167210 0.0385086 0.0080934 02023208 03059188 0.0960097

S.0E04 01031854 0.1647636 0.0692033 0.0172547 0.0413527 0.0079339 0.1958483 0.3022754 0.0720380

Mean  [JJ0N10333500 0.1714937 0.0699078 JOOIIBLTS] 0.0423000 0.0079111 02270431 0.3540608 0.1136237

Max 0.1078510 0.1954307 0.0722683 0.0185969 0.0516901 0.0083528 0.2667841 0.4279463 0.1481489
Min 0.0992959 0.1566563 0.0679566 0.0158965 0.0354711 0.0075075 0.1958483 0.3022754 0.0720380
E:3
Epochs

b .
Learning Rate

Sementara itu, dengan tiga layer, model menunjukkan kinerja yang sama
efektifnya dalam mendeteksi anomali. Model ini secara konsisten menghasilkan
nilai MAE yang tinggi (rata-rata 0.10323) dan MSE yang juga tinggi (rata-rata
0.0172), mengindikasikan bahwa model kesulitan merekonstruksi citra yang

menyimpang dari pola normal (citra pohon sawit sehat). Namun, bila diteliti lebih
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lanjut, performa model tiga /ayer sedikit lebih mirip dengan model dua layer. Hal
ini terlihat dari rata-rata nilai MAE (0.10302) yang sedikit menurun bila
dibandingkan dengan satu layer (0.10383) dan nilai rata-rata MSE (0.0172) yang
hampir sama dengan dua layer. Ini menunjukkan bahwa meskipun performa
deteksinya tetap baik, ada sedikit penurunan sensitivitas seiring dengan
penambahan layer dan kompleksitas model. Terlepas dari konfigurasi yang diuji,
model dengan 100 epochs dan learning rate 0.01 menunjukkan performa deteksi

anomali yang paling optimal pada CVAE tiga layer.

Table 4.11 Hasil metrik CVAE tiga layer

a b MAE MSE SSIM

E LR MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN
1.0.E-02 0.1051494 0.1893160 0.0691998 0.0176486¢ 0.0483606 0.0077090 0.2662871 0.4303199 0.1473309

50 1.0.E-03 0.0994217 0.1540661 0.0705501 0.0159593 0.0361837 0.0078722 0.2115616 0.2983007 0.1195843
5.0.E-04 0.1018405 0.1740922 0.0715895 0.0170964 0.0463780 0.0084254 0.2106356 0.3392256 0.0848429
1.0.E-02 0.1078605 0.1931268 0.0701838 0.0186086 0.0503117 0.0079458 0.2653313 0.4236479 0.1462884

100 1.0.E-03 0.1014233 0.1559846 0.0711551 0.0167573 0.0374126 0.0082201 0.2012249 0.2868941 0.1052548
5.0.E-04 0.1021293 0.1678033 0.0684070 0.0171371 0.0435580 0.0074340 0.2010325 0.3003490 0.0984139
1.0.E-02 0.1073019 0.1954038 0.0694053 0.0185099 0.0516163 0.0077782 0.2663463 0.4289261 0.1471891

150 1.0.E-03 0.1007231 0.1553570 0.0727348 0.0164528 0.0371674 0.0083783 0.1955662 0.2828159 0.0883089
5.0.E-04 0.1013811 0.1586819 0.0722715 0.0166894 0.0385223 0.0083783 0.2010946 0.2900859 0.0828614
Mean 0.1030257 0.1715369 0.0706108 [ 0.0172066 0.0432790 0.0080157 0.2243422 0.3422850 0.1133416

