

PENGEMBANGAN SISTEM KLASIFIKASI BAHASA ISYARAT BISINDO

SECARA REAL-TIME DENGAN RASPBERRY PI

TUGAS AKHIR

OLFAT HARITS ALATAS

312210018

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2025

i

ii

PERNYATAAN KEASLIAN TUGAS AKHIR

Yang bertanda tangan dibawah ini :

Nama : Olfat Harits Alatas

NIM : 312210018

Program Studi : Teknik Informatika

Perguruan Tinggi : Universitas Ma Chung

Dengan ini menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir

saya dengan judul “PENGEMBANGAN SISTEM KLASIFIKASI BAHASA

ISYARAT BISINDO SECARA REAL-TIME DENGAN RASPBERRY PI”adalah

asli (orisinil) atau tidak plagiat dan benar hasil karya intelektual mandiri, dan belum

pernah diterbitkan/dipublikasikan dimanapun dan dalam bentuk apapun.

Surat penyataan ini saya buat dengan sebenar-benarnya dengan kesaran sendiri

dan tanpa ada paksaan dari pihak manapun. Apabila dikemudian hari diduga kuat ada

ketidaksesuai antara fakta dengan dokumen pernyataan ini, saya bersedia diproses oleh

Universitas Ma Chung, dengan sanksi terberat berupa pembatalan kelulusan atau

pencabutan sarjana.

Malang, 14 Januari 2026

Olfat Harits Alatas

NIM. 312210018

iii

KATA PENGANTAR

Puji dan syukur Penulis panjatkan ke hadirat Allah SWT, oleh karena anugerah-

Nya yang melimpah, kemurahan dan kasih sayang-Nya yang besar, senantiasa menjadi

penolong bagi Penulis sepanjang hidupnya. Hanya karena kebaikan dan ridho-Nya lah

yang menuntun Penulis dalam mengerjakan laporan proyek tugas akhir dengan judul

“PENGEMBANGAN SISTEM KLASIFIKASI BAHASA ISYARAT BISINDO

SECARA REAL-TIME DENGAN RASPBERRY PI”, sehingga dapat diselesaikan

dengan baik.

Laporan proyek tugas akhir ini disusun untuk memenuhi salah satu syarat guna

memperoleh gelar Sarjana Komputer pada Program Studi Teknik Informatika

Universitas Ma Chung. Penulis berharap dengan dibuatnya laporan ini dapat memperluas

pengetahuan dan wawasan bagi para pembaca.

Penulis menyadari sepenuhnya bahwa usulan proposal penelitian ini masih jauh

dari kesempurnaan karena segala keterbatasan yang ada. Dengan tersusunnya laporan

proyek tugas akhir ini, Penulis menyampaikan terima kasih kepada para pihak yang telah

memberi dukungan kepada Penulis baik secara moril maupun materil, di antaranya yang

terhormat:

1. Bapak Dr. Ir. Stefanus Yufra Manahen Taneo, M.S., M.Sc., selaku Rektor

Universitas Ma Chung.

2. Bapak Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd., selaku Dekan Fakultas

Teknologi dan Desain Universitas Ma Chung serta sekaligus sebagai Dosen

Pembimbing 1, yang memberikan dukungan yang luar biasa, saran dan masukan

dengan sangat baik dan bijaksana dalam menyempurnakan Laporan Tugas Akhir

ini.

3. Bapak Hendry Setiawan, S.T., M.Kom, selaku Ketua Program Studi Teknik

Informatika Universitas Ma Chung.

iv

4. Bapak Mochamad Subianto, S.Kom., M.Cs. selaku Dosen Pembimbing 2, yang

memberikan saran dan masukan dengan sangat baik dan bijaksana dalam

menyempurnakan Laporan Tugas Akhir ini.

5. Bapak Windra Swastika, S.Kom., MT., Ph.D. selaku Dosen Penguji yang telah

memberikan saran terhadap Laporan Tugas Akhir ini.

6. Keluarga Penulis yang telah memberikan doa, kasih sayang, dorongan, semangat,

serta motivasi kepada Penulis dalam berbagai pihak.

7. Devinda Gusmananda, S.Farm, terima kasih karena telah menjadi support system

terbaik, yang senantiasa mendampingi, mendengarkan keluh kesah, serta

memberikan dukungan moril dan semangat tanpa henti di samping Penulis

selama proses pengerjaan Tugas Akhir ini.

8. Seluruh Partisipan Penelitian yang tidak dapat Penulis sebutkan namanya satu

per satu. Terima kasih yang sebesar-besarnya atas kesediaan waktu dan

kerjasamanya dalam proses pengambilan data, yang menjadi pondasi utama

dalam pembentukan dataset penelitian ini.

9. Teman-teman angkatan 2022 yang telah menemani Penulis dalam lika-liku

perkuliahan.

Semoga Allah SWT senantiasa memberikan rahmat dan berkah-Nya atas

ketulusan dan kebaikan yang telah diberikan kepada Penulis. Demikian dan semoga

Laporan Tugas Akhir ini dapat bermanfaat bagi pembaca.

Malang, 9 Januari 2026

Penulis

(Olfat Harits Alatas)

v

PENGEMBANGAN SISTEM KLASIFIKASI BAHASA ISYARAT BISINDO

SECARA REAL-TIME DENGAN RASPBERRY PI

Olfat Harits Alatas, Romy Budhi, Mochamad Subianto

Universitas Ma Chung

ABSTRAK

Komunikasi merupakan kebutuhan fundamental manusia, namun kesenjangan

komunikasi masih sering terjadi antara masyarakat dengar dan komunitas Tuli yang

menggunakan Bahasa Isyarat Indonesia (BISINDO). Solusi teknologi yang ada saat ini

seringkali bergantung pada perangkat keras mahal atau komputasi cloud yang tidak

praktis untuk penggunaan sehari-hari. Penelitian ini bertujuan untuk mengembangkan

sistem penerjemah bahasa isyarat portable dan real-time berbasis embedded system

menggunakan Raspberry Pi 5.

Penelitian ini menerapkan pendekatan hybrid dalam mengklasifikasikan gestur.

Untuk gestur statis (huruf, angka dan kata statis), digunakan algoritma Random Forest

karena efisiensinya pada data tabular. Sedangkan untuk gestur dinamis, dilakukan studi

perbandingan antara arsitektur Long Short-Term Memory (LSTM) dan Transformer

untuk menangkap dependensi spasio-temporal. Ekstraksi fitur dilakukan menggunakan

MediaPipe Hands yang menghasilkan 21 titik koordinat kerangka tangan (landmarks).

Hasil pengujian membuktikan bahwa pendekatan hybrid sangat efektif. Pada

gestur statis, Random Forest mencatatkan performa sempurna dengan akurasi 100%.

Temuan signifikan terlihat pada klasifikasi gestur dinamis, di mana arsitektur

Transformer berhasil mengungguli LSTM dengan akurasi uji 98,57% berbanding

94,50%. Keunggulan ini semakin teruji pada validasi real-time, di mana Transformer

mampu mempertahankan stabilitas prediksi dengan akurasi 93%, jauh melampaui

LSTM yang hanya mencapai 86%. Hal ini menunjukkan bahwa mekanisme Self-

Attention pada Transformer lebih efektif dalam menangkap konteks spasio-temporal

jangka panjang dibandingkan gerbang memori LSTM, menjadikan sistem ini solusi

yang lebih andal untuk implementasi di dunia nyata.

Kata Kunci: BISINDO, Raspberry Pi, Random Forest, LSTM, Transformer,

Computer Vision.

vi

DEVELOPMENT OF A REAL-TIME BISINDO SIGN LANGUAGE

CLASSIFICATION SYSTEM USING RASPBERRY PI

Olfat Harits Alatas, Romy Budhi, Mochamad Subianto

Universitas Ma Chung

ABSTRACT

Communication is a fundamental human need, however, a significant

communication gap persists between the hearing society and the Deaf community who

utilize Indonesian Sign Language (BISINDO). Current technological solutions often rely

on expensive hardware or cloud computing, rendering them impractical for daily usage.

This study aims to develop a portable, real-time sign language translation system based

on an embedded system utilizing Raspberry Pi 5.

This research implements a hybrid approach for gesture classification. For static

gestures (letters, numbers, and static words), the Random Forest algorithm is employed

due to its efficiency with tabular data. Meanwhile, for dynamic gestures, a comparative

study is conducted between Long Short-Term Memory (LSTM) and Transformer

architectures to capture spatiotemporal dependencies. Feature extraction utilizes

MediaPipe Hands, generating 21 hand skeletal coordinate points (landmarks).

Experimental results demonstrate that the hybrid approach is highly effective. In

static gesture classification, Random Forest achieved perfect performance with 100%

accuracy. Significant findings emerged in dynamic gesture classification, where the

Transformer architecture successfully outperformed LSTM with a test accuracy of 98.57%

compared to 94.50%. This superiority was further validated in real-time testing, where

Transformer maintained prediction stability with 93% accuracy, significantly surpassing

LSTM which only reached 86%. These results indicate that the Self-Attention

mechanism in the Transformer is more effective in capturing long-term spatiotemporal

contexts compared to LSTM's memory gates, rendering this system a more reliable

solution for real-world implementation.

Keywords: BISINDO, Embedded System, Random Forest, LSTM, Transformer,

Spatiotemporal.

vii

DAFTAR ISI

PERNYATAAN KEASLIAN TUGAS AKHIR ... ii

KATA PENGANTAR ... iii

ABSTRAK .. v

DAFTAR ISI ... vii

DAFTAR GAMBAR .. x

DAFTAR TABEL ... xii

DAFTAR PERSAMAAN .. xiii

Bab I Pendahuluan ... 1

1.1. Latar Belakang ... 1

1.2. Identifikasi Masalah ... 8

1.3. Batasan Masalah ... 8

1.4. Rumusan Masalah .. 9

1.5. Tujuan Penelitian .. 9

1.6. Luaran Penelitian .. 9

1.7. Manfaat ... 10

1.8. Sistematika Penulisan ... 10

Bab II Tinjauan Pustaka .. 12

2.1. Bahasa Isyarat ... 12

2.1.1. BISINDO (Bahasa Isyarat Indonesia) .. 13

2.1.2. SIBI (Sistem Isyarat Bahasa Indonesia) ... 14

2.2. Python ... 14

2.2.1. Open CV ... 15

2.2.2. Numpy .. 15

2.2.3. Pandas... 16

2.2.4. Scikit-learn ... 16

2.2.5. Mediapipe ... 17

2.2.6. Tensorflow ... 18

2.2.7. Joblib .. 18

2.2.8. Collections .. 19

2.2.9. Pickle .. 19

viii

2.2.10. Matplotlib ... 19

2.2.11. Regex .. 19

2.2.12. OS (Operating System) .. 20

2.2.13. Long Short Term Memory (LSTM) ... 20

2.2.14. Random Forest ... 21

2.2.15. Transformer .. 23

2.2.16. Tensorflow Lite .. 24

2.2.17. Augmentasi Citra.. 25

2.3. Raspberry Pi ... 26

2.3.1. Pi Camera ... 31

Bab III Analisis dan Perancangan Sistem ... 34

3.1. Metode Penelitian ... 34

3.2. Analisis Kebutuhan .. 36

3.2.1. Kebutuhan Fungsionalitas .. 36

3.2.2. Kebutuhan Non-Fungsional ... 36

3.2.3. Kebutuhan Data .. 37

3.3. Pengumpulan Data ... 37

3.4. Pembentukan Model Klasifikasi... 43

3.4.1. Arsitektur Model Random Forest ... 44

3.4.2. Arsitektur Model LSTM... 45

3.4.3. Arsitektur Model Transformer ... 48

3.5. Hybrid Model ... 53

Bab IV Hasil dan Pembahasan .. 60

4.1. Profil Partisipan .. 60

4.2. Implementasi Sistem .. 60

4.2.1. Implementasi Perangkat Keras (Hardware) ... 60

4.2.2. Implementasi Antarmuka Pengguna (User Interface) 62

4.3. Implementasi dan Analisis Kode Program ... 65

4.3.1. Implementasi Augmentasi Citra untuk Gestur Statis 65

4.3.2. Implementasi Model Random Forest (Gestur Statis) 67

4.3.3. Implementasi Model LSTM (Gestur Dinamis) .. 68

4.3.4. Implementasi Model Transformer (Gestur Dinamis) 70

4.4. Hasil Evaluasi Model ... 71

ix

4.4.1. Evaluasi Model Gestur Statis (Random Forest) 72

4.4.2. Evaluasi Model Gestur Dinamis: LSTM .. 75

4.4.3. Evaluasi Model Gestur Dinamis: Transformer .. 78

4.4.4. Analisis Komparatif Model Dinamis (LSTM vs Transformer) 83

4.5. Pengujian Sistem Secara Real-Time pada Raspberry Pi 85

4.5.1. Skenario Pengujian ... 85

4.5.2. Hasil Pengujian Akurasi Real-Time ... 87

4.5.3. Analisis Statistik Signifikansi Performa (Uji Wilcoxon) 90

4.6. Evaluasi Kinerja Komputasi pada Raspberry Pi 5 ... 92

Bab V Simpulan dan Saran ... 94

5.1. Kesimpulan ... 94

5.2. Saran ... 95

DAFTAR PUSTAKA ... 97

Lampiran ... 101

x

DAFTAR GAMBAR

Gambar 2.1 Abjad Dalam BISINDO .. 13

Gambar 2.2 Abjad Dalam SIBI ... 14

Gambar 2.3 Peta Mediapipe Hand Landmarks (Sumber: AI Google Dev) 18

Gambar 2.4 Raspberry Pi 5 (Sumber: Raspberry Pi Ltd, 2025) 28

Gambar 2.5 Pi Camera v1 5MP (Sumber: Pomaska, 2019) .. 33

Gambar 3.1 Flowchart Metode Penelitian .. 34

Gambar 3.2 Skema pengumpulan data gestur statis ... 41

Gambar 3.3 Dataset Random Forest Gestur "BAWAH" .. 41

Gambar 3.4 Pengambilan Dataset Gestur Dinamis ... 42

Gambar 3.5 Hasil Pengambilan Dataset Gestur Dinamis ... 42

Gambar 3.6 Arsitektur Model Random Forest .. 45

Gambar 3.7 Arsitektur Model LSTM ... 48

Gambar 3.8 Arsitektur Model Transformer .. 51

Gambar 3.9 Flowchart Pembuatan Model .. 52

Gambar 3.10 Diagram Alur Hybrid Model ... 53

Gambar 3.11 Topologi Perangkat ... 55

Gambar 3.12 Topologi Tanpa Internet .. 56

Gambar 4.1 Implementasi Perangkat Keras. ... 61

Gambar 4.2 Implementasi Antarmuka Program ... 62

Gambar 4.3 Fase Stabilisasi .. 63

Gambar 4.4 Fase Recording .. 64

Gambar 4.5 Fase Holding ... 64

Gambar 4.6 Cuplikan Kode Augmentasi Citra ... 66

Gambar 4.7 Code Pembagian Dataset dengan Stratifikasi.. 67

Gambar 4.8 Code Konfigurasi Model dan Cross-Validation 68

Gambar 4.9 Code Arsitektur Model LSTM .. 69

Gambar 4.10 Code Konfigurasi Pelatihan dan Callbacks ... 70

Gambar 4.11 Code Implementasi Positional Embedding pada Transformer 70

xi

Gambar 4.12 Code Mekanisme Perhatian (Attention) dan Stabilisasi Model 71

Gambar 4.13 Kurva Pembelajaran (Learning Curve) Model Random Forest 72

Gambar 4.14 Confusion Matrix Model Random Forest pada Data Uji 74

Gambar 4.15 Kurva Akurasi dan Loss Model LSTM ... 75

Gambar 4.16 Confusion Matrix Model LSTM ... 77

Gambar 4.17 Misklasifikasi Gestur “APA” Confusion Matrix LSTM 77

Gambar 4.18 Misklasifikasi Gestur "HANYA" Confusion Matrix LSTM 77

Gambar 4.19 Misklasifikasi Gestur "MEMBERI" Confusion Matrix LSTM 78

Gambar 4.20 Kurva Akurasi dan Loss Model Transformer 79

Gambar 4.21 Confusion Matrix Model Transformer pada Data Uji 81

Gambar 4.22 Misklasifikasi Gestur “APA” Confusion Matrix Transformer 82

Gambar 4.23Misklasifikasi Gestur “HANYA” Confusion Matrix Transformer 82

Gambar 4.24 Misklasifikasi Gestur “MEMBERI” Confusion Matrix Transformer ... 82

Gambar 4.25 Peringkat Tanda (Ranks) Uji Wilcoxon .. 91

Gambar 4.26 Hasil Statistik Uji Wilcoxon ... 91

xii

DAFTAR TABEL

Tabel 2.1 Versi Raspberry Pi .. 27

Tabel 2.2 Versi Pi Camera .. 32

Tabel 3.1 Gestur yang dilatih Random Forest .. 38

Tabel 3.2 Gestur kosakata yang dilatih LSTM dan Transformer................................ 38

Tabel 3.3 Hyperparameter Model Random Forest .. 44

Tabel 3.4 Hyperparameter Model LSTM.. 46

Tabel 3.5 Hyperarameter Model Transformer .. 49

Tabel 3.6 Sumber Daya Sistem ... 58

Tabel 4.1 Tabel Data Subjek ... 60

Tabel 4.2 Ringkasan Performa Model Random Forest pada Data Uji 73

Tabel 4.3 Ringkasan Performa Model LSTM pada Data Uji...................................... 76

Tabel 4.4 Ringkasan Performa Model Transformer pada Data Uji 80

Tabel 4.5 Perbandingan Performa Model LSTM dan Transformer 83

Tabel 4.6 Perbandingan Gestur dengan Kemiripan Visual Tinggi 84

Tabel 4.7 Hasil Pengujian Real-Time RF+LSTM .. 87

Tabel 4.8 Hasil Pengujian Real-Time RF+Transformer ... 88

xiii

DAFTAR PERSAMAAN

Persamaan (1) Rumus Input Gate ... 20

Persamaan (2) Rumus Forget Gate ... 21

Persamaan (3) Rumus Output Gate ... 21

Persamaan (4) Rumus Random Forest .. 22

Persamaan (5) Rumus Transformer .. 23

1

Bab I

Pendahuluan

1.1. Latar Belakang

Bahasa Isyarat Indonesia (BISINDO) merupakan media komunikasi utama bagi

penyandang tunarungu dan tunawicara di Indonesia. Sebagai bahasa visual, BISINDO

memanfaatkan kombinasi gerakan tangan, ekspresi wajah, dan posisi tubuh, sehingga

sering kali sulit dipahami oleh masyarakat umum yang tidak terbiasa menggunakannya.

Kondisi ini kerap menjadi hambatan komunikasi antara penyandang disabilitas dengan

lingkungan sosialnya. Di Indonesia, dikenal dua sistem bahasa isyarat, yaitu Sistem

Isyarat Bahasa Indonesia (SIBI) dan BISINDO. Namun, BISINDO lebih banyak

digunakan karena berkembang secara alami di komunitas tunarungu, bersifat kultural,

serta tidak terikat pada struktur bahasa Indonesia formal. Mengingat cakupan

penggunaannya yang lebih luas dan praktis, penelitian ini memilih BISINDO sebagai

fokus utama dalam pengembangan sistem penerjemah bahasa isyarat otomatis untuk

mendukung komunikasi yang lebih inklusif.

Kemajuan teknologi kecerdasan buatan, khususnya machine learning, telah

memungkinkan komputer mengenali pola dari data secara efektif. Salah satu

penerapannya adalah pada sistem pengenalan bahasa isyarat berbasis citra. Sejumlah

studi menunjukkan keberhasilan algoritma machine learning seperti Random Forest dan

Long Short-Term Memory (LSTM) dalam mengklasifikasikan gerakan tangan.

Penelitian Fadlilah et al. (2022) berhasil membangun sistem pengenal isyarat dasar

BISINDO menggunakan kamera dan Raspberry Pi yang mampu menerjemahkan huruf

dan angka menjadi teks secara real-time.

Berbagai pendekatan teknologi telah dikembangkan untuk menjembatani

kesenjangan komunikasi ini. Salah satu metode yang umum digunakan adalah

pendekatan berbasis sensor (wearable devices). Sebagai contoh, penelitian yang

dilakukan oleh Wungow dkk (2022) mengembangkan sarung tangan penerjemah untuk

Sistem Bahasa Isyarat Indonesia (SIBI) menggunakan flex sensor yang dikombinasikan

dengan metode K-Nearest Neighbors (KNN) dan Artificial Neural Network (ANN).

2

Meskipun penelitian tersebut berhasil mencapai akurasi tinggi hingga 99% untuk

klasifikasi statis, penggunaan perangkat keras yang harus dipasang pada tubuh pengguna

dinilai kurang praktis untuk komunikasi sehari-hari. Selain itu, akurasi pada metode

berbasis sensor sangat bergantung pada kesesuaian dimensi tangan pengguna dengan alat,

di mana perbedaan ukuran tangan dapat menyebabkan sensor tidak menekuk secara

maksimal. Mengatasi keterbatasan tersebut, penelitian ini mengusulkan pendekatan

berbasis computer vision yang lebih fleksibel tanpa memerlukan alat tambahan pada

tubuh pengguna. Berbeda dengan penelitian sebelumnya yang berfokus pada SIBI,

penelitian ini akan berfokus pada BISINDO yang lebih umum digunakan oleh komunitas

Tuli, dengan memanfaatkan arsitektur Deep Learning.

