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PERBANDINGAN MODEL CONVOLUTIONAL AUTOENCODER DAN 

VARIATIONAL AUTOENCODER UNTUK DETEKSI DINI POHON 

KELAPA SAWIT YANG TERINFEKSI GANODERMA MENGGUNAKAN 

CITRA PENGINDERAAN JAUH 

 

Natanael Missionday Gloryant, Kestrilia Rega Prilianti, Hendry Setiawan 

Universitas Ma Chung 

Abstrak 

 

Penyakit busuk pangkal batang akibat jamur Ganoderma Boninense 

merupakan ancaman signifikan bagi industri kelapa sawit di Indonesia, 

menyebabkan kerugian ekonomi substansial karena sulitnya untuk dideteksi. Gejala 

visualnya seringkali tidak terlihat hingga infeksi mencapai tahap lanjut, membuat 

metode inspeksi konvensional tidak efektif. Penelitian ini bertujuan mengatasi 

keterbatasan tersebut dengan memanfaatkan citra udara dari UAV yang 

dikombinasikan dengan metode deep learning untuk mendeteksi anomali. 

Pada penelitian ini, digunakan model Autoencoder, ideal untuk deteksi 

anomali di mana data pohon sakit berlabel terbatas. Model dilatih pada citra pohon 

sehat dan mengidentifikasi anomali dari hasil reconstruction error yang tinggi. 

Secara spesifik, penelitian ini membandingkan arsitektur Convolutional 

Autoencoder (CAE) dan Convolutional Variational Autoencoder (CVAE), 

menganalisis performa keduanya terhadap dataset pohon sakit yang terakumulasi 

selama lima bulan. 

Hasil penelitian menunjukkan bahwa CVAE terbukti lebih unggul dan 

konsisten dalam mendeteksi anomali. Analisis kuantitatif berdasarkan metrik 

Bhattacharyya Distance (BD) dan Jensen-Shannon Divergence (JSD) 

menunjukkan bahwa CVAE mampu menjaga nilai BD yang stabil (sekitar 0.4 

hingga 0.6) dan nilai JSD yang rendah (di bawah 0.2) sepanjang periode lima bulan. 

Stabilitas ini memungkinkan CVAE mendeteksi anomali hingga lima bulan 

sebelum pohon tumbang. Di sisi lain, CAE menunjukkan performa yang tidak 

konsisten dengan fluktuasi nilai BD yang signifikan (misalnya, melonjak dari 0.419 

pada bulan ketiga ke 0.740 pada bulan kelima), dan nilai JSD yang lebih tinggi. 

Performa CAE hanya efektif hingga dua bulan sebelum pohon tumbang. Dengan 

demikian, penelitian ini menyimpulkan bahwa CVAE adalah solusi optimal untuk 

deteksi dini Ganoderma karena konsistensinya yang terbukti lebih unggul. 

 

Kata kunci: Convolutional Autoencoder, Convolutional Variational Autoencoder, 

Deteksi Dini, Ganoderma Boninense, Penginderaan Jauh  
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COMPARISON OF CONVOLUTIONAL AUTOENCODER AND 

VARIATIONAL AUTOENCODER MODELS FOR EARLY DETECTION 

OF GANODERMA-INFECTED OIL PALM TREES USING REMOTE 

SENSING IMAGERY 

Natanael Missionday Gloryant, Kestrilia Rega Prilianti, Hendry Setiawan 

Ma Chung University 

Abstract 

 

Basal stem rot disease caused by the Ganoderma Boninense fungus poses a 

significant threat to Indonesia's oil palm industry, leading to substantial economic 

losses due to the difficulty of early detection. Its visual symptoms are often not 

apparent until the infection reaches an advanced stage, making conventional 

inspection methods ineffective. This study aims to overcome this limitation by 

utilizing aerial imagery from UAVs combined with deep learning methods to detect 

anomalies. 

This research employs an Autoencoder model, which is ideal for anomaly 

detection where labeled data for sick trees is limited. The model is trained on images 

of healthy trees and identifies anomalies from a high reconstruction error. 

Specifically, this study compares the architectures of the Convolutional 

Autoencoder (CAE) and the Conditional Variational Autoencoder (CVAE), 

analyzing the performance of both on a dataset of diseased trees accumulated over 

five months. 

The research findings show that CVAE is proven to be superior and more 

consistent in detecting anomalies. Quantitative analysis based on the Bhattacharyya 

Distance (BD) and Jensen-Shannon Divergence (JSD) metrics shows that CVAE 

maintains stable BD values (around 0.4 to 0.6) and low JSD values (below 0.2) 

throughout the five-month period. This stability allows CVAE to detect anomalies 

up to five months before a tree collapses. In contrast, CAE shows inconsistent 

performance with significant fluctuations in BD values (for example, jumping from 

0.419 in the third month to 0.740 in the fifth month), and higher JSD values. CAE's 

performance is only effective up to two months before a tree collapses. Therefore, 

this study concludes that CVAE is the optimal solution for early Ganoderma 

detection due to its superior consistency. 

 

Keywords: Convolutional Autoencoder, Convolutional Variational Autoencoder, 

Early Detection, Ganoderma Boninense, Remote Sensing  
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BAB I  

PENDAHULUAN 

 

1.1 Latar Belakang Masalah 

Industri kelapa sawit berperan signifikan dalam perekonomian Indonesia, 

berkontribusi besar terhadap pendapatan nasional dan penyediaan lapangan kerja 

bagi jutaan penduduk. Sebagai penghasil devisa utama, sektor ini menjadi tulang 

punggung ekonomi nasional, terutama dalam ekspor minyak sawit mentah dan 

turunannya (PSI Perkebunan, 2023). Luasnya lahan perkebunan kelapa sawit di 

Indonesia juga mencerminkan potensi besar dalam meningkatkan kesejahteraan 

masyarakat dan pembangunan daerah. Namun, tantangan teknis dan lingkungan 

yang kompleks menuntut perhatian serius untuk menjamin keberlanjutan sektor ini 

(PSI Perkebunan, 2023).  

Penyakit busuk pangkal batang (BPB) yang disebabkan oleh jamur 

Ganoderma boninense merupakan ancaman serius bagi perkebunan kelapa sawit di 

Indonesia (Santoso, 2020). Ganoderma dapat menyebabkan penurunan 

produktivitas hingga 50% dan berpotensi menimbulkan kerugian ekonomi yang 

signifikan. Ganoderma menyerang tanaman kelapa sawit pada semua umur, 

menyebabkan pembusukan pada pangkal batang dan akhirnya kematian tanaman 

(Rahmana et al., 2024). Penyebaran Ganoderma yang cepat dan luas ini menuntut 

adanya upaya pengendalian yang efektif dan efisien. 

Deteksi dini pohon kelapa sawit yang terinfeksi Ganoderma sangatlah 

penting. Langkah ini tidak hanya penting untuk mengurangi kerugian ekonomi 

signifikan akibat pohon yang harus ditebang, tetapi juga krusial untuk menjaga 

keberlanjutan produksi kelapa sawit di lahan perkebunan yang terbatas (Kurihara 

dkk., 2020). Namun, tantangannya adalah gejala awal infeksi seringkali tidak jelas 

terlihat, menyulitkan petani untuk mendeteksi penyakit secara visual hingga 

mencapai tahap akhir. Secara konvensional, identifikasi kelapa sawit yang 

terinfeksi Ganoderma dapat dilakukan dengan mengamati gejala fisik seperti 

perubahan warna daun, daun tombak yang tidak terbuka, serta pembusukan pada 

pangkal batang. Namun, penelitian ini akan berfokus secara spesifik pada gejala 
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perubahan warna daun. Penulis berasumsi bahwa infeksi Ganoderma mengganggu 

sistem transportasi air dan nutrisi tanaman ke bagian atas pohon, yang pada 

akhirnya menyebabkan daun menguning. Oleh karena itu, dalam penelitian ini, 

daun kuning akan diinterpretasikan sebagai indikator adanya infeksi Ganoderma. 

Untuk mengatasi keterbatasan deteksi visual, teknologi penginderaan jauh, 

seperti penggunaan Unmanned Aerial Vehicle (UAV) atau drone misalnya, telah 

terbukti efektif dalam memantau kesehatan tanaman (Santoso, 2020). Studi oleh 

Wicaksono dkk. (2022) menunjukkan bahwa citra UAV yang diproses 

menggunakan algoritma Convolutional Neural Network (CNN) dapat mendeteksi 

pokok pohon kelapa sawit dengan akurasi yang baik. Selanjutnya, mereka berhasil 

menggunakan model Artificial Neural Network (ANN) untuk memprediksi status 

infeksi Ganoderma pada tiap pokok pohon dengan akurasi mencapai 94% untuk 

data uji. Meskipun akurasi belum mencapai 100%, metode ini sudah dianggap 

cukup memadai bagi pengelola perkebunan untuk mengambil tindakan pencegahan 

dini terhadap serangan Ganoderma.  

Meskipun CNN telah menunjukkan performa yang sangat baik dalam tugas 

deteksi dan klasifikasi gambar, seperti yang terlihat pada penelitian sebelumnya, 

salah satu kelemahan utama CNN adalah kebutuhan akan dataset pelatihan yang 

sangat besar untuk mencapai akurasi yang tinggi. Mengingat tantangan dalam 

mengumpulkan data anomali dalam jumlah besar yang bervariasi di lapangan, 

pendekatan alternatif yang lebih efisien data sangat dibutuhkan. Oleh karena itu, 

dalam penelitian ini, penulis akan menganalisis penggunaan Autoencoder (AE) 

untuk mengidentifikasi Ganoderma pada kelapa sawit. AE menawarkan 

keunggulan signifikan karena dapat dilatih menggunakan data tanpa label, 

menjadikannya ideal saat data berlabel terbatas atau tidak tersedia. Dengan 

demikian, AE mampu menemukan pola tersembunyi dalam data dengan 

merekonstruksi input, sekaligus mengidentifikasi anomali melalui error 

rekonstruksi yang tinggi pada data yang menyimpang dari pola normal (S P. , 2023). 

Secara spesifik, penulis akan mengeksplorasi dan membandingkan dua 

variasi arsitektur AE, yaitu Convolutional Autoencoder (CAE) dan Convolutional 

Variational Autoencoder (CVAE). CAE adalah AE yang menggunakan lapisan 
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konvolusi untuk efektif mempelajari representasi data spasial, menjadikannya 

pilihan kuat dalam deteksi anomali berbasis citra (Jana at al., 2022). Di sisi lain, 

VAE memperkenalkan pendekatan probabilistik ke ruang latennya, memungkinkan 

model ini menghasilkan sampel data baru dari distribusi yang dipelajari serta lebih 

baik dalam menangkap variasi anomali (Neloy dan Turgeon, 2024). Conditional 

Variational Autoencoder (CVAE) sendiri merupakan variasi dari VAE yang 

menggabungkan VAE dengan lapisan konvolusi, membuatnya efektif untuk data 

gambar. 

 

1.2 Identifikasi Masalah 

Berdasarkan latar belakang, masalah utama yang akan dibahas adalah 

potensi penyebaran Ganoderma yang dapat menyebabkan kerugian signifikan bagi 

industri kelapa sawit jika tidak ditangani secara tepat. Infeksi yang tidak terdeteksi 

sejak dini akan menyebar ke pohon sehat lainnya, yang pada akhirnya 

menyebabkan menurunnya produktivitas hingga tumbangnya pohon dan 

menimbulkan kerugian ekonomi besar. 

 

1.3 Batasan Masalah 

Adapun batasan masalah penelitian berikut adalah:  

1. Citra input diperoleh dari PT. Perkebunan Nusantara (PTPN) 

menggunakan UAV atau drone yang terbang pada ketinggian 500 meter. 

2. Data citra yang digunakan terbatas pada periode Januari hingga Juni 

2023. 

3. Format warna citra input adalah RGB. 

4. Penelitian ini akan berfokus pada penggunaan algoritma YOLO untuk 

deteksi pohon kelapa sawit, dan mengeksplorasi serta membandingkan 

arsitektur CAE dan CVAE untuk deteksi anomali pada pohon kelapa 

sawit yang sakit, guna menentukan model yang paling optimal. 

5. Pengambilan data deteksi dini terbatas pada periode Juni 2023 mundur 

hingga Januari 2023, yaitu data yang dikumpulkan selama enam bulan 

sebelum dan selama masa pemantauan. 
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1.4 Perumusan Masalah 

Berdasarkan paparan latar belakang, identifikasi permasalahan, dan batasan 

masalah yang telah dijelaskan sebelumnya, disusunlah rumusan masalah 

yang menjadi inti pembahasan dalam laporan tugas akhir ini adalah sebagai 

berikut:  

1. Apakah deteksi dini Ganoderma pada pohon sawit melalui perubahan 

warna daun dapat dilakukan menggunakan model deep learning? 

2. Seberapa jauh ke belakang (dalam hitungan bulan) model deep learning 

mampu mendeteksi anomali Ganoderma sebelum pohon kelapa sawit 

akhirnya tumbang? 

 

1.5 Tujuan Penelitian 

Tujuan dilakukannya penelitian ini adalah sebagai berikut: 

1. Mengembangkan model deep learning CAE dan CVAE yang mampu 

mendeteksi dini anomali infeksi Ganoderma pada pohon sawit. 

2. Menganalisis sejauh mana batas kemampuan deteksi model CAE atau 

CVAE dalam mengidentifikasi anomali akibat Ganoderma berdasarkan 

urutan waktu (timeseries). 

 

1.6 Luaran 

Hasil yang diharapkan dari penelitian ini adalah sebagai berikut: 

1. Model deteksi dini berbasis CAE dan CVAE yang dapat mengenali 

anomali Ganoderma pada pohon sawit  

2. Publikasi artikel dijurnal ilmiah berindeks SINTA. 

 

1.7 Manfaat Penelitian 

a) Bagi Penulis: 

1. Kesempatan untuk belajar dan memperluas pengetahuan, 

pemahaman dan menajamkan kemampuan dalam bidang kecerdasan 
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buatan, remote sensing, algoritma CAE dan CVAE serta 

penerapannya. 

b) Bagi PT. Perkebunan Nusantara, dan Petani Sawit: 

1. Hasil dari penelitian ini dapat digunakan untuk mendeteksi dini 

Ganoderma pada pohon sawit agar petani sawit dan perusahaan 

industri kelapa sawit dapat menghidari kerugian besar. 

c) Bagi Universitas dan Kelompok Riset: 

1. Memperoleh acuan untuk penelitian selanjutnya untuk membuat 

program yang mampu mendeteksi dini Ganoderma pada pohon 

sawit. 

2. Membantu menghasilkan lulusan yang kompeten melalui penelitian 

yang terpercaya. 

 

1.8 Sistematika Penulisan 

Penulisan laporan tugas akhir ini ditulis dengan sistematika penulisan 

sebagai berikut. 

1. Bab I, Pendahuluan 

Membahas latar belakang penelitian mengenai pentingnya deteksi dini 

Ganoderma pada pohon kelapa sawit, dampak ekonomi yang 

ditimbulkan, serta bagaimana penginderaan jauh dapat digunakan 

sebagai solusi. Selain itu, bab ini juga mencakup rumusan masalah, 

tujuan penelitian, manfaat penelitian, dan sistematika penulisan. 

2. Bab II, Tinjauan Pustaka 

Berisi landasan teori yang mendukung penelitian, termasuk kajian 

tentang Ganoderma pada kelapa sawit, konsep penginderaan jauh dalam 

bidang pertanian, serta teori mengenai algoritma AE dan variasinya. 

Selain itu, penelitian terdahulu yang relevan dengan topik ini juga 

dibahas untuk memberikan gambaran tentang perkembangan studi 

terkait. 

3. Bab III, Analisis dan Perancangan Sistem 

Berisi penjelasan mulai dari pengumpulan data citra penginderaan jauh, 

proses preprocessing data, perancangan model CAE dan CVAE, serta 
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metode evaluasi yang digunakan untuk menilai kinerja model dalam 

mendeteksi pohon kelapa sawit yang terinfeksi Ganoderma. 

4. Bab IV, Hasil dan Pembahasan 

Membahas hasil penelitian yang diperoleh setelah pengujian model 

dilakukan. Hasil yang ditampilkan meliputi performa model CAE dan 

CVAE dalam mendeteksi pohon sawit yang terinfeksi, serta analisis 

terhadap efektivitas metode yang digunakan. Evaluasi dilakukan dengan 

membandingkan hasil model terhadap data yang telah dikumpulkan. 

5. Bab V, Simpulan dan Saran 

Berisi kesimpulan dari penelitian yang telah dilakukan, termasuk 

ringkasan hasil utama dan implikasi dari temuan penelitian. Selain itu, 

saran diberikan untuk pengembangan lebih lanjut, baik dalam 

peningkatan akurasi model maupun penerapan sistem dalam skala yang 

lebih luas.  
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BAB II  

TINJAUAN PUSTAKA 

2.1 Industri Kelapa Sawit 

Kelapa sawit (Gambar 2.1) merupakan tanaman tropis penghasil minyak 

sawit mentah (CPO) dan minyak inti sawit (PKO) yang digunakan secara luas 

dalam berbagai industry, termasuk pangan (minyak goreng, margarin), kosmetik, 

hingga bahan bakar seperti biodiesel. Dengan produktivitasnya yang tinggi, 

menjadikan kelapa sawit sebagai sumber minyak nabati paling efisien dibanding 

tanaman penghasil minyak lainnya. 

 

Di Indonesia, kelapa sawit menjadi salah satu komoditas perkebunan yang 

memiliki peran yang signifikan dalam perekonomian nasional. Sebagai pemasok 

minyak kelapa sawit terbesar di dunia sejak tahun 2007, Indonesia telah menguasai 

58% pangsa pasar global pada tahun 2020 (Xin at al., 2022) dan pada tahun 2023, 

volume ekspor kelapa sawit telah mencapai 27,537,847 Ton dan nilai ekspor 

mencapai 24,008 ribu US$ (Kementerian Pertanian Republik Indonesia, 2025). 

Dengan kontribusi besarnya terhadap ekspor dan perekonomian nasional, menjadi 

 

(Sumber: Ningrum, 2023) 

Gambar 2.1 Tanaman Kelapa Sawit 

(Sumber: https://www.sawitsetara.co/yuk-pahami-ciri-ciri-pohon-

kelapa-sawit-yang-sehat/) 
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hal yang sangat penting untuk menjaga keberlanjutan dan produktivitas kelapa 

sawit, sehingga baik petani maupun perusahaan perkebunan kelapa sawit harus 

mengambil langkah strategis guna tidak hanya menjaga, tetapi juga meningkatkan 

produktivitas tanaman yang mereka kelola agar hasilnya optimal dan efisien. 

Salah satu tantangan utama dalam perkebunan kelapa sawit adalah serangan 

penyakit tanaman, khususnya penyakit busuk pangkal batang yang pada umumnya 

disebabkan oleh jamur Ganoderma boninense. Ganoderma umumnya menyerang 

tanaman kelapa sawit yang berumur lebih dari 10 tahun, terutama pada kebun yang 

tidak menerapkan sanitasi lahan yang baik sehingga dapat mengakibatkan 

penurunan produktivitas hingga kerugian besar. Upaya penanggulangan 

Ganoderma sendiri masih menjadi tantangan besar, karena belum ditemukannya 

metode yang efektif untuk mengatasi jamur dari tanah. Metode yang saat ini 

digunakan bersifat pencegahan dan pengendalian dini seperti penggunaan tanaman 

penutup tanah (cover crops), isolasi tanaman sakit, biofungisida, serta pemantauan 

visual dan laboratorium secara berkala. 

 

2.1.1 Penyakit Busuk Pangkal Batang 

Penyakit busuk pangkal batang merupakan salah satu penyakit pada 

tanaman kelapa sawit yang pada umumnya disebabkan oleh jamur Ganoderma 

Boninense (Gambar 2.2). Jamur ini menginfeksi jaringan akar lalu menyebar ke 

dalam batang bagian bawah tanaman. Infeksi dapat terjadi melalui kontak akar antar 

tanaman atau spora yang terbawa angin maupun air. Kemudian, jamur tumbuh 

secara perlahan tetapi progresif, menyebabkan jaringan dalam kayu mengalami 

pelapukan dan pembusukan. Kerusakan ini utamanya terjadi pada jaringan xilem di 

dalam batang, yang berfungsi sebagai pembuluh angkut utama untuk air dan nutrisi 

dari akar ke seluruh bagian tanaman. Ketika xilem lapuk dan membusuk, saluran 

transportasi ini menjadi tersumbat dan rusak, secara efektif mengganggu aliran vital 

air dan mineral. Akibatnya, tanaman tidak dapat memperoleh sumber daya yang 

cukup untuk fotosintesis dan pertumbuhan, yang pada akhirnya menyebabkan 

gejala fisik seperti daun menguning kemudian layu, penurunan produksi tandan 
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buah segar, hingga kematian tanaman (Baharim at al., 2023, cit. Daranagama & 

Takeuchi, 2025).  

 

Menurut laporan Palm Oil Agribusiness Strategic Policy Institute (PASPI), 

tergantung tingkat keparahan infeksi, serangan Ganoderma dapat menurunkan 

produktivitas Tandan Buah Segar (TBS) hingga 50% (Sipayung, 2024). Disamping 

itu, masa produktif tanaman kelapa sawit juga berpotensi menurun hingga setengah 

dari usia ekonomis yang seharusnya (Sipayung, 2024).  Dalam beberapa kasus, 

tanaman dapat roboh tanpa menunjukkan gejala apa pun sebelumnya (Ginting & 

Wiratmoko, 2021). Jika Ganoderma tidak segera ditangani, terutama pada 

perkebunan tua maka akan terjadi penurunan produktivitas. Dalam kondisi yang 

parah, Ganoderma bahkan dapat menyebabkan kematian tanaman dan 

menimbulkan kerugian besar bagi petani maupun pelaku industri kelapa sawit. 

 

2.1.2 Deteksi Dini Ganoderma 

Penyakit busuk pangkal batang yang disebabkan oleh jamur Ganoderma 

boninense merupakan salah satu ancaman serius terhadap produktivitas kelapa 

sawit di Indonesia. Infeksi jamur ini dapat secara signifikan menyebabkan 

penurunan hasil panen, bahkan berujung pada kematian tanaman, terutama pada 

tanaman yang berumur tua (Soetopo dkk., 2022). Kerugian yang ditimbulkan tidak 

hanya berdampak pada penurunan hasil produksi, tetapi juga memberikan tekanan 

Gambar 2.2 Tanaman kelapa sawit terinfeksi Ganoderma 

 (Sumber: https://gdm.id/ganoderma/) 
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ekonomi yang signifikan bagi petani dan pelaku industri kelapa sawit (Azmi et al., 

2020). Oleh karena itu, deteksi dini terhadap infeksi Ganoderma menjadi langkah 

krusial untuk mencegah penyebaran dan memfasilitasi tindakan pengendalian yang 

lebih efektif sebelum penyakit meluas ke tanaman lainnya. 

Sebagai respon terhadap urgensi tersebut, berbagai pendekatan deteksi dini 

telah dirancang guna mengindentifikasi infeksi Ganoderma dengan Tingkat akurasi 

dan efisiensi yang tinggi. Salah satu inovasi yang telah dikembangkan adalah 

eNose-g, yang merupakan teknologi sensor elektronik portabel yang membedakan 

tanaman sehat dan terinfeksi berdasarkan profil aroma spesifik, memberikan hasil 

deteksi cepat dan akurat (Badan Pengelola Dana Perkebunan Kelapa Sawit, 2021). 

Selain itu, metode berbasis fisika seperti Radal SIL memanfaatkan perubahan sifat 

dielektrik pada batang pohon untuk mendeteksi infeksi secara non-destruktif dan 

cepat (Liaghat at al., 2014).  Selain itu, seiring dengan perkembangan teknologi 

penginderaan jauh, UAV telah dimanfaatkan untuk mengambil citra tanaman yang 

dari ekstraksi guna memperoleh informasi penting sebagai data analisis. Lebih 

lanjut, pendekatan berbasis UAV yang dikombinasikan dengan CNN telah terbukti 

efektif dalam mendeteksi pohon yang terinfeksi Ganoderma melalui analisis citra 

udara, bahkan sebelum munculnya gejala visual pada tanaman (Kurihara at al., 

2020). Seluruh pendekatan tersebut mencerminkan peran signifikan kemajuan 

teknologi dalam mendukung strategi pengelolaan Ganoderma yang lebih presisi, 

efisien, dan berkelanjutan, guna menjaga produktivitas serta keberlanjutan industry 

kelapa sawit di era modern. 

 

2.2 Penginderaan Jauh 

Penginderaan jauh adalah teknik pengumpulan data suatu objek, fenomena, 

atau wilayah tanpa melakukan kontak secara langsung atau jarak jauh, seperti 

melalui satelit, pesawat atau UAV. Dengan adanya teknologi ini, pengawasan 

terhadap kondisi lingkungan dapat dilakukan secara efektif dan menyeluruh. 

Misalnya, penelitian oleh Kosasih dkk. (2020) yang menggunakan citra satelit 

Lansat 8 untuk menganalisis kerapatan vegetasi dan suhu permukaan tanah serta 
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penelitian oleh Junarto dkk. (2020) yang menggunakan UAV untuk pemetaan 

kadaster. 

Penginderaan jauh telah menjadi komponen vital dalam pemantauan 

perkebunan kelapa sawit, terkhusus dalam mendeteksi penyakit busuk pangkal 

batang yang disebabkan oleh jamur Ganoderma boninense. Dengan teknologi ini, 

pemantauan lahan yang sebelumnya memakan banyak waktu dan tenaga kini dapat 

dilakukan secara lebih efisien dan mencakup area yang lebih luas. Studi yang 

dilakukan oleh Kurihara at al. (2020) menunjukkan bahwa penggunaan citra 

hiperspektral dari UAV dapat mengklasifikasikan tingkat infeksi busuk pangkal 

batang pada pohon kelapa sawit dengan akurasi tinggi, bahkan pada tahap awal 

infeksi. Hal ini menunjukkan potensi besar penginderaan jauh dalam mendukung 

manajemen perkebunan kelapa sawit secara berkelanjutan.  

Studi oleh Lee at al. (2022) menggunakan citra hiperspektral dari UAV 

untuk mendeteksi infeksi busuk pangkal batang pada pohon kelapa sawit sebelum 

gejala visual muncul dengan hasil efektivitas yang signifikan. Pendekatan ini 

memungkinkan untuk intervensi lebih awal, yang penting untuk mencegah 

penyebaran penyakit dan kerugian ekonomi yang lebih besar. 

 

2.3 Infrensi citra pengindraan jauh dengan AI 

Pengintegrasian penginderaan jarak jauh dengan kecerdasan buatan telah 

mengubah cara pemantauan dan pengelolaan lahan pertanian. Teknologi ini 

memungkinkan deteksi dini terhadap berbagai kondisi tanaman, seperti serangan 

hama, penyakit, dan stress lingkungan, melalui analisis cirta satelit atau UAV. Studi 

oleh Aziz at al. (2025) menunjukkan bahwa penggunaan kecerdasan buatan dalam 

penginderaan jauh dapat meningkatkan efisiensi pemantauan lahan, dan kesehatan 

tanaman, serta memungkinkan pengambilan keputusan yang lebih cepat dan tepat 

dalam manajemen pertanian. Selain itu, model Bayesian Probabilistic Updating 

Model (BPUM) yang dikembangkan oleh Shi at al. (2025) memanfaatkan data 

historis dan citra satelit secara real-time untuk identifikasi awal tanaman dengan 

akurasi tinggi, demi mendukung ketahanan pangan global.  
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2.4 Implementasi Maching Learning (ML) 

Machine Learning (ML) telah menjadi alat penting dalam bidang pertanian 

modern. Algoritma-algoritma ML digunakan untuk mengolah data besar dari 

berbagai sumber, seperti sensor tanah, cuaca, dan citra tanaman, guna memprediksi 

hasil panen, mendeteksi penyakit, dan mengoptimalkan penggunaan sumber daya. 

Studi oleh Araújo at al. (2023) menyoroti tren terkini dalam penerapan ML di 

pertanian, termasuk tantangan dan perspektif masa depan. Mereka menekankan 

pentingnya infrasturktur siber yang mendukung pengumpulan, pemrosesan, dan 

pelatihan model ML dengan dataset multimodal untuk mempercepat inovasi di 

bidang pertanian. 

 

2.5 Implementasi Deep Learning (DL) 

Deep learning (DL) telah menjadi teknologi kunci dalam transformasi 

pertanian modern. Dengan kemampuannya dalam menganalisis data besar dan 

kompleks, DL memungkinkan identifikasi pola yang tidak terlihat oleh metode 

konvensional. Dalam bidang pertanian, DL telah digunakan untuk berbagai aplikasi 

seperti klasifikasi tanaman, deteksi penyakit, prediksi hasil panen, dan manajemen 

sumber daya. Studi oleh KesKes (2025) menyoroti bahwa integrasi DL dalam 

pertanian dapat meningkatkan efisiensi produksi dan mendukung pertanian 

berkelanjutan. 

Salah satu arsitektur DL yang paling umum digunakan adalah CNN yang 

terdiri dari beberapa lapisan konvolusi yang menggunakan fungsi aktivasi seperti 

ReLU untuk mengekstrasi fitur dari data input. CNN efektif dalam menganalisis 

data citra, seperti citra satelit atau UAV untuk mendeteksi penyakit tanaman, 

klasifikasi dan klasifikasi lahan. Dalam konteks pertanian cerdas, CNN 

menunjukkan dapat digunakan untuk mengklasifikasikan gulma dan penyakit 

tanaman secara akurat (Faisal et al., 2025 ). 

Selain CNN, arsitektur DL lainnya yang juga memiliki peran penting dalam 

pengolahan data citra pertanian adalah AE (Gambar 2.3). AE merupakan jenis 

jaringan saraf tiruan (JST) yang digunakan dalam mendeteksi anomali. AE 

memiliki dua bagian, yaitu: 
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a. Encoder 

 Bertujuan untuk mengubah gambar input menjadi representasi berdimensi 

lebih rendah yang melibatkan serangkaian lapisan terhubung yang secara bertahap 

mengurangi dimensi data. Kemudian informasi yang diperoleh disimpan dalam 

bottleneck, yang menjadi inti dari representasi fitur yang lebih padat dan bermakna. 

b. Decoder 

Bertugas untuk membalikkan proses encoder, yaitu merekonstruksi ulang 

data dari representasi laten menjadi bentu yang menyerupai input asli dan 

memastikan bahwa hanya informasi pending dari data yang berhasil di pertahankan 

dan dipelajari. Kinerja AE dinilai dari seberapa kecil nilai loss reconstruction, yaitu 

nilai selisih antara input awal dan hasil rekonstruksi. 

Salah satu hal yang membuat AE menarik adalah pada proses pelatihan, AE 

membutuhkan data training lebih sedikit bila dibandingkan dengan CNN. CNN 

membutuhkan ribuan bahkan ratusan gambar, Sementara itu AE dapat dilatih 

menggunakan data tanpa label, menjadikannya ideal saat data berlabel terbatas atau 

tidak tersedia yang dalam kasus penelitian yang datanya sulit untuk dikumpulkan 

dalam jumlah besar menjadi daya tarik atau keunggulan tersendiri.  

Gambar 2.3 Arsitektur Autoencoder 

(Sumber: https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/) 
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Dalam perkembangannya, beberapa variasi AE telah dikembangkan guna 

memenuhi berbagai kebutuhan dan karakteristik data. Dua diantaranya adalah, 

Convolutional Autoencoder (CAE) dan Convolutional Variational Autoencoder 

(CVAE). VAE memperluas konsep dasar dari AE dengan mengintegrasikan metode 

probabilistik ke dalam tahap encoding, yang memungkinkan dihasilkannya 

representasi laten dengan distribusi statistik yang lebih baik. Kemampuan ini 

menjadikannya sangat berguna dalam membuat model generatif atau ketika kita 

membutuhkan representasi data yang lebih bervariasi namun tetap informatif. Saat 

lapisan konvolusi ditambahkan, model ini dikenal sebagai CVAE, yang efektif 

untuk memproses data gambar. 

Sementara itu, CAE (Gambar 2.4) dirancang secara khusus untuk 

menangani data berbentuk citra (image-based data) dengan menerapkan lapisan 

konvolusi (convolutional layers) pada bagian encoder dan decoder. Penggunaan 

lapisan konvolusi memungkinkan CAE untuk menangkap fitur spasial dan pola 

lokal dalam citra dengan lebih efektif dibandingkan AE biasa yang menggunakan 

lapisan dense atau fully connected. Oleh karena itu, CAE sangat cocok digunakan 

untuk pemrosesan citra beresolusi tinggi seperti citra satelit atau UAV dalam 

konteks penginderaan jauh (remote sensing). 

 

Dalam penginderaan jauh, CAE telah banyak dimanfaatkan untuk berbagai 

aplikasi, seperti klasifikasi tutupan lahan, deteksi perubahan (change detection), 

Gambar 2.4 Arsitektur Convolutional AutoEncoder 

(Sumber: https://www.researchgate.net/figure/The-proposed-

architecture-of-the-CAE_fig3_352777611) 
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serta deteksi anomali pada lahan pertanian. Kemampuannya untuk melakukan 

ekstraksi fitur yang efisien dari citra beresolusi tinggi menjadikan CAE sangat 

relevan dalam mendeteksi pola-pola tak biasa yang muncul akibat infeksi penyakit 

pada tanaman, termasuk infeksi Ganoderma pada kelapa sawit. CAE juga memiliki 

keunggulan dalam melakukan rekonstruksi citra secara presisi, sehingga nilai error 

rekonstruksi yang dihasilkan dapat dijadikan indikator awal untuk mengenali 

keberadaan anomali atau gangguan pada vegetasi. 

Selain itu, CAE dalam mendeteksi anomali pada infeksi Ganoderma hanya 

perlu dilatih dengan menggunakan data  pohon sehat. Nantinya ketika diinputkan 

data terinfeksi, hasil rekonstruksinya menunjukkan nilai error yang lebih tinggi, 

sehingga anomali dapat dikenali berdasarkan besarnya nilai error rekonstruksi. 

Dalam penelitiannya Xiang at al. (2024) memanfaatkan pendekatan AE berbasis 

piksel untuk mendeteksi anomali dalam citra hiperspektral, yang menunjukkan 

efektivitas yang tinggi dalam mengindentifikasi area yang tidak biasa dalam data 

penginderaan jauh.  

Dalam upaya mengevaluasi performa dari CAE dan CVAE, beberapa 

metrik yang umum digunakan adalah Mean Absolute Error (MAE), Mean Squared 

Error (MSE), dan Structural Similarity Index Measure (SSIM). MAE menghitung 

rata-rata selisih absolut antara nilai piksel input dan hasil rekonstruksi, sementara  

MSE menghitung rata-rata kuadrat selisih antara nilai piksel input dengan hasil 

rekonstruksi, yang mengukur sejauh mana informasi asli dipertahankan Nilai MSE 

yang rendah menunjukkan bahwa rekonstruksi mendekati input aslinya. Namun, 

karena MSE mengkuadratkan kesalahan, ia sangat sensitif terhadap outlier (nilai 

piksel yang sangat berbeda) dan dapat mengabaikan struktur spasial penting dalam 

citra. Sebagai alternatif yang lebih tangguh terhadap outlier, digunakan MAE. MAE 

menghitung rata-rata selisih absolut antar piksel, sehingga ia memberikan bobot 

yang sama untuk semua kesalahan dan tidak membesarkan nilai-nilai ekstrem. Ini 

menjadikannya pilihan yang baik saat noise atau nilai piksel yang tidak biasa hadir 

dalam data.  

Untuk mengatasi kelemahan metrik berbasis piksel seperti MSE dan MAE, 

digunakan SSIM. SSIM mengevaluasi kemiripan struktural antara dua gambar 
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berdasarkan luminansi, kontras, dan struktur spasial, memberikan perspektif yang 

lebih dekat dengan persepsi visual manusia. SSIM memberikan skor antara 0 dan 

1, di mana nilai mendekati 1 menunjukkan kemiripan struktural yang tinggi (Wang 

et al., 2004). Dengan menggunakan kombinasi metrik ini, kita bisa mendapatkan 

gambaran evaluasi yang lebih komprehensif, mencakup akurasi numerik dan 

kemiripan struktural dari hasil rekonstruksi.  

Sementara itu, untuk mengevaluasi model probabilistik seperti VAE, metrik 

yang fokus pada perbandingan distribusi juga menjadi sangat penting. Dua di 

antaranya adalah Jensen-Shannon Divergence (JSD) dan Bhattacharyya Distance 

(BD). JSD adalah metrik yang mengukur kesamaan antara dua distribusi 

probabilitas dan sering digunakan untuk mengevaluasi seberapa baik distribusi 

laten yang dipelajari VAE mendekati distribusi target yang diinginkan (Deasy et 

al., 2020). JSD memiliki nilai yang terikat dan simetris, menjadikannya pilihan 

yang kuat. Demikian pula, BD mengukur tingkat tumpang tindih antara dua 

distribusi probabilitas, mengukur seberapa dekat keduanya (Chawla, 2024). BD 

secara efektif mengukur jarak antara distribusi encoder dan distribusi prior dalam 

ruang laten VAE. Nilai BD yang lebih rendah menunjukkan bahwa kedua distribusi 

lebih mirip, menandakan bahwa VAE berhasil mempelajari representasi laten yang 

terdistribusi dengan baik dan efisien. 

Dalam upaya meningkatkan akurasi dan efisiensi dalam pelatihan model 

DL, telah dikembangkan berbagai teknik optimasi. Salah satu metode optimasi 

paling populer dalam DL adalah Adaptive Moment Estimation (Adam) yang 

mengkombinasikan keunggulan dari momentum dan RMSProp untuk 

menyesuaikan learning rate secara adaptif terhadap parameter, sehingga 

mempercepat konvergensi dan menghindari jebakan pada minimum lokal (Kingma 

& Ba, 2014). Selain itu, Nesterov-accelerated Adaptive Moment Estimation 

(Nadam) merupakan penyempurnaan dari Adam dengan menambahkan lookahead 

gradient yang mempercepat konvergensi di banyak kasus (Dozat, 2016). Teknik 

lain seperti SGD dengan Momentum, Adagrad, dan RMSProp juga masih relevan, 

tergantung pada jenis dataset dan arsitektur jaringan yang digunakan. Pemilihan 

algoritma optimasi yang tepat sangat berpengaruh terhadap stabilitas pelatihan, 

kecepatan konvergensi, dan kualitas generalisasi model. 
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Selanjutnya, terdapat fungsi aktivasi dalam JST yang memegang peranan 

penting dalam memperkenalkan non-linearitas pada jaringan. Tanpa fungsi 

aktivasi, jaringan hanya akan mempelajari relasi linear yang berakibatkan 

terbatasnya kemampuan dalam menyelesaikan masalah kompleks seperti 

klasifikasi citra. Fungsi aktivasi yang umum digunakan adalah ReLU, yang 

sederhana namun sangat efektif untuk menghindari masalah vanishing gradient. 

ReLU memiliki bentuk fungsi 𝑓(𝑥) = max(0, 𝑥) yang membuatnya sangat efisien 

dalam propagasi maju dan mundur. Varian dari ReLU seperti Leaky ReLU dan 

Parametric ReLU (PReLU) diperkenalkan untuk menangani kelemahan ReLU 

dalam mengabaikan nilai negatif. Selain itu, untuk arsitektur seperti CAE, Sigmoid 

atau Tanh juga digunakan pada lapisan output, tergantung pada skala data input.  

 

2.6 Citra Spasial  

Citra spasial merupakan representasi visual dari permukaan bumi yang 

diperoleh melalui sensor pada satelit atau UAV. Dalam pertanian, terkhusus pada 

monitoring tanaman, citra spasial berperan penging dalam mendeteksi kondisi 

tanaman, identifikasi penyakit dan pengelolaan lahan secara presisi. Dengan 

menggunakan citra spasial, memungkinkan untuk memantau area yang luas denga 

efisien serta memberikan informasi yang akurat dalam suatu lahan pertanian. 

 

2.7 Pra-pemrosesan Citra Spasial (UAV)  

Sebelum citra UAV dapat digunakan untuk analisis lebih lanjut, diperlukan 

serangkaian proses pra-pemrosesan untuk memastikan kualitas dan akurasi data. 

Tahapan utama dalam pra-pemrosesan citra UAV meliputi: 

a. Stitching (Mosaicking) 

Proses penggabungan beberapa citra individu menjadi satu citra utuh 

(orthomosaic) yang mencakup area yang lebih luas. Teknik ini penting untuk 

menghasilkan peta yang kontinu dan konsisten, serta mempermudah analisis 

spasial. Angel at al. (2020) mengembangkan metode otomatis untuk georektifikasi 
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dan mosaicking citra hiperspektral berbasis UAV, yang meningkatkan efisiensi 

dalam pengolahan data citra. 

b. Georeferencing 

Penyesuaian posisi citra agar sesuai dengan koordinat geospasial di 

permukaan bumi. Proses ini biasanya dibantu dengan data GPS atau Ground 

Control Points (GCP) untuk memastikan akurasi spasial yang tinggi. Studi oleh 

Angel at al. (2020) menunjukkan bahwa integrasi georeferencing dalam workflow 

pra-pemrosesan citra UAV dapat meningkatkan akurasi spasial hingga tingkat yang 

signifikan. 

c. Radiometric Correction 

Koreksi nilai piksel citra untuk menghilangkan pengaruh pencahayaan, 

bayangan, atau atmosfer yang dapat memengaruhi hasil analisis. Proses ini penting 

untuk memastikan bahwa nilai reflektansi yang diperoleh mencerminkan kondisi 

sebenarnya di lapangan. Angel at al. (2020) menekankan pentingnya koreksi 

radiometric dalam meningkatkan kualitas citra UAV untuk aplikasi pertanian. 

d. Noise Removal 

Penghapusan data citra yang tidak relevan atau gangguan (seperti kabut, 

noise sensor, atau objek luar tanaman) untuk meningkatkan akurasi ekstraksi fitur. 

Proses ini memastikan bahwa analisis yang dilakukan hanya berdasarkan data yang 

valid dan relevan. 

e. Resampling dan Cropping 

Penyesuaian ukuran dan resolusi piksel agar selaras dengan skala 

pengolahan, serta pemotongan area yang tidak dibutuhkan untuk fokus pada area 

analisis yang relevan. Tahapan ini mempermudah proses analisis dan mengurangi 

beban komputasi. 

 

2.8 Ruang warna RGB  

Ruang warna RGB (Gambar 2.5) merupakan sistem representasi warna 

dalam citra digital yang menggunakan tiga warna, yaitu Merah (Red), Hijau 

(Green), dan Biru (Blue) (Pamungkas, 2023). Dengan menambahkan intensitas 
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cahaya, RGB dapat menghasilkan berbagai warna lainnya karena sifatnya aditif. 

Dalam citra digital, setiap warna memiliki intensitas antara 0 hingga 255, dimana 0 

berarti tidak ada intensitas warna sedangkan 255 berarti intensitas penuh warna 

(Pamungkas, 2023). 

 

2.9 Python 

Python adalah bahasa pemrograman yang dikembangkan sebagai penerus 

dari bahasa pemrograman ABC oleh Guido van Rossum pada akhir tahun 1980-an 

dan kemudian dirilis secara publik pada tahun 1991 (Wikipedia contributors, 2025). 

Python mendukung berbagai paradigma pemrograman seperti objektif, prosedural 

dan fungsional (Python Software Foundation, 2025). Python menawarkan fitur 

seperti modul, pengecualian, pengetikan dan tipe data dinamis, serta kelas dengan 

sintaksis yang sederhana namun jelas dan kuat serta dapat diintegrasikan dengan 

pustaka eksternal, sistem operasi dan dapat diperluas menggunakan bahasa C atau 

C++ (Python Software Foundation, 2025).  

 

Gambar 2.5 Ruang warna RGB 

(Sumber: https://www.shutterstock.com/image-vector/additive-color-

mixing-scheme-rgb-colors-1439873501) 

https://www.shutterstock.com/image-vector/additive-color-mixing-scheme-rgb-colors-1439873501
https://www.shutterstock.com/image-vector/additive-color-mixing-scheme-rgb-colors-1439873501
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2.9.1 NumPy 

Numerical Python (NumPy) adalah pustaka python open-source yang 

menyediakan fungsi-fungsi matematika sampai operasi numerik dan struktur data 

array multidimensi. NumPy menjadi alat fundamental untuk memanipulasi data 

raster, seperti citra satelit atau UAV, karena kemampuannya dalam menangani 

array besar dengan efisien pada pengolahan citra dan penginderaan jauh. NumPy 

memungkinkan konversi array numerik dari citra raster sehingga, memudahkan 

proses seperti normalisasi nilai piksel, perhitungan indeks vegetasi (NDVI), dan 

deteksi perubahan tutupan lahan.  

Dalam studi oleh Fuentes-Peñailillo at al. (2024), intergrasi antara IoT, 

penginderaan jauh, dan kecerdasan buatan dalam pertanian digital menunjukkan 

bahwa penggunaan NumPy dalam pra-pemrosesan data citra meningkatkan akurasi 

prediksi hasil panen. Selain itu, NumPy mampu melakukan operasi matematika 

kompleks, seperti transformasi Fourier dan dekomposisi matriks, juga mendukung 

analisis spasial lanjutan dalam penginderaan jauh. Dengan demikian, NumPy 

menjadi komponen kunci dalam pipeline pemrosesan data geospasial, dari tahap 

pra-pemrosesan hingga analisis dan visualisasi (Mulkar, H., 2024). 

 

2.9.2 Matplotlib 

Matplotlib merupakan pustaka visualisasi data 2D dan 3D dalam bahasa 

pemrograman Python yang sangat populer di kalangan ilmian data dan peneliti. 

Matplotlib digunakan dalam penginderaan jarak jauh dan pertanian presisi untuk 

memvisualisasikan data citra satelit hasil klasifikasi serta analisis spasial lainnya. 

kemampuannya dalam menghasilkan berbagai jenis grafik seperti peta sebaran 

histogram dan grafik timeseries menjadikan matplotlib alat yang esensial dalam 

interpretasi data geospasial. 

Dalam praktiknya, Matplotlib sering digunakan bersama pustaka lain 

seperti NumPy dan Rasterio untuk memproses dan menampilkan citra penginderaan 

jauh. Misalnya, dalam analisis indeks vegetasi normalisasi (NDVI), Matplotlib 

dapat digunakan untuk memvisualisasikan distribusi nilai NDVI pada lahan 
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pertanian, membantu dalam monitoring kesehatan tanaman dan deteksi dini 

penyakit. 

Selain itu, Matplotlib juga digunakan dalam pelatihan dan evaluasi model 

DL untuk deteksi objek dalam citra pertanian. Visualisasi hasil prediksi model, 

seperti bounding box pada objek yang terdeteksi, memungkinkan peneliti untuk 

menilai kinerja model secara intuitif. Dengan demikian, Matplotlib tidak hanya 

berfungsi sebagai alat visualisasi, tetapi juga sebagai komponen integral dalam 

pipeline analisis data penginderaan jauh dan pertanian presisi. 

 

2.10 QGIS 

Quantum geographic information system (QGIS) merupakan perangkat 

lunak open-source berbasis Sistem Informasi Geografis (SIG) yang digunakan 

untuk pengolahan, analisis, visualisasi dan memetakan data spasial. Dalam bidang 

pertanian, QGIS berperan pending dalam pemrosesan data penginderaan jauh, 

seperti citra dari UAV atau satelit, untuk memantau kesehatan tanaman, mendeteksi 

penyakit, dan mengelola lahan.  

Salah satu keunggulan QGIS adalah integrasi dengan plugin tambahan yang 

mendukung analisis lanjutan. Misalnya, plugin Deepness memungkinkan pengguna 

menerapkan model DL langsung pada layer raster di QGIS, memfasilitasi tugas-

tugas seperi segmentasi dan deteksi objek dalam citra penginderaan jauh 

(Aszkowski et al., 2023). Selain itu, plugin Modules for Land Use Change 

Simulations (MOLUSCE) digunakan untuk menganalisis perubahan penggunaan 

lahan dan memprediksi scenario perubahan di masa depan, yang sangat berguna 

dalam perencanaan pertanian berkelanjutan (Muhammad et al., 2022). 

 

2.11 Roboflow 

Roboflow adalah platform cloud komputasi visual yang menyediakan solusi 

end-to-end untuk pengembangan model deteksi objek, mulai dari anotasi data, 

augmentasi, pelatihan model, hingga deployment. Platform ini mendukung berbagai 

model DL, seperti YOLOv8 dan yang terbaru YOLOv11, yang memungkinkan 
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pengguna membangun serta menerapkan model deteksi objek secara efisien. Dalam 

sektor pertanian, Roboflow telah dimanfaatkan untuk mengidentifikasi penyakit 

tanaman, mendeteksi gulma, dan memantau perkembangan tanaman melalui citra 

UAV maupun satelit. Salah satu contohnya adalah ketersediaan dataset publik 

seperti PlantDoc, yang memuat 2.598 gambar guna membantu proses identifikasi 

penyakit tanaman (Roboflow, 2025). 

Di samping itu, Roboflow Universe menyediakan beragam dataset dan 

model pra-latih yang dapat dimanfaatkan untuk meningkatkan efisiensi pertanian, 

menurunkan biaya produksi, serta mendorong peningkatan hasil panen (Roboflow, 

2025). Platform ini juga mendukung integrasi dengan model seperti YOLOv5, yang 

telah terbukti memiliki tingkat presisi tinggi—mencapai 90% dalam mendeteksi 

penyakit pada daun padi (Kanna et al., 2024). Dengan kemampuannya dalam 

menangani seluruh siklus pengembangan model deteksi objek, Roboflow menjadi 

salah satu alat penting dalam implementasi teknologi penginderaan jauh untuk 

mendukung pertanian presisi. 

Dalam penelitian ini, Roboflow dimanfaatkan untuk mempersiapkan 

dataset melalui fitur dataset preprocessing, yang berperan dalam meningkatkan 

kualitas data sehingga dapat mendukung proses pelatihan model secara lebih 

optimal. Preproses yang dilakukan seperti: 

1. Mengubah ukuran citra agar konsisten dengan input model dan generalisasi 

skala objek pada citra. 

2. Menyesuaikan orientasi gambar agar memiliki orientasi yang sama semua. 

3. Augmentasi data seperti membalikkan citra secara horizontal atau vertikal 

guna menambah variasi data, memutar citra guna membantu mobel 

mengenali objek dari berbagai sudut, dan pemotongan citra dengan tujuan 

memusatkan perhatian pada bagian tertentu dari citra guna meningkatkan 

detail analisis.  

 

2.12 Google Colaboratory 

Google Colaboratory atau singkatannya Google Colab merupakan layanan 

cloud dari Google yang dapat digunakan untuk menulis, menjalankan dan berbagi 
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kode Python langsung dari web-browser tanpa memerlukan perangkat lunak 

tambahan (Revou, 2025). Dengan menyediakan akses gratis ke sumber daya 

komputasi seperti GPU dan TPU, Google Colab mmemudahkan praktisi data 

science, machine learning, serta kalangan pendidikan dalam menjalankan berbagai 

kebutuhan komputasi (Google Colab, 2025). 

 

2.13 TensorFlow 

TensorFlow merupakan salah satu pustaka open-source yang 

dikembangkan oleh Google untuk kebutuhan ML dan DL. Salah satu kekuatan 

utama TensorFlow adalah fleksibilitasnya dalam mengatur dan menjalankan data 

flow graph yang dapat menangani operasi tensor kompleks. TensorFlow 

memungkinkan pengguna membangun dan menyesuaikan arsitektur model, 

mengatur proses pelatihan, serta melakukan evaluasi dan deployment model pada 

perangkat edge hingga cloud. 

Dalam praktik pengembangan model DL modern, TensorFlow umumnya 

digunakan bersama dengan Keras, yang merupakan API tingkat tinggi untuk 

membangun dan melatih jaringan saraf tiruan. Sejak TensorFlow 2.0, Keras telah 

terintegrasi secara penuh sebagai default high-level API yang memudahkan proses 

pengembangan model, tanpa mengorbankan performa. Dengan menggunakan 

Keras, pengguna dapat membuat model DL secara lebih cepat dan efisien 

menggunakan antarmuka berbasis Python yang intuitif. Arsitektur seperti AE, 

CNN, dan LSTM dapat dirancang hanya dengan beberapa baris kode melalui 

pendekatan Sequential atau Functional API. 

 

2.14 Ultralytics 

Ultralytics adalah sebuah platform pengembangan yang secara khusus 

dikenal sebagai pengembang utama dan penyedia implementasi model-model You 

Only Look Once (YOLO) (Ultralytics, 2023 ). Sebagai entitas di balik versi-versi 

populer seperti YOLOv5 dan YOLOv8, Ultralytics menyediakan kerangka kerja 

yang efisien dan mudah digunakan untuk pelatihan, validasi, dan inferensi model 
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deteksi objek. Platform ini memfasilitasi penelitian dan aplikasi praktis dalam visi 

komputer dengan menawarkan kode sumber terbuka, model pra-terlatih, dan alat 

pendukung yang mengoptimalkan kinerja dan kecepatan deteksi objek. 

 

2.15 Penelitian terdahulu 

Dalam deep learning, AE telah menjadi teknik penting dalam pengolahan 

citra dan penginderaan jauh. Pada sektor pertanian, AE dapat digunakan untuk 

klasifikasi dan segmentasi citra tanaman, serta mendeteksi dini penyakit pada 

tanaman. Dalam penelitiannya, Isinkaye at al. (2025) mengembangkan model 

hybrid yang mengkombinasikan Variational Autoencoder (VAE) dan Vision 

Transformer (ViT) untuk meningkatkan akurasi dan ketahanan dalam 

mendiagnosis penyakit pada tanaman. Model tersebut mampu untuk 

mengklasifikasikan berbagai jenis penyakit tanaman melalui analisis citra daun. 

Selain itu, penelitian yang dilakukan oleh Bedi dan Gole (2021) memperkenalkan 

model hybrid yang mengkombinasikan CAE dengan CNN untuk mendeteksi 

penyakit pada tanaman secara otomatis. Dengan akurasi ujicoba yang mencapai 

98.83%, model ini layak untuk dipertimbangkan dalam aplikasi pertanian presisi 

Di sisi lain, berbagai pendekatan kecerdasan buatan dalam mendeteksi 

infeksi Ganoderma pada tanaman kelapa sawit telah memperlihatkan performa 

yang menjanjikan serta prospek pengembangan yang luas di masa mendatang. 

Penelitian yang dilakukan oleh Ahmadi at al. (2020) memanfaatkan citra UAV dan 

model Artificial Neural Network (ANN) dalam mendeteksi infeksi Ganoderma 

pada tanaman kelapa sawit yang berhasil mengidentifikasi tingkat keparahan 

infeksi dengan akurasi yang tinggi. Secara umum, berbagai penelitian yang 

sebelumnya telah menunjukkan bahwa AE dan teknik deep learning lainnya 

memiliki potensi dalam melakukan klasifikasi, segmentasi, serta mendeteksi dini 

penyakit pada tanaman, termasuk infeksi Ganoderma pada tanaman kelapa sawit. 

Berbagai penelitian terdahulu menunjukkan bahwa model deep learning, 

khususnya Autoencoder (AE), menawarkan potensi dalam dalam implementasi 

pertanian presisi. Model AR terbukti efektif untuk klasifikasi, segmentasi, dan 

deteksi dini penyakit tanaman. Pendekatan hybrid yang mengkombinasikan AR 
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dengan arsitektur lain seperti Convolutional Autoencoder (CNN) atau Vision 

Transformer (ViT), telah mencapai akurasi tinggi dalam mendiagnosis penyakit 

melalui analisis citra. Sejalan dengan temuan tersebut, penelitian ini mengadopsi 

prinsip dasar model AE untuk mengembangkan model yang mampu mendeteksi 

dini infeksi Ganoderma pada pohon kelapa sawit. Pendekatan ini memanfaatkan 

kemampuan AE dalam mempelajari representasi data normal mengidentifikasi 

anomali visual pada citra penginderaan jauh, sebuah strategi yang didasarkan pada 

kesuksesan model AI sebelumnya dalam mendeteksi infeksi Ganoderma. 
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BAB III  

ANALISIS DAN PERANCANGAN SISTEM 

 

3.1 Alur Penelitian 

Penelitian tugas akhir ini bertujuan untuk mengembangkan dan menerapkan 

algoritma atau arsitektur AE guna mendeteksi infeksi Ganoderma secara dini pada 

pohon kelapa sawit dengan memanfaatkan citra yang diambil menggunakan UAV. 

Berikut adalah alur penelitian (Gambar 3.1) untuk penelitian tugas akhir ini. 

 

3.2 Identifikasi Masalah 

Dalam perkebunan kelapa sawit saat ini masalah yang muncul adalah 

bagaimana mendeteksi atau memperkirakan pohon sawit mana yang kemungkinan 

akan terinfeksi Ganoderma sehingga bisa dilakukan pencegahan. Dengan luas 

wilayah perkebunan yang sangat luas, membutuhkan waktu yang signifikan untuk 

melakukan monitoring kondisi setiap pohon kelapa sawit. Oleh karena itu, 

dibutuhkan sebuah sistem yang akurat dalam memprediksikan kemungkinan 

terjadinya infeksi Ganoderma pada citra UAV bulan selanjutnya dengan 

memanfaatkan citra UAV pada bulan-bulan sebelumnya. 

Gambar 3.1 Alur penelitian 
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3.3 Analisis Kebutuhan 

Dalam rangka mendukung kelancaran penelitian ini, analisis kebutuhan 

sangat penting untuk memastikan bahwa semua aspek yang diperlukan dapat 

disiapkan dengan baik. Analisis kebutuhan dilakukan dengan tujuan merancang dan 

mengembangkan model AE yang efektif, serta menilai perangkat keras dan lunak 

yang diperlukan baik oleh peneliti maupun oleh pengguna yang akan menggunakan 

model tersebut. 

 

3.3.1 Kebutuhan Pengguna 

Kebutuhan pengguna dalam penelitian ini berfokus pada pengembangan 

model deep learning yang mampu mendeteksi dini infeksi Ganoderma pada 

tanaman kelapa sawit berdasarkan anomali visual (warna daun). Model ini 

dirancang sebagai inti dari sebuah sistem yang dapat mengidentifikasi pohon yang 

terinfeksi oleh Ganoderma. Meskipun demikian, pengembangan aplikasi deteksi 

yang akan mengintegrasikan model ini secara penuh akan menjadi fokus utama 

pada penelitian lanjutan.  

 

3.3.2 Kebutuhan Peneliti 

Berikut merupakan beberapa perangkat keras dan perangkat lunak yang 

digunakan oleh peneliti dalam melakukan penelitian ini. 

1. Perangkat Keras 

a. Laptop 

i.  CPU : Intel i7-1165G7 

ii.  GPU : NVIDIA GeForce MX350 

iii.  RAM : 8 GB 

iv.  SSD : 1 TB 

v.  Sistem Operasi : Windows 10 Home 

2. Perangkat Lunak 

a. Google Colaboratory 

b. Google Drive 

c. Python 

d. QGIS 
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e. Roboflow f. Ultralytics 

3.4 Studi Pustaka 

Dalam tahap ini, peneliti melakukan studi pustaka terhadap penelitian-

penelitian terdahulu yang berkaitan dengan penelitian ini. Penelitian terdahulu yang 

dijadikan referensi merupakan penelitian yang berkaitan dengan deteksi dini infeksi 

Ganoderma pada tanaman kelapa sawit khususnya menggunakan kecerdasan 

buatan serta penelitian yang berkaitan dengan penginderaan jauh. 

 

No Topik Pengetahuan Temuan 

1.  Deteksi 

Ganoderma 

pada bibit 

sawit 

menggunakan 

hiperspektral 

VIS-NIR dan 

SVM. 

Pemanfaatan data 

citra hiperspektral 

VIS-NIR dan 

algoritma SVM 

untuk deteksi 

infeksi 

Ganoderma pada 

bibit sawit. 

Reflektansi spektrum NIR  dari 

pelepah kelapa sawit 

menunjukkan perbedaan yang 

signifikan antara bibit yang tidak 

dan diinokulasi dengan patogen 

G. boninense. Melalui 

penerapan algoritma Fine 

Gaussian SVM, diperoleh 

tingkat akurasi klasifikasi 

sebesar 93% dengan 

menggunakan 35 band NIR 

(Azmi et al., 2020). 

2.  Deteksi 

Ganoderma 

dan hama 

penggerek 

batang pada 

kelapa sawit 

menggunakan 

spektrum 

reflektansi 

penginderaan 

jauh. 

Analisis citra 

multispektral dan 

hiperspektral 

untuk deteksi 

infeksi 

Ganoderma dan 

hama pada kelapa 

sawit. 

Penelitian oleh Anuar et al. 

(2021), menyatakan bahwa  

pencitraan multispektral mampu 

membedakan antara kondisi 

sehat, infeksi sedang, dan infeksi 

parah dengan akurasi 

keseluruhan lebih dari 90% 

namun tidak dengan infeksi 

ringan atau awal infeksi 

Ganoderma. Sementara itu, 

pencitraan hiperspektral mampu 

membedakan antara kondisi 

sehat, infeksi ringan, dan tingkat 

keparahan lainnya dari infeksi 

Ganoderma pada kelapa sawit. 

 

Tabel 3.1 Ringkasan hasil penelitian terdahulu 
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No Topik Pengetahuan Temuan 

3.  Identifikasi 

penyakit pada 

tanaman 

menggunakan 

Autoencoder 

(AE). 

Memanfaatkan 

AE sebagai 

ekstraksi fitur 

otomatis dalam 

menentukan 

tingkat keparahan 

penyakit busuk 

daun dini dan 

busuk daun akhir 

pada daun tomat. 

Dalam penelitiannya, Ong 

(2021) menerapkan dua lapis 

arsitektur AE untuk 

mengekstraksi fitur dari citra, 

dengan menggunakan sebanyak 

122 gambar untuk proses 

pelatihan dan pengujian. 

Hasilnya, model tersebut 

berhasil mengklasifikasikan 

tingkat keparahan penyakit 

tanaman dengan akurasi 

keseluruhan sebesar 72,7%. 

4.  Deteksi 

penyakit 

tanaman 

menggunakan 

model hybrid 

Convolutional 

Autoencoder 

(CAE) dan  

Convolutional 

Neural 

Network 

(CNN). 

Pendekatan 

model hybrid 

CAE dan CNN 

untuk deteksi 

otomatis penyakit 

pada tanaman. 

Pendekatan hybrid yang 

mengombinasikan CAE dengan 

CNN telah dikembangkan untuk 

mendeteksi penyakit pada 

tanaman secara otomatis. Model 

menunjukkan akurasi pelatihan 

dan pengujian yang tinggi, 

masing-masing sebesar 99,35% 

dan 98,83%, dengan total 

parameter pelatihan yang 

digunakan sebanyak 9.914. 

 

Berdasarkan berbagai penelitian terdahulu, deteksi infeksi Ganoderma pada 

kelapa sawit telah menunjukkan keberhasilan, khususnya dengan memanfaatkan 

citra hiperspektral yang sensitif terhadap perubahan spektrum Near-Infrared (NIR) 

pada pelepah, memungkinkan deteksi pada tahap awal infeksi (Azmi at al., 2020; 

Anuar at al., 2021). Meskipun demikian, citra multispektral yang lebih umum 

cenderung kurang efektif dalam mengidentifikasi gejala dini penyakit. Sebagai 

alternatif dari metode penginderaan jauh yang kompleks, model deep learning 

menawarkan solusi yang menjanjikan. Autoencoder (AE), misalnya, terbukti efektif 

sebagai ekstraktor fitur otomatis untuk klasifikasi penyakit tanaman, bahkan 

dengan jumlah data yang terbatas (Ong, 2021). Pendekatan ini diperkuat oleh 

Tabel 3.2 Lanjutan 
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keberhasilan model hybrid yang mengkombinasikan CAE dengan CNN, yang 

menunjukkan akurasi sangat tinggi dalam deteksi penyakit tanaman secara 

otomatis. Hal ini menegaskan bahwa pendekatan berbasis AE adalah metode yang 

valid dan efektif untuk mengidentifikasi anomali yang mengindikasikan infeksi 

Ganoderma. 

 

3.5 Desain Penelitian 

Desain penelitian (Gambar 3.2) merupakan tahapan yang menggambarkan 

keseluruhan proses pengembangan model deep learning yang mampu mendeteksi 

anomali infeksi Ganoderma pada kelapa sawit. Pada bagian ini, proses dimulai dari 

pemilihan Region of Interest (ROI) hingga menghasilkan model yang mampu 

mendeteksi anomali pada pohon kelapa sawit. Desain ini dibuat untuk memastikan 

setiap tahapan saling terintegrasi dan mendukung pencapaian tujuan penelitian. 

Berikut penjelasan setiap tahapan: 

• Pemilihan Region of Interest (ROI)  

Proses diawali dengan pemilihan satu area (region) spesifik sebagai fokus 

penelitian. 

• Pemotongan Citra untuk Dataset YOLO 

Citra dari area yang dipilih kemudian dipotong ke dalam blok-blok kecil 

guna membentuk Dataset YOLO, yang dibahas pada Subbab 3.5.1.1. 

Tahapan ini penting untuk memperkaya jumlah data pelatihan serta 

memungkinkan model mendeteksi objek pohon pada skala yang lebih detail. 

• Latih YOLO: Identifikasi Pohon 

Dataset hasil pemotongan kemudian digunakan untuk melatih model 

deteksi objek YOLO yang berfungsi untuk mengidentifikasi posisi pohon 

kelapa sawit. Proses ini dijelaskan dalam Subbab 3.5.2.1. Hasil pelatihan 

berupa koordinat bounding box pada masing-masing pohon dalam citra. 

• Pemotongan Citra untuk Dataset AE 

Berdasarkan anotasi (bounding box) dari model YOLO, setiap pohon kelapa 

sawit dalam citra dipotong satu per satu dan digunakan untuk membentuk 
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dataset AE. Dataset ini digunakan untuk pelatihan model deteksi anomali 

dan dijelaskan pada Subbab 3.5.1.2. 

• Persiapan dan Pengambilan Dataset Timeseries 

Citra diidentifikasi dan ditandai pohon-pohon kelapa sawit yang telah 

tumbang. Kemudian dilacak mundur pada citra dari bulan-bulan 

sebelumnya dan pohon-pohon yang sama diambil dari setiap bulan tersebut 

untuk membentuk dataset timeseries, yang akan digunakan untuk analisis 

perkembangan penyakit dari waktu ke waktu. Proses ini dibahas pada 

Subbab 3.5.1.3. 

• Latih CAE: Deteksi Ganoderma 

Citra pohon yang sudah terpotong digunakan untuk melatih model CAE dan 

VAE dalam mendeteksi anomali visual yang mengindikasikan keberadaan 

Ganoderma. Proses pelatihan model ini dibahas pada Subbab 3.5.2.2. 

• Model 

Output terakhir dari penelitian adalah model yang mampu mendeteksi 

anomali infeksi Ganoderma pada pohon kelapa sawit. 

 

 

Gambar 3.2 Alur desain penelitian 
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3.5.1 Penyusunan Dataset 

Dalam proses pengembangan model CAE guna mendeteksi dini infeksi 

Ganoderma pada pohon kelapa sawit berbasis kecerdasan buatan, tahapan 

penyusunan dataset memegang peranan yang sangat penting. Dataset menjadi 

fondasi utama dalam pelatihan dan pengujian model yang akan digunakan, baik 

untuk deteksi objek maupun untuk identifikasi anomali. Oleh karena itu, diperlukan 

pembagian dataset yang sistematis sesuai dengan kebutuhan dan karakteristik dari 

masing-masing model yang akan dikembangkan. Berikut Gambar 3.3 menjelaskan 

mengenai serangkaian proses penyusunan dataset yang akan diimplementasikan 

pada penelitian ini.  

 

Dataset yang digunakan dalam penelitian ini merupakan citra udara 

berukuran 50064 x 77179 piksel dengan 4 band (gambar 3.4) yang diperoleh 

menggunakan UAV pada ketinggian ± 500 meter di wilayah perkebunan kelapa 

sawit PT. Perkebunan Nusantara (PTPN) di Gunung Bayu, Medan, Sumatera Utara. 

Data ini diperoleh sebagai dalam rangka kolaborasi dengan Kelompok Riset 

Precision Agriculture (KRPA). Proses pengambilan citra dilakukan secara berkala 

dalam rentang waktu mulai dari bulan Januari – Juni 2023 dan diproses serta 

dikategorikan ke dalam beberapa subset sesuai dengan tujuan analisis. Citra UAV 

bulan Juni 2023 akan digunakan sebagai dataset pelatihan untuk pengembangan 

dan pembelajaran model, sementara citra bulan Januari – Mei 2023 akan digunakan 

untuk dataset timeseries untuk uji coba dan evaluasi kinerja model. Model YOLO 

memerlukan dataset dengan anotasi khusus untuk mengidentifikasi objek pohon 

Gambar 3.3 Alur Penyusunan Dataset 
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kelapa sawit, sementara model CAE dan CVAE difokuskan untuk mendeteksi 

anomali dengan hanya dilatih menggunakan citra pohon sehat.  

 

Selain itu, citra UAV dari bulan Januari hingga Juni 2023 juga dimanfaatkan 

sebagai dataset time-series yang merepresentasikan dinamika kondisi tanaman dari 

waktu ke waktu. Dataset ini memiliki peran krusial dalam pengembangan sistem 

deteksi dini Ganoderma berbasis citra UAV, karena memungkinkan model untuk 

mempelajari dan mengenali perubahan visual yang terjadi secara bertahap pada 

tanaman yang mengalami infeksi. Untuk mengevaluasi batas kemampuan deteksi 

model, disusun pula dataset timeseries dengan pendekatan penelusuran mundur 

terhadap pohon-pohon yang telah diketahui mengalami infeksi berat atau 

kerusakan. Pendekatan ini bertujuan untuk mengidentifikasi titik awal perubahan 

visual yang dapat dikenali oleh model CAE dan CVAE, sehingga dapat diuji sejauh 

mana model mampu mendeteksi gejala awal sebelum munculnya tanda-tanda yang 

kasatmata. Pembagian dan penyusunan dataset dijelaskan secara rinci dalam tiga 

subbab berikut. 

 

Gambar 3.4 Kebun kelapa sawit milik PTPN 
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3.5.1.1 Dataset YOLO 

Dataset ini disusun dengan tujuan utama untuk mendukung proses deteksi 

objek menggunakan model YOLO yang tugasnya mengenali dan mendeteksi objek 

menggunakan model YOLO yang bertugas mengenali dan mendeteksi keberadaan 

pohon kelapa sawit dalam citra UAV. Proses ini diawali dengan menggunakan 

QGIS untuk menentukan Region of Interest (ROI), yaitu wilayah pada kebun kelapa 

sawit yang diidentifikasi memiliki kepadatan pohon sawit tinggi, serta potensi 

adanya pohon kelapa sawit yang sakit atau tumbang (Gambar 3.5). Penentuan ROI 

ini bertujuan untuk memfokuskan proses anotasi dan pelatihan model hanya pada 

area-area yang relevan, sehingga efisiensi dan akurasi dalam proses deteksi objek 

dapat ditingkatkan.  

 

 Setelah ROI ditentukan, citra yang mengandung ROI dipotong terlebih 

dahulu menjadi 10 bagian atau blok yang berukuran 2283 x 1653 piksel 

menggunakan skrip Python kustom yang dirancang khusus untuk mempermudah 

proses anotasi seperti pada Gambar 3.6. Pemotongan ini bertujuan agar setiap blok 

mencakup bagian citra yang lebih fokus dan manageable. 

 

 

Gambar 3.5 Penentuan ROI 
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Selanjutnya, proses penganotasian pohon kelapa sawit dilakukan 

menggunakan Roboflow, di mana setiap objek pohon diberi bounding box secara 

manual untuk keperluan pelatihan model deteksi. Setiap pohon kelapa sawit dalam 

citra ditandai menggunakan bounding box untuk menunjukkan posisi dan batas 

objek secara presisi (Gambar 3.7).  

Pada tahap ini, hanya objek pohon kelapa sawit yang diberikan anotasi, 

sedangkan objek lain seperti bayangan, semak, maupun vegetasi selain kelapa sawit 

diabaikan dan tidak dianotasi. Selain itu, proses anotasi dilakukan tanpa label 

kondisi kesehatan pohon, sehingga klasifikasi objek dalam dataset ini terbatas pada 

identifikasi pohon kelapa sawit yang terdapat dalam citra UAV. Pendekatan ini 

memungkinkan model YOLO mempelajari karakteristik umum dari pohon kelapa 

sawit dan membedakannya dari elemen-elemen lain dalam lingkungan sekitar 

secara cepat dan efisien. 

Gambar 3.7 Anotasi pohon kelapa sawit sehat tanpa label 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

Gambar 3.6 Pembagian citra ROI 
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Proses anotasi ini merupakan tahap krusial dalam penyusunan dataset 

karena secara langsung memengaruhi kualitas pembelajaran model. Anotasi yang 

akurat dan konsisten akan membantu model memahami pola visual objek target 

secara efektif dan meningkatkan performa deteksi di kondisi lapangan yang 

kompleks.  

 

3.5.1.2 Dataset Autoencoder  

Dataset AE ini merupakan kelanjutan dari dataset YOLO yang telah 

dianotasi sebelumnya. Jika pada dataset YOLO anotasi dilakukan tanpa 

memperhatikan kondisi kesehatan pohon, maka pada dataset AE proses 

penganotasian dilakukan dengan penambahan label yang mencakup informasi 

kesehatan pohon kelapa sawit, seperti label sehat dan terinfeksi. Informasi ini 

diperoleh dari data koordinat pohon yang mengalami infeksi hingga tumbang telah 

disediakan oleh PTPN dalam bentuk file shapefile (.shp).  

Setiap pohon kelapa sawit dalam citra diberi label berdasarkan kondisinya, 

dengan bounding box berwarna hijau untuk pohon sehat, dan bounding box 

berwarna merah untuk pohon terinfeksi seperti yang ditampilkan pada Gambar 3.8. 

Label ini memudahkan proses klasifikasi dan menjadi dasar dalam tahapan pra-

pemrosesan, yaitu cropping citra berdasarkan bounding box untuk menghasilkan 

potongan citra individual dari masing-masing pohon. 

Gambar 3.8 Anotasi pohon kelapa sawit dengan label sakit dan sehat 
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Proses cropping bertujuan agar model CAE dan CVAE dapat mempelajari 

karakteristik visual normal pohon sawit sehat secara fokus, sehingga saat diuji 

dengan citra lain atau dalam kasus ini citra pohon sawit sakit, model dapat 

mendeteksi anomali visual yang mengindikasikan infeksi atau perubahan kondisi 

pohon.  

3.5.1.3 Dataset Timeseries 

Proses pembentukan dataset dilakukan dengan memilih pohon kelapa sawit 

yang telah teridentifikasi telah tumbang pada bulan Juni 2023. Selanjutnya, 

dikumpulkan citra UAV dari bulan-bulan sebelumnya (Mei-Januari 2023) yang 

menampilkan pohon kelapa sawit yang sama. Tujuannya adalah untuk menyusun 

dataset berurutan (timeseries) yang dapat menunjukkan perubahan kondisi visual 

pohon dari waktu ke waktu. Dengan pendekatan ini, model dapat mempelajari 

perubahan visual bertahap dari kondisi sakit sebelum akhirnya tumbang. 

Dataset timeseries ini digunakan untuk mengevaluasi kemampuan AE 

mendeteksi anomali pada tahap awal infeksi dan mengukur batas deteksi (limit 

detection) model, yaitu sejauh mana model dapat mengenali tanda-tanda awal 

infeksi sebelum gejala muncul secara visual. 

3.5.2 Desain Model 

Pada penelitian ini, untuk mencapai tujuan deteksi dini infeksi ganoderma 

pada pohon kelapa sawit berbasis citra UAV, digunakan tiga model yaitu, model 

Gambar 3.9 Contoh citra timeseries pohon sawit 
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YOLO, CAE, dan CVAE. Model YOLO berfungsi sebagai pendeteksi objek yang 

tujuannya mengidentifikasi dan menganotasikan citra pohon kelapa sawit dari citra 

UAV secara otomatis. Sementara itu, dua variasi model AE akan digunakan untuk 

menganalisis citra hasil anotasi tersebut guna mendeteksi adanya indikasi dini 

infeksi Ganoderma. Berikut adalah penjelasan mengenai masing-masing model. 

3.5.2.1 Model YOLO 

Model YOLO  merupakan algoritma deteksi objek berbasis DL yang 

dirancang untuk mendeteksi dan mengklasifikasikan objek dalam sebuah citra 

dengan cepat dan akurat. Dalam penelitian ini, model YOLOv11n (nano) dipilih 

karena arsitekturnya yang sederhana dan efisien bila dibandingkan dengan varian 

YOLOv11 lainnya. Model ini menawarkan keseimbangan optimal antara 

kecepatan, komputasi, dan akurasi, menjadikannya ideal untuk inferensi cepat serta 

implementasi pada perangkat dengan sumber daya terbatas. YOLOV11n nantinya 

akan digunakan untuk mengidentifikasi lokasi pohon kelapa sawit dalam citra 

UAV, dengan memanfaatkan bounding box sebagai penanda posisi objek.  

Model YOLOv11n dibangun dan dilatih menggunakan kombinasi platform 

Roboflow untuk anotasi data serta Ultralytics beserta Google Colab untuk 

pelatihan. Proses pelatihan dilakukan dengan menginputkan dataset YOLO ke 

dalam model dan dengan data 70% untuk pelatihan, 20% untuk validasi, dan 10% 

untuk pengujian.  

Output yang diharapkan dari model ini berupa koordinat bounding box 

pohon kelapa sawit, yang kemudian digunakan sebagai input bagi model CAE dan 

CVAE, dengan tujuan mengevaluasi kondisi kesehatan masing-masing pohon 

secara individual. 

Gambar 3.10 Pemilihan Dataset dan Pelatihan Model di Ultralytics 
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3.5.2.2 Model Autoencoder (AE) 

Dalam penelitian ini, penulis akan menggunakan dua variasi arsitektur AE, 

yaitu CAE dan CVAE. Kedua model ini dikembangkan melalui pendekatan 

eksperimental untuk mengidentifikasi konfigurasi layer yang paling optimal. 

3.5.2.2.1 Convolutional Autoencoder (CAE) 

CAE dikembangkan secara mandiri oleh penulis, mengacu pada pustaka 

TensorFlow (Tensorflow, 2024) dan repositori GitHub (aaryadev, 2024). 

Arsitekturnya diuji dalam tiga konfigurasi encoder yang berbeda, masing-masing 

dengan satu, dua, atau tiga layer Conv2D. Setiap layer Conv2D diikuti oleh fungsi 

aktivasi ReLU dan MaxPooling2D untuk mengurangi dimensi spasial gambar 

secara bertahap. Bagian decoder CAE dirancang secara simetris, menggunakan 

satu, dua, atau tiga layer Conv2DTranspose yang masing-masing diikuti oleh 

aktivasi ReLU dan UpSampling2D untuk mengembalikan dimensi gambar ke 

ukuran aslinya.  

 

Gambar 3.11 CAE satu layer (a), dua layer (b), dan tiga layer (c) 

(a) 

 

(c) 

 

(b) 

Encoder 

Decoder 

Encoder 

Decoder 

Encoder 

Decoder 
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3.5.2.2.2 Convolutional Variational Autoencoder (CVAE) 

CVAE dikembangkan berdasarkan artikel Tensorflow yang 

mendemonstrasikan pelatihan model VAE yang telah dimodifikasi dengan 

menambahkan convolutional layers agar dapat mendukung dataset MNIST 

(Tensorflow, 2024). Arsitektur dasar CVAE yang mirip dengan CAE namun 

dengan dua layer tambahan krusial. Pertama adalah Sampling layer (Gambar 3.12), 

yang mengimplementasikan Reparameterization Trick. Layer ini memungkinkan 

pengambilan sampel dari distribusi laten yang dipelajari encoder dengan cara yang 

dapat di-backpropagate, memisahkan komponen acak dari parameter yang 

dipelajari untuk memungkinkan perhitungan gradien yang efektif.  

 

Kedua adalah KL Divergence Layer, sebuah layer kustom yang menghitung 

dan menambahkan KL Divergence Loss ke model. Layer ini berfungsi sebagai 

regularisasi, memastikan bahwa distribusi laten yang dipelajari oleh encoder tetap 

mirip dengan distribusi normal standar, sehingga memaksa ruang laten menjadi 

lebih halus dan terstruktur. Ini krusial untuk kemampuan CVAE dalam 

menghasilkan data baru yang bermakna.  

 

Gambar 3.13 KL Divergence Layer 

Gambar 3. 12 Sampling Layer 
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Dalam implementasinya, model dibangun menggunakan Functional API 

Keras. Dimulai dengan encoder, ia menerima citra input berukuran 128x128x3 dan 

secara berurutan melewati tiga layer Conv2D. Konfigurasi ini memungkinkan 

fleksibilitas dalam kedalaman model: untuk satu layer, hanya filter 32 yang 

digunakan; untuk dua layer, filter 32 dan 64 akan aktif; sedangkan untuk tiga layer, 

ketiga filter 32, 64, dan 128 digunakan secara berurutan. Output konvolusional ini 

kemudian di-flatten dan diumpankan ke dua layer dense terpisah untuk 

menghasilkan z_mean dan z_log_var, yang merupakan parameter distribusi 

Gaussian di ruang laten. Sampling layer kemudian mengambil z_mean dan 

z_log_var ini untuk menghasilkan sampel z, yang menjadi representasi laten.  

Secara bersamaan, KL DivergenceLayer menghitung KL Divergence Loss 

dari z_mean dan z_log_var dan menambahkannya ke total loss model. Selanjutnya, 

Decoder mengambil sampel z dari ruang laten, mengembangkannya kembali 

menggunakan layer dense dan reshape ke dimensi spasial dan jumlah filter yang 

cocok dengan bottleneck encoder (16x16x128). Kemudian, tiga layer 

Conv2DTranspose secara bertahap memperbesar dimensi citra kembali ke  

128x128x3, dan aktivasi sigmoid pada layer output terakhir memastikan nilai piksel 

berada dalam rentang 0 hingga 1.  

Gambar 3.14 CVAE satu sampai tiga layer 
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Setelah kedua model dibuat, model akan dilatih dengan tiga variasi nilai 

learning rate (0,01; 0,001; dan 0,0005) serta tiga jumlah epochs yang berbeda (50, 

100, dan 150). Pemilihan skenario pelatihan ini didasarkan pada prinsip 

hyperparameter tuning untuk menemukan konfigurasi model yang paling optimal. 

Learning rate merupakan parameter krusial yang menentukan seberapa cepat model 

menyesuaikan bobotnya saat belajar dari data. Pengujian dengan nilai bervariasi 

(0,01; 0,001; dan 0,0005) bertujuan untuk menemukan laju pembelajaran yang 

ideal: nilai yang terlalu tinggi dapat menyebabkan model melewati titik optimal, 

sementara nilai yang terlalu rendah dapat membuat proses pelatihan menjadi sangat 

lambat. Di sisi lain, jumlah epochs menentukan seberapa banyak kali model melihat 

seluruh dataset pelatihan. Pengujian dengan variasi 50, 100, dan 150 epochs 

dilakukan untuk mengamati keseimbangan antara underfitting (model belum cukup 

belajar) dan overfitting (model terlalu menghafal data latihan). Oleh karena itu, 

pengujian kombinasi dari kedua parameter ini secara sistematis memungkinkan 

peneliti untuk mengidentifikasi titik optimal di mana model dapat mencapai akurasi 

tertinggi tanpa mengorbankan efisiensi waktu atau kemampuan generalisasinya 

pada data baru. 

Proses pelatihan model dilakukan dengan memanfaatkan platform Google 

Colaboratory, dan seluruh hasil pelatihan disimpan secara otomatis pada layanan 

penyimpanan Google Drive. Dataset yang digunakan dalam tahap ini adalah data 

healthy yang berasal dari citra pohon kelapa sawit pada bulan Juni 2023 dan 

dilakukan menggunakan algoritma optimasi Adam dengan pembagian data sebesar 

80% untuk pelatihan, 20% untuk validasi. Dalam proses deteksi anomali, kedua 

model memanfaatkan perbandingan antara citra asli dan citra hasil rekonstruksi 

dengan mengukur nilai MAE, MSE dan SSIM. Nilai-nilai tersebut kemudian 

dianalisis dan dibandingkan distribusi datanya antar model guna mengevaluasi 

efektivitas masing-masing dalam mengidentifikasi pohon kelapa sawit yang 

berpotensi terinfeksi Ganoderma boninense menggunakan dua metrik: Jensen-

Shannon Distance (JSD) dan Bhattacharyya Distance (BD). 
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3.5.3 Evaluasi Kinerja 

Pada tahap ini, dilakukan evaluasi terhadap kinerja dari tiga model yang 

dikembangkan, yaitu YOLO sebagai model deteksi objek dan 2 Variasi AE sebagai 

model deteksi anomali visual pada pohon kelapa sawit. Evaluasi dilakukan guna 

mengukur sejauh mana efektivitas dan akurasi dari masing-masing model dalam 

menjalankan tugasnya. Selain itu, dilakukan juga evaluasi terhadap kemampuan 

deteksi dini (Limit Detection) dari model CAE dan CVAE, guna mengetahui 

seberapa jauh model mampu mengenali gejala infeksi Ganoderma sebelum tanda 

visual terlihat secara nyata. Metriks evaluasi yang digunakan disesuaikan dengan 

karakteristik keluaran dari masing-masing model. 

 

3.5.3.1 Model YOLO 

Model YOLO dievaluasi dengan menggunakan tiga metrik, yaitu: 

• Precision, mengukur sejauh mana model dapat mengidentifikasi pohon 

kelapa sawit dengan benar tanpa menghasilkan terlalu banyak deteksi palsu. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
  

• Recall, menunjukkan kemampuan model dalam menangkap semua pohon 

kelapa sawit yang benar-benar ada dalam citra. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
  

• F1-Score, merupakan rata-rata harmonis dari precision dan recall, yang 

memberikan gambaran menyeluruh terhadap keseimbangan antara 

keduanya. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

3.5.3.2 Dataset Autoencoder  

Evaluasi model CAE dan CVAE dilakukan dengan dua metrik, yaitu MSE 

dan SSIM. 

• MAE mengukur rata-rata kesalahan rekonstruksi absolut antara citra input 

dan hasil rekonstruksi model. Nilai MAE yang rendah menandakan bahwa 
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citra direkonstruksi dengan baik, sedangkan nilai tinggi mengindikasikan 

potensi anomali. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑥| 

𝑛

𝑖=1

 

 

• MSE mengukur rata-rata kesalahan rekonstruksi antara citra input dan hasil 

rekonstruksi model. Nilai MSE yang rendah menandakan bahwa citra 

direkonstruksi dengan baik, sedangkan nilai tinggi mengindikasikan potensi 

anomali. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂)2 

𝑛

𝑖=1

 

 

• SSIM mengevaluasi kesamaan struktural antara dua citra, memberikan 

gambaran yang lebih manusiawi terhadap perbedaan visual yang penting. 

Nilai SSIM berkisar antara -1 hingga 1, dengan nilai mendekati 1 

menunjukkan kemiripan yang tinggi. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

 

3.5.3.3 Limit Detection 

Evaluasi limit detection bertujuan untuk menguji kemampuan model CAE 

dalam mendeteksi infeksi Ganoderma pada tahap awal, sebelum gejala visual 

muncul secara jelas. Untuk itu, digunakan dataset timeseries selama lima bulan 

(Januari–Mei 2023) yang memuat citra pohon sawit sebelum tumbang di bulan Juni 

2023. 

Untuk menilai batas kemampuan deteksi model dalam membedakan citra 

sawit sehat dan sakit, penulis akan menganalisis perbedaan distribusi metrik MAE, 

MSE dan SSIM menggunakan dua metrik: Jensen-Shannon Distance (JSD) dan 

Bhattacharyya Distance (BD). JSD, dengan rentang 0-1, akan menunjukkan adanya 

perbedaan signifikan jika nilainya mendekati 1. Sementara itu, nilai BD di atas 1 
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akan menjadi indikator pemisahan data yang sangat baik, karena menunjukkan 

tingkat tumpang tindih distribusi yang minimal. 

Dengan pendekatan ini, dapat diidentifikasi batas waktu terawal (limit 

detection) di mana model pertama kali mengenali perubahan visual sebagai indikasi 

infeksi. Hasil evaluasi ini sangat penting dalam konteks penerapan sistem deteksi 

dini, karena menggambarkan sejauh mana model dapat membantu pengambilan 

keputusan sebelum infeksi menyebar lebih luas.  
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BAB IV  

HASIL DAN PEMBAHASAN 

4.1 Dataset 

Dalam penelitian ini, penulis menggunakan serangkaian dataset yang 

dikumpulkan dan disiapkan khusus untuk melatih dan menguji model-model deep 

learning dengan peruntukannya masing-masing. Berikut rincian komposisi dari 

masing-masing dataset:  

1. Dataset Pertama (YOLO): Terdiri dari 10 potongan gambar ROI dengan 

jumlah total 1767 gambar pohon kelapa sawit. Dataset ini secara spesifik 

dialokasikan untuk melatih model deteksi YOLO. Tujuannya adalah agar 

model YOLO mampu secara akurat mengenali dan mendeteksi lokasi pohon 

kelapa sawit dalam citra. 

2. Dataset Kedua (AE): Berjumlah 1722 gambar pohon sehat. Dataset ini 

merupakan fokus utama untuk melatih dan menguji model CAE dan CVAE. 

Tujuan utamanya adalah untuk memungkinkan model-model ini 

mendeteksi secara dini adanya anomali yang mengindikasikan infeksi 

infeksi Ganoderma pada pohon kelapa sawit, dengan membedakan pola 

gambar pohon sehat dari pola gambar pohon yang terinfeksi. 

3. Dataset Ketiga (Timeseries): Dataset ini mencakup 205 titik data, yang 

merupakan akumulasi pengamatan selama lima bulan sebelum pohon 

kelapa sawit tumbang, dengan masing-masing 41 titik data per bulan. 

Dataset ini digunakan untuk menguji kemampuan deteksi dini model 

autoencoder mulai dari satu bulan hingga lima bulan sebelum tumbang. 

  

Dataset Jumlah Gambar 

YOLO 1767 

AE 1722 

Time-series 205 

 

4.2 Pelatihan Model 

Model penelitian ini terdiri dari dua komponen utama: satu arsitektur YOLO 

untuk deteksi objek dan dua variasi arsitektur CAE dan CVAE untuk deteksi 

 Table 4.1 Rincian dataset  
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anomali. Proses pelatihan model YOLO menggunakan 9 potongan gambar ROI 

yang dibagi menjadi 80% untuk pelatihan, 20% untuk validasi. Sementara itu, untuk 

pelatihan CAE dan CVAE, penulis memanfaatkan 1.722 gambar pohon sawit sehat, 

di mana 80% digunakan sebagai data pelatihan dan 20% sebagai data validasi. 

4.2.1 Pelatihan Model YOLO 

Berdasarkan hasil pelatihan model YOLO, penggunaan model pretrain 

menunjukkan performa yang jauh lebih baik dibandingkan dengan pelatihan tanpa 

pretrain. Hal ini terbukti pada Gambar 4.1 yang memvisualisasikan proses 

pembelajaran model. Pada awal pelatihan (epoch 0-8) nilai precision dan recall 

menunjukkan model masih dalam tahap adaptasi. Kinerja model sempat membaik 

pada epoch 9-13, namun kemudian menurun kembali pada epoch ke-14 yang 

mungkin menandakan model sementara kehilangan bobot optimal akibat 

penyesuaian bobot. Setelah itu, nilai precision dan recall kembali naik secara 

signifikan dengan fluktuasi pada epoch 19-99. 

 

 

Sebaliknya, model yang dilatih tanpa pretrain mengalami kesulitan 

mencapai performa yang baik pada jumlah epochs yang sama. Seperti yang 

ditunjukkan pada Gambar 4.2, model ini memerlukan waktu yang jauh lebih lama 

untuk belajar. Model tidak menunjukkan adanya perkembangan atau stagnan 

hingga epoch 80 dan baru mulai menunjukkan perbaikan atau perkembangan pada 

epoch 81-99. 

Gambar 4.1 Grafik performa model pretrain pada 100 epochs 

Epoch 
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Berdasarkan hasil keduanya pada 100 epochs (Tabel 4.2), model dengan 

pretrain mendapatkan nilai precision, recall, dan F1 score yang sangat tinggi dan 

stabil pada data pelatihan dan validasi, dengan F1 score di atas 0.97. Hal ini 

menunjukkan kemampuan deteksi yang akurat, dengan kesalahan prediksi yang 

sangat minim. Sementara itu, model tanpa pretrain mendapat nilai F1 score pada 

data validasi hanya 0.45, dengan precision dan recall yang relatif rendah, 

menunjukkan bahwa model sering salah mendeteksi objek atau melewatkan objek 

sebenarnya. 

 

 

Untuk mengatasi masalah tersebut, penulis mencoba meningkatkan 

performa model tanpa pretrain dengan menaikkan jumlah epoch menjadi 1000 

untuk kedua model. Tujuannya adalah memberi kesempatan bagi model tanpa 

pretrain untuk belajar dari awal dan menyesuaikan bobot sepenuhnya dengan 

karakteristik dataset kelapa sawit tanpa dipengaruhi pola dari dataset umum.  

Table 4.2 Hasil pelatihan model YOLO pada 100 epochs 

Gambar 4.2 Grafik performa model tanpa pretrain pada 100 epochs 

Epoch 
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Berkat early stopping dengan patience 100, model tanpa pretrain berhenti 

di epoch ke-641 (Gambar 4.3). Model tanpa pretrain menunjukkan perkembangan 

yang lambat diawal dengan tidak adanya perkembangan signifikan pada epoch 0-

63. Namun pada epoch 65-76 terjadi konvergensi yang diikuti oleh fluktuasi 

panjang hingga epoch 553, sebelum akhirnya berhenti 

 

Sebaliknya, model pretrain berhenti jauh lebih cepat yaitu pada epoch 343 

(Gambar 4.4), hampir separuh waktu pelatihan model tanpa pretrain. Menariknya, 

meskipun model ini tampak tidak stabil diawal dengan fluktuasi acak hingga epoch 

134, model berhasil mencapai nilai precision dan recall yang tinggi pada epoch 92 

dan 118. Setelah fluktuasi tersebut, model mulai stabil dan mempertahankan kinerja 

optimalnya hingga epoch ke-343.  

 

Kemudian dengan naiknya epoch, model tanpa pretrain berhasil mencapai 

F1 Score sebesar 0.9864 pada data validasi, berhasil melampaui F1 Score model 

Gambar 4.3 Grafik performa model tanpa pretrain pada 1000 epochs 

Epoch 

Gambar 4.4 Grafik performa model pretrain pada 1000 epochs 

Epoch 
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pretrain yang dilatih pada 100 epochs (0.9844). Namun demikian, peningkatan 

jumlah epochs hingga 10 kali lipat pada model tanpa pretrain menunjukkan 

kebutuhan waktu pelatihan yang jauh lebih lama dan sumber daya komputasi yang 

lebih besar. Sementara itu, model pretrain hanya mengalami peningkatan performa 

yang relatif kecil saat epoch dinaikkan 10 kali lipat, mengindikasikan bahwa bobot 

pretrain sudah sangat optimal bahkan pada jumlah epoch yang lebih kecil.  

 

 

Kesimpulannya, meskipun model pretrain menunjukkan fluktuasi yang 

besar diawal, model tetap berhasil mencapai bobot optimal jauh lebih cepat 

dibandingkan model tanpa pretrain yang membutuhkan waktu pelatihan dan epoch 

yang lebih banyak untuk belajar dan stabil. Perbedaan ini menegaskan bahwa 

dengan pretrain dapat membantu model memanfaatkan pengetahuan sebelumnya 

untuk mengenali fitur penting pada citra kelapa sawit, sehingga proses pelatihan 

lebih cepat konvergen, lebih akurat dan stabil. Selain itu, penggunaan pretrained 

secara signifikan mempersingkat waktu pengembangan model dan memaksimalkan 

hasil deteksi meskipun dengan keterbatasan sumber daya pelatihan. 

 

4.2.2 Pelatihan Model Convolutional Autoencoder (CAE) 

Untuk arsitektur CAE, hasil eksperimen dengan satu layer, menunjukkan 

penurunan loss dan validation loss yang sangat cepat di epoch 0-20, mencapai 

konvergensi dengan baik dalam waktu singkat. Penurunan ini konsisten di berbagai 

konfigurasi epoch dan learning rate. Misalnya, dengan 100 epochs dan learning 

rate 0.0005, loss turun dari 0.0046 menjadi 0.00014 hanya dalam 8 epochs (epoch 

0-7). Meskipun konvergensi terjadi dengan sangat cepat, penambahan epoch lebih 

Tabel 4.3 Perbandingan hasil pelatihan 

model YOLO pada 100 dan 1000 epochs 
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dari 50 epochs tidak memberikan peningkatan yang signifikan karena model telah 

1mencapai performal optimalnya. 

 

Secara umum, model satu layer menunjukkan performa yang sangat stabil 

dan akurat. validation loss terbaik tercatat sebesar 0.000026 pada learning rate 

0.0005 dengan 150 epochs, yang membuktikan kemampuan rekonstruksi yang luar 

biasa. Semakin kecil learning rate yang digunakan, semakin rendah pula validation 

loss yang dicapai. Namun, learning rate yang terlalu besar (seperti 0.01) 

menyebabkan performa menurun secara signifikan dan tidak stabil, yang 

Gambar 4.5 Grafik performa model CAE satu layer dengan konfigurasi (a) 100 

Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100 

Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150 

Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50 

Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50 

Epoch dan Learning Rate 0.01. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 



   

 

66 

 

ditunjukkan oleh validation loss yang lebih tinggi (sekitar 0.000501 - 0.000197). 

Hal ini mengindikasikan bahwa model satu layer sangat sensitif terhadap learning 

rate.  

Selanjutnya, pada dua layer, hasil menunjukkan pola penurunan loss dan 

validation loss yang serupa dengan model satu layer, yaitu cepat di awal dan 

kemudian melambat. Meskipun penambahan layer kedua bertujuan untuk 

menangkap representasi data yang lebih kompleks, performa model ini tidak selalu 

lebih baik. Nilai loss dan validation loss akhir memang sedikit lebih rendah 

dibandingkan model satu layer, yang menunjukkan bahwa model ini mampu belajar 

fitur yang lebih akurat. Sebagai contoh, dengan 100 epochs dan learning rate 

0.0005, nilai loss dan validation loss sudah berada di bawah 0.00056 pada epoch 

ke-8, dan penurunan terus berlanjut secara perlahan hingga paling rendah mencapai 

0.00027.  

Namun, model dua layer ini tampaknya lebih sensitif terhadap learning 

rate. Nilai validation loss terbaik (0.000234) tercapai pada kombinasi learning rate 

0.001 dan 150 epochs, yang sedikit lebih tinggi dibandingkan model satu layer. 

Performa memburuk secara signifikan saat learning rate dinaikkan menjadi 0.01, 

dengan validation loss yang jauh lebih tinggi (0.000800 - 0.000712). Ini 

menunjukkan bahwa learning rate yang terlalu besar membuat model dua layer 

lebih sulit beradaptasi. Meskipun penambahan epochs membantu menurunkan 

validation loss, penurunannya tidak setajam pada model satu layer, menegaskan 

adanya peningkatan kompleksitas yang tidak selalu berbanding lurus dengan 

peningkatan performa optimal. 

Terakhir, hasil eksperimen dengan tiga layer (Gambar 4.7) menunjukkan 

performa yang paling stabil dan nilai loss terendah dibandingkan model lain, 

dengan penurunan loss dan validation loss yang konsisten bahkan pada epochs yang 

lebih tinggi. Hal ini mengindikasikan kemampuannya untuk mengekstrak fitur yang 

lebih mendalam, yang menghasilkan rekonstruksi data paling akurat. Sebagai 

contoh, dengan 100 epochs dan learning rate 0.0005, nilai loss dan validation loss 

sudah mencapai 0.0018 dan 0.0017 pada epoch ke-7. Model ini juga menunjukkan 

kemampuan untuk terus memperbaiki diri di epoch selanjutnya dengan 0.0009 pada 
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loss dan validation loss pada epoch ke-99, menjadikannya pilihan ideal untuk tugas 

rekonstruksi yang lebih kompleks. 

 

Namun, model ini tampak paling rentan terhadap overfitting atau kesulitan 

konvergensi, terutama pada learning rate yang tinggi. Saat learning rate diatur ke 

0.01, training loss tidak mengalami perubahan di 0.257887 pada 50 epochs, dan 

validation loss yang stagnan. Bahkan dengan learning rate yang lebih kecil 

(0.0005) dan 150 epochs, validation loss terbaik hanya mencapai 0.000829, yang 

masih lebih tinggi dari arsitektur dengan layer lebih sedikit. Kompleksitas arsitektur 

tiga layer tampaknya tidak sebanding dengan rezim pelatihan atau jumlah data yang 

Gambar 4.6 Grafik performa model CAE dua layer dengan konfigurasi (a) 100 

Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100 

Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150 

Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50 

Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50 

Epoch dan Learning Rate 0.01. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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ada, dan bahkan dengan learning rate kecil, peningkatannya terbatas. Hal ini 

menunjukkan bahwa tiga layer mungkin tidak optimal untuk tugas yang dihadapi 

model ini. 

Secara keseluruhan, hasil eksperimen pada CAE dengan variasi satu, dua, 

dan tiga layer, dapat disimpulkan bahwa tingkat learning rate memiliki pengaruh 

yang paling signifikan terhadap konvergensi dan performa model. Secara konsisten, 

penggunaan learning rate yang terlalu tinggi (0.01) mengakibatkan model gagal 

konvergen atau menunjukkan training loss yang tidak stabil atau bahkan tidak ada 

peningkatan, sementara tingkat yang lebih rendah (0.001 dan 0.0005) terbukti jauh 

lebih efektif. Dari ketiga konfigurasi layer, learning rate 0.001 secara umum 

menunjukkan performa yang paling optimal dalam pelatihan model, dengan hasil 

validation loss terendah dan paling stabil di setiap eksperimen. Hal ini 

menunjukkan bahwa pemilihan learning rate yang tepat adalah kunci untuk 

mencapai kinerja terbaik, terlepas dari jumlah layer konvolusi yang digunakan. 

 

4.2.3 Pelatihan Model Convolutional Variational Autoencoder (CVAE) 

Eksperimen yang dilakukan pada arsitektur CVAE dengan konfigurasi satu 

layer menunjukkan sensitivitas tinggi terhadap pemilihan learning rate. Hasil 

pengujian secara jelas mengindikasikan bahwa nilai learning rate yang lebih rendah 

(0.0005 dan 0.001) secara signifikan lebih unggul dibandingkan nilai yang lebih 

besar (0.01). Secara konsisten, learning rate yang lebih kecil ini menghasilkan 

minimal validation loss yang jauh lebih rendah dan stabil, berada pada kisaran 

optimal 1.1483 hingga 1.1484. Kontrasnya, penggunaan learning rate 0.01 

menyebabkan kinerja yang stagnan, di mana validation loss cenderung tertahan 

pada level yang lebih tinggi, yaitu sekitar 1.151 hingga 1.152. 

Secara spesifik, konfigurasi dengan learning rate = 0.0005 yang dilatih 

selama 100 epochs terbukti menjadi titik optimal, mencatatkan nilai validation loss 

terendah sebesar 1.1472. Menariknya, ketika proses pelatihan diperpanjang hingga 

150 epochs, terjadi fenomena peningkatan validation loss menjadi sekitar 1.152–

1.153. Peningkatan ini, meskipun kecil, merupakan indikasi adanya gejala 

overfitting ringan. Hal ini dikonfirmasi oleh tren training loss yang terus menurun 



   

 

69 

 

(mencapai minimum ≈1.1411), menunjukkan bahwa model terus menghafal data 

pelatihan namun mulai kehilangan kemampuan untuk menggeneralisasi secara 

efektif pada data validasi yang belum pernah dilihat sebelumnya. 

 

Adapun learning rate 0.01 menunjukkan hasil yang paling buruk. Bahkan 

setelah 150 epochs, model ini gagal menunjukkan perbaikan signifikan dan 

mencatat validation loss tertinggi (≈1.1524). Kinerja yang buruk ini menyiratkan 

bahwa nilai 0.01 terlalu besar, menyebabkan model gagal melakukan konvergensi 

yang efektif atau bahkan terperangkap dalam local minima yang suboptimal dan 

tinggi di permukaan energi (fungsi loss). Oleh karena itu, untuk arsitektur CVAE 

Gambar 4.7 Grafik performa model CAE tiga layer dengan konfigurasi (a) 100 

Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100 

Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150 

Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50 

Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50 

Epoch dan Learning Rate 0.01. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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ini, learning rate yang rendah sangat krusial untuk memastikan proses 

pembelajaran yang akurat dan terhindar dari perilaku yang tidak stabil.  

 

Sedangkan pada dua layer, menguatkan temuan yang didapat dari model 

satu layer, yakni adanya ketergantungan kritis pada pemilihan learning rate. 

Kinerja terbaik dari model dua layer ini tercapai pada learning rate 0.0005. Pada 

konfigurasi ini, validation loss mencapai nilai terendah sekitar 1.1475 setelah 100 

epochs, menandakan bahwa model telah mencapai konvergensi yang optimal. 

Peningkatan jumlah epochs menjadi 150 ternyata tidak menghasilkan perbaikan 

kinerja yang signifikan. Sebaliknya, hal ini justru memicu gejala overfitting ringan, 

Gambar 4.8 Grafik performa model CVAE satu layer dengan konfigurasi (a) 100 

Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100 

Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150 

Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50 

Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50 

Epoch dan Learning Rate 0.01. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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yang terlihat dari sedikit kenaikan pada final validation loss meskipun minimum 

training loss menunjukkan penurunan yang lebih substansial. Ini menggarisbawahi 

pentingnya early stopping untuk mencegah model menghafal data pelatihan. 

Secara garis besar, model CVAE dua layer menunjukkan kinerja yang 

sedikit lebih unggul dibandingkan model satu layer. Hal ini terlihat dari minimum 

validation loss yang sedikit lebih rendah, berkisar antara 1.1481–1.1482. Konsisten 

dengan temuan sebelumnya, learning rate yang rendah (0.0005 dan 0.001) secara 

konsisten menghasilkan performa terbaik. Sebaliknya, penggunaan learning 

rate=0.01 kembali terbukti menjadi penghalang utama bagi proses pelatihan. Nilai 

yang terlalu tinggi ini menyebabkan model gagal berkonvergensi secara efektif, 

dengan validation loss yang tetap stagnan pada level tinggi di sekitar 1.1524. Hasil 

ini menegaskan bahwa, meskipun penambahan layer pada model dua layer 

Gambar 4.9 Grafik performa model CVAE dua layer dengan konfigurasi (a) 100 

Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100 

Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150 

Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50 

Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50 

Epoch dan Learning Rate 0.01. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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memberikan kapasitas representasional tambahan yang sedikit meningkatkan 

kemampuan generalisasi, model tersebut tetap sangat sensitif terhadap parameter 

learning rate dan rentan terhadap overfitting jika dilatih terlalu lama. 

Terakhir pada tiga layer, tren perilaku model yang rentan terhadap 

overfitting semakin jelas terlihat. Meskipun peningkatan kapasitas model ini 

memungkinkan minimum validation loss mencapai nilai yang sangat rendah—

berkisar antara 1.1483 hingga 1.1484, yang setara dengan kinerja model dua 

layer—validation loss akhir setelah pelatihan yang diperpanjang justru cenderung 

lebih tinggi. Gejala overfitting ini menjadi lebih nyata, terutama ketika dilatih 

menggunakan jumlah epochs yang lebih banyak dan learning rate yang kecil. 

Learning rate yang kecil memungkinkan model untuk menyesuaikan bobotnya 

secara fine-tuning, namun ketika dikombinasikan dengan kedalaman lapisan yang 

lebih besar, hal ini meningkatkan risiko penghafalan data pelatihan secara 

berlebihan. 

Kinerja terbaik dari model tiga layer ini dicapai pada learning rate 0.0005, 

di mana validation loss terendah tercatat pada nilai 1.1470 setelah 100 epochs. Nilai 

ini merupakan validation loss terendah di antara semua konfigurasi lapisan yang 

diuji (satu, dua, dan tiga layer), mengindikasikan bahwa model tiga layer memiliki 

kapasitas representasional tertinggi untuk belajar fitur-fitur yang kompleks. 

Namun, pencapaian loss minimum yang sangat rendah ini disertai dengan 

peringatan: struktur tiga layer menuntut pengawasan hyperparameter yang lebih 

ketat. Karena kerentanan yang lebih tinggi terhadap overfitting, strategi seperti 

early stopping menjadi sangat krusial untuk mencegah degradasi kinerja 

generalisasi pada data yang tidak terlihat, yang mana ditunjukkan dengan kenaikan 

validation loss pada akhir pelatihan. 

Seperti pola yang sudah terlihat pada model-model sebelumnya, learning 

rate 0.001 juga menunjukkan konvergensi yang baik dengan validation loss sedikit 

lebih tinggi (sekitar 1.1479). Namun, learning rate 0.01 kembali gagal berfungsi 

secara efektif, menyebabkan validation loss tetap tinggi dan tidak stabil (~1.1522). 

Penambahan epochs hingga 150 pada learning rate kecil juga tidak memberikan 

keuntungan signifikan dan justru menunjukkan tanda-tanda overfitting, di mana 
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final training loss turun drastis (~1.1412) namun final validation loss malah naik 

(~1.153). Ini menunjukkan bahwa arsitektur tiga layer terlalu kompleks sehingga 

model mulai "menghafal" data pelatihan, yang berdampak buruk pada performa 

validasi. 

 

Secara keseluruhan, hasil eksperimen pada CVAE menunjukkan pola yang 

konsisten di semua jumlah layer (satu, dua, dan tiga). Berbeda dengan CAE, variasi 

learning rate dan peningkatan epochs tidak secara signifikan memperbaiki 

validation loss, yang cenderung stagnan pada nilai tinggi di sekitar 1.15. Meskipun 

training loss menunjukkan sedikit penurunan, validation loss  yang tidak bergeming 

mengindikasikan bahwa model CVAE dengan konfigurasi yang diuji kesulitan 

Gambar 4.10 Grafik performa model CVAE tiga layer dengan konfigurasi (a) 100 

Epoch dan Learning Rate 0.0005, (b) 100 Epoch dan Learning Rate 0.001, (c) 100 

Epoch dan Learning Rate 0.01, (d) 150 Epoch dan Learning Rate 0.0005, (e) 150 

Epoch dan Learning Rate 0.001, (f) 150 Epoch dan Learning Rate 0.01, (g) 50 

Epoch dan Learning Rate 0.0005, (h) 50 Epoch dan Learning Rate 0.001, (i) 50 

Epoch dan Learning Rate 0.01. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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dalam mempelajari representasi yang efektif untuk generalisasi data, atau mungkin 

terjebak dalam local minima. Penambahan kedalaman lapisan juga tidak 

memberikan kontribusi positif yang signifikan terhadap kinerja validasi. 

 

4.3 Evaluasi Model 

Setelah pelatihan model YOLO, CAE dan CVAE selesai, setiap model akan 

dievaluasi dengan menggunakan data pengujian untuk mengukur kinerjanya sesuai 

dengan tujuan perancangannya masing-masing. 

4.3.1 Evaluasi Model YOLO 

Model YOLO akan diuji menggunakan data pengujian (10%) yang 

sebelumnya sudah dipisahkan dan belum pernah dilihat oleh model. Model 

dievaluasi menggunakan tiga metrik yakni, precision, recall dan F1 Score guna 

melihat seberapa baik model dalam mendeteksi objek pohon kelapa sawit dalam 

sebuah citra. 

 

Pada 100 epochs, model dengan pretrain mendapatkan nilai precision, recall, 

dan F1 score yang sangat tinggi diatas 0.98. Hal ini menunjukkan kemampuan 

deteksi yang akurat, dengan kesalahan prediksi yang sangat minim. Sementara itu, 

model tanpa pretrain mendapat nilai F1 score pada data uji hanya 0.59, dengan 

precision dan recall yang relatif rendah, menunjukkan bahwa model sering salah 

mendeteksi objek atau melewatkan objek sebenarnya. 

Gambar 4.11 Gambar data pengujian YOLO (10%) 
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Kemudian dengan bertambahnya jumlah epoch, model tanpa pretrain 

berhasil mencapai F1 Score sebesar 0.9866 pada data pengujian, mendekati F1 

Score model pretrain yang dilatih pada 1000 epochs (0.9885) maupun 100 epochs 

(0.9891). Namun demikian, peningkatan jumlah epochs hingga 10 kali lipat pada 

model tanpa pretrain menunjukkan kebutuhan waktu pelatihan yang jauh lebih 

lama dan sumber daya komputasi yang lebih besar. Sementara itu, model pretrain 

hanya mengalami peningkatan performa yang relatif kecil saat epoch dinaikkan 10 

kali lipat, mengindikasikan bahwa bobot pretrain sudah sangat optimal bahkan 

pada jumlah epoch yang lebih kecil. 

 

Dengan demikian, dapat disimpulkan bahwa penerapan pretrained weight 

pada YOLO sangat direkomendasikan karena mampu meningkatkan efisiensi 

pelatihan, mengurangi risiko underfitting, bahkan dengan data terbatas mampu 

mencapai performa yang tinggi dengan jumlah epoch yang lebih relatif sedikit. 

 

4.3.2 Evaluasi Model Convolutional Autoencoder (CAE) 

Model akan diuji pada 41 citra yang diambil satu bulan sebelum pohon 

kelapa sawit tumbang. Pengujian ini bertujuan melihat kemampuan model dalam 

mendeteksi anomali pada citra sakit. Evaluasi dilakukan menggunakan metrik 

MAE, MSE, dan SSIM. Nilai MAE dan MSE yang tinggi akan menunjukkan 

Table 4.4 Hasil pengujian model YOLO pada 100 epohcs 

Table 4.5 Perbandingan hasil pengujian model YOLO 

pada 100 dan 1000 epochs 
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kesulitan model dalam merekonstruksi citra sakit, sebab model hanya dilatih 

dengan citra sehat. Sementara itu, nilai SSIM yang rendah akan mengonfirmasi 

adanya perbedaan signifikan antara citra asli dan citra hasil rekonstruksi, yang 

menjadi indikator keberhasilan deteksi anomali. 

Pada CAE satu layer, model dengan learning rate 0.01 konsisten 

menghasilkan nilai MAE dan MSE yang tinggi (rata-rata MAE 0.0159–0.0291) dan 

SSIM yang rendah (rata-rata 0.928–0.969), yang mengindikasikan model kesulitan 

merekonstruksi citra yang tidak sesuai dengan pola citra sehat. Sementara itu, 

model dengan learning rate 0.001 dan 0.0005 menghasilkan nilai MAE dan MSE 

yang jauh lebih rendah dan SSIM yang sangat tinggi (di atas 0.993) yang 

mengindikasikan model merekonstruksi citra dengan sangat baik.  

 

 

Hal ini menunjukkan bahwa model dengan learning rate tinggi lebih efektif 

dalam mendeteksi anomali pada citra sakit dibandingkan learning rate rendah. 

Meskipun demikian, rata-rata nilai SSIM yang tetap sangat tinggi untuk citra sakit 

(sekitar 0.98) menunjukkan bahwa dengan satu layer, model masih cenderung 

merekonstruksi citra sakit dengan terlalu baik, sehingga kemampuan dalam 

mendeteksi anomali terbatas. Dengan kata lain, dengan hanya satu layer, model 

belum mampu membedakan secara signifikan antara citra sehat dan sakit. Namun, 

dari keseluruhan sembilan model satu layer yang diuji, model dengan 50 epochs 

dan learning rate 0.01 menunjukkan performa unggul dalam mendeteksi anomali. 

Table 4.6 Hasil metrik CAE satu layer 
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Di sisi lain, pada dua layer, hasil yang diperoleh kurang lebih sama dengan 

pada satu layer. Model dengan learning rate yang tinggi (0.01) menunjukkan 

performa yang baik, di mana nilai MAE dan MSE rata-rata tinggi (0.1064998 dan 

0.0180233) pada 150 epochs. Sebaliknya, nilai SSIM rendah (0.2654537), 

menunjukkan ketidakmampuannya untuk merekonstruksi citra anomali yang 

menyimpang dari pola normal. Sementara itu, model dengan learning rate yang 

lebih rendah (0.0005 dan 0.001) secara konsisten menghasilkan performa yang 

buruk dengan nilai MAE dan MSE rata-rata jauh lebih rendah, sementara SSIM 

rata-rata meningkat signifikan hingga di atas 0.95. 

 

 

Ini menunjukkan bahwa model dengan learning rate tinggi lebih efektif 

dalam mendeteksi pola anomali pada citra sakit. Secara keseluruhan, model CAE 

dua layer menunjukkan perkembangan yang sigfinikan dalam mendeteksi anomali 

bila dibandingkan dengan satu layer. Khususnya pada 150 epochs dengan learning 

rate 0.01 dengan nilai SSIM yang rendah (sekitar 0.2654537) yang menunjukkan 

bahwa ketidakmampuan model untuk merekonstruksi citra anomali yang 

menyimpang dari pola normal. Meskipun demikian, rata-rata nilai SSIM yang 

diperoleh masih relatif tinggi (sektiar 0.902) untuk citra sakit menunjukkan bahwa 

model tiga layer ini masih merekonstruksi citra sakit dengan cukup baik, 

Terakhir, pada tiga layer, sama seperti layer-layer sebelumnya, model 

dengan learning rate yang tinggi (0.01) menunjukkan kinerja yang sangat baik 

dalam mendeteksi anomali. Dengan nilai rata-rata MAE dan MSE pada 50 epochs 

Table 4.7 Hasil metrik CAE dua layer 
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mencapai 0.537 dan 0.658, sementara SSIM anjlok drastis hingga 0.0001174. Hasil 

ini mengindikasikan bahwa model gagal total dalam merekonstruksi citra anomali 

yang menyimpang dari pola normal sesuai dengan harapan. Akan tetapi, performa 

buruk ini secara langsung disebabkan oleh stagnasi validation loss selama pelatihan 

(Gambar 4.7 (i)), yang menunjukkan bahwa model tidak belajar secara efektif 

sehingga tidak dapat diandalkan.  

 

 

Oleh karena itu, dipilih model alternatif yang menunjukkan performa 

terbaik berikutnya dalam mendeteksi anomali. Model dengan 100 epochs pada 

learning rate yang sama dipilih karena memberikan keseimbangan optimal dengan 

nilai MAE rata-rata 0.106, MSE rata-rata 0.018, dan SSIM rata-rata 0.265. Angka-

angka ini tetap menunjukkan tingkat error rekonstruksu yang tinggi dan kemiripan 

struktural yang rendah, yang merupakan indikator kuat untuk deteksi anomali. 

Analisis menunjukkan bahwa learning rate tinggi secara konsisten 

menghasilkan performa terbaik untuk deteksi anomali. Menariknya, rata-rata nilai 

SSIM secara keseluruhan menurun secara signifikan menjadi 0.59, jauh dari rata-

rata 0.85 yang tercatat pada model dua layer. Penurunan ini didorong oleh model-

model dengan learning rate 0.01, yang memiliki nilai MAE rata-rata melonjak 

hingga 0.101 dan MSE rata-rata 0.038, sementara rata-rata SSIM-nya anjlok hingga 

0.59. Hal ini menunjukkan bahwa dengan tiga layer, CAE akhirnya mampu untuk 

mengidentifikasi anomali pada citra sakit. 

 

Table 4.8 Hasil metrik CAE tiga layer 
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Berdasarkan hasil dari ketiga layer pada citra pohon sawit sakit satu bulan 

sebelum tumbang, dapat disimpulkan bahwa model dengan dua layer (150 epochs, 

learning rate 0.01) merupakan model yang paling efektif dalam mendeteksi 

anomali. Hal ini terlihat dari nilai MAE (0.1065) dan MSE (0.0180) yang jauh lebih 

tinggi dibandingkan model lainnya, serta nilai SSIM yang sangat rendah 

(0.2654537). 

 

Nilai MAE dan MSE yang tinggi ini menunjukkan bahwa model kesulitan 

besar dalam merekonstruksi citra yang terinfeksi, menandakan perbedaan 

signifikan antara citra asli dan citra yang direkonstruksi. Sebaliknya, model satu 

layer (50 epochs, learning rate 0.01) dan tiga layer (100 epochs, learning rate 0.01) 

menunjukkan performa yang sangat berbeda. Model satu layer memiliki nilai MAE 

dan MSE yang sangat rendah, serta SSIM yang sangat tinggi (sekitar 0.9281). 

Kondisi ini mengindikasikan bahwa model tersebut merekonstruksi citra dengan 

sangat baik, sehingga kurang efektif dalam mendeteksi anomali karena tidak 

mampu membedakan citra sehat dan sakit secara signifikan. 
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Gambar 4.12 Grafik Perbandingan Nilai MAE, MSE, dan SSIM CAE 
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4.3.3 Evaluasi Model Convolutional Variational Autoencoder (CVAE) 

Sama seperti CAE, CVAE akan diuji menggunakan 41 citra satu bulan 

sebelum tumbang pada data timeseries yang telah disiapkan sebelumnya. Model 

akan dievaluasi menggunakan tiga metrik yang sama yakni, MAE, MSE dan SSIM 

guna melihat seberapa baik model dapat mengidentifikasi anomali pada pohon 

kelapa sawit sakit sebelum pohon tersebut tumbang.  

Hasil pengujian pada model CVAE satu layer menunjukkan bahwa model 

ini dengan sangat efektif dalam mendeteksi anomali pada citra pohon sawit sakit. 

Secara umum, model konsisten menghasilkan nilai MAE dan MSE yang tinggi 

(rata-rata MAE 0.1038; rata-rata MSE 0.0173), yang mengindikasikan bahwa 

model kesulitan merekonstruksi citra yang tidak sesuai dengan pola normal. 

Terlihat juga bahwa SSIM rata-rata pada seluruh pengujian berada pada angka yang 

sangat rendah (0.2288), jauh dari nilai 1.  

 

Analisis lebih mendalam menunjukkan bahwa jumlah epochs dan tingkat 

learning rate tidak memberikan dampak sebesar pada model CAE. Meskipun 

terdapat sedikit perbedaan, seluruh konfigurasi menunjukkan nilai MAE dan MSE 

yang tinggi dan SSIM yang rendah. Dengan nilai rata-rata MAE (0.1074) dan MSE 

(0.0184) tertinggi, model dengan 50 epochs dan learning rate 0.01 menunjukkan 

tingkat reconstruction error yang paling ekstrem serta salah satu nilai rata-rata 

SSIM terendah (0.2653). Hal ini mengindikasikan bahwa arsitektur CVAE 

memiliki kapasitas bawaan yang kuat untuk membedakan anomali, bahkan dengan 

Table 4.9 Hasil metrik CVAE satu layer 
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konfigurasi yang paling sederhana (satu layer, epochs sedikit, dan learning rate 

tinggi). 

Sementara itu, bila jumlah layer ditambahkan, data pengujian menunjukkan 

kinerja yang sama efektifnya seperti satu layer dalam mendeteksi anomali. Model 

ini secara konsisten menghasilkan nilai MAE dan MSE yang tinggi, 

mengindikasikan ketidakmampuannya untuk merekonstruksi citra anomali yang 

menyimpang dari pola normal. Mirip dengan CVAE satu layer, model CVAE dua 

layer ini juga tidak terlalu sensitif terhadap jumlah epochs dan learning rate 

dibandingkan dengan model CAE. Hasilnya, seluruh konfigurasi model CVAE dua 

layer menunjukkan pola yang sama: nilai MAE dan MSE yang tinggi sejalan 

dengan nilai SSIM yang rendah, mengonfirmasi kemampuannya untuk mendeteksi 

anomali. Akan tetapi, bila diteliti lebih lanjut, rata-rata nilai MAE (0.10333) dan 

MSE (0.0172) sedikit menurun bila dibandingkan rata-rata nilai MAE (0.10383) 

dan MSE (0.0173) dari CVAE satu layer. Di antara semua konfigurasi tersebut, 

model dengan 50 epochs dan learning rate 0.01 terbukti menjadi yang paling 

efektif. 

 

 

Sementara itu, dengan tiga layer, model menunjukkan kinerja yang sama 

efektifnya dalam mendeteksi anomali. Model ini secara konsisten menghasilkan 

nilai MAE yang tinggi (rata-rata 0.10323) dan MSE yang juga tinggi (rata-rata 

0.0172), mengindikasikan bahwa model kesulitan merekonstruksi citra yang 

menyimpang dari pola normal (citra pohon sawit sehat). Namun, bila diteliti lebih 

Table 4.10 Hasil metrik CVAE dua layer 
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lanjut, performa model tiga layer sedikit lebih mirip dengan model dua layer. Hal 

ini terlihat dari rata-rata nilai MAE (0.10302) yang sedikit menurun bila 

dibandingkan dengan satu layer (0.10383) dan nilai rata-rata MSE (0.0172) yang 

hampir sama dengan dua layer. Ini menunjukkan bahwa meskipun performa 

deteksinya tetap baik, ada sedikit penurunan sensitivitas seiring dengan 

penambahan layer dan kompleksitas model. Terlepas dari konfigurasi yang diuji, 

model dengan 100 epochs dan learning rate 0.01 menunjukkan performa deteksi 

anomali yang paling optimal pada CVAE tiga layer. 

 

Model CVAE secara konsisten menghasilkan nilai MAE dan MSE yang 

tinggi (> 0.107) serta SSIM yang rendah (±0.265). Ini menegaskan bahwa arsitektur 

CVAE memiliki kemampuan bawaan yang kuat untuk membedakan anomali. Dari 

hasil pengujian ketiga layer tersebut, dapat disimpulkan bahwa model CVAE, 

terlepas dari jumlah layer-nya, sangat efektif dalam mendeteksi anomali. Berbeda 

dengan model CAE, arsitektur CVAE secara inheren mampu membedakan citra 

sehat dari citra sakit. 

Secara keseluruhan, model CVAE adalah pilihan yang jauh lebih optimal 

untuk tujuan deteksi anomali dibandingkan model CAE. Perbedaan 

fundamentalnya terletak pada cara kedua model merespons peningkatan 

kompleksitas. Model CAE menunjukkan bahwa kemampuannya untuk mendeteksi 

anomali meningkat secara bertahap seiring dengan penambahan layer, 

mengindikasikan bahwa model memerlukan arsitektur yang lebih dalam untuk 

Table 4.11 Hasil metrik CVAE tiga layer 
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membedakan anomali. Sebaliknya, model CVAE sudah mampu beroperasi secara 

optimal bahkan dengan hanya satu layer. Hasil pengujian menunjukkan bahwa 

penambahan layer pada CVAE tidak memberikan peningkatan melainkan sedikit 

menurunkan performa deteksi. Oleh karena itu, CVAE dengan tiga layer 

merupakan model yang paling optimal dalam mendeteksi anomali pada citra sakit. 

 

 

4.4 Perbandingan Hasil Rekonstruksi Citra 

Pada citra asli yang menunjukkan kondisi pohon sawit sehat, model CAE 

menunjukkan kinerja rekonstruksi yang kurang efektif. Citra yang direkonstruksi 

terlihat sangat berbeda dari aslinya, dengan detail dan struktur yang hampir tidak 

terlihat. Hal ini mengindikasikan bahwa model CAE belum berhasil mempelajari 

dan mereplikasi pola visual dari pohon sehat secara akurat. Sebaliknya, model 

CVAE memperlihatkan hasil yang lebih baik. Meskipun citra rekonstruksinya tidak 

identik dengan aslinya, ia mampu mereplikasi sebagian kecil dari struktur citra asli. 
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Gambar 4.13 Grafik perbandingan Nilai MAE, MSE, dan SSIM CVAE 



   

 

84 

 

Secara keseluruhan, dalam merekonstruksi citra sehat, model CVAE terbukti lebih 

unggul dibandingkan dengan model CAE (Gambar 4.14). 

 

Ketika dihadapkan pada citra asli yang menunjukkan pohon sawit sakit 

(anomali), kedua model (baik CAE maupun CVAE) menunjukkan hasil yang 

serupa: detail dan struktur rekonstruksi citra tersebut hampir tidak terlihat (Gambar 

4.15). Kinerja ini sebenarnya adalah indikator keberhasilan dalam konteks deteksi 

anomali. Kondisi ini terjadi karena kedua model mengalami kesulitan dalam 

merekonstruksi citra yang menyimpang dari pola normal yang telah mereka 

pelajari. Ketidakmampuan untuk mereplikasi anomali tersebut menghasilkan 

kesalahan rekonstruksi yang tinggi, yang menjadi sinyal utama untuk 

mengidentifikasi adanya penyakit. 

 

 

4.5 Perbandingan Kinerja CAE dan CVAE  

Setelah nilai metrik MAE, MSE dan SSIM diperoleh, hasil distribusi data 

dari model terbaik kedua artitektur akan divisualisasikan menggunakan histogram 

(c) (b) (a) 

Gambar 4. 14 Citra Sehat (a), Citra Rekonstruksi CAE (b) 

dan Citra Rekonstruksi CVAE (c) 

(c) (b) (a) 

Gambar 4. 15 Citra Sehat (a), Citra Rekonstruksi CAE (b) 

dan Citra Rekonstruksi CVAE (c) 
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untuk melihat distribusi data dari ketiga metrik tersebut. Dengan membandingkan 

distribusi data pohon sawit sehat dengan pohon sawit sakit, analisis visual akan 

dilakukan untuk mengidentifikasi perbedaan signifikan yang menunjukkan 

keberhasilan model dalam mendeteksi anomali. Tingkat perbedaan ini juga akan 

diukur secara kuantitatif menggunakan metrik JSD dan BD. 

 

4.5.1 Satu bulan sebelum tumbang 

Berdasarkan pengujian pada 41 citra yang diambil satu bulan sebelum 

pohon tumbang, model dievaluasi kemampuannya dalam mendeteksi anomali. 

Model yang efektif akan menunjukkan kesulitan dalam merekonstruksi citra sakit, 

yang tercermin dari nilai MAE dan MSE yang tinggi dan SSIM yang rendah. 

Berikut adalah grafik distribusi data metrik MSE, MAE, dan SSIM pada CAE yang 

menunjukkan sensitivitas yang baik karena model berhasil membedakan antara 

citra sehat dengan citra sakit (Gambar 4.16). 

 

Sementara itu, model CVAE menunjukkan karakteristik data yang sedikit 

berbeda dalam mendeteksi anomali pada citra sakit (Gambar 4.17).  

 

Gambar 4.16 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CAE satu bulan sebelum tumbang 

(a) (b) (c) 

Gambar 4.17 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CVAE satu bulan sebelum tumbang 

(a) (b) (c) 



   

 

86 

 

Berdasarkan distribusi data dari kedua arsitektur jarak antara citra sehat dan 

citra sakit pada CAE lebih terlihat bila dibandingkan dengan CVAE. Distribusi data 

pada CVAE terkhususnya MAE (Gambar 4.15 tengah) masih terlihat ada tumpang 

tindih antara distribusi data citra sehat dan citra sakit. Hal ini menunjukkan bahwa 

arsitektur CAE lebih unggul dari pada model CVAE. Kemudian pada analisis 

metrik JSD dan BD, terlihat perbedaan kinerja yang signifikan antara arsitektur 

CAE dan CVAE. Model CAE menunjukkan kemampuan terbaiknya dalam 

memisahkan distribusi metrik MSE (JSD=0.238, BD=0.323) dan MAE 

(JSD=0.103, BD=0.341), sedangkan metrik SSIM tidak menunjukkan perbedaan 

distribusi sama sekali (JSD=0, BD=0.614), hal ini mengindikasikan bahwa CAE 

tidak mampu membedakan citra sehat dan sakit berdasarkan kemiripan struktural. 

Di sisi lain, CVAE menunjukkan performa yang lebih konsisten dan seimbang di 

seluruh metrik. CVAE berhasil memisahkan distribusi metrik SSIM dengan nilai 

JSD 0.042 dan BD 0.553, dan memiliki performa yang serupa untuk metrik MAE 

(JSD=0.115, BD=0.495). Meskipun nilai JSD dan BD untuk MSE pada CVAE 

lebih rendah dibandingkan CAE (JSD=0.224, BD=0.596).  

 

Secara keseluruhan pada periode ini, CVAE terbukti lebih unggul karena 

kemampuannya dalam memisahkan distribusi data pada metrik yang paling relevan 

untuk deteksi anomali pada citra, yaitu SSIM. 

 

4.5.2 Dua bulan sebelum tumbang 

Pada periode dua bulan sebelum tumbang, pola infeksi  Ganoderma masih 

dapat terlihat dengan jelas. Model CAE menunjukkan sedikit penurunan kinerja 

sementara model CVAE menunjukkan kinerja yang konsisten. Jarak distribusi 

Gambar 4. 18 Perbandingan metrik JSD dan BD pada model CAE 

dan model CVAE 
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metrik MAE, MSE, dan SSIM antara citra sehat dan sakit pada CAE masih berjarak, 

menandakan model masih mampu dalam mengidentifikasi anomali (Gambar 4.19).  

Namun jarak yang terlihat mengecil antara citra sehat dan sakit bila 

dibandingkan pada periode satu bulan sebelum tumbang. Sementara itu, CVAE 

konsisten dalam distribusi data antara citra sehat dan citra sakit, menegaskan 

kemampuannya dalam mendeteksi anomali secara dini (Gambar 4.20). 

 

Berdasarkan analisis JSD dan BD pada kedua model, terlihat bahwa CAE 

menunjukkan performa yang lebih unggul dalam memisahkan distribusi metrik. 

Dengan nilai JSD dan BD yang lebih tinggi untuk MSE (JSD=0.193, BD=0.864) 

dan MAE (JSD=0.084, BD=0.758), model CAE lebih efektif dalam menciptakan 

perbedaan yang signifikan antara data sehat dan anomali. Meskipun CVAE juga 

mampu membedakan anomali, nilai JSD dan BD-nya yang lebih rendah pada 

Gambar 4.19 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CAE dua bulan sebelum tumbang 

(a) (b) (c) 

Gambar 4.20 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CVAE dua bulan sebelum tumbang 

(a) (b) (c) 

Gambar 4.21 Perbandingan metrik JSD dan BD pada model CAE dan model 

CVAE 
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metrik MAE dan MSE (JSD=0.049, BD=0.409) menunjukkan pemisahan distribusi 

yang tidak setajam CAE. Menariknya, pada metrik SSIM, CVAE menunjukkan 

nilai JSD nol, mengindikasikan bahwa distribusi SSIM untuk citra sehat dan sakit 

hampir tidak dapat dibedakan, yang berlawanan dengan performa CAE 

(JSD=0.135, BD=0.541).  

Dengan demikian pada periode ini, CAE terbukti lebih andal dan efektif 

dalam mendeteksi anomali karena kemampuannya yang lebih baik dalam 

memisahkan distribusi metrik evaluasi. 

 

4.5.3 Tiga bulan sebelum tumbang 

Pada periode ini, kemampuan deteksi model CAE mulai menunjukkan 

sedikit penurunan. Meskipun nilai MAE dan MSE masih relatif tinggi dan SSIM 

rendah. Pada CAE jarak antara distribusi metrik citra sehat dan sakit pada histogram 

sedikit menyempit dan tumpeng tindih bila dibandingkan bulan sebelumnya. 

(Gambar 4.22)  

Sebaliknya model CVAE menunjukkan penurunan kinerja deteksi, jarak 

antara distribusi metrik citra sehat dan sakit pada histogram sebagian mengalami 

tumpang tindih bila dibandingkan bulan sebelumnya (Gambar 4.23). 

Gambar 4.22 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CAE tiga bulan sebelum tumbang 

(a) (b) (c) 

Gambar 4.23 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CVAE tiga bulan sebelum tumbang 

(a) (b) (c) 
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Hal ini mengindikasikan bahwa kedua model masih dapat mendeteksi 

anomali, tetapi pada model CVAE, tingkat kepastian sedikit berkurang karena 

distribusi data citra sehat dan citra sakit mengalami tumpang tindih yang signifikan. 

Sementara itu, berdasarkan hasil analisis metrik JSD dan BD, terlihat perbedaan 

performa yang signifikan antara arsitektur CAE dan CVAE. Model CAE 

menunjukkan kemampuan terbaiknya dalam memisahkan distribusi metrik SSIM 

(JSD=0.092, BD=0.656) dan MSE (JSD=0.037, BD=0.394), sedangkan 

performanya sedikit menurun pada metrik MAE (JSD=0.022, BD=0.420). Di sisi 

lain, CVAE menunjukkan performa yang lebih konsisten di seluruh metrik, dengan 

nilai JSD dan BD yang lebih tinggi untuk SSIM (JSD=0.103, BD=0.683) dan MAE 

(JSD=0.092, BD=0.518) jika dibandingkan dengan CAE. Namun, CVAE 

menunjukkan performa yang lebih lemah pada metrik MSE (JSD=0.096, 

BD=0.244).  

 

 

Secara keseluruhan pada periode ini, CVAE terbukti lebih unggul karena 

kemampuannya yang seimbang dalam memisahkan distribusi metrik yang relevan 

untuk deteksi anomali pada citra, terutama pada metrik SSIM. 

 

4.5.4 Empat bulan sebelum tumbang 

Masuk ke periode keempat, secara teori gejala penyakit pada tanaman 

mungkin masih minim dan belum muncul secara kasat mata. Namun hasil kedua 

model tetap menunjukkan perbedaan antara citra sehat dan sakit bahkan lebih baik 

Gambar 4. 24 Perbandingan metrik JSD dan BD pada model CAE dan model 

CVAE 



   

 

90 

 

dibandingkan pada periode ketiga. Pada CAE, distribusi metrik MAE dan MSE 

antara kedua kelompok citra (sehat dan sakit) tetap konsisten memberikan kinerja 

yang mampu memisahkan kedua kelompok. 

 

Akan tetapi pada CVAE, distribusi yang sebelumnya tumpang tindih, kini 

kembali meningkat, memisahkan kedua kelompok data. Ini menunjukkan bahwa 

kedua model masih efektif dalam mendeteksi anomali empat bulan sebelum pohon 

tumbang. 

 

 

Berdasarkan hasil analisis metrik JSD dan BD, terlihat perbedaan performa 

antara arsitektur CAE dan CVAE. Model CAE menunjukkan kemampuan yang 

lebih baik dalam memisahkan distribusi metrik MSE (JSD=0.119, BD=0.466) dan 

MAE (JSD=0.067, BD=0.605). Di sisi lain, CVAE menunjukkan performa yang 

lebih unggul pada metrik MSE (JSD=0.187, BD=0.582), mengindikasikan 

kemampuan yang lebih baik dalam membedakan anomali. Namun, CVAE 

menunjukkan performa yang lebih lemah pada metrik MAE (JSD=0.044, 

BD=0.448) dan SSIM (JSD=0.067, BD=0.732) jika dibandingkan dengan CAE.  

Gambar 4.25 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CAE empat bulan sebelum tumbang 

(a) (b) (c) 

Gambar 4.26 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CVAE empat bulan sebelum tumbang 

(a) (b) (c) 
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Secara keseluruhan, CVAE terbukti lebih unggul karena kemampuannya 

yang seimbang dalam memisahkan distribusi metrik yang relevan untuk deteksi 

anomali pada citra, terutama pada metrik MSE. 

 

4.5.5 Lima bulan sebelum tumbang 

Masuk ke periode terakhir, secara teori gejala penyakit pada tanaman 

seharusnya sulit untuk dideteksi. Namun hasil kedua model tetap menunjukkan 

perbedaan antara citra sehat dan sakit. CAE tetap konsisten dalam memisahkan 

distribusi metrik MAE dan MSE antara kedua kelompok citra (sehat dan sakit). 

 

Menariknya, CVAE mengalami peningkatan dengan jarak antara distribusi 

metrik MAE dan MSE antara kedua kelompok citra (sehat dan sakit) semakin 

melebar. Ini menunjukkan bahwa kedua model masih efektif dalam mendeteksi 

anomali empat bulan sebelum pohon tumbang.  

Gambar 4.28 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CAE lima bulan sebelum tumbang 

(a) (b) (c) 

Gambar 4. 27 Perbandingan metrik JSD dan BD pada model CAE dan model 

CVAE 
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Pada analisis JSD dan BD, model CAE menunjukkan kemampuan yang 

lebih unggul dalam memisahkan distribusi metrik, menjadikannya lebih efektif 

untuk deteksi anomali. Model CAE memiliki nilai JSD dan BD tertinggi pada 

metrik MAE (JSD=0.129, BD=0.741) dan MSE (JSD=0.093, BD=0.635). Ini 

menunjukkan bahwa CAE berhasil menciptakan perbedaan yang signifikan antara 

distribusi citra sehat dan sakit. Di sisi lain, CVAE menunjukkan performa yang 

lebih seimbang, tetapi nilai JSD dan BD-nya cenderung lebih rendah dibandingkan 

CAE pada metrik MAE dan MSE (JSD=0.119, BD=0.544 dan JSD=0.132, 

BD=0.442), yang mengindikasikan pemisahan distribusi yang tidak setajam CAE. 

Meskipun CVAE menunjukkan nilai BD yang sedikit lebih tinggi pada metrik 

SSIM, nilai JSD-nya sangat rendah (JSD=0.020), menandakan perbedaan distribusi 

yang minimal. Secara keseluruhan, CAE terbukti lebih andal karena mampu 

menghasilkan pemisahan distribusi yang lebih kuat dan jelas. 

 

Gambar 4.29 Hasil distribusi data metrik (a) MSE, (b) MAE, dan (c) SSIM pada 

model CVAE lima bulan sebelum tumbang 

(a) (b) (c) 

         

         

         

         

         

         

 

   

   

   

   

   

   

   

   

     

   

          

         

         

         

         

         

        

 

   

   

   

   

   

   

   

     

    

          

Gambar 4. 30 Perbandingan metrik JSD dan BD pada model CAE dan model 

CVAE 
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Dari hasil pengujian sepanjang periode (satu hingga lima bulan) sebelum 

tumbang model CVAE terbukti sebagai pilihan paling optimal dan andal untuk 

deteksi anomali Ganoderma. Meskipun CAE dapat bekerja dengan baik pada 1 

bulan dan 5 bulan sebelum tumbang, arsitektur CVAE yang berbasis probabilistik 

memberikan keunggulan inheren yang memungkinkannya untuk secara konsisten 

mendeteksi anomali sejak tahap paling dini, bahkan ketika gejala visual belum 

terlihat. Dengan demikian, CVAE adalah solusi yang lebih efisien dan efektif untuk 

deteksi dini dan pencegahan penyebaran penyakit, yang sangat krusial untuk 

menjaga produktivitas perkebunan. 

 

4.6 Ringkasan Perbandingan Hasil 

 Berdasarkan metrik MAE dan MSE, model CAE menunjukkan fluktuasi 

yang signifikan, dengan nilai BD (Bhattacharyya Distance) tertinggi di bulan kedua 

dan kelima. Hal ini mengindikasikan adanya variasi besar dalam akurasi prediksi. 

Sebaliknya, nilai JSD (Jensen-Shannon Distance) pada model ini cenderung lebih 

stabil, meskipun ada sedikit lonjakan di bulan kelima. Pada metrik SSIM, kualitas 

prediksi model CAE bervariasi, mencapai puncaknya di bulan ketiga (0.6557) dan 

nilai terendah di bulan keempat (0.4808). Ini menunjukkan inkonsistensi dalam 

kualitas visual hasil prediksi. Secara keseluruhan, model CAE menunjukkan kinerja 

yang tidak stabil dalam hal akurasi dan kualitas visual.  

Gambar 4. 31 Grafik progresif nilai JSD dan BD metrik MAE, MSE, 

dan SSIM pada CAE untuk diskriminasi sawit sehat dan sakit. 
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Sebaliknya, model CVAE menunjukkan performa yang lebih konsisten 

pada metrik BD. Nilai BD pada metrik MAE dan MSE relatif lebih rendah dan 

stabil dibandingkan model CAE, tanpa lonjakan ekstrem. Ini mengindikasikan 

bahwa CVAE memiliki akurasi prediksi yang lebih konsisten dari waktu ke waktu. 

Untuk metrik SSIM, CVAE menunjukkan peningkatan kualitas visual secara 

progresif dari bulan ke bulan, mencapai nilai tertinggi di bulan keempat (0.7315), 

sebelum sedikit menurun di bulan kelima. Nilai JSD pada model CVAE juga 

menunjukkan stabilitas yang lebih baik. 

 

 

Berdasarkan analisis progresif, model CVAE secara konsisten mengungguli 

model CAE dalam hal stabilitas dan akurasi prediksi. Fluktuasi nilai BD dan JSD 

yang lebih rendah pada CVAE menunjukkan bahwa model ini lebih andal dan 

menghasilkan prediksi yang konsisten dari bulan ke bulan. Sementara itu, model 

CAE menunjukkan kinerja yang tidak stabil, dengan variasi besar dalam akurasi 

dan kualitas hasil. Oleh karena itu, model CVAE adalah pilihan yang lebih optimal 

untuk tugas prediksi ini karena memiliki performa yang lebih konsisten dan dapat 

diandalkan seiring berjalannya waktu. 

Gambar 4. 32 Grafik progresif nilai JSD dan BD metrik MAE, MSE, 

dan SSIM pada CVAE untuk diskriminasi sawit sehat dan sakit. 
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BAB V  

KESIMPULAN DAN SARAN 

5.1. Kesimpulan 

Penelitian ini berhasil membuktikan bahwa deteksi dini Ganoderma pada 

pohon sawit melalui perubahan warna daun dapat dilakukan menggunakan model 

deep learning CAE dan CVAE. Kedua model mampu mengenali anomali dengan 

tingkat akurasi yang memuaskan, terutama pada tahap infeksi lanjut.  

Berdasarkan analisis timeseries selama lima bulan, model CAE 

menunjukkan efektivitas tertinggi dalam mendeteksi anomali hingga dua bulan 

sebelum pohon tumbang. Namun, kemampuan deteksinya menurun signifikan pada 

rentang waktu tiga hingga lima bulan sebelum pohon tumbang. Sebaliknya, model 

CVAE terbukti lebih unggul dan konsisten. Dengan arsitektur yang lebih sederhana, 

CVAE secara efektif mampu mendeteksi anomali pada tahap paling awal serangan 

infeksi Ganoderma, bahkan hingga lima bulan sebelum pohon tumbang, ketika 

gejala visual belum terlihat.  

Dengan demikian, tujuan penelitian untuk mengembangkan model deteksi 

dini dan menganalisis batas kemampuannya telah tercapai. Dalam kurun waktu lima 

bulan, Model CVAE adalah pilihan yang lebih optimal karena kemampuannya yang 

luar biasa dalam mendeteksi anomali. 

5.2. Saran 

Untuk penelitian selanjutnya, ada beberapa aspek kunci yang perlu 

diperbaiki dari penelitian ini: 

1. Periode Data Timeseries yang Lebih Panjang: Deteksi dini Ganoderma 

sangat menantang karena gejala awal sulit dikenali. Periode data timeseries 

lima bulan yang digunakan mungkin sudah termasuk fase akhir infeksi. 

Oleh karena itu, disarankan untuk memperpanjang periode pengumpulan 

data menjadi satu hingga lima tahun untuk mendapatkan gambaran yang 

lebih akurat tentang perkembangan penyakit dari fase awal hingga akhir. 

2. Memanfaatkan Pola Spasial Anomali: Penelitian selanjutnya dapat 

memanfaatkan fakta bahwa pohon yang terinfeksi Ganoderma cenderung 
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muncul secara acak, sementara pohon yang kekurangan air atau unsur hara 

biasanya menunjukkan pola kerusakan yang seragam. Memasukkan analisis 

spasial ini ke dalam model dapat meningkatkan akurasi dan membedakan 

anomali penyakit dari kondisi stres lainnya. 

3. Peningkatan Kualitas Citra: Kualitas data sangat memengaruhi performa 

model. Penelitian di masa depan harus fokus pada peningkatan kualitas citra 

dengan melakukan pra-pemrosesan yang lebih baik, termasuk normalisasi 

ukuran (resizing) dan pembersihan noise. Kualitas citra yang lebih baik 

dapat memastikan bahwa model tidak hanya mempelajari noise atau artefak 

piksel, tetapi juga pola anomali yang relevan. 
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