Max 0.1078605 0.1954038 0.0727348 0.0186086 0.0516163 0.0084254 0.2663463 0.4303199 0.1473309
Min 0.0994217 0.1540661 0.0684070 0.0159593 0.0361837 0.0074340 0.1955662 0.2828159 0.0828614
*Epochs

b .
Learning Rate

Model CVAE secara konsisten menghasilkan nilai MAE dan MSE yang
tinggi (> 0.107) serta SSIM yang rendah (+0.265). Ini menegaskan bahwa arsitektur
CVAE memiliki kemampuan bawaan yang kuat untuk membedakan anomali. Dari
hasil pengujian ketiga layer tersebut, dapat disimpulkan bahwa model CVAE,
terlepas dari jumlah layer-nya, sangat efektif dalam mendeteksi anomali. Berbeda
dengan model CAE, arsitektur CVAE secara inheren mampu membedakan citra

sehat dari citra sakit.

Secara keseluruhan, model CVAE adalah pilihan yang jauh lebih optimal
untuk tujuan deteksi anomali dibandingkan model CAE. Perbedaan
fundamentalnya terletak pada cara kedua model merespons peningkatan
kompleksitas. Model CAE menunjukkan bahwa kemampuannya untuk mendeteksi
anomali meningkat secara bertahap seiring dengan penambahan layer,

mengindikasikan bahwa model memerlukan arsitektur yang lebih dalam untuk
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membedakan anomali. Sebaliknya, model CVAE sudah mampu beroperasi secara
optimal bahkan dengan hanya satu /ayer. Hasil pengujian menunjukkan bahwa
penambahan /ayer pada CVAE tidak memberikan peningkatan melainkan sedikit
menurunkan performa deteksi. Oleh karena itu, CVAE dengan tiga layer

merupakan model yang paling optimal dalam mendeteksi anomali pada citra sakit.

MAE MSE
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Gambar 4.13 Grafik perbandingan Nilai MAE, MSE, dan SSIM CVAE

4.4 Perbandingan Hasil Rekonstruksi Citra

Pada citra asli yang menunjukkan kondisi pohon sawit sechat, model CAE
menunjukkan kinerja rekonstruksi yang kurang efektif. Citra yang direkonstruksi
terlihat sangat berbeda dari aslinya, dengan detail dan struktur yang hampir tidak
terlihat. Hal ini mengindikasikan bahwa model CAE belum berhasil mempelajari
dan mereplikasi pola visual dari pohon sehat secara akurat. Sebaliknya, model
CVAE memperlihatkan hasil yang lebih baik. Meskipun citra rekonstruksinya tidak

identik dengan aslinya, ia mampu mereplikasi sebagian kecil dari struktur citra asli.
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Secara keseluruhan, dalam merekonstruksi citra sehat, model CVAE terbukti lebih

unggul dibandingkan dengan model CAE (Gambar 4.14).

(b) (©)

Gambar 4. 14 Citra Sehat (a), Citra Rekonstruksi CAE (b)
dan Citra Rekonstruksi CVAE (c)

Ketika dihadapkan pada citra asli yang menunjukkan pohon sawit sakit
(anomali), kedua model (baik CAE maupun CVAE) menunjukkan hasil yang
serupa: detail dan struktur rekonstruksi citra tersebut hampir tidak terlihat (Gambar
4.15). Kinerja ini sebenarnya adalah indikator keberhasilan dalam konteks deteksi
anomali. Kondisi ini terjadi karena kedua model mengalami kesulitan dalam
merekonstruksi citra yang menyimpang dari pola normal yang telah mereka
pelajari. Ketidakmampuan untuk mereplikasi anomali tersebut menghasilkan
kesalahan rekonstruksi yang tinggi, yang menjadi sinyal utama untuk

mengidentifikasi adanya penyakit.

(b) (©)

Gambar 4. 15 Citra Sehat (a), Citra Rekonstruksi CAE (b)
dan Citra Rekonstruksi CVAE (¢)

4.5 Perbandingan Kinerja CAE dan CVAE
Setelah nilai metrik MAE, MSE dan SSIM diperoleh, hasil distribusi data

dari model terbaik kedua artitektur akan divisualisasikan menggunakan histogram
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untuk melihat distribusi data dari ketiga metrik tersebut. Dengan membandingkan
distribusi data pohon sawit sehat dengan pohon sawit sakit, analisis visual akan
dilakukan untuk mengidentifikasi perbedaan signifikan yang menunjukkan
keberhasilan model dalam mendeteksi anomali. Tingkat perbedaan ini juga akan

diukur secara kuantitatif menggunakan metrik JSD dan BD.

4.5.1 Satu bulan sebelum tumbang

Berdasarkan pengujian pada 41 citra yang diambil satu bulan sebelum
pohon tumbang, model dievaluasi kemampuannya dalam mendeteksi anomali.
Model yang efektif akan menunjukkan kesulitan dalam merekonstruksi citra sakit,
yang tercermin dari nilai MAE dan MSE yang tinggi dan SSIM yang rendah.
Berikut adalah grafik distribusi data metrik MSE, MAE, dan SSIM pada CAE yang
menunjukkan sensitivitas yang baik karena model berhasil membedakan antara

citra sehat dengan citra sakit (Gambar 4.16).

Gambar 4.16 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (¢) SSIM pada
model CAE satu bulan sebelum tumbang

Sementara itu, model CVAE menunjukkan karakteristik data yang sedikit

berbeda dalam mendeteksi anomali pada citra sakit (Gambar 4.17).
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Gambar 4.17 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (¢) SSIM pada
model CVAE satu bulan sebelum tumbang
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Berdasarkan distribusi data dari kedua arsitektur jarak antara citra sehat dan
citra sakit pada CAE lebih terlihat bila dibandingkan dengan CVAE. Distribusi data
pada CVAE terkhususnya MAE (Gambar 4.15 tengah) masih terlihat ada tumpang
tindih antara distribusi data citra sehat dan citra sakit. Hal ini menunjukkan bahwa
arsitektur CAE lebih unggul dari pada model CVAE. Kemudian pada analisis
metrik JSD dan BD, terlihat perbedaan kinerja yang signifikan antara arsitektur
CAE dan CVAE. Model CAE menunjukkan kemampuan terbaiknya dalam
memisahkan distribusi metrik MSE (JSD=0.238, BD=0.323) dan MAE
(JSD=0.103, BD=0.341), sedangkan metrik SSIM tidak menunjukkan perbedaan
distribusi sama sekali (JSD=0, BD=0.614), hal ini mengindikasikan bahwa CAE
tidak mampu membedakan citra sehat dan sakit berdasarkan kemiripan struktural.
Di sisi lain, CVAE menunjukkan performa yang lebih konsisten dan seimbang di
seluruh metrik. CVAE berhasil memisahkan distribusi metrik SSIM dengan nilai
JSD 0.042 dan BD 0.553, dan memiliki performa yang serupa untuk metrik MAE
(JSD=0.115, BD=0.495). Meskipun nilai JSD dan BD untuk MSE pada CVAE
lebih rendah dibandingkan CAE (JSD=0.224, BD=0.596).

CAl CVAE

: 0.5962814

o 05527005,
0.4953589
0.3225749-3407202 ),
02377528 v 0.2237808
0.1028327 . 0.1149934
1.1 0.041701
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SIM m MSE m MA mSSIM mMSE m MA

Gambar 4. 18 Perbandingan metrik JSD dan BD pada model CAE
dan model CVAE

Secara keseluruhan pada periode ini, CVAE terbukti lebih unggul karena
kemampuannya dalam memisahkan distribusi data pada metrik yang paling relevan

untuk deteksi anomali pada citra, yaitu SSIM.

4.5.2 Dua bulan sebelum tumbang
Pada periode dua bulan sebelum tumbang, pola infeksi Ganoderma masih
dapat terlihat dengan jelas. Model CAE menunjukkan sedikit penurunan kinerja

sementara model CVAE menunjukkan kinerja yang konsisten. Jarak distribusi
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metrik MAE, MSE, dan SSIM antara citra sehat dan sakit pada CAE masih berjarak,

menandakan model masih mampu dalam mengidentifikasi anomali (Gambar 4.19).

(2) (b) (©)

Gambar 4.19 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada
model CAE dua bulan sebelum tumbang

Namun jarak yang terlihat mengecil antara citra sehat dan sakit bila
dibandingkan pada periode satu bulan sebelum tumbang. Sementara itu, CVAE
konsisten dalam distribusi data antara citra sehat dan citra sakit, menegaskan

kemampuannya dalam mendeteksi anomali secara dini (Gambar 4.20).
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Gambar 4.20 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (¢) SSIM pada
model CVAE dua bulan sebelum tumbang
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Berdasarkan analisis JSD dan BD pada kedua model, terlihat bahwa CAE
menunjukkan performa yang lebih unggul dalam memisahkan distribusi metrik.
Dengan nilai JSD dan BD yang lebih tinggi untuk MSE (JSD=0.193, BD=0.864)
dan MAE (JSD=0.084, BD=0.758), model CAE lebih efektif dalam menciptakan
perbedaan yang signifikan antara data sehat dan anomali. Meskipun CVAE juga

mampu membedakan anomali, nilai JSD dan BD-nya yang lebih rendah pada

CAE CVAE
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Gambar 4.21 Perbandingan metrik JSD dan BD pada model CAE dan model
CVAE

87



metrik MAE dan MSE (JSD=0.049, BD=0.409) menunjukkan pemisahan distribusi
yang tidak setajam CAE. Menariknya, pada metrik SSIM, CVAE menunjukkan
nilai JSD nol, mengindikasikan bahwa distribusi SSIM untuk citra sehat dan sakit
hampir tidak dapat dibedakan, yang berlawanan dengan performa CAE
(JSD=0.135, BD=0.541).

Dengan demikian pada periode ini, CAE terbukti lebih andal dan efektif
dalam mendeteksi anomali karena kemampuannya yang lebih baik dalam

memisahkan distribusi metrik evaluasi.

4.5.3 Tiga bulan sebelum tumbang

Pada periode ini, kemampuan deteksi model CAE mulai menunjukkan
sedikit penurunan. Meskipun nilai MAE dan MSE masih relatif tinggi dan SSIM
rendah. Pada CAE jarak antara distribusi metrik citra sehat dan sakit pada histogram
sedikit menyempit dan tumpeng tindih bila dibandingkan bulan sebelumnya.

(Gambar 4.22)

o)

Gambar 4.22 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada
model CAE tiga bulan sebelum tumbang

Sebaliknya model CVAE menunjukkan penurunan kinerja deteksi, jarak
antara distribusi metrik citra sehat dan sakit pada histogram sebagian mengalami

tumpang tindih bila dibandingkan bulan sebelumnya (Gambar 4.23).
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Gambar 4.23 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (¢) SSIM pada
model CVAE tiga bulan sebelum tumbang
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Hal ini mengindikasikan bahwa kedua model masih dapat mendeteksi
anomali, tetapi pada model CVAE, tingkat kepastian sedikit berkurang karena
distribusi data citra sehat dan citra sakit mengalami tumpang tindih yang signifikan.
Sementara itu, berdasarkan hasil analisis metrik JSD dan BD, terlihat perbedaan
performa yang signifikan antara arsitektur CAE dan CVAE. Model CAE
menunjukkan kemampuan terbaiknya dalam memisahkan distribusi metrik SSIM
(JSD=0.092, BD=0.656) dan MSE (JSD=0.037, BD=0.394), sedangkan
performanya sedikit menurun pada metrik MAE (JSD=0.022, BD=0.420). Di sisi
lain, CVAE menunjukkan performa yang lebih konsisten di seluruh metrik, dengan
nilai JSD dan BD yang lebih tinggi untuk SSIM (JSD=0.103, BD=0.683) dan MAE
(JSD=0.092, BD=0.518) jika dibandingkan dengan CAE. Namun, CVAE
menunjukkan performa yang lebih lemah pada metrik MSE (JSD=0.096,
BD=0.244).
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Gambar 4. 24 Perbandingan metrik JSD dan BD pada model CAE dan model
CVAE

Secara keseluruhan pada periode ini, CVAE terbukti lebih unggul karena
kemampuannya yang seimbang dalam memisahkan distribusi metrik yang relevan

untuk deteksi anomali pada citra, terutama pada metrik SSIM.

4.5.4 Empat bulan sebelum tumbang
Masuk ke periode keempat, secara teori gejala penyakit pada tanaman
mungkin masih minim dan belum muncul secara kasat mata. Namun hasil kedua

model tetap menunjukkan perbedaan antara citra sehat dan sakit bahkan lebih baik
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dibandingkan pada periode ketiga. Pada CAE, distribusi metrik MAE dan MSE
antara kedua kelompok citra (sehat dan sakit) tetap konsisten memberikan kinerja

yang mampu memisahkan kedua kelompok.

a0
oo m Toes i o B ) a

Gambar 4.25 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada
model CAE empat bulan sebelum tumbang

Akan tetapi pada CVAE, distribusi yang sebelumnya tumpang tindih, kini
kembali meningkat, memisahkan kedua kelompok data. Ini menunjukkan bahwa
kedua model masih efektif dalam mendeteksi anomali empat bulan sebelum pohon

tumbang.
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Gambar 4.26 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada
model CVAE empat bulan sebelum tumbang

Berdasarkan hasil analisis metrik JSD dan BD, terlihat perbedaan performa
antara arsitektur CAE dan CVAE. Model CAE menunjukkan kemampuan yang
lebih baik dalam memisahkan distribusi metrik MSE (JSD=0.119, BD=0.466) dan
MAE (JSD=0.067, BD=0.605). Di sisi lain, CVAE menunjukkan performa yang
lebih unggul pada metrik MSE (JSD=0.187, BD=0.582), mengindikasikan
kemampuan yang lebih baik dalam membedakan anomali. Namun, CVAE
menunjukkan performa yang lebih lemah pada metrik MAE (JSD=0.044,
BD=0.448) dan SSIM (JSD=0.067, BD=0.732) jika dibandingkan dengan CAE.
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Gambar 4. 27 Perbandingan metrik JSD dan BD pada model CAE dan model
CVAE

Secara keseluruhan, CVAE terbukti lebih unggul karena kemampuannya
yang seimbang dalam memisahkan distribusi metrik yang relevan untuk deteksi

anomali pada citra, terutama pada metrik MSE.

4.5.5 Lima bulan sebelum tumbang

Masuk ke periode terakhir, secara teori gejala penyakit pada tanaman
seharusnya sulit untuk dideteksi. Namun hasil kedua model tetap menunjukkan
perbedaan antara citra sehat dan sakit. CAE tetap konsisten dalam memisahkan

distribusi metrik MAE dan MSE antara kedua kelompok citra (sehat dan sakit).

) (g)m B " £ [ (6‘)‘

Gambar 4.28 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada
model CAE lima bulan sebelum tumbang

Menariknya, CVAE mengalami peningkatan dengan jarak antara distribusi
metrik MAE dan MSE antara kedua kelompok citra (sehat dan sakit) semakin
melebar. Ini menunjukkan bahwa kedua model masih efektif dalam mendeteksi

anomali empat bulan sebelum pohon tumbang.
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Gambar 4.29 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (¢) SSIM pada
model CVAE lima bulan sebelum tumbang
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Pada analisis JSD dan BD, model CAE menunjukkan kemampuan yang
lebih unggul dalam memisahkan distribusi metrik, menjadikannya lebih efektif
untuk deteksi anomali. Model CAE memiliki nilai JSD dan BD tertinggi pada
metrik MAE (JSD=0.129, BD=0.741) dan MSE (JSD=0.093, BD=0.635). Ini
menunjukkan bahwa CAE berhasil menciptakan perbedaan yang signifikan antara
distribusi citra sehat dan sakit. Di sisi lain, CVAE menunjukkan performa yang
lebih seimbang, tetapi nilai JSD dan BD-nya cenderung lebih rendah dibandingkan
CAE pada metrik MAE dan MSE (JSD=0.119, BD=0.544 dan JSD=0.132,
BD=0.442), yang mengindikasikan pemisahan distribusi yang tidak setajam CAE.
Meskipun CVAE menunjukkan nilai BD yang sedikit lebih tinggi pada metrik
SSIM, nilai JSD-nya sangat rendah (JSD=0.020), menandakan perbedaan distribusi
yang minimal. Secara keseluruhan, CAE terbukti lebih andal karena mampu

menghasilkan pemisahan distribusi yang lebih kuat dan jelas.
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Gambar 4. 30 Perbandingan metrik JSD dan BD pada model CAE dan model
CVAE
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Dari hasil pengujian sepanjang periode (satu hingga lima bulan) sebelum
tumbang model CVAE terbukti sebagai pilihan paling optimal dan andal untuk
deteksi anomali Ganoderma. Meskipun CAE dapat bekerja dengan baik pada 1
bulan dan 5 bulan sebelum tumbang, arsitektur CVAE yang berbasis probabilistik
memberikan keunggulan inheren yang memungkinkannya untuk secara konsisten
mendeteksi anomali sejak tahap paling dini, bahkan ketika gejala visual belum
terlihat. Dengan demikian, CVAE adalah solusi yang lebih efisien dan efektif untuk
deteksi dini dan pencegahan penyebaran penyakit, yang sangat krusial untuk

menjaga produktivitas perkebunan.

4.6 Ringkasan Perbandingan Hasil

Berdasarkan metrik MAE dan MSE, model CAE menunjukkan fluktuasi
yang signifikan, dengan nilai BD (Bhattacharyya Distance) tertinggi di bulan kedua
dan kelima. Hal ini mengindikasikan adanya variasi besar dalam akurasi prediksi.
Sebaliknya, nilai JSD (Jensen-Shannon Distance) pada model ini cenderung lebih
stabil, meskipun ada sedikit lonjakan di bulan kelima. Pada metrik SSIM, kualitas
prediksi model CAE bervariasi, mencapai puncaknya di bulan ketiga (0.6557) dan
nilai terendah di bulan keempat (0.4808). Ini menunjukkan inkonsistensi dalam
kualitas visual hasil prediksi. Secara keseluruhan, model CAE menunjukkan kinerja

yang tidak stabil dalam hal akurasi dan kualitas visual.

MAE MSE

0.3407202
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Gambar 4. 31 Grafik progresif nilai JSD dan BD metrik MAE, MSE,
dan SSIM pada CAE untuk diskriminasi sawit sehat dan sakit.
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Sebaliknya, model CVAE menunjukkan performa yang lebih konsisten
pada metrik BD. Nilai BD pada metrik MAE dan MSE relatif lebih rendah dan
stabil dibandingkan model CAE, tanpa lonjakan ekstrem. Ini mengindikasikan
bahwa CVAE memiliki akurasi prediksi yang lebih konsisten dari waktu ke waktu.
Untuk metrik SSIM, CVAE menunjukkan peningkatan kualitas visual secara
progresif dari bulan ke bulan, mencapai nilai tertinggi di bulan keempat (0.7315),
sebelum sedikit menurun di bulan kelima. Nilai JSD pada model CVAE juga

menunjukkan stabilitas yang lebih baik.
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Gambar 4. 32 Grafik progresif nilai JSD dan BD metrik MAE, MSE,
dan SSIM pada CVAE untuk diskriminasi sawit sehat dan sakit.

Berdasarkan analisis progresif, model CVAE secara konsisten mengungguli
model CAE dalam hal stabilitas dan akurasi prediksi. Fluktuasi nilai BD dan JSD
yang lebih rendah pada CVAE menunjukkan bahwa model ini lebih andal dan
menghasilkan prediksi yang konsisten dari bulan ke bulan. Sementara itu, model
CAE menunjukkan kinerja yang tidak stabil, dengan variasi besar dalam akurasi
dan kualitas hasil. Oleh karena itu, model CVAE adalah pilihan yang lebih optimal
untuk tugas prediksi ini karena memiliki performa yang lebih konsisten dan dapat

diandalkan seiring berjalannya waktu.
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BABV
KESIMPULAN DAN SARAN

5.1. Kesimpulan

Penelitian ini berhasil membuktikan bahwa deteksi dini Ganoderma pada
pohon sawit melalui perubahan warna daun dapat dilakukan menggunakan model
deep learning CAE dan CVAE. Kedua model mampu mengenali anomali dengan

tingkat akurasi yang memuaskan, terutama pada tahap infeksi lanjut.

Berdasarkan analisis ftimeseries selama lima bulan, model CAE
menunjukkan efektivitas tertinggi dalam mendeteksi anomali hingga dua bulan
sebelum pohon tumbang. Namun, kemampuan deteksinya menurun signifikan pada
rentang waktu tiga hingga lima bulan sebelum pohon tumbang. Sebaliknya, model
CVAE terbukti lebih unggul dan konsisten. Dengan arsitektur yang lebih sederhana,
CVAE secara efektif mampu mendeteksi anomali pada tahap paling awal serangan
infeksi Ganoderma, bahkan hingga lima bulan sebelum pohon tumbang, ketika

gejala visual belum terlihat.

Dengan demikian, tujuan penelitian untuk mengembangkan model deteksi
dini dan menganalisis batas kemampuannya telah tercapai. Dalam kurun waktu lima
bulan, Model CVAE adalah pilihan yang lebih optimal karena kemampuannya yang

luar biasa dalam mendeteksi anomali.

5.2. Saran
Untuk penelitian selanjutnya, ada beberapa aspek kunci yang perlu

diperbaiki dari penelitian ini:

1. Periode Data Timeseries yang Lebih Panjang: Deteksi dini Ganoderma
sangat menantang karena gejala awal sulit dikenali. Periode data timeseries
lima bulan yang digunakan mungkin sudah termasuk fase akhir infeksi.
Oleh karena itu, disarankan untuk memperpanjang periode pengumpulan
data menjadi satu hingga lima tahun untuk mendapatkan gambaran yang

lebih akurat tentang perkembangan penyakit dari fase awal hingga akhir.

2. Memanfaatkan Pola Spasial Anomali: Penelitian selanjutnya dapat

memanfaatkan fakta bahwa pohon yang terinfeksi Ganoderma cenderung
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muncul secara acak, sementara pohon yang kekurangan air atau unsur hara
biasanya menunjukkan pola kerusakan yang seragam. Memasukkan analisis
spasial ini ke dalam model dapat meningkatkan akurasi dan membedakan

anomali penyakit dari kondisi stres lainnya.

Peningkatan Kualitas Citra: Kualitas data sangat memengaruhi performa
model. Penelitian di masa depan harus fokus pada peningkatan kualitas citra
dengan melakukan pra-pemrosesan yang lebih baik, termasuk normalisasi
ukuran (resizing) dan pembersihan noise. Kualitas citra yang lebih baik
dapat memastikan bahwa model tidak hanya mempelajari noise atau artefak

piksel, tetapi juga pola anomali yang relevan.
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