Bahasa isyarat tidak hanya terdiri dari gestur statis, tetapi juga gestur dinamis

yang membentuk kata atau kalimat. Untuk mengenali urutan gerakan dalam dimensi

waktu, dibutuhkan model yang mampu menangani data sekuensial. LSTM, sebagai

bagian dari arsitektur Recurrent Neural Network (RNN), terbukti efektif untuk

memproses data urutan. Penelitian Aljabar dan Suharjito (2020) menggabungkan CNN

dan LSTM untuk pengenalan BISINDO real-time berbasis desktop, dengan capaian

akurasi hingga 96% dalam pengenalan kata tertentu.

Penelitian Kothadiya et al. (2022) mengusulkan sistem pengenalan bahasa isyarat

berbasis deep learning dengan mengombinasikan LSTM dan GRU. Dataset yang

digunakan, IISL2020, berisi sebelas kelas kata dengan ribuan sampel video yang direkam

dalam kondisi alami tanpa sensor tambahan. Fitur citra diekstraksi menggunakan

InceptionResNetV2, kemudian diproses oleh LSTM untuk memahami pola urutan

gerakan dan dilanjutkan ke GRU guna menyaring informasi sebelum diklasifikasikan

dengan softmax. Model ini dijalankan pada desktop dan mencapai akurasi sekitar 97%,

meskipun masih terbatas pada pengenalan gestur terisolasi.

Raspberry Pi menjadi platform yang menarik untuk pengembangan sistem ini

karena memiliki keunggulan dari sisi biaya, ukuran yang ringkas, dan portabilitas.

Integrasinya dengan kamera CSI (PiCamera) memungkinkan pengambilan citra

berkecepatan tinggi dengan latensi rendah, yang sangat penting untuk aplikasi real-time.

Abed dan Rahman (2017) menunjukkan bahwa Raspberry Pi dengan modul kamera

3

dapat digunakan untuk sistem pengenalan gestur tangan berbasis visi komputer dengan

akurasi hingga 98%, sekaligus menawarkan efisiensi yang tinggi untuk aplikasi lapangan.

Hasil penelitian Alexander dkk. (2023) mengungkapkan bahwa algoritma

Random Forest menunjukkan performa terbaik dibandingkan metode klasifikasi lain,

seperti K-Nearest Neighbor (KNN), Support Vector Machine (SVM), dan Decision Tree,

dalam mengidentifikasi gestur bahasa isyarat BISINDO. Pada pengujian data, Random

Forest mampu mencapai akurasi, presisi, f1-score, dan recall sebesar 97,9%, sedangkan

pada pengujian real-time memperoleh presisi 84%. Keunggulan lain yang dicapai adalah

waktu klasifikasi tercepat di antara model yang diuji, yaitu 34,6 kata per menit, sehingga

menjadikannya pilihan yang tepat untuk aplikasi berbasis kamera dengan kebutuhan

real-time.

Selain itu, optimalisasi model menggunakan TensorFlow Lite pada perangkat

edge computing seperti Raspberry Pi telah terbukti dapat meningkatkan efisiensi proses

inferensi sekaligus mempertahankan kinerja model untuk aplikasi real-time. Toyib et al.

(2025) mengimplementasikan TensorFlow Lite pada aplikasi pengenalan Sistem Isyarat

Bahasa Indonesia (SIBI) secara real-time, dan hasilnya menunjukkan performa sistem

yang responsif dengan konsumsi sumber daya yang rendah.

Penelitian oleh Alatas & Widodo (2025) mengembangkan sistem penerjemah

bahasa isyarat BISINDO menggunakan kombinasi algoritma Random Forest untuk

gestur statis dan LSTM untuk gestur dinamis pada Raspberry Pi. Hasil penelitian tersebut

menunjukkan bahwa sistem mampu berjalan pada perangkat edge dengan tingkat akurasi

yang baik, namun akurasi real-time pada model LSTM masih dapat ditingkatkan. Hal ini

menjadi landasan utama pengembangan penelitian ini untuk mengoptimalkan akurasi

real-time melalui pemanfaatan TensorFlow Lite dan pengambilan citra menggunakan

PiCamera.

Penelitian oleh Hoque et al. (2018) mengembangkan sistem deteksi bahasa

isyarat Bangladeshi (BdSL) menggunakan algoritma Faster R-CNN dengan backbone

Inception V2. Sistem dilatih pada dataset BdSLImset yang berisi sepuluh kelas huruf

isyarat dengan variasi latar belakang dan kondisi pencahayaan. Hasil pengujian

menunjukkan bahwa model mampu mencapai akurasi rata-rata sebesar 98,2% dengan

4

waktu deteksi sekitar 90 milidetik per citra, sehingga dapat berjalan secara real-time.

Meskipun demikian, penelitian ini mencatat adanya kendala pada huruf dengan bentuk

isyarat yang mirip, sehingga akurasi pada kondisi tertentu masih dapat ditingkatkan.

Penelitian oleh Shin et al. (2023) mengembangkan sistem pengenalan bahasa

isyarat Korea (KSL) menggunakan pendekatan deep learning berbasis transformer

ringan. Model yang diusulkan memadukan keunggulan CNN untuk ekstraksi fitur lokal

dan Convolutional Layer-Based Transformer dengan Lightweight Multi-Head Self

Attention (LMHSA) untuk menangkap ketergantungan global, serta diperkuat dengan

grain module yang berfungsi menggantikan mekanisme patch tradisional pada Vision

Transformer agar representasi awal lebih efektif dan efisien. Sistem dilatih pada dataset

KSL dengan 77 kelas serta dataset tambahan berisi 20 kata penting dalam KSL. Hasil

pengujian menunjukkan bahwa model mencapai akurasi 89,0% pada dataset KSL dan

98,3% pada dataset usulan, melampaui performa metode sebelumnya. Meskipun

demikian, penelitian ini mencatat masih adanya keterbatasan pada ukuran dataset dan

kompleksitas komputasi, sehingga pengembangan lebih lanjut diperlukan untuk

meningkatkan generalisasi dan efisiensi sistem.

Penelitian oleh Chaudhary et al (2022) melalui model SignNet II menunjukkan

kinerja yang unggul secara kuantitatif dibandingkan pendekatan berbasis RNN dan

LSTM. Pada tugas sign-to-text translation, model ini mampu mencapai skor BLEU

hingga sekitar 23, lebih tinggi 4–6 poin dibanding baseline sebelumnya yang hanya

berkisar 15–18. Sementara pada arah text-to-sign translation, SignNet II menghasilkan

peningkatan akurasi urutan gloss sebesar 4% hingga 7% dibandingkan metode terdahulu.

Selain itu, penggunaan mekanisme shared representation menjadikan model ini lebih

efisien, dengan jumlah parameter dan waktu pelatihan yang lebih hemat sekitar 10–15%

dibandingkan jika melatih dua model terpisah. Hasil ini menegaskan bahwa arsitektur

Transformer tidak hanya lebih akurat, tetapi juga lebih efisien untuk tugas penerjemahan

dua arah bahasa isyarat, meskipun tantangan terkait keterbatasan data dan kebutuhan

evaluasi lebih luas masih perlu ditangani dalam penelitian lanjutan.

Berdasarkan temuan-temuan tersebut, penelitian ini mengembangkan sistem

klasifikasi bahasa isyarat BISINDO real-time berbasis Raspberry Pi dengan

5

memanfaatkan kombinasi algoritma Random Forest untuk gestur statis, serta LSTM dan

Transformer yang dioptimasi menggunakan TensorFlow Lite untuk gestur dinamis.

Penggunaan Pi Camera memungkinkan pengambilan citra berkecepatan tinggi,

sementara kombinasi kedua algoritma diharapkan dapat meningkatkan akurasi

pengenalan baik pada gestur statis maupun dinamis dalam kondisi penggunaan di

lapangan. Selain itu, penelitian ini juga menghadirkan pembaruan berupa penerapan

metode Transformer khusus untuk pengenalan gestur dinamis, sehingga dapat

dibandingkan dengan LSTM dalam mendeteksi urutan gerakan bahasa isyarat serta

memberikan evaluasi terhadap efektivitas Transformer sebagai alternatif metode terkini.

Pemilihan Transformer dibandingkan GRU dan CNN didasarkan pada kemampuannya

dalam menangkap ketergantungan jangka panjang secara lebih efektif melalui

mekanisme self-attention, tanpa terjebak pada keterbatasan memori yang sering muncul

pada RNN maupun variannya. Selain itu, Transformer memungkinkan pemrosesan

paralel yang lebih cepat dibandingkan model sekuensial seperti GRU, sekaligus mampu

mengintegrasikan informasi spasial dan temporal lebih baik daripada CNN yang

umumnya berfokus pada pola lokal. Dengan demikian, Transformer dipandang sebagai

alternatif yang menjanjikan untuk meningkatkan akurasi dan efisiensi dalam pengenalan

gestur dinamis BISINDO secara real-time.

Arsitektur Deep Learning seperti Convolutional Neural Networks (CNN) dan

Recurrent Neural Networks (RNN), khususnya LSTM, telah lama menjadi pilihan utama

untuk tugas-tugas klasifikasi dan prediksi pada data sekuensial. Namun, kemunculan

arsitektur Transformer telah mengubah lanskap secara signifikan dan menjadi fokus

utama dalam pengembangan model pemrosesan data, termasuk untuk data audio. Sebuah

studi komparatif dilakukan untuk menguji kinerja ketiga arsitektur ini (CNN, RNN-

LSTM, dan Transformer) dalam tugas klasifikasi genre musik menggunakan Mel-

Frequency Cepstrum Coefficients (MFCCs) sebagai fitur masukan (Ali, 2024).

Studi tersebut menyoroti perbedaan kinerja yang signifikan antar model ketika

dihadapkan pada keterbatasan sumber daya komputasi. Model RNN-LSTM

menunjukkan kinerja terendah, dengan akurasi yang stagnan (flat line) di sekitar 66%

dan tidak menunjukkan tanda-tanda perbaikan meski epoch pelatihan ditambah. Model

6

CNN, di sisi lain, terbukti paling efektif untuk skenario waktu atau sumber daya yang

terbatas, dengan cepat mencapai akurasi puncak sekitar 75% sebelum akhirnya juga

mengalami stagnasi. Berbeda dari keduanya, model Transformer menunjukkan

karakteristik sebagai "pembelajar yang lambat namun konsisten”. Meskipun akurasi

awalnya lebih rendah, model Transformer menunjukkan pertumbuhan performa yang

terus-menerus dan stabil tanpa mengalami plateau, bahkan ketika durasi pelatihan

diperpanjang. Temuan ini mendukung kesimpulan bahwa dengan sumber daya dan data

yang memadai, arsitektur Transformer memiliki potensi untuk melampaui kinerja

model-model pendahulunya secara signifikan (Ali, 2024)

Arsitektur Transformer tidak hanya menggantikan RNN dalam tugas pemrosesan

bahasa alami, tetapi juga telah diuji secara intensif untuk aplikasi pemrosesan ucapan

(speech applications), seperti Automatic Speech Recognition (ASR), Speech Translation

(ST), dan Text-to-Speech (TTS). Perbedaan fundamentalnya adalah bahwa Transformer

mempelajari informasi sekuensial melalui mekanisme self-attention, sedangkan RNN

bergantung pada koneksi rekuren (Karita et al., 2019).

Dalam sebuah studi komparatif berskala besar yang membandingkan kedua

arsitektur pada 15 benchmark ASR yang berbeda, Transformer menunjukkan

superioritas yang mengejutkan dengan mengungguli RNN pada 13 dari 15 benchmark

tersebut. Keunggulan ini juga terlihat jelas dalam efisiensi pelatihan. Karena tidak

bergantung pada operasi sekuensial yang iteratif seperti RNN, pelatihan Transformer

dapat diparalelkan sepenuhnya. Hasilnya, pada salah satu benchmark (LibriSpeech),

model Transformer mampu mencapai tingkat akurasi terbaik yang dihasilkan RNN,

namun dengan waktu pelatihan delapan kali lebih cepat (Karita et al., 2019).

Studi ini juga mencatat bahwa strategi optimalisasi untuk kedua model ini

berbeda. Kinerja Transformer sangat diuntungkan oleh penggunaan minibatch berukuran

besar, yang secara simultan meningkatkan akurasi dan kecepatan pelatihan. Sebaliknya,

peningkatan ukuran minibatch tidak memberikan manfaat yang sama pada model RNN.

Selain itu, penggunaan dropout terbukti esensial untuk mencegah overfitting pada

Transformer, sementara teknik yang sama tidak menunjukkan peningkatan signifikan

pada RNN. Temuan ini menggarisbawahi bahwa Transformer tidak hanya unggul dalam

7

performa, tetapi juga memperkenalkan dinamika pelatihan yang berbeda dari arsitektur

berbasis rekuren (Karita et al., 2019).

Evolusi model sequence-to-sequence menunjukkan lintasan yang jelas, dimulai

dari Recurrent Neural Networks (RNNs) sebagai fondasi, beralih ke Long Short-Term

Memory (LSTM) untuk mengatasi kelemahan RNN, dan akhirnya mencapai pergeseran

paradigma dengan hadirnya arsitektur Transformer. Model RNN tradisional, meskipun

fundamental, memiliki keterbatasan dalam menangani sekuens panjang akibat masalah

vanishing gradient. Model LSTM dan variannya (seperti GRU) secara khusus dirancang

untuk mengatasi masalah ini, sehingga unggul dalam tugas-tugas yang menuntut memori

dependensi jangka panjang dan pemahaman struktur sintaktis yang kompleks (Zhu,

2023).

Di sisi lain, arsitektur Transformer membawa kemajuan baru dengan berfokus

pada mekanisme attention. Transformer terbukti lebih unggul untuk tugas-tugas yang

membutuhkan pemahaman konteks yang mendalam dan hubungan antara bagian-bagian

teks yang tidak berdekatan. Meskipun demikian, model LSTM masih mempertahankan

relevansinya untuk skenario spesifik. Ketika sebuah tugas sangat bergantung pada

analisis sintaktis yang mendalam atau membutuhkan interpretasi model yang lebih

transparan, arsitektur LSTM seringkali masih menjadi pilihan yang valid. Pada akhirnya,

pemilihan antara arsitektur berbasis rekuren (LSTM) dan berbasis attention

(Transformer) sangat bergantung pada kebutuhan spesifik dari tugas yang dihadapi (Zhu,

2023).

Arsitektur Transformer, yang diperkenalkan oleh Vaswani et al. pada tahun 2017,

telah menjadi model fundamental dalam deep learning, khususnya untuk data sekuensial.

Perbedaan utamanya dengan model-model klasik seperti Recurrent Neural Network

(RNN) adalah pada metode pemrosesan sekuens. Model RNN bersifat sekuensial dan

iteratif, yang menyebabkan proses pelatihannya memakan waktu lama. Sebaliknya,

Transformer mengganti mekanisme rekuren tersebut sepenuhnya dengan self-attention,

yang memungkinkan pelatihan dilakukan secara paralel. Kemampuan ini secara

signifikan meningkatkan efisiensi komputasi dan mempersingkat waktu yang

dibutuhkan untuk melatih model (Shiri et al., 2024).

8

Keunggulan ini telah dibuktikan secara empiris dalam sebuah studi komparatif.

Pada tugas analisis sentimen (dataset IMDB), model Transformer tidak hanya berhasil

mencapai akurasi klasifikasi tertinggi, mengungguli varian RNN seperti LSTM dan GRU,

tetapi juga memiliki waktu pelatihan yang jauh lebih singkat dibandingkan model RNN

berkinerja terbaik lainnya (Bi-GRU) (Shiri et al., 2024). Performa superior ini juga

terkonfirmasi pada jenis data sekuensial yang berbeda, yaitu data sensor untuk

pengenalan aktivitas manusia (dataset ARAS). Pada dataset tersebut, Transformer

kembali mengungguli model RNN lainnya dalam hal akurasi, recall, dan F1-score,

sekaligus menunjukkan kurva pelatihan yang lebih cepat stabil (Shiri et al., 2024). Studi

ini menyimpulkan bahwa mekanisme attention pada Transformer menjadikannya model

yang berkinerja lebih baik daripada model-model berbasis RNN klasik, terutama untuk

tugas analisis teks (Shiri et al., 2024).

1.2. Identifikasi Masalah

Permasalahan yang diangkat dalam penelitian ini meliputi rendahnya

pemahaman masyarakat terhadap Bahasa Isyarat Indonesia (BISINDO), belum

tersedianya sistem penerjemah bahasa isyarat yang praktis dan real-time pada perangkat

portabel seperti Raspberry Pi, serta perlunya penerapan metode klasifikasi terpisah untuk

gestur statis dan gestur dinamis menggunakan algoritma yang sesuai.

1.3. Batasan Masalah

a) Sistem difokuskan untuk mengenali gestur Bahasa Isyarat Indonesia (BISINDO)

berupa huruf, angka, dan kosakata tertentu sesuai dataset penelitian.

b) Proses pengambilan data menggunakan webcam Logitech C270 dan pengujian

dilakukan menggunakan PiCamera v1 yang terhubung ke Raspberry Pi 5

sebagai perangkat utama.

c) Model klasifikasi yang digunakan terdiri dari Random Forest untuk gestur statis

serta LSTM dan Transformer untuk gestur dinamis yang dibandingkan

kinerjanya.

9

d) Dataset berupa citra dan data landmark tangan 3D (x, y, z) diperoleh

menggunakan MediaPipe Hands dan digunakan untuk pelatihan serta pengujian

sistem.

e) Sistem dirancang beroperasi secara offline pada Raspberry Pi, dengan seluruh

proses inferensi dan klasifikasi dilakukan secara lokal tanpa koneksi internet.

1.4. Rumusan Masalah

Bagaimana merancang bangun dan menganalisis kinerja sistem klasifikasi

bahasa isyarat BISINDO secara real-time pada Raspberry Pi 5 yang mengintegrasikan

algoritma Random Forest untuk gestur statis serta membandingkan performa LSTM dan

Transformer untuk gestur dinamis guna mencapai akurasi dan stabilitas sistem yang

optimal?

1.5. Tujuan Penelitian

a) Membangun sistem klasifikasi bahasa isyarat BISINDO berbasis kamera CSI

PiCamera v1 yang berjalan pada perangkat Raspberry Pi 5 RAM 16 GB.

b) Menerapkan algoritma Random Forest untuk klasifikasi gestur statis bahasa

isyarat BISINDO.

c) Membandingkan kinerja algoritma LSTM dengan metode Transformer dalam

klasifikasi gestur dinamis bahasa isyarat BISINDO.

d) Menguji kemampuan sistem dalam melakukan klasifikasi bahasa isyarat

BISINDO secara real-time pada perangkat Raspberry Pi 5 RAM 16 GB dengan

hasil yang akurat.

1.6. Luaran Penelitian

Luaran yang diharapkan dari penelitian ini adalah:

1. Rancangan dan implementasi sistem klasifikasi bahasa isyarat BISINDO

berbasis Raspberry Pi 5 dengan kamera CSI PiCamera v1 yang mampu

melakukan deteksi dan klasifikasi gestur secara real-time.

2. Model klasifikasi gestur statis menggunakan algoritma Random Forest yang

terlatih pada dataset BISINDO.

10

3. Perbandingan kinerja antara algoritma LSTM dan metode Transformer

dalam mendeteksi gestur dinamis bahasa isyarat BISINDO secara real-time

pada perangkat edge.

4. Dataset hasil ekstraksi landmark tangan dari MediaPipe Hands yang

difokuskan pada deteksi tangan, digunakan sebagai data pelatihan dan

pengujian sistem.

5. Hasil pengujian performa sistem yang mencakup pengukuran akurasi, presisi,

recall, dan f1-score, baik untuk pengujian offline maupun real-time.

6. Analisis kinerja sistem pada perangkat Raspberry Pi, meliputi kecepatan

pemrosesan, tingkat akurasi, dan efisiensi penggunaan sumber daya.

1.7. Manfaat

a) Memberikan solusi teknologi yang dapat membantu komunikasi antara

penyandang tunarungu dan masyarakat umum melalui sistem penerjemah

BISINDO real-time berbasis Raspberry Pi.

b) Menjadi referensi dalam pengembangan sistem pengenalan bahasa isyarat

berbasis Raspberry Pi dan kamera CSI PiCamera dengan optimasi model

menggunakan TensorFlow Lite.

c) Memberikan informasi dan perbandingan performa antara algoritma Random

Forest untuk gestur statis, LSTM dan Transformer untuk gestur dinamis.

d) Mendorong pemanfaatan model deep learning berbasis sekuensial (LSTM)

maupun Transformer pada aplikasi pengenalan gestur dinamis yang dijalankan

di perangkat edge computing.

1.8. Sistematika Penulisan

Berikut ini adalah sistematika penulisan pada penelitian ini:

1. BAB I Pendahuluan

Berisi uraian pendahuluan penelitian yang mencakup latar belakang,

identifikasi masalah, batasan masalah, rumusan masalah, tujuan penelitian,

11

luaran penelitian, manfaat penelitian, sistematika penulisan, dan jadwal

penelitian.

2. BAB II Tinjauan Pustaka

Berisi teori-teori dasar dan ulasan penelitian terdahulu yang relevan dengan

pengembangan sistem klasifikasi bahasa isyarat BISINDO secara real-time

menggunakan Raspberry Pi dan kamera CSI PiCamera v1. Dalam bab ini

juga dibahas literatur terkait penerapan algoritma Random Forest untuk

gestur statis, LSTM dan Transformer yang dioptimasi dengan TensorFlow

Lite untuk gestur dinamis sebagai pembaruan metode untuk pengenalan

gestur dinamis. Selain itu, ditinjau pula penelitian-penelitian sebelumnya

dalam bidang pengenalan bahasa isyarat untuk melihat posisi dan kebaruan

penelitian ini.

3. BAB III Rancangan Sistem

Berisi tahapan perancangan sistem mulai dari metode pengumpulan data,

proses pengolahan data menggunakan MediaPipe Hands, perancangan

model klasifikasi, optimasi model dengan TensorFlow Lite, serta integrasi

sistem pada perangkat Raspberry Pi.

4. BAB IV Hasil dan Pembahasan

Berisi hasil implementasi sistem dan pembahasan mendalam terkait

performa algoritma, akurasi, presisi, recall, f1-score, serta evaluasi kinerja

real-time pada Raspberry Pi.

5. BAB V Simpulan dan Saran

Berisi simpulan menyeluruh dari hasil penelitian, kesesuaian dengan tujuan

penelitian, serta saran-saran untuk pengembangan lebih lanjut agar sistem

dapat digunakan secara optimal di lapangan.

12

Bab II

Tinjauan Pustaka

2.1. Bahasa Isyarat

Bahasa isyarat merupakan sistem komunikasi visual-manual yang digunakan

oleh komunitas Tuli untuk menyampaikan informasi dan menjalin interaksi sosial.

Bahasa ini memiliki struktur linguistik yang kompleks yang mencakup fonologi,

morfologi, sintaksis, serta semantik, dan tidak bersifat universal karena tiap negara

memiliki bahasa isyaratnya masing-masing (Pujiati, 2019). Di Indonesia, terdapat dua

sistem yang dikenal luas, yaitu Bahasa Isyarat Indonesia (BISINDO) dan Sistem

Isyarat Bahasa Indonesia (SIBI), yang memiliki perbedaan mendasar dalam struktur

dan penggunaannya (Pujiati, 2019).

Selain sebagai alat komunikasi, bahasa isyarat juga merupakan bagian dari

identitas budaya komunitas Tuli. Penggunaan bahasa isyarat memberikan akses yang

lebih luas terhadap pendidikan, pekerjaan, dan kehidupan sosial secara umum. Namun,

pengakuan resmi terhadap bahasa isyarat sebagai bahasa nasional dan penerapannya

dalam kebijakan publik masih menjadi tantangan di berbagai negara, termasuk

Indonesia (Wijaya, 2018).

Dalam konteks pendidikan, pemahaman dan penguasaan bahasa isyarat

memiliki peranan penting dalam menciptakan lingkungan belajar yang inklusif bagi

siswa Tuli. Implementasi pembelajaran dengan pendekatan bilingual menggunakan

bahasa isyarat dan bahasa tulis mampu meningkatkan prestasi belajar dan

perkembangan kognitif siswa Tuli (Murni et al., 2024). Selain itu, pelatihan bahasa

isyarat bagi guru, teman sebaya, dan keluarga turut memperkuat dukungan sosial yang

mereka terima.

Seiring dengan kemajuan teknologi, banyak inovasi digital yang mendukung

pembelajaran bahasa isyarat, seperti aplikasi interaktif berbasis multimedia. Aplikasi

ini dirancang untuk mengajarkan kosakata bahasa isyarat melalui animasi, audio, dan

latihan visual, sehingga menarik minat pengguna dan meningkatkan efektivitas

pembelajaran (Assa et al., 2021).

13

2.1.1. BISINDO (Bahasa Isyarat Indonesia)

BISINDO adalah bahasa yang didorong pengembangannya oleh Gerakan

Kesejahteraan Tunarungu Indonesia (Gerkatin) dan dikembangkan secara mandiri oleh

komunitas tunarungu. Oleh karena itu, BISINDO menjadi sistem komunikasi yang

praktis dan efisien bagi penyandang tunarungu di Indonesia karena bahasa ini memang

lahir dari kebutuhan dan pengalaman langsung para tunarungu itu sendiri (Borman et

al., 2017). Karena berasal dari komunitas tunarungu itu sendiri, BISINDO lebih mudah

dipahami dan diterima dalam interaksi sehari-hari. Dibandingkan dengan SIBI yang

muncul belakangan, BISINDO telah digunakan lebih lama dan mencerminkan cara

berkomunikasi teman tuli secara alami. Dalam penggunaannya, BISINDO

menekankan ekspresi wajah dan gerakan mulut sebagai bagian penting dari makna

isyarat. Selain itu, struktur bahasa ini terdiri dari lima unsur utama, yaitu lokasi isyarat,

bentuk tangan, orientasi, gerakan tangan, dan ekspresi non-manual (Nugraheni et al.,

2021). Visualisasi dari beberapa contoh gestur BISINDO dapat dilihat pada Gambar

2.1, yang memperlihatkan bentuk tangan dan ekspresi khas yang digunakan dalam

komunikasi sehari-hari.

Gambar 2.1 Abjad Dalam BISINDO

(Sumber: Kompasiana, 2023)

14

2.1.2. SIBI (Sistem Isyarat Bahasa Indonesia)

SIBI (Sistem Isyarat Bahasa Indonesia) merupakan alat bantu komunikasi bagi

individu tunarungu yang menggabungkan unsur bahasa lisan, gerakan isyarat, ekspresi

wajah, dan gerak tubuh lainnya. Pemerintah menetapkan SIBI sebagai bahasa isyarat

resmi yang digunakan di Sekolah Luar Biasa (SLB). Namun, banyak penyandang

tunarungu merasa bahwa SIBI tidak sepenuhnya mewakili cara berkomunikasi mereka,

karena SIBI menggunakan aturan isyarat yang cenderung menyesuaikan dengan

struktur bahasa lisan dalam menyampaikan kosakata (Nugraheni et al., 2021). Gambar

2.2 menyajikan visualisasi dari beberapa contoh gestur dalam SIBI.

Gambar 2.2 Abjad Dalam SIBI

(Sumber: Yayasan Peduli Kasih ABK, 2018)

2.2. Python

Python adalah bahasa pemrograman tingkat tinggi dan serbaguna yang

dikembangkan oleh Guido van Rossum pada akhir 1980-an dan pertama kali dirilis

pada 1991. Filosofi desainnya menekankan keterbacaan kode dengan penggunaan

indentasi yang signifikan, bersifat dinamis dalam pengecekan tipe data, dan

mendukung berbagai paradigma pemrograman seperti terstruktur, berorientasi objek,

dan fungsional. Sering disebut sebagai bahasa "batteries included" karena memiliki

pustaka standar yang komprehensif, Python telah berkembang melalui beberapa versi

15

utama (Python 2 dan Python 3) dan secara konsisten menduduki peringkat sebagai

salah satu bahasa pemrograman terpopuler, terutama dalam komunitas machine

learning. Nama "Python" diambil dari serial komedi Inggris "Monty Python's Flying

Circus", dan kepemimpinan proyeknya beralih dari Van Rossum (yang dijuluki

"benevolent dictator for life") kepada Steering Council beranggotakan lima orang pada

2019 (Van Rossum, G., 2007).

2.2.1. Open CV

Open Source Computer Vision Library (OpenCV) merupakan pustaka open-

source yang dikembangkan oleh Intel pada tahun 1999 sebagai bagian dari inisiatif

pengembangan aplikasi pemrosesan visual real-time yang efisien. Pustaka ini ditulis

dalam bahasa pemrograman C dan dioptimalkan untuk mendukung arsitektur prosesor

multicore, menjadikannya sangat cocok untuk aplikasi yang membutuhkan kecepatan

pemrosesan tinggi (Bradski dan Kaehler, 2008; Kaehler dan Bradski, 2016). OpenCV

kini telah berkembang menjadi salah satu pustaka paling populer dalam pengembangan

sistem computer vision karena sifatnya yang fleksibel dan dapat dijalankan di berbagai

platform.

Menurut Dawson-Howe (2019), OpenCV memiliki beragam fungsi penting,

mulai dari pengolahan citra dasar seperti filtering, konversi warna, dan deteksi tepi,

hingga pemrosesan citra lanjutan seperti deteksi wajah, pelacakan objek, kalibrasi

kamera, serta pengenalan pola berbasis machine learning. Selain itu, OpenCV juga

banyak digunakan untuk pengolahan video, rekonstruksi 3D, dan implementasi

augmented reality serta sistem bantuan pengemudi. Kelengkapan dan kemudahan

integrasi pustaka ini membuat OpenCV menjadi alat yang sangat bermanfaat untuk riset

maupun pengembangan industri.

2.2.2. Numpy

NumPy (Numerical Python) adalah pustaka open-source dalam Python yang

digunakan untuk komputasi numerik, terutama pada array dan matriks berdimensi

banyak. Pustaka ini menyediakan fungsi-fungsi efisien untuk operasi matematika,

statistik, aljabar linier, transformasi Fourier, dan bilangan acak. NumPy dibangun di

atas kode C yang dioptimalkan, sehingga menawarkan kecepatan tinggi dengan sintaks

16

Python yang sederhana. Meskipun tidak menyediakan fungsi statistik lanjutan, NumPy

menjadi dasar penting bagi pustaka lain seperti pandas, terutama dalam pengolahan

data tabular (Gupta, P., dan Bagchi, A., 2024).

2.2.3. Pandas

Pandas adalah pustaka open-source dalam Python yang dirancang untuk

keperluan analisis dan manipulasi data, terutama data dalam bentuk tabel (tabular)

seperti spreadsheet dan database. Pustaka ini memungkinkan Python untuk melakukan

operasi pemrosesan data secara cepat dan efisien, seperti membaca, membersihkan,

menyusun ulang, menyatukan, hingga memodelkan dan menganalisis data. Pandas

menawarkan struktur data utama berupa Series (data satu dimensi) dan DataFrame

(data dua dimensi), yang memudahkan pengguna dalam mengelola data kompleks.

Pandas pertama kali dikembangkan oleh Wes McKinney pada tahun 2008, dan

dibangun di atas NumPy. Meskipun tidak menggantikan NumPy, Pandas memperluas

kemampuannya dengan menyediakan alat-alat analisis data yang lebih ekspresif dan

terstruktur. Pandas mendukung berbagai format data seperti CSV, Excel, JSON, dan

SQL, serta dapat menangani data heterogen, data waktu (time series), dan data tidak

lengkap (Gupta, P., dan Bagchi, A., 2024).

2.2.4. Scikit-learn

Scikit-learn adalah pustaka open-source untuk machine learning yang ditulis

dalam bahasa Python. Pustaka ini memungkinkan integrasi metode machine learning

secara cepat dan mudah ke dalam kode Python. Scikit-learn menyediakan berbagai

metode seperti klasifikasi, regresi, estimasi matriks kovarian, reduksi dimensi,

praproses data, hingga pembuatan dataset uji.

Pustaka ini dapat digunakan di berbagai sistem operasi dan terus dikembangkan

secara aktif. Scikit-learn banyak digunakan dalam aplikasi komersial, penelitian

akademik, dan publikasi ilmiah. Untuk meningkatkan efisiensi, beberapa algoritma

dalam scikit-learn ditulis dalam bahasa C dan diintegrasikan melalui Cython, yang

memungkinkan kompilasi Python secara lebih cepat. Selain itu, metode seperti SVM

17

dan logistic regression dalam scikit-learn menggunakan pustaka LIBSVM dan

LIBLINEAR sebagai dasar algoritmanya (Kramer, O., dan Kramer, O., 2016).

2.2.5. Mediapipe

MediaPipe adalah framework open-source yang dikembangkan oleh Google

untuk membangun pipeline pemrosesan data sensorik seperti video, audio, dan input

dari sensor lainnya secara modular dan real-time. Framework ini dirancang untuk

membantu pengembang dalam membangun sistem pemrosesan visual yang kompleks

dengan menyusun proses ke dalam bentuk graph kalkulator (calculator graph)—yaitu

kumpulan komponen modular yang dapat digunakan kembali dan dikombinasikan

sesuai kebutuhan.

MediaPipe mendukung berbagai platform, termasuk desktop, mobile

(Android/iOS), dan bahkan perangkat embedded seperti Raspberry Pi, menjadikannya

cocok untuk pengembangan sistem portabel. Framework ini dapat berjalan baik di CPU

maupun GPU, serta dilengkapi dengan alat bantu seperti Tracer dan Visualizer untuk

memantau performa pipeline. Keunggulan lainnya adalah kemampuannya untuk

melakukan sinkronisasi waktu yang presisi antar stream data, serta dukungan penuh

terhadap integrasi dengan model machine learning eksternal.

Salah satu komponen yang paling sering digunakan dalam MediaPipe adalah

modul hand tracking, yang dapat mendeteksi dan melacak 21 titik kunci (landmark)

pada tangan secara real-time. Titik-titik ini mencakup sendi dan ujung jari serta pusat

telapak tangan, dan direpresentasikan dalam koordinat tiga dimensi. Informasi

landmark ini menjadi sangat penting untuk mengenali bentuk dan pola gerakan tangan,

sehingga sangat relevan dalam konteks pengenalan bahasa isyarat, khususnya

BISINDO. Gambar 2.3 memperlihatkan peta visual dari 21 titik landmark tangan versi

MediaPipe, yang menjadi acuan dalam proses ekstraksi fitur gerakan untuk klasifikasi

gestur secara otomatis

18

Gambar 2.3 Peta Mediapipe Hand Landmarks (Sumber: AI Google Dev)

Dalam penelitian ini, MediaPipe digunakan untuk mengekstraksi fitur berupa

posisi tangan dari input video yang ditangkap oleh kamera. Data koordinat landmark

kemudian digunakan sebagai fitur masukan (input features) untuk algoritma machine

learning seperti Random Forest dalam mengenali isyarat statis, serta Long Short-Term

Memory (LSTM) untuk isyarat dinamis. Arsitektur MediaPipe yang ringan namun

akurat menjadikannya solusi ideal untuk dikombinasikan dengan Raspberry Pi,

menciptakan sistem penerjemah bahasa isyarat BISINDO yang portabel, efisien, dan

real-time (Lugaresi et al., 2019).

2.2.6. Tensorflow

TensorFlow merupakan framework open-source dari Google yang dirancang

untuk mendukung komputasi numerik berskala besar dalam konteks machine learning.

Framework ini memodelkan perhitungan sebagai struktur data berbasis computational

graph, yang memungkinkan optimasi eksekusi melalui pemetaan otomatis node-node

graf ke berbagai unit komputasi, baik itu CPU, GPU, maupun distribusi antar node

dalam sebuah cluster (Shukla, N., dan Fricklas, K., 2018).

2.2.7. Joblib

Joblib adalah pustaka Python yang menyediakan mekanisme pemrosesan

terstruktur secara efisien melalui konsep pipelining yang ringan. Pustaka ini

mendukung caching fungsi secara otomatis ke disk untuk menghindari komputasi

ulang, serta memungkinkan eksekusi paralel yang sederhana, sehingga cocok

digunakan dalam workflow machine learning dan pemrosesan data berskala besar

(Faouzi, J., dan Janati, H., 2020).

19

2.2.8. Collections

Modul collections menyediakan berbagai tipe data kontainer khusus yang

dirancang sebagai alternatif dari struktur data bawaan Python seperti dict, list, set, dan

tuple. Tipe-tipe ini menawarkan fungsionalitas tambahan dan efisiensi yang lebih

tinggi dalam kasus penggunaan tertentu, seperti pengurutan, penghitungan frekuensi,

atau struktur data berorientasi queue dan mapping (Van Rossum, G. and Drake, F.L.,

1995).

2.2.9. Pickle

Pickle adalah pustaka standar Python yang digunakan untuk melakukan

serialisasi dan deserialisasi objek Python ke dalam format biner. Dengan kata lain,

modul ini memungkinkan objek Python seperti list, dictionary, atau bahkan model

machine learning disimpan ke dalam file dan dimuat kembali di lain waktu tanpa

kehilangan struktur dan nilainya. Fitur ini sangat berguna dalam proses penyimpanan

model, caching data, atau transfer objek antar sistem, terutama dalam workflow

machine learning di mana hasil pelatihan model sering kali perlu disimpan dan

digunakan kembali tanpa perlu dilatih ulang (Rostami et al., 2024).

2.2.10. Matplotlib

Matplotlib adalah pustaka grafik dalam Python yang digunakan untuk

visualisasi data, dan merupakan bagian penting dalam ekosistem data science Python.

Library ini memungkinkan pembuatan berbagai jenis grafik seperti line chart, bar

chart, scatter plot, dan lain-lain dengan fleksibilitas tinggi. Matplotlib terintegrasi

dengan baik bersama pustaka lain seperti NumPy, Pandas, dan pustaka ilmiah lainnya,

sehingga memudahkan proses eksplorasi, analisis, dan presentasi data dalam bentuk

visual yang informatif dan interaktif (Sial et al., 2021).

2.2.11. Regex

Regular expression (atau regex) adalah pola yang digunakan untuk

merepresentasikan sekumpulan string yang sesuai dengan kriteria tertentu. Modul re

dalam Python menyediakan berbagai fungsi untuk memeriksa apakah suatu string

cocok dengan pola regex yang diberikan, atau sebaliknya, apakah suatu pola regex

cocok dengan string tertentu yang secara konsep merupakan hal yang sama. Regular

20

expression sangat berguna dalam pemrosesan teks, seperti pencarian pola, validasi

format data, hingga ekstraksi informasi dari teks secara efisien (Van Rossum, G. and

Drake, F.L., 1995).

2.2.12. OS (Operating System)

Modul os menyediakan antarmuka yang portabel untuk mengakses

fungsionalitas yang bergantung pada sistem operasi. Melalui modul ini, pengguna

dapat melakukan berbagai operasi sistem seperti mengelola file, direktori, dan variabel

lingkungan, tanpa harus bergantung pada detail sistem operasi tertentu.

Jika hanya ingin membaca atau menulis file, bisa langsung menggunakan

fungsi open(). Untuk manipulasi path, tersedia submodul os.path. Jika perlu membaca

seluruh baris dari banyak file yang diberikan melalui command line, modul fileinput

lebih sesuai. Untuk membuat file atau direktori sementara, dapat menggunakan modul

tempfile, dan untuk operasi tingkat tinggi seperti menyalin atau memindahkan file dan

folder, disarankan menggunakan modul shutil (Van Rossum, G. and Drake, F.L., 1995).

2.2.13. Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) merupakan pengembangan dari arsitektur

Recurrent Neural Network (RNN) yang dirancang untuk mengatasi kelemahan utama

RNN standar dalam memproses data sekuensial, yaitu masalah vanishing gradient di

mana informasi dari input awal cenderung hilang atau memudar saat jaringan

memproses urutan yang panjang (Graves, A., dan Graves, A,. 2012). Masalah ini

menyebabkan jaringan kesulitan dalam mempertahankan konteks jangka panjang,

sehingga tidak mampu mengenali pola yang membutuhkan informasi historis yang

lebih jauh.

LSTM mengatasi masalah ini dengan memperkenalkan blok memori yang

terdiri dari sel memori dan tiga jenis gerbang (gates):

1. Input gate (mengontrol kapan informasi baru dapat disimpan ke dalam memori.).

 𝑖(𝑡) = 𝜎(𝑊𝑖𝑥
(𝑡) + 𝑅𝑖𝑦

(𝑡−1) + 𝑝𝑖 ⊙ 𝑐(𝑡−1) + 𝑏𝑖) (1)

2. Forget gate (memutuskan informasi mana dari memori sebelumnya yang perlu

dilupakan).

21

 𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑅𝑓𝑦(𝑡−1) + 𝑝𝑓 ⊙ 𝑐(𝑡−1) + 𝑏𝑓) (2)

3. Output gate (mengatur kapan informasi dalam sel memori digunakan sebagai

keluaran).

 𝜊(𝑡) = 𝜎(𝑊𝜊𝑥(𝑡) + 𝑅𝜊𝑦(𝑡−1) + 𝑝𝜊 ⊙ 𝑐(𝑡) + 𝑏𝜊) (3)

Ketiga gerbang ini bekerja secara bersamaan untuk memungkinkan jaringan

menyimpan, mempertahankan, dan membuang informasi secara selektif, sehingga

membuat LSTM sangat efektif dalam mempelajari ketergantungan jangka panjang

dalam data sekuensial.

Dalam ulasan komprehensif yang dilakukan oleh Van Houdt et al. (2020),

LSTM terbukti sangat efektif dan telah menjadi arsitektur utama dalam berbagai

aplikasi, termasuk pengenalan suara, terjemahan otomatis, hingga sistem interaktif

berbasis AI seperti Google Translate dan Amazon Alexa. LSTM juga banyak diadopsi

dalam domain computer vision untuk mengenali pola dalam data visual sekuensial

seperti video, gerakan tubuh, dan gesture recognition.

Dengan kemampuannya tersebut, LSTM menjadi arsitektur yang sangat tepat

untuk digunakan dalam penelitian ini, khususnya dalam mengenali gestur dinamis

dalam Bahasa Isyarat Indonesia (BISINDO). Untuk mendukung pengenalan gestur

statis, digunakan algoritma Random Forest, yang menurut penelitian oleh Alexander

dkk. (2023), menunjukkan performa akurasi yang tinggi dan waktu klasifikasi yang

efisien dibandingkan dengan algoritma lainnya seperti KNN, SVM, dan Decision Tree.

Oleh karena itu, dalam penelitian ini dikembangkan pendekatan gabungan Random

Forest dan LSTM, dengan tujuan mengoptimalkan akurasi sistem penerjemah bahasa

isyarat berbasis kamera yang mampu berjalan secara real-time di perangkat Raspberry

Pi.

2.2.14. Random Forest

Random Forest merupakan metode ensemble learning berbasis pohon

keputusan yang pertama kali diperkenalkan oleh Breiman (2001). Metode ini

membentuk sekumpulan (forest) pohon keputusan yang dilatih menggunakan teknik

22

bootstrap aggregating (bagging), di mana setiap pohon dibangun dari subset data

pelatihan yang diambil secara acak dengan pengembalian. Selain itu, pada setiap

percabangan (split) dalam pohon, hanya sebagian acak dari fitur yang

dipertimbangkan, guna menciptakan keragaman struktural antar pohon dalam

ensemble. Tujuan utama pendekatan ini adalah untuk mengurangi variance tanpa

meningkatkan bias, sehingga menghasilkan model yang lebih stabil dan memiliki

performa yang lebih tinggi dibandingkan model decision tree.

Secara formal, misalkan 𝒟𝑛 = ((𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)) adalah data pelatihan

dengan 𝑋𝑖 ∈ ℝ𝑝 sebagai vektor fitur dan 𝑌𝑖 sebagai label target (untuk klasifikasi),

maka estimator Random Forest didefinisikan sebagai rata-rata dari prediksi seluruh

pohon:

𝑚𝑀,𝑛(𝑥;⊝1, … ,⊝𝑀, 𝒟𝑛) =
1

𝑀
∑ 𝑚𝑛(𝓍;⊝𝑗 , 𝒟𝑛)

𝑀

𝑗=1

 (4)

Biau dan Scornet (2016) menjelaskan bahwa model ini dapat dikaji lebih lanjut

melalui versi yang disederhanakan, seperti purely random trees, untuk memahami

karakteristik bias dan konvergensinya secara teoritis. Dalam varian ini, pemisahan

dilakukan tanpa mempertimbangkan label data, yang memungkinkan analisis sifat

konsistensi model terhadap fungsi target dalam regresi.

Keunggulan lain dari Random Forest adalah kemampuannya untuk

mengevaluasi performa model secara internal menggunakan metode Out-of-Bag

(OOB) error. Teknik ini memanfaatkan data yang tidak terambil selama proses

bootstrap untuk menguji akurasi model, sehingga tidak memerlukan pembagian

eksplisit antara data latih dan data uji. Selain itu, Random Forest juga menyediakan

metrik feature importance yang memungkinkan interpretasi terhadap pengaruh relatif

masing-masing fitur dalam proses prediksi. Dua metrik umum yang digunakan adalah

Mean Decrease in Impurity (MDI) dan Mean Decrease in Accuracy (MDA), yang

dapat memberikan wawasan penting dalam analisis variabel.

Biau dan Scornet (2016) juga membandingkan Random Forest dengan

23

algoritma populer lainnya seperti SVM dan KNN. Mereka menekankan bahwa

meskipun SVM unggul dalam masalah klasifikasi margin sempit dan KNN

menawarkan pendekatan berbasis tetangga terdekat yang intuitif, Random Forest lebih

unggul dalam hal ketahanan terhadap noise, efisiensi pada data berdimensi tinggi, serta

kemampuannya menangani fitur numerik dan kategorikal secara bersamaan tanpa perlu

normalisasi.

Secara keseluruhan, karakteristik non-parametrik, ketahanan terhadap

overfitting, serta kemampuannya dalam memberikan estimasi generalisasi dan

interpretabilitas menjadikan Random Forest sebagai model yang sangat sesuai untuk

aplikasi klasifikasi dalam berbagai domain, termasuk dalam sistem pengenalan gestur

bahasa isyarat berbasis landmark tangan.

2.2.15. Transformer

Arsitektur Transformer yang diperkenalkan oleh Vaswani et al. (2017) melalui

makalah Attention Is All You Need menjadi terobosan besar dalam pemodelan data

sekuensial. Model ini menggantikan Recurrent Neural Networks (RNN) dan

Convolutional Neural Networks (CNN) dengan sepenuhnya mengandalkan mekanisme

self-attention. Mekanisme inti yang digunakan adalah Scaled Dot-Product Attention,

yang diformulasikan sebagai:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmax (

𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (5)

Dengan Q (query), K (key), V (value), dan 𝑑𝑘 dimensi kunci. Rumus ini

memungkinkan transformer untuk secara efisien menangkap ketergantungan jangka

panjang antar elemen dalam sebuah urutan, sekaligus memfasilitasi paralelisasi

sehingga pelatihan menjadi lebih cepat dibanding arsitektur berbasis RNN.

Kemampuan transformer ini kemudian diadaptasi pada domain pengenalan

bahasa isyarat oleh Camgoz et al. (2020) yang mengusulkan Sign Language

Transformer (SLT). Mereka membangun model end-to-end yang dapat melakukan

Continuous Sign Language Recognition (CSLR) dan Sign Language Translation (SLT)

secara bersamaan. Dengan memanfaatkan encoder–decoder berbasis transformer,

24

model ini terbukti mencapai hasil state-of-the-art pada dataset RWTH-PHOENIX-

Weather-2014T.

Selanjutnya, Chaudhary et al. (2022) mengembangkan SignNet II, yaitu model

berbasis transformer untuk penerjemahan dua arah bahasa isyarat (sign-to-text dan text-

to-sign). Melalui mekanisme dual learning dan metric embedding learning, mereka

berhasil meningkatkan kualitas translasi secara signifikan, khususnya dalam

mempertahankan kesamaan antar tanda pada representasi pose. Hasil tersebut semakin

memperkuat posisi transformer sebagai arsitektur yang fleksibel dan efektif dalam

pemrosesan multimodal.

Dalam konteks penelitian ini, pengembangan sistem klasifikasi Bahasa Isyarat

Indonesia (BISINDO) secara real-time dengan Raspberry Pi 5 RAM 16 GB dilakukan

dengan menghadirkan transformer sebagai metode pembaruan dari penelitian

sebelumnya. Penyisipan transformer diharapkan mampu memberikan peningkatan

performa, khususnya dalam menangkap pola spasio-temporal yang kompleks pada

data gerakan bahasa isyarat, sekaligus menjadi kontribusi yang selaras dengan tren

penelitian terkini.

2.2.16. Tensorflow Lite

TensorFlow Lite (TFLite) merupakan kerangka kerja open-source yang

dikembangkan oleh Google untuk menjalankan model pembelajaran mesin pada

perangkat dengan sumber daya terbatas seperti ponsel, IoT, dan mikrokontroler.

Framework ini hadir sebagai solusi dari kebutuhan Tiny Machine Learning (TinyML)

yang memungkinkan model deep learning dijalankan secara langsung pada perangkat

edge dengan keterbatasan daya, memori, dan komputasi (David et al., 2021).

Cara kerja TFLite dimulai dari konversi model yang telah dilatih di TensorFlow

ke dalam format FlatBuffer (.tflite). Proses konversi ini sering disertai dengan berbagai

optimasi, antara lain quantization (mengubah representasi bobot dari 32-bit float ke 8-

bit integer), operator fusion, dan constant folding. Optimasi tersebut membuat ukuran

model lebih kecil, konsumsi memori lebih rendah, serta kecepatan inferensi meningkat

tanpa mengurangi akurasi secara signifikan. Setelah itu, model dijalankan

25

menggunakan TFLite Interpreter, yaitu komponen ringan yang dirancang untuk

memfasilitasi eksekusi model di berbagai platform edge (David et al., 2021).

Keunggulan utama TFLite adalah efisiensi dan portabilitasnya. Penelitian

Coffen & Mahmud (2021) menunjukkan bahwa model LSTM untuk pengenalan

gesture yang awalnya berukuran 2.8 MB dapat diperkecil dengan teknik konversi dan

kuantisasi sehingga mampu dijalankan langsung pada perangkat edge. Dengan

demikian, konsumsi daya berkurang dan sistem tidak perlu lagi bergantung pada

komunikasi data ke server eksternal. Penelitian lain oleh Konaite et al. (2021)

memperlihatkan bahwa Raspberry Pi 4 yang menjalankan model SSD MobileNet v2

melalui TFLite dapat mendeteksi objek secara real-time dengan kecepatan rata-rata 5

frame per detik. Hal ini menegaskan bahwa TFLite mampu menjembatani kebutuhan

deep learning di perangkat dengan keterbatasan sumber daya, sekaligus tetap

mempertahankan performa yang baik.

Dengan karakteristik tersebut, TFLite menjadi komponen penting dalam

pengembangan aplikasi machine learning modern yang bersifat portabel, hemat energi,

dan dapat beroperasi secara real-time. Hal ini membuatnya relevan dalam berbagai

bidang, mulai dari sistem pengenalan gesture hingga perangkat wearable yang

membutuhkan pemrosesan data langsung di perangkat.

2.2.17. Augmentasi Citra

Augmentasi citra merupakan strategi fundamental dalam pengembangan model

Deep Learning, khususnya pada bidang visi komputer, yang bertujuan untuk

meningkatkan kuantitas dan variabilitas data latih secara artifisial tanpa melalui proses

akuisisi data baru yang memakan biaya. Urgensi penerapan metode ini didasari oleh

kebutuhan model dengan parameter besar terhadap volume data yang masif guna

mencapai kinerja yang kompetitif dan mencegah terjadinya overfitting atau fenomena

di mana model mengingat data spesifik akibat keterbatasan sampel pelatihan. Secara

teoritis, mekanisme augmentasi citra bekerja dengan memanipulasi distribusi data

melalui konsep vicinity distribution. Konsep ini mengasumsikan bahwa distribusi

probabilitas data tidak hanya terpaku pada titik tunggal sampel asli, melainkan dapat

diperluas ke area sekitarnya melalui modifikasi visual yang tetap mempertahankan

26

label semantiknya, sehingga model dapat mempelajari fitur yang lebih general dan

tangguh (robust).

Berdasarkan jurnal yang dipaparkan oleh Xu et al. (2023), metode augmentasi

citra diklasifikasikan ke dalam beberapa kategori utama, di mana pendekatan yang

diterapkan dalam penelitian ini tergolong sebagai Model-free Single-image

Augmentation. Kategori ini memanfaatkan teknik pengolahan citra konvensional pada

citra tunggal untuk menghasilkan variasi baru, dengan fokus utama pada transformasi

geometris. Transformasi geometris bertujuan untuk memodifikasi hubungan spasial

antar piksel guna mensimulasikan variasi kondisi fisik objek di dunia nyata. Teknik-

teknik spesifik yang termasuk dalam domain ini meliputi translasi untuk

memvariasikan posisi objek dalam bingkai , rotasi untuk mengubah perspektif sudut

pandang objek , serta penskalaan yang berfungsi meniru variasi jarak atau ukuran objek.

Penerapan kombinasi transformasi ini terbukti efektif dalam memperkaya distribusi

data latih, khususnya pada dataset dengan tantangan variasi deformasi dan posisi objek.

2.3. Raspberry Pi

Raspberry Pi adalah komputer mini berukuran sebesar kartu kredit yang

dikembangkan oleh Raspberry Pi Foundation di Inggris, dengan tujuan menyediakan

perangkat komputasi murah dan portabel untuk pendidikan dan pengembangan

teknologi. Raspberry Pi mendukung berbagai bahasa pemrograman seperti Python, C,

C++, Java, dan lainnya, serta dapat menjalankan sistem operasi berbasis Linux seperti

Raspbian (sekarang Raspberry Pi OS), Debian, dan lainnya.

Seiring perkembangan teknologinya, Raspberry Pi telah dirilis dalam berbagai

varian model dengan spesifikasi dan fungsi yang disesuaikan untuk kebutuhan yang

berbeda. Beberapa di antaranya dirancang untuk penggunaan umum dan edukasi,

seperti Raspberry Pi 3 dan 4, sementara model lain seperti Raspberry Pi Zero dan

Compute Module lebih ditujukan untuk proyek embedded dan aplikasi industri. Tiap

model memiliki perbedaan signifikan dalam hal kapasitas RAM, kecepatan prosesor,

jumlah port, serta dukungan terhadap fitur seperti Wi-Fi, Bluetooth, dan antarmuka

video. Tabel 2.1. berikut menyajikan ringkasan spesifikasi dari berbagai versi

Raspberry Pi yang telah dirilis hingga saat ini.

27

Tabel 2.1 Versi Raspberry Pi

Model RAM CPU Port USB
HDMI /

Display
Konektivitas

Raspberry

Pi 5

4/8/16

GB

4 × 2.4

GHz

4 (2×USB

3.0)

2×micro-

HDMI

WiFi &

Bluetooth

Raspberry

Pi 400
4 GB

4 × 1.8

GHz

4 (2×USB

3.0)
Ya

WiFi &

Bluetooth

Raspberry

Pi 4 B

1/2/4/8

GB

4 × 1.5

GHz

4 (2×USB

3.0)

2×micro-

HDMI

WiFi &

Bluetooth

Compute

Module 4

1/2/4/8

GB

4 × 1.5

GHz
Tidak ada

Tidak

ada
Opsional

Raspberry

Pi 3 B+
1 GB

4 × 1.4

GHz
4 Ya

WiFi &

Bluetooth

Raspberry

Pi 3 A+
512 MB

4 × 1.4

GHz
1 Tidak

WiFi &

Bluetooth

Raspberry

Pi Zero 2 W
512 MB

4 × 1

GHz
1 (micro) Tidak

WiFi &

Bluetooth

Raspberry

Pi Zero W
512 MB

1 × 1

GHz
1 (micro) Tidak

WiFi &

Bluetooth

Raspberry

Pi Zero
512 MB

1 × 1

GHz
1 (micro) Tidak Tidak ada

Raspberry

Pi 2 B
1 GB

4 × 900

MHz
4 Ya Tidak ada

Versi terbaru saat ini, Raspberry Pi 5, menawarkan peningkatan spesifikasi

yang signifikan dengan prosesor quad-core Arm Cortex-A76 berkecepatan 2.4GHz dan

kapasitas RAM hingga 16GB. Model ini juga dilengkapi dengan konektivitas yang

lebih canggih, termasuk dua port USB 3.0 dengan bandwidth simultan penuh, Wi-Fi,

Bluetooth 5.0, port micro-HDMI ganda, serta tambahan antarmuka PCIe 2.0 untuk

28

periferal berkecepatan tinggi. Dengan lonjakan performa tersebut, Raspberry Pi 5

sangat mumpuni untuk menangani beban komputasi menengah hingga berat,

menjadikannya platform yang ideal untuk menjalankan algoritma machine learning

dan sistem computer vision yang kompleks secara lebih responsif.

Meskipun begitu, Monk (2023) juga mengingatkan bahwa Raspberry Pi

memiliki keterbatasan, terutama dalam hal manajemen suhu. Raspberry Pi 4, misalnya,

rentan terhadap overheating saat digunakan untuk komputasi intensif dalam jangka

waktu lama. Untuk mengatasi hal ini, disarankan penggunaan sistem pendingin aktif

seperti kipas (fan), heatsink, atau casing berpendingin. Selain itu, pemilihan SD card

berkecepatan tinggi (minimal Class 10) dan power supply 5V 3A juga penting untuk

menjamin kestabilan sistem.

Gambar 2.4 Raspberry Pi 5 (Sumber: Raspberry Pi Ltd, 2025)

Gambar 2.4. memperlihatkan tampilan fisik Raspberry Pi yang digunakan

dalam penelitian ini. Pada gambar tersebut, beberapa komponen utama diberi

penomoran untuk mempermudah identifikasi dan penjelasan masing-masing

fungsinya. Berikut ini adalah uraian dari komponen-komponen penting yang ditandai:

1. Gigabit Ethernet

Port ini digunakan untuk konektivitas jaringan kabel (LAN) dengan

kecepatan hingga 1 Gbps. Gigabit Ethernet sangat berguna untuk keperluan

1

3

2

4

5

29

transfer data berkecepatan tinggi, komunikasi antarmuka dengan server,

atau ketika Raspberry Pi digunakan dalam jaringan lokal yang stabil dan

responsif.

USB 3.0

2. Port USB 3.0 (berwarna biru) menawarkan kecepatan transfer data yang

jauh lebih tinggi dibandingkan USB 2.0, hingga 5 Gbps. Dalam penelitian

ini, USB 3.0 dapat dimanfaatkan untuk menghubungkan kamera eksternal

(webcam), flashdisk, atau perangkat penyimpanan lainnya untuk

mempercepat pemrosesan dan penyimpanan data.

3. USB 2.0

Port USB 2.0 digunakan untuk koneksi perangkat seperti mouse, keyboard,

atau perangkat input-output lainnya yang tidak membutuhkan kecepatan

transfer tinggi. Keberadaan USB 2.0 memungkinkan Raspberry Pi

berfungsi layaknya komputer desktop dalam skala mini.1

4. Micro HDMI

Raspberry Pi 5 dilengkapi dua port micro HDMI yang dapat digunakan

untuk menampilkan output grafis ke layar monitor atau TV. Port ini

mendukung output video hingga resolusi 4K. Dalam konteks pengujian

sistem deteksi gesture, micro HDMI digunakan untuk menampilkan

antarmuka visual dan hasil klasifikasi secara langsung di layar eksternal.

5. USB Type-C (Power Supply)

Port ini berfungsi sebagai jalur utama untuk memasok daya ke Raspberry

Pi. Dibandingkan versi sebelumnya yang menggunakan micro USB, port

USB Type-C mampu menyediakan arus listrik yang lebih stabil dan cukup

untuk mendukung komponen-komponen tambahan seperti kamera, sensor,

atau layar tambahan.

Raspberry Pi sangat populer dalam pengembangan sistem tertanam (embedded

systems), terutama karena harganya yang murah, ukuran kecil, dan fleksibilitas tinggi.

Keunggulannya antara lain: dukungan terhadap banyak sensor dan perangkat eksternal

melalui GPIO, kompatibilitas dengan berbagai jenis kode, serta dapat difungsikan

30

sebagai komputer portabel. Dalam penelitian ini, Raspberry Pi digunakan sebagai

platform utama untuk menjalankan sistem klasifikasi bahasa isyarat BISINDO secara

real-time, karena kemampuannya yang cukup untuk memproses input dari kamera dan

menjalankan model machine learning secara efisien.

Namun, Raspberry Pi juga memiliki keterbatasan, seperti tidak adanya

penyimpanan internal (mengandalkan SD card), kinerja grafis yang terbatas, serta

potensi overheating jika digunakan dalam waktu lama tanpa pendingin tambahan.

Meskipun demikian, kombinasi fleksibilitas, portabilitas, dan kemudahan

pemrograman menjadikan Raspberry Pi sangat ideal untuk proyek-proyek inovatif

berbasis AI dan pengolahan citra (Ghael et al., 2020).

Kemampuan Raspberry Pi sebagai unit pemrosesan computer vision telah

dibuktikan dalam berbagai implementasi praktis. Sebagai contoh, Raspberry Pi telah

digunakan sebagai inti dari sistem visi berbasis Deep Neural Network (DNN) untuk

tugas-tugas keselamatan gedung. Dalam studi tersebut, sistem yang dikembangkan

mampu mendeteksi aliran asap sekaligus melakukan estimasi kepadatan manusia di

dalam ruangan secara real-time selama simulasi insiden kebakaran. Platform yang

sama juga telah diusulkan untuk sistem penghitungan manusia dalam sebuah adegan

dengan memanfaatkan deteksi kepala (Birajdar et al., 2021).

Selain itu, Raspberry Pi juga populer digunakan sebagai unit pemrosesan utama

dalam sistem tertanam (embedded systems) yang lebih kompleks, seperti robotika

otonom. Sebuah tinjauan teknologi pada robot pemetik buah dan sayuran menyoroti

peran krusial modul visi yang seringkali ditenagai oleh single-board computer. Dalam

aplikasi tersebut, sistem visi menggunakan kamera untuk menangkap citra, yang

kemudian diproses menggunakan algoritma machine learning untuk mengidentifikasi

secara akurat jenis, lokasi, dan bahkan tingkat kematangan dari hasil panen. Data hasil

pemrosesan visual ini kemudian digunakan oleh robot untuk menentukan lokasinya

secara presisi dan merencanakan aktuasi lengan robotik untuk melakukan pemetikan

(Chen et al, 2024).

31

2.3.1. Pi Camera

Kamera Raspberry Pi atau Pi Camera merupakan modul kamera yang

dirancang khusus untuk papan pengembangan Raspberry Pi. Modul ini terhubung

melalui Camera Serial Interface (CSI) dengan kabel pita 15-pin sehingga mampu

berkomunikasi langsung dengan GPU Raspberry Pi. Keunggulan ini membuat Pi

Camera dapat melakukan pemrosesan gambar dengan cepat tanpa membebani CPU,

serta mendukung perekaman video berkualitas tinggi seperti HD video, time-lapse,

maupun slow-motion (Symon et al., 2017). Fitur tersebut menjadikan Pi Camera

banyak dimanfaatkan dalam aplikasi berbasis visi komputer, sistem pemantauan,

maupun pengembangan sistem cerdas yang membutuhkan pengolahan citra secara

real-time.

Dalam penelitian Symon et al. (2017), Pi Camera digunakan sebagai sensor

visual utama pada sistem pemantauan bayi berbasis Raspberry Pi. Kamera ini bekerja

secara terintegrasi dengan sensor lain, seperti PIR sensor untuk mendeteksi gerakan

dan mikrofon untuk mendeteksi suara tangisan bayi. Hasil tangkapan kamera

ditampilkan secara real-time melalui LCD display, sementara buzzer digunakan

sebagai alarm jika bayi terdeteksi bergerak atau menangis. Penelitian ini menunjukkan

bahwa Pi Camera tidak hanya berfungsi sebagai perangkat pengambil gambar, tetapi

juga sebagai komponen penting dalam embedded system yang memerlukan monitoring

visual secara langsung.

Seiring perkembangannya, Pi Camera telah hadir dalam berbagai versi dengan

peningkatan resolusi, kualitas sensor, dan fitur tambahan. Perbandingan versi Pi

Camera dapat dilihat pada Tabel 2.2.

32

Tabel 2.2 Versi Pi Camera

Versi Sensor Resolusi Foto Resolusi Video
Tahun

Rilis

V1
OmniVision

OV5647

5 MP

(2592×1944)

1080p @30fps, 720p

@60fps, 480p

@90fps

2013

V2 Sony IMX219
8 MP

(3280×2464)

1080p @30fps, 720p

@60fps, 480p

@90fps

2016

HQ

Camera
Sony IMX477

12.3 MP

(4056×3040)
4K @30fps 2020

Camera

Module 3
Sony IMX708 12 MP 4608×2592 @60fps 2023

Berdasarkan tabel tersebut, dapat dilihat bahwa Raspberry Pi Camera telah

mengalami perkembangan signifikan dari versi 1 hingga Camera Module 3, baik dari

segi resolusi, sensor, maupun fitur tambahan. Perkembangan ini memperluas cakupan

aplikasi Pi Camera, mulai dari penelitian akademik, sistem pengenalan citra, hingga

penggunaan profesional dalam bidang industri dan IoT.

Pada penelitian ini, penulis menggunakan Pi Camera Module v1 yang

dilengkapi sensor OmniVision OV5647 dengan resolusi 5 megapiksel. Modul ini

mampu merekam video hingga 1080p pada 30 fps, sehingga cukup mendukung

kebutuhan pengolahan citra untuk sistem pengenalan bahasa isyarat berbasis Raspberry

Pi. Walaupun spesifikasi modul v1 masih terbatas dibanding generasi terbaru,

penggunaannya tetap relevan karena konsumsi daya yang rendah, kemudahan integrasi,

serta ketersediaannya yang luas di komunitas pengembang. Hal ini menjadikan Pi

Camera v1 pilihan yang tepat untuk tahap awal pengembangan sistem portabel berbasis

Raspberry Pi. Bentuk fisik dari modul kamera ini dapat dilihat pada Gambar 2.5.

33

Gambar 2.5 Pi Camera v1 5MP (Sumber: Pomaska, 2019)

34

Bab III

Analisis dan Perancangan Sistem

3.1. Metode Penelitian

Untuk mencapai tujuan penelitian yang telah dirumuskan, penelitian ini

dilaksanakan melalui serangkaian tahapan yang sistematis dan terstruktur. Metode

penelitian yang diterapkan menggunakan pendekatan eksperimental untuk

mengembangkan sistem klasifikasi bahasa isyarat BISINDO pada perangkat embedded.

Secara garis besar, alur tahapan penelitian ini digambarkan dalam Flowchart pada

Gambar 3.1.

Gambar 3.1 Flowchart Metode Penelitian

35

Berdasarkan Gambar 3.1, tahapan penelitian dijelaskan secara rinci sebagai

berikut:

1. Studi Literatur: Tahap awal dilakukan dengan mengkaji teori terkait

BISINDO, pengolahan citra digital, arsitektur Deep Learning (LSTM dan

Transformer), serta implementasi pada Raspberry Pi.

2. Identifikasi Masalah: Merumuskan permasalahan terkait kendala

komunikasi teman Tuli dan kebutuhan sistem penerjemah yang portabel

dan real-time.

3. Pengumpulan Data: Melakukan pengambilan data citra gestur statis dan

sequence gestur dinamis menggunakan kamera, yang kemudian diproses

menggunakan MediaPipe untuk mendapatkan fitur landmark tangan.

4. Perancangan Sistem: Merancang arsitektur perangkat keras

menggunakan Raspberry Pi 5 dan Pi Camera v1, serta merancang

arsitektur model Random Forest, LSTM, dan Transformer.

5. Implementasi Model: Melatih model klasifikasi menggunakan dataset

yang telah dikumpulkan, melakukan optimasi hyperparameter, dan

mengonversi model ke format TensorFlow Lite.

6. Pengujian dan Evaluasi: Tahap ini dilakukan untuk memvalidasi kinerja

sistem melalui dua skenario pengujian utama:

• Evaluasi Model: Mengukur performa model klasifikasi

menggunakan data uji yang telah dipisahkan. Evaluasi dilakukan

menggunakan metrik Confusion Matrix, Akurasi, Presisi, Recall,

dan F1-Score untuk mengetahui kemampuan model dalam

mengenali gestur sebelum diimplementasikan ke perangkat keras.

• Evaluasi Sistem Real-Time: Menguji integrasi sistem secara

langsung pada perangkat Raspberry Pi 5. Pengujian ini mencakup

akurasi deteksi gestur secara real-time oleh pengguna, serta

pengukuran kinerja komputasi yang meliputi kecepatan inferensi

(latency), Frame Rate (FPS), penggunaan CPU, dan stabilitas suhu

perangkat.

36

7. Analisis dan Kesimpulan: Menganalisis hasil pengujian untuk

membandingkan kinerja antara metode LSTM dan Transformer, serta

menarik kesimpulan dari penelitian yang dilakukan.

3.2. Analisis Kebutuhan

Analisis kebutuhan dilakukan untuk merumuskan spesifikasi sistem yang akan

dikembangkan agar sesuai dengan tujuan penelitian. Sistem yang dirancang adalah

pengembangan sistem klasifikasi Bahasa Isyarat Indonesia (BISINDO) secara real-

time berbasis Raspberry Pi, dengan pembaruan berupa integrasi metode Random Forest

untuk gestur statis, serta perbandingan antara Long Short-Term Memory (LSTM) dan

Transformer dalam pengenalan gestur dinamis. Analisis ini menjadi landasan dalam

merancang arsitektur, algoritma, dan implementasi sistem yang handal, portabel, serta

dapat bekerja pada perangkat dengan keterbatasan sumber daya.

3.2.1. Kebutuhan Fungsionalitas

Kebutuhan fungsional menjelaskan fungsi utama yang harus dimiliki sistem

agar dapat berjalan sesuai dengan tujuan penelitian, yaitu:

1. Sistem mampu menangkap gerakan tangan pengguna melalui kamera yang

terpasang pada Raspberry Pi.

2. Sistem dapat mendeteksi dan mengekstraksi landmark tangan secara real-

time menggunakan pustaka MediaPipe.

3. Sistem mengklasifikasikan gestur statis BISINDO menggunakan algoritma

Random Forest.

4. Sistem mengklasifikasikan gestur dinamis dengan menggunakan dua

pendekatan berbeda, yaitu LSTM dan Transformer, untuk kemudian

dilakukan analisis perbandingan performa.

5. Sistem dapat menampilkan hasil prediksi gestur dalam bentuk label teks

secara real-time.

3.2.2. Kebutuhan Non-Fungsional

Selain fungsi utama, sistem juga harus memenuhi aspek non-fungsional agar

dapat digunakan secara efektif, yaitu:

37

1. Kinerja: sistem harus dapat memproses input video secara real-time dengan

latensi rendah.

2. Portabilitas: sistem dijalankan pada perangkat Raspberry Pi sehingga dapat

digunakan secara mandiri tanpa ketergantungan pada komputer eksternal.

3. Efisiensi: penggunaan daya dan memori harus dioptimalkan mengingat

keterbatasan perangkat keras.

4. Kemudahan penggunaan: antarmuka sistem dirancang sederhana agar dapat

dipahami dan digunakan tanpa kesulitan oleh pengguna awam.

3.2.3. Kebutuhan Data

Sistem memerlukan dataset yang terdiri dari dua jenis gestur, yaitu gestur statis

dan gestur dinamis.

• Gestur statis: dikumpulkan dalam bentuk citra tunggal tangan pada posisi

tertentu yang mewakili huruf, angka, atau kosakata BISINDO. Data ini

digunakan untuk pelatihan model Random Forest.

• Gestur dinamis: dikumpulkan dalam bentuk rangkaian frame (sequence)

berisi koordinat landmark tangan. Dataset ini digunakan untuk pelatihan

model LSTM dan Transformer. Setiap kelas gestur dinamis dikumpulkan

minimal 105 sequence dengan panjang 20 frame per sequence, sehingga

cukup mewakili variasi antar-subjek.

3.3. Pengumpulan Data

Jenis gestur yang digunakan dalam penelitian ini diklasifikasikan menjadi dua

kategori utama, yaitu gestur statis dan gestur dinamis, berdasarkan karakteristik

pergerakannya. Gestur statis merupakan bentuk isyarat yang dapat dikenali dari satu

citra tunggal tanpa memerlukan analisis urutan waktu, seperti huruf alfabet, angka, dan

beberapa kosakata BISINDO yang tidak melibatkan perubahan posisi tangan secara

signifikan. Gestur-gestur tersebut dilatih menggunakan algoritma Random Forest,

yang efektif dalam mengenali pola visual tetap dari koordinat landmark tangan. Daftar

lengkap gestur statis yang digunakan sebagai data pelatihan dan pengujian dalam

38

penelitian ini disajikan pada Tabel 3.1, yang mencakup seluruh kata statis dalam

BISINDO.

Tabel 3.1 Gestur yang dilatih Random Forest

A-Z BAWAH MENDENGAR

0-10 BISA BERDOA

ANDA KAMU MAKAN KANAN

ITU MENUNJUK TIDUR KIRI

SAYA BACA

Sementara itu, gestur dinamis dilatih menggunakan metode LSTM dan

Transformer karena kedua model tersebut mampu mempelajari pola temporal dari

rangkaian gerakan tangan. Gestur dinamis mencakup kosakata yang direpresentasikan

dalam bentuk sequence pergerakan tangan. Daftar gestur dinamis yang digunakan

dalam penelitian ini ditampilkan pada Tabel 3.2.

Tabel 3.2 Gestur kosakata yang dilatih LSTM dan Transformer

AIR SEPERTI TAHUN DARI TURUN

INI ATAU BELAJAR MINUM HANYA

ROTI DALAM LUAR ORANG DAN

ATAS SIAPA
MILIK

PUNYA
DIA APA

JADI KERJA UNTUK NAIK NASI

MEREKA KITA
JIKA

KALAU
G BANGUN

BICARA TULIS JALAN LARI MEMBELI

MENUTUP MEMBERI MENERIMA MENOLONG MENUNGGU

DUDUK BERDIRI DATANG MASUK KELUAR

39

TUTUP

(MATA)
MENANGIS TERTAWA MENJAWAB MENANYAKAN

MENYAPU
MENCUCI

BAJU
MEMASAK MENGIRIM NAMA

BERCERITA
MINTA

MAAF
MENYANYI BERMAIN DEPAN

ANTARA DEKAT JAUH DI SINI DI SANA

TIMUR BARAT SELATAN UTARA R

J TAPI
TAHU

PAHAM
SEMUA LIHAT

MENJUAL MEMINTA PAKAI
MEMBACA

AL QURAN

MENERIMA

PESAN

BELAKANG SEBELUM BERKATA AMBIL AKAN

PULANG PERGI DENGAR MEMBUKA MENONTON

BUKA

(MATA)

MENONTON

TV
MENIKAH SAMPING SESUDAH

Proses pengumpulan data dalam penelitian ini dibedakan menjadi dua tahap

sesuai dengan karakteristik model yang digunakan, yaitu Random Forest untuk

klasifikasi gestur statis dan LSTM/Transformer untuk klasifikasi gestur dinamis.

Seluruh proses akuisisi data dilaksanakan di lingkungan Laboratorium Human-

Machine Interaction (HMI). Kondisi pencahayaan di area pengambilan data dipantau

secara ketat menggunakan alat ukur Luxmeter, dengan intensitas cahaya dijaga stabil

pada rentang 200 hingga 300 Lux untuk memastikan visibilitas fitur tangan tetap

optimal bagi sensor kamera. Berbeda dengan pendekatan yang menggunakan latar

belakang polos, penelitian ini menerapkan kondisi latar belakang natural yang

kompleks yang memuat berbagai objek inventaris laboratorium. Hal ini bertujuan

untuk menguji ketahanan model dalam memisahkan objek tangan dari gangguan visual

di lingkungan nyata.

40

Untuk menjaga konsistensi proporsi dan skala citra tangan, jarak antara subjek

dan kamera dipertahankan konstan pada rentang 50 hingga 80 cm, baik pada fase

pengumpulan data maupun pengujian. Namun, terdapat perbedaan pada spesifikasi

perangkat keras akuisisi yang digunakan. Pada tahap pengumpulan dataset latih,

perekaman dilakukan menggunakan Webcam Logitech C270 dengan konfigurasi

resolusi 1280x720 piksel dan kecepatan 30 fps. Sedangkan pada tahap evaluasi sistem

real-time, perangkat digantikan oleh modul PiCamera v1 yang terhubung dengan

sistem pemroses, dengan pengaturan jarak dan sudut pandang yang identik serta

resolusi input yang disesuaikan untuk menjaga validitas performa model pada

embedded device.

Pada tahap pertama, data untuk model Random Forest diperoleh dalam bentuk

citra tunggal dari setiap gestur statis. Proses pengambilan dilakukan menggunakan PC

yang terhubung dengan webcam sebagai perangkat perekaman. Terdapat 6 partisipan

dalam proses pengambilan data, yang seluruhnya merupakan mahasiswa berusia 20–

23 tahun. Setiap partisipan diminta memperagakan gestur sesuai kategori yang

ditentukan, kemudian direkam sebanyak 200 gambar per gestur dengan bantuan

pustaka OpenCV. Seluruh citra hasil tangkapan kamera selanjutnya diproses

menggunakan MediaPipe Hands untuk mengekstraksi titik-titik koordinat tangan

dalam bentuk tiga dimensi (x, y, z). Data landmark tersebut digunakan sebagai

representasi fitur yang kemudian dilatih dengan model Random Forest. Kategori gestur

yang dikumpulkan meliputi 104 kosakata harian, huruf alfabet A–Z, serta angka 0–10,

sehingga dataset mencakup variasi gerakan yang luas untuk mendukung pengenalan

gestur statis BISINDO. Alur proses pengumpulan data ini dapat dilihat pada Gambar

3.2. beserta juga contoh data yang diperoleh pada Gambar 3.3.

41

Gambar 3.2 Skema pengumpulan data gestur statis dan titik-titik landmark yang akan

dikonversi dalam format file CSV

Gambar 3.3 Dataset Random Forest Gestur "BAWAH"

Berbeda dengan Random Forest, pengumpulan data untuk model LSTM dan

Transformer dilakukan dalam bentuk rangkaian sequence yang merepresentasikan

gestur dinamis. Proses pengambilan juga dilakukan menggunakan PC dan webcam

dengan dukungan pustaka MediaPipe Hands. Setiap sequence terdiri dari 20 frame

berurutan, dengan setiap frame berisi koordinat tiga dimensi dari 21 titik landmark

tangan. Untuk setiap kelas gestur dinamis, dikumpulkan sebanyak 105 sequence dari

setiap partisipan. Agar partisipan tidak mengalami kelelahan akibat repetisi yang

berulang, pengambilan data dirancang dengan memberi jeda istirahat selama 1 menit

setiap kali selesai satu kelas gestur. Dataset hasil perekaman kemudian disimpan dalam

format .npz, yang berisi array berdimensi (105, 20, 63/126) tergantung jumlah tangan

yang terdeteksi, serta metadata seperti identitas partisipan, kategori gestur, dan

parameter perekaman. Struktur data ini dipilih karena sesuai dengan kebutuhan input

model LSTM dan Transformer yang memerlukan representasi sekuensial. Visualisasi

42

akuisisi dataset gestur dinamis ditampilkan pada Gambar 3.4 dan hasil akuisisi dataset

ditampilkan pada gambar 3.5.

Gambar 3.4 Pengambilan Dataset Gestur Dinamis

Gambar 3.5 Hasil Pengambilan Dataset Gestur Dinamis

Dengan adanya perbedaan metode pengumpulan data ini, sistem dapat

menangani dua jenis gestur dengan pendekatan yang sesuai. Gestur statis

direpresentasikan dalam bentuk citra tunggal, diekstraksi menjadi landmark tangan

menggunakan MediaPipe Hands, lalu dilatih menggunakan Random Forest. Sementara

itu, gestur dinamis direpresentasikan sebagai sequence frame, diekstraksi dengan cara

yang sama menggunakan MediaPipe Hands, lalu digunakan sebagai input untuk

melatih model LSTM maupun Transformer agar pola temporal pergerakan dapat

dipelajari secara lebih mendalam.

43

Sebelum digunakan dalam pelatihan model, seluruh gestur yang dikumpulkan

divalidasi oleh ahli Bahasa Isyarat Indonesia (BISINDO) untuk memastikan kesesuaian

bentuk gestur dengan standar bahasa isyarat yang berlaku. Setelah divalidasi, dataset

dibagi dengan rasio 80:20 untuk data latih dan data uji. Selain itu, pelatihan model juga

menerapkan 5-Fold Cross-Validation untuk meningkatkan reliabilitas dan generalisasi

model terhadap data baru. Dengan adanya perbedaan metode pengumpulan dan

pengolahan data ini, sistem mampu mengenali baik gestur statis maupun dinamis

secara efektif sesuai karakteristik model masing-masing.

3.4. Pembentukan Model Klasifikasi

Pembentukan model klasifikasi dalam penelitian ini dilakukan dengan tiga

pendekatan utama, yaitu Random Forest, LSTM (Long Short-Term Memory), dan

Transformer. Seluruh model dilatih menggunakan dataset BISINDO yang telah

diproses menjadi representasi koordinat landmark tangan hasil ekstraksi dari

MediaPipe. Untuk menjamin konsistensi dan reliabilitas model, data dibagi menjadi

80% untuk pelatihan dan validasi, serta 20% untuk pengujian akhir. Selain itu, pada

tahap pelatihan diterapkan 5-Fold Cross Validation pada data latih untuk memperoleh

evaluasi yang lebih menyeluruh serta mengurangi potensi bias akibat pemisahan data

tunggal.

Dalam proses pelatihan model, penentuan nilai hyperparameter memegang

peranan krusial terhadap performa akhir sistem. Pemilihan hyperparameter pada

penelitian ini dilakukan menggunakan pendekatan empiris melalui serangkaian

eksperimen iteratif. Nilai parameter tidak ditentukan menggunakan pencarian otomatis,

melainkan disesuaikan secara manual berdasarkan observasi terhadap konvergensi loss

dan akurasi model pada data validasi.

Proses ini dimulai dengan mengadopsi nilai standar yang direkomendasikan

dalam literatur terkait, kemudian dilakukan penyesuaian bertahap untuk mendapatkan

konfigurasi yang paling optimal bagi karakteristik dataset gestur yang digunakan.

Konfigurasi akhir yang dipilih adalah konfigurasi yang menghasilkan keseimbangan

terbaik antara akurasi pelatihan dan kemampuan generalisasi guna menghindari

overfitting.

44

3.4.1. Arsitektur Model Random Forest

Model Random Forest dirancang untuk mengklasifikasikan gestur statis,

seperti huruf alfabet, angka, dan beberapa kosakata BISINDO. Masukan model berupa

vektor fitur tunggal dari koordinat landmark tangan. Random Forest dibangun sebagai

kumpulan pohon keputusan yang masing-masing dilatih pada subset acak dari data,

kemudian hasil prediksi digabungkan menggunakan mekanisme majority voting. Pada

perancangan ini, parameter utama yang digunakan adalah jumlah pohon (n_estimators),

fungsi pemisahan (criterion), serta kedalaman pohon (max_depth), yang ditentukan

untuk menyeimbangkan kompleksitas dan kemampuan generalisasi model. Struktur

model ini divisualisasikan pada Gambar 3.6, yang menunjukkan hubungan hierarkis

antar pohon keputusan dalam menghasilkan prediksi akhir berdasarkan mayoritas hasil

klasifikasi. Detail pengaturan hyperparameter yang digunakan pada model Random

Forest ditampilkan pada Tabel 3.3. Pemilihan parameter dilakukan secara empiris

berdasarkan hasil beberapa percobaan awal untuk menyeimbangkan antara akurasi,

waktu pelatihan, dan kemampuan generalisasi model terhadap variasi data gestur.

Nilai-nilai tersebut menghasilkan performa terbaik pada pengujian train-test split

(80:20) maupun 5-fold cross-validation.

Tabel 3.3 Hyperparameter Model Random Forest

Parameter
Nilai yang

Digunakan
Keterangan

n_estimators 100

Jumlah pohon keputusan yang digunakan

dalam ensemble. Semakin besar nilainya,

semakin stabil hasil prediksi.

criterion Gini

Fungsi pengukuran impurity yang digunakan

untuk menentukan pemisahan optimal pada

setiap node.

45

Parameter
Nilai yang

Digunakan
Keterangan

max_depth None

Kedalaman maksimum pohon tidak dibatasi

untuk memberi fleksibilitas pada proses

pembelajaran.

random_state 42
Nilai seed acak untuk memastikan hasil

pelatihan dapat direproduksi.

test_size 0.2
Rasio pembagian dataset antara data latih dan

data uji sebesar 80:20.

cross_validation 5-Fold
Validasi silang digunakan untuk mengevaluasi

kestabilan dan konsistensi performa model.

Gambar 3.6 Arsitektur Model Random Forest

3.4.2. Arsitektur Model LSTM

Model LSTM digunakan untuk mengklasifikasikan gestur dinamis, yaitu pola

bahasa isyarat yang terdiri dari urutan beberapa frame berturut-turut. Dataset

sekuensial disimpan dalam format NPZ, yang memuat representasi koordinat landmark

46

tangan untuk setiap frame. Setiap sampel masukan memiliki dimensi 20 frame dengan

126 fitur per frame, merepresentasikan pergerakan tangan dalam bentuk sekuensial.

Arsitektur LSTM terdiri dari beberapa lapisan berurutan yang dirancang untuk

menangkap hubungan temporal antar frame, dilengkapi dengan dropout sebagai

regularisasi, serta lapisan Dense dengan aktivasi ReLU sebelum menuju lapisan

keluaran (output layer) yang menggunakan fungsi aktivasi softmax untuk klasifikasi

multi-kelas. Ilustrasi arsitektur LSTM ditunjukkan pada Gambar 3.7, yang

menggambarkan alur pemrosesan data sekuensial dari input hingga output dengan

mekanisme memori jangka panjang antar lapisan. Detail konfigurasi arsitektur dan

hyperparameter model LSTM yang digunakan dalam penelitian ini ditampilkan pada

Tabel 3.4. Nilai parameter ditentukan berdasarkan hasil percobaan awal untuk

memperoleh keseimbangan antara akurasi, stabilitas pelatihan, serta efisiensi

komputasi agar dapat diimplementasikan secara optimal pada perangkat Raspberry Pi.

Proses pelatihan dilakukan dengan rasio data latih dan uji sebesar 80:20, serta

menggunakan validasi silang (5-Fold Cross Validation) untuk memastikan model

memiliki kemampuan generalisasi yang baik terhadap variasi data gestur dinamis.

Tabel 3.4 Hyperparameter Model LSTM

Parameter Nilai Keterangan

Input Shape (20, 126)

Setiap sampel berisi 20

frame dengan 126 fitur

koordinat per frame.

Lapisan LSTM

64 unit,

return_sequences=False,

unroll=True

Menangkap hubungan

temporal antar frame

gestur dinamis.

Lapisan Dense
32 neuron, aktivasi ReLU,

regularisasi L2(0.001)

Menyaring fitur hasil

ekstraksi dari LSTM dan

mencegah overfitting.

47

Parameter Nilai Keterangan

Lapisan Dropout 0.3

Mengurangi risiko

overfitting dengan

menonaktifkan sebagian

neuron selama pelatihan.

Lapisan Output
Dense(num_classes,

activation='softmax')

Menghasilkan probabilitas

untuk setiap kelas gestur.

Optimizer Adam

Menyesuaikan bobot

model secara adaptif

untuk mempercepat

konvergensi.

Loss Function Categorical Crossentropy
Digunakan untuk tugas

klasifikasi multi-kelas.

Batch Size 16

Jumlah sampel yang

diproses dalam satu iterasi

pelatihan.

Epochs Maksimal 300

Jumlah iterasi pelatihan

dengan early stopping

otomatis jika validasi

tidak membaik.

Validation Split 5-Fold Cross Validation

Mengukur stabilitas

performa model di setiap

lipatan data.

Early Stopping
patience=10,

restore_best_weights=True

Menghentikan pelatihan

lebih awal untuk

mencegah overfitting.

Learning Rate

Scheduler

ReduceLROnPlateau

(factor=0.5, patience=5,

min_lr=1e-6)

Menurunkan learning rate

secara adaptif ketika

validasi stagnan.

48

Gambar 3.7 Arsitektur Model LSTM

3.4.3. Arsitektur Model Transformer

Sementara itu, model Transformer dirancang untuk mendeteksi pola temporal

gestur dinamis menggunakan mekanisme self-attention. Dataset yang sama dalam

format NPZ digunakan untuk melatih model Transformer. Proses pelatihan dilakukan

dengan membagi data menjadi mini-batch sekuensial, kemudian melewati blok

encoder Transformer yang terdiri dari lapisan multi-head attention, normalisasi, dan

feed-forward network. Lapisan keluaran menggunakan fungsi aktivasi softmax dengan

jumlah neuron sesuai jumlah kelas gestur, sehingga mampu menghasilkan distribusi

probabilitas atas setiap kategori. Rancangan arsitektur Transformer ini divisualisasikan

pada Gambar 3.8, yang menampilkan dua blok encoder bertingkat yang memproses

informasi temporal secara paralel untuk memperoleh representasi fitur yang

49

kontekstual. Detail konfigurasi arsitektur dan hyperparameter model Transformer

yang digunakan dalam penelitian ini disajikan pada Tabel 3.5. Nilai-nilai parameter

ditentukan melalui proses eksplorasi empiris untuk menyeimbangkan antara

kompleksitas model dan efisiensi komputasi, mengingat model ini akan

diimplementasikan pada perangkat Raspberry Pi. Pelatihan dilakukan menggunakan

pembagian data sebesar 80% untuk pelatihan dan validasi serta 20% untuk pengujian,

dengan skema 5-Fold Cross Validation pada data latih. Tujuannya adalah untuk

memastikan bahwa model Transformer mampu mempelajari hubungan temporal antar

frame secara efektif melalui mekanisme self-attention, sekaligus menjaga stabilitas

generalisasi terhadap variasi gerakan tangan antar partisipan.

Tabel 3.5 Hyperarameter Model Transformer

Parameter Nilai Keterangan

Input Shape (20,126)

Setiap sampel terdiri dari 20

frame dengan 126 fitur

koordinat 3D dari 21 titik

tangan per frame.

Dense Projection

Layer
64 unit

Mengubah dimensi fitur input

menjadi representasi vektor

berdimensi tetap (d_model).

Positional

Embbeding
Panjang sekuens 20

Menambahkan informasi posisi

tiap frame agar model

memahami urutan temporal.

Jumlah Blok

Encoder
2

Tiap blok terdiri dari Multi-

Head Attention, Layer

Normalization, dan Feed

Forward Network.

50

Parameter Nilai Keterangan

Multi-Head

Attention
4 head, key_dim = 64

Menangkap hubungan antar

frame dari berbagai perspektif

secara paralel.

Feed Forward

Network
64 unit, aktivasi ReLU

Mengubah representasi hasil

attention menjadi fitur non-

linear yang lebih dalam.

Dropout Rate 0.3
Mengurangi risiko overfitting

selama pelatihan.

Global Average

Pooling
-

Merata-ratakan keluaran

temporal menjadi satu vektor

global.

Dense Layer
64 → Softmax (jumlah

kelas)

Menghasilkan distribusi

probabilitas untuk setiap kelas

gestur.

Optimizer
Adam (learning rate =

0.001)

Menyesuaikan bobot secara

adaptif agar konvergensi cepat

dan stabil.

Loss Function
Sparse Categorical

Crossentropy

Cocok untuk klasifikasi multi-

kelas dengan label integer.

Batch Size 16
Ukuran mini-batch pada proses

pelatihan.

Epochs Maksimal 300

Proses pelatihan berhenti lebih

awal jika performa validasi

tidak meningkat.

Validation Split 5-Fold Cross Validation
Mengukur konsistensi performa

pada tiap lipatan data.

51

Parameter Nilai Keterangan

Early Stopping patience = 10

Menghentikan pelatihan

otomatis untuk mencegah

overfitting.

Learning Rate

Scheduler

ReduceLROnPlateau

(factor=0.5, patience=5)

Menurunkan learning rate

secara adaptif ketika validasi

stagnan.

Gambar 3.8 Arsitektur Model Transformer

52

Setelah seluruh model selesai dirancang, hasil pelatihan akan dikonversi ke

format TensorFlow Lite (TFLite) menggunakan skrip konversi. Format ini dipilih

karena lebih ringan dan efisien untuk dijalankan pada perangkat dengan keterbatasan

sumber daya. Selanjutnya, model Random Forest, LSTM, dan Transformer akan

diintegrasikan dalam sebuah arsitektur hybrid. Hybrid model ini memungkinkan

perbandingan performa antara LSTM dan Transformer dalam mengenali gestur

dinamis, sementara Random Forest tetap menangani gestur statis. Setelah integrasi,

keseluruhan sistem kemudian diimplementasikan pada Raspberry Pi 5 dengan input

dari PiCamera v1, sehingga mampu melakukan pengenalan BISINDO secara real-time

dan portabel.

Alur proses pembentukan model hingga implementasi sistem secara

keseluruhan dapat dilihat pada Gambar 3.9.

Gambar 3.9 Flowchart Pembuatan Model

53

3.5. Hybrid Model

Hybrid model dalam penelitian ini dirancang untuk menangani perbedaan

karakteristik antara gestur statis dan gestur dinamis pada bahasa isyarat BISINDO.

Gestur statis, seperti huruf alfabet dan angka, lebih sesuai diklasifikasikan

menggunakan Random Forest karena cukup dilihat sebagai snapshot tunggal tanpa

pola pergerakan. Sementara itu, gestur dinamis seperti kata atau frasa memerlukan

analisis temporal antarframe, sehingga lebih tepat diproses menggunakan model

sekuensial seperti LSTM maupun Transformer.

Dalam implementasinya, sistem terlebih dahulu mengekstrak landmark tangan

dari input kamera menggunakan MediaPipe. Jika gerakan tangan terdeteksi stabil pada

beberapa frame, input dianggap sebagai gestur statis dan diproses oleh Random Forest.

Sebaliknya, ketika terdapat perubahan posisi tangan yang signifikan dalam urutan

frame, maka data sekuensial akan diteruskan ke model sekuensial (LSTM atau

Transformer) untuk mengenali pola gerakan dinamis. Alur proses pengambilan

keputusan antara model statis dan dinamis tersebut ditunjukkan pada Gambar 3.10,

yang menggambarkan topologi sistem hybrid dalam mengenali gestur secara real-time

pada perangkat Raspberry Pi.

Gambar 3.10 Diagram Alur Hybrid Model

54

Berdasarkan Gambar 3.10, sistem hybrid dimulai dari proses akuisisi citra

secara real-time menggunakan kamera yang terhubung ke Raspberry Pi. Setiap frame

yang diterima kemudian dikonversi menjadi format RGB dan diproses oleh MediaPipe

Hands untuk mendeteksi serta mengekstraksi 21 titik koordinat landmark dari satu atau

dua tangan pengguna. Koordinat tersebut disimpan secara berurutan dalam bentuk

urutan frame agar dapat dianalisis lebih lanjut oleh sistem.

Selanjutnya, sistem menganalisis perubahan posisi tangan antar frame untuk

menentukan apakah gerakan yang dilakukan bersifat statis atau dinamis. Jika

pergerakan tangan terdeteksi stabil dalam beberapa frame berturut-turut, maka sistem

menganggapnya sebagai gestur statis dan mengirimkan data ke model Random Forest

untuk klasifikasi. Sebaliknya, apabila sistem mendeteksi adanya perubahan posisi

tangan yang signifikan dalam rentang waktu tertentu, maka urutan frame tersebut

diteruskan ke model LSTM TensorFlow Lite / Transformer TensorFlow Lite untuk

mengenali pola pergerakan dinamis.

Hasil klasifikasi dari kedua model akan ditampilkan secara langsung di layar

dengan keterangan jenis model yang digunakan. Sistem juga memberikan jeda waktu

singkat setelah setiap prediksi untuk mencegah pengenalan ganda terhadap gestur yang

sama. Dengan pendekatan ini, sistem mampu melakukan klasifikasi secara adaptif

berdasarkan pola pergerakan tangan pengguna, sehingga menghasilkan proses deteksi

gestur yang efisien dan akurat pada perangkat Raspberry Pi 5 tanpa memerlukan

koneksi internet.

Agar sistem tetap ringan dijalankan pada Raspberry Pi 5, penelitian ini

menggunakan pendekatan hybrid bergantian. Skenario pertama adalah kombinasi RF

+ LSTM untuk menguji akurasi klasifikasi statis dan dinamis. Skenario kedua adalah

kombinasi RF + Transformer dengan fungsi yang sama. Hasil dari kedua skenario

tersebut kemudian dibandingkan untuk mengevaluasi performa model sekuensial

(LSTM dan Transformer) dalam konteks pengenalan BISINDO secara real-time.

Dengan strategi ini, pengujian dapat dilakukan secara objektif tanpa membebani

perangkat keras karena hanya dua model dijalankan pada satu waktu.

55

Selain arsitektur algoritmik, penelitian ini juga memperhatikan topologi

perangkat keras yang digunakan. Sistem terdiri atas Raspberry Pi 5 sebagai pusat

komputasi, kamera CSI PiCamera v1 sebagai perangkat akuisisi data visual, serta kipas

pendingin untuk menjaga kestabilan suhu operasional. Raspberry Pi terhubung ke

monitor melalui micro-HDMI untuk menampilkan hasil klasifikasi secara real-time,

dengan dukungan catu daya eksternal 5V 3A. Topologi perangkat ini divisualisasikan

pada Gambar 3.11, yang menunjukkan susunan komponen serta keterhubungan

antarperangkat dalam sistem secara keseluruhan.

Gambar 3.11 Topologi Perangkat

56

Gambar 3.12 Topologi Tanpa Internet

Topologi sistem yang digunakan dalam penelitian ini bersifat sepenuhnya

offline, Visualisasi arsitektur ini disajikan pada Gambar 3.12, di mana seluruh proses

deteksi dan klasifikasi dilakukan secara lokal pada Raspberry Pi 5 tanpa memerlukan

koneksi internet. Sistem diawali dengan pengguna yang memperagakan gestur tangan

di depan kamera (menggunakan Pi Camera v1). Kamera berfungsi menangkap citra

tangan secara real-time, yang kemudian dikirim ke MediaPipe Hands untuk

mendeteksi dan mengekstraksi titik-titik koordinat tangan (landmark) dalam bentuk

tiga dimensi (x, y, z).

Hasil ekstraksi landmark ini menjadi masukan bagi sistem klasifikasi yang

terdiri dari tiga model, yaitu Random Forest, serta LSTM dan Transformer yang

berbasis TensorFlow Lite. Model Random Forest digunakan untuk mengenali gestur

statis, yaitu gestur yang tidak melibatkan pergerakan tangan secara berurutan antar

frame.

Sementara itu, LSTM dan Transformer digunakan untuk mengenali gestur

dinamis yang mengandung urutan gerakan dalam waktu tertentu. Kedua model ini

57

bekerja dengan cara menganalisis pola sekuensial dari 20 frame berurutan (sequence)

untuk menentukan jenis gestur yang dilakukan.

Dalam implementasinya, baik model LSTM maupun Transformer dikonversi

ke dalam format TensorFlow Lite (TFLite) agar dapat dijalankan secara efisien pada

perangkat Raspberry Pi yang memiliki sumber daya terbatas. Penggunaan format

TFLite pada kedua model ini bertujuan untuk memastikan perbandingan performa yang

adil dalam hal kecepatan inferensi dan penggunaan memori, khususnya untuk melihat

kemampuan Transformer sebagai pembanding terhadap LSTM dalam mengenali

urutan gerakan dengan kompleksitas tinggi.

Seluruh proses mulai dari penangkapan citra, deteksi landmark, klasifikasi

gestur, hingga penampilan hasil di layar dilakukan secara lokal dan offline, sehingga

sistem dapat beroperasi tanpa ketergantungan terhadap server eksternal atau koneksi

jaringan.

Sistem penerjemah BISINDO berbasis Raspberry Pi ini dibangun dengan

memanfaatkan kombinasi sumber daya perangkat keras dan perangkat lunak yang

mendukung pengolahan citra serta inferensi model secara offline. Seluruh komponen

yang digunakan dirancang agar sistem dapat berjalan mandiri tanpa ketergantungan

pada koneksi internet. Komponen utama yang digunakan meliputi Raspberry Pi 5

sebagai unit pemrosesan utama, Pi Camera v1 untuk menangkap citra tangan, serta

perangkat pendukung seperti monitor, keyboard, dan mouse untuk interaksi pengguna.

Dari sisi perangkat lunak, sistem dikembangkan menggunakan bahasa

pemrograman Python dengan dukungan pustaka MediaPipe Hands untuk ekstraksi

landmark tangan, OpenCV untuk pemrosesan citra, dan TensorFlow Lite sebagai mesin

inferensi ringan untuk model LSTM dan Transformer yang dijalankan pada Raspberry

Pi. Selain itu, sistem juga mengintegrasikan model Random Forest untuk mendeteksi

gestur statis, serta LSTM dan Transformer (TFLite) untuk mengenali gestur dinamis.

Penggunaan TensorFlow Lite bertujuan agar model dapat berjalan lebih efisien dengan

konsumsi memori rendah tanpa mengorbankan kecepatan prediksi.

Rincian lengkap sumber daya perangkat keras dan perangkat lunak yang

digunakan dalam penelitian ini dapat dilihat pada Tabel 3.6.

58

Tabel 3.6 Sumber Daya Sistem

Jenis Sumber

Daya
Perangkat/Komponen Keterangan

Perangkat Keras

(Hardware)

Raspberry Pi 5

Unit pemrosesan utama dengan 16

GB RAM, menjalankan seluruh

proses inferensi dan klasifikasi

secara offline

Pi Camera Module v1

Kamera utama dengan sensor

OV5647, digunakan untuk

menangkap citra tangan secara real-

time

Monitor, Keyboard,

Mouse

Antarmuka pengguna untuk

menampilkan hasil dan melakukan

interaksi selama pengujian

MicroSD 32 GB

Media penyimpanan sistem operasi,

program, dan model machine

learning

Perangkat

Lunak

(Software)

Raspberry Pi OS Sistem operasi utama berbasis Linux

Python
Bahasa pemrograman utama untuk

pengembangan sistem

OpenCV
Digunakan untuk pengambilan citra

dan pengolahan frame video

MediaPipe Hands

Untuk deteksi dan ekstraksi 21 titik

landmark tangan dalam format

koordinat (x, y, z)

TensorFlow &

TensorFlow Lite

Framework machine learning;

TFLite digunakan untuk

menjalankan model LSTM secara

efisien di Raspberry Pi

59

Jenis Sumber

Daya
Perangkat/Komponen Keterangan

Scikit-learn
Digunakan untuk implementasi dan

inferensi model Random Forest

NumPy & Pandas
Digunakan untuk manipulasi dan

analisis data landmark

Matplotlib
Untuk visualisasi hasil pelatihan dan

evaluasi model

Joblib
Untuk memuat model Random

Forest yang telah dilatih sebelumnya

60

Bab IV

Hasil dan Pembahasan

4.1. Profil Partisipan

Berikut adalah data subjek deteksi bahasa isyarat BISINDO menggunakan

input kamera secara real-time pada Raspberry Pi yang terlampir pada Tabel 4.1..

Tabel 4.1 Tabel Data Subjek

No Umur Jenis Kelamin Profesi

1 21 Tahun Laki - Laki Mahasiswa

2 23 Tahun Perempuan Mahasiswa

3 21 Tahun Laki - Laki Mahasiswa

4 21 Tahun Laki - Laki Mahasiswa

5 21 Tahun Perempuan Mahasiswa

6 23 Tahun Laki - Laki Mahasiswa

4.2. Implementasi Sistem

4.2.1. Implementasi Perangkat Keras (Hardware)

(a)

61

(b)

Gambar 4.1 Implementasi Perangkat Keras: (a) Setup Perangkat Keseluruhan dan (b)

Diagram Blok Koneksi Perangkat.

Realisasi perangkat keras pada sistem ini berfokus pada integrasi unit

embedded system yang berperan sebagai pusat pemrosesan algoritma kecerdasan

buatan secara mandiri. Komponen utama yang digunakan adalah Raspberry Pi 5 yang

bertugas menjalankan sistem operasi sekaligus mengeksekusi beban komputasi dari

arsitektur model hibrida yang diterapkan. Untuk kebutuhan akuisisi visual, sistem ini

memanfaatkan modul kamera khusus yaitu Pi Camera v1 yang dihubungkan langsung

ke papan utama melalui antarmuka serial berkecepatan tinggi, bukan melalui jalur USB

standar. Penggunaan jalur antarmuka dedikasi ini dipilih untuk meminimalisir latensi

pengiriman data citra (frame), sehingga proses deteksi gestur tangan baik yang bersifat

diam maupun bergerak dapat direspons oleh sistem tanpa penundaan yang signifikan.

Implementasi fisik dari konfigurasi tersebut diperlihatkan secara rinci pada

Gambar 4.1. Dalam ilustrasi tersebut, unit komputasi utama terlihat ditempatkan pada

permukaan datar dan terhubung ke sensor visual menggunakan kabel fleksibel pipih,

sementara modul kamera diposisikan secara strategis menempel pada bingkai layar

monitor eksternal. Penempatan ini bertujuan untuk mendapatkan sudut pandang yang

62

optimal dan sejajar dengan pengguna, memastikan area tubuh bagian atas dan

pergerakan tangan masuk sepenuhnya ke dalam bingkai tangkapan kamera. Hasil

pemrosesan visual dan antarmuka pengguna kemudian ditransmisikan ke monitor

tersebut, memungkinkan pengguna untuk melihat umpan balik sistem secara langsung

saat melakukan gerakan isyarat. Sementara itu, perangkat periferal standar

diintegrasikan di sekitar unit utama untuk keperluan inisialisasi program dan

konfigurasi sistem selama tahap pengujian berlangsung.

4.2.2. Implementasi Antarmuka Pengguna (User Interface)

Gambar 4.2 Implementasi Antarmuka Program

Implementasi antarmuka pada sistem, sebagaimana divisualisasikan pada

Gambar 4.2, dirancang untuk menyediakan umpan balik visual secara real-time dengan

memanfaatkan pustaka OpenCV sebagai backend visualisasi utama. Alur pemrosesan

visual dimulai dengan membalikkan frame kamera secara horizontal (horizontal flip)

menggunakan fungsi cv2.flip untuk menciptakan efek cermin yang intuitif bagi

pengguna. Di atas lapisan video tersebut, sistem mengintegrasikan modul visualisasi

MediaPipe (mp_draw) yang memetakan kerangka tangan (hand landmarks) beserta

garis koneksi antar sendi.

Mekanisme interaksi pengguna dibangun berbasis state-driven display yang

memberikan panduan tekstual pada setiap tahapan klasifikasi. Untuk menjamin

keterbacaan informasi di berbagai kondisi pencahayaan latar, seluruh elemen teks

63

dirender menggunakan fungsi kustom yang menambahkan latar belakang persegi

panjang berwarna hitam pada setiap label informasi. Sistem secara dinamis

menampilkan status sistem berdasarkan stabilitas gerakan tangan:

• Fase Stabilisasi: Visualisasi fase stabilisasi sistem dapat dilihat pada Gambar

4.3. Saat tangan pertama kali dideteksi, sistem mengaktifkan timer jeda

(grace time) dan menampilkan status "Stabilizing..." untuk mencegah

pengambilan data yang prematur.

Gambar 4.3 Fase Stabilisasi

• Fase Akuisisi Data: Berdasarkan kalkulasi rata-rata pergerakan (motion

score), antarmuka akan menampilkan status sistem sebagaimana

divisualisasikan pada Gambar 4.4 dan Gambar 4.5. Sistem akan

menampilkan status "Recording" (Gambar 4.4) yang menghitung jumlah

buffer sekuensial untuk model dinamis, atau beralih ke status "Holding"

(Gambar 4.5) jika gerakan berada di bawah ambang batas (threshold) 0.005

untuk memicu klasifikasi statis.

64

Gambar 4.4 Fase Recording

Gambar 4.5 Fase Holding

Sebagai bentuk validasi akhir kepada pengguna, hasil prediksi ditampilkan

dengan pembedaan visual yang tegas berdasarkan model yang melakukan inferensi.

Hasil klasifikasi dari model Random Forest (gestur statis) direpresentasikan dengan

label teks berwarna merah, sedangkan luaran dari model Deep Learning (LSTM atau

Transformer) ditandai dengan warna hijau. Setiap label prediksi juga menyertakan

sufiks sumber model (misalnya "(RF)", "(LSTM)", atau "(Transformer)") untuk

transparansi proses hybrid yang berjalan di latar belakang. Selain itu, fitur cooldown

65

visual diterapkan pasca-prediksi dengan menampilkan hitung mundur ("Next in...")

untuk mencegah redundansi luaran pada satu gerakan yang sama.

4.3. Implementasi dan Analisis Kode Program

4.3.1. Implementasi Augmentasi Citra untuk Gestur Statis

Pada tahap awal eksperimen pelatihan model Random Forest, ditemukan

indikasi overfitting di mana model memiliki performa sangat tinggi pada data latih

namun kurang optimal dalam mengenali variasi gestur pada pengujian real-time. Hal

ini disebabkan oleh terbatasnya variasi posisi dan skala tangan pada dataset murni hasil

pengambilan awal. Untuk mengatasi permasalahan tersebut, penelitian ini

mengimplementasikan teknik augmentasi citra (image augmentation) secara

terprogram sebelum data diekstraksi fitur landmark-nya.

Implementasi augmentasi dilakukan menggunakan pustaka OpenCV dengan

menerapkan transformasi geometris yang tetap mempertahankan makna semantik

gestur. Kode program dirancang untuk menghasilkan variasi data baru secara otomatis

melalui tiga teknik manipulasi utama:

• Rotasi (Rotation): Citra diputar dengan sudut acak antara -10 hingga 10 derajat

untuk mensimulasikan orientasi tangan pengguna yang tidak selalu tegak lurus.

• Penskalaan (Scaling/Safe Zoom): Citra diperbesar atau diperkecil dengan rasio

0.85 hingga 1.05. Teknik padding (penambahan piksel hitam) diterapkan saat

zoom-out untuk memastikan tidak ada bagian tangan yang terpotong.

• Translasi (Translation): Objek tangan digeser secara horizontal atau vertikal

dalam rentang 5% dari dimensi citra untuk mengantisipasi posisi tangan yang

tidak selalu tepat di tengah frame.

Realisasi teknis dari ketiga transformasi tersebut ditunjukkan pada Gambar 4.6

berikut, yang memperlihatkan fungsi inti safe_augment_image dalam memproses

matriks citra input.

1 def safe_augment_image(image):

2 h, w = image.shape[:2]

3

66

4 # 1. ROTASI (-10 s/d 10 derajat)

5 angle = random.uniform(-10, 10)

6 center = (w // 2, h // 2)

7 M_rot = cv2.getRotationMatrix2D(center, angle,

1.0)

8 image = cv2.warpAffine(image, M_rot, (w, h),

borderMode=cv2.BORDER_CONSTANT)

9

10 # 2. SAFE ZOOM (Fokus Zoom Out untuk menjaga

fitur tangan)

11 scale = random.uniform(0.85, 1.05)

12

13 if scale < 1.0: # Logika Zoom Out dengan Padding

14 new_h, new_w = int(h * scale), int(w *

scale)

15 resized = cv2.resize(image, (new_w, new_h))

16

17 # Buat kanvas hitam seukuran asli agar

dimensi tetap terjaga

18 canvas = np.zeros((h, w, 3), dtype=np.uint8)

19 y_off = (h - new_h) // 2

20 x_off = (w - new_w) // 2

21 canvas[y_off:y_off+new_h, x_off:x_off+new_w]

= resized

22 image = canvas

23

24 # 3. TRANSLASI (Geser Posisi max 5%)

25 tx = random.uniform(-0.05, 0.05) * w

26 ty = random.uniform(-0.05, 0.05) * h

27 M_trans = np.float32([[1, 0, tx], [0, 1, ty]])

28 image = cv2.warpAffine(image, M_trans, (w, h),

borderMode=cv2.BORDER_CONSTANT)

29

30 return image

Gambar 4.6 Cuplikan Kode Augmentasi Citra

Melalui skrip augmentasi di atas, jumlah dataset gestur statis dilipatgandakan

dengan faktor pengali (AUGMENT_MULTIPLIER) sebesar 10 kali lipat. Proses ini

memungkinkan model Random Forest untuk mempelajari distribusi fitur landmark

yang lebih luas dan menghasilkan model yang lebih robust terhadap variasi

pengambilan gambar di lapangan.

67

Augmentasi data difokuskan secara intensif pada kategori gestur statis untuk

mengatasi variabilitas posisi dan orientasi tangan yang sering memicu misklasifikasi

pada pengujian awal.

Sebaliknya, pada kategori gestur dinamis, augmentasi data sintetis tidak

diterapkan. Keputusan ini didasarkan pada hasil eksperimen pendahuluan yang

menunjukkan bahwa fitur temporal pada gestur dinamis memiliki tingkat perbedaan

yang sangat kuat dibandingkan gestur statis. Model terbukti mampu mencapai

generalisasi yang optimal dan performa klasifikasi yang tinggi hanya dengan

menggunakan variasi data natural. Oleh karena itu, integritas data urutan waktu pada

gestur dinamis dipertahankan tanpa modifikasi buatan untuk mencegah distorsi pola

gerakan yang justru dapat menurunkan akurasi deteksi pada skenario real-time.

4.3.2. Implementasi Model Random Forest (Gestur Statis)

Implementasi klasifikasi gestur statis dibangun menggunakan algoritma

Random Forest dengan memanfaatkan pustaka Scikit-learn. Sebelum proses pelatihan,

dataset yang memuat koordinat landmark tangan dipisahkan menjadi set fitur dan label.

Untuk menjaga distribusi kelas yang seimbang antara data latih dan data uji, diterapkan

teknik stratified sampling saat pembagian dataset dengan rasio 80:20. Hal ini

diimplementasikan menggunakan fungsi train_test_split dengan parameter stratify,

yang memastikan setiap kelas gestur terwakili secara proporsional di kedua subset data,

sehingga mencegah bias pada model saat proses evaluasi.

1 # Split dataset (80% train, 20% test) dengan stratify

2 X_train, X_test, y_train, y_test = train_test_split(

3 X, y_encoded, test_size=0.2, stratify=y_encoded,

random_state=42

4)

Gambar 4.7 Code Pembagian Dataset dengan Stratifikasi

Konfigurasi model diatur berdasarkan parameter yang telah ditentukan pada

tahap perancangan. Model diinisialisasi dengan parameter n_estimators=100, yang

berarti model akan membentuk seratus pohon keputusan (decision trees) untuk

68

melakukan prediksi secara ensemble. Kriteria pemisahan node menggunakan indeks gini

untuk mengukur tingkat impurity. Selanjutnya, untuk menguji konsistensi performa

model terhadap variasi data yang berbeda, diterapkan metode Stratified K-Fold Cross

Validation dengan k=5. Metode ini membagi data latih menjadi lima lipatan (folds)

berbeda, di mana model dilatih dan divalidasi secara iteratif pada setiap lipatan untuk

mendapatkan metrik akurasi rata-rata yang lebih reliabel.

1 # Inisialisasi model Random Forest dengan 100 pohon

2 rf = RandomForestClassifier(

3 n_estimators=100,

4 criterion="gini",

5 max_depth=None,

6 random_state=42

7)

8

9 # Penerapan 5-Fold Cross Validation

10 skf = StratifiedKFold(n_splits=5, shuffle=True,

random_state=42)

11 cv_scores = cross_val_score(rf, X, y_encoded,

cv=skf)

Gambar 4.8 Code Konfigurasi Model dan Cross-Validation

4.3.3. Implementasi Model LSTM (Gestur Dinamis)

Pada pengenalan gestur dinamis, arsitektur Long Short-Term Memory (LSTM)

diimplementasikan menggunakan kerangka kerja TensorFlow Keras. Model disusun

secara sekuensial (Sequential Model) untuk memproses data urutan (sequence data)

dengan panjang tetap, yaitu 20 frame per sampel. Lapisan inti LSTM dikonfigurasi

dengan 64 unit memori. Parameter krusial yang diterapkan di sini adalah unroll=True.

Pengaturan ini memaksa jaringan untuk membuka gulungan (unroll) loop LSTM saat

kompilasi, yang bertujuan untuk meningkatkan kecepatan eksekusi pada saat inferensi,

meskipun dengan konsekuensi penggunaan memori yang sedikit lebih besar.

Selanjutnya, hasil pemrosesan LSTM diteruskan ke lapisan Dense dengan 32 neuron

69

yang dilengkapi aktivasi ReLU dan regularisasi L2 (kernel_regularizer) sebesar 0.001

untuk membatasi besaran bobot dan mencegah overfitting.

1 model = models.Sequential([

2 layers.Input(shape=(SEQ_LENGTH, FEATURES)),

3 # Unroll=True untuk mempercepat eksekusi (speed

optimization)

4 layers.LSTM(64, return_sequences=False,

unroll=True),

5 # Regularisasi L2 untuk mencegah overfitting pada

dense layer

6 layers.Dense(32, activation='relu',

kernel_regularizer=regularizers.l2(0.001)),

7 layers.Dropout(0.3),

8 layers.Dense(num_classes, activation='softmax')

9])

Gambar 4.9 Code Arsitektur Model LSTM

Untuk mengoptimalkan proses pembelajaran, model dikompilasi menggunakan

pengoptimal (optimizer) adam dan fungsi kerugian categorical_crossentropy yang

sesuai untuk klasifikasi multi-kelas. Strategi pelatihan diperkuat dengan penerapan

mekanisme callbacks. EarlyStopping digunakan untuk memantau nilai validation loss

dan akan menghentikan pelatihan secara otomatis jika tidak terjadi penurunan loss

selama 10 epoch berturut-turut (parameter patience=10), serta mengembalikan bobot

terbaik yang pernah dicapai (restore_best_weights=True). Selain itu,

ReduceLROnPlateau diterapkan untuk menurunkan learning rate sebesar 50% (faktor

0.5) jika model mengalami stagnasi, memungkinkan model untuk mencari local

minima yang lebih presisi.

1 model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

2

3 callbacks = [

4 # Hentikan training jika val_loss tidak membaik

dalam 10 epoch

5 EarlyStopping(monitor="val_loss", patience=10,

70

restore_best_weights=True),

6 # Turunkan learning rate jika performa stagnan

7 ReduceLROnPlateau(monitor="val_loss",

factor=0.5, patience=5, min_lr=1e-6)

8]

Gambar 4.10 Code Konfigurasi Pelatihan dan Callbacks

4.3.4. Implementasi Model Transformer (Gestur Dinamis)

Sebagai pembanding utama terhadap model LSTM, penelitian ini

mengimplementasikan arsitektur Transformer yang menawarkan pendekatan berbeda

dalam mempelajari pola waktu. Jika model rekuren seperti LSTM memproses data

secara berurutan (sekuensial) yang seringkali membatasi kecepatan pelatihan

Transformer dirancang untuk memproses seluruh urutan data sekaligus secara paralel.

Namun, keunggulan pemrosesan paralel ini membawa tantangan tersendiri: model

kehilangan pemahaman inheren mengenai urutan waktu. Tanpa penanda khusus,

Transformer tidak dapat membedakan antara gerakan awal dan gerakan akhir dalam

sebuah gestur. Untuk mengatasi hal ini, langkah pertama dalam implementasi kode

adalah melakukan proyeksi fitur input ke dalam dimensi internal model (Dense

Projection) sebesar 64 unit, yang kemudian dipadukan dengan informasi posisi

(Positional Embedding). Teknik ini secara efektif mengintegrasikan"penanda waktu"

ke dalam setiap frame data, sehingga model dapat memahami konteks urutan gerakan

dengan benar misalnya, membedakan arah gerakan tangan dari kiri ke kanan dengan

sebaliknya meskipun seluruh data diproses secara bersamaan.

1 # Proyeksi fitur input ke dimensi d_model

2 x = layers.Dense(64, name="dense_projection")(inputs)

3 # Membuat dan menambahkan Positional Embedding

4 positions = tf.range(start=0, limit=input_shape[0],

delta=1)

5 pos_embedding =

keras.layers.Embedding(input_dim=input_shape[0],

output_dim=64)(positions)

6 x = x + pos_embedding

Gambar 4.11 Code Implementasi Positional Embedding pada Transformer

71

Komponen inti dari model ini terletak pada blok Multi-Head Attention. Dalam

implementasinya, blok ini dikonfigurasi untuk memiliki 4 "kepala" (heads) perhatian.

Secara sederhana, ini memungkinkan model untuk memfokuskan perhatiannya pada

empat aspek berbeda dari gerakan tangan secara bersamaan misalnya, satu kepala fokus

pada posisi ibu jari, sementara kepala lain fokus pada pergerakan kelingking. Hal ini

membuat model sangat peka terhadap detail-detail kecil dalam gestur yang kompleks.

Selain itu, untuk menjaga agar proses belajar model tetap stabil dan tidak stabil

(exploding gradient), setiap hasil pemrosesan dilapisi dengan normalisasi

(LayerNormalization) dan koneksi sisa (residual connection), yang memastikan

informasi asli dari input tidak hilang tertimpa oleh proses komputasi yang dalam.

1 # Blok Attention: Memungkinkan model fokus pada bagian

penting dari gestur

2 attn_output = layers.MultiHeadAttention(

3 num_heads=4, key_dim=64, dropout=0.3

4)(query=x, value=x, key=x)

5

6 # Normalisasi dan Koneksi Sisa (menjaga kestabilan

informasi)

7 x = layers.LayerNormalization(epsilon=1e-6)(x +

attn_output)

8

9 # Jaringan Feed Forward untuk pemrosesan lebih lanjut

10 ffn_output = keras.Sequential([

11 layers.Dense(64, activation="relu"),

12 layers.Dense(64)

13])(x)

14 x = layers.LayerNormalization(epsilon=1e-6)(x +

ffn_output)

Gambar 4.12 Code Mekanisme Perhatian (Attention) dan Stabilisasi Model

4.4. Hasil Evaluasi Model

Evaluasi model dilakukan secara offline menggunakan data uji (test set) yang

telah dipisahkan sebesar 20% dari total dataset sebelum proses pelatihan dimulai.

Pengujian ini bertujuan untuk mengukur kinerja model dalam mengenali gestur pada

72

data yang belum pernah dilihat sebelumnya, serta memastikan bahwa model tidak

mengalami overfitting.

4.4.1. Evaluasi Model Gestur Statis (Random Forest)

Kinerja model Random Forest dievaluasi secara komprehensif menggunakan

data uji (test set) yang mencakup gestur statis berupa huruf (A-Z), angka (0-10), dan

kosakata statis lainnya. Evaluasi diawali dengan analisis kurva pembelajaran (learning

curve) untuk memastikan model mempelajari pola data dengan benar tanpa mengalami

overfitting atau underfitting.

Gambar 4.13 Kurva Pembelajaran (Learning Curve) Model Random Forest

Sebagaimana terlihat pada Gambar 4.13, kurva pembelajaran (learning curve)

menunjukkan dampak signifikan dari penerapan augmentasi data terhadap performa

model. Penting untuk dicatat bahwa kurva validasi (oranye) pada grafik ini

merepresentasikan rata-rata akurasi dari proses 5-Fold Cross-Validation, yang menguji

model pada seluruh bagian dataset secara objektif. Garis skor validasi (oranye)

memperlihatkan tren peningkatan yang tajam dan konsisten seiring dengan

bertambahnya volume data latih yang kini mencapai lebih dari 450.000 sampel.

Meskipun skor validasi berawal dari titik yang relatif rendah (sekitar 0.4) yang

mengindikasikan kompleksitas variasi data akibat rotasi dan penskalaan model mampu

73

mempelajari pola tersebut secara efektif seiring penambahan data. Pada akhirnya,

kurva validasi berhasil konvergen sempurna dengan skor pelatihan (garis biru) di titik

akurasi 1.0 (100%). Pertemuan kedua garis pada titik maksimal ini membuktikan

bahwa strategi augmentasi data berhasil mengeliminasi indikasi overfitting yang

sebelumnya muncul, menghasilkan model yang memiliki kemampuan generalisasi

sangat baik dan stabil (robust) terhadap variasi gestur.

Hasil evaluasi kuantitatif terhadap kinerja model Random Forest dirangkum

secara rinci dalam Tabel 4.2. Berdasarkan hasil pengujian yang melibatkan 115.392

sampel data jumlah yang meningkat signifikan akibat proses augmentasi model

Random Forest menunjukkan performa yang sempurna. Model berhasil mencapai

tingkat akurasi global sebesar 100%. Konsistensi kinerja ini juga tercermin secara

merata pada seluruh metrik evaluasi, di mana nilai rata-rata tertimbang (weighted

average) untuk presisi (precision), recall, dan f1-score seluruhnya tercatat sempurna

pada angka 1.00. Capaian akurasi absolut ini dapat diatribusikan pada dua faktor utama:

karakteristik fitur landmark tangan statis yang memiliki distingsi spasial yang sangat

tegas antar-kelas, serta efektivitas algoritma Random Forest dalam mempelajari pola

data berdimensi tinggi yang telah diperkaya variabilitasnya melalui teknik augmentasi.

Tabel 4.2 Ringkasan Performa Model Random Forest pada Data Uji

Metrik Evaluasi Precision Recall F1-Score

Macro Average 1.00 1.00 1.00

Weighted Average 1.00 1.00 1.00

Akurasi Global 1.00 (100%)

Total Sampel Uji 115.392 Data

Untuk memverifikasi detail prediksi per kelas, dilakukan analisis menggunakan

Confusion Matrix.

74

Gambar 4.14 Confusion Matrix Model Random Forest pada Data Uji

Visualisasi Confusion Matrix pada Gambar 4.14 memperlihatkan dominasi pola

diagonal utama yang sangat tegas, merefleksikan akurasi absolut model terhadap 115.392

sampel uji. Seluruh prediksi terkonsentrasi sempurna pada garis diagonal (True Positive),

sementara area off-diagonal tampak benar-benar bersih tanpa adanya indikasi kesalahan

klasifikasi (misclassification). Absennya sebaran nilai di luar diagonal ini membuktikan

bahwa model memiliki kemampuan diskriminatif yang sangat tinggi; ia mampu

membedakan setiap gestur statis termasuk yang memiliki kemiripan konfigurasi jari

dengan presisi mutlak. Hal ini juga mengonfirmasi bahwa variasi data yang dihasilkan

melalui proses augmentasi berhasil dipelajari dengan baik oleh model tanpa

menimbulkan ambiguitas atau kebingungan antar-kelas.

75

4.4.2. Evaluasi Model Gestur Dinamis: LSTM

Evaluasi terhadap model Long Short-Term Memory (LSTM) difokuskan pada

kemampuannya mengenali pola gestur dinamis yang melibatkan urutan waktu. Analisis

diawali dengan pemeriksaan kurva pelatihan untuk memastikan proses pembelajaran

berjalan dengan baik.

Gambar 4.15 Kurva Akurasi dan Loss Model LSTM

Evaluasi model dilakukan dengan strategi pembagian data yang bertingkat

untuk menjamin validitas hasil. Sebelum pelatihan final, stabilitas arsitektur diuji

terlebih dahulu melalui metode 5-Fold Cross Validation, di mana data validasi diambil

secara bergantian dari 80% himpunan data latih (training set). Setelah validitas internal

teruji, dilakukan pelatihan final yang hasilnya ditunjukkan pada Gambar 4.15. Perlu

diperjelas bahwa kurva validasi (oranye) pada grafik ini merepresentasikan evaluasi

terhadap 20% data uji (test set) yang sepenuhnya terpisah dan tidak pernah digunakan

dalam proses K-Fold maupun pelatihan.

Pada grafik tersebut, terlihat pola konvergensi yang unik di mana garis akurasi

validasi (oranye) cenderung bergerak lebih tinggi dibandingkan akurasi pelatihan (biru)

pada fase awal hingga pertengahan. Fenomena ini terjadi akibat penerapan lapisan

Dropout sebesar 0.3 selama proses pelatihan, yang secara acak mematikan 30% neuron

untuk mencegah model menghafal data (overfitting). Namun, saat fase validasi pada

76

data uji, Dropout dinonaktifkan sehingga model dapat menggunakan kapasitas penuh

jaringannya, menghasilkan performa yang lebih optimal. Secara umum, kurva loss

menunjukkan penurunan yang stabil, menandakan model berhasil meminimalkan

kesalahan seiring bertambahnya epoch.

Hasil evaluasi kuantitatif terhadap model LSTM pada tahap pengujian akhir

dirangkum dalam Tabel 4.3. Berdasarkan data yang tersaji, model menunjukkan kinerja

yang memuaskan dengan mencapai tingkat akurasi global sebesar 94,50% dari total

11.970 sampel uji. Konsistensi performa model juga tercermin dari keseimbangan nilai

rata-rata tertimbang (weighted average) pada metrik evaluasi lainnya, di mana presisi

tercatat sebesar 94,57%, recall sebesar 94,50%, dan F1-score sebesar 94,48%. Angka-

angka ini mengindikasikan bahwa model LSTM cukup handal dalam mengenali pola

gestur dinamis meskipun terdapat kompleksitas urutan gerakan.

Tabel 4.3 Ringkasan Performa Model LSTM pada Data Uji

Metrik Evaluasi Precision Recall F1-Score

Macro Average 0.95 0.95 0.94

Weighted Average 0.95 0.95 0.94

Akurasi Global 0.95 (94.50%)

Total Sampel Uji 11.970 Data

Meskipun akurasi keseluruhan tinggi, analisis lebih dalam menggunakan

Confusion Matrix dan detail per kelas mengungkapkan adanya kesulitan model pada

gestur-gestur tertentu yang memiliki ambiguitas gerakan.

77

Gambar 4.16 Confusion Matrix Model LSTM

Gambar 4.17 Misklasifikasi Gestur “APA” Confusion Matrix LSTM

Gambar 4.18 Misklasifikasi Gestur "HANYA" Confusion Matrix LSTM

78

Gambar 4.19 Misklasifikasi Gestur "MEMBERI" Confusion Matrix LSTM

Visualisasi Confusion Matrix secara keseluruhan pada Gambar 4.16

memperlihatkan distribusi prediksi model yang mengindikasikan adanya tantangan

signifikan pada beberapa kelas gestur yang memiliki kemiripan visual tinggi. Untuk

menganalisis kesalahan ini secara lebih mendalam, dilakukan proses perbesaran pada

area yang terindikasi memiliki tingkat error tertinggi.

Berdasarkan Gambar 4.17, terlihat secara spesifik bahwa gestur 'APA' sering

mengalami misklasifikasi sebagai gestur 'ROTI' dan 'SEMUA'. Hal ini disebabkan oleh

pola lintasan gerak yang sangat mirip antar-ketiga gestur tersebut, sehingga arsitektur

LSTM kesulitan membedakan nuansa transisinya. Pola kesalahan serupa juga terlihat

pada Gambar 4.18, di mana gestur 'MEMBERI' sering salah dideteksi menjadi gestur

'APA', 'ROTI', dan 'SEMUA' akibat tumpang tindih fitur gerakan yang kompleks. Selain

itu, Gambar 4.19 menunjukkan bahwa gestur 'HANYA' juga mengalami kebingungan

prediksi, di mana model cenderung salah mengklasifikasikannya sebagai gestur

'MEREKA' atau `PULANG` dikarenakan kemiripan posisi tangan.

Sebaliknya, di luar kasus-kasus tersebut, konsentrasi warna yang pekat sempurna

pada garis diagonal utama untuk gestur 'DARI', 'DENGAR', dan 'DUDUK' menunjukkan

bahwa model mampu memprediksi gestur-gestur ini tanpa kesalahan. Keberhasilan ini

dikarenakan ketiga gestur tersebut memiliki pola gerakan yang berbeda secara signifikan

dibandingkan gestur lainnya, sehingga fitur-fiturnya dapat diekstraksi dengan baik tanpa

ambiguitas.

4.4.3. Evaluasi Model Gestur Dinamis: Transformer

Berbeda dengan LSTM yang berbasis rekurensi, evaluasi pada model

Transformer difokuskan untuk melihat efektivitas mekanisme Self-Attention dalam

79

menangkap pola global dari gestur tangan. Analisis diawali dengan pengamatan

terhadap dinamika pembelajaran model melalui kurva pelatihan.

Gambar 4.20 Kurva Akurasi dan Loss Model Transformer

Sebagaimana diperlihatkan pada Gambar 4.20, kurva pelatihan model

Transformer menunjukkan karakteristik konvergensi yang sangat cepat dan stabil. Pada

grafik sebelah kiri (Accuracy), garis akurasi validasi (oranye) yang dievaluasi

menggunakan 20% data uji (test set) yang terpisah sepenuhnya dari proses pelatihan

melesat naik sejak epoch awal dan stabil di angka tinggi (>95%) hanya dalam kurang

dari 20 epoch, seiring dengan garis akurasi pelatihan (biru). Hal yang sama terlihat pada

grafik Loss (kanan), di mana loss validasi menurun tajam dan mendatar di angka yang

sangat rendah (mendekati 0.0) tanpa adanya divergensi yang menandakan overfitting

parah. Hal ini mengindikasikan bahwa arsitektur Transformer dengan konfigurasi

Dropout 0.3 mampu mempelajari generalisasi pola gestur dengan sangat efisien.

Dibandingkan dengan kurva LSTM yang membutuhkan waktu lebih lama untuk stabil,

Transformer membuktikan efisiensi pemrosesan paralelnya dalam menangkap fitur

spasio-temporal yang kompleks. Konsistensi hasil ini sekaligus memvalidasi tahap

pengujian sebelumnya yang menggunakan metode 5-Fold Cross-Validation, di mana

validasi internal dilakukan dengan merotasi 80% data latih utama, memastikan bahwa

model memiliki stabilitas yang kokoh sebelum dievaluasi pada data uji final.

80

Secara kuantitatif, hasil pengujian pada data uji menempatkan model

Transformer sebagai model dengan performa paling superior, sebagaimana dirincikan

pada Tabel 4.4. Berdasarkan laporan klasifikasi (Classification Report) yang dihasilkan

pada data uji final, model ini berhasil mencatatkan tingkat akurasi global sebesar 98.57%

pada 11.970 sampel uji. Kualitas prediksi juga sangat konsisten di seluruh metrik, dengan

nilai rata-rata tertimbang (weighted average) untuk presisi, recall, dan f1-score

semuanya mencapai 98.57%. Angka ini menunjukkan peningkatan performa yang

signifikan dibandingkan model LSTM.

Tabel 4.4 Ringkasan Performa Model Transformer pada Data Uji

Metrik Evaluasi Precision Recall F1-Score

Macro Average 0.99 0.99 0.99

Weighted Average 0.99 0.99 0.99

Akurasi Global 0,99 (98,57%)

Total Sampel Uji 11.970 Data

Untuk memverifikasi distribusi kesalahan prediksi secara mendetail, dilakukan

analisis visual menggunakan Confusion Matrix.

81

Gambar 4.21 Confusion Matrix Model Transformer pada Data Uji

Visualisasi Confusion Matrix pada Gambar 4.21 memperlihatkan dominasi

warna biru gelap yang sangat pekat pada garis diagonal utama, yang menandakan

tingginya densitas prediksi yang benar untuk hampir seluruh kelas gestur. Area off-

diagonal (kesalahan prediksi) terlihat sangat bersih, mengindikasikan minimnya

kesalahan klasifikasi antar-kelas (misclassification).

82

Gambar 4.22 Misklasifikasi Gestur “APA” Confusion Matrix Transformer

Gambar 4.23Misklasifikasi Gestur “HANYA” Confusion Matrix Transformer

Gambar 4.24 Misklasifikasi Gestur “MEMBERI” Confusion Matrix Transformer

Keunggulan arsitektur Transformer terlihat lebih nyata ketika dilakukan analisis

mendalam pada gestur-gestur yang sebelumnya bermasalah di model LSTM.

Berdasarkan hasil perbesaran pada Gambar 4.22, gestur 'APA' kini menunjukkan tingkat

kesalahan yang sangat minim, di mana misklasifikasi hanya terjadi dalam frekuensi

rendah terhadap gestur 'SEMUA' akibat kemiripan gerakan. Hal serupa terlihat pada

Gambar 4.23, di mana gestur 'MEMBERI' berhasil dikenali dengan sangat baik dengan

hanya sedikit kesalahan klasifikasi terhadap gestur 'MENERIMA' yang memiliki bentuk

tangan serupa namun arah berlawanan. Peningkatan stabilitas model juga terbukti pada

Gambar 4.24, di mana gestur 'HANYA' yang sebelumnya sangat rentan tertukar, kini

hanya memiliki tingkat kesalahan yang dapat diabaikan terhadap gestur 'MEREKA' dan

'PULANG'.

Secara komparatif, jika disandingkan dengan hasil model LSTM yang

mengalami kebingungan signifikan pada ketiga gestur tersebut, hasil ini membuktikan

bahwa mekanisme self-attention pada Transformer jauh lebih andal dalam membedakan

fitur-fitur halus. Model mampu memisahkan gestur dengan kemiripan visual tinggi

83

secara presisi, menjadikannya solusi yang lebih superior untuk sistem penerjemah bahasa

isyarat yang membutuhkan akurasi tinggi.

4.4.4. Analisis Komparatif Model Dinamis (LSTM vs Transformer)

Setelah dilakukan pengujian dan evaluasi terhadap masing-masing model

secara terpisah, tahap selanjutnya adalah melakukan analisis komparatif antara

algoritma LSTM dan Transformer untuk mengukur efektivitasnya dalam mengenali

gestur dinamis BISINDO. Perbandingan ini difokuskan pada metrik akurasi global

serta rata-rata performa (precision, recall, f1-score) pada data uji yang sama kemudian

efisiensi komputasi selama proses pelatihan dan tingkat keyakinan (confidence score)

model dalam melakukan prediksi benar. Ringkasan perbandingan kinerja kedua model

disajikan pada Tabel 4.5.

Tabel 4.5 Perbandingan Performa Model LSTM dan Transformer

Model

Arsitektur

Akurasi

Global

Rata-rata

Precision

Rata-rata

Recall

Rata-rata

F1-Score

Selisih

(Akurasi)

LSTM 94,50% 94,57% 94,50% 94,48% -

Transformer 98,57% 98,59% 98,57% 98,57% +4,07%

Berdasarkan hasil benchmark kecepatan pelatihan pada lingkungan komputasi

yang sama, ditemukan perbedaan signifikan dalam waktu eksekusi per epoch.

Sebagaimana tercatat dalam laporan estimasi, model LSTM mencatatkan waktu

pelatihan rata-rata 8,86 detik per epoch, sedangkan model Transformer membutuhkan

waktu 18,80 detik per epoch. Data ini menunjukkan bahwa arsitektur Transformer

memiliki beban komputasi sekitar 2,12 kali lebih tinggi dibandingkan LSTM.

Peningkatan beban ini merupakan konsekuensi logis dari mekanisme Multi-Head

Attention pada Transformer yang harus memproses matriks hubungan antar-seluruh

frame secara paralel, berbeda dengan LSTM yang memproses data secara sekuensial

namun dengan operasi matematis yang lebih ringkas dan efisien pada setiap langkah

waktunya.

84

Meskipun menuntut sumber daya komputasi yang lebih besar, model

Transformer membuktikan keunggulannya melalui superioritas nyata dalam hal

ketegasan prediksi. Berdasarkan analisis probabilitas pada data uji, rata-rata skor

keyakinan (avg confidence) pada prediksi yang benar untuk Transformer mencapai

angka 99,62%, lebih tinggi 6,55% dibandingkan model LSTM yang mencatatkan rata-

rata keyakinan sebesar 93,07%. Tingginya probabilitas ini mengindikasikan bahwa

fitur Self-Attention pada Transformer sangat efektif dalam memisahkan batas

keputusan (decision boundary) antar-kelas gestur secara tegas. Hal ini bermakna bahwa

ketika Transformer memprediksi suatu gestur, model tersebut memiliki tingkat

kepastian yang hampir absolut, meminimalkan keraguan ambiguitas yang terkadang

masih terlihat pada prediksi model LSTM.

Analisis lebih mendalam dilakukan untuk melihat seberapa efektif model

Transformer memperbaiki kesalahan yang sering dilakukan oleh model LSTM. Tabel

4.6 memperlihatkan daftar gestur yang mengalami peningkatan akurasi paling drastis.

Tabel 4.6 Perbandingan Gestur dengan Kemiripan Visual Tinggi

Label Gestur F1-Score LSTM F1-Score Transformer Peningkatan

A. Gestur Ambigu

APA 62,79% 92,49% +29,70%

MEMBERI 66,67% 92,13% +25,46%

HANYA 78,36% 97,14% +18,78%

B. Gestur Invers

BUKA (MATA) 81,57% 92,74% +11,17%

TUTUP (MATA) 81,12% 93,33% +12,21%

C. Gestur Variasi

MENERIMA PESAN 79,49% 95,12% +15,63%

MENERIMA 86,27% 93,85% +7,58%

Peningkatan performa paling dramatis terlihat pada kategori gestur ambigu,

yaitu kelompok gestur yang memiliki pola gerakan samar atau sangat mirip secara

85

visual dengan gestur lain sehingga sering memicu kebingungan model. Contoh

signifikannya adalah gestur 'APA' dan 'MEMBERI', di mana Transformer mampu

meningkatkan f1-score masing-masing sebesar 29,70% dan 25,46%. Hal ini

mengindikasikan bahwa mekanisme Self-Attention sukses menangkap detail transisi

gerakan halus yang sebelumnya gagal diproses oleh memori sekuensial LSTM.

Keunggulan Transformer juga teruji pada kategori gestur invers, yang

melibatkan pasangan gerakan dengan arah lintasan yang saling berkebalikan. Pada

model LSTM, pasangan gestur 'BUKA (MATA)' dan 'TUTUP (MATA)' sering

mengalami kesalahan klasifikasi dengan skor di kisaran 81%, namun Transformer

berhasil memperbaikinya hingga mencapai 93,33%.

Selain itu, model ini juga sangat sensitif terhadap kategori gestur variasi, yakni

gestur gabungan yang terbentuk dari pengembangan atau penambahan gerakan pada

gestur dasar. Kasus ini terlihat jelas pada gestur 'MENERIMA PESAN'. Jika LSTM

kesulitan membedakan gestur ini dari gestur dasarnya ('MENERIMA') terlihat dari skor

rendah 79,49% maka Transformer mampu mengidentifikasi nuansa tambahan tersebut

dengan sangat baik, mencatatkan skor 95,12%. Secara keseluruhan, data ini

mengonfirmasi bahwa Transformer memiliki kemampuan superior dalam

membedakan gestur yang memiliki kemiripan struktural.

4.5. Pengujian Sistem Secara Real-Time pada Raspberry Pi

Setelah melalui tahap evaluasi model secara terpisah (offline), tahap selanjutnya

adalah pengujian integrasi sistem secara real-time. Pengujian ini dilakukan dengan

menjalankan aplikasi utama pada perangkat Raspberry Pi 5 yang telah terhubung

dengan Pi Camera v1 dan layar monitor. Tujuan utama dari pengujian ini adalah untuk

memvalidasi kemampuan sistem hybrid dalam mengenali gestur tangan pengguna

secara langsung di lingkungan nyata, di mana terdapat variabel dinamis seperti

kecepatan gerakan tangan dan variasi pencahayaan yang tidak ditemukan pada data

latih statis.

4.5.1. Skenario Pengujian

Pengujian sistem secara real-time melibatkan tiga orang partisipan utama yang

merupakan penutur asli BISINDO (tunarungu) dan dua penutur non-asli. Pelibatan

86

penutur asli bertujuan untuk memvalidasi kinerja sistem terhadap gestur yang alami,

cepat, dan fluiditas tinggi. Sementara itu, partisipan non-asli disertakan untuk menguji

ketahanan model dalam mengenali variasi gerakan yang mungkin kurang presisi atau

memiliki tempo yang berbeda, sehingga merepresentasikan kemampuan generalisasi

sistem terhadap berbagai tipe pengguna.

Pengujian performa sistem secara real-time dilaksanakan untuk memvalidasi

kemampuan model saat dijalankan pada perangkat embedded. Skenario pengujian

dilakukan di lingkungan Laboratorium HMI dengan kondisi pencahayaan terukur

antara 200 hingga 300 Lux dan latar belakang kompleks. Kondisi lingkungan ini

disetarakkan dengan kondisi pada fase pelatihan data untuk menjaga konsistensi

variabel eksternal.

Perangkat akuisisi citra yang digunakan pada tahap ini adalah PiCamera v1

yang terintegrasi dengan modul Raspberry Pi. Subjek ditempatkan pada jarak 50

hingga 80 cm di depan kamera, dengan resolusi input yang disesuaikan untuk

pemrosesan model. Penggunaan latar belakang yang tidak polos dan pencahayaan

ruang kerja yang natural dalam pengujian ini bertujuan untuk membuktikan ketahanan

sistem dalam mengenali gestur pada kondisi operasional yang sesungguhnya, di mana

noise visual dari lingkungan sekitar tidak dihilangkan.

Prosedur pengujian dilakukan dengan langkah-langkah sebagai berikut:

1. Lingkungan Pengujian: Pengujian dilakukan di dalam ruangan dengan

pencahayaan lampu standar (sekitar 200-300 lux) untuk menyimulasikan

kondisi penggunaan sehari-hari. Jarak antara pengguna dan kamera diatur

pada kisaran 50–80 cm agar frame kamera dapat menangkap gestur tangan

secara utuh.

2. Tugas Partisipan: Dalam setiap pengujian, partisipan diinstruksikan untuk

memperagakan gestur secara tanpa adanya interupsi atau pergantian sesi.

Alur tugas dimulai dengan memperagakan gestur statis (Huruf A-Z, Angka

0-10 dan Kata Statis), kemudian langsung dilanjutkan dengan

memperagakan gestur dinamis untuk melihat transisi dan responsivitas

sistem.

87

3. Metode Pengambilan Data: Untuk membandingkan performa arsitektur

model, pengujian dibagi menjadi dua sesi eksperimen utama:

• Sesi 1: Hybrid (Random Forest + LSTM TFLite).

• Sesi 2: Hybrid (Random Forest + Transformer TFLite).

4.5.2. Hasil Pengujian Akurasi Real-Time

Pengujian sistem secara real-time dilakukan dengan melibatkan satu partisipan

Tunarungu dan dua partisipan non-difabel untuk memvalidasi kinerja sistem dalam

kondisi penggunaan yang sebenarnya. Pengujian ini bertujuan untuk mengukur tingkat

akurasi sistem dalam mengenali gestur statis dan dinamis, tidak hanya pada gerakan

yang natural dari penutur asli, tetapi juga pada pola gerakan yang diperagakan oleh

penutur non-asli. Pengujian dibagi menjadi dua skenario utama, yaitu Skenario A yang

menggunakan kombinasi Random Forest dan LSTM, serta Skenario B yang

menggabungkan Random Forest dengan Transformer.

Pada Skenario A, sistem yang diuji dengan model Hybrid (Random Forest +

LSTM) berhasil mencapai tingkat akurasi keseluruhan sebesar 88%, sebagaimana

dirincikan pada Tabel 4.7. Secara spesifik, model Random Forest menunjukkan kinerja

yang sangat andal dalam mendeteksi gestur statis (Huruf, Angka dan Kata Statis)

dengan akurasi rata-rata mencapai 90%. Sementara itu, model LSTM yang bertugas

menangani gestur dinamis mencatatkan akurasi sebesar 86%. Selisih akurasi ini

mengindikasikan bahwa tantangan dalam pengenalan gestur dinamis relatif lebih tinggi

dibandingkan gestur statis, terutama dalam hal menangkap variabilitas pola pergerakan

tangan secara temporal.

Tabel 4.7 Hasil Pengujian Real-Time RF+LSTM

Rata – Rata

Random Forest LSTM

90% 86%

*Data lengkap berada di Lampiran A.1

88

Beralih ke Skenario B, di mana model LSTM digantikan oleh Transformer,

hasil pengujian yang disajikan pada Tabel 4.8 menunjukkan adanya peningkatan

performa secara umum dengan capaian akurasi total sebesar 93%. Pada sesi ini, deteksi

gestur statis mencatatkan akurasi yang lebih tinggi yaitu 91%, yang kembali

menegaskan konsistensi algoritma Random Forest dalam mengenali bentuk tangan

statis. Untuk pengenalan gestur dinamis, model Transformer memperoleh akurasi rata-

rata sebesar 93%, mencatatkan peningkatan performa yang signifikan dibandingkan

model LSTM pada skenario sebelumnya yang hanya mencapai 86%.

Tabel 4.8 Hasil Pengujian Real-Time RF+Transformer

Rata – Rata

Random Forest Transformer

91% 93%

*Data lengkap berada di Lampiran A.2

Berdasarkan analisis komparatif antara kedua skenario, terlihat bahwa Skenario

B (RF + Transformer) memberikan hasil keseluruhan yang lebih unggul dibandingkan

Skenario A. Analisis mendalam pada tingkat gestur dinamis mengungkapkan disparitas

performa yang cukup signifikan, di mana model Transformer mencatatkan rata-rata

akurasi sebesar 93%, mengungguli model LSTM yang berada di angka 86%. Meskipun

demikian, model LSTM menunjukkan dominasi performa yang spesifik pada gestur-

gestur dengan pola gerakan linier atau repetitif yang tegas, seperti gestur "MINUM",

"NAIK" dan "TULIS”. Pada gestur-gestur ini, LSTM berhasil mempertahankan

stabilitas tinggi dengan akurasi sempurna (100%), sementara Transformer mengalami

penurunan performa.

Sebaliknya, keunggulan utama Transformer terletak pada kemampuannya

menangani gestur yang memiliki kompleksitas tinggi atau ambiguitas bentuk tangan

antar-frame. Hal ini terbukti dari lonjakan akurasi yang drastis pada gestur "SEMUA",

"DUDUK", "UTARA", dan "MEMBUKA". Pada gestur-gestur ini, Transformer

mampu mencapai akurasi 100%, jauh meninggalkan LSTM yang hanya berkisar di

89

angka 33-47%, menciptakan selisih performa hingga lebih dari 60%. Temuan ini

mengonfirmasi bahwa mekanisme Self-Attention pada Transformer sangat efektif

dalam membedakan konteks gerakan dengan transisi halus yang sering luput dari

arsitektur rekuren LSTM. Di sisi lain, keandalan sistem dalam mengenali gestur statis

terbukti sangat konsisten pada kedua skenario, di mana mayoritas gestur abjad (seperti

B, C, D, hingga W) dapat dikenali dengan akurasi 100%, memvalidasi peran Random

Forest sebagai komponen hybrid yang efisien untuk menangani isyarat non-temporal.

Berdasarkