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PENGEMBANGAN SISTEM KLASIFIKASI BAHASA ISYARAT BISINDO 

SECARA REAL-TIME DENGAN RASPBERRY PI 

 

Olfat Harits Alatas, Romy Budhi, Mochamad Subianto 

Universitas Ma Chung 

 

ABSTRAK 

 

Komunikasi merupakan kebutuhan fundamental manusia, namun kesenjangan 

komunikasi masih sering terjadi antara masyarakat dengar dan komunitas Tuli yang 

menggunakan Bahasa Isyarat Indonesia (BISINDO). Solusi teknologi yang ada saat ini 

seringkali bergantung pada perangkat keras mahal atau komputasi cloud yang tidak 

praktis untuk penggunaan sehari-hari. Penelitian ini bertujuan untuk mengembangkan 

sistem penerjemah bahasa isyarat portable dan real-time berbasis embedded system 

menggunakan Raspberry Pi 5. 

Penelitian ini menerapkan pendekatan hybrid dalam mengklasifikasikan gestur. 

Untuk gestur statis (huruf, angka dan kata statis), digunakan algoritma Random Forest 

karena efisiensinya pada data tabular. Sedangkan untuk gestur dinamis, dilakukan studi 

perbandingan antara arsitektur Long Short-Term Memory (LSTM) dan Transformer 

untuk menangkap dependensi spasio-temporal. Ekstraksi fitur dilakukan menggunakan 

MediaPipe Hands yang menghasilkan 21 titik koordinat kerangka tangan (landmarks). 

Hasil pengujian membuktikan bahwa pendekatan hybrid sangat efektif. Pada 

gestur statis, Random Forest mencatatkan performa sempurna dengan akurasi 100%. 

Temuan signifikan terlihat pada klasifikasi gestur dinamis, di mana arsitektur 

Transformer berhasil mengungguli LSTM dengan akurasi uji 98,57% berbanding 

94,50%. Keunggulan ini semakin teruji pada validasi real-time, di mana Transformer 

mampu mempertahankan stabilitas prediksi dengan akurasi 93%, jauh melampaui 

LSTM yang hanya mencapai 86%. Hal ini menunjukkan bahwa mekanisme Self-

Attention pada Transformer lebih efektif dalam menangkap konteks spasio-temporal 

jangka panjang dibandingkan gerbang memori LSTM, menjadikan sistem ini solusi 

yang lebih andal untuk implementasi di dunia nyata. 

 

Kata Kunci: BISINDO, Raspberry Pi, Random Forest, LSTM, Transformer, 

Computer Vision. 
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DEVELOPMENT OF A REAL-TIME BISINDO SIGN LANGUAGE 

CLASSIFICATION SYSTEM USING RASPBERRY PI 

 

Olfat Harits Alatas, Romy Budhi, Mochamad Subianto 

Universitas Ma Chung 

 

ABSTRACT 

 

Communication is a fundamental human need, however, a significant 

communication gap persists between the hearing society and the Deaf community who 

utilize Indonesian Sign Language (BISINDO). Current technological solutions often rely 

on expensive hardware or cloud computing, rendering them impractical for daily usage. 

This study aims to develop a portable, real-time sign language translation system based 

on an embedded system utilizing Raspberry Pi 5. 

This research implements a hybrid approach for gesture classification. For static 

gestures (letters, numbers, and static words), the Random Forest algorithm is employed 

due to its efficiency with tabular data. Meanwhile, for dynamic gestures, a comparative 

study is conducted between Long Short-Term Memory (LSTM) and Transformer 

architectures to capture spatiotemporal dependencies. Feature extraction utilizes 

MediaPipe Hands, generating 21 hand skeletal coordinate points (landmarks). 

Experimental results demonstrate that the hybrid approach is highly effective. In 

static gesture classification, Random Forest achieved perfect performance with 100% 

accuracy. Significant findings emerged in dynamic gesture classification, where the 

Transformer architecture successfully outperformed LSTM with a test accuracy of 98.57% 

compared to 94.50%. This superiority was further validated in real-time testing, where 

Transformer maintained prediction stability with 93% accuracy, significantly surpassing 

LSTM which only reached 86%. These results indicate that the Self-Attention 

mechanism in the Transformer is more effective in capturing long-term spatiotemporal 

contexts compared to LSTM's memory gates, rendering this system a more reliable 

solution for real-world implementation. 

 

Keywords: BISINDO, Embedded System, Random Forest, LSTM, Transformer, 

Spatiotemporal. 
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Bab I  

Pendahuluan 

 

1.1. Latar Belakang 

Bahasa Isyarat Indonesia (BISINDO) merupakan media komunikasi utama bagi 

penyandang tunarungu dan tunawicara di Indonesia. Sebagai bahasa visual, BISINDO 

memanfaatkan kombinasi gerakan tangan, ekspresi wajah, dan posisi tubuh, sehingga 

sering kali sulit dipahami oleh masyarakat umum yang tidak terbiasa menggunakannya. 

Kondisi ini kerap menjadi hambatan komunikasi antara penyandang disabilitas dengan 

lingkungan sosialnya. Di Indonesia, dikenal dua sistem bahasa isyarat, yaitu Sistem 

Isyarat Bahasa Indonesia (SIBI) dan BISINDO. Namun, BISINDO lebih banyak 

digunakan karena berkembang secara alami di komunitas tunarungu, bersifat kultural, 

serta tidak terikat pada struktur bahasa Indonesia formal. Mengingat cakupan 

penggunaannya yang lebih luas dan praktis, penelitian ini memilih BISINDO sebagai 

fokus utama dalam pengembangan sistem penerjemah bahasa isyarat otomatis untuk 

mendukung komunikasi yang lebih inklusif. 

Kemajuan teknologi kecerdasan buatan, khususnya machine learning, telah 

memungkinkan komputer mengenali pola dari data secara efektif. Salah satu 

penerapannya adalah pada sistem pengenalan bahasa isyarat berbasis citra. Sejumlah 

studi menunjukkan keberhasilan algoritma machine learning seperti Random Forest dan 

Long Short-Term Memory (LSTM) dalam mengklasifikasikan gerakan tangan. 

Penelitian Fadlilah et al. (2022) berhasil membangun sistem pengenal isyarat dasar 

BISINDO menggunakan kamera dan Raspberry Pi yang mampu menerjemahkan huruf 

dan angka menjadi teks secara real-time. 

Berbagai pendekatan teknologi telah dikembangkan untuk menjembatani 

kesenjangan komunikasi ini. Salah satu metode yang umum digunakan adalah 

pendekatan berbasis sensor (wearable devices). Sebagai contoh, penelitian yang 

dilakukan oleh Wungow dkk (2022) mengembangkan sarung tangan penerjemah untuk 

Sistem Bahasa Isyarat Indonesia (SIBI) menggunakan flex sensor yang dikombinasikan 

dengan metode K-Nearest Neighbors (KNN) dan Artificial Neural Network (ANN). 
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Meskipun penelitian tersebut berhasil mencapai akurasi tinggi hingga 99% untuk 

klasifikasi statis, penggunaan perangkat keras yang harus dipasang pada tubuh pengguna 

dinilai kurang praktis untuk komunikasi sehari-hari. Selain itu, akurasi pada metode 

berbasis sensor sangat bergantung pada kesesuaian dimensi tangan pengguna dengan alat, 

di mana perbedaan ukuran tangan dapat menyebabkan sensor tidak menekuk secara 

maksimal. Mengatasi keterbatasan tersebut, penelitian ini mengusulkan pendekatan 

berbasis computer vision yang lebih fleksibel tanpa memerlukan alat tambahan pada 

tubuh pengguna. Berbeda dengan penelitian sebelumnya yang berfokus pada SIBI, 

penelitian ini akan berfokus pada BISINDO yang lebih umum digunakan oleh komunitas 

Tuli, dengan memanfaatkan arsitektur Deep Learning. 

Bahasa isyarat tidak hanya terdiri dari gestur statis, tetapi juga gestur dinamis 

yang membentuk kata atau kalimat. Untuk mengenali urutan gerakan dalam dimensi 

waktu, dibutuhkan model yang mampu menangani data sekuensial. LSTM, sebagai 

bagian dari arsitektur Recurrent Neural Network (RNN), terbukti efektif untuk 

memproses data urutan. Penelitian Aljabar dan Suharjito (2020) menggabungkan CNN 

dan LSTM untuk pengenalan BISINDO real-time berbasis desktop, dengan capaian 

akurasi hingga 96% dalam pengenalan kata tertentu. 

Penelitian Kothadiya et al. (2022) mengusulkan sistem pengenalan bahasa isyarat 

berbasis deep learning dengan mengombinasikan LSTM dan GRU. Dataset yang 

digunakan, IISL2020, berisi sebelas kelas kata dengan ribuan sampel video yang direkam 

dalam kondisi alami tanpa sensor tambahan. Fitur citra diekstraksi menggunakan 

InceptionResNetV2, kemudian diproses oleh LSTM untuk memahami pola urutan 

gerakan dan dilanjutkan ke GRU guna menyaring informasi sebelum diklasifikasikan 

dengan softmax. Model ini dijalankan pada desktop dan mencapai akurasi sekitar 97%, 

meskipun masih terbatas pada pengenalan gestur terisolasi. 

Raspberry Pi menjadi platform yang menarik untuk pengembangan sistem ini 

karena memiliki keunggulan dari sisi biaya, ukuran yang ringkas, dan portabilitas. 

Integrasinya dengan kamera CSI (PiCamera) memungkinkan pengambilan citra 

berkecepatan tinggi dengan latensi rendah, yang sangat penting untuk aplikasi real-time. 

Abed dan Rahman (2017) menunjukkan bahwa Raspberry Pi dengan modul kamera 
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dapat digunakan untuk sistem pengenalan gestur tangan berbasis visi komputer dengan 

akurasi hingga 98%, sekaligus menawarkan efisiensi yang tinggi untuk aplikasi lapangan. 

Hasil penelitian Alexander dkk. (2023) mengungkapkan bahwa algoritma 

Random Forest menunjukkan performa terbaik dibandingkan metode klasifikasi lain, 

seperti K-Nearest Neighbor (KNN), Support Vector Machine (SVM), dan Decision Tree, 

dalam mengidentifikasi gestur bahasa isyarat BISINDO. Pada pengujian data, Random 

Forest mampu mencapai akurasi, presisi, f1-score, dan recall sebesar 97,9%, sedangkan 

pada pengujian real-time memperoleh presisi 84%. Keunggulan lain yang dicapai adalah 

waktu klasifikasi tercepat di antara model yang diuji, yaitu 34,6 kata per menit, sehingga 

menjadikannya pilihan yang tepat untuk aplikasi berbasis kamera dengan kebutuhan 

real-time. 

Selain itu, optimalisasi model menggunakan TensorFlow Lite pada perangkat 

edge computing seperti Raspberry Pi telah terbukti dapat meningkatkan efisiensi proses 

inferensi sekaligus mempertahankan kinerja model untuk aplikasi real-time. Toyib et al. 

(2025) mengimplementasikan TensorFlow Lite pada aplikasi pengenalan Sistem Isyarat 

Bahasa Indonesia (SIBI) secara real-time, dan hasilnya menunjukkan performa sistem 

yang responsif dengan konsumsi sumber daya yang rendah. 

Penelitian oleh Alatas & Widodo (2025) mengembangkan sistem penerjemah 

bahasa isyarat BISINDO menggunakan kombinasi algoritma Random Forest untuk 

gestur statis dan LSTM untuk gestur dinamis pada Raspberry Pi. Hasil penelitian tersebut 

menunjukkan bahwa sistem mampu berjalan pada perangkat edge dengan tingkat akurasi 

yang baik, namun akurasi real-time pada model LSTM masih dapat ditingkatkan. Hal ini 

menjadi landasan utama pengembangan penelitian ini untuk mengoptimalkan akurasi 

real-time melalui pemanfaatan TensorFlow Lite dan pengambilan citra menggunakan 

PiCamera. 

Penelitian oleh Hoque et al. (2018) mengembangkan sistem deteksi bahasa 

isyarat Bangladeshi (BdSL) menggunakan algoritma Faster R-CNN dengan backbone 

Inception V2. Sistem dilatih pada dataset BdSLImset yang berisi sepuluh kelas huruf 

isyarat dengan variasi latar belakang dan kondisi pencahayaan. Hasil pengujian 

menunjukkan bahwa model mampu mencapai akurasi rata-rata sebesar 98,2% dengan 
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waktu deteksi sekitar 90 milidetik per citra, sehingga dapat berjalan secara real-time. 

Meskipun demikian, penelitian ini mencatat adanya kendala pada huruf dengan bentuk 

isyarat yang mirip, sehingga akurasi pada kondisi tertentu masih dapat ditingkatkan. 

Penelitian oleh Shin et al. (2023) mengembangkan sistem pengenalan bahasa 

isyarat Korea (KSL) menggunakan pendekatan deep learning berbasis transformer 

ringan. Model yang diusulkan memadukan keunggulan CNN untuk ekstraksi fitur lokal 

dan Convolutional Layer-Based Transformer dengan Lightweight Multi-Head Self 

Attention (LMHSA) untuk menangkap ketergantungan global, serta diperkuat dengan 

grain module yang berfungsi menggantikan mekanisme patch tradisional pada Vision 

Transformer agar representasi awal lebih efektif dan efisien. Sistem dilatih pada dataset 

KSL dengan 77 kelas serta dataset tambahan berisi 20 kata penting dalam KSL. Hasil 

pengujian menunjukkan bahwa model mencapai akurasi 89,0% pada dataset KSL dan 

98,3% pada dataset usulan, melampaui performa metode sebelumnya. Meskipun 

demikian, penelitian ini mencatat masih adanya keterbatasan pada ukuran dataset dan 

kompleksitas komputasi, sehingga pengembangan lebih lanjut diperlukan untuk 

meningkatkan generalisasi dan efisiensi sistem. 

Penelitian oleh Chaudhary et al (2022) melalui model SignNet II menunjukkan 

kinerja yang unggul secara kuantitatif dibandingkan pendekatan berbasis RNN dan 

LSTM. Pada tugas sign-to-text translation, model ini mampu mencapai skor BLEU 

hingga sekitar 23, lebih tinggi 4–6 poin dibanding baseline sebelumnya yang hanya 

berkisar 15–18. Sementara pada arah text-to-sign translation, SignNet II menghasilkan 

peningkatan akurasi urutan gloss sebesar 4% hingga 7% dibandingkan metode terdahulu. 

Selain itu, penggunaan mekanisme shared representation menjadikan model ini lebih 

efisien, dengan jumlah parameter dan waktu pelatihan yang lebih hemat sekitar 10–15% 

dibandingkan jika melatih dua model terpisah. Hasil ini menegaskan bahwa arsitektur 

Transformer tidak hanya lebih akurat, tetapi juga lebih efisien untuk tugas penerjemahan 

dua arah bahasa isyarat, meskipun tantangan terkait keterbatasan data dan kebutuhan 

evaluasi lebih luas masih perlu ditangani dalam penelitian lanjutan. 

Berdasarkan temuan-temuan tersebut, penelitian ini mengembangkan sistem 

klasifikasi bahasa isyarat BISINDO real-time berbasis Raspberry Pi dengan 
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memanfaatkan kombinasi algoritma Random Forest untuk gestur statis, serta LSTM dan 

Transformer yang dioptimasi menggunakan TensorFlow Lite untuk gestur dinamis. 

Penggunaan Pi Camera memungkinkan pengambilan citra berkecepatan tinggi, 

sementara kombinasi kedua algoritma diharapkan dapat meningkatkan akurasi 

pengenalan baik pada gestur statis maupun dinamis dalam kondisi penggunaan di 

lapangan. Selain itu, penelitian ini juga menghadirkan pembaruan berupa penerapan 

metode Transformer khusus untuk pengenalan gestur dinamis, sehingga dapat 

dibandingkan dengan LSTM dalam mendeteksi urutan gerakan bahasa isyarat serta 

memberikan evaluasi terhadap efektivitas Transformer sebagai alternatif metode terkini. 

Pemilihan Transformer dibandingkan GRU dan CNN didasarkan pada kemampuannya 

dalam menangkap ketergantungan jangka panjang secara lebih efektif melalui 

mekanisme self-attention, tanpa terjebak pada keterbatasan memori yang sering muncul 

pada RNN maupun variannya. Selain itu, Transformer memungkinkan pemrosesan 

paralel yang lebih cepat dibandingkan model sekuensial seperti GRU, sekaligus mampu 

mengintegrasikan informasi spasial dan temporal lebih baik daripada CNN yang 

umumnya berfokus pada pola lokal. Dengan demikian, Transformer dipandang sebagai 

alternatif yang menjanjikan untuk meningkatkan akurasi dan efisiensi dalam pengenalan 

gestur dinamis BISINDO secara real-time. 

Arsitektur Deep Learning seperti Convolutional Neural Networks (CNN) dan 

Recurrent Neural Networks (RNN), khususnya LSTM, telah lama menjadi pilihan utama 

untuk tugas-tugas klasifikasi dan prediksi pada data sekuensial. Namun, kemunculan 

arsitektur Transformer telah mengubah lanskap secara signifikan dan menjadi fokus 

utama dalam pengembangan model pemrosesan data, termasuk untuk data audio. Sebuah 

studi komparatif dilakukan untuk menguji kinerja ketiga arsitektur ini (CNN, RNN-

LSTM, dan Transformer) dalam tugas klasifikasi genre musik menggunakan Mel-

Frequency Cepstrum Coefficients (MFCCs) sebagai fitur masukan (Ali, 2024). 

Studi tersebut menyoroti perbedaan kinerja yang signifikan antar model ketika 

dihadapkan pada keterbatasan sumber daya komputasi. Model RNN-LSTM 

menunjukkan kinerja terendah, dengan akurasi yang stagnan (flat line) di sekitar 66% 

dan tidak menunjukkan tanda-tanda perbaikan meski epoch pelatihan ditambah. Model 
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CNN, di sisi lain, terbukti paling efektif untuk skenario waktu atau sumber daya yang 

terbatas, dengan cepat mencapai akurasi puncak sekitar 75% sebelum akhirnya juga 

mengalami stagnasi. Berbeda dari keduanya, model Transformer menunjukkan 

karakteristik sebagai "pembelajar yang lambat namun konsisten”. Meskipun akurasi 

awalnya lebih rendah, model Transformer menunjukkan pertumbuhan performa yang 

terus-menerus dan stabil tanpa mengalami plateau, bahkan ketika durasi pelatihan 

diperpanjang. Temuan ini mendukung kesimpulan bahwa dengan sumber daya dan data 

yang memadai, arsitektur Transformer memiliki potensi untuk melampaui kinerja 

model-model pendahulunya secara signifikan (Ali, 2024) 

Arsitektur Transformer tidak hanya menggantikan RNN dalam tugas pemrosesan 

bahasa alami, tetapi juga telah diuji secara intensif untuk aplikasi pemrosesan ucapan 

(speech applications), seperti Automatic Speech Recognition (ASR), Speech Translation 

(ST), dan Text-to-Speech (TTS). Perbedaan fundamentalnya adalah bahwa Transformer 

mempelajari informasi sekuensial melalui mekanisme self-attention, sedangkan RNN 

bergantung pada koneksi rekuren (Karita et al., 2019). 

Dalam sebuah studi komparatif berskala besar yang membandingkan kedua 

arsitektur pada 15 benchmark ASR yang berbeda, Transformer menunjukkan 

superioritas yang mengejutkan dengan mengungguli RNN pada 13 dari 15 benchmark 

tersebut. Keunggulan ini juga terlihat jelas dalam efisiensi pelatihan. Karena tidak 

bergantung pada operasi sekuensial yang iteratif seperti RNN, pelatihan Transformer 

dapat diparalelkan sepenuhnya. Hasilnya, pada salah satu benchmark (LibriSpeech), 

model Transformer mampu mencapai tingkat akurasi terbaik yang dihasilkan RNN, 

namun dengan waktu pelatihan delapan kali lebih cepat (Karita et al., 2019). 

Studi ini juga mencatat bahwa strategi optimalisasi untuk kedua model ini 

berbeda. Kinerja Transformer sangat diuntungkan oleh penggunaan minibatch berukuran 

besar, yang secara simultan meningkatkan akurasi dan kecepatan pelatihan. Sebaliknya, 

peningkatan ukuran minibatch tidak memberikan manfaat yang sama pada model RNN. 

Selain itu, penggunaan dropout terbukti esensial untuk mencegah overfitting pada 

Transformer, sementara teknik yang sama tidak menunjukkan peningkatan signifikan 

pada RNN. Temuan ini menggarisbawahi bahwa Transformer tidak hanya unggul dalam 
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performa, tetapi juga memperkenalkan dinamika pelatihan yang berbeda dari arsitektur 

berbasis rekuren (Karita et al., 2019). 

Evolusi model sequence-to-sequence menunjukkan lintasan yang jelas, dimulai 

dari Recurrent Neural Networks (RNNs) sebagai fondasi, beralih ke Long Short-Term 

Memory (LSTM) untuk mengatasi kelemahan RNN, dan akhirnya mencapai pergeseran 

paradigma dengan hadirnya arsitektur Transformer. Model RNN tradisional, meskipun 

fundamental, memiliki keterbatasan dalam menangani sekuens panjang akibat masalah 

vanishing gradient. Model LSTM dan variannya (seperti GRU) secara khusus dirancang 

untuk mengatasi masalah ini, sehingga unggul dalam tugas-tugas yang menuntut memori 

dependensi jangka panjang dan pemahaman struktur sintaktis yang kompleks (Zhu, 

2023). 

Di sisi lain, arsitektur Transformer membawa kemajuan baru dengan berfokus 

pada mekanisme attention. Transformer terbukti lebih unggul untuk tugas-tugas yang 

membutuhkan pemahaman konteks yang mendalam dan hubungan antara bagian-bagian 

teks yang tidak berdekatan. Meskipun demikian, model LSTM masih mempertahankan 

relevansinya untuk skenario spesifik. Ketika sebuah tugas sangat bergantung pada 

analisis sintaktis yang mendalam atau membutuhkan interpretasi model yang lebih 

transparan, arsitektur LSTM seringkali masih menjadi pilihan yang valid. Pada akhirnya, 

pemilihan antara arsitektur berbasis rekuren (LSTM) dan berbasis attention 

(Transformer) sangat bergantung pada kebutuhan spesifik dari tugas yang dihadapi (Zhu, 

2023). 

Arsitektur Transformer, yang diperkenalkan oleh Vaswani et al. pada tahun 2017, 

telah menjadi model fundamental dalam deep learning, khususnya untuk data sekuensial. 

Perbedaan utamanya dengan model-model klasik seperti Recurrent Neural Network 

(RNN) adalah pada metode pemrosesan sekuens. Model RNN bersifat sekuensial dan 

iteratif, yang menyebabkan proses pelatihannya memakan waktu lama. Sebaliknya, 

Transformer mengganti mekanisme rekuren tersebut sepenuhnya dengan self-attention, 

yang memungkinkan pelatihan dilakukan secara paralel. Kemampuan ini secara 

signifikan meningkatkan efisiensi komputasi dan mempersingkat waktu yang 

dibutuhkan untuk melatih model (Shiri et al., 2024). 
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Keunggulan ini telah dibuktikan secara empiris dalam sebuah studi komparatif. 

Pada tugas analisis sentimen (dataset IMDB), model Transformer tidak hanya berhasil 

mencapai akurasi klasifikasi tertinggi, mengungguli varian RNN seperti LSTM dan GRU, 

tetapi juga memiliki waktu pelatihan yang jauh lebih singkat dibandingkan model RNN 

berkinerja terbaik lainnya (Bi-GRU) (Shiri et al., 2024). Performa superior ini juga 

terkonfirmasi pada jenis data sekuensial yang berbeda, yaitu data sensor untuk 

pengenalan aktivitas manusia (dataset ARAS). Pada dataset tersebut, Transformer 

kembali mengungguli model RNN lainnya dalam hal akurasi, recall, dan F1-score, 

sekaligus menunjukkan kurva pelatihan yang lebih cepat stabil (Shiri et al., 2024). Studi 

ini menyimpulkan bahwa mekanisme attention pada Transformer menjadikannya model 

yang berkinerja lebih baik daripada model-model berbasis RNN klasik, terutama untuk 

tugas analisis teks (Shiri et al., 2024). 

 

1.2. Identifikasi Masalah 

Permasalahan yang diangkat dalam penelitian ini meliputi rendahnya 

pemahaman masyarakat terhadap Bahasa Isyarat Indonesia (BISINDO), belum 

tersedianya sistem penerjemah bahasa isyarat yang praktis dan real-time pada perangkat 

portabel seperti Raspberry Pi, serta perlunya penerapan metode klasifikasi terpisah untuk 

gestur statis dan gestur dinamis menggunakan algoritma yang sesuai. 

 

1.3. Batasan Masalah 

a) Sistem difokuskan untuk mengenali gestur Bahasa Isyarat Indonesia (BISINDO) 

berupa huruf, angka, dan kosakata tertentu sesuai dataset penelitian. 

b) Proses pengambilan data menggunakan webcam Logitech C270 dan pengujian 

dilakukan menggunakan PiCamera v1 yang terhubung ke Raspberry Pi 5 

sebagai perangkat utama. 

c) Model klasifikasi yang digunakan terdiri dari Random Forest untuk gestur statis 

serta LSTM dan Transformer untuk gestur dinamis yang dibandingkan 

kinerjanya. 
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d) Dataset berupa citra dan data landmark tangan 3D (x, y, z) diperoleh 

menggunakan MediaPipe Hands dan digunakan untuk pelatihan serta pengujian 

sistem. 

e) Sistem dirancang beroperasi secara offline  pada Raspberry Pi, dengan seluruh 

proses inferensi dan klasifikasi dilakukan secara lokal tanpa koneksi internet. 

1.4. Rumusan Masalah 

Bagaimana merancang bangun dan menganalisis kinerja sistem klasifikasi 

bahasa isyarat BISINDO secara real-time pada Raspberry Pi 5 yang mengintegrasikan 

algoritma Random Forest untuk gestur statis serta membandingkan performa LSTM dan 

Transformer untuk gestur dinamis guna mencapai akurasi dan stabilitas sistem yang 

optimal? 

1.5. Tujuan Penelitian 

a) Membangun sistem klasifikasi bahasa isyarat BISINDO berbasis kamera CSI 

PiCamera v1 yang berjalan pada perangkat Raspberry Pi 5 RAM 16 GB. 

b) Menerapkan algoritma Random Forest untuk klasifikasi gestur statis bahasa 

isyarat BISINDO. 

c) Membandingkan kinerja algoritma LSTM dengan metode Transformer dalam 

klasifikasi gestur dinamis bahasa isyarat BISINDO. 

d) Menguji kemampuan sistem dalam melakukan klasifikasi bahasa isyarat 

BISINDO secara real-time pada perangkat Raspberry Pi 5 RAM 16 GB dengan 

hasil yang akurat. 

 

1.6. Luaran Penelitian 

Luaran yang diharapkan dari penelitian ini adalah: 

1. Rancangan dan implementasi sistem klasifikasi bahasa isyarat BISINDO 

berbasis Raspberry Pi 5 dengan kamera CSI PiCamera v1 yang mampu 

melakukan deteksi dan klasifikasi gestur secara real-time. 

2. Model klasifikasi gestur statis menggunakan algoritma Random Forest yang 

terlatih pada dataset BISINDO. 
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3. Perbandingan kinerja antara algoritma LSTM dan metode Transformer 

dalam mendeteksi gestur dinamis bahasa isyarat BISINDO secara real-time 

pada perangkat edge. 

4. Dataset hasil ekstraksi landmark tangan dari MediaPipe Hands yang 

difokuskan pada deteksi tangan, digunakan sebagai data pelatihan dan 

pengujian sistem. 

5. Hasil pengujian performa sistem yang mencakup pengukuran akurasi, presisi, 

recall, dan f1-score, baik untuk pengujian offline maupun real-time. 

6. Analisis kinerja sistem pada perangkat Raspberry Pi, meliputi kecepatan 

pemrosesan, tingkat akurasi, dan efisiensi penggunaan sumber daya. 

 

1.7. Manfaat 

a) Memberikan solusi teknologi yang dapat membantu komunikasi antara 

penyandang tunarungu dan masyarakat umum melalui sistem penerjemah 

BISINDO real-time berbasis Raspberry Pi. 

b) Menjadi referensi dalam pengembangan sistem pengenalan bahasa isyarat 

berbasis Raspberry Pi dan kamera CSI PiCamera dengan optimasi model 

menggunakan TensorFlow Lite. 

c) Memberikan informasi dan perbandingan performa antara algoritma Random 

Forest untuk gestur statis, LSTM dan Transformer untuk gestur dinamis. 

d) Mendorong pemanfaatan model deep learning berbasis sekuensial (LSTM) 

maupun Transformer pada aplikasi pengenalan gestur dinamis yang dijalankan 

di perangkat edge computing. 

 

1.8. Sistematika Penulisan 

Berikut ini adalah sistematika penulisan pada penelitian ini: 

1. BAB I Pendahuluan 

Berisi uraian pendahuluan penelitian yang mencakup latar belakang, 

identifikasi masalah, batasan masalah, rumusan masalah, tujuan penelitian, 
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luaran penelitian, manfaat penelitian, sistematika penulisan, dan jadwal 

penelitian. 

2. BAB II Tinjauan Pustaka 

Berisi teori-teori dasar dan ulasan penelitian terdahulu yang relevan dengan 

pengembangan sistem klasifikasi bahasa isyarat BISINDO secara real-time 

menggunakan Raspberry Pi dan kamera CSI PiCamera v1. Dalam bab ini 

juga dibahas literatur terkait penerapan algoritma Random Forest untuk 

gestur statis, LSTM dan Transformer yang dioptimasi dengan TensorFlow 

Lite untuk gestur dinamis sebagai pembaruan metode untuk pengenalan 

gestur dinamis. Selain itu, ditinjau pula penelitian-penelitian sebelumnya 

dalam bidang pengenalan bahasa isyarat untuk melihat posisi dan kebaruan 

penelitian ini. 

3. BAB III Rancangan Sistem 

Berisi tahapan perancangan sistem mulai dari metode pengumpulan data, 

proses pengolahan data menggunakan MediaPipe Hands, perancangan 

model klasifikasi, optimasi model dengan TensorFlow Lite, serta integrasi 

sistem pada perangkat Raspberry Pi. 

4. BAB IV Hasil dan Pembahasan 

Berisi hasil implementasi sistem dan pembahasan mendalam terkait 

performa algoritma, akurasi, presisi, recall, f1-score, serta evaluasi kinerja 

real-time pada Raspberry Pi. 

5. BAB V Simpulan dan Saran 

Berisi simpulan menyeluruh dari hasil penelitian, kesesuaian dengan tujuan 

penelitian, serta saran-saran untuk pengembangan lebih lanjut agar sistem 

dapat digunakan secara optimal di lapangan. 
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Bab II  

Tinjauan Pustaka 

 

2.1. Bahasa Isyarat 

Bahasa isyarat merupakan sistem komunikasi visual-manual yang digunakan 

oleh komunitas Tuli untuk menyampaikan informasi dan menjalin interaksi sosial. 

Bahasa ini memiliki struktur linguistik yang kompleks yang mencakup fonologi, 

morfologi, sintaksis, serta semantik, dan tidak bersifat universal karena tiap negara 

memiliki bahasa isyaratnya masing-masing (Pujiati, 2019). Di Indonesia, terdapat dua 

sistem yang dikenal luas, yaitu Bahasa Isyarat Indonesia (BISINDO) dan Sistem 

Isyarat Bahasa Indonesia (SIBI), yang memiliki perbedaan mendasar dalam struktur 

dan penggunaannya (Pujiati, 2019). 

Selain sebagai alat komunikasi, bahasa isyarat juga merupakan bagian dari 

identitas budaya komunitas Tuli. Penggunaan bahasa isyarat memberikan akses yang 

lebih luas terhadap pendidikan, pekerjaan, dan kehidupan sosial secara umum. Namun, 

pengakuan resmi terhadap bahasa isyarat sebagai bahasa nasional dan penerapannya 

dalam kebijakan publik masih menjadi tantangan di berbagai negara, termasuk 

Indonesia (Wijaya, 2018). 

Dalam konteks pendidikan, pemahaman dan penguasaan bahasa isyarat 

memiliki peranan penting dalam menciptakan lingkungan belajar yang inklusif bagi 

siswa Tuli. Implementasi pembelajaran dengan pendekatan bilingual menggunakan 

bahasa isyarat dan bahasa tulis mampu meningkatkan prestasi belajar dan 

perkembangan kognitif siswa Tuli (Murni et al., 2024). Selain itu, pelatihan bahasa 

isyarat bagi guru, teman sebaya, dan keluarga turut memperkuat dukungan sosial yang 

mereka terima. 

Seiring dengan kemajuan teknologi, banyak inovasi digital yang mendukung 

pembelajaran bahasa isyarat, seperti aplikasi interaktif berbasis multimedia. Aplikasi 

ini dirancang untuk mengajarkan kosakata bahasa isyarat melalui animasi, audio, dan 

latihan visual, sehingga menarik minat pengguna dan meningkatkan efektivitas 

pembelajaran (Assa et al., 2021). 
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2.1.1. BISINDO (Bahasa Isyarat Indonesia) 

BISINDO adalah bahasa yang didorong pengembangannya oleh Gerakan 

Kesejahteraan Tunarungu Indonesia (Gerkatin) dan dikembangkan secara mandiri oleh 

komunitas tunarungu. Oleh karena itu, BISINDO menjadi sistem komunikasi yang 

praktis dan efisien bagi penyandang tunarungu di Indonesia karena bahasa ini memang 

lahir dari kebutuhan dan pengalaman langsung para tunarungu itu sendiri (Borman et 

al., 2017). Karena berasal dari komunitas tunarungu itu sendiri, BISINDO lebih mudah 

dipahami dan diterima dalam interaksi sehari-hari. Dibandingkan dengan SIBI yang 

muncul belakangan, BISINDO telah digunakan lebih lama dan mencerminkan cara 

berkomunikasi teman tuli secara alami. Dalam penggunaannya, BISINDO 

menekankan ekspresi wajah dan gerakan mulut sebagai bagian penting dari makna 

isyarat. Selain itu, struktur bahasa ini terdiri dari lima unsur utama, yaitu lokasi isyarat, 

bentuk tangan, orientasi, gerakan tangan, dan ekspresi non-manual (Nugraheni et al., 

2021). Visualisasi dari beberapa contoh gestur BISINDO dapat dilihat pada Gambar 

2.1, yang memperlihatkan bentuk tangan dan ekspresi khas yang digunakan dalam 

komunikasi sehari-hari. 

 

 

Gambar 2.1 Abjad Dalam BISINDO 

(Sumber: Kompasiana, 2023) 
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2.1.2. SIBI (Sistem Isyarat Bahasa Indonesia) 

SIBI (Sistem Isyarat Bahasa Indonesia) merupakan alat bantu komunikasi bagi 

individu tunarungu yang menggabungkan unsur bahasa lisan, gerakan isyarat, ekspresi 

wajah, dan gerak tubuh lainnya. Pemerintah menetapkan SIBI sebagai bahasa isyarat 

resmi yang digunakan di Sekolah Luar Biasa (SLB). Namun, banyak penyandang 

tunarungu merasa bahwa SIBI tidak sepenuhnya mewakili cara berkomunikasi mereka, 

karena SIBI menggunakan aturan isyarat yang cenderung menyesuaikan dengan 

struktur bahasa lisan dalam menyampaikan kosakata (Nugraheni et al., 2021). Gambar 

2.2 menyajikan visualisasi dari beberapa contoh gestur dalam SIBI. 

 

 

Gambar 2.2 Abjad Dalam SIBI 

(Sumber: Yayasan Peduli Kasih ABK, 2018) 

 

2.2. Python 

Python adalah bahasa pemrograman tingkat tinggi dan serbaguna yang 

dikembangkan oleh Guido van Rossum pada akhir 1980-an dan pertama kali dirilis 

pada 1991. Filosofi desainnya menekankan keterbacaan kode dengan penggunaan 

indentasi yang signifikan, bersifat dinamis dalam pengecekan tipe data, dan 

mendukung berbagai paradigma pemrograman seperti terstruktur, berorientasi objek, 

dan fungsional. Sering disebut sebagai bahasa "batteries included" karena memiliki 

pustaka standar yang komprehensif, Python telah berkembang melalui beberapa versi 
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utama (Python 2 dan Python 3) dan secara konsisten menduduki peringkat sebagai 

salah satu bahasa pemrograman terpopuler, terutama dalam komunitas machine 

learning. Nama "Python" diambil dari serial komedi Inggris "Monty Python's Flying 

Circus", dan kepemimpinan proyeknya beralih dari Van Rossum (yang dijuluki 

"benevolent dictator for life") kepada Steering Council beranggotakan lima orang pada 

2019 (Van Rossum, G., 2007). 

2.2.1. Open CV 

Open Source Computer Vision Library (OpenCV) merupakan pustaka open-

source yang dikembangkan oleh Intel pada tahun 1999 sebagai bagian dari inisiatif 

pengembangan aplikasi pemrosesan visual real-time yang efisien. Pustaka ini ditulis 

dalam bahasa pemrograman C dan dioptimalkan untuk mendukung arsitektur prosesor 

multicore, menjadikannya sangat cocok untuk aplikasi yang membutuhkan kecepatan 

pemrosesan tinggi (Bradski dan Kaehler, 2008; Kaehler dan Bradski, 2016). OpenCV 

kini telah berkembang menjadi salah satu pustaka paling populer dalam pengembangan 

sistem computer vision karena sifatnya yang fleksibel dan dapat dijalankan di berbagai 

platform. 

Menurut Dawson-Howe (2019), OpenCV memiliki beragam fungsi penting, 

mulai dari pengolahan citra dasar seperti filtering, konversi warna, dan deteksi tepi, 

hingga pemrosesan citra lanjutan seperti deteksi wajah, pelacakan objek, kalibrasi 

kamera, serta pengenalan pola berbasis machine learning. Selain itu, OpenCV juga 

banyak digunakan untuk pengolahan video, rekonstruksi 3D, dan implementasi 

augmented reality serta sistem bantuan pengemudi. Kelengkapan dan kemudahan 

integrasi pustaka ini membuat OpenCV menjadi alat yang sangat bermanfaat untuk riset 

maupun pengembangan industri. 

2.2.2. Numpy 

NumPy (Numerical Python) adalah pustaka open-source dalam Python yang 

digunakan untuk komputasi numerik, terutama pada array dan matriks berdimensi 

banyak. Pustaka ini menyediakan fungsi-fungsi efisien untuk operasi matematika, 

statistik, aljabar linier, transformasi Fourier, dan bilangan acak. NumPy dibangun di 

atas kode C yang dioptimalkan, sehingga menawarkan kecepatan tinggi dengan sintaks 
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Python yang sederhana. Meskipun tidak menyediakan fungsi statistik lanjutan, NumPy 

menjadi dasar penting bagi pustaka lain seperti pandas, terutama dalam pengolahan 

data tabular (Gupta, P., dan Bagchi, A., 2024). 

 

2.2.3. Pandas 

Pandas adalah pustaka open-source dalam Python yang dirancang untuk 

keperluan analisis dan manipulasi data, terutama data dalam bentuk tabel (tabular) 

seperti spreadsheet dan database. Pustaka ini memungkinkan Python untuk melakukan 

operasi pemrosesan data secara cepat dan efisien, seperti membaca, membersihkan, 

menyusun ulang, menyatukan, hingga memodelkan dan menganalisis data. Pandas 

menawarkan struktur data utama berupa Series (data satu dimensi) dan DataFrame 

(data dua dimensi), yang memudahkan pengguna dalam mengelola data kompleks. 

Pandas pertama kali dikembangkan oleh Wes McKinney pada tahun 2008, dan 

dibangun di atas NumPy. Meskipun tidak menggantikan NumPy, Pandas memperluas 

kemampuannya dengan menyediakan alat-alat analisis data yang lebih ekspresif dan 

terstruktur. Pandas mendukung berbagai format data seperti CSV, Excel, JSON, dan 

SQL, serta dapat menangani data heterogen, data waktu (time series), dan data tidak 

lengkap (Gupta, P., dan Bagchi, A., 2024). 

2.2.4. Scikit-learn 

Scikit-learn adalah pustaka open-source untuk machine learning yang ditulis 

dalam bahasa Python. Pustaka ini memungkinkan integrasi metode machine learning 

secara cepat dan mudah ke dalam kode Python. Scikit-learn menyediakan berbagai 

metode seperti klasifikasi, regresi, estimasi matriks kovarian, reduksi dimensi, 

praproses data, hingga pembuatan dataset uji. 

Pustaka ini dapat digunakan di berbagai sistem operasi dan terus dikembangkan 

secara aktif. Scikit-learn banyak digunakan dalam aplikasi komersial, penelitian 

akademik, dan publikasi ilmiah. Untuk meningkatkan efisiensi, beberapa algoritma 

dalam scikit-learn ditulis dalam bahasa C dan diintegrasikan melalui Cython, yang 

memungkinkan kompilasi Python secara lebih cepat. Selain itu, metode seperti SVM 
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dan logistic regression dalam scikit-learn menggunakan pustaka LIBSVM dan 

LIBLINEAR sebagai dasar algoritmanya (Kramer, O., dan Kramer, O., 2016). 

2.2.5. Mediapipe 

MediaPipe adalah framework open-source yang dikembangkan oleh Google 

untuk membangun pipeline pemrosesan data sensorik seperti video, audio, dan input 

dari sensor lainnya secara modular dan real-time. Framework ini dirancang untuk 

membantu pengembang dalam membangun sistem pemrosesan visual yang kompleks 

dengan menyusun proses ke dalam bentuk graph kalkulator (calculator graph)—yaitu 

kumpulan komponen modular yang dapat digunakan kembali dan dikombinasikan 

sesuai kebutuhan. 

MediaPipe mendukung berbagai platform, termasuk desktop, mobile 

(Android/iOS), dan bahkan perangkat embedded seperti Raspberry Pi, menjadikannya 

cocok untuk pengembangan sistem portabel. Framework ini dapat berjalan baik di CPU 

maupun GPU, serta dilengkapi dengan alat bantu seperti Tracer dan Visualizer untuk 

memantau performa pipeline. Keunggulan lainnya adalah kemampuannya untuk 

melakukan sinkronisasi waktu yang presisi antar stream data, serta dukungan penuh 

terhadap integrasi dengan model machine learning eksternal. 

Salah satu komponen yang paling sering digunakan dalam MediaPipe adalah 

modul hand tracking, yang dapat mendeteksi dan melacak 21 titik kunci (landmark) 

pada tangan secara real-time. Titik-titik ini mencakup sendi dan ujung jari serta pusat 

telapak tangan, dan direpresentasikan dalam koordinat tiga dimensi. Informasi 

landmark ini menjadi sangat penting untuk mengenali bentuk dan pola gerakan tangan, 

sehingga sangat relevan dalam konteks pengenalan bahasa isyarat, khususnya 

BISINDO. Gambar 2.3 memperlihatkan peta visual dari 21 titik landmark tangan versi 

MediaPipe, yang menjadi acuan dalam proses ekstraksi fitur gerakan untuk klasifikasi 

gestur secara otomatis 
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Gambar 2.3 Peta Mediapipe Hand Landmarks (Sumber: AI Google Dev) 

 

Dalam penelitian ini, MediaPipe digunakan untuk mengekstraksi fitur berupa 

posisi tangan dari input video yang ditangkap oleh kamera. Data koordinat landmark 

kemudian digunakan sebagai fitur masukan (input features) untuk algoritma machine 

learning seperti Random Forest dalam mengenali isyarat statis, serta Long Short-Term 

Memory (LSTM) untuk isyarat dinamis. Arsitektur MediaPipe yang ringan namun 

akurat menjadikannya solusi ideal untuk dikombinasikan dengan Raspberry Pi, 

menciptakan sistem penerjemah bahasa isyarat BISINDO yang portabel, efisien, dan 

real-time (Lugaresi et al., 2019). 

2.2.6. Tensorflow 

TensorFlow merupakan framework open-source dari Google yang dirancang 

untuk mendukung komputasi numerik berskala besar dalam konteks machine learning. 

Framework ini memodelkan perhitungan sebagai struktur data berbasis computational 

graph, yang memungkinkan optimasi eksekusi melalui pemetaan otomatis node-node 

graf ke berbagai unit komputasi, baik itu CPU, GPU, maupun distribusi antar node 

dalam sebuah cluster (Shukla, N., dan Fricklas, K., 2018). 

2.2.7. Joblib 

Joblib adalah pustaka Python yang menyediakan mekanisme pemrosesan 

terstruktur secara efisien melalui konsep pipelining yang ringan. Pustaka ini 

mendukung caching fungsi secara otomatis ke disk untuk menghindari komputasi 

ulang, serta memungkinkan eksekusi paralel yang sederhana, sehingga cocok 

digunakan dalam workflow machine learning dan pemrosesan data berskala besar 

(Faouzi, J., dan Janati, H., 2020). 
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2.2.8. Collections 

Modul collections menyediakan berbagai tipe data kontainer khusus yang 

dirancang sebagai alternatif dari struktur data bawaan Python seperti dict, list, set, dan 

tuple. Tipe-tipe ini menawarkan fungsionalitas tambahan dan efisiensi yang lebih 

tinggi dalam kasus penggunaan tertentu, seperti pengurutan, penghitungan frekuensi, 

atau struktur data berorientasi queue dan mapping (Van Rossum, G. and Drake, F.L., 

1995). 

2.2.9. Pickle 

Pickle adalah pustaka standar Python yang digunakan untuk melakukan 

serialisasi dan deserialisasi objek Python ke dalam format biner. Dengan kata lain, 

modul ini memungkinkan objek Python seperti list, dictionary, atau bahkan model 

machine learning disimpan ke dalam file dan dimuat kembali di lain waktu tanpa 

kehilangan struktur dan nilainya. Fitur ini sangat berguna dalam proses penyimpanan 

model, caching data, atau transfer objek antar sistem, terutama dalam workflow 

machine learning di mana hasil pelatihan model sering kali perlu disimpan dan 

digunakan kembali tanpa perlu dilatih ulang (Rostami et al., 2024). 

2.2.10. Matplotlib 

Matplotlib adalah pustaka grafik dalam Python yang digunakan untuk 

visualisasi data, dan merupakan bagian penting dalam ekosistem data science Python. 

Library ini memungkinkan pembuatan berbagai jenis grafik seperti line chart, bar 

chart, scatter plot, dan lain-lain dengan fleksibilitas tinggi. Matplotlib terintegrasi 

dengan baik bersama pustaka lain seperti NumPy, Pandas, dan pustaka ilmiah lainnya, 

sehingga memudahkan proses eksplorasi, analisis, dan presentasi data dalam bentuk 

visual yang informatif dan interaktif (Sial et al., 2021). 

2.2.11. Regex 

Regular expression (atau regex) adalah pola yang digunakan untuk 

merepresentasikan sekumpulan string yang sesuai dengan kriteria tertentu. Modul re 

dalam Python menyediakan berbagai fungsi untuk memeriksa apakah suatu string 

cocok dengan pola regex yang diberikan, atau sebaliknya, apakah suatu pola regex 

cocok dengan string tertentu yang secara konsep merupakan hal yang sama. Regular 
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expression sangat berguna dalam pemrosesan teks, seperti pencarian pola, validasi 

format data, hingga ekstraksi informasi dari teks secara efisien (Van Rossum, G. and 

Drake, F.L., 1995). 

2.2.12. OS (Operating System) 

Modul os menyediakan antarmuka yang portabel untuk mengakses 

fungsionalitas yang bergantung pada sistem operasi. Melalui modul ini, pengguna 

dapat melakukan berbagai operasi sistem seperti mengelola file, direktori, dan variabel 

lingkungan, tanpa harus bergantung pada detail sistem operasi tertentu. 

Jika hanya ingin membaca atau menulis file, bisa langsung menggunakan 

fungsi open(). Untuk manipulasi path, tersedia submodul os.path. Jika perlu membaca 

seluruh baris dari banyak file yang diberikan melalui command line, modul fileinput 

lebih sesuai. Untuk membuat file atau direktori sementara, dapat menggunakan modul 

tempfile, dan untuk operasi tingkat tinggi seperti menyalin atau memindahkan file dan 

folder, disarankan menggunakan modul shutil (Van Rossum, G. and Drake, F.L., 1995). 

2.2.13. Long Short Term Memory (LSTM) 

Long Short-Term Memory (LSTM) merupakan pengembangan dari arsitektur 

Recurrent Neural Network (RNN) yang dirancang untuk mengatasi kelemahan utama 

RNN standar dalam memproses data sekuensial, yaitu masalah vanishing gradient di 

mana informasi dari input awal cenderung hilang atau memudar saat jaringan 

memproses urutan yang panjang (Graves, A., dan Graves, A,. 2012 ). Masalah ini 

menyebabkan jaringan kesulitan dalam mempertahankan konteks jangka panjang, 

sehingga tidak mampu mengenali pola yang membutuhkan informasi historis yang 

lebih jauh. 

LSTM mengatasi masalah ini dengan memperkenalkan blok memori yang 

terdiri dari sel memori dan tiga jenis gerbang (gates): 

1. Input gate (mengontrol kapan informasi baru dapat disimpan ke dalam memori.). 

 𝑖(𝑡) = 𝜎(𝑊𝑖𝑥
(𝑡) + 𝑅𝑖𝑦

(𝑡−1) + 𝑝𝑖 ⊙ 𝑐(𝑡−1) + 𝑏𝑖) (1) 

 

2. Forget gate (memutuskan informasi mana dari memori sebelumnya yang perlu 

dilupakan). 
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 𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑅𝑓𝑦(𝑡−1) + 𝑝𝑓 ⊙ 𝑐(𝑡−1) + 𝑏𝑓) (2) 

 

3. Output gate (mengatur kapan informasi dalam sel memori digunakan sebagai 

keluaran). 

 𝜊(𝑡) = 𝜎(𝑊𝜊𝑥(𝑡) + 𝑅𝜊𝑦(𝑡−1) + 𝑝𝜊 ⊙ 𝑐(𝑡) + 𝑏𝜊) (3) 

 

Ketiga gerbang ini bekerja secara bersamaan untuk memungkinkan jaringan 

menyimpan, mempertahankan, dan membuang informasi secara selektif, sehingga 

membuat LSTM sangat efektif dalam mempelajari ketergantungan jangka panjang 

dalam data sekuensial. 

Dalam ulasan komprehensif yang dilakukan oleh Van Houdt et al. (2020), 

LSTM terbukti sangat efektif dan telah menjadi arsitektur utama dalam berbagai 

aplikasi, termasuk pengenalan suara, terjemahan otomatis, hingga sistem interaktif 

berbasis AI seperti Google Translate dan Amazon Alexa. LSTM juga banyak diadopsi 

dalam domain computer vision untuk mengenali pola dalam data visual sekuensial 

seperti video, gerakan tubuh, dan gesture recognition. 

Dengan kemampuannya tersebut, LSTM menjadi arsitektur yang sangat tepat 

untuk digunakan dalam penelitian ini, khususnya dalam mengenali gestur dinamis 

dalam Bahasa Isyarat Indonesia (BISINDO). Untuk mendukung pengenalan gestur 

statis, digunakan algoritma Random Forest, yang menurut penelitian oleh Alexander 

dkk. (2023), menunjukkan performa akurasi yang tinggi dan waktu klasifikasi yang 

efisien dibandingkan dengan algoritma lainnya seperti KNN, SVM, dan Decision Tree. 

Oleh karena itu, dalam penelitian ini dikembangkan pendekatan gabungan Random 

Forest dan LSTM, dengan tujuan mengoptimalkan akurasi sistem penerjemah bahasa 

isyarat berbasis kamera yang mampu berjalan secara real-time di perangkat Raspberry 

Pi. 

2.2.14. Random Forest 

Random Forest merupakan metode ensemble learning berbasis pohon 

keputusan yang pertama kali diperkenalkan oleh Breiman (2001). Metode ini 

membentuk sekumpulan (forest) pohon keputusan yang dilatih menggunakan teknik 
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bootstrap aggregating (bagging), di mana setiap pohon dibangun dari subset data 

pelatihan yang diambil secara acak dengan pengembalian. Selain itu, pada setiap 

percabangan (split) dalam pohon, hanya sebagian acak dari fitur yang 

dipertimbangkan, guna menciptakan keragaman struktural antar pohon dalam 

ensemble. Tujuan utama pendekatan ini adalah untuk mengurangi variance tanpa 

meningkatkan bias, sehingga menghasilkan model yang lebih stabil dan memiliki 

performa yang lebih tinggi dibandingkan model decision tree. 

Secara formal, misalkan 𝒟𝑛 = ((𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛))  adalah data pelatihan 

dengan 𝑋𝑖 ∈ ℝ𝑝  sebagai vektor fitur dan 𝑌𝑖  sebagai label target (untuk klasifikasi), 

maka estimator Random Forest didefinisikan sebagai rata-rata dari prediksi seluruh 

pohon: 

 

𝑚𝑀,𝑛(𝑥;⊝1, … ,⊝𝑀, 𝒟𝑛) =
1

𝑀
∑ 𝑚𝑛(𝓍;⊝𝑗 , 𝒟𝑛)

𝑀

𝑗=1

 (4) 

 

Biau dan Scornet (2016) menjelaskan bahwa model ini dapat dikaji lebih lanjut 

melalui versi yang disederhanakan, seperti purely random trees, untuk memahami 

karakteristik bias dan konvergensinya secara teoritis. Dalam varian ini, pemisahan 

dilakukan tanpa mempertimbangkan label data, yang memungkinkan analisis sifat 

konsistensi model terhadap fungsi target dalam regresi. 

Keunggulan lain dari Random Forest adalah kemampuannya untuk 

mengevaluasi performa model secara internal menggunakan metode Out-of-Bag 

(OOB) error. Teknik ini memanfaatkan data yang tidak terambil selama proses 

bootstrap untuk menguji akurasi model, sehingga tidak memerlukan pembagian 

eksplisit antara data latih dan data uji. Selain itu, Random Forest juga menyediakan 

metrik feature importance yang memungkinkan interpretasi terhadap pengaruh relatif 

masing-masing fitur dalam proses prediksi. Dua metrik umum yang digunakan adalah 

Mean Decrease in Impurity (MDI) dan Mean Decrease in Accuracy (MDA), yang 

dapat memberikan wawasan penting dalam analisis variabel. 

Biau dan Scornet (2016) juga membandingkan Random Forest dengan 
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algoritma populer lainnya seperti SVM dan KNN. Mereka menekankan bahwa 

meskipun SVM unggul dalam masalah klasifikasi margin sempit dan KNN 

menawarkan pendekatan berbasis tetangga terdekat yang intuitif, Random Forest lebih 

unggul dalam hal ketahanan terhadap noise, efisiensi pada data berdimensi tinggi, serta 

kemampuannya menangani fitur numerik dan kategorikal secara bersamaan tanpa perlu 

normalisasi. 

Secara keseluruhan, karakteristik non-parametrik, ketahanan terhadap 

overfitting, serta kemampuannya dalam memberikan estimasi generalisasi dan 

interpretabilitas menjadikan Random Forest sebagai model yang sangat sesuai untuk 

aplikasi klasifikasi dalam berbagai domain, termasuk dalam sistem pengenalan gestur 

bahasa isyarat berbasis landmark tangan. 

2.2.15. Transformer 

Arsitektur Transformer yang diperkenalkan oleh Vaswani et al. (2017) melalui 

makalah Attention Is All You Need menjadi terobosan besar dalam pemodelan data 

sekuensial. Model ini menggantikan Recurrent Neural Networks (RNN) dan 

Convolutional Neural Networks (CNN) dengan sepenuhnya mengandalkan mekanisme 

self-attention. Mekanisme inti yang digunakan adalah Scaled Dot-Product Attention, 

yang diformulasikan sebagai: 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmax (

𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (5) 

Dengan Q (query), K (key), V (value), dan 𝑑𝑘  dimensi kunci. Rumus ini 

memungkinkan transformer untuk secara efisien menangkap ketergantungan jangka 

panjang antar elemen dalam sebuah urutan, sekaligus memfasilitasi paralelisasi 

sehingga pelatihan menjadi lebih cepat dibanding arsitektur berbasis RNN. 

Kemampuan transformer ini kemudian diadaptasi pada domain pengenalan 

bahasa isyarat oleh Camgoz et al. (2020) yang mengusulkan Sign Language 

Transformer (SLT). Mereka membangun model end-to-end yang dapat melakukan 

Continuous Sign Language Recognition (CSLR) dan Sign Language Translation (SLT) 

secara bersamaan. Dengan memanfaatkan encoder–decoder berbasis transformer, 
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model ini terbukti mencapai hasil state-of-the-art pada dataset RWTH-PHOENIX-

Weather-2014T. 

Selanjutnya, Chaudhary et al. (2022) mengembangkan SignNet II, yaitu model 

berbasis transformer untuk penerjemahan dua arah bahasa isyarat (sign-to-text dan text-

to-sign). Melalui mekanisme dual learning dan metric embedding learning, mereka 

berhasil meningkatkan kualitas translasi secara signifikan, khususnya dalam 

mempertahankan kesamaan antar tanda pada representasi pose. Hasil tersebut semakin 

memperkuat posisi transformer sebagai arsitektur yang fleksibel dan efektif dalam 

pemrosesan multimodal. 

Dalam konteks penelitian ini, pengembangan sistem klasifikasi Bahasa Isyarat 

Indonesia (BISINDO) secara real-time dengan Raspberry Pi 5 RAM 16 GB dilakukan 

dengan menghadirkan transformer sebagai metode pembaruan dari penelitian 

sebelumnya. Penyisipan transformer diharapkan mampu memberikan peningkatan 

performa, khususnya dalam menangkap pola spasio-temporal yang kompleks pada 

data gerakan bahasa isyarat, sekaligus menjadi kontribusi yang selaras dengan tren 

penelitian terkini. 

2.2.16. Tensorflow Lite 

TensorFlow Lite (TFLite) merupakan kerangka kerja open-source yang 

dikembangkan oleh Google untuk menjalankan model pembelajaran mesin pada 

perangkat dengan sumber daya terbatas seperti ponsel, IoT, dan mikrokontroler. 

Framework ini hadir sebagai solusi dari kebutuhan Tiny Machine Learning (TinyML) 

yang memungkinkan model deep learning dijalankan secara langsung pada perangkat 

edge dengan keterbatasan daya, memori, dan komputasi (David et al., 2021). 

Cara kerja TFLite dimulai dari konversi model yang telah dilatih di TensorFlow 

ke dalam format FlatBuffer (.tflite). Proses konversi ini sering disertai dengan berbagai 

optimasi, antara lain quantization (mengubah representasi bobot dari 32-bit float ke 8-

bit integer), operator fusion, dan constant folding. Optimasi tersebut membuat ukuran 

model lebih kecil, konsumsi memori lebih rendah, serta kecepatan inferensi meningkat 

tanpa mengurangi akurasi secara signifikan. Setelah itu, model dijalankan 
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menggunakan TFLite Interpreter, yaitu komponen ringan yang dirancang untuk 

memfasilitasi eksekusi model di berbagai platform edge (David et al., 2021). 

Keunggulan utama TFLite adalah efisiensi dan portabilitasnya. Penelitian 

Coffen & Mahmud (2021) menunjukkan bahwa model LSTM untuk pengenalan 

gesture yang awalnya berukuran 2.8 MB dapat diperkecil dengan teknik konversi dan 

kuantisasi sehingga mampu dijalankan langsung pada perangkat edge. Dengan 

demikian, konsumsi daya berkurang dan sistem tidak perlu lagi bergantung pada 

komunikasi data ke server eksternal. Penelitian lain oleh Konaite et al. (2021) 

memperlihatkan bahwa Raspberry Pi 4 yang menjalankan model SSD MobileNet v2 

melalui TFLite dapat mendeteksi objek secara real-time dengan kecepatan rata-rata 5 

frame per detik. Hal ini menegaskan bahwa TFLite mampu menjembatani kebutuhan 

deep learning di perangkat dengan keterbatasan sumber daya, sekaligus tetap 

mempertahankan performa yang baik. 

Dengan karakteristik tersebut, TFLite menjadi komponen penting dalam 

pengembangan aplikasi machine learning modern yang bersifat portabel, hemat energi, 

dan dapat beroperasi secara real-time. Hal ini membuatnya relevan dalam berbagai 

bidang, mulai dari sistem pengenalan gesture hingga perangkat wearable yang 

membutuhkan pemrosesan data langsung di perangkat. 

2.2.17. Augmentasi Citra 

Augmentasi citra merupakan strategi fundamental dalam pengembangan model 

Deep Learning, khususnya pada bidang visi komputer, yang bertujuan untuk 

meningkatkan kuantitas dan variabilitas data latih secara artifisial tanpa melalui proses 

akuisisi data baru yang memakan biaya. Urgensi penerapan metode ini didasari oleh 

kebutuhan model dengan parameter besar terhadap volume data yang masif guna 

mencapai kinerja yang kompetitif dan mencegah terjadinya overfitting atau fenomena 

di mana model mengingat data spesifik akibat keterbatasan sampel pelatihan. Secara 

teoritis, mekanisme augmentasi citra bekerja dengan memanipulasi distribusi data 

melalui konsep vicinity distribution. Konsep ini mengasumsikan bahwa distribusi 

probabilitas data tidak hanya terpaku pada titik tunggal sampel asli, melainkan dapat 

diperluas ke area sekitarnya melalui modifikasi visual yang tetap mempertahankan 
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label semantiknya, sehingga model dapat mempelajari fitur yang lebih general dan 

tangguh (robust). 

Berdasarkan jurnal yang dipaparkan oleh Xu et al. (2023), metode augmentasi 

citra diklasifikasikan ke dalam beberapa kategori utama, di mana pendekatan yang 

diterapkan dalam penelitian ini tergolong sebagai Model-free Single-image 

Augmentation. Kategori ini memanfaatkan teknik pengolahan citra konvensional pada 

citra tunggal untuk menghasilkan variasi baru, dengan fokus utama pada transformasi 

geometris. Transformasi geometris bertujuan untuk memodifikasi hubungan spasial 

antar piksel guna mensimulasikan variasi kondisi fisik objek di dunia nyata. Teknik-

teknik spesifik yang termasuk dalam domain ini meliputi translasi untuk 

memvariasikan posisi objek dalam bingkai , rotasi untuk mengubah perspektif sudut 

pandang objek , serta penskalaan yang berfungsi meniru variasi jarak atau ukuran objek. 

Penerapan kombinasi transformasi ini terbukti efektif dalam memperkaya distribusi 

data latih, khususnya pada dataset dengan tantangan variasi deformasi dan posisi objek. 

2.3. Raspberry Pi 

Raspberry Pi adalah komputer mini berukuran sebesar kartu kredit yang 

dikembangkan oleh Raspberry Pi Foundation di Inggris, dengan tujuan menyediakan 

perangkat komputasi murah dan portabel untuk pendidikan dan pengembangan 

teknologi. Raspberry Pi mendukung berbagai bahasa pemrograman seperti Python, C, 

C++, Java, dan lainnya, serta dapat menjalankan sistem operasi berbasis Linux seperti 

Raspbian (sekarang Raspberry Pi OS), Debian, dan lainnya. 

Seiring perkembangan teknologinya, Raspberry Pi telah dirilis dalam berbagai 

varian model dengan spesifikasi dan fungsi yang disesuaikan untuk kebutuhan yang 

berbeda. Beberapa di antaranya dirancang untuk penggunaan umum dan edukasi, 

seperti Raspberry Pi 3 dan 4, sementara model lain seperti Raspberry Pi Zero dan 

Compute Module lebih ditujukan untuk proyek embedded dan aplikasi industri. Tiap 

model memiliki perbedaan signifikan dalam hal kapasitas RAM, kecepatan prosesor, 

jumlah port, serta dukungan terhadap fitur seperti Wi-Fi, Bluetooth, dan antarmuka 

video. Tabel 2.1. berikut menyajikan ringkasan spesifikasi dari berbagai versi 

Raspberry Pi yang telah dirilis hingga saat ini. 
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Tabel 2.1 Versi Raspberry Pi 

Model RAM CPU  Port USB 
HDMI / 

Display 
Konektivitas 

Raspberry 

Pi 5 

4/8/16 

GB 

4 × 2.4 

GHz 

4 (2×USB 

3.0) 

2×micro-

HDMI 

WiFi & 

Bluetooth 

Raspberry 

Pi 400 
4 GB 

4 × 1.8 

GHz 

4 (2×USB 

3.0) 
Ya 

WiFi & 

Bluetooth 

Raspberry 

Pi 4 B 

1/2/4/8 

GB 

4 × 1.5 

GHz 

4 (2×USB 

3.0) 

2×micro-

HDMI 

WiFi & 

Bluetooth 

Compute 

Module 4 

1/2/4/8 

GB 

4 × 1.5 

GHz 
Tidak ada 

Tidak 

ada 
Opsional 

Raspberry 

Pi 3 B+ 
1 GB 

4 × 1.4 

GHz 
4 Ya 

WiFi & 

Bluetooth 

Raspberry 

Pi 3 A+ 
512 MB 

4 × 1.4 

GHz 
1 Tidak 

WiFi & 

Bluetooth 

Raspberry 

Pi Zero 2 W 
512 MB 

4 × 1 

GHz 
1 (micro) Tidak 

WiFi & 

Bluetooth 

Raspberry 

Pi Zero W 
512 MB 

1 × 1 

GHz 
1 (micro) Tidak 

WiFi & 

Bluetooth 

Raspberry 

Pi Zero 
512 MB 

1 × 1 

GHz 
1 (micro) Tidak Tidak ada 

Raspberry 

Pi 2 B 
1 GB 

4 × 900 

MHz 
4 Ya Tidak ada 

 

Versi terbaru saat ini, Raspberry Pi 5, menawarkan peningkatan spesifikasi 

yang signifikan dengan prosesor quad-core Arm Cortex-A76 berkecepatan 2.4GHz dan 

kapasitas RAM hingga 16GB. Model ini juga dilengkapi dengan konektivitas yang 

lebih canggih, termasuk dua port USB 3.0 dengan bandwidth simultan penuh, Wi-Fi, 

Bluetooth 5.0, port micro-HDMI ganda, serta tambahan antarmuka PCIe 2.0 untuk 
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periferal berkecepatan tinggi. Dengan lonjakan performa tersebut, Raspberry Pi 5 

sangat mumpuni untuk menangani beban komputasi menengah hingga berat, 

menjadikannya platform yang ideal untuk menjalankan algoritma machine learning 

dan sistem computer vision yang kompleks secara lebih responsif. 

Meskipun begitu, Monk (2023) juga mengingatkan bahwa Raspberry Pi 

memiliki keterbatasan, terutama dalam hal manajemen suhu. Raspberry Pi 4, misalnya, 

rentan terhadap overheating saat digunakan untuk komputasi intensif dalam jangka 

waktu lama. Untuk mengatasi hal ini, disarankan penggunaan sistem pendingin aktif 

seperti kipas (fan), heatsink, atau casing berpendingin. Selain itu, pemilihan SD card 

berkecepatan tinggi (minimal Class 10) dan power supply 5V 3A juga penting untuk 

menjamin kestabilan sistem. 

 

 

Gambar 2.4 Raspberry Pi 5 (Sumber: Raspberry Pi Ltd, 2025) 

 

Gambar 2.4. memperlihatkan tampilan fisik Raspberry Pi yang digunakan 

dalam penelitian ini. Pada gambar tersebut, beberapa komponen utama diberi 

penomoran untuk mempermudah identifikasi dan penjelasan masing-masing 

fungsinya. Berikut ini adalah uraian dari komponen-komponen penting yang ditandai: 

1. Gigabit Ethernet 

Port ini digunakan untuk konektivitas jaringan kabel (LAN) dengan 

kecepatan hingga 1 Gbps. Gigabit Ethernet sangat berguna untuk keperluan 

1 

3

 

2

 

4

 
5
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transfer data berkecepatan tinggi, komunikasi antarmuka dengan server, 

atau ketika Raspberry Pi digunakan dalam jaringan lokal yang stabil dan 

responsif. 

USB 3.0 

2. Port USB 3.0 (berwarna biru) menawarkan kecepatan transfer data yang 

jauh lebih tinggi dibandingkan USB 2.0, hingga 5 Gbps. Dalam penelitian 

ini, USB 3.0 dapat dimanfaatkan untuk menghubungkan kamera eksternal 

(webcam), flashdisk, atau perangkat penyimpanan lainnya untuk 

mempercepat pemrosesan dan penyimpanan data. 

3. USB 2.0 

Port USB 2.0 digunakan untuk koneksi perangkat seperti mouse, keyboard, 

atau perangkat input-output lainnya yang tidak membutuhkan kecepatan 

transfer tinggi. Keberadaan USB 2.0 memungkinkan Raspberry Pi 

berfungsi layaknya komputer desktop dalam skala mini.1 

4. Micro HDMI 

Raspberry Pi 5 dilengkapi dua port micro HDMI yang dapat digunakan 

untuk menampilkan output grafis ke layar monitor atau TV. Port ini 

mendukung output video hingga resolusi 4K. Dalam konteks pengujian 

sistem deteksi gesture, micro HDMI digunakan untuk menampilkan 

antarmuka visual dan hasil klasifikasi secara langsung di layar eksternal. 

5. USB Type-C (Power Supply) 

Port ini berfungsi sebagai jalur utama untuk memasok daya ke Raspberry 

Pi. Dibandingkan versi sebelumnya yang menggunakan micro USB, port 

USB Type-C mampu menyediakan arus listrik yang lebih stabil dan cukup 

untuk mendukung komponen-komponen tambahan seperti kamera, sensor, 

atau layar tambahan. 

Raspberry Pi sangat populer dalam pengembangan sistem tertanam (embedded 

systems), terutama karena harganya yang murah, ukuran kecil, dan fleksibilitas tinggi. 

Keunggulannya antara lain: dukungan terhadap banyak sensor dan perangkat eksternal 

melalui GPIO, kompatibilitas dengan berbagai jenis kode, serta dapat difungsikan 
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sebagai komputer portabel. Dalam penelitian ini, Raspberry Pi digunakan sebagai 

platform utama untuk menjalankan sistem klasifikasi bahasa isyarat BISINDO secara 

real-time, karena kemampuannya yang cukup untuk memproses input dari kamera dan 

menjalankan model machine learning secara efisien. 

Namun, Raspberry Pi juga memiliki keterbatasan, seperti tidak adanya 

penyimpanan internal (mengandalkan SD card), kinerja grafis yang terbatas, serta 

potensi overheating jika digunakan dalam waktu lama tanpa pendingin tambahan. 

Meskipun demikian, kombinasi fleksibilitas, portabilitas, dan kemudahan 

pemrograman menjadikan Raspberry Pi sangat ideal untuk proyek-proyek inovatif 

berbasis AI dan pengolahan citra (Ghael et al., 2020). 

Kemampuan Raspberry Pi sebagai unit pemrosesan computer vision telah 

dibuktikan dalam berbagai implementasi praktis. Sebagai contoh, Raspberry Pi telah 

digunakan sebagai inti dari sistem visi berbasis Deep Neural Network (DNN) untuk 

tugas-tugas keselamatan gedung. Dalam studi tersebut, sistem yang dikembangkan 

mampu mendeteksi aliran asap sekaligus melakukan estimasi kepadatan manusia di 

dalam ruangan secara real-time selama simulasi insiden kebakaran. Platform yang 

sama juga telah diusulkan untuk sistem penghitungan manusia dalam sebuah adegan 

dengan memanfaatkan deteksi kepala (Birajdar et al., 2021). 

Selain itu, Raspberry Pi juga populer digunakan sebagai unit pemrosesan utama 

dalam sistem tertanam (embedded systems) yang lebih kompleks, seperti robotika 

otonom. Sebuah tinjauan teknologi pada robot pemetik buah dan sayuran menyoroti 

peran krusial modul visi yang seringkali ditenagai oleh single-board computer. Dalam 

aplikasi tersebut, sistem visi menggunakan kamera untuk menangkap citra, yang 

kemudian diproses menggunakan algoritma machine learning untuk mengidentifikasi 

secara akurat jenis, lokasi, dan bahkan tingkat kematangan dari hasil panen. Data hasil 

pemrosesan visual ini kemudian digunakan oleh robot untuk menentukan lokasinya 

secara presisi dan merencanakan aktuasi lengan robotik untuk melakukan pemetikan 

(Chen et al, 2024). 



 

31 

 

2.3.1. Pi Camera 

Kamera Raspberry Pi atau Pi Camera merupakan modul kamera yang 

dirancang khusus untuk papan pengembangan Raspberry Pi. Modul ini terhubung 

melalui Camera Serial Interface (CSI) dengan kabel pita 15-pin sehingga mampu 

berkomunikasi langsung dengan GPU Raspberry Pi. Keunggulan ini membuat Pi 

Camera dapat melakukan pemrosesan gambar dengan cepat tanpa membebani CPU, 

serta mendukung perekaman video berkualitas tinggi seperti HD video, time-lapse, 

maupun slow-motion (Symon et al., 2017). Fitur tersebut menjadikan Pi Camera 

banyak dimanfaatkan dalam aplikasi berbasis visi komputer, sistem pemantauan, 

maupun pengembangan sistem cerdas yang membutuhkan pengolahan citra secara 

real-time. 

Dalam penelitian Symon et al. (2017), Pi Camera digunakan sebagai sensor 

visual utama pada sistem pemantauan bayi berbasis Raspberry Pi. Kamera ini bekerja 

secara terintegrasi dengan sensor lain, seperti PIR sensor untuk mendeteksi gerakan 

dan mikrofon untuk mendeteksi suara tangisan bayi. Hasil tangkapan kamera 

ditampilkan secara real-time melalui LCD display, sementara buzzer digunakan 

sebagai alarm jika bayi terdeteksi bergerak atau menangis. Penelitian ini menunjukkan 

bahwa Pi Camera tidak hanya berfungsi sebagai perangkat pengambil gambar, tetapi 

juga sebagai komponen penting dalam embedded system yang memerlukan monitoring 

visual secara langsung. 

Seiring perkembangannya, Pi Camera telah hadir dalam berbagai versi dengan 

peningkatan resolusi, kualitas sensor, dan fitur tambahan. Perbandingan versi Pi 

Camera dapat dilihat pada Tabel 2.2. 
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Tabel 2.2 Versi Pi Camera 

Versi Sensor Resolusi Foto Resolusi Video 
Tahun 

Rilis 

V1 
OmniVision 

OV5647 

5 MP 

(2592×1944) 

1080p @30fps, 720p 

@60fps, 480p 

@90fps 

2013 

V2 Sony IMX219 
8 MP 

(3280×2464) 

1080p @30fps, 720p 

@60fps, 480p 

@90fps 

2016 

HQ 

Camera 
Sony IMX477 

12.3 MP 

(4056×3040) 
4K @30fps 2020 

Camera 

Module 3 
Sony IMX708 12 MP 4608×2592 @60fps 2023 

 

Berdasarkan tabel tersebut, dapat dilihat bahwa Raspberry Pi Camera telah 

mengalami perkembangan signifikan dari versi 1 hingga Camera Module 3, baik dari 

segi resolusi, sensor, maupun fitur tambahan. Perkembangan ini memperluas cakupan 

aplikasi Pi Camera, mulai dari penelitian akademik, sistem pengenalan citra, hingga 

penggunaan profesional dalam bidang industri dan IoT. 

Pada penelitian ini, penulis menggunakan Pi Camera Module v1 yang 

dilengkapi sensor OmniVision OV5647 dengan resolusi 5 megapiksel. Modul ini 

mampu merekam video hingga 1080p pada 30 fps, sehingga cukup mendukung 

kebutuhan pengolahan citra untuk sistem pengenalan bahasa isyarat berbasis Raspberry 

Pi. Walaupun spesifikasi modul v1 masih terbatas dibanding generasi terbaru, 

penggunaannya tetap relevan karena konsumsi daya yang rendah, kemudahan integrasi, 

serta ketersediaannya yang luas di komunitas pengembang. Hal ini menjadikan Pi 

Camera v1 pilihan yang tepat untuk tahap awal pengembangan sistem portabel berbasis 

Raspberry Pi. Bentuk fisik dari modul kamera ini dapat dilihat pada Gambar 2.5. 
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Gambar 2.5 Pi Camera v1 5MP (Sumber: Pomaska, 2019)  
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Bab III  

Analisis dan Perancangan Sistem 

 

3.1. Metode Penelitian 

Untuk mencapai tujuan penelitian yang telah dirumuskan, penelitian ini 

dilaksanakan melalui serangkaian tahapan yang sistematis dan terstruktur. Metode 

penelitian yang diterapkan menggunakan pendekatan eksperimental untuk 

mengembangkan sistem klasifikasi bahasa isyarat BISINDO pada perangkat embedded. 

Secara garis besar, alur tahapan penelitian ini digambarkan dalam Flowchart pada 

Gambar 3.1. 

 

 

Gambar 3.1 Flowchart Metode Penelitian 
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Berdasarkan Gambar 3.1, tahapan penelitian dijelaskan secara rinci sebagai 

berikut: 

1. Studi Literatur: Tahap awal dilakukan dengan mengkaji teori terkait 

BISINDO, pengolahan citra digital, arsitektur Deep Learning (LSTM dan 

Transformer), serta implementasi pada Raspberry Pi. 

2. Identifikasi Masalah: Merumuskan permasalahan terkait kendala 

komunikasi teman Tuli dan kebutuhan sistem penerjemah yang portabel 

dan real-time. 

3. Pengumpulan Data: Melakukan pengambilan data citra gestur statis dan 

sequence gestur dinamis menggunakan kamera, yang kemudian diproses 

menggunakan MediaPipe untuk mendapatkan fitur landmark tangan. 

4. Perancangan Sistem: Merancang arsitektur perangkat keras 

menggunakan Raspberry Pi 5 dan Pi Camera v1, serta merancang 

arsitektur model Random Forest, LSTM, dan Transformer. 

5. Implementasi Model: Melatih model klasifikasi menggunakan dataset 

yang telah dikumpulkan, melakukan optimasi hyperparameter, dan 

mengonversi model ke format TensorFlow Lite. 

6. Pengujian dan Evaluasi: Tahap ini dilakukan untuk memvalidasi kinerja 

sistem melalui dua skenario pengujian utama: 

• Evaluasi Model: Mengukur performa model klasifikasi 

menggunakan data uji yang telah dipisahkan. Evaluasi dilakukan 

menggunakan metrik Confusion Matrix, Akurasi, Presisi, Recall, 

dan F1-Score untuk mengetahui kemampuan model dalam 

mengenali gestur sebelum diimplementasikan ke perangkat keras. 

• Evaluasi Sistem Real-Time: Menguji integrasi sistem secara 

langsung pada perangkat Raspberry Pi 5. Pengujian ini mencakup 

akurasi deteksi gestur secara real-time oleh pengguna, serta 

pengukuran kinerja komputasi yang meliputi kecepatan inferensi 

(latency), Frame Rate (FPS), penggunaan CPU, dan stabilitas suhu 

perangkat. 
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7. Analisis dan Kesimpulan: Menganalisis hasil pengujian untuk 

membandingkan kinerja antara metode LSTM dan Transformer, serta 

menarik kesimpulan dari penelitian yang dilakukan. 

3.2. Analisis Kebutuhan 

Analisis kebutuhan dilakukan untuk merumuskan spesifikasi sistem yang akan 

dikembangkan agar sesuai dengan tujuan penelitian. Sistem yang dirancang adalah 

pengembangan sistem klasifikasi Bahasa Isyarat Indonesia (BISINDO) secara real-

time berbasis Raspberry Pi, dengan pembaruan berupa integrasi metode Random Forest 

untuk gestur statis, serta perbandingan antara Long Short-Term Memory (LSTM) dan 

Transformer dalam pengenalan gestur dinamis. Analisis ini menjadi landasan dalam 

merancang arsitektur, algoritma, dan implementasi sistem yang handal, portabel, serta 

dapat bekerja pada perangkat dengan keterbatasan sumber daya. 

3.2.1. Kebutuhan Fungsionalitas 

Kebutuhan fungsional menjelaskan fungsi utama yang harus dimiliki sistem 

agar dapat berjalan sesuai dengan tujuan penelitian, yaitu: 

1. Sistem mampu menangkap gerakan tangan pengguna melalui kamera yang 

terpasang pada Raspberry Pi. 

2. Sistem dapat mendeteksi dan mengekstraksi landmark tangan secara real-

time menggunakan pustaka MediaPipe. 

3. Sistem mengklasifikasikan gestur statis BISINDO menggunakan algoritma 

Random Forest. 

4. Sistem mengklasifikasikan gestur dinamis dengan menggunakan dua 

pendekatan berbeda, yaitu LSTM dan Transformer, untuk kemudian 

dilakukan analisis perbandingan performa. 

5. Sistem dapat menampilkan hasil prediksi gestur dalam bentuk label teks 

secara real-time. 

3.2.2. Kebutuhan Non-Fungsional 

Selain fungsi utama, sistem juga harus memenuhi aspek non-fungsional agar 

dapat digunakan secara efektif, yaitu: 
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1. Kinerja: sistem harus dapat memproses input video secara real-time dengan 

latensi rendah. 

2. Portabilitas: sistem dijalankan pada perangkat Raspberry Pi sehingga dapat 

digunakan secara mandiri tanpa ketergantungan pada komputer eksternal. 

3. Efisiensi: penggunaan daya dan memori harus dioptimalkan mengingat 

keterbatasan perangkat keras. 

4. Kemudahan penggunaan: antarmuka sistem dirancang sederhana agar dapat 

dipahami dan digunakan tanpa kesulitan oleh pengguna awam. 

3.2.3. Kebutuhan Data 

Sistem memerlukan dataset yang terdiri dari dua jenis gestur, yaitu gestur statis 

dan gestur dinamis. 

• Gestur statis: dikumpulkan dalam bentuk citra tunggal tangan pada posisi 

tertentu yang mewakili huruf, angka, atau kosakata BISINDO. Data ini 

digunakan untuk pelatihan model Random Forest. 

• Gestur dinamis: dikumpulkan dalam bentuk rangkaian frame (sequence) 

berisi koordinat landmark tangan. Dataset ini digunakan untuk pelatihan 

model LSTM dan Transformer. Setiap kelas gestur dinamis dikumpulkan 

minimal 105 sequence dengan panjang 20 frame per sequence, sehingga 

cukup mewakili variasi antar-subjek. 

3.3. Pengumpulan Data 

Jenis gestur yang digunakan dalam penelitian ini diklasifikasikan menjadi dua 

kategori utama, yaitu gestur statis dan gestur dinamis, berdasarkan karakteristik 

pergerakannya. Gestur statis merupakan bentuk isyarat yang dapat dikenali dari satu 

citra tunggal tanpa memerlukan analisis urutan waktu, seperti huruf alfabet, angka, dan 

beberapa kosakata BISINDO yang tidak melibatkan perubahan posisi tangan secara 

signifikan. Gestur-gestur tersebut dilatih menggunakan algoritma Random Forest, 

yang efektif dalam mengenali pola visual tetap dari koordinat landmark tangan. Daftar 

lengkap gestur statis yang digunakan sebagai data pelatihan dan pengujian dalam 
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penelitian ini disajikan pada Tabel 3.1, yang mencakup seluruh kata statis dalam 

BISINDO. 

 

Tabel 3.1 Gestur yang dilatih Random Forest 

A-Z BAWAH MENDENGAR 

0-10 BISA BERDOA 

ANDA KAMU MAKAN KANAN 

ITU MENUNJUK TIDUR KIRI 

SAYA BACA  

 

Sementara itu, gestur dinamis dilatih menggunakan metode LSTM dan 

Transformer karena kedua model tersebut mampu mempelajari pola temporal dari 

rangkaian gerakan tangan. Gestur dinamis mencakup kosakata yang direpresentasikan 

dalam bentuk sequence pergerakan tangan. Daftar gestur dinamis yang digunakan 

dalam penelitian ini ditampilkan pada Tabel 3.2. 

 

Tabel 3.2 Gestur kosakata yang dilatih LSTM dan Transformer 

AIR SEPERTI TAHUN DARI TURUN 

INI ATAU BELAJAR MINUM HANYA 

ROTI DALAM LUAR ORANG DAN 

ATAS SIAPA 
MILIK 

PUNYA 
DIA APA 

JADI KERJA UNTUK NAIK NASI 

MEREKA KITA 
JIKA 

KALAU 
G BANGUN 

BICARA TULIS JALAN LARI MEMBELI 

MENUTUP MEMBERI MENERIMA MENOLONG MENUNGGU 

DUDUK BERDIRI DATANG MASUK KELUAR 
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TUTUP 

(MATA) 
MENANGIS TERTAWA MENJAWAB MENANYAKAN 

MENYAPU 
MENCUCI 

BAJU 
MEMASAK MENGIRIM NAMA 

BERCERITA 
MINTA 

MAAF 
MENYANYI BERMAIN DEPAN 

ANTARA DEKAT JAUH DI SINI DI SANA 

TIMUR BARAT SELATAN UTARA R 

J TAPI 
TAHU 

PAHAM 
SEMUA LIHAT 

MENJUAL MEMINTA PAKAI 
MEMBACA 

AL QURAN 

MENERIMA 

PESAN 

BELAKANG SEBELUM BERKATA AMBIL AKAN 

PULANG PERGI DENGAR MEMBUKA MENONTON 

BUKA 

(MATA) 

MENONTON 

TV 
MENIKAH SAMPING SESUDAH 

 

Proses pengumpulan data dalam penelitian ini dibedakan menjadi dua tahap 

sesuai dengan karakteristik model yang digunakan, yaitu Random Forest untuk 

klasifikasi gestur statis dan LSTM/Transformer untuk klasifikasi gestur dinamis. 

Seluruh proses akuisisi data dilaksanakan di lingkungan Laboratorium Human-

Machine Interaction (HMI). Kondisi pencahayaan di area pengambilan data dipantau 

secara ketat menggunakan alat ukur Luxmeter, dengan intensitas cahaya dijaga stabil 

pada rentang 200 hingga 300 Lux untuk memastikan visibilitas fitur tangan tetap 

optimal bagi sensor kamera. Berbeda dengan pendekatan yang menggunakan latar 

belakang polos, penelitian ini menerapkan kondisi latar belakang natural yang 

kompleks yang memuat berbagai objek inventaris laboratorium. Hal ini bertujuan 

untuk menguji ketahanan model dalam memisahkan objek tangan dari gangguan visual 

di lingkungan nyata. 
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Untuk menjaga konsistensi proporsi dan skala citra tangan, jarak antara subjek 

dan kamera dipertahankan konstan pada rentang 50 hingga 80 cm, baik pada fase 

pengumpulan data maupun pengujian. Namun, terdapat perbedaan pada spesifikasi 

perangkat keras akuisisi yang digunakan. Pada tahap pengumpulan dataset latih, 

perekaman dilakukan menggunakan Webcam Logitech C270 dengan konfigurasi 

resolusi 1280x720 piksel dan kecepatan 30 fps. Sedangkan pada tahap evaluasi sistem 

real-time, perangkat digantikan oleh modul PiCamera v1 yang terhubung dengan 

sistem pemroses, dengan pengaturan jarak dan sudut pandang yang identik serta 

resolusi input yang disesuaikan untuk menjaga validitas performa model pada 

embedded device. 

Pada tahap pertama, data untuk model Random Forest diperoleh dalam bentuk 

citra tunggal dari setiap gestur statis. Proses pengambilan dilakukan menggunakan PC 

yang terhubung dengan webcam sebagai perangkat perekaman. Terdapat 6 partisipan 

dalam proses pengambilan data, yang seluruhnya merupakan mahasiswa berusia 20–

23 tahun. Setiap partisipan diminta memperagakan gestur sesuai kategori yang 

ditentukan, kemudian direkam sebanyak 200 gambar per gestur dengan bantuan 

pustaka OpenCV. Seluruh citra hasil tangkapan kamera selanjutnya diproses 

menggunakan MediaPipe Hands untuk mengekstraksi titik-titik koordinat tangan 

dalam bentuk tiga dimensi (x, y, z). Data landmark tersebut digunakan sebagai 

representasi fitur yang kemudian dilatih dengan model Random Forest. Kategori gestur 

yang dikumpulkan meliputi 104 kosakata harian, huruf alfabet A–Z, serta angka 0–10, 

sehingga dataset mencakup variasi gerakan yang luas untuk mendukung pengenalan 

gestur statis BISINDO. Alur proses pengumpulan data ini dapat dilihat pada Gambar 

3.2. beserta juga contoh data yang diperoleh pada Gambar 3.3. 
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Gambar 3.2 Skema pengumpulan data gestur statis dan titik-titik landmark yang akan 

dikonversi dalam format file CSV 

 

 

Gambar 3.3 Dataset Random Forest Gestur "BAWAH" 

 

Berbeda dengan Random Forest, pengumpulan data untuk model LSTM dan 

Transformer dilakukan dalam bentuk rangkaian sequence yang merepresentasikan 

gestur dinamis. Proses pengambilan juga dilakukan menggunakan PC dan webcam 

dengan dukungan pustaka MediaPipe Hands. Setiap sequence terdiri dari 20 frame 

berurutan, dengan setiap frame berisi koordinat tiga dimensi dari 21 titik landmark 

tangan. Untuk setiap kelas gestur dinamis, dikumpulkan sebanyak 105 sequence dari 

setiap partisipan. Agar partisipan tidak mengalami kelelahan akibat repetisi yang 

berulang, pengambilan data dirancang dengan memberi jeda istirahat selama 1 menit 

setiap kali selesai satu kelas gestur. Dataset hasil perekaman kemudian disimpan dalam 

format .npz, yang berisi array berdimensi (105, 20, 63/126) tergantung jumlah tangan 

yang terdeteksi, serta metadata seperti identitas partisipan, kategori gestur, dan 

parameter perekaman. Struktur data ini dipilih karena sesuai dengan kebutuhan input 

model LSTM dan Transformer yang memerlukan representasi sekuensial. Visualisasi 
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akuisisi dataset gestur dinamis ditampilkan pada Gambar 3.4 dan hasil akuisisi dataset 

ditampilkan pada gambar 3.5. 

 

   

Gambar 3.4 Pengambilan Dataset Gestur Dinamis 

 

 

Gambar 3.5 Hasil Pengambilan Dataset Gestur Dinamis 

 

Dengan adanya perbedaan metode pengumpulan data ini, sistem dapat 

menangani dua jenis gestur dengan pendekatan yang sesuai. Gestur statis 

direpresentasikan dalam bentuk citra tunggal, diekstraksi menjadi landmark tangan 

menggunakan MediaPipe Hands, lalu dilatih menggunakan Random Forest. Sementara 

itu, gestur dinamis direpresentasikan sebagai sequence frame, diekstraksi dengan cara 

yang sama menggunakan MediaPipe Hands, lalu digunakan sebagai input untuk 

melatih model LSTM maupun Transformer agar pola temporal pergerakan dapat 

dipelajari secara lebih mendalam. 
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Sebelum digunakan dalam pelatihan model, seluruh gestur yang dikumpulkan 

divalidasi oleh ahli Bahasa Isyarat Indonesia (BISINDO) untuk memastikan kesesuaian 

bentuk gestur dengan standar bahasa isyarat yang berlaku. Setelah divalidasi, dataset 

dibagi dengan rasio 80:20 untuk data latih dan data uji. Selain itu, pelatihan model juga 

menerapkan 5-Fold Cross-Validation untuk meningkatkan reliabilitas dan generalisasi 

model terhadap data baru. Dengan adanya perbedaan metode pengumpulan dan 

pengolahan data ini, sistem mampu mengenali baik gestur statis maupun dinamis 

secara efektif sesuai karakteristik model masing-masing. 

3.4. Pembentukan Model Klasifikasi 

Pembentukan model klasifikasi dalam penelitian ini dilakukan dengan tiga 

pendekatan utama, yaitu Random Forest, LSTM (Long Short-Term Memory), dan 

Transformer. Seluruh model dilatih menggunakan dataset BISINDO yang telah 

diproses menjadi representasi koordinat landmark tangan hasil ekstraksi dari 

MediaPipe. Untuk menjamin konsistensi dan reliabilitas model, data dibagi menjadi 

80% untuk pelatihan dan validasi, serta 20% untuk pengujian akhir. Selain itu, pada 

tahap pelatihan diterapkan 5-Fold Cross Validation pada data latih untuk memperoleh 

evaluasi yang lebih menyeluruh serta mengurangi potensi bias akibat pemisahan data 

tunggal. 

Dalam proses pelatihan model, penentuan nilai hyperparameter memegang 

peranan krusial terhadap performa akhir sistem. Pemilihan hyperparameter pada 

penelitian ini dilakukan menggunakan pendekatan empiris melalui serangkaian 

eksperimen iteratif. Nilai parameter tidak ditentukan menggunakan pencarian otomatis, 

melainkan disesuaikan secara manual berdasarkan observasi terhadap konvergensi loss 

dan akurasi model pada data validasi. 

Proses ini dimulai dengan mengadopsi nilai standar yang direkomendasikan 

dalam literatur terkait, kemudian dilakukan penyesuaian bertahap untuk mendapatkan 

konfigurasi yang paling optimal bagi karakteristik dataset gestur yang digunakan. 

Konfigurasi akhir yang dipilih adalah konfigurasi yang menghasilkan keseimbangan 

terbaik antara akurasi pelatihan dan kemampuan generalisasi guna menghindari 

overfitting. 
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3.4.1. Arsitektur Model Random Forest 

Model Random Forest dirancang untuk mengklasifikasikan gestur statis, 

seperti huruf alfabet, angka, dan beberapa kosakata BISINDO. Masukan model berupa 

vektor fitur tunggal dari koordinat landmark tangan. Random Forest dibangun sebagai 

kumpulan pohon keputusan yang masing-masing dilatih pada subset acak dari data, 

kemudian hasil prediksi digabungkan menggunakan mekanisme majority voting. Pada 

perancangan ini, parameter utama yang digunakan adalah jumlah pohon (n_estimators), 

fungsi pemisahan (criterion), serta kedalaman pohon (max_depth), yang ditentukan 

untuk menyeimbangkan kompleksitas dan kemampuan generalisasi model. Struktur 

model ini divisualisasikan pada Gambar 3.6, yang menunjukkan hubungan hierarkis 

antar pohon keputusan dalam menghasilkan prediksi akhir berdasarkan mayoritas hasil 

klasifikasi. Detail pengaturan hyperparameter yang digunakan pada model Random 

Forest ditampilkan pada Tabel 3.3. Pemilihan parameter dilakukan secara empiris 

berdasarkan hasil beberapa percobaan awal untuk menyeimbangkan antara akurasi, 

waktu pelatihan, dan kemampuan generalisasi model terhadap variasi data gestur. 

Nilai-nilai tersebut menghasilkan performa terbaik pada pengujian train-test split 

(80:20) maupun 5-fold cross-validation. 

 

Tabel 3.3 Hyperparameter Model Random Forest 

Parameter 
Nilai yang 

Digunakan 
Keterangan 

n_estimators 100 

Jumlah pohon keputusan yang digunakan 

dalam ensemble. Semakin besar nilainya, 

semakin stabil hasil prediksi. 

criterion Gini 

Fungsi pengukuran impurity yang digunakan 

untuk menentukan pemisahan optimal pada 

setiap node. 



 

45 

 

Parameter 
Nilai yang 

Digunakan 
Keterangan 

max_depth None 

Kedalaman maksimum pohon tidak dibatasi 

untuk memberi fleksibilitas pada proses 

pembelajaran. 

random_state 42 
Nilai seed acak untuk memastikan hasil 

pelatihan dapat direproduksi. 

test_size 0.2 
Rasio pembagian dataset antara data latih dan 

data uji sebesar 80:20. 

cross_validation 5-Fold 
Validasi silang digunakan untuk mengevaluasi 

kestabilan dan konsistensi performa model. 

 

 

Gambar 3.6 Arsitektur Model Random Forest 

 

3.4.2. Arsitektur Model LSTM 

Model LSTM digunakan untuk mengklasifikasikan gestur dinamis, yaitu pola 

bahasa isyarat yang terdiri dari urutan beberapa frame berturut-turut. Dataset 

sekuensial disimpan dalam format NPZ, yang memuat representasi koordinat landmark 
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tangan untuk setiap frame. Setiap sampel masukan memiliki dimensi 20 frame dengan 

126 fitur per frame, merepresentasikan pergerakan tangan dalam bentuk sekuensial. 

Arsitektur LSTM terdiri dari beberapa lapisan berurutan yang dirancang untuk 

menangkap hubungan temporal antar frame, dilengkapi dengan dropout sebagai 

regularisasi, serta lapisan Dense dengan aktivasi ReLU sebelum menuju lapisan 

keluaran (output layer) yang menggunakan fungsi aktivasi softmax untuk klasifikasi 

multi-kelas. Ilustrasi arsitektur LSTM ditunjukkan pada Gambar 3.7, yang 

menggambarkan alur pemrosesan data sekuensial dari input hingga output dengan 

mekanisme memori jangka panjang antar lapisan. Detail konfigurasi arsitektur dan 

hyperparameter model LSTM yang digunakan dalam penelitian ini ditampilkan pada 

Tabel 3.4. Nilai parameter ditentukan berdasarkan hasil percobaan awal untuk 

memperoleh keseimbangan antara akurasi, stabilitas pelatihan, serta efisiensi 

komputasi agar dapat diimplementasikan secara optimal pada perangkat Raspberry Pi. 

Proses pelatihan dilakukan dengan rasio data latih dan uji sebesar 80:20, serta 

menggunakan validasi silang (5-Fold Cross Validation) untuk memastikan model 

memiliki kemampuan generalisasi yang baik terhadap variasi data gestur dinamis. 

 

Tabel 3.4 Hyperparameter Model LSTM 

Parameter Nilai Keterangan 

Input Shape (20, 126) 

Setiap sampel berisi 20 

frame dengan 126 fitur 

koordinat per frame. 

Lapisan LSTM 

64 unit, 

return_sequences=False, 

unroll=True 

Menangkap hubungan 

temporal antar frame 

gestur dinamis. 

Lapisan Dense 
32 neuron, aktivasi ReLU, 

regularisasi L2(0.001) 

Menyaring fitur hasil 

ekstraksi dari LSTM dan 

mencegah overfitting. 
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Parameter Nilai Keterangan 

Lapisan Dropout 0.3 

Mengurangi risiko 

overfitting dengan 

menonaktifkan sebagian 

neuron selama pelatihan. 

Lapisan Output 
Dense(num_classes, 

activation='softmax') 

Menghasilkan probabilitas 

untuk setiap kelas gestur. 

Optimizer Adam 

Menyesuaikan bobot 

model secara adaptif 

untuk mempercepat 

konvergensi. 

Loss Function Categorical Crossentropy 
Digunakan untuk tugas 

klasifikasi multi-kelas. 

Batch Size 16 

Jumlah sampel yang 

diproses dalam satu iterasi 

pelatihan. 

Epochs Maksimal 300 

Jumlah iterasi pelatihan 

dengan early stopping 

otomatis jika validasi 

tidak membaik. 

Validation Split 5-Fold Cross Validation 

Mengukur stabilitas 

performa model di setiap 

lipatan data. 

Early Stopping 
patience=10, 

restore_best_weights=True 

Menghentikan pelatihan 

lebih awal untuk 

mencegah overfitting. 

Learning Rate 

Scheduler 

ReduceLROnPlateau 

(factor=0.5, patience=5, 

min_lr=1e-6) 

Menurunkan learning rate 

secara adaptif ketika 

validasi stagnan. 
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Gambar 3.7 Arsitektur Model LSTM 

 

3.4.3. Arsitektur Model Transformer 

Sementara itu, model Transformer dirancang untuk mendeteksi pola temporal 

gestur dinamis menggunakan mekanisme self-attention. Dataset yang sama dalam 

format NPZ digunakan untuk melatih model Transformer. Proses pelatihan dilakukan 

dengan membagi data menjadi mini-batch sekuensial, kemudian melewati blok 

encoder Transformer yang terdiri dari lapisan multi-head attention, normalisasi, dan 

feed-forward network. Lapisan keluaran menggunakan fungsi aktivasi softmax dengan 

jumlah neuron sesuai jumlah kelas gestur, sehingga mampu menghasilkan distribusi 

probabilitas atas setiap kategori. Rancangan arsitektur Transformer ini divisualisasikan 

pada Gambar 3.8, yang menampilkan dua blok encoder bertingkat yang memproses 

informasi temporal secara paralel untuk memperoleh representasi fitur yang 
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kontekstual. Detail konfigurasi arsitektur dan hyperparameter model Transformer 

yang digunakan dalam penelitian ini disajikan pada Tabel 3.5. Nilai-nilai parameter 

ditentukan melalui proses eksplorasi empiris untuk menyeimbangkan antara 

kompleksitas model dan efisiensi komputasi, mengingat model ini akan 

diimplementasikan pada perangkat Raspberry Pi. Pelatihan dilakukan menggunakan 

pembagian data sebesar 80% untuk pelatihan dan validasi serta 20% untuk pengujian, 

dengan skema 5-Fold Cross Validation pada data latih. Tujuannya adalah untuk 

memastikan bahwa model Transformer mampu mempelajari hubungan temporal antar 

frame secara efektif melalui mekanisme self-attention, sekaligus menjaga stabilitas 

generalisasi terhadap variasi gerakan tangan antar partisipan. 

 

Tabel 3.5 Hyperarameter Model Transformer 

Parameter Nilai Keterangan 

Input Shape (20,126) 

Setiap sampel terdiri dari 20 

frame dengan 126 fitur 

koordinat 3D dari 21 titik 

tangan per frame. 

Dense Projection 

Layer 
64 unit 

Mengubah dimensi fitur input 

menjadi representasi vektor 

berdimensi tetap (d_model). 

Positional 

Embbeding 
Panjang sekuens 20 

Menambahkan informasi posisi 

tiap frame agar model 

memahami urutan temporal. 

Jumlah Blok 

Encoder 
2 

Tiap blok terdiri dari Multi-

Head Attention, Layer 

Normalization, dan Feed 

Forward Network. 
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Parameter Nilai Keterangan 

Multi-Head 

Attention 
4 head, key_dim = 64 

Menangkap hubungan antar 

frame dari berbagai perspektif 

secara paralel. 

Feed Forward 

Network 
64 unit, aktivasi ReLU 

Mengubah representasi hasil 

attention menjadi fitur non-

linear yang lebih dalam. 

Dropout Rate 0.3 
Mengurangi risiko overfitting 

selama pelatihan. 

Global Average 

Pooling 
- 

Merata-ratakan keluaran 

temporal menjadi satu vektor 

global. 

Dense Layer 
64 → Softmax (jumlah 

kelas) 

Menghasilkan distribusi 

probabilitas untuk setiap kelas 

gestur. 

Optimizer 
Adam (learning rate = 

0.001) 

Menyesuaikan bobot secara 

adaptif agar konvergensi cepat 

dan stabil. 

Loss Function 
Sparse Categorical 

Crossentropy 

Cocok untuk klasifikasi multi-

kelas dengan label integer. 

Batch Size 16 
Ukuran mini-batch pada proses 

pelatihan. 

Epochs Maksimal 300 

Proses pelatihan berhenti lebih 

awal jika performa validasi 

tidak meningkat. 

Validation Split 5-Fold Cross Validation 
Mengukur konsistensi performa 

pada tiap lipatan data. 
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Parameter Nilai Keterangan 

Early Stopping patience = 10 

Menghentikan pelatihan 

otomatis untuk mencegah 

overfitting. 

Learning Rate 

Scheduler 

ReduceLROnPlateau 

(factor=0.5, patience=5) 

Menurunkan learning rate 

secara adaptif ketika validasi 

stagnan. 

 

 

Gambar 3.8 Arsitektur Model Transformer 
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Setelah seluruh model selesai dirancang, hasil pelatihan akan dikonversi ke 

format TensorFlow Lite (TFLite) menggunakan skrip konversi. Format ini dipilih 

karena lebih ringan dan efisien untuk dijalankan pada perangkat dengan keterbatasan 

sumber daya. Selanjutnya, model Random Forest, LSTM, dan Transformer akan 

diintegrasikan dalam sebuah arsitektur hybrid. Hybrid model ini memungkinkan 

perbandingan performa antara LSTM dan Transformer dalam mengenali gestur 

dinamis, sementara Random Forest tetap menangani gestur statis. Setelah integrasi, 

keseluruhan sistem kemudian diimplementasikan pada Raspberry Pi 5 dengan input 

dari PiCamera v1, sehingga mampu melakukan pengenalan BISINDO secara real-time 

dan portabel. 

Alur proses pembentukan model hingga implementasi sistem secara 

keseluruhan dapat dilihat pada Gambar 3.9. 

 

 

Gambar 3.9 Flowchart Pembuatan Model 



 

53 

 

 

3.5. Hybrid Model 

Hybrid model dalam penelitian ini dirancang untuk menangani perbedaan 

karakteristik antara gestur statis dan gestur dinamis pada bahasa isyarat BISINDO. 

Gestur statis, seperti huruf alfabet dan angka, lebih sesuai diklasifikasikan 

menggunakan Random Forest karena cukup dilihat sebagai snapshot tunggal tanpa 

pola pergerakan. Sementara itu, gestur dinamis seperti kata atau frasa memerlukan 

analisis temporal antarframe, sehingga lebih tepat diproses menggunakan model 

sekuensial seperti LSTM maupun Transformer. 

Dalam implementasinya, sistem terlebih dahulu mengekstrak landmark tangan 

dari input kamera menggunakan MediaPipe. Jika gerakan tangan terdeteksi stabil pada 

beberapa frame, input dianggap sebagai gestur statis dan diproses oleh Random Forest. 

Sebaliknya, ketika terdapat perubahan posisi tangan yang signifikan dalam urutan 

frame, maka data sekuensial akan diteruskan ke model sekuensial (LSTM atau 

Transformer) untuk mengenali pola gerakan dinamis. Alur proses pengambilan 

keputusan antara model statis dan dinamis tersebut ditunjukkan pada Gambar 3.10, 

yang menggambarkan topologi sistem hybrid dalam mengenali gestur secara real-time 

pada perangkat Raspberry Pi. 

 

 

Gambar 3.10 Diagram Alur Hybrid Model 
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Berdasarkan Gambar 3.10, sistem hybrid dimulai dari proses akuisisi citra 

secara real-time menggunakan kamera yang terhubung ke Raspberry Pi. Setiap frame 

yang diterima kemudian dikonversi menjadi format RGB dan diproses oleh MediaPipe 

Hands untuk mendeteksi serta mengekstraksi 21 titik koordinat landmark dari satu atau 

dua tangan pengguna. Koordinat tersebut disimpan secara berurutan dalam bentuk 

urutan frame agar dapat dianalisis lebih lanjut oleh sistem. 

Selanjutnya, sistem menganalisis perubahan posisi tangan antar frame untuk 

menentukan apakah gerakan yang dilakukan bersifat statis atau dinamis. Jika 

pergerakan tangan terdeteksi stabil dalam beberapa frame berturut-turut, maka sistem 

menganggapnya sebagai gestur statis dan mengirimkan data ke model Random Forest 

untuk klasifikasi. Sebaliknya, apabila sistem mendeteksi adanya perubahan posisi 

tangan yang signifikan dalam rentang waktu tertentu, maka urutan frame tersebut 

diteruskan ke model LSTM TensorFlow Lite / Transformer TensorFlow Lite untuk 

mengenali pola pergerakan dinamis. 

Hasil klasifikasi dari kedua model akan ditampilkan secara langsung di layar 

dengan keterangan jenis model yang digunakan. Sistem juga memberikan jeda waktu 

singkat setelah setiap prediksi untuk mencegah pengenalan ganda terhadap gestur yang 

sama. Dengan pendekatan ini, sistem mampu melakukan klasifikasi secara adaptif 

berdasarkan pola pergerakan tangan pengguna, sehingga menghasilkan proses deteksi 

gestur yang efisien dan akurat pada perangkat Raspberry Pi 5 tanpa memerlukan 

koneksi internet. 

Agar sistem tetap ringan dijalankan pada Raspberry Pi 5, penelitian ini 

menggunakan pendekatan hybrid bergantian. Skenario pertama adalah kombinasi RF 

+ LSTM untuk menguji akurasi klasifikasi statis dan dinamis. Skenario kedua adalah 

kombinasi RF + Transformer dengan fungsi yang sama. Hasil dari kedua skenario 

tersebut kemudian dibandingkan untuk mengevaluasi performa model sekuensial 

(LSTM dan Transformer) dalam konteks pengenalan BISINDO secara real-time. 

Dengan strategi ini, pengujian dapat dilakukan secara objektif tanpa membebani 

perangkat keras karena hanya dua model dijalankan pada satu waktu. 
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Selain arsitektur algoritmik, penelitian ini juga memperhatikan topologi 

perangkat keras yang digunakan. Sistem terdiri atas Raspberry Pi 5 sebagai pusat 

komputasi, kamera CSI PiCamera v1 sebagai perangkat akuisisi data visual, serta kipas 

pendingin untuk menjaga kestabilan suhu operasional. Raspberry Pi terhubung ke 

monitor melalui micro-HDMI untuk menampilkan hasil klasifikasi secara real-time, 

dengan dukungan catu daya eksternal 5V 3A. Topologi perangkat ini divisualisasikan 

pada Gambar 3.11, yang menunjukkan susunan komponen serta keterhubungan 

antarperangkat dalam sistem secara keseluruhan. 

 

 

Gambar 3.11 Topologi Perangkat 

 



 

56 

 

 

Gambar 3.12 Topologi Tanpa Internet 

 

Topologi sistem yang digunakan dalam penelitian ini bersifat sepenuhnya 

offline, Visualisasi arsitektur ini disajikan pada Gambar 3.12, di mana seluruh proses 

deteksi dan klasifikasi dilakukan secara lokal pada Raspberry Pi 5 tanpa memerlukan 

koneksi internet. Sistem diawali dengan pengguna yang memperagakan gestur tangan 

di depan kamera (menggunakan Pi Camera v1). Kamera berfungsi menangkap citra 

tangan secara real-time, yang kemudian dikirim ke MediaPipe Hands untuk 

mendeteksi dan mengekstraksi titik-titik koordinat tangan (landmark) dalam bentuk 

tiga dimensi (x, y, z). 

Hasil ekstraksi landmark ini menjadi masukan bagi sistem klasifikasi yang 

terdiri dari tiga model, yaitu Random Forest, serta LSTM dan Transformer yang 

berbasis TensorFlow Lite. Model Random Forest digunakan untuk mengenali gestur 

statis, yaitu gestur yang tidak melibatkan pergerakan tangan secara berurutan antar 

frame. 

Sementara itu, LSTM dan Transformer digunakan untuk mengenali gestur 

dinamis yang mengandung urutan gerakan dalam waktu tertentu. Kedua model ini 
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bekerja dengan cara menganalisis pola sekuensial dari 20 frame berurutan (sequence) 

untuk menentukan jenis gestur yang dilakukan. 

Dalam implementasinya, baik model LSTM maupun Transformer dikonversi 

ke dalam format TensorFlow Lite (TFLite) agar dapat dijalankan secara efisien pada 

perangkat Raspberry Pi yang memiliki sumber daya terbatas. Penggunaan format 

TFLite pada kedua model ini bertujuan untuk memastikan perbandingan performa yang 

adil dalam hal kecepatan inferensi dan penggunaan memori, khususnya untuk melihat 

kemampuan Transformer sebagai pembanding terhadap LSTM dalam mengenali 

urutan gerakan dengan kompleksitas tinggi. 

Seluruh proses mulai dari penangkapan citra, deteksi landmark, klasifikasi 

gestur, hingga penampilan hasil di layar dilakukan secara lokal dan offline, sehingga 

sistem dapat beroperasi tanpa ketergantungan terhadap server eksternal atau koneksi 

jaringan. 

Sistem penerjemah BISINDO berbasis Raspberry Pi ini dibangun dengan 

memanfaatkan kombinasi sumber daya perangkat keras dan perangkat lunak yang 

mendukung pengolahan citra serta inferensi model secara offline. Seluruh komponen 

yang digunakan dirancang agar sistem dapat berjalan mandiri tanpa ketergantungan 

pada koneksi internet. Komponen utama yang digunakan meliputi Raspberry Pi 5 

sebagai unit pemrosesan utama, Pi Camera v1 untuk menangkap citra tangan, serta 

perangkat pendukung seperti monitor, keyboard, dan mouse untuk interaksi pengguna. 

Dari sisi perangkat lunak, sistem dikembangkan menggunakan bahasa 

pemrograman Python dengan dukungan pustaka MediaPipe Hands untuk ekstraksi 

landmark tangan, OpenCV untuk pemrosesan citra, dan TensorFlow Lite sebagai mesin 

inferensi ringan untuk model LSTM dan Transformer yang dijalankan pada Raspberry 

Pi. Selain itu, sistem juga mengintegrasikan model Random Forest untuk mendeteksi 

gestur statis, serta LSTM dan Transformer (TFLite) untuk mengenali gestur dinamis. 

Penggunaan TensorFlow Lite bertujuan agar model dapat berjalan lebih efisien dengan 

konsumsi memori rendah tanpa mengorbankan kecepatan prediksi. 

Rincian lengkap sumber daya perangkat keras dan perangkat lunak yang 

digunakan dalam penelitian ini dapat dilihat pada Tabel 3.6. 
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Tabel 3.6 Sumber Daya Sistem 

Jenis Sumber 

Daya 
Perangkat/Komponen Keterangan 

Perangkat Keras 

(Hardware) 

Raspberry Pi 5 

Unit pemrosesan utama dengan 16 

GB RAM, menjalankan seluruh 

proses inferensi dan klasifikasi 

secara offline 

Pi Camera Module v1 

Kamera utama dengan sensor 

OV5647, digunakan untuk 

menangkap citra tangan secara real-

time 

Monitor, Keyboard, 

Mouse 

Antarmuka pengguna untuk 

menampilkan hasil dan melakukan 

interaksi selama pengujian 

MicroSD 32 GB 

Media penyimpanan sistem operasi, 

program, dan model machine 

learning 

Perangkat 

Lunak 

(Software) 

Raspberry Pi OS Sistem operasi utama berbasis Linux 

Python 
Bahasa pemrograman utama untuk 

pengembangan sistem 

OpenCV 
Digunakan untuk pengambilan citra 

dan pengolahan frame video 

MediaPipe Hands 

Untuk deteksi dan ekstraksi 21 titik 

landmark tangan dalam format 

koordinat (x, y, z) 

TensorFlow & 

TensorFlow Lite 

Framework machine learning; 

TFLite digunakan untuk 

menjalankan model LSTM secara 

efisien di Raspberry Pi 
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Jenis Sumber 

Daya 
Perangkat/Komponen Keterangan 

Scikit-learn 
Digunakan untuk implementasi dan 

inferensi model Random Forest 

NumPy & Pandas 
Digunakan untuk manipulasi dan 

analisis data landmark 

Matplotlib 
Untuk visualisasi hasil pelatihan dan 

evaluasi model 

Joblib 
Untuk memuat model Random 

Forest yang telah dilatih sebelumnya 
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Bab IV  

Hasil dan Pembahasan 

 

4.1. Profil Partisipan 

Berikut adalah data subjek deteksi bahasa isyarat BISINDO menggunakan 

input kamera secara real-time pada Raspberry Pi yang terlampir pada Tabel 4.1.. 

 

Tabel 4.1 Tabel Data Subjek 

No  Umur Jenis Kelamin Profesi 

1  21 Tahun Laki - Laki Mahasiswa 

2  23 Tahun Perempuan Mahasiswa 

3  21 Tahun Laki - Laki Mahasiswa 

4  21 Tahun Laki - Laki Mahasiswa 

5  21 Tahun Perempuan Mahasiswa 

6  23 Tahun Laki - Laki Mahasiswa 

 

4.2. Implementasi Sistem 

4.2.1. Implementasi Perangkat Keras (Hardware) 

 

 
(a) 
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(b) 

Gambar 4.1 Implementasi Perangkat Keras: (a) Setup Perangkat Keseluruhan dan (b) 

Diagram Blok Koneksi Perangkat. 

 

Realisasi perangkat keras pada sistem ini berfokus pada integrasi unit 

embedded system yang berperan sebagai pusat pemrosesan algoritma kecerdasan 

buatan secara mandiri. Komponen utama yang digunakan adalah Raspberry Pi 5 yang 

bertugas menjalankan sistem operasi sekaligus mengeksekusi beban komputasi dari 

arsitektur model hibrida yang diterapkan. Untuk kebutuhan akuisisi visual, sistem ini 

memanfaatkan modul kamera khusus yaitu Pi Camera v1 yang dihubungkan langsung 

ke papan utama melalui antarmuka serial berkecepatan tinggi, bukan melalui jalur USB 

standar. Penggunaan jalur antarmuka dedikasi ini dipilih untuk meminimalisir latensi 

pengiriman data citra (frame), sehingga proses deteksi gestur tangan baik yang bersifat 

diam maupun bergerak dapat direspons oleh sistem tanpa penundaan yang signifikan. 

Implementasi fisik dari konfigurasi tersebut diperlihatkan secara rinci pada 

Gambar 4.1. Dalam ilustrasi tersebut, unit komputasi utama terlihat ditempatkan pada 

permukaan datar dan terhubung ke sensor visual menggunakan kabel fleksibel pipih, 

sementara modul kamera diposisikan secara strategis menempel pada bingkai layar 

monitor eksternal. Penempatan ini bertujuan untuk mendapatkan sudut pandang yang 
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optimal dan sejajar dengan pengguna, memastikan area tubuh bagian atas dan 

pergerakan tangan masuk sepenuhnya ke dalam bingkai tangkapan kamera. Hasil 

pemrosesan visual dan antarmuka pengguna kemudian ditransmisikan ke monitor 

tersebut, memungkinkan pengguna untuk melihat umpan balik sistem secara langsung 

saat melakukan gerakan isyarat. Sementara itu, perangkat periferal standar 

diintegrasikan di sekitar unit utama untuk keperluan inisialisasi program dan 

konfigurasi sistem selama tahap pengujian berlangsung. 

4.2.2. Implementasi Antarmuka Pengguna (User Interface) 

 

 
Gambar 4.2 Implementasi Antarmuka Program 

 

Implementasi antarmuka pada sistem, sebagaimana divisualisasikan pada 

Gambar 4.2, dirancang untuk menyediakan umpan balik visual secara real-time dengan 

memanfaatkan pustaka OpenCV sebagai backend visualisasi utama. Alur pemrosesan 

visual dimulai dengan membalikkan frame kamera secara horizontal (horizontal flip) 

menggunakan fungsi cv2.flip untuk menciptakan efek cermin yang intuitif bagi 

pengguna. Di atas lapisan video tersebut, sistem mengintegrasikan modul visualisasi 

MediaPipe (mp_draw) yang memetakan kerangka tangan (hand landmarks) beserta 

garis koneksi antar sendi. 

Mekanisme interaksi pengguna dibangun berbasis state-driven display yang 

memberikan panduan tekstual pada setiap tahapan klasifikasi. Untuk menjamin 

keterbacaan informasi di berbagai kondisi pencahayaan latar, seluruh elemen teks 
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dirender menggunakan fungsi kustom yang menambahkan latar belakang persegi 

panjang berwarna hitam pada setiap label informasi. Sistem secara dinamis 

menampilkan status sistem berdasarkan stabilitas gerakan tangan: 

• Fase Stabilisasi: Visualisasi fase stabilisasi sistem dapat dilihat pada Gambar 

4.3. Saat tangan pertama kali dideteksi, sistem mengaktifkan timer jeda 

(grace time) dan menampilkan status "Stabilizing..." untuk mencegah 

pengambilan data yang prematur. 

 

 

Gambar 4.3 Fase Stabilisasi 

 

• Fase Akuisisi Data: Berdasarkan kalkulasi rata-rata pergerakan (motion 

score), antarmuka akan menampilkan status sistem sebagaimana 

divisualisasikan pada Gambar 4.4 dan Gambar 4.5. Sistem akan 

menampilkan status "Recording" (Gambar 4.4) yang menghitung jumlah 

buffer sekuensial untuk model dinamis, atau beralih ke status "Holding" 

(Gambar 4.5) jika gerakan berada di bawah ambang batas (threshold) 0.005 

untuk memicu klasifikasi statis. 
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Gambar 4.4 Fase Recording 

 

 

Gambar 4.5 Fase Holding 

 

Sebagai bentuk validasi akhir kepada pengguna, hasil prediksi ditampilkan 

dengan pembedaan visual yang tegas berdasarkan model yang melakukan inferensi. 

Hasil klasifikasi dari model Random Forest (gestur statis) direpresentasikan dengan 

label teks berwarna merah, sedangkan luaran dari model Deep Learning (LSTM atau 

Transformer) ditandai dengan warna hijau. Setiap label prediksi juga menyertakan 

sufiks sumber model (misalnya "(RF)", "(LSTM)", atau "(Transformer)") untuk 

transparansi proses hybrid yang berjalan di latar belakang. Selain itu, fitur cooldown 
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visual diterapkan pasca-prediksi dengan menampilkan hitung mundur ("Next in...") 

untuk mencegah redundansi luaran pada satu gerakan yang sama. 

4.3. Implementasi dan Analisis Kode Program 

4.3.1. Implementasi Augmentasi Citra untuk Gestur Statis 

Pada tahap awal eksperimen pelatihan model Random Forest, ditemukan 

indikasi overfitting di mana model memiliki performa sangat tinggi pada data latih 

namun kurang optimal dalam mengenali variasi gestur pada pengujian real-time. Hal 

ini disebabkan oleh terbatasnya variasi posisi dan skala tangan pada dataset murni hasil 

pengambilan awal. Untuk mengatasi permasalahan tersebut, penelitian ini 

mengimplementasikan teknik augmentasi citra (image augmentation) secara 

terprogram sebelum data diekstraksi fitur landmark-nya. 

Implementasi augmentasi dilakukan menggunakan pustaka OpenCV dengan 

menerapkan transformasi geometris yang tetap mempertahankan makna semantik 

gestur. Kode program dirancang untuk menghasilkan variasi data baru secara otomatis 

melalui tiga teknik manipulasi utama: 

• Rotasi (Rotation): Citra diputar dengan sudut acak antara -10 hingga 10 derajat 

untuk mensimulasikan orientasi tangan pengguna yang tidak selalu tegak lurus. 

• Penskalaan (Scaling/Safe Zoom): Citra diperbesar atau diperkecil dengan rasio 

0.85 hingga 1.05. Teknik padding (penambahan piksel hitam) diterapkan saat 

zoom-out untuk memastikan tidak ada bagian tangan yang terpotong. 

• Translasi (Translation): Objek tangan digeser secara horizontal atau vertikal 

dalam rentang 5% dari dimensi citra untuk mengantisipasi posisi tangan yang 

tidak selalu tepat di tengah frame. 

Realisasi teknis dari ketiga transformasi tersebut ditunjukkan pada Gambar 4.6 

berikut, yang memperlihatkan fungsi inti safe_augment_image dalam memproses 

matriks citra input. 

 

1 def safe_augment_image(image): 

2     h, w = image.shape[:2] 

3      
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4     # 1. ROTASI (-10 s/d 10 derajat) 

5     angle = random.uniform(-10, 10) 

6     center = (w // 2, h // 2) 

7     M_rot = cv2.getRotationMatrix2D(center, angle, 

1.0) 

8     image = cv2.warpAffine(image, M_rot, (w, h), 

borderMode=cv2.BORDER_CONSTANT) 

9      

10     # 2. SAFE ZOOM (Fokus Zoom Out untuk menjaga 

fitur tangan) 

11     scale = random.uniform(0.85, 1.05) 

12      

13     if scale < 1.0: # Logika Zoom Out dengan Padding 

14         new_h, new_w = int(h * scale), int(w * 

scale) 

15         resized = cv2.resize(image, (new_w, new_h)) 

16          

17         # Buat kanvas hitam seukuran asli agar 

dimensi tetap terjaga 

18         canvas = np.zeros((h, w, 3), dtype=np.uint8) 

19         y_off = (h - new_h) // 2 

20         x_off = (w - new_w) // 2 

21         canvas[y_off:y_off+new_h, x_off:x_off+new_w] 

= resized 

22         image = canvas 

23  

24     # 3. TRANSLASI (Geser Posisi max 5%) 

25     tx = random.uniform(-0.05, 0.05) * w 

26     ty = random.uniform(-0.05, 0.05) * h 

27     M_trans = np.float32([[1, 0, tx], [0, 1, ty]]) 

28     image = cv2.warpAffine(image, M_trans, (w, h), 

borderMode=cv2.BORDER_CONSTANT) 

29  

30     return image 

Gambar 4.6 Cuplikan Kode Augmentasi Citra 

Melalui skrip augmentasi di atas, jumlah dataset gestur statis dilipatgandakan 

dengan faktor pengali (AUGMENT_MULTIPLIER) sebesar 10 kali lipat. Proses ini 

memungkinkan model Random Forest untuk mempelajari distribusi fitur landmark 

yang lebih luas dan menghasilkan model yang lebih robust terhadap variasi 

pengambilan gambar di lapangan. 
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Augmentasi data difokuskan secara intensif pada kategori gestur statis untuk 

mengatasi variabilitas posisi dan orientasi tangan yang sering memicu misklasifikasi 

pada pengujian awal. 

Sebaliknya, pada kategori gestur dinamis, augmentasi data sintetis tidak 

diterapkan. Keputusan ini didasarkan pada hasil eksperimen pendahuluan yang 

menunjukkan bahwa fitur temporal pada gestur dinamis memiliki tingkat perbedaan 

yang sangat kuat dibandingkan gestur statis. Model terbukti mampu mencapai 

generalisasi yang optimal dan performa klasifikasi yang tinggi hanya dengan 

menggunakan variasi data natural. Oleh karena itu, integritas data urutan waktu pada 

gestur dinamis dipertahankan tanpa modifikasi buatan untuk mencegah distorsi pola 

gerakan yang justru dapat menurunkan akurasi deteksi pada skenario real-time. 

4.3.2. Implementasi Model Random Forest (Gestur Statis) 

Implementasi klasifikasi gestur statis dibangun menggunakan algoritma 

Random Forest dengan memanfaatkan pustaka Scikit-learn. Sebelum proses pelatihan, 

dataset yang memuat koordinat landmark tangan dipisahkan menjadi set fitur dan label. 

Untuk menjaga distribusi kelas yang seimbang antara data latih dan data uji, diterapkan 

teknik stratified sampling saat pembagian dataset dengan rasio 80:20. Hal ini 

diimplementasikan menggunakan fungsi train_test_split dengan parameter stratify, 

yang memastikan setiap kelas gestur terwakili secara proporsional di kedua subset data, 

sehingga mencegah bias pada model saat proses evaluasi. 

 

1 # Split dataset (80% train, 20% test) dengan stratify 

2 X_train, X_test, y_train, y_test = train_test_split( 

3     X, y_encoded, test_size=0.2, stratify=y_encoded, 

random_state=42 

4 ) 

Gambar 4.7 Code Pembagian Dataset dengan Stratifikasi 

 

Konfigurasi model diatur berdasarkan parameter yang telah ditentukan pada 

tahap perancangan. Model diinisialisasi dengan parameter n_estimators=100, yang 

berarti model akan membentuk seratus pohon keputusan (decision trees) untuk 
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melakukan prediksi secara ensemble. Kriteria pemisahan node menggunakan indeks gini 

untuk mengukur tingkat impurity. Selanjutnya, untuk menguji konsistensi performa 

model terhadap variasi data yang berbeda, diterapkan metode Stratified K-Fold Cross 

Validation dengan k=5. Metode ini membagi data latih menjadi lima lipatan (folds) 

berbeda, di mana model dilatih dan divalidasi secara iteratif pada setiap lipatan untuk 

mendapatkan metrik akurasi rata-rata yang lebih reliabel. 

 

1 # Inisialisasi model Random Forest dengan 100 pohon 

2 rf = RandomForestClassifier( 

3     n_estimators=100, 

4     criterion="gini", 

5     max_depth=None, 

6     random_state=42 

7 ) 

8  

9 # Penerapan 5-Fold Cross Validation 

10 skf = StratifiedKFold(n_splits=5, shuffle=True, 

random_state=42) 

11 cv_scores = cross_val_score(rf, X, y_encoded, 

cv=skf) 

Gambar 4.8 Code Konfigurasi Model dan Cross-Validation 

 

4.3.3. Implementasi Model LSTM (Gestur Dinamis) 

Pada pengenalan gestur dinamis, arsitektur Long Short-Term Memory (LSTM) 

diimplementasikan menggunakan kerangka kerja TensorFlow Keras. Model disusun 

secara sekuensial ( Sequential Model ) untuk memproses data urutan (sequence data) 

dengan panjang tetap, yaitu 20 frame per sampel. Lapisan inti LSTM dikonfigurasi 

dengan 64 unit memori. Parameter krusial yang diterapkan di sini adalah unroll=True. 

Pengaturan ini memaksa jaringan untuk membuka gulungan (unroll) loop LSTM saat 

kompilasi, yang bertujuan untuk meningkatkan kecepatan eksekusi pada saat inferensi, 

meskipun dengan konsekuensi penggunaan memori yang sedikit lebih besar. 

Selanjutnya, hasil pemrosesan LSTM diteruskan ke lapisan Dense dengan 32 neuron 
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yang dilengkapi aktivasi ReLU dan regularisasi L2 (kernel_regularizer) sebesar 0.001 

untuk membatasi besaran bobot dan mencegah overfitting. 

 

1 model = models.Sequential([ 

2     layers.Input(shape=(SEQ_LENGTH, FEATURES)), 

3     # Unroll=True untuk mempercepat eksekusi (speed 

optimization) 

4     layers.LSTM(64, return_sequences=False, 

unroll=True), 

5     # Regularisasi L2 untuk mencegah overfitting pada 

dense layer 

6     layers.Dense(32, activation='relu', 

kernel_regularizer=regularizers.l2(0.001)), 

7     layers.Dropout(0.3), 

8     layers.Dense(num_classes, activation='softmax') 

9 ]) 

Gambar 4.9 Code Arsitektur Model LSTM 

 

Untuk mengoptimalkan proses pembelajaran, model dikompilasi menggunakan 

pengoptimal (optimizer) adam dan fungsi kerugian categorical_crossentropy yang 

sesuai untuk klasifikasi multi-kelas. Strategi pelatihan diperkuat dengan penerapan 

mekanisme callbacks. EarlyStopping digunakan untuk memantau nilai validation loss 

dan akan menghentikan pelatihan secara otomatis jika tidak terjadi penurunan loss 

selama 10 epoch berturut-turut (parameter patience=10), serta mengembalikan bobot 

terbaik yang pernah dicapai (restore_best_weights=True). Selain itu, 

ReduceLROnPlateau diterapkan untuk menurunkan learning rate sebesar 50% (faktor 

0.5) jika model mengalami stagnasi, memungkinkan model untuk mencari local 

minima yang lebih presisi. 

 

1 model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy']) 

2  

3 callbacks = [ 

4     # Hentikan training jika val_loss tidak membaik 

dalam 10 epoch 

5     EarlyStopping(monitor="val_loss", patience=10, 
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restore_best_weights=True), 

6     # Turunkan learning rate jika performa stagnan 

7     ReduceLROnPlateau(monitor="val_loss", 

factor=0.5, patience=5, min_lr=1e-6) 

8 ] 

Gambar 4.10 Code Konfigurasi Pelatihan dan Callbacks 

 

4.3.4. Implementasi Model Transformer (Gestur Dinamis) 

Sebagai pembanding utama terhadap model LSTM, penelitian ini 

mengimplementasikan arsitektur Transformer yang menawarkan pendekatan berbeda 

dalam mempelajari pola waktu. Jika model rekuren seperti LSTM memproses data 

secara berurutan (sekuensial) yang seringkali membatasi kecepatan pelatihan 

Transformer dirancang untuk memproses seluruh urutan data sekaligus secara paralel. 

Namun, keunggulan pemrosesan paralel ini membawa tantangan tersendiri: model 

kehilangan pemahaman inheren mengenai urutan waktu. Tanpa penanda khusus, 

Transformer tidak dapat membedakan antara gerakan awal dan gerakan akhir dalam 

sebuah gestur. Untuk mengatasi hal ini, langkah pertama dalam implementasi kode 

adalah melakukan proyeksi fitur input ke dalam dimensi internal model (Dense 

Projection) sebesar 64 unit, yang kemudian dipadukan dengan informasi posisi 

(Positional Embedding). Teknik ini secara efektif mengintegrasikan"penanda waktu" 

ke dalam setiap frame data, sehingga model dapat memahami konteks urutan gerakan 

dengan benar misalnya, membedakan arah gerakan tangan dari kiri ke kanan dengan 

sebaliknya meskipun seluruh data diproses secara bersamaan. 

 

1 # Proyeksi fitur input ke dimensi d_model 

2 x = layers.Dense(64, name="dense_projection")(inputs) 

 

3 # Membuat dan menambahkan Positional Embedding 

4 positions = tf.range(start=0, limit=input_shape[0], 

delta=1) 

5 pos_embedding = 

keras.layers.Embedding(input_dim=input_shape[0], 

output_dim=64)(positions) 

6 x = x + pos_embedding 

Gambar 4.11 Code Implementasi Positional Embedding pada Transformer 
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Komponen inti dari model ini terletak pada blok Multi-Head Attention. Dalam 

implementasinya, blok ini dikonfigurasi untuk memiliki 4 "kepala" (heads) perhatian. 

Secara sederhana, ini memungkinkan model untuk memfokuskan perhatiannya pada 

empat aspek berbeda dari gerakan tangan secara bersamaan misalnya, satu kepala fokus 

pada posisi ibu jari, sementara kepala lain fokus pada pergerakan kelingking. Hal ini 

membuat model sangat peka terhadap detail-detail kecil dalam gestur yang kompleks. 

Selain itu, untuk menjaga agar proses belajar model tetap stabil dan tidak stabil 

(exploding gradient), setiap hasil pemrosesan dilapisi dengan normalisasi 

(LayerNormalization) dan koneksi sisa (residual connection), yang memastikan 

informasi asli dari input tidak hilang tertimpa oleh proses komputasi yang dalam. 

 

1 # Blok Attention: Memungkinkan model fokus pada bagian 

penting dari gestur 

2 attn_output = layers.MultiHeadAttention( 

3     num_heads=4, key_dim=64, dropout=0.3 

4 )(query=x, value=x, key=x) 

5  

6 # Normalisasi dan Koneksi Sisa (menjaga kestabilan 

informasi) 

7 x = layers.LayerNormalization(epsilon=1e-6)(x + 

attn_output) 

8  

9 # Jaringan Feed Forward untuk pemrosesan lebih lanjut 

10 ffn_output = keras.Sequential([ 

11     layers.Dense(64, activation="relu"), 

12     layers.Dense(64) 

13 ])(x) 

14 x = layers.LayerNormalization(epsilon=1e-6)(x + 

ffn_output) 

Gambar 4.12 Code Mekanisme Perhatian (Attention) dan Stabilisasi Model 

 

4.4. Hasil Evaluasi Model 

Evaluasi model dilakukan secara offline menggunakan data uji (test set) yang 

telah dipisahkan sebesar 20% dari total dataset sebelum proses pelatihan dimulai. 

Pengujian ini bertujuan untuk mengukur kinerja model dalam mengenali gestur pada 
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data yang belum pernah dilihat sebelumnya, serta memastikan bahwa model tidak 

mengalami overfitting. 

4.4.1. Evaluasi Model Gestur Statis (Random Forest) 

Kinerja model Random Forest dievaluasi secara komprehensif menggunakan 

data uji (test set) yang mencakup gestur statis berupa huruf (A-Z), angka (0-10), dan 

kosakata statis lainnya. Evaluasi diawali dengan analisis kurva pembelajaran (learning 

curve) untuk memastikan model mempelajari pola data dengan benar tanpa mengalami 

overfitting atau underfitting. 

 

 

Gambar 4.13 Kurva Pembelajaran (Learning Curve) Model Random Forest 

 

Sebagaimana terlihat pada Gambar 4.13, kurva pembelajaran (learning curve) 

menunjukkan dampak signifikan dari penerapan augmentasi data terhadap performa 

model. Penting untuk dicatat bahwa kurva validasi (oranye) pada grafik ini 

merepresentasikan rata-rata akurasi dari proses 5-Fold Cross-Validation, yang menguji 

model pada seluruh bagian dataset secara objektif. Garis skor validasi (oranye) 

memperlihatkan tren peningkatan yang tajam dan konsisten seiring dengan 

bertambahnya volume data latih yang kini mencapai lebih dari 450.000 sampel. 

Meskipun skor validasi berawal dari titik yang relatif rendah (sekitar 0.4) yang 

mengindikasikan kompleksitas variasi data akibat rotasi dan penskalaan model mampu 
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mempelajari pola tersebut secara efektif seiring penambahan data. Pada akhirnya, 

kurva validasi berhasil konvergen sempurna dengan skor pelatihan (garis biru) di titik 

akurasi 1.0 (100%). Pertemuan kedua garis pada titik maksimal ini membuktikan 

bahwa strategi augmentasi data berhasil mengeliminasi indikasi overfitting yang 

sebelumnya muncul, menghasilkan model yang memiliki kemampuan generalisasi 

sangat baik dan stabil (robust) terhadap variasi gestur. 

Hasil evaluasi kuantitatif terhadap kinerja model Random Forest dirangkum 

secara rinci dalam Tabel 4.2. Berdasarkan hasil pengujian yang melibatkan 115.392 

sampel data jumlah yang meningkat signifikan akibat proses augmentasi model 

Random Forest menunjukkan performa yang sempurna. Model berhasil mencapai 

tingkat akurasi global sebesar 100%. Konsistensi kinerja ini juga tercermin secara 

merata pada seluruh metrik evaluasi, di mana nilai rata-rata tertimbang (weighted 

average) untuk presisi (precision), recall, dan f1-score seluruhnya tercatat sempurna 

pada angka 1.00. Capaian akurasi absolut ini dapat diatribusikan pada dua faktor utama: 

karakteristik fitur landmark tangan statis yang memiliki distingsi spasial yang sangat 

tegas antar-kelas, serta efektivitas algoritma Random Forest dalam mempelajari pola 

data berdimensi tinggi yang telah diperkaya variabilitasnya melalui teknik augmentasi. 

Tabel 4.2 Ringkasan Performa Model Random Forest pada Data Uji 

Metrik Evaluasi Precision Recall F1-Score 

Macro Average 1.00 1.00 1.00 

Weighted Average 1.00 1.00 1.00 

Akurasi Global 1.00 (100%)   

Total Sampel Uji 115.392 Data   

 

Untuk memverifikasi detail prediksi per kelas, dilakukan analisis menggunakan 

Confusion Matrix. 
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Gambar 4.14 Confusion Matrix Model Random Forest pada Data Uji 

 

Visualisasi Confusion Matrix pada Gambar 4.14 memperlihatkan dominasi pola 

diagonal utama yang sangat tegas, merefleksikan akurasi absolut model terhadap 115.392 

sampel uji. Seluruh prediksi terkonsentrasi sempurna pada garis diagonal (True Positive ), 

sementara area off-diagonal tampak benar-benar bersih tanpa adanya indikasi kesalahan 

klasifikasi (misclassification). Absennya sebaran nilai di luar diagonal ini membuktikan 

bahwa model memiliki kemampuan diskriminatif yang sangat tinggi; ia mampu 

membedakan setiap gestur statis termasuk yang memiliki kemiripan konfigurasi jari 

dengan presisi mutlak. Hal ini juga mengonfirmasi bahwa variasi data yang dihasilkan 

melalui proses augmentasi berhasil dipelajari dengan baik oleh model tanpa 

menimbulkan ambiguitas atau kebingungan antar-kelas. 
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4.4.2. Evaluasi Model Gestur Dinamis: LSTM 

Evaluasi terhadap model Long Short-Term Memory (LSTM) difokuskan pada 

kemampuannya mengenali pola gestur dinamis yang melibatkan urutan waktu. Analisis 

diawali dengan pemeriksaan kurva pelatihan untuk memastikan proses pembelajaran 

berjalan dengan baik. 

 

 

Gambar 4.15 Kurva Akurasi dan Loss Model LSTM 

 

Evaluasi model dilakukan dengan strategi pembagian data yang bertingkat 

untuk menjamin validitas hasil. Sebelum pelatihan final, stabilitas arsitektur diuji 

terlebih dahulu melalui metode 5-Fold Cross Validation, di mana data validasi diambil 

secara bergantian dari 80% himpunan data latih (training set). Setelah validitas internal 

teruji, dilakukan pelatihan final yang hasilnya ditunjukkan pada Gambar 4.15. Perlu 

diperjelas bahwa kurva validasi (oranye) pada grafik ini merepresentasikan evaluasi 

terhadap 20% data uji (test set) yang sepenuhnya terpisah dan tidak pernah digunakan 

dalam proses K-Fold maupun pelatihan. 

Pada grafik tersebut, terlihat pola konvergensi yang unik di mana garis akurasi 

validasi (oranye) cenderung bergerak lebih tinggi dibandingkan akurasi pelatihan (biru) 

pada fase awal hingga pertengahan. Fenomena ini terjadi akibat penerapan lapisan 

Dropout sebesar 0.3 selama proses pelatihan, yang secara acak mematikan 30% neuron 

untuk mencegah model menghafal data (overfitting). Namun, saat fase validasi pada 



 

76 

 

data uji, Dropout dinonaktifkan sehingga model dapat menggunakan kapasitas penuh 

jaringannya, menghasilkan performa yang lebih optimal. Secara umum, kurva loss 

menunjukkan penurunan yang stabil, menandakan model berhasil meminimalkan 

kesalahan seiring bertambahnya epoch. 

Hasil evaluasi kuantitatif terhadap model LSTM pada tahap pengujian akhir 

dirangkum dalam Tabel 4.3. Berdasarkan data yang tersaji, model menunjukkan kinerja 

yang memuaskan dengan mencapai tingkat akurasi global sebesar 94,50% dari total 

11.970 sampel uji. Konsistensi performa model juga tercermin dari keseimbangan nilai 

rata-rata tertimbang (weighted average) pada metrik evaluasi lainnya, di mana presisi 

tercatat sebesar 94,57%, recall sebesar 94,50%, dan F1-score sebesar 94,48%. Angka-

angka ini mengindikasikan bahwa model LSTM cukup handal dalam mengenali pola 

gestur dinamis meskipun terdapat kompleksitas urutan gerakan. 

 

Tabel 4.3 Ringkasan Performa Model LSTM pada Data Uji 

Metrik Evaluasi Precision Recall F1-Score 

Macro Average 0.95 0.95 0.94 

Weighted Average 0.95 0.95 0.94 

Akurasi Global 0.95 (94.50%)   

Total Sampel Uji 11.970 Data   

 

Meskipun akurasi keseluruhan tinggi, analisis lebih dalam menggunakan 

Confusion Matrix dan detail per kelas mengungkapkan adanya kesulitan model pada 

gestur-gestur tertentu yang memiliki ambiguitas gerakan. 
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Gambar 4.16 Confusion Matrix Model LSTM 

 

 

Gambar 4.17 Misklasifikasi Gestur “APA” Confusion Matrix LSTM 

 

  

Gambar 4.18 Misklasifikasi Gestur "HANYA" Confusion Matrix LSTM 
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Gambar 4.19 Misklasifikasi Gestur "MEMBERI" Confusion Matrix LSTM 

 

Visualisasi Confusion Matrix secara keseluruhan pada Gambar 4.16 

memperlihatkan distribusi prediksi model yang mengindikasikan adanya tantangan 

signifikan pada beberapa kelas gestur yang memiliki kemiripan visual tinggi. Untuk 

menganalisis kesalahan ini secara lebih mendalam, dilakukan proses perbesaran pada 

area yang terindikasi memiliki tingkat error tertinggi. 

Berdasarkan Gambar 4.17, terlihat secara spesifik bahwa gestur 'APA' sering 

mengalami misklasifikasi sebagai gestur 'ROTI' dan 'SEMUA'. Hal ini disebabkan oleh 

pola lintasan gerak yang sangat mirip antar-ketiga gestur tersebut, sehingga arsitektur 

LSTM kesulitan membedakan nuansa transisinya. Pola kesalahan serupa juga terlihat 

pada Gambar 4.18, di mana gestur 'MEMBERI' sering salah dideteksi menjadi gestur 

'APA', 'ROTI', dan 'SEMUA' akibat tumpang tindih fitur gerakan yang kompleks. Selain 

itu, Gambar 4.19 menunjukkan bahwa gestur 'HANYA' juga mengalami kebingungan 

prediksi, di mana model cenderung salah mengklasifikasikannya sebagai gestur 

'MEREKA' atau `PULANG` dikarenakan kemiripan posisi tangan. 

Sebaliknya, di luar kasus-kasus tersebut, konsentrasi warna yang pekat sempurna 

pada garis diagonal utama untuk gestur 'DARI', 'DENGAR', dan 'DUDUK' menunjukkan 

bahwa model mampu memprediksi gestur-gestur ini tanpa kesalahan. Keberhasilan ini 

dikarenakan ketiga gestur tersebut memiliki pola gerakan yang berbeda secara signifikan 

dibandingkan gestur lainnya, sehingga fitur-fiturnya dapat diekstraksi dengan baik tanpa 

ambiguitas. 

4.4.3. Evaluasi Model Gestur Dinamis: Transformer 

Berbeda dengan LSTM yang berbasis rekurensi, evaluasi pada model 

Transformer difokuskan untuk melihat efektivitas mekanisme Self-Attention dalam 
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menangkap pola global dari gestur tangan. Analisis diawali dengan pengamatan 

terhadap dinamika pembelajaran model melalui kurva pelatihan. 

 

 

Gambar 4.20 Kurva Akurasi dan Loss Model Transformer 

 

Sebagaimana diperlihatkan pada Gambar 4.20, kurva pelatihan model 

Transformer menunjukkan karakteristik konvergensi yang sangat cepat dan stabil. Pada 

grafik sebelah kiri (Accuracy), garis akurasi validasi (oranye) yang dievaluasi 

menggunakan 20% data uji (test set) yang terpisah sepenuhnya dari proses pelatihan 

melesat naik sejak epoch awal dan stabil di angka tinggi (>95%) hanya dalam kurang 

dari 20 epoch, seiring dengan garis akurasi pelatihan (biru). Hal yang sama terlihat pada 

grafik Loss (kanan), di mana loss validasi menurun tajam dan mendatar di angka yang 

sangat rendah (mendekati 0.0) tanpa adanya divergensi yang menandakan overfitting 

parah. Hal ini mengindikasikan bahwa arsitektur Transformer dengan konfigurasi 

Dropout 0.3 mampu mempelajari generalisasi pola gestur dengan sangat efisien. 

Dibandingkan dengan kurva LSTM yang membutuhkan waktu lebih lama untuk stabil, 

Transformer membuktikan efisiensi pemrosesan paralelnya dalam menangkap fitur 

spasio-temporal yang kompleks. Konsistensi hasil ini sekaligus memvalidasi tahap 

pengujian sebelumnya yang menggunakan metode 5-Fold Cross-Validation, di mana 

validasi internal dilakukan dengan merotasi 80% data latih utama, memastikan bahwa 

model memiliki stabilitas yang kokoh sebelum dievaluasi pada data uji final. 
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Secara kuantitatif, hasil pengujian pada data uji menempatkan model 

Transformer sebagai model dengan performa paling superior, sebagaimana dirincikan 

pada Tabel 4.4. Berdasarkan laporan klasifikasi (Classification Report) yang dihasilkan 

pada data uji final, model ini berhasil mencatatkan tingkat akurasi global sebesar 98.57% 

pada 11.970 sampel uji. Kualitas prediksi juga sangat konsisten di seluruh metrik, dengan 

nilai rata-rata tertimbang (weighted average) untuk presisi, recall, dan f1-score 

semuanya mencapai 98.57%. Angka ini menunjukkan peningkatan performa yang 

signifikan dibandingkan model LSTM. 

 

Tabel 4.4 Ringkasan Performa Model Transformer pada Data Uji 

Metrik Evaluasi Precision Recall F1-Score 

Macro Average 0.99 0.99 0.99 

Weighted Average 0.99 0.99 0.99 

Akurasi Global 0,99 (98,57%)   

Total Sampel Uji 11.970 Data   

 

Untuk memverifikasi distribusi kesalahan prediksi secara mendetail, dilakukan 

analisis visual menggunakan Confusion Matrix. 
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Gambar 4.21 Confusion Matrix Model Transformer pada Data Uji 

 

Visualisasi Confusion Matrix pada Gambar 4.21 memperlihatkan dominasi 

warna biru gelap yang sangat pekat pada garis diagonal utama, yang menandakan 

tingginya densitas prediksi yang benar untuk hampir seluruh kelas gestur. Area off-

diagonal (kesalahan prediksi) terlihat sangat bersih, mengindikasikan minimnya 

kesalahan klasifikasi antar-kelas (misclassification). 
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Gambar 4.22 Misklasifikasi Gestur “APA” Confusion Matrix Transformer 

 

   

Gambar 4.23Misklasifikasi Gestur “HANYA” Confusion Matrix Transformer 

 

  

Gambar 4.24 Misklasifikasi Gestur “MEMBERI” Confusion Matrix Transformer 

 

Keunggulan arsitektur Transformer terlihat lebih nyata ketika dilakukan analisis 

mendalam pada gestur-gestur yang sebelumnya bermasalah di model LSTM. 

Berdasarkan hasil perbesaran pada Gambar 4.22, gestur 'APA' kini menunjukkan tingkat 

kesalahan yang sangat minim, di mana misklasifikasi hanya terjadi dalam frekuensi 

rendah terhadap gestur 'SEMUA' akibat kemiripan gerakan. Hal serupa terlihat pada 

Gambar 4.23, di mana gestur 'MEMBERI' berhasil dikenali dengan sangat baik dengan 

hanya sedikit kesalahan klasifikasi terhadap gestur 'MENERIMA' yang memiliki bentuk 

tangan serupa namun arah berlawanan. Peningkatan stabilitas model juga terbukti pada 

Gambar 4.24, di mana gestur 'HANYA' yang sebelumnya sangat rentan tertukar, kini 

hanya memiliki tingkat kesalahan yang dapat diabaikan terhadap gestur 'MEREKA' dan 

'PULANG'. 

Secara komparatif, jika disandingkan dengan hasil model LSTM yang 

mengalami kebingungan signifikan pada ketiga gestur tersebut, hasil ini membuktikan 

bahwa mekanisme self-attention pada Transformer jauh lebih andal dalam membedakan 

fitur-fitur halus. Model mampu memisahkan gestur dengan kemiripan visual tinggi 
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secara presisi, menjadikannya solusi yang lebih superior untuk sistem penerjemah bahasa 

isyarat yang membutuhkan akurasi tinggi. 

4.4.4. Analisis Komparatif Model Dinamis (LSTM vs Transformer) 

Setelah dilakukan pengujian dan evaluasi terhadap masing-masing model 

secara terpisah, tahap selanjutnya adalah melakukan analisis komparatif antara 

algoritma LSTM dan Transformer untuk mengukur efektivitasnya dalam mengenali 

gestur dinamis BISINDO. Perbandingan ini difokuskan pada metrik akurasi global 

serta rata-rata performa (precision, recall, f1-score) pada data uji yang sama kemudian 

efisiensi komputasi selama proses pelatihan dan tingkat keyakinan (confidence score) 

model dalam melakukan prediksi benar. Ringkasan perbandingan kinerja kedua model 

disajikan pada Tabel 4.5. 

 

Tabel 4.5 Perbandingan Performa Model LSTM dan Transformer 

Model 

Arsitektur 

Akurasi 

Global 

Rata-rata 

Precision 

Rata-rata 

Recall 

Rata-rata 

F1-Score 

Selisih 

(Akurasi) 

LSTM 94,50% 94,57% 94,50% 94,48% - 

Transformer 98,57% 98,59% 98,57% 98,57% +4,07% 

 

Berdasarkan hasil benchmark kecepatan pelatihan pada lingkungan komputasi 

yang sama, ditemukan perbedaan signifikan dalam waktu eksekusi per epoch. 

Sebagaimana tercatat dalam laporan estimasi, model LSTM mencatatkan waktu 

pelatihan rata-rata 8,86 detik per epoch, sedangkan model Transformer membutuhkan 

waktu 18,80 detik per epoch. Data ini menunjukkan bahwa arsitektur Transformer 

memiliki beban komputasi sekitar 2,12 kali lebih tinggi dibandingkan LSTM. 

Peningkatan beban ini merupakan konsekuensi logis dari mekanisme Multi-Head 

Attention pada Transformer yang harus memproses matriks hubungan antar-seluruh 

frame secara paralel, berbeda dengan LSTM yang memproses data secara sekuensial 

namun dengan operasi matematis yang lebih ringkas dan efisien pada setiap langkah 

waktunya. 
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Meskipun menuntut sumber daya komputasi yang lebih besar, model 

Transformer membuktikan keunggulannya melalui superioritas nyata dalam hal 

ketegasan prediksi. Berdasarkan analisis probabilitas pada data uji, rata-rata skor 

keyakinan (avg confidence) pada prediksi yang benar untuk Transformer mencapai 

angka 99,62%, lebih tinggi 6,55% dibandingkan model LSTM yang mencatatkan rata-

rata keyakinan sebesar 93,07%. Tingginya probabilitas ini mengindikasikan bahwa 

fitur Self-Attention pada Transformer sangat efektif dalam memisahkan batas 

keputusan (decision boundary) antar-kelas gestur secara tegas. Hal ini bermakna bahwa 

ketika Transformer memprediksi suatu gestur, model tersebut memiliki tingkat 

kepastian yang hampir absolut, meminimalkan keraguan ambiguitas yang terkadang 

masih terlihat pada prediksi model LSTM. 

Analisis lebih mendalam dilakukan untuk melihat seberapa efektif model 

Transformer memperbaiki kesalahan yang sering dilakukan oleh model LSTM. Tabel 

4.6 memperlihatkan daftar gestur yang mengalami peningkatan akurasi paling drastis. 

 

Tabel 4.6 Perbandingan Gestur dengan Kemiripan Visual Tinggi 

Label Gestur F1-Score LSTM F1-Score Transformer Peningkatan 

A. Gestur Ambigu 

APA 62,79% 92,49% +29,70% 

MEMBERI 66,67% 92,13% +25,46% 

HANYA 78,36% 97,14% +18,78% 

B. Gestur Invers 

BUKA (MATA) 81,57% 92,74% +11,17% 

TUTUP (MATA) 81,12% 93,33% +12,21% 

C. Gestur Variasi 

MENERIMA PESAN 79,49% 95,12% +15,63% 

MENERIMA 86,27% 93,85% +7,58% 

 

Peningkatan performa paling dramatis terlihat pada kategori gestur ambigu, 

yaitu kelompok gestur yang memiliki pola gerakan samar atau sangat mirip secara 
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visual dengan gestur lain sehingga sering memicu kebingungan model. Contoh 

signifikannya adalah gestur 'APA' dan 'MEMBERI', di mana Transformer mampu 

meningkatkan f1-score masing-masing sebesar 29,70% dan 25,46%. Hal ini 

mengindikasikan bahwa mekanisme Self-Attention sukses menangkap detail transisi 

gerakan halus yang sebelumnya gagal diproses oleh memori sekuensial LSTM. 

Keunggulan Transformer juga teruji pada kategori gestur invers, yang 

melibatkan pasangan gerakan dengan arah lintasan yang saling berkebalikan. Pada 

model LSTM, pasangan gestur 'BUKA (MATA)' dan 'TUTUP (MATA)' sering 

mengalami kesalahan klasifikasi dengan skor di kisaran 81%, namun Transformer 

berhasil memperbaikinya hingga mencapai 93,33%. 

Selain itu, model ini juga sangat sensitif terhadap kategori gestur variasi, yakni 

gestur gabungan yang terbentuk dari pengembangan atau penambahan gerakan pada 

gestur dasar. Kasus ini terlihat jelas pada gestur 'MENERIMA PESAN'. Jika LSTM 

kesulitan membedakan gestur ini dari gestur dasarnya ('MENERIMA') terlihat dari skor 

rendah 79,49% maka Transformer mampu mengidentifikasi nuansa tambahan tersebut 

dengan sangat baik, mencatatkan skor 95,12%. Secara keseluruhan, data ini 

mengonfirmasi bahwa Transformer memiliki kemampuan superior dalam 

membedakan gestur yang memiliki kemiripan struktural. 

4.5. Pengujian Sistem Secara Real-Time pada Raspberry Pi 

Setelah melalui tahap evaluasi model secara terpisah (offline), tahap selanjutnya 

adalah pengujian integrasi sistem secara real-time. Pengujian ini dilakukan dengan 

menjalankan aplikasi utama pada perangkat Raspberry Pi 5 yang telah terhubung 

dengan Pi Camera v1 dan layar monitor. Tujuan utama dari pengujian ini adalah untuk 

memvalidasi kemampuan sistem hybrid dalam mengenali gestur tangan pengguna 

secara langsung di lingkungan nyata, di mana terdapat variabel dinamis seperti 

kecepatan gerakan tangan dan variasi pencahayaan yang tidak ditemukan pada data 

latih statis. 

4.5.1. Skenario Pengujian 

Pengujian sistem secara real-time melibatkan tiga orang partisipan utama yang 

merupakan penutur asli BISINDO (tunarungu) dan dua penutur non-asli. Pelibatan 
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penutur asli bertujuan untuk memvalidasi kinerja sistem terhadap gestur yang alami, 

cepat, dan fluiditas tinggi. Sementara itu, partisipan non-asli disertakan untuk menguji 

ketahanan model dalam mengenali variasi gerakan yang mungkin kurang presisi atau 

memiliki tempo yang berbeda, sehingga merepresentasikan kemampuan generalisasi 

sistem terhadap berbagai tipe pengguna. 

Pengujian performa sistem secara real-time dilaksanakan untuk memvalidasi 

kemampuan model saat dijalankan pada perangkat embedded. Skenario pengujian 

dilakukan di lingkungan Laboratorium HMI dengan kondisi pencahayaan terukur 

antara 200 hingga 300 Lux dan latar belakang kompleks. Kondisi lingkungan ini 

disetarakkan dengan kondisi pada fase pelatihan data untuk menjaga konsistensi 

variabel eksternal. 

Perangkat akuisisi citra yang digunakan pada tahap ini adalah PiCamera v1 

yang terintegrasi dengan modul Raspberry Pi. Subjek ditempatkan pada jarak 50 

hingga 80 cm di depan kamera, dengan resolusi input yang disesuaikan untuk 

pemrosesan model. Penggunaan latar belakang yang tidak polos dan pencahayaan 

ruang kerja yang natural dalam pengujian ini bertujuan untuk membuktikan ketahanan 

sistem dalam mengenali gestur pada kondisi operasional yang sesungguhnya, di mana 

noise visual dari lingkungan sekitar tidak dihilangkan. 

Prosedur pengujian dilakukan dengan langkah-langkah sebagai berikut: 

1. Lingkungan Pengujian: Pengujian dilakukan di dalam ruangan dengan 

pencahayaan lampu standar (sekitar 200-300 lux) untuk menyimulasikan 

kondisi penggunaan sehari-hari. Jarak antara pengguna dan kamera diatur 

pada kisaran 50–80 cm agar frame kamera dapat menangkap gestur tangan 

secara utuh. 

2. Tugas Partisipan: Dalam setiap pengujian, partisipan diinstruksikan untuk 

memperagakan gestur secara tanpa adanya interupsi atau pergantian sesi. 

Alur tugas dimulai dengan memperagakan gestur statis (Huruf A-Z, Angka 

0-10 dan Kata Statis), kemudian langsung dilanjutkan dengan 

memperagakan gestur dinamis untuk melihat transisi dan responsivitas 

sistem. 
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3. Metode Pengambilan Data: Untuk membandingkan performa arsitektur 

model, pengujian dibagi menjadi dua sesi eksperimen utama: 

• Sesi 1: Hybrid (Random Forest + LSTM TFLite). 

• Sesi 2: Hybrid (Random Forest + Transformer TFLite). 

4.5.2. Hasil Pengujian Akurasi Real-Time 

Pengujian sistem secara real-time dilakukan dengan melibatkan satu partisipan 

Tunarungu dan dua partisipan non-difabel untuk memvalidasi kinerja sistem dalam 

kondisi penggunaan yang sebenarnya. Pengujian ini bertujuan untuk mengukur tingkat 

akurasi sistem dalam mengenali gestur statis dan dinamis, tidak hanya pada gerakan 

yang natural dari penutur asli, tetapi juga pada pola gerakan yang diperagakan oleh 

penutur non-asli. Pengujian dibagi menjadi dua skenario utama, yaitu Skenario A yang 

menggunakan kombinasi Random Forest dan LSTM, serta Skenario B yang 

menggabungkan Random Forest dengan Transformer. 

Pada Skenario A, sistem yang diuji dengan model Hybrid (Random Forest + 

LSTM) berhasil mencapai tingkat akurasi keseluruhan sebesar 88%, sebagaimana 

dirincikan pada Tabel 4.7. Secara spesifik, model Random Forest menunjukkan kinerja 

yang sangat andal dalam mendeteksi gestur statis (Huruf, Angka dan Kata Statis) 

dengan akurasi rata-rata mencapai 90%. Sementara itu, model LSTM yang bertugas 

menangani gestur dinamis mencatatkan akurasi sebesar 86%. Selisih akurasi ini 

mengindikasikan bahwa tantangan dalam pengenalan gestur dinamis relatif lebih tinggi 

dibandingkan gestur statis, terutama dalam hal menangkap variabilitas pola pergerakan 

tangan secara temporal. 

 

Tabel 4.7 Hasil Pengujian Real-Time RF+LSTM 

Rata – Rata 

Random Forest LSTM 

90% 86% 

*Data lengkap berada di Lampiran A.1 
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Beralih ke Skenario B, di mana model LSTM digantikan oleh Transformer, 

hasil pengujian yang disajikan pada Tabel 4.8 menunjukkan adanya peningkatan 

performa secara umum dengan capaian akurasi total sebesar 93%. Pada sesi ini, deteksi 

gestur statis mencatatkan akurasi yang lebih tinggi yaitu 91%, yang kembali 

menegaskan konsistensi algoritma Random Forest dalam mengenali bentuk tangan 

statis. Untuk pengenalan gestur dinamis, model Transformer memperoleh akurasi rata-

rata sebesar 93%, mencatatkan peningkatan performa yang signifikan dibandingkan 

model LSTM pada skenario sebelumnya yang hanya mencapai 86%. 

 

Tabel 4.8 Hasil Pengujian Real-Time RF+Transformer 

Rata – Rata 

Random Forest Transformer 

91% 93% 

*Data lengkap berada di Lampiran A.2 

 

Berdasarkan analisis komparatif antara kedua skenario, terlihat bahwa Skenario 

B (RF + Transformer) memberikan hasil keseluruhan yang lebih unggul dibandingkan 

Skenario A. Analisis mendalam pada tingkat gestur dinamis mengungkapkan disparitas 

performa yang cukup signifikan, di mana model Transformer mencatatkan rata-rata 

akurasi sebesar 93%, mengungguli model LSTM yang berada di angka 86%. Meskipun 

demikian, model LSTM menunjukkan dominasi performa yang spesifik pada gestur-

gestur dengan pola gerakan linier atau repetitif yang tegas, seperti gestur "MINUM", 

"NAIK" dan "TULIS”. Pada gestur-gestur ini, LSTM berhasil mempertahankan 

stabilitas tinggi dengan akurasi sempurna (100%), sementara Transformer mengalami 

penurunan performa. 

Sebaliknya, keunggulan utama Transformer terletak pada kemampuannya 

menangani gestur yang memiliki kompleksitas tinggi atau ambiguitas bentuk tangan 

antar-frame. Hal ini terbukti dari lonjakan akurasi yang drastis pada gestur "SEMUA", 

"DUDUK", "UTARA", dan "MEMBUKA". Pada gestur-gestur ini, Transformer 

mampu mencapai akurasi 100%, jauh meninggalkan LSTM yang hanya berkisar di 
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angka 33-47%, menciptakan selisih performa hingga lebih dari 60%. Temuan ini 

mengonfirmasi bahwa mekanisme Self-Attention pada Transformer sangat efektif 

dalam membedakan konteks gerakan dengan transisi halus yang sering luput dari 

arsitektur rekuren LSTM. Di sisi lain, keandalan sistem dalam mengenali gestur statis 

terbukti sangat konsisten pada kedua skenario, di mana mayoritas gestur abjad (seperti 

B, C, D, hingga W) dapat dikenali dengan akurasi 100%, memvalidasi peran Random 

Forest sebagai komponen hybrid yang efisien untuk menangani isyarat non-temporal. 

Berdasarkan hasil evaluasi komparatif, teridentifikasi empat kelas gestur yang 

secara konsisten memiliki performa rendah baik pada skenario model LSTM maupun 

Transformer, yaitu gestur 'Z', 'MENDENGAR', 'ANTARA', dan 'BERKATA'. 

Persistensi kesalahan pada kedua arsitektur model mengindikasikan bahwa tantangan 

utama bukan terletak pada kemampuan model mempelajari urutan, melainkan pada 

ambiguitas fitur intrinsik dan kualitas representasi data pada kelas-kelas tersebut. 

Berikut adalah analisis mendalam untuk masing-masing kasus. 

Gestur 'Z' (Statis) Gestur ini mencatatkan akurasi terendah (hampir 0%) di 

kedua skenario. Analisis menunjukkan bahwa kesalahan fatal ini disebabkan oleh 

keterbatasan variasi pada dataset latih statis. Minimnya sampel yang 

merepresentasikan variasi sudut pandang dan orientasi jari saat membentuk huruf 'Z' 

menyebabkan model gagal mengenali pola tersebut saat diuji secara real-time dengan 

pose yang sedikit berbeda dari data latih (overfitting pada pose statis tertentu). 

Gestur 'MENDENGAR' (Statis) vs. 'KANAN' Kesalahan klasifikasi pada 

gestur 'MENDENGAR' didominasi oleh prediksi yang tertukar dengan gestur 

'KANAN'. Berdasarkan observasi karakteristik gestur, gestur 'MENDENGAR' 

dilakukan dengan tangan terbuka di sebelah telinga, sedangkan gestur 'KANAN' 

dilakukan dengan tangan menggenggam di posisi yang sama. Meskipun konfigurasi 

jari kedua gestur ini berbeda secara signifikan, tingginya tingkat kesalahan 

menunjukkan bahwa model lebih dominan mempelajari fitur spasial/posisi 

dibandingkan fitur bentuk tangan. Posisi tangan yang identik yakni berada di area 

lateral kepala dekat telinga menyebabkan koordinat keypoints pergelangan tangan dan 

telapak tangan berada pada vektor lokasi yang sangat berdekatan. Dalam kondisi 
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pengujian real-time, model tampaknya kesulitan memprioritaskan fitur "kondisi jari" 

di atas fitur "lokasi tangan", sehingga sering mengabaikan perbedaan bentuk 

genggaman dan salah mengklasifikasikan gestur hanya berdasarkan kedekatan 

posisinya di area telinga. 

Gestur 'ANTARA' (Dinamis) vs. 'BELAJAR' Pada kategori gestur dinamis, 

gestur 'ANTARA' sering mengalami misklasifikasi sebagai gestur 'BELAJAR'. 

Analisis visual terhadap data uji menunjukkan adanya tumpang tindih pada pola 

lintasan gerak. Kedua gestur ini melibatkan pergerakan kedua tangan di area depan 

dada dengan tempo gerakan yang hampir serupa. Kemiripan pola kinematik ini 

membuat fitur temporal yang diekstraksi baik oleh gate LSTM maupun attention 

Transformer menjadi kurang terlihat perbedaannya, sehingga model kesulitan 

menentukan batas pembeda yang tegas di antara keduanya. 

Gestur 'BERKATA' (Dinamis) vs. 'AMBIL' Serupa dengan kasus sebelumnya, 

gestur 'BERKATA' mengalami kebingungan prediksi yang signifikan terhadap gestur 

'AMBIL'. Kesalahan ini diakibatkan oleh kemiripan transisi gerakan awal dan akhir. 

Kedua gestur melibatkan pergerakan tangan yang bermula dari area tubuh bagian atas 

menuju ke arah luar atau sebaliknya. Dalam kondisi pengambilan data real-time yang 

bervariasi, nuansa perbedaan pada orientasi telapak tangan seringkali tersamarkan, 

menyebabkan model menangkap fitur gerak global yang identik antara 'BERKATA' 

(gerakan seperti mulut keluar) dan 'AMBIL' (gerakan meraih), yang berujung pada 

kesalahan klasifikasi. 

4.5.3. Analisis Statistik Signifikansi Performa (Uji Wilcoxon) 

Meskipun data deskriptif pada subbab sebelumnya menunjukkan bahwa rata-

rata akurasi model Hybrid RF + Transformer (93%) lebih tinggi dibandingkan RF + 

LSTM (86%), pembuktian secara statistik diperlukan untuk memastikan bahwa 

perbedaan tersebut bersifat signifikan dan bukan terjadi karena kebetulan semata. Oleh 

karena itu, dilakukan uji beda dua sampel berpasangan (paired sample test) terhadap 

hasil akurasi dari 95 gestur dinamis. 

Mengingat data akurasi tidak terdistribusi secara normal, metode statistik non-

parametrik Wilcoxon Signed-Rank Test dipilih sebagai instrumen pengujian. Pengujian 
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ini dilakukan dengan taraf signifikansi sebesar 0,05 atau 5%. Hipotesis yang diajukan 

dalam pengujian ini adalah sebagai berikut: 

• Hipotesis Nol ( 𝐻0 ): Tidak terdapat perbedaan yang signifikan antara 

performa akurasi model RF + LSTM dan RF + Transformer. 

• Hipotesis Alternatif ( 𝐻1 ): Terdapat perbedaan yang signifikan antara 

performa akurasi model RF + LSTM dan RF + Transformer. 

Hasil perhitungan statistik menggunakan perangkat lunak SPSS disajikan pada 

Gambar 4.25 dan Gambar 4.26 berikut ini. 

 

 

Gambar 4.25 Peringkat Tanda (Ranks) Uji Wilcoxon 

 

 

Gambar 4.26 Hasil Statistik Uji Wilcoxon 
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Berdasarkan Gambar 4.26, hasil uji statistik menunjukkan nilai Asymp. Sig. (2-

tailed) sebesar 0,001. Nilai ini jauh lebih kecil dari taraf signifikansi yang ditetapkan 

(0.001 < 0.05). Dengan demikian, 𝐻0 ditolak dan 𝐻1 diterima. Hal ini membuktikan 

secara statistik bahwa penggantian arsitektur dari LSTM ke Transformer memberikan 

dampak peningkatan akurasi yang nyata dan signifikan pada sistem klasifikasi 

BISINDO real-time. 

Analisis lebih lanjut pada Gambar 4.20 (Ranks) memperlihatkan dominasi 

performa model Transformer. Data Positive Ranks (jumlah gestur di mana Transformer 

unggul atas LSTM) tercatat jauh lebih banyak dibandingkan Negative Ranks (jumlah 

gestur di mana LSTM unggul). Hal ini mengindikasikan bahwa perbaikan performa 

terjadi secara merata pada mayoritas gestur dinamis yang diujikan. 

Secara statistik, model RF + Transformer terbukti lebih robust dan andal untuk 

diimplementasikan pada perangkat Raspberry Pi. Kesimpulannya, model Hybrid 

Random Forest + Transformer adalah arsitektur yang paling direkomendasikan untuk 

sistem penerjemah bahasa isyarat ini. 

4.6. Evaluasi Kinerja Komputasi pada Raspberry Pi 5 

Evaluasi kinerja komputasi dilakukan untuk memvalidasi efisiensi model Deep 

Learning (LSTM dan Transformer) saat dijalankan pada perangkat edge Raspberry Pi 

5. Pengujian ini difokuskan pada pengukuran kecepatan inferensi murni (inference 

benchmark) untuk mengetahui batas maksimal kemampuan model dalam memproses 

data tanpa dipengaruhi oleh latensi kamera atau antarmuka grafis. Berdasarkan 

pengujian intensif yang dilakukan sebanyak 5 kali iterasi berturut-turut untuk setiap 

model, diperoleh data performa yang sangat impresif sebagaimana dirangkum dalam 

analisis berikut. 

Sebelum membahas hasil performa waktu nyata, pengujian kecepatan inferensi  

dilakukan terlebih dahulu untuk mengukur efisiensi komputasi model saat 

diimplementasikan ke dalam format TensorFlow Lite. Metode pengukuran dilakukan 

dengan menjalankan proses prediksi model pada serangkaian sampel data gestur secara 

berulang pada perangkat uji, tanpa menyertakan waktu yang dibutuhkan untuk pre-

processing data. Total waktu eksekusi yang tercatat kemudian dibagi dengan jumlah 
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sampel untuk mendapatkan rata-rata waktu latensi per prediksi dalam satuan milidetik 

(ms). Selain itu, metrik Frames Per Second (FPS) juga dihitung untuk mengetahui 

berapa banyak gestur yang dapat diproses sistem dalam satu detik, di mana nilai FPS 

berbanding terbalik dengan latensi. 

Hasil pengujian kuantitatif menunjukkan bahwa model LSTM mencatatkan 

efisiensi komputasi tertinggi dengan kecepatan pemrosesan mencapai 2.123 FPS. Jika 

dikonversikan ke dalam satuan waktu respons, angka ini setara dengan latensi ultra-

rendah sebesar 0,47 milidetik per prediksi, yang diperoleh melalui perhitungan 

matematis 𝐿𝑎𝑡𝑒𝑛𝑠𝑖 =  
1000𝑚𝑠

2.123 𝐹𝑃𝑆
 = 0,47 𝑚𝑠 . Sementara itu, Model Transformer, 

meskipun memiliki arsitektur yang lebih kompleks, tetap menunjukkan kinerja yang 

luar biasa dengan rata-rata kecepatan inferensi 1.757 FPS. Berdasarkan rumus konversi 

yang sama 𝐿𝑎𝑡𝑒𝑛𝑠𝑖 =  
1000𝑚𝑠

1.757 𝐹𝑃𝑆
 = 0,57 𝑚𝑠, model ini menghasilkan latensi sebesar 

0,57 milidetik. Selisih waktu inferensi sekitar 0,1 milidetik antara kedua model ini 

tergolong sangat tidak signifikan dalam konteks penggunaan nyata, mengingat standar 

waktu respons manusia berada di kisaran ratusan milidetik. Hal ini mengindikasikan 

bahwa kedua model telah teroptimasi dengan sangat baik melalui kuantisasi 

TensorFlow Lite, sehingga proses klasifikasi gestur dinamis hampir tidak memberikan 

beban latensi tambahan pada sistem utama.. 

Dari aspek penggunaan sumber daya, Raspberry Pi 5 terbukti sangat mumpuni 

dalam menangani beban komputasi kedua model tersebut. Selama pengujian 

berlangsung, rata-rata penggunaan CPU untuk model LSTM tercatat stabil di angka 

23,93%, sedangkan model Transformer sedikit lebih tinggi di angka 26,10%. Stabilitas 

termal perangkat juga terjaga dengan baik, di mana suhu rata-rata operasional terpantau 

berada di kisaran 48°C hingga 49°C, jauh di bawah batas thermal throttling (80°C). 

Rendahnya konsumsi sumber daya dan suhu operasional ini menjamin bahwa sistem 

dapat dijalankan dalam durasi panjang tanpa risiko penurunan performa (overheating), 

menjadikan solusi ini sangat layak untuk diimplementasikan sebagai perangkat 

penerjemah bahasa isyarat portabel yang andal. 
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Bab V  

Simpulan dan Saran 

 

5.1. Kesimpulan 

Penelitian ini berhasil merancang dan mengimplementasikan sistem klasifikasi 

bahasa isyarat BISINDO hibrida secara real-time pada perangkat edge Raspberry Pi 5 

dengan efisiensi komputasi yang optimal. Melalui pemanfaatan format TensorFlow 

Lite, sistem mampu memproses inferensi dengan latensi sangat rendah, berkisar antara 

0,47 ms hingga 0,57 ms, sehingga memenuhi standar responsivitas yang dibutuhkan 

untuk komunikasi langsung. Hasil pengujian komparatif pada 95 gestur dinamis 

menunjukkan bahwa arsitektur Hybrid Random Forest + Transformer (Skenario B) 

memiliki performa yang lebih superior dengan akurasi rata-rata mencapai 93%, 

mengungguli arsitektur Hybrid Random Forest + LSTM (Skenario A) yang 

mencatatkan akurasi 86%. Keunggulan ini telah divalidasi secara statistik melalui uji 

Wilcoxon Signed-Rank Test dengan hasil yang signifikan (𝑝 < 0.05) membuktikan 

bahwa mekanisme Self-Attention pada Transformer jauh lebih efektif dalam menangani 

gestur kompleks dan ambigu seperti "BUKA (MATA)" dan "UTARA" dibandingkan 

arsitektur rekuren. Selain itu, sistem menunjukkan tingkat robustitas yang baik saat 

diuji oleh tiga partisipan yang terdiri dari satu penutur asli Tuli dan dua penutur dengar, 

serta mampu mempertahankan konsistensi akurasi sempurna (100%) pada klasifikasi 

gestur statis berkat keandalan komponen Random Forest. 

Meskipun sistem menunjukkan performa komputasi dan akurasi yang optimal, 

evaluasi lapangan dengan partisipan tunarungu menyingkap adanya tantangan teknis 

pada sisi akuisisi data visual. Ditemukan adanya kesenjangan antara kecepatan alami 

gerak isyarat penutur asli dengan kapabilitas tangkapan kamera dan algoritma deteksi 

fitur. Kecepatan dan fluiditas gerakan tangan partisipan sering kali melampaui batas 

frame rate kamera serta kecepatan pemrosesan landmark oleh MediaPipe pada 

perangkat edge, yang mengakibatkan terjadinya efek motion blur dan hilangnya 

pelacakan titik tangan. Kondisi ini menyebabkan kegagalan segmentasi gestur yang 

mengharuskan pengguna untuk mengulang gerakan dari posisi awal, mengindikasikan 
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bahwa keandalan sistem dalam kondisi nyata tidak hanya bergantung pada model 

klasifikasi, tetapi juga sangat dipengaruhi oleh spesifikasi perangkat keras akuisisi citra 

dalam menangani dinamika gerakan cepat. 

5.2. Saran 

Berdasarkan hasil penelitian dan evaluasi kinerja sistem penerjemah bahasa 

isyarat yang telah dilakukan, terdapat sejumlah rekomendasi strategis untuk 

pengembangan penelitian di masa mendatang. Saran-saran ini difokuskan pada tiga 

aspek utama: optimalisasi implementasi perangkat keras, peningkatan metodologi 

pelatihan, dan perluasan fungsionalitas sistem. 

Dari sisi implementasi perangkat keras, penelitian selanjutnya sangat 

disarankan untuk menerapkan teknik optimasi model tingkat lanjut berupa Full Integer 

Quantization (Int8) dan Model Pruning. Langkah ini bertujuan untuk mereduksi presisi 

bobot model dan memangkas redundansi arsitektur, sehingga memungkinkan sistem 

beroperasi secara efisien pada perangkat mikrokontroler hemat daya atau perangkat 

wearable. Sejalan dengan itu, penggunaan sensor kamera dengan frame rate tinggi (60 

FPS atau lebih) direkomendasikan untuk meningkatkan resolusi temporal agar gerakan 

mikro penutur asli dapat tertangkap dengan presisi. Namun, guna menjaga efisiensi 

daya pada perangkat portable, penggunaan kamera ini sebaiknya disertai dengan 

penyesuaian resolusi input, mengingat ekstraksi fitur berbasis MediaPipe tidak 

menuntut resolusi citra yang tinggi. 

Dalam aspek metodologi dan data, penelitian lanjutan sangat disarankan untuk 

memitigasi risiko bias demografis pada pembuatan dataset. Hal ini dapat dilakukan 

dengan memperluas akuisisi data yang melibatkan partisipan dari dua kelompok 

demografi utama, yaitu penutur asli dan non-penutur asli. Pelibatan penutur asli 

bertujuan untuk menangkap karakteristik gerakan yang natural, fluida, dan 

berkecepatan tinggi, sedangkan data dari non-penutur asli merepresentasikan variasi 

gerakan yang lebih terstruktur. Kombinasi kedua spektrum data ini krusial untuk 

melatih model agar memiliki kemampuan generalisasi yang tangguh dalam mengenali 

pola gestur pada berbagai tingkat kecepatan dan gaya bahasa. Selain itu, guna 

mendapatkan konfigurasi arsitektur model yang paling optimal tanpa bergantung pada 
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penyesuaian manual, disarankan untuk mengadopsi metode pencarian hyperparameter 

otomatis seperti Bayesian Optimization. Metode ini menawarkan eksplorasi ruang 

parameter yang lebih sistematis untuk menyeimbangkan akurasi dan kompleksitas 

komputasi. 

Terakhir, pengembangan fungsionalitas sistem diharapkan dapat bergerak 

menuju pengenalan kalimat kontinu (Continuous Sign Language Recognition) yang 

mampu menerjemahkan percakapan utuh secara mengalir tanpa jeda antar-kata. 

Fungsionalitas ini idealnya diintegrasikan dengan fitur komunikasi dua arah (bi-

directional communication) yang dilengkapi modul Text-to-Speech (TTS) dan Speech-

to-Text. Dengan fitur ini, sistem tidak hanya memvisualisasikan isyarat ke dalam teks, 

tetapi juga dapat menyuarakan terjemahan tersebut secara verbal, serta mengonversi 

ucapan lawan bicara kembali menjadi teks atau visual isyarat, sehingga menciptakan 

ekosistem komunikasi yang inklusif dan menyeluruh bagi penyandang disabilitas 

rungu. 

  



 

97 

 

DAFTAR PUSTAKA 

 

Abed, A.A. and Rahman, S.A., 2017. Python-based Raspberry Pi for hand gesture 

recognition. International Journal of Computer Applications, 173(4), pp.18-24. 

 

Alatas, O.H and Widodo, R.B., 2024. Klasifikasi Bahasa Isyarat BISINDO dengan 

Input Kamera pada Raspberry Pi Menggunakan Algoritma Random Forest dan 

Long Short-Term Memory. Laporan Praktik Kerja Lapangan. Malang: 

Universitas Ma Chung. 

 

Alexander, N., Widodo, R.B., & Swastika, W. Penggunaan Machine Learning Dalam 

Klasifikasi Bahasa Isyarat BISINDO Menggunakan Kamera. Prosiding 

Seminar Nasional Universitas Ma Chung(SENAM), 2023, (pp. 11-26). 

 

Ali, Z., 2024. A Comprehensive Overview and Comparative Analysis of CNN, RNN-

LSTM and Transformer. RNN-LSTM and Transformer (December 31, 2024). 

 

Aljabar, A., Suryani, D., and Prasetyo, E., 2020, ‘BISINDO Sign Language 

Recognition Using CNN and LSTM’, Proceedings of the International 

Conference on Computer Engineering, Network and Intelligent Multimedia, pp. 

1–6. 

 

Birajdar, G.S., Baz, M., Singh, R., Rashid, M., Gehlot, A., Akram, S.V., Alshamrani, 

S.S. and AlGhamdi, A.S., 2021. Realization of people density and smoke flow 

in buildings during fire accidents using raspberry and openCV. Sustainability, 

13(19), p.11082. 

 

Camgoz, N.C., Koller, O., Hadfield, S. and Bowden, R., 2020. Sign language 

transformers: Joint end-to-end sign language recognition and translation. In 

Proceedings of the IEEE/CVF conference on computer vision and pattern 

recognition (pp. 10023-10033). 

 

Chaudhary, L., Ananthanarayana, T., Hoq, E. and Nwogu, I., 2022. Signnet ii: A 

transformer-based two-way sign language translation model. IEEE 



 

98 

 

Transactions on Pattern Analysis and Machine Intelligence, 45(11), pp.12896-

12907. 

 

Chen, Z., Lei, X., Yuan, Q., Qi, Y., Ma, Z., Qian, S. and Lyu, X., 2024. Key 

technologies for autonomous fruit-and vegetable-picking robots: A review. 

Agronomy, 14(10), p.2233. 

 

Coffen, B. and Mahmud, M.S., 2021, March. Tinydl: Edge computing and deep 

learning based real-time hand gesture recognition using wearable sensor. In 

2020 IEEE international conference on e-health networking, application & 

services (HEALTHCOM) (pp. 1-6). IEEE. 

 

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N., Nappier, 

I., Natraj, M., Wang, T. and Warden, P., 2021. Tensorflow lite micro: 

Embedded machine learning for tinyml systems. Proceedings of machine 

learning and systems, 3, pp.800-811. 

 

Fadlilah, N., Suryani, D., and Prasetyo, E., 2022, ‘Modelling of Basic Indonesian Sign 

Language Translator Based on Raspberry Pi Technology’, Journal of Physics: 

Conference Series, 1(1), pp. 1–6. 

 

Hoque, O.B., Jubair, M.I., Islam, M.S., Akash, A.F. and Paulson, A.S., 2018, 

December. Real time bangladeshi sign language detection using faster r-cnn. In 

2018 international conference on innovation in engineering and technology 

(ICIET) (pp. 1-6). IEEE. 

 

Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin, 

N.E.Y., Yamamoto, R., Wang, X. and Watanabe, S., 2019, December. A 

comparative study on transformer vs rnn in speech applications. In 2019 IEEE 

automatic speech recognition and understanding workshop (ASRU) (pp. 449-

456). IEEE. 

 

Konaite, M., Owolawi, P.A., Mapayi, T., Malele, V., Odeyemi, K., Aiyetoro, G. and 

Ojo, J.S., 2021, December. Smart hat for the blind with real-time object 



 

99 

 

detection using raspberry pi and tensorflow lite. In Proceedings of the 

International Conference on Artificial Intelligence and its Applications (pp. 1-

6). 

 

Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-González, A.B. and Corchado, 

J.M., 2022. Deepsign: Sign language detection and recognition using deep 

learning. Electronics, 11(11), p.1780. 

 

Pomaska, G., 2019. Stereo vision applying opencv and raspberry pi. The International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 42, pp.265-269. 

 

Raspberry Pi Foundation (2013–2023) Camera Module Documentation. Available at: 

https://www.raspberrypi.com/documentation/accessories/camera.html 

(Accessed: 14 September 2025). 

 

Raspberry Pi Ltd (2023) Raspberry Pi 5. Available at: 

https://www.raspberrypi.com/products/raspberry-pi-5/ (Accessed: 3 December 

2025). 

 

Shin, J., Musa Miah, A.S., Hasan, M.A.M., Hirooka, K., Suzuki, K., Lee, H.S. and Jang, 

S.W., 2023. Korean sign language recognition using transformer-based deep 

neural network. Applied Sciences, 13(5), p.3029. 

 

Shiri, F.M., Perumal, T., Mustapha, N. and Mohamed, R., 2023. A comprehensive 

overview and comparative analysis on deep learning models: CNN, RNN, 

LSTM, GRU. arXiv preprint arXiv:2305.17473. 

 

Symon, A.F., Hassan, N., Rashid, H., Ahmed, I.U. and Reza, S.T., 2017, September. 

Design and development of a smart baby monitoring system based on 

Raspberry Pi and Pi camera. In 2017 4th International Conference on Advances 

in Electrical Engineering (ICAEE) (pp. 117-122). IEEE. 

https://www.raspberrypi.com/documentation/accessories/camera.html


 

100 

 

 

Toyib, R., Affandi Mussa, A. P., Wijaya, A. and Sonita, A. (2025) “Indonesian Sign 

System Introduction Application with Tensorflow Lite and Firebase 

Authentication”, Jurnal Teknik Informatika dan Sistem Informasi. Jakarta, 

Indonesia, 11(1), pp. 31–48. 

 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. 

and Polosukhin, I., 2017. Attention is all you need. Advances in neural 

information processing systems, 30. 

 

Wungow, K.C., Widodo, R.B. and Subianto, M., 2022, September. Studi Klasifikasi 

dengan KNN dan ANN pada Sarung Tangan Penerjemah Angka dan Alfabet 

Bahasa Isyarat SIBI. In Prosiding Seminar Nasional Universitas Ma Chung 

(Informatika & Sistem Informasi; Bahasa dan Seni; Farmasi) (Vol. 2, pp. 60-

74). 

 

Xu, M., Yoon, S., Fuentes, A. and Park, D.S., 2023. A comprehensive survey of image 

augmentation techniques for deep learning. Pattern Recognition, 137, p.109347. 

 

Zhu, J., 2023. Comparative study of sequence-to-sequence models: From RNNs to 

transformers. Appl Comput Eng, 42(67), pp.2755-2721. 

 

  



 

101 

 

Lampiran 

Lampiran A. Hasil Evaluasi Real-Time 

Lampiran A.1 Hasil Evaluasi Real-Time RF+LSTM 

 

GESTURE SUBJECT AVERAGE (%) 
ACCURACY 

(%) 
 

0 

1 100% 

100% 

 

2 100%  

3 100%  

1 

1 100% 

100% 

 

2 100%  

3 100%  

2 

1 100% 

100% 

 

2 100%  

3 100%  

3 

1 100% 

100% 

 

2 100%  

3 100%  

4 

1 100% 

100% 

 

2 100%  

3 100%  

5 

1 60% 

87% 

 

2 100%  

3 100%  

6 

1 100% 

100% 

 

2 100%  

3 100%  

7 

1 100% 

100% 

 

2 100%  

3 100%  

8 

1 40% 

47% 

 

2 0%  

3 100%  

9 

1 0% 

67% 

 

2 100%  

3 100%  



 

102 

 

10 

1 100% 

100% 

 

2 100%  

3 100%  

A 

1 40% 

80% 

 

2 100%  

3 100%  

B 

1 100% 

100% 

 

2 100%  

3 100%  

C 

1 100% 

100% 

 

2 100%  

3 100%  

D 

1 100% 

100% 

 

2 100%  

3 100%  

E 

1 100% 

100% 

 

2 100%  

3 100%  

F 

1 100% 

100% 

 

2 100%  

3 100%  

G 

1 100% 

100% 

 

2 100%  

3 100%  

H 

1 100% 

100% 

 

2 100%  

3 100%  

I 

1 100% 

100% 

 

2 100%  

3 100%  

J 

1 100% 

87% 

 

2 60%  

3 100%  

K 

1 100% 

100% 

 

2 100%  

3 100%  

L 
1 100% 

33% 
 

2 0%  
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3 0%  

M 

1 100% 

100% 

 

2 100%  

3 100%  

N 

1 100% 

100% 

 

2 100%  

3 100%  

O 

1 100% 

100% 

 

2 100%  

3 100%  

P 

1 100% 

73% 

 

2 100%  

3 20%  

Q 

1 100% 

100% 

 

2 100%  

3 100%  

R 

1 100% 

100% 

 

2 100%  

3 100%  

S 

1 100% 

100% 

 

2 100%  

3 100%  

T 

1 100% 

100% 

 

2 100%  

3 100%  

U 

1 100% 

100% 

 

2 100%  

3 100%  

V 

1 100% 

100% 

 

2 100%  

3 100%  

W 

1 100% 

100% 

 

2 100%  

3 100%  

X 

1 100% 

100% 

 

2 100%  

3 100%  

Y 1 100% 100%  



 

104 

 

2 100%  

3 100%  

Z 

1 20% 

7% 

 

2 0%  

3 0%  

AIR 

1 100% 

100% 

 

2 100%  

3 100%  

ANDA KAMU 

1 100% 

100% 

 

2 100%  

3 100%  

ATAS 

1 100% 

100% 

 

2 100%  

3 100%  

ATAU 

1 100% 

100% 

 

2 100%  

3 100%  

BAWAH 

1 80% 

93% 

 

2 100%  

3 100%  

BELAJAR 

1 100% 

100% 

 

2 100%  

3 100%  

BISA 

1 100% 

100% 

 

2 100%  

3 100%  

DARI 

1 100% 

100% 

 

2 100%  

3 100%  

DIA 

1 100% 

33% 

 

2 0%  

3 0%  

HANYA 

1 80% 

93% 

 

2 100%  

3 100%  

INI 

1 100% 

100% 

 

2 100%  

3 100%  
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ITU MENUNJUK 

1 100% 

100% 

 

2 100%  

3 100%  

JADI 

1 100% 

100% 

 

2 100%  

3 100%  

JIKA KALAU 

1 100% 

100% 

 

2 100%  

3 100%  

KERJA  

1 100% 

100% 

 

2 100%  

3 100%  

LUAR 

1 100% 

100% 

 

2 100%  

3 100%  

MAKAN 

1 100% 

100% 

 

2 100%  

3 100%  

MINUM 

1 100% 

100% 

 

2 100%  

3 100%  

NAIK 

1 100% 

100% 

 

2 100%  

3 100%  

PERGI 

1 100% 

100% 

 

2 100%  

3 100%  

ROTI 

1 100% 

100% 

 

2 100%  

3 100%  

SAYA 

1 100% 

100% 

 

2 100%  

3 100%  

SEPERTI 

1 100% 

100% 

 

2 100%  

3 100%  

SIAPA 
1 100% 

100% 
 

2 100%  
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3 100%  

TAHUN 

1 100% 

100% 

 

2 100%  

3 100%  

TAPI 

1 100% 

100% 

 

2 100%  

3 100%  

UNTUK 

1 100% 

100% 

 

2 100%  

3 100%  

AKAN 

1 100% 

100% 

 

2 100%  

3 100%  

AMBIL 

1 0% 

40% 

 

2 60%  

3 60%  

APA 

1 60% 

80% 

 

2 80%  

3 100%  

BERKATA 

1 100% 

53% 

 

2 60%  

3 0%  

DALAM 

1 100% 

100% 

 

2 100%  

3 100%  

DAN 

1 40% 

80% 

 

2 100%  

3 100%  

KITA 

1 100% 

100% 

 

2 100%  

3 100%  

MEREKA 

1 100% 

87% 

 

2 60%  

3 100%  

MILIK PUNYA 

1 100% 

100% 

 

2 100%  

3 100%  

ORANG 1 100% 100%  
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2 100%  

3 100%  

SEMUA 

1 20% 

33% 

 

2 60%  

3 20%  

TAHU PAHAM  

1 100% 

100% 

 

2 100%  

3 100%  

TURUN 

1 60% 

73% 

 

2 100%  

3 60%  

PULANG 

1 100% 

100% 

 

2 100%  

3 100%  

NASI 

1 100% 

100% 

 

2 100%  

3 100%  

TIDUR 

1 100% 

53% 

 

2 60%  

3 0%  

BANGUN 

1 100% 

100% 

 

2 100%  

3 100%  

LIHAT 

1 100% 

100% 

 

2 100%  

3 100%  

DENGAR 

1 60% 

87% 

 

2 100%  

3 100%  

BICARA 

1 100% 

100% 

 

2 100%  

3 100%  

TULIS 

1 100% 

100% 

 

2 100%  

3 100%  

BACA 

1 100% 

100% 

 

2 100%  

3 100%  
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JALAN 

1 100% 

87% 

 

2 100%  

3 60%  

LARI 

1 100% 

100% 

 

2 100%  

3 100%  

MEMBELI 

1 100% 

100% 

 

2 100%  

3 100%  

MENJUAL 

1 60% 

87% 

 

2 100%  

3 100%  

MEMBUKA 

1 80% 

33% 

 

2 0%  

3 20%  

MENUTUP 

1 100% 

100% 

 

2 100%  

3 100%  

MEMBERI 

1 100% 

47% 

 

2 40%  

3 0%  

MENERIMA 

1 60% 

87% 

 

2 100%  

3 100%  

MENOLONG 

1 80% 

67% 

 

2 100%  

3 20%  

MENUNGGU 

1 80% 

93% 

 

2 100%  

3 100%  

MEMINTA 

1 80% 

80% 

 

2 100%  

3 60%  

MENONTON 

1 60% 

87% 

 

2 100%  

3 100%  

DUDUK 
1 40% 

47% 
 

2 100%  
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3 0%  

BERDIRI 

1 80% 

87% 

 

2 100%  

3 80%  

DATANG 

1 100% 

93% 

 

2 100%  

3 80%  

MASUK 

1 100% 

93% 

 

2 100%  

3 80%  

KELUAR 

1 100% 

93% 

 

2 100%  

3 80%  

PAKAI 

1 100% 

87% 

 

2 100%  

3 60%  

BUKA (MATA) 

1 0% 

13% 

 

2 40%  

3 0%  

TUTUP (MATA) 

1 40% 

80% 

 

2 100%  

3 100%  

MENANGIS 

1 100% 

80% 

 

2 100%  

3 40%  

TERTAWA 

1 100% 

67% 

 

2 100%  

3 0%  

MENJAWAB 

1 60% 

87% 

 

2 100%  

3 100%  

MENANYAKAN 

1 100% 

100% 

 

2 100%  

3 100%  

MENDENGAR 

1 60% 

20% 

 

2 0%  

3 0%  

1 100% 100%  
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MEMBACA AL-

QURAN 

2 100%  

3 100%  

MENONTON TV 

1 100% 

100% 

 

2 100%  

3 100%  

MENYAPU 

1 60% 

87% 

 

2 100%  

3 100%  

MENCUCI (BAJU) 

1 100% 

100% 

 

2 100%  

3 100%  

MEMASAK 

1 100% 

100% 

 

2 100%  

3 100%  

MENGIRIM 

1 60% 

67% 

 

2 80%  

3 60%  

NAMA 

1 100% 

100% 

 

2 100%  

3 100%  

MENERIMA PESAN 

1 40% 

60% 

 

2 100%  

3 40%  

MENIKAH 

1 100% 

60% 

 

2 0%  

3 80%  

BERCERITA 

1 100% 

100% 

 

2 100%  

3 100%  

BERDOA 

1 100% 

100% 

 

2 100%  

3 100%  

MINTA MAAF  

1 100% 

60% 

 

2 60%  

3 20%  

MENYANYI 

1 60% 

87% 

 

2 100%  

3 100%  



 

111 

 

BERMAIN 

1 100% 

100% 

 

2 100%  

3 100%  

DEPAN 

1 100% 

100% 

 

2 100%  

3 100%  

BELAKANG 

1 100% 

80% 

 

2 40%  

3 100%  

SAMPING 

1 100% 

100% 

 

2 100%  

3 100%  

ANTARA 

1 0% 

40% 

 

2 20%  

3 100%  

DEKAT 

1 100% 

100% 

 

2 100%  

3 100%  

JAUH 

1 100% 

100% 

 

2 100%  

3 100%  

DI SINI 

1 40% 

80% 

 

2 100%  

3 100%  

DI SANA 

1 100% 

87% 

 

2 100%  

3 60%  

SEBELUM 

1 100% 

100% 

 

2 100%  

3 100%  

SESUDAH 

1 100% 

100% 

 

2 100%  

3 100%  

TIMUR 

1 40% 

60% 

 

2 100%  

3 40%  

BARAT 
1 100% 

93% 
 

2 100%  



 

112 

 

3 80%  

SELATAN 

1 80% 

47% 

 

2 60%  

3 0%  

UTARA 

1 80% 

33% 

 

2 20%  

3 0%  

KANAN 

1 100% 

100% 

 

2 100%  

3 100%  

KIRI 

1 100% 

100% 

 

2 100%  

3 100%  

 
 AVERAGE 88%  

 
 AVERAGE RF 90%  

 

 

AVERAGE 

LSTM 
86%  

*1= Ibu Sumiati, 2=Olfat, 3=Shelly 

 

Lampiran A.2 Hasil Evaluasi Real-Time RF+Transformer 

GESTURE SUBJECT AVERAGE (%) 
ACCURACY 

(%) 
 

0 

1 100% 

100% 

 

2 100%  

3 100%  

1 

1 100% 

100% 

 

2 100%  

3 100%  

2 

1 100% 

100% 

 

2 100%  

3 100%  

3 

1 100% 

100% 

 

2 100%  

3 100%  

4 

1 100% 

100% 

 

2 100%  

3 100%  
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5 

1 100% 

100% 

 

2 100%  

3 100%  

6 

1 100% 

100% 

 

2 100%  

3 100%  

7 

1 100% 

100% 

 

2 100%  

3 100%  

8 

1 100% 

67% 

 

2 0%  

3 100%  

9 

1 100% 

100% 

 

2 100%  

3 100%  

10 

1 100% 

100% 

 

2 100%  

3 100%  

A 

1 40% 

80% 

 

2 100%  

3 100%  

B 

1 100% 

100% 

 

2 100%  

3 100%  

C 

1 100% 

100% 

 

2 100%  

3 100%  

D 

1 100% 

100% 

 

2 100%  

3 100%  

E 

1 100% 

100% 

 

2 100%  

3 100%  

F 

1 100% 

100% 

 

2 100%  

3 100%  

G 
1 100% 

100% 
 

2 100%  



 

114 

 

3 100%  

H 

1 100% 

100% 

 

2 100%  

3 100%  

I 

1 100% 

100% 

 

2 100%  

3 100%  

J 

1 100% 

100% 

 

2 100%  

3 100%  

K 

1 100% 

100% 

 

2 100%  

3 100%  

L 

1 100% 

100% 

 

2 100%  

3 100%  

M 

1 100% 

100% 

 

2 100%  

3 100%  

N 

1 100% 

100% 

 

2 100%  

3 100%  

O 

1 100% 

100% 

 

2 100%  

3 100%  

P 

1 100% 

67% 

 

2 100%  

3 0%  

Q 

1 100% 

100% 

 

2 100%  

3 100%  

R 

1 100% 

100% 

 

2 100%  

3 100%  

S 

1 100% 

100% 

 

2 100%  

3 100%  

T 1 100% 67%  
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2 100%  

3 0%  

U 

1 100% 

100% 

 

2 100%  

3 100%  

V 

1 100% 

100% 

 

2 100%  

3 100%  

W 

1 100% 

100% 

 

2 100%  

3 100%  

X 

1 100% 

33% 

 

2 0%  

3 0%  

Y 

1 100% 

100% 

 

2 100%  

3 100%  

Z 

1 0% 

0% 

 

2 0%  

3 0%  

AIR 

1 100% 

100% 

 

2 100%  

3 100%  

ANDA KAMU 

1 100% 

100% 

 

2 100%  

3 100%  

ATAS 

1 100% 

100% 

 

2 100%  

3 100%  

ATAU 

1 100% 

100% 

 

2 100%  

3 100%  

BAWAH 

1 100% 

100% 

 

2 100%  

3 100%  

BELAJAR 

1 100% 

100% 

 

2 100%  

3 100%  
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BISA 

1 100% 

100% 

 

2 100%  

3 100%  

DARI 

1 100% 

100% 

 

2 100%  

3 100%  

DIA 

1 0% 

67% 

 

2 100%  

3 100%  

HANYA 

1 60% 

87% 

 

2 100%  

3 100%  

INI 

1 100% 

100% 

 

2 100%  

3 100%  

ITU MENUNJUK 

1 100% 

100% 

 

2 100%  

3 100%  

JADI 

1 100% 

100% 

 

2 100%  

3 100%  

JIKA KALAU 

1 80% 

93% 

 

2 100%  

3 100%  

KERJA  

1 100% 

100% 

 

2 100%  

3 100%  

LUAR 

1 100% 

100% 

 

2 100%  

3 100%  

MAKAN 

1 100% 

100% 

 

2 100%  

3 100%  

MINUM 

1 0% 

67% 

 

2 100%  

3 100%  

NAIK 
1 0% 

67% 
 

2 100%  
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3 100%  

PERGI 

1 100% 

100% 

 

2 100%  

3 100%  

ROTI 

1 100% 

100% 

 

2 100%  

3 100%  

SAYA 

1 100% 

100% 

 

2 100%  

3 100%  

SEPERTI 

1 100% 

100% 

 

2 100%  

3 100%  

SIAPA 

1 100% 

100% 

 

2 100%  

3 100%  

TAHUN 

1 100% 

100% 

 

2 100%  

3 100%  

TAPI 

1 100% 

100% 

 

2 100%  

3 100%  

UNTUK 

1 100% 

100% 

 

2 100%  

3 100%  

AKAN 

1 100% 

100% 

 

2 100%  

3 100%  

AMBIL 

1 60% 

87% 

 

2 100%  

3 100%  

APA 

1 80% 

93% 

 

2 100%  

3 100%  

BERKATA 

1 100% 

53% 

 

2 60%  

3 0%  

DALAM 1 100% 100%  
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2 100%  

3 100%  

DAN 

1 100% 

100% 

 

2 100%  

3 100%  

KITA 

1 100% 

100% 

 

2 100%  

3 100%  

MEREKA 

1 100% 

100% 

 

2 100%  

3 100%  

MILIK PUNYA 

1 100% 

100% 

 

2 100%  

3 100%  

ORANG 

1 100% 

100% 

 

2 100%  

3 100%  

SEMUA 

1 100% 

100% 

 

2 100%  

3 100%  

TAHU PAHAM  

1 100% 

100% 

 

2 100%  

3 100%  

TURUN 

1 0% 

67% 

 

2 100%  

3 100%  

PULANG 

1 100% 

100% 

 

2 100%  

3 100%  

NASI 

1 100% 

100% 

 

2 100%  

3 100%  

TIDUR 

1 100% 

80% 

 

2 100%  

3 40%  

BANGUN 

1 100% 

100% 

 

2 100%  

3 100%  
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LIHAT 

1 100% 

100% 

 

2 100%  

3 100%  

DENGAR 

1 100% 

100% 

 

2 100%  

3 100%  

BICARA 

1 100% 

100% 

 

2 100%  

3 100%  

TULIS 

1 0% 

33% 

 

2 0%  

3 100%  

BACA 

1 100% 

100% 

 

2 100%  

3 100%  

JALAN 

1 100% 

100% 

 

2 100%  

3 100%  

LARI 

1 100% 

100% 

 

2 100%  

3 100%  

MEMBELI 

1 100% 

100% 

 

2 100%  

3 100%  

MENJUAL 

1 100% 

100% 

 

2 100%  

3 100%  

MEMBUKA 

1 100% 

100% 

 

2 100%  

3 100%  

MENUTUP 

1 100% 

80% 

 

2 100%  

3 40%  

MEMBERI 

1 100% 

100% 

 

2 100%  

3 100%  

MENERIMA 
1 100% 

100% 
 

2 100%  
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3 100%  

MENOLONG 

1 100% 

100% 

 

2 100%  

3 100%  

MENUNGGU 

1 100% 

100% 

 

2 100%  

3 100%  

MEMINTA 

1 40% 

40% 

 

2 60%  

3 20%  

MENONTON 

1 60% 

87% 

 

2 100%  

3 100%  

DUDUK 

1 100% 

100% 

 

2 100%  

3 100%  

BERDIRI 

1 100% 

93% 

 

2 100%  

3 80%  

DATANG 

1 0% 

67% 

 

2 100%  

3 100%  

MASUK 

1 40% 

80% 

 

2 100%  

3 100%  

KELUAR 

1 100% 

100% 

 

2 100%  

3 100%  

PAKAI 

1 100% 

100% 

 

2 100%  

3 100%  

BUKA (MATA) 

1 60% 

87% 

 

2 100%  

3 100%  

TUTUP (MATA) 

1 40% 

80% 

 

2 100%  

3 100%  

MENANGIS 1 80% 80%  
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2 100%  

3 60%  

TERTAWA 

1 60% 

87% 

 

2 100%  

3 100%  

MENJAWAB 

1 0% 

67% 

 

2 100%  

3 100%  

MENANYAKAN 

1 100% 

100% 

 

2 100%  

3 100%  

MENDENGAR 

1 0% 

7% 

 

2 20%  

3 0%  

MEMBACA AL-

QURAN 

1 100% 

100% 

 

2 100%  

3 100%  

MENONTON TV 

1 100% 

100% 

 

2 100%  

3 100%  

MENYAPU 

1 100% 

100% 

 

2 100%  

3 100%  

MENCUCI (BAJU) 

1 100% 

100% 

 

2 100%  

3 100%  

MEMASAK 

1 100% 

100% 

 

2 100%  

3 100%  

MENGIRIM 

1 100% 

100% 

 

2 100%  

3 100%  

NAMA 

1 100% 

100% 

 

2 100%  

3 100%  

MENERIMA PESAN 

1 80% 

93% 

 

2 100%  

3 100%  
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MENIKAH 

1 80% 

93% 

 

2 100%  

3 100%  

BERCERITA 

1 100% 

100% 

 

2 100%  

3 100%  

BERDOA 

1 100% 

100% 

 

2 100%  

3 100%  

MINTA MAAF  

1 60% 

87% 

 

2 100%  

3 100%  

MENYANYI 

1 100% 

100% 

 

2 100%  

3 100%  

BERMAIN 

1 100% 

100% 

 

2 100%  

3 100%  

DEPAN 

1 100% 

100% 

 

2 100%  

3 100%  

BELAKANG 

1 100% 

100% 

 

2 100%  

3 100%  

SAMPING 

1 100% 

100% 

 

2 100%  

3 100%  

ANTARA 

1 20% 

53% 

 

2 100%  

3 40%  

DEKAT 

1 100% 

100% 

 

2 100%  

3 100%  

JAUH 

1 100% 

100% 

 

2 100%  

3 100%  

DI SINI 
1 100% 

100% 
 

2 100%  
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3 100%  

DI SANA 

1 100% 

100% 

 

2 100%  

3 100%  

SEBELUM 

1 100% 

100% 

 

2 100%  

3 100%  

SESUDAH 

1 100% 

100% 

 

2 100%  

3 100%  

TIMUR 

1 100% 

80% 

 

2 100%  

3 40%  

BARAT 

1 100% 

100% 

 

2 100%  

3 100%  

SELATAN 

1 100% 

80% 

 

2 100%  

3 40%  

UTARA 

1 100% 

100% 

 

2 100%  

3 100%  

KANAN 

1 100% 

100% 

 

2 100%  

3 100%  

KIRI 

1 100% 

100% 

 

2 100%  

3 100%  

 
 AVERAGE 93%  

 
 AVERAGE RF 91%  

 

 

AVERAGE 

Transformer 
93%  

*1= Ibu Sumiati, 2=Olfat, 3=Shelly 

 

Lampiran B. Source Code 

Lampiran B.1 Source Code Koleksi Dataset Random Forest 

1 import cv2 
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2 import os 

3 import time 

4  

5 def capture_dataset_auto(save_path, person_name, 

max_images=200, delay_ms=100, start_delay=5000): 

6     """ 

7     Capture dataset gestur BISINDO otomatis dari 

webcam 

8      

9     Parameters: 

10     ----------- 

11     save_path : str 

12         Path folder tempat menyimpan dataset 

(contoh: "E:/Dataset.../Nic/SIAPA") 

13     person_name : str 

14         Nama orang/responden (contoh: "NICO") 

15     max_images : int 

16         Target jumlah gambar 

17     delay_ms : int 

18         Jeda antar capture gambar (dalam milidetik) 

19     start_delay : int 

20         Jeda awal sebelum mulai capture (dalam 

milidetik) 

21     """ 

22      

23     # Cek apakah folder sudah ada 

24     if not os.path.exists(save_path): 

25         os.makedirs(save_path) 

26         print(f"      Folder baru dibuat: {save_path}") 

27      

28     # Inisialisasi webcam 

29     cap = cv2.VideoCapture(0) 

30     if not cap.isOpened(): 

31         print("     Tidak bisa membuka webcam") 

32         return 

33      

34     print(f"▶ Persiapkan gestur di folder: 

{save_path}") 

35     print(f"Capture akan dimulai dalam 

{start_delay/1000:.1f} detik...") 

36      

37     # Tampilkan countdown awal 

38     start_time = time.time() 

39     while (time.time() - start_time) * 1000 < 

start_delay: 
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40         ret, frame = cap.read() 

41         if not ret: 

42             print("     Gagal membaca frame dari 

webcam") 

43             cap.release() 

44             return 

45         frame_resized = cv2.resize(frame, (640, 

480)) 

46         remaining = int(start_delay/1000 - 

(time.time() - start_time)) 

47         cv2.putText(frame_resized, f"Mulai dalam 

{remaining} detik...", 

48                     (150, 240), 

cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,0,255), 3) 

49         cv2.imshow("Capture Dataset", frame_resized) 

50         cv2.waitKey(1) 

51      

52     # Cari nomor terakhir agar tidak overwrite file 

lama 

53     existing_files = [f for f in 

os.listdir(save_path) if f.startswith(person_name)] 

54     count_start = len(existing_files) 

55      

56     count = 0 

57     print(f"▶ Mulai auto-capture: {max_images} 

gambar | Delay: {delay_ms} ms per gambar") 

58     print("Tekan 'q' jika ingin berhenti lebih 

awal") 

59  

60     while count < max_images: 

61         ret, frame = cap.read() 

62         if not ret: 

63             print("     Gagal membaca frame dari 

webcam") 

64             break 

65  

66         frame_resized = cv2.resize(frame, (640, 

480)) 

67         cv2.putText(frame_resized, f"{person_name} | 

{count+1}/{max_images}", 

68                     (20, 40), 

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2) 

69         cv2.imshow("Capture Dataset", frame_resized) 

70  

71         # Simpan gambar dengan nama berurutan 
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72         filename = f"{person_name}_({count_start + 

count + 1}).jpg" 

73         cv2.imwrite(os.path.join(save_path, 

filename), frame) 

74         print(f"     Disimpan: {filename}") 

75         count += 1 

76  

77         # Delay dalam ms 

78         key = cv2.waitKey(delay_ms) & 0xFF 

79         if key == ord("q"): 

80             break 

81  

82     cap.release() 

83     cv2.destroyAllWindows() 

84     print(f"       Selesai: {count} gambar disimpan di 

{save_path}") 

85  

86  

87 # ------------------- 

88 #       Contoh penggunaan 

89 # ------------------- 

90  

91 # Path folder Anda (pastikan ganti sesuai path Anda) 

92 save_path = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Dataset RF\New Dataset 

RF\MIGOZ\TIDUR" 

93  

94 # Capture 100 gambar, delay 500 ms, countdown awal 

3000 ms 

95 capture_dataset_auto(save_path=save_path, 

person_name="MIGOZ", max_images=200, delay_ms=100, 

start_delay=5000) 

 

Lampiran B.2 Source Code Koleksi Dataset LSTM dan Transformer 

1 import cv2 

2 import mediapipe as mp 

3 import numpy as np 

4 import os 

5  

6 # --------------------------- 

7 # Konfigurasi 

8 # --------------------------- 

9 GESTURE_NAME = "UTARA" 
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10 SAVE_DIR = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset LSTM 

REV\MIGOZ" 

11 SEQUENCE_LENGTH = 20    # jumlah frame per sequence 

12 TOTAL_SEQUENCES = 105   # target dataset 

13  

14 # pastikan folder ada 

15 os.makedirs(SAVE_DIR, exist_ok=True) 

16  

17 # --------------------------- 

18 # Init MediaPipe 

19 # --------------------------- 

20 mp_hands = mp.solutions.hands 

21 hands = mp_hands.Hands( 

22     static_image_mode=False, 

23     max_num_hands=2, 

24     min_detection_confidence=0.6, 

25     min_tracking_confidence=0.6 

26 ) 

27 mp_draw = mp.solutions.drawing_utils 

28  

29 # --------------------------- 

30 # Kamera 

31 # --------------------------- 

32 cap = cv2.VideoCapture(0) 

33 if not cap.isOpened(): 

34     raise RuntimeError("Kamera tidak bisa dibuka") 

35  

36 print(f"[INFO] Mulai otomatis rekam 

{TOTAL_SEQUENCES} sequence untuk gestur: {GESTURE_NAME}") 

37 print("[INFO] Jumlah tangan akan divalidasi otomatis 

berdasarkan deteksi MediaPipe") 

38 print("Tekan 'q' untuk berhenti.") 

39  

40 all_sequences = [] 

41 seq_count = 0 

42 frame_buffer = [] 

43 last_status = None  # simpan status valid/invalid 

terakhir 

44  

45 def validate_sequence(seq, threshold=0.9): 

46     """Validasi otomatis: pastikan sequence punya 

cukup frame valid""" 

47     seq = np.array(seq).reshape(SEQUENCE_LENGTH, 2, 

21, 3) 
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48     valid_frames = 0 

49     hand_counts = [] 

50  

51     for frame in seq: 

52         hands_detected = 0 

53         for hand in frame: 

54             if np.any(hand != 0): 

55                 hands_detected += 1 

56         hand_counts.append(hands_detected) 

57         if hands_detected > 0: 

58             valid_frames += 1 

59  

60     frame_valid_ratio = valid_frames / 

SEQUENCE_LENGTH 

61     avg_hands = round(np.mean(hand_counts)) 

62  

63     # valid jika deteksi tangan stabil (>= 

threshold) 

64     return frame_valid_ratio >= threshold, 

frame_valid_ratio, avg_hands 

65  

66 while seq_count < TOTAL_SEQUENCES: 

67     ret, frame = cap.read() 

68     if not ret: 

69         continue 

70  

71     frame = cv2.flip(frame, 1) 

72     rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 

73     results = hands.process(rgb) 

74  

75     landmarks_both = np.zeros((2, 21, 3)) 

76  

77     if results.multi_hand_landmarks: 

78         for h_idx, hand_landmarks in 

enumerate(results.multi_hand_landmarks): 

79             if h_idx > 1: 

80                 break 

81             for i, lm in 

enumerate(hand_landmarks.landmark): 

82                 landmarks_both[h_idx, i] = [lm.x, 

lm.y, lm.z] 

83             mp_draw.draw_landmarks(frame, 

hand_landmarks, mp_hands.HAND_CONNECTIONS) 

84  

85     frame_buffer.append(landmarks_both.flatten()) 
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86  

87     # kalau buffer sudah SEQUENCE_LENGTH frame → cek 

dan simpan 

88     if len(frame_buffer) == SEQUENCE_LENGTH: 

89         is_valid, ratio, avg_hands = 

validate_sequence(frame_buffer) 

90  

91         if is_valid: 

92             

all_sequences.append(np.array(frame_buffer)) 

93             seq_count += 1 

94             last_status = (f"VALID ({avg_hands} 

hand)", (0, 255, 0)) 

95             print(f"[SAVED] Sequence 

{seq_count}/{TOTAL_SEQUENCES} | Ratio={ratio:.2f}, 

Hands={avg_hands}") 

96         else: 

97             last_status = ("RETAKE", (0, 0, 255)) 

98             print(f"[RETAKE] Sequence tidak valid | 

Ratio={ratio:.2f}") 

99  

100         frame_buffer = []  # reset buffer 

101  

102     # tampilkan info status 

103     if last_status: 

104         msg, color = last_status 

105         cv2.putText(frame, f"{msg}", (10,70), 

cv2.FONT_HERSHEY_SIMPLEX, 1.0, color, 3) 

106  

107     cv2.putText(frame, f"{GESTURE_NAME} Seq 

{seq_count}/{TOTAL_SEQUENCES}", 

108                 (10,30), cv2.FONT_HERSHEY_SIMPLEX, 

0.8, (0,0,255), 2) 

109     cv2.imshow("Collect Dataset", frame) 

110  

111     if cv2.waitKey(1) & 0xFF == ord('q'): 

112         break 

113  

114 cap.release() 

115 cv2.destroyAllWindows() 

116 hands.close() 

117  

118 # --------------------------- 

119 # Simpan semua ke 1 file .npz 

120 # --------------------------- 



 

130 

 

121 X = np.array(all_sequences)  # (N, SEQUENCE_LENGTH, 

126) 

122 y = np.array([0]*len(all_sequences))  # label gestur 

ini = 0 

123  

124 save_path = os.path.join(SAVE_DIR, 

f"{GESTURE_NAME}_dataset.npz") 

125 np.savez_compressed(save_path, X=X, y=y, 

gesture=GESTURE_NAME) 

126  

127 print("\n[INFO] Dataset selesai!") 

128 print(f"Total sequence: {X.shape[0]} | Shape data: 

{X.shape}") 

129 print("Disimpan ke:", save_path) 

 

Lampiran B.4 Source Code Augmentasi Citra Dataset Random Forest 

1 import cv2 

2 import os 

3 import numpy as np 

4 import random 

5 from concurrent.futures import ThreadPoolExecutor 

6  

7 # ========================================== 

8 #        KONFIGURASI 

9 # ========================================== 

10 DATASET_ROOT = r"E:\Dataset Penelitian Bahasa 

Isyarat Olfat 2025\Tugas Akhir\Dataset RF\New Dataset RF" 

11 AUGMENT_MULTIPLIER = 10  # Total variasi per gambar 

12  

13 def safe_augment_image(image): 

14     h, w = image.shape[:2] 

15      

16     # --- 1. ROTASI (-10 s/d 10 derajat) --- 

17     # Sudut diperkecil sedikit agar aman 

18     angle = random.uniform(-10, 10) 

19     center = (w // 2, h // 2) 

20     M_rot = cv2.getRotationMatrix2D(center, angle, 

1.0) 

21     image = cv2.warpAffine(image, M_rot, (w, h), 

borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0)) 

22      

23     # --- 2. SAFE ZOOM (Fokus Zoom Out) --- 

24     # Rentang scale: 0.85 (Jauh) sampai 1.05 

(Sedikit Dekat) 
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25     # Kebanyakan akan menjauh (Zoom Out) agar tangan 

tidak terpotong 

26     scale = random.uniform(0.85, 1.05) 

27      

28     if scale < 1.0:  

29         # === ZOOM OUT (Mengecil) === 

30         # Gambar dikecilkan, lalu ditempel di tengah 

background hitam 

31         # Ini 100% AMAN, tangan tidak akan hilang 

32         new_h, new_w = int(h * scale), int(w * 

scale) 

33         resized = cv2.resize(image, (new_w, new_h)) 

34          

35         # Buat kanvas hitam seukuran asli 

36         canvas = np.zeros((h, w, 3), dtype=np.uint8) 

37          

38         # Hitung posisi tengah 

39         y_off = (h - new_h) // 2 

40         x_off = (w - new_w) // 2 

41          

42         # Tempel gambar kecil ke kanvas 

43         canvas[y_off:y_off+new_h, x_off:x_off+new_w] 

= resized 

44         image = canvas 

45          

46     elif scale > 1.0: 

47         # === ZOOM IN (Membesar) === 

48         # Dibatasi maksimal 5% agar tidak memotong 

jari 

49         new_h, new_w = int(h / scale), int(w / 

scale) 

50         top = (h - new_h) // 2 

51         left = (w - new_w) // 2 

52          

53         cropped = image[top:top+new_h, 

left:left+new_w] 

54         image = cv2.resize(cropped, (w, h)) 

55  

56     # --- 3. GESER SEDIKIT (Translation) --- 

57     # Geser maksimal 5% dari lebar/tinggi gambar 

58     tx = random.uniform(-0.05, 0.05) * w 

59     ty = random.uniform(-0.05, 0.05) * h 

60     M_trans = np.float32([[1, 0, tx], [0, 1, ty]]) 

61     image = cv2.warpAffine(image, M_trans, (w, h), 

borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0)) 
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62  

63     return image 

64  

65 def process_file(file_info): 

66     root, filename = file_info 

67      

68     if "_aug_" in filename: 

69         return 0 

70  

71     img_path = os.path.join(root, filename) 

72     image = cv2.imread(img_path) 

73      

74     if image is None: return 0 

75      

76     count = 0 

77     base_name = os.path.splitext(filename)[0] 

78  

79     for i in range(AUGMENT_MULTIPLIER): 

80         try: 

81             aug_img = safe_augment_image(image) 

82              

83             new_filename = 

f"{base_name}_aug_{i}.jpg" 

84             save_path = os.path.join(root, 

new_filename) 

85             cv2.imwrite(save_path, aug_img) 

86             count += 1 

87         except Exception as e: 

88             print(f"Error processing {filename}: 

{e}") 

89              

90     return count 

91  

92 def main(): 

93     print(f"            Memulai SAFE AUGMENTATION pada: 

{DATASET_ROOT}") 

94      

95     all_files = [] 

96     for root, dirs, files in os.walk(DATASET_ROOT): 

97         for file in files: 

98             if file.lower().endswith(('.jpg', 

'.jpeg', '.png')): 

99                 all_files.append((root, file)) 

100  

101     print(f"       Memproses {len(all_files)} file 
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gambar...") 

102  

103     with ThreadPoolExecutor(max_workers=8) as 

executor: 

104         results = executor.map(process_file, 

all_files) 

105         total = sum(results) 

106  

107     print(f"\n     SELESAI! {total} gambar variasi 

aman dibuat.") 

108  

109 if __name__ == "__main__": 

110     main() 

 

Lampiran B.4 Source Code Ekstrak Landmark Dataset Random Forest 

1 import os 

2 import cv2 

3 import mediapipe as mp 

4 import pandas as pd 

5  

6 # Inisialisasi Mediapipe Hands 

7 mp_hands = mp.solutions.hands 

8 hands = mp_hands.Hands(static_image_mode=True, 

max_num_hands=2, min_detection_confidence=0.6) 

9  

10 def extract_landmarks_from_image(image_path, 

do_flip=True): 

11     """ 

12     Ekstrak landmark dari 1 gambar. 

13     Bisa di-flip horizontal tanpa mengubah file 

aslinya. 

14     """ 

15     image = cv2.imread(image_path) 

16     if image is None: 

17         return None 

18  

19     # FLIP gambar jika ingin konsisten dengan kamera 

20     if do_flip: 

21         image = cv2.flip(image, 1) 

22  

23     image_rgb = cv2.cvtColor(image, 

cv2.COLOR_BGR2RGB) 

24     results = hands.process(image_rgb) 

25  



 

134 

 

26     if not results.multi_hand_landmarks: 

27         return None 

28  

29     data = [] 

30     for hand_landmarks in 

results.multi_hand_landmarks: 

31         for lm in hand_landmarks.landmark: 

32             data.extend([lm.x, lm.y, lm.z]) 

33  

34     # padding kalau hanya 1 tangan 

35     if len(results.multi_hand_landmarks) == 1: 

36         data.extend([0.0] * 63) 

37  

38     if len(data) != 126: 

39         return None 

40  

41     return data 

42  

43 def process_dataset(root_dir, output_csv): 

44     """Loop semua folder → ekstrak landmark → simpan 

ke CSV""" 

45     dataset = [] 

46  

47     for person in os.listdir(root_dir): 

48         person_path = os.path.join(root_dir, person) 

49         if not os.path.isdir(person_path): 

50             continue 

51  

52         for gesture in os.listdir(person_path): 

53             gesture_path = os.path.join(person_path, 

gesture) 

54             if not os.path.isdir(gesture_path): 

55                 continue 

56  

57             for filename in 

os.listdir(gesture_path): 

58                 if not 

filename.lower().endswith((".jpg", ".jpeg", ".png")): 

59                     continue 

60  

61                 file_path = 

os.path.join(gesture_path, filename) 

62                 landmarks = 

extract_landmarks_from_image(file_path) 

63  
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64                 if landmarks is not None: 

65                     dataset.append(landmarks + 

[gesture]) 

66  

67     # Buat DataFrame 

68     num_landmarks = 42 * 3  # 42 titik (2 tangan), 

tiap titik ada x,y,z 

69     columns = [f"{axis}{i}" for i in range(42) for 

axis in ["x", "y", "z"]] 

70     columns.append("label") 

71  

72     df = pd.DataFrame(dataset, columns=columns) 

73  

74     # Simpan ke CSV 

75     df.to_csv(output_csv, index=False) 

76     print(f"      Ekstraksi selesai, hasil disimpan di: 

{output_csv}") 

77  

78  

79 # ------------------- 

80 #       Contoh penggunaan 

81 # ------------------- 

82 root_dir = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Dataset RF Old" 

83 output_csv = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Dataset RF 

Old\dataset_landmarks_RF_OLD_DATASET.csv" 

84  

85 process_dataset(root_dir, output_csv) 

 

Lampiran B.5 Source Code Train Random Forest 

1 import pandas as pd 

2 import numpy as np 

3 from sklearn.model_selection import 

train_test_split, StratifiedKFold, cross_val_score, 

cross_val_predict, learning_curve 

4 from sklearn.preprocessing import LabelEncoder 

5 from sklearn.ensemble import RandomForestClassifier 

6 from sklearn.metrics import classification_report, 

confusion_matrix, accuracy_score 

7 import pickle 

8 import os 

9 import matplotlib.pyplot as plt 

10 import seaborn as sns 
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11  

12 # ========================= 

13 # 1. Load dataset 

14 # ========================= 

15 data_path = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Dataset RF 

Old\dataset_landmarks_RF_OLD_DATASET.csv" 

16 df = pd.read_csv(data_path) 

17  

18 # Pisahkan fitur dan label 

19 X = df.drop("label", axis=1).values 

20 y = df["label"].values 

21  

22 # Encode label jika masih teks 

23 if y.dtype.kind in {'U', 'S', 'O'}: 

24     le = LabelEncoder() 

25     y_encoded = le.fit_transform(y) 

26     class_names = le.classes_ 

27 else: 

28     y_encoded = y 

29     le = None 

30     class_names = np.unique(y) 

31  

32 # ========================= 

33 # 2. Split dataset (80/20) 

34 # ========================= 

35 X_train, X_test, y_train, y_test = train_test_split( 

36     X, y_encoded, test_size=0.2, stratify=y_encoded, 

random_state=42 

37 ) 

38  

39 # ========================= 

40 # 3. Train Random Forest (train-test split) 

41 # ========================= 

42 print("[INFO] Melatih model Random Forest...") 

43 rf = RandomForestClassifier( 

44     n_estimators=100, 

45     criterion="gini", 

46     max_depth=None, 

47     random_state=42 

48 ) 

49 rf.fit(X_train, y_train) 

50  

51 # ========================= 

52 # 4. Evaluasi train-test split 
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53 # ========================= 

54 y_pred = rf.predict(X_test) 

55 acc = accuracy_score(y_test, y_pred) 

56 print(f"      Akurasi test (80/20 split): {acc:.2f}\n") 

57  

58 cm = confusion_matrix(y_test, y_pred) 

59  

60 # ========================= 

61 # 5. K-Fold Cross Validation & Learning Curve 

62 # ========================= 

63 k = 5  # jumlah fold 

64 skf = StratifiedKFold(n_splits=k, shuffle=True, 

random_state=42) 

65  

66 print(f"[INFO] Menjalankan {k}-Fold Cross 

Validation...") 

67 cv_scores = cross_val_score(rf, X, y_encoded, 

cv=skf) 

68 print(f"      K-Fold CV mean accuracy: 

{cv_scores.mean():.2f} ± {cv_scores.std():.2f}") 

69  

70 y_pred_cv = cross_val_predict(rf, X, y_encoded, 

cv=skf) 

71 cv_cm = confusion_matrix(y_encoded, y_pred_cv) 

72  

73 # --- PLOT LEARNING CURVE (Kurva Pembelajaran) --- 

74 print("[INFO] Membuat Learning Curve...") 

75 train_sizes_abs, train_scores, val_scores = 

learning_curve( 

76     rf, X, y_encoded, cv=skf, n_jobs=-1, 

77     train_sizes=np.linspace(0.1, 1.0, 10), 

78     scoring="accuracy" 

79 ) 

80  

81 train_scores_mean = np.mean(train_scores, axis=1) 

82 train_scores_std = np.std(train_scores, axis=1) 

83 val_scores_mean = np.mean(val_scores, axis=1) 

84 val_scores_std = np.std(val_scores, axis=1) 

85  

86 # Direktori penyimpanan 

87 results_dir = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Source Code\results train RF Old" 

88 os.makedirs(results_dir, exist_ok=True) 

89  

90 plt.figure(figsize=(10, 6)) 
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91 plt.title("Learning Curve (Random Forest)") 

92 plt.xlabel("Jumlah Data Latih") 

93 plt.ylabel("Akurasi") 

94 plt.grid(True, linestyle="--", alpha=0.6) 

95 plt.fill_between(train_sizes_abs, train_scores_mean 

- train_scores_std, 

96                  train_scores_mean + 

train_scores_std, alpha=0.1, color="blue") 

97 plt.fill_between(train_sizes_abs, val_scores_mean - 

val_scores_std, 

98                  val_scores_mean + val_scores_std, 

alpha=0.1, color="orange") 

99 plt.plot(train_sizes_abs, train_scores_mean, 'o-', 

color="blue", label="Skor Training") 

100 plt.plot(train_sizes_abs, val_scores_mean, 'o-', 

color="orange", label="Skor Validasi (CV)") 

101 plt.legend(loc="best") 

102 plt.savefig(os.path.join(results_dir, 

"learning_curve_rf.png")) 

103 plt.close() 

104  

105 # ========================= 

106 # 6. Simpan Model 

107 # ========================= 

108 model_path = os.path.join(results_dir, 

"random_forest_bisindo_kcross.pkl") 

109 with open(model_path, "wb") as f: 

110     pickle.dump(rf, f) 

111  

112 if le is not None: 

113     le_path = os.path.join(results_dir, 

"label_encoder_kcross.pkl") 

114     with open(le_path, "wb") as f: 

115         pickle.dump(le, f) 

116  

117 print(f"\n     Model disimpan di: {model_path}") 

118  

119 # ========================= 

120 # 7. Simpan Laporan & Confusion Matrix (SUPER JELAS) 

121 # ========================= 

122  

123 # --- A. Simpan Classification Reports --- 

124 report_path = os.path.join(results_dir, 

"classification_report_split_rf.txt") 

125 with open(report_path, "w") as f: 
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126     f.write("=== Classification Report (80/20 Split) 

===\n") 

127     f.write(classification_report(y_test, y_pred, 

target_names=class_names)) 

128  

129 cv_report_path = os.path.join(results_dir, 

"classification_report_cv_rf.txt") 

130 with open(cv_report_path, "w") as f: 

131     f.write(f"=== Classification Report ({k}-Fold 

Cross Validation) ===\n") 

132     f.write(classification_report(y_encoded, 

y_pred_cv, target_names=class_names)) 

133  

134 # --- B. Simpan Confusion Matrix 80/20 Split (UKURAN 

BESAR) --- 

135 print("[INFO] Menyimpan Confusion Matrix 80/20 (High 

Res)...") 

136 fig_cm, ax_cm = plt.subplots(figsize=(40, 40))  # <-

-- Ukuran Raksasa 

137  

138 sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", 

139             xticklabels=class_names, 

yticklabels=class_names, 

140             ax=ax_cm, annot_kws={"size": 6}) # Font 

angka kecil agar muat 

141  

142 ax_cm.set_xticklabels(ax_cm.get_xticklabels(), 

rotation=90, fontsize=8) 

143 ax_cm.set_yticklabels(ax_cm.get_yticklabels(), 

rotation=0, fontsize=8) 

144 ax_cm.set_xlabel("Predicted Label", fontsize=15) 

145 ax_cm.set_ylabel("True Label", fontsize=15) 

146 ax_cm.set_title("Confusion Matrix (80/20 Split)", 

fontsize=20) 

147  

148 plt.savefig(os.path.join(results_dir, 

"confusion_matrix_split_rf.png"), dpi=300, 

bbox_inches='tight') 

149 plt.savefig(os.path.join(results_dir, 

"confusion_matrix_split_rf.svg"), bbox_inches='tight') 

150 plt.close(fig_cm) 

151  

152 # --- C. Simpan Confusion Matrix Cross-Validation 

(UKURAN BESAR) --- 

153 print("[INFO] Menyimpan Confusion Matrix CV (High 
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Res)...") 

154 fig_cvcm, ax_cvcm = plt.subplots(figsize=(40, 40)) # 

<--- Ukuran Raksasa 

155  

156 sns.heatmap(cv_cm, annot=True, fmt="d", 

cmap="Greens", 

157             xticklabels=class_names, 

yticklabels=class_names, 

158             ax=ax_cvcm, annot_kws={"size": 6}) # 

Font angka kecil agar muat 

159  

160 ax_cvcm.set_xticklabels(ax_cvcm.get_xticklabels(), 

rotation=90, fontsize=8) 

161 ax_cvcm.set_yticklabels(ax_cvcm.get_yticklabels(), 

rotation=0, fontsize=8) 

162 ax_cvcm.set_xlabel("Predicted Label", fontsize=15) 

163 ax_cvcm.set_ylabel("True Label", fontsize=15) 

164 ax_cvcm.set_title(f"Confusion Matrix ({k}-Fold Cross 

Validation)", fontsize=20) 

165  

166 plt.savefig(os.path.join(results_dir, 

"confusion_matrix_cv_rf.png"), dpi=300, 

bbox_inches='tight') 

167 plt.savefig(os.path.join(results_dir, 

"confusion_matrix_cv_rf.svg"), bbox_inches='tight') 

168 plt.close(fig_cvcm) 

169  

170 print(f"\n     Semua hasil (Learning Curve, Conf 

Matrix Besar, Laporan) tersimpan di: {results_dir}") 

 

Lampiran B.6 Source Code Train LSTM 

1 import os 

2 import numpy as np 

3 import tensorflow as tf 

4 from tensorflow.keras import layers, models, 

regularizers 

5 from sklearn.model_selection import 

train_test_split, KFold 

6 from tensorflow.keras.utils import to_categorical 

7 from tensorflow.keras.callbacks import 

EarlyStopping, ModelCheckpoint, ReduceLROnPlateau 

8 import matplotlib.pyplot as plt 

9 import seaborn as sns 

10 from sklearn.metrics import confusion_matrix, 
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classification_report 

11  

12 # ------------------------------ 

13 # Konfigurasi 

14 # ------------------------------ 

15 dataset_path = r"E:\Dataset Penelitian Bahasa 

Isyarat Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset 

LSTM REV" 

16 SEQ_LENGTH = 20 

17 FEATURES = 126 

18 K_FOLDS = 5 

19  

20 RESULTS_DIR = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Source Code\results train 

new\LSTM" 

21 os.makedirs(RESULTS_DIR, exist_ok=True) 

22  

23 # ------------------------------ 

24 # Load dataset 

25 # ------------------------------ 

26 X_all, y_all = [], [] 

27 gestures = {} 

28 class_counter = 0 

29  

30 def normalize_sequence(seq, target_len=SEQ_LENGTH): 

31     if seq.shape[0] < target_len: 

32         pad_width = target_len - seq.shape[0] 

33         padding = np.zeros((pad_width, 

seq.shape[1])) 

34         return np.vstack([seq, padding]) 

35     elif seq.shape[0] > target_len: 

36         return seq[:target_len] 

37     else: 

38         return seq 

39  

40 print("[INFO] Memuat dataset...") 

41 for root, dirs, files in os.walk(dataset_path): 

42     for file in files: 

43         if file.endswith(".npz"): 

44             path = os.path.join(root, file) 

45             data = np.load(path, allow_pickle=True) 

46             X, y = data["X"], data["y"] 

47             X_norm = 

np.array([normalize_sequence(seq) for seq in X]) 

48             gesture_name = 
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file.replace("_dataset.npz", "") 

49             if gesture_name not in gestures: 

50                 gestures[gesture_name] = 

class_counter 

51                 class_counter += 1 

52             y_label = gestures[gesture_name] 

53             X_all.append(X_norm) 

54             y_all.append(np.full(len(X_norm), 

y_label)) 

55             print(f"[INFO] Loaded {file} from 

{os.path.basename(root)}: {X_norm.shape}") 

56  

57 X_all = np.concatenate(X_all, axis=0) 

58 y_all = np.concatenate(y_all, axis=0) 

59 gesture_list = list(gestures.keys()) 

60 num_classes = len(gesture_list) 

61 y_cat_all = to_categorical(y_all, 

num_classes=num_classes) 

62  

63 print(f"[INFO] Total Data: {X_all.shape}, Total 

Kelas: {num_classes}") 

64  

65 # ------------------------------ 

66 # Split dataset 80% train+val / 20% test 

67 # ------------------------------ 

68 X_train_val, X_test, y_train_val, y_test = 

train_test_split( 

69     X_all, y_cat_all, test_size=0.2, stratify=y_all, 

random_state=42 

70 ) 

71  

72 # ------------------------------ 

73 # K-Fold Cross Validation pada train+val 

74 # ------------------------------ 

75 kf = KFold(n_splits=K_FOLDS, shuffle=True, 

random_state=42) 

76 fold_no = 1 

77 histories = [] 

78  

79 for train_idx, val_idx in kf.split(X_train_val): 

80     print(f"\n[INFO] Training fold 

{fold_no}/{K_FOLDS}") 

81      

82     X_train, X_val = X_train_val[train_idx], 

X_train_val[val_idx] 
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83     y_train, y_val = y_train_val[train_idx], 

y_train_val[val_idx] 

84      

85     # Dropout di sini Anda set 0.3 pada kode 

sebelumnya,  

86     # Anda bisa ubah ke 0.6 jika ingin kembali ke 

konfigurasi awal 

87     model = models.Sequential([ 

88         layers.Input(shape=(SEQ_LENGTH, FEATURES)), 

89         layers.LSTM(64, return_sequences=False, 

unroll=True), 

90         layers.Dense(32, activation='relu', 

kernel_regularizer=regularizers.l2(0.001)), 

91         layers.Dropout(0.3),  

92         layers.Dense(num_classes, 

activation='softmax') 

93     ]) 

94      

95     model.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy']) 

96      

97     callbacks = [ 

98         EarlyStopping(monitor="val_loss", 

patience=10, restore_best_weights=True), 

99         

ModelCheckpoint(f"{RESULTS_DIR}/best_model_fold{fold_no}.

h5", monitor="val_loss", save_best_only=True), 

100         ReduceLROnPlateau(monitor="val_loss", 

factor=0.5, patience=5, min_lr=1e-6) 

101     ] 

102      

103     history = model.fit( 

104         X_train, y_train, 

105         validation_data=(X_val, y_val), 

106         epochs=300, 

107         batch_size=16, 

108         callbacks=callbacks, 

109         verbose=1 

110     ) 

111      

112     histories.append(history) 

113      

114     # --- BAGIAN SIMPAN REPORT & MATRIX PER FOLD 

DIHAPUS --- 

115      
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116     print(f"[INFO] Fold {fold_no} selesai.") 

117     fold_no += 1 

118  

119 # ------------------------------ 

120 # Train final model pada seluruh train+val 

121 # ------------------------------ 

122 print("\n[INFO] Melatih model final pada seluruh 

data train+val...") 

123 # Pastikan nilai Dropout konsisten dengan yang Anda 

inginkan (misal 0.3 atau 0.6) 

124 model_final = models.Sequential([ 

125     layers.Input(shape=(SEQ_LENGTH, FEATURES)), 

126     layers.LSTM(64, return_sequences=False, 

unroll=True), 

127     layers.Dense(32, activation='relu', 

kernel_regularizer=regularizers.l2(0.001)), 

128     layers.Dropout(0.6), 

129     layers.Dense(num_classes, activation='softmax') 

130 ]) 

131 model_final.compile(optimizer='adam', 

loss='categorical_crossentropy', metrics=['accuracy']) 

132  

133 callbacks_final = [ 

134     EarlyStopping(monitor="val_loss", patience=10, 

restore_best_weights=True), 

135     

ModelCheckpoint(f"{RESULTS_DIR}/best_model_lstm.h5", 

monitor="val_loss", save_best_only=True), 

136     ReduceLROnPlateau(monitor="val_loss", 

factor=0.5, patience=5, min_lr=1e-6) 

137 ] 

138  

139 history_final = model_final.fit( 

140     X_train_val, y_train_val, 

141     validation_data=(X_test, y_test), 

142     epochs=300, 

143     batch_size=16, 

144     callbacks=callbacks_final 

145 ) 

146  

147 # ------------------------------ 

148 # Save final model & gestures 

149 # ------------------------------ 

150 model_final.save(os.path.join(RESULTS_DIR, 

"model_lstm.h5")) 
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151 np.save(os.path.join(RESULTS_DIR, 

"gestures_labels.npy"), gesture_list) 

152  

153 # ------------------------------ 

154 # Plot Kurva Akurasi & Loss 

155 # ------------------------------ 

156 plt.figure(figsize=(12, 5)) 

157  

158 # Kurva Akurasi 

159 plt.subplot(1, 2, 1) 

160 plt.plot(history_final.history["accuracy"], 

label="Train Accuracy", color='blue') 

161 plt.plot(history_final.history["val_accuracy"], 

label="Validation Accuracy", color='orange') 

162 plt.title("LSTM Model Accuracy") 

163 plt.xlabel("Epoch") 

164 plt.ylabel("Accuracy") 

165 plt.legend() 

166 plt.grid(True, linestyle="--", alpha=0.6) 

167  

168 # Kurva Loss 

169 plt.subplot(1, 2, 2) 

170 plt.plot(history_final.history["loss"], label="Train 

Loss", color='blue') 

171 plt.plot(history_final.history["val_loss"], 

label="Validation Loss", color='orange') 

172 plt.title("LSTM Model Loss") 

173 plt.xlabel("Epoch") 

174 plt.ylabel("Loss") 

175 plt.legend() 

176 plt.grid(True, linestyle="--", alpha=0.6) 

177  

178 plt.tight_layout() 

179 plt.savefig(os.path.join(RESULTS_DIR, 

"training_curves_lstm.png")) 

180 plt.show() 

181  

182 print(f"[INFO] Kurva akurasi dan loss disimpan di 

{RESULTS_DIR}/training_curves_lstm.png") 

183  

184 # ------------------------------ 

185 # Evaluasi akhir pada test set (TETAP DISIMPAN) 

186 # ------------------------------ 

187 print("[INFO] Evaluasi akhir pada Test Set...") 

188 y_test_true = np.argmax(y_test, axis=1) 
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189 y_test_pred = np.argmax(model_final.predict(X_test, 

verbose=0), axis=1) 

190  

191 # --- CONFUSION MATRIX FINAL (TEST SET) --- 

192 cm_test = confusion_matrix(y_test_true, y_test_pred, 

labels=range(num_classes)) 

193  

194 # Buat figure besar 

195 fig, ax = plt.subplots(figsize=(40, 40)) 

196 sns.heatmap( 

197     cm_test,  

198     annot=True,  

199     fmt="d",  

200     cmap="Blues",  

201     xticklabels=gesture_list,  

202     yticklabels=gesture_list, 

203     ax=ax, 

204     annot_kws={"size": 6} 

205 ) 

206  

207 ax.set_xticklabels(ax.get_xticklabels(), 

rotation=90, fontsize=8) 

208 ax.set_yticklabels(ax.get_yticklabels(), rotation=0, 

fontsize=8) 

209 ax.set_title("Confusion Matrix (Test Set)", 

fontsize=20) 

210 ax.set_ylabel("True Label", fontsize=15) 

211 ax.set_xlabel("Predicted Label", fontsize=15) 

212  

213 # Simpan PNG & SVG 

214 plt.savefig(os.path.join(RESULTS_DIR, 

"confusion_matrix_test_lstm_cross.png"), dpi=300, 

bbox_inches='tight') 

215 plt.savefig(os.path.join(RESULTS_DIR, 

"confusion_matrix_test_lstm_cross.svg"), 

bbox_inches='tight') 

216 plt.close(fig) 

217  

218 report_test = classification_report(y_test_true, 

y_test_pred, target_names=gesture_list, digits=4) 

219 with open(os.path.join(RESULTS_DIR, 

"classification_report_test_lstm_cross.txt"), "w") as f: 

220     f.write(report_test) 

221  

222 print(f"[INFO] Evaluasi test set selesai. Confusion 
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matrix & classification report disimpan di 

{RESULTS_DIR}") 

 

Lampiran B.7 Source Code Train Transformer 

1 import numpy as np 

2 import tensorflow as tf 

3 from tensorflow import keras 

4 from tensorflow.keras import layers 

5 from sklearn.model_selection import StratifiedKFold, 

train_test_split 

6 from sklearn.metrics import classification_report, 

confusion_matrix 

7 import matplotlib.pyplot as plt 

8 import seaborn as sns 

9 import os 

10  

11 # =============================================== 

12 # 1. Konfigurasi & Memuat Dataset 

13 # =============================================== 

14 DATASET_DIR = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset LSTM REV" 

15 SAVE_DIR = r"E:\Dataset Penelitian Bahasa Isyarat 

Olfat 2025\Tugas Akhir\Source Code\results train 

new\Transformer Dropout 0.3" 

16 SEQ_LENGTH = 20 

17 NUM_FOLDS = 5 

18 BATCH_SIZE = 16   # DISAMAKAN dengan LSTM 

19 EPOCHS = 300      # DISAMAKAN dengan LSTM 

20 DROPOUT_RATE = 0.3 # DISAMAKAN dengan LSTM 

21  

22 # Buat folder simpan 

23 os.makedirs(SAVE_DIR, exist_ok=True) 

24  

25 def normalize_sequence(seq, target_len=SEQ_LENGTH): 

26     if seq.shape[0] > target_len: return 

seq[:target_len] 

27     if seq.shape[0] < target_len: 

28         pad_width = target_len - seq.shape[0] 

29         padding = np.zeros((pad_width, 

seq.shape[1])) 

30         return np.vstack([seq, padding]) 

31     return seq 

32  

33 X_all, y_all, gestures, class_counter = [], [], {}, 
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0 

34  

35 print("[INFO] Memuat dataset secara rekursif...") 

36 for root, dirs, files in os.walk(DATASET_DIR): 

37     for file in files: 

38         if file.endswith(".npz"): 

39             path = os.path.join(root, file) 

40             try: 

41                 data = np.load(path, 

allow_pickle=True) 

42                 X_sequences = data["X"] 

43                  

44                 # Cek jika file kosong 

45                 if len(X_sequences) == 0: 

46                     continue 

47  

48                 X_norm = 

np.array([normalize_sequence(seq) for seq in 

X_sequences]) 

49                 gesture_name = 

file.replace("_dataset.npz", "") 

50                  

51                 if gesture_name not in gestures: 

52                     gestures[gesture_name] = 

class_counter 

53                     class_counter += 1 

54                  

55                 y_label = gestures[gesture_name] 

56                 X_all.append(X_norm) 

57                 y_all.append(np.full(len(X_norm), 

y_label)) 

58                 # print(f"[INFO] Loaded {file}")  

59             except Exception as e: 

60                 print(f"[ERROR] Gagal load {file}: 

{e}") 

61  

62 if len(X_all) == 0: 

63     print("[CRITICAL] Tidak ada data ditemukan!") 

64     exit() 

65  

66 X = np.concatenate(X_all, axis=0) 

67 y = np.concatenate(y_all, axis=0) 

68 CLASS_NAMES = list(gestures.keys()) 

69 NUM_CLASSES = len(CLASS_NAMES) 

70  
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71 print(f"[INFO] Total Data: {X.shape[0]} sequences, 

{NUM_CLASSES} kelas.") 

72  

73 # --- SPLIT 80% (train+val) dan 20% (test) --- 

74 X_train_val, X_test, y_train_val, y_test = 

train_test_split( 

75     X, y, test_size=0.2, stratify=y, random_state=42 

76 ) 

77  

78 # =============================================== 

79 # 2. Arsitektur Transformer (DIPERBAIKI) 

80 # =============================================== 

81 def build_transformer_model(input_shape, 

num_classes, d_model=64, num_heads=4, ff_dim=64, 

num_transformer_blocks=2, dropout=DROPOUT_RATE): 

82     inputs = keras.Input(shape=input_shape) 

83     x = layers.Dense(d_model, 

name="dense_projection")(inputs) 

84      

85     # Positional Encoding 

86     positions = tf.range(start=0, 

limit=input_shape[0], delta=1) 

87     pos_embedding = 

keras.layers.Embedding(input_dim=input_shape[0], 

output_dim=d_model)(positions) 

88     x = x + pos_embedding 

89      

90     # Transformer Blocks 

91     for _ in range(num_transformer_blocks): 

92         # Attention dengan Dropout variabel 

93         attn_output = layers.MultiHeadAttention( 

94             num_heads=num_heads, key_dim=d_model, 

dropout=dropout 

95         )(query=x, value=x, key=x) 

96         x = layers.LayerNormalization(epsilon=1e-

6)(x + attn_output) 

97          

98         # Feed Forward 

99         ffn_output = keras.Sequential([ 

100             layers.Dense(ff_dim, activation="relu"), 

101             layers.Dense(d_model) 

102         ])(x) 

103         x = layers.LayerNormalization(epsilon=1e-

6)(x + ffn_output) 

104  
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105     # Classification Head 

106     x = layers.GlobalAveragePooling1D()(x) 

107      

108     # --- PERBAIKAN: Menggunakan variabel dropout 

(0.3), bukan hardcode 0.2 --- 

109     x = layers.Dropout(dropout)(x)  

110     # ----------------------------------------------

-------------------------- 

111      

112     x = layers.Dense(ff_dim, activation="relu")(x) 

113     outputs = layers.Dense(num_classes, 

activation="softmax")(x) 

114      

115     return keras.Model(inputs=inputs, 

outputs=outputs) 

116  

117 # =============================================== 

118 # 3. K-Fold Cross-Validation (Setara LSTM) 

119 # =============================================== 

120 skf = StratifiedKFold(n_splits=NUM_FOLDS, 

shuffle=True, random_state=42) 

121 cv_scores = [] 

122 fold_no = 1 

123  

124 print("\n[INFO] Memulai 5-Fold Cross Validation...") 

125 for train_index, val_index in skf.split(X_train_val, 

y_train_val): 

126     print(f"--- FOLD {fold_no}/{NUM_FOLDS} ---") 

127      

128     X_train, X_val = X_train_val[train_index], 

X_train_val[val_index] 

129     y_train, y_val = y_train_val[train_index], 

y_train_val[val_index] 

130      

131     INPUT_SHAPE = (X_train.shape[1], 

X_train.shape[2]) 

132      

133     # Build Model 

134     model = 

build_transformer_model(input_shape=INPUT_SHAPE, 

num_classes=NUM_CLASSES, dropout=DROPOUT_RATE) 

135      

136     

model.compile(optimizer=keras.optimizers.Adam(learning_ra

te=0.001),  
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137                   

loss="sparse_categorical_crossentropy",  

138                   metrics=["accuracy"]) 

139      

140     # Callbacks (Sama seperti LSTM: EarlyStopping + 

ReduceLR) 

141     callbacks_cv = [ 

142         

keras.callbacks.EarlyStopping(monitor="val_loss", 

patience=10, restore_best_weights=True), 

143         

keras.callbacks.ReduceLROnPlateau(monitor="val_loss", 

factor=0.5, patience=5, min_lr=1e-6) 

144     ] 

145      

146     # Train dengan Batch Size 16 & Epoch 300 

147     model.fit(X_train, y_train,  

148               batch_size=BATCH_SIZE,  

149               epochs=EPOCHS,  

150               validation_data=(X_val, y_val),  

151               callbacks=callbacks_cv, 

152               verbose=0) # verbose 0 agar rapi 

153      

154     scores = model.evaluate(X_val, y_val, verbose=0) 

155     print(f"   Skor untuk fold {fold_no}: Akurasi 

{scores[1]*100:.2f}%") 

156     cv_scores.append(scores[1]) 

157     fold_no += 1 

158  

159 print("\n--- Hasil Cross-Validation ---") 

160 print(f"Akurasi Rata-rata: 

{np.mean(cv_scores)*100:.2f}% (+/- 

{np.std(cv_scores)*100:.2f}%)") 

161  

162 # =============================================== 

163 # 4. Training Final & Evaluasi Akhir (Setara LSTM) 

164 # =============================================== 

165 print("\n[INFO] Melatih model final pada seluruh 80% 

data...") 

166  

167 INPUT_SHAPE = (X_train_val.shape[1], 

X_train_val.shape[2]) 

168 final_model = 

build_transformer_model(input_shape=INPUT_SHAPE, 

num_classes=NUM_CLASSES, dropout=DROPOUT_RATE) 
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169  

170 final_model.compile(optimizer=keras.optimizers.Adam(

learning_rate=0.001), 

171                     

loss="sparse_categorical_crossentropy", 

172                     metrics=["accuracy"]) 

173  

174 # Callbacks Final (Sama seperti LSTM) 

175 callbacks_final = [ 

176     

keras.callbacks.EarlyStopping(monitor="val_loss", 

patience=10, restore_best_weights=True), 

177     

keras.callbacks.ModelCheckpoint(os.path.join(SAVE_DIR, 

"transformer_best.keras"), save_best_only=True, 

monitor="val_accuracy"), 

178     

keras.callbacks.ReduceLROnPlateau(monitor="val_loss", 

factor=0.5, patience=5, min_lr=1e-6) 

179 ] 

180  

181 # Training Final (Gunakan validation_data=(X_test, 

y_test) seperti LSTM) 

182 history = final_model.fit( 

183     X_train_val, y_train_val, 

184     batch_size=BATCH_SIZE,  # 16 

185     epochs=EPOCHS,          # 300 

186     validation_data=(X_test, y_test), # Konsisten 

dengan LSTM 

187     callbacks=callbacks_final, 

188     verbose=1 

189 ) 

190  

191 print("\n[INFO] Mengevaluasi model final pada 20% 

data test...") 

192 test_loss, test_acc = final_model.evaluate(X_test, 

y_test) 

193 print(f"\nAkurasi pada data uji final: 

{test_acc:.4f}") 

194  

195 # Simpan Model & Label 

196 final_model.save(os.path.join(SAVE_DIR, 

"transformer_final.keras")) 

197 np.save(os.path.join(SAVE_DIR, "labels.npy"), 

np.array(CLASS_NAMES)) 
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198  

199 # Prediksi 

200 y_pred = np.argmax(final_model.predict(X_test), 

axis=1) 

201  

202 # Simpan Classification Report 

203 report = classification_report(y_test, y_pred, 

target_names=CLASS_NAMES, digits=4) 

204 with open(os.path.join(SAVE_DIR, 

"classification_report.txt"), "w") as f:  

205     f.write(report) 

206  

207 # =============================================== 

208 # === CONFUSION MATRIX RESOLUSI TINGGI === 

209 # =============================================== 

210 print("[INFO] Membuat Confusion Matrix Resolusi 

Tinggi...") 

211 cm = confusion_matrix(y_test, y_pred) 

212  

213 fig, ax = plt.subplots(figsize=(40, 40)) # Ukuran 

Besar 

214 sns.heatmap( 

215     cm,  

216     annot=True,  

217     fmt="d",  

218     cmap="Blues",  

219     xticklabels=CLASS_NAMES,  

220     yticklabels=CLASS_NAMES, 

221     ax=ax, 

222     annot_kws={"size": 6} 

223 ) 

224  

225 ax.set_xticklabels(ax.get_xticklabels(), 

rotation=90, fontsize=8) 

226 ax.set_yticklabels(ax.get_yticklabels(), rotation=0, 

fontsize=8) 

227 ax.set_title("Confusion Matrix (Final Test)", 

fontsize=20) 

228 ax.set_ylabel("True Label", fontsize=15) 

229 ax.set_xlabel("Predicted Label", fontsize=15) 

230  

231 plt.savefig(os.path.join(SAVE_DIR, 

"confusion_matrix.png"), dpi=300, bbox_inches='tight') 

232 plt.savefig(os.path.join(SAVE_DIR, 

"confusion_matrix.svg"), bbox_inches='tight') 
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233 plt.close(fig) 

234  

235 # Simpan Kurva 

236 plt.figure(figsize=(12, 5)) 

237 plt.subplot(1, 2, 1) 

238 plt.plot(history.history['accuracy'], label='Train 

Acc') 

239 plt.plot(history.history['val_accuracy'], label='Val 

Acc') 

240 plt.title('Accuracy') 

241 plt.legend() 

242 plt.grid(True, linestyle="--") 

243  

244 plt.subplot(1, 2, 2) 

245 plt.plot(history.history['loss'], label='Train 

Loss') 

246 plt.plot(history.history['val_loss'], label='Val 

Loss') 

247 plt.title('Loss') 

248 plt.legend() 

249 plt.grid(True, linestyle="--") 

250  

251 plt.tight_layout() 

252 plt.savefig(os.path.join(SAVE_DIR, "curves.png")) 

253 plt.close() 

254  

255 print(f"\n[INFO] Selesai! Hasil disimpan di: 

{SAVE_DIR}") 

 

Lampiran B.8 Source Code Konversi Tensorflow Lite 

1 import os 

2 import numpy as np 

3 import tensorflow as tf 

4  

5 # ------------------------------ 

6 # Path model input/output 

7 # ------------------------------ 

8 keras_model_path = r"E:\Dataset Penelitian Bahasa 

Isyarat Olfat 2025\Tugas Akhir\Source Code\results train 

new\Transformer Dropout 0.3\transformer_best.keras" 

9 tflite_out_dir = r"E:\Dataset Penelitian Bahasa 

Isyarat Olfat 2025\Tugas Akhir\Source Code\results train 

new\Transformer Dropout 0.3" 

10 tflite_model_path = os.path.join(tflite_out_dir, 
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"model_transformer.tflite") 

11  

12 os.makedirs(tflite_out_dir, exist_ok=True) 

13  

14 # ------------------------------ 

15 # 1. Load model .keras 

16 # ------------------------------ 

17 print("[INFO] Loading Keras model...") 

18 model = tf.keras.models.load_model(keras_model_path, 

compile=False) 

19 model.summary() 

20  

21 # ------------------------------ 

22 # 2. Convert to TFLite (Float16 quantization) 

23 # ------------------------------ 

24 print("\n[INFO] Converting to TensorFlow Lite 

(float16 quantization)...") 

25 converter = 

tf.lite.TFLiteConverter.from_keras_model(model) 

26  

27 # Gunakan optimisasi default 

28 converter.optimizations = [tf.lite.Optimize.DEFAULT] 

29 # Targetkan tipe data float16 untuk bobot (lebih 

ringan & cepat di ARM) 

30 converter.target_spec.supported_types = [tf.float16] 

31 # Pastikan inference tetap float32 agar kompatibel 

32 converter.target_spec.supported_ops = 

[tf.lite.OpsSet.TFLITE_BUILTINS] 

33  

34 # Konversi dan simpan 

35 tflite_model = converter.convert() 

36 with open(tflite_model_path, "wb") as f: 

37     f.write(tflite_model) 

38  

39 size_kb = os.path.getsize(tflite_model_path) / 1024 

40 print(f"[OK] Model berhasil disimpan: 

{tflite_model_path} ({size_kb:.1f} KB)") 

41  

42 # ------------------------------ 

43 # 3. (Opsional) Cek input/output signature 

44 # ------------------------------ 

45 interpreter = 

tf.lite.Interpreter(model_path=tflite_model_path) 

46 interpreter.allocate_tensors() 

47 input_details = interpreter.get_input_details() 
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48 output_details = interpreter.get_output_details() 

49  

50 print("\n[INFO] Input Tensor:", input_details) 

51 print("[INFO] Output Tensor:", output_details) 

52 print("\n[INFO] Konversi selesai. Model siap 

digunakan di Raspberry Pi.") 

 

Lampiran B.9 Source Code Hybrid Model RF+LSTM 

1 import sys 

2 sys.path.append('/usr/lib/python3/dist-packages')  # 

pastikan picamera2 bisa diimport 

3  

4 import cv2 

5 import numpy as np 

6 import mediapipe as mp 

7 import joblib 

8 import time 

9 # [UBAH BAGIAN INI] Menggunakan tflite_runtime 

menggantikan tensorflow full 

10 from tflite_runtime.interpreter import Interpreter  

11 from picamera2 import Picamera2 

12 from collections import deque 

13  

14 # ------------------------------ 

15 # Load Models & Labels 

16 # ------------------------------ 

17 rf_model = joblib.load( 

18     

"/home/olfat/Desktop/projects/projectsenv/random_forest_b

isindo_kcross.pkl" 

19 ) 

20  

21 # [UBAH BAGIAN INI] Load TFLite LSTM menggunakan 

Interpreter dari tflite_runtime 

22 interpreter = 

Interpreter(model_path="/home/olfat/Desktop/projects/proj

ectsenv/model_lstm.tflite") 

23 interpreter.allocate_tensors() 

24 input_details = interpreter.get_input_details() 

25 output_details = interpreter.get_output_details() 

26  

27 labels = np.load( 

28     

"/home/olfat/Desktop/projects/projectsenv/all_gestures_la
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bels_lstm.npy", allow_pickle=True 

29 ).item()  # dict -> {"static": [...], "dynamic": 

[...]} 

30  

31 # ------------------------------ 

32 # CONFIG 

33 # ------------------------------ 

34 SEQ_LENGTH = 20 

35 MIN_SEQ_FOR_LSTM = 12 

36 MOTION_THRESHOLD = 0.005 

37 HOLD_FRAMES = 6 

38 COOLDOWN_TIME = 1.5 

39 HAND_GRACE_TIME = 1.0   # jeda detik saat tangan 

baru muncul 

40  

41 # ------------------------------ 

42 # State & Buffers 

43 # ------------------------------ 

44 sequence_buffer = deque(maxlen=SEQ_LENGTH) 

45 motion_scores = [] 

46 hold_counter = 0 

47 last_pred_time = 0.0 

48 last_result_text = "" 

49 last_result_color = (255,255,255) 

50 last_result_source = "" 

51 prev_landmarks = None 

52  

53 hand_present = False 

54 grace_start_time = None 

55  

56 print(f"[INFO] Models loaded. Using TFLite LSTM. 

SEQ_LENGTH={SEQ_LENGTH}") 

57  

58 # ------------------------------ 

59 # Mediapipe 

60 # ------------------------------ 

61 mp_hands = mp.solutions.hands 

62 hands = mp_hands.Hands( 

63     static_image_mode=False, 

64     max_num_hands=2, 

65     min_detection_confidence=0.7, 

66     min_tracking_confidence=0.7 

67 ) 

68 mp_draw = mp.solutions.drawing_utils 

69  
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70 # ------------------------------ 

71 # Helpers 

72 # ------------------------------ 

73 def extract_landmarks(results): 

74     if not results.multi_hand_landmarks: 

75         return None 

76     row = [] 

77     for hl in results.multi_hand_landmarks: 

78         for lm in hl.landmark: 

79             row.extend([lm.x, lm.y, lm.z]) 

80     if len(results.multi_hand_landmarks) == 1: 

81         row.extend([0.0]*63) 

82     if len(row) < 126: 

83         row.extend([0.0]*(126-len(row))) 

84     elif len(row) > 126: 

85         row = row[:126] 

86     return np.array(row, dtype=np.float32) 

87  

88 def predict_rf(feat): 

89     probs = rf_model.predict_proba([feat])[0] 

90     cid = int(np.argmax(probs)) 

91     return labels["static"][cid] 

92  

93 def predict_lstm_tflite(seq): 

94     # ubah jadi numpy array 

95     seq = np.array(seq, dtype=np.float32) 

96  

97     # kalau sequence belum penuh, lakukan padding 

(ulang frame terakhir) 

98     if len(seq) < SEQ_LENGTH: 

99         last_frame = seq[-1] if len(seq) > 0 else 

np.zeros((126,), dtype=np.float32) 

100         pad_len = SEQ_LENGTH - len(seq) 

101         pad_frames = 

np.repeat(last_frame[np.newaxis, :], pad_len, axis=0) 

102         seq = np.concatenate([seq, pad_frames], 

axis=0) 

103  

104     # pastikan bentuknya (1, SEQ_LENGTH, 126) 

105     X = np.expand_dims(seq, axis=0) 

106  

107     

interpreter.set_tensor(input_details[0]['index'], X) 

108     interpreter.invoke() 

109     probs = 



 

159 

 

interpreter.get_tensor(output_details[0]['index'])[0] 

110     cid = int(np.argmax(probs)) 

111     return labels["dynamic"][cid] 

112  

113 def draw_text_bg(img, text, pos=(10,40), 

font_scale=1.0, color=(255,255,255)): 

114     x,y = pos 

115     font = cv2.FONT_HERSHEY_SIMPLEX 

116     thickness = 2 

117     (w,h), _ = cv2.getTextSize(text, font, 

font_scale, thickness) 

118     cv2.rectangle(img, (x-6,y-6), (x+w+6, y+h+6), 

(0,0,0), -1) 

119     cv2.putText(img, text, (x, y+h-6), font, 

font_scale, color, thickness, cv2.LINE_AA) 

120  

121 # ------------------------------ 

122 # Camera Init 

123 # ------------------------------ 

124 picam2 = Picamera2() 

125 config = 

picam2.create_preview_configuration(main={"format": 

"XRGB8888", "size": (640, 480)}) 

126 picam2.configure(config) 

127 picam2.start() 

128  

129 # ------------------------------ 

130 # Main loop 

131 # ------------------------------ 

132 try: 

133     while True: 

134         frame = picam2.capture_array() 

135         frame = cv2.flip(frame, 1) 

136  

137         image_rgb = cv2.cvtColor(frame, 

cv2.COLOR_BGR2RGB) 

138         results = hands.process(image_rgb) 

139         image = cv2.cvtColor(image_rgb, 

cv2.COLOR_RGB2BGR) 

140  

141         if results.multi_hand_landmarks: 

142             for hl in results.multi_hand_landmarks: 

143                 mp_draw.draw_landmarks(image, hl, 

mp_hands.HAND_CONNECTIONS) 

144  
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145         # cooldown prediksi 

146         if time.time() - last_pred_time < 

COOLDOWN_TIME: 

147             if last_result_text: 

148                 draw_text_bg(image, 

f"{last_result_text} ({last_result_source})", 

pos=(10,10), color=last_result_color) 

149                 remaining = COOLDOWN_TIME - 

(time.time() - last_pred_time) 

150                 draw_text_bg(image, f"Next in 

{remaining:.1f}s", pos=(10,60), font_scale=0.8, 

color=(200,200,200)) 

151             cv2.imshow("Gesture Recognition", image) 

152             if cv2.waitKey(1) & 0xFF == ord('q'): 

153                 break 

154             continue 

155  

156         lm = extract_landmarks(results) 

157         if lm is None: 

158             sequence_buffer.clear() 

159             motion_scores.clear() 

160             hold_counter = 0 

161             prev_landmarks = None 

162             hand_present = False 

163             grace_start_time = None 

164  

165             draw_text_bg(image, "Show your hand 

(waiting)...", pos=(10,10), color=(200,200,200)) 

166             cv2.imshow("Gesture Recognition", image) 

167             if cv2.waitKey(1) & 0xFF == ord('q'): 

168                 break 

169             continue 

170         else: 

171             if not hand_present: 

172                 hand_present = True 

173                 grace_start_time = time.time() 

174  

175             if grace_start_time is not None and 

(time.time() - grace_start_time < HAND_GRACE_TIME): 

176                 remaining = HAND_GRACE_TIME - 

(time.time() - grace_start_time) 

177                 draw_text_bg(image, f"Stabilizing... 

{remaining:.1f}s", pos=(10,10), color=(0,200,200)) 

178                 cv2.imshow("Gesture Recognition", 

image) 



 

161 

 

179                 if cv2.waitKey(1) & 0xFF == 

ord('q'): 

180                     break 

181                 continue 

182  

183         sequence_buffer.append(lm) 

184  

185         if prev_landmarks is not None: 

186             motion = np.mean(np.abs(lm - 

prev_landmarks)) 

187         else: 

188             motion = 0.0 

189         prev_landmarks = lm 

190  

191         motion_scores.append(motion) 

192         if len(motion_scores) > SEQ_LENGTH: 

193             motion_scores.pop(0) 

194  

195         draw_text_bg(image, f"Recording 

{len(sequence_buffer)}/{SEQ_LENGTH}", pos=(10,10), 

color=(200,200,200)) 

196  

197         if len(sequence_buffer) >= 2: 

198             avg_motion = 

float(np.mean(motion_scores)) if motion_scores else 0.0 

199  

200             if avg_motion > MOTION_THRESHOLD and 

len(sequence_buffer) >= MIN_SEQ_FOR_LSTM: 

201                 result = 

predict_lstm_tflite(list(sequence_buffer)) 

202                 last_result_text = result 

203                 last_result_source = "LSTM" 

204                 last_result_color = (0,255,0) 

205                 last_pred_time = time.time() 

206                 sequence_buffer.clear() 

207                 motion_scores.clear() 

208                 prev_landmarks = None 

209                 hold_counter = 0 

210                 draw_text_bg(image, 

f"{last_result_text} (LSTM)", pos=(10,10), 

color=last_result_color) 

211  

212             elif avg_motion <= MOTION_THRESHOLD: 

213                 hold_counter += 1 

214                 draw_text_bg(image, f"Holding... 
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{hold_counter}/{HOLD_FRAMES}", pos=(10,60), 

color=(200,200,200)) 

215                 if hold_counter >= HOLD_FRAMES and 

len(sequence_buffer) >= 1: 

216                     result = 

predict_rf(sequence_buffer[-1]) 

217                     last_result_text = result 

218                     last_result_source = "RF" 

219                     last_result_color = (0,0,255) 

220                     last_pred_time = time.time() 

221                     sequence_buffer.clear() 

222                     motion_scores.clear() 

223                     prev_landmarks = None 

224                     hold_counter = 0 

225                     draw_text_bg(image, 

f"{last_result_text} (RF)", pos=(10,10), 

color=last_result_color) 

226  

227         cv2.imshow("Gesture Recognition", image) 

228         if cv2.waitKey(1) & 0xFF == ord('q'): 

229             break 

230  

231 finally: 

232     cv2.destroyAllWindows() 

233     hands.close() 

234     picam2.stop() 

 

Lampiran B.10 Source Code Hybrid Model RF+Transformer 

1 import sys 

2 sys.path.append('/usr/lib/python3/dist-packages')  # 

pastikan picamera2 bisa diimport 

3  

4 import cv2 

5 import numpy as np 

6 import mediapipe as mp 

7 import joblib 

8 import time 

9 from tflite_runtime.interpreter import Interpreter  

#      lebih ringan dibanding tensorflow 

10 from picamera2 import Picamera2 

11 from collections import deque 

12  

13 # 

===================================================== 



 

163 

 

14 # 1. LOAD MODEL & LABELS 

15 # 

===================================================== 

16 print("[INFO] Memuat model Random Forest dan 

Transformer...") 

17  

18 # Random Forest untuk gestur statis 

19 rf_model = 

joblib.load("/home/olfat/Desktop/projects/projectsenv/ran

dom_forest_bisindo_kcross.pkl") 

20  

21 # Transformer (TensorFlow Lite) 

22 interpreter = 

Interpreter(model_path="/home/olfat/Desktop/projects/proj

ectsenv/model_transformer.tflite") 

23 interpreter.allocate_tensors() 

24 input_details = interpreter.get_input_details() 

25 output_details = interpreter.get_output_details() 

26  

27 # Label 

28 labels = 

np.load("/home/olfat/Desktop/projects/projectsenv/all_ges

tures_labels_transformer.npy", allow_pickle=True).item()  

# {"static": [...], "dynamic": [...]} 

29  

30 print(f"[INFO] Model loaded. Input: 

{input_details[0]['shape']}, Output: 

{output_details[0]['shape']}") 

31  

32 # 

===================================================== 

33 # 2. KONFIGURASI 

34 # 

===================================================== 

35 SEQ_LENGTH = 20 

36 MIN_SEQ_FOR_TRANSFORMER = 12 

37 MOTION_THRESHOLD = 0.005 

38 HOLD_FRAMES = 6 

39 COOLDOWN_TIME = 1.5 

40 HAND_GRACE_TIME = 1.0   # detik jeda stabilisasi 

tangan 

41  

42 # 

===================================================== 

43 # 3. STATE & BUFFER 
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44 # 

===================================================== 

45 sequence_buffer = deque(maxlen=SEQ_LENGTH) 

46 motion_scores = [] 

47 hold_counter = 0 

48 last_pred_time = 0.0 

49 last_result_text = "" 

50 last_result_color = (255, 255, 255) 

51 last_result_source = "" 

52 prev_landmarks = None 

53  

54 hand_present = False 

55 grace_start_time = None 

56  

57 # 

===================================================== 

58 # 4. MEDIAPIPE 

59 # 

===================================================== 

60 mp_hands = mp.solutions.hands 

61 hands = mp_hands.Hands( 

62     static_image_mode=False, 

63     max_num_hands=2, 

64     min_detection_confidence=0.7, 

65     min_tracking_confidence=0.7 

66 ) 

67 mp_draw = mp.solutions.drawing_utils 

68  

69 # 

===================================================== 

70 # 5. HELPER FUNCTIONS 

71 # 

===================================================== 

72 def extract_landmarks(results): 

73     if not results.multi_hand_landmarks: 

74         return None 

75     row = [] 

76     for hl in results.multi_hand_landmarks: 

77         for lm in hl.landmark: 

78             row.extend([lm.x, lm.y, lm.z]) 

79     if len(results.multi_hand_landmarks) == 1: 

80         row.extend([0.0] * 63) 

81     if len(row) < 126: 

82         row.extend([0.0] * (126 - len(row))) 

83     elif len(row) > 126: 
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84         row = row[:126] 

85     return np.array(row, dtype=np.float32) 

86  

87 def predict_rf(feat): 

88     probs = rf_model.predict_proba([feat])[0] 

89     cid = int(np.argmax(probs)) 

90     return labels["static"][cid] 

91  

92 def predict_transformer_tflite(seq): 

93     seq = np.array(seq, dtype=np.float32) 

94  

95     # padding jika panjang sequence < 20 

96     if len(seq) < SEQ_LENGTH: 

97         last_frame = seq[-1] if len(seq) > 0 else 

np.zeros((126,), dtype=np.float32) 

98         pad_len = SEQ_LENGTH - len(seq) 

99         pad_frames = 

np.repeat(last_frame[np.newaxis, :], pad_len, axis=0) 

100         seq = np.concatenate([seq, pad_frames], 

axis=0) 

101  

102     X = np.expand_dims(seq, axis=0)  # (1, 20, 126) 

103  

104     

interpreter.set_tensor(input_details[0]['index'], X) 

105     interpreter.invoke() 

106     probs = 

interpreter.get_tensor(output_details[0]['index'])[0] 

107     cid = int(np.argmax(probs)) 

108     return labels["dynamic"][cid] 

109  

110 def draw_text_bg(img, text, pos=(10,40), 

font_scale=1.0, color=(255,255,255)): 

111     x, y = pos 

112     font = cv2.FONT_HERSHEY_SIMPLEX 

113     thickness = 2 

114     (w, h), _ = cv2.getTextSize(text, font, 

font_scale, thickness) 

115     cv2.rectangle(img, (x-6, y-6), (x+w+6, y+h+6), 

(0,0,0), -1) 

116     cv2.putText(img, text, (x, y+h-6), font, 

font_scale, color, thickness, cv2.LINE_AA) 

117  

118 # 

===================================================== 
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119 # 6. INISIALISASI KAMERA 

120 # 

===================================================== 

121 picam2 = Picamera2() 

122 config = 

picam2.create_preview_configuration(main={"format": 

"XRGB8888", "size": (640, 480)}) 

123 picam2.configure(config) 

124 picam2.start() 

125  

126 print("[INFO] Sistem siap. Tekan 'q' untuk keluar.") 

127  

128 # 

===================================================== 

129 # 7. LOOP UTAMA 

130 # 

===================================================== 

131 try: 

132     while True: 

133         frame = picam2.capture_array() 

134         frame = cv2.flip(frame, 1) 

135  

136         image_rgb = cv2.cvtColor(frame, 

cv2.COLOR_BGR2RGB) 

137         results = hands.process(image_rgb) 

138         image = cv2.cvtColor(image_rgb, 

cv2.COLOR_RGB2BGR) 

139  

140         if results.multi_hand_landmarks: 

141             for hl in results.multi_hand_landmarks: 

142                 mp_draw.draw_landmarks(image, hl, 

mp_hands.HAND_CONNECTIONS) 

143  

144         # cooldown prediksi 

145         if time.time() - last_pred_time < 

COOLDOWN_TIME: 

146             if last_result_text: 

147                 draw_text_bg(image, 

f"{last_result_text} ({last_result_source})", 

pos=(10,10), color=last_result_color) 

148                 remaining = COOLDOWN_TIME - 

(time.time() - last_pred_time) 

149                 draw_text_bg(image, f"Next in 

{remaining:.1f}s", pos=(10,60), font_scale=0.8, 

color=(200,200,200)) 
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150             cv2.imshow("Gesture Recognition", image) 

151             if cv2.waitKey(1) & 0xFF == ord('q'): 

152                 break 

153             continue 

154  

155         lm = extract_landmarks(results) 

156         if lm is None: 

157             sequence_buffer.clear() 

158             motion_scores.clear() 

159             hold_counter = 0 

160             prev_landmarks = None 

161             hand_present = False 

162             grace_start_time = None 

163  

164             draw_text_bg(image, "Show your hand 

(waiting)...", pos=(10,10), color=(200,200,200)) 

165             cv2.imshow("Gesture Recognition", image) 

166             if cv2.waitKey(1) & 0xFF == ord('q'): 

167                 break 

168             continue 

169         else: 

170             if not hand_present: 

171                 hand_present = True 

172                 grace_start_time = time.time() 

173  

174             if grace_start_time is not None and 

(time.time() - grace_start_time < HAND_GRACE_TIME): 

175                 remaining = HAND_GRACE_TIME - 

(time.time() - grace_start_time) 

176                 draw_text_bg(image, f"Stabilizing... 

{remaining:.1f}s", pos=(10,10), color=(0,200,200)) 

177                 cv2.imshow("Gesture Recognition", 

image) 

178                 if cv2.waitKey(1) & 0xFF == 

ord('q'): 

179                     break 

180                 continue 

181  

182         # ------------------------------ 

183         # Proses sequence & motion 

184         # ------------------------------ 

185         sequence_buffer.append(lm) 

186         motion = np.mean(np.abs(lm - 

prev_landmarks)) if prev_landmarks is not None else 0.0 

187         prev_landmarks = lm 
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188         motion_scores.append(motion) 

189         if len(motion_scores) > SEQ_LENGTH: 

190             motion_scores.pop(0) 

191  

192         draw_text_bg(image, f"Recording 

{len(sequence_buffer)}/{SEQ_LENGTH}", pos=(10,10), 

color=(200,200,200)) 

193  

194         if len(sequence_buffer) >= 2: 

195             avg_motion = 

float(np.mean(motion_scores)) if motion_scores else 0.0 

196  

197             # ------------------------------ 

198             # Dynamic Gesture → Transformer 

199             # ------------------------------ 

200             if avg_motion > MOTION_THRESHOLD and 

len(sequence_buffer) >= MIN_SEQ_FOR_TRANSFORMER: 

201                 result = 

predict_transformer_tflite(list(sequence_buffer)) 

202                 last_result_text = result 

203                 last_result_source = "Transformer" 

204                 last_result_color = (0,255,0) 

205                 last_pred_time = time.time() 

206                 sequence_buffer.clear() 

207                 motion_scores.clear() 

208                 prev_landmarks = None 

209                 hold_counter = 0 

210                 draw_text_bg(image, 

f"{last_result_text} (Transformer)", pos=(10,10), 

color=last_result_color) 

211  

212             # ------------------------------ 

213             # Static Gesture → Random Forest 

214             # ------------------------------ 

215             elif avg_motion <= MOTION_THRESHOLD: 

216                 hold_counter += 1 

217                 draw_text_bg(image, f"Holding... 

{hold_counter}/{HOLD_FRAMES}", pos=(10,60), 

color=(200,200,200)) 

218                 if hold_counter >= HOLD_FRAMES and 

len(sequence_buffer) >= 1: 

219                     result = 

predict_rf(sequence_buffer[-1]) 

220                     last_result_text = result 

221                     last_result_source = "RF" 
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222                     last_result_color = (0,0,255) 

223                     last_pred_time = time.time() 

224                     sequence_buffer.clear() 

225                     motion_scores.clear() 

226                     prev_landmarks = None 

227                     hold_counter = 0 

228                     draw_text_bg(image, 

f"{last_result_text} (RF)", pos=(10,10), 

color=last_result_color) 

229  

230         cv2.imshow("Gesture Recognition", image) 

231         if cv2.waitKey(1) & 0xFF == ord('q'): 

232             break 

233  

234 finally: 

235     cv2.destroyAllWindows() 

236     hands.close() 

237     picam2.stop() 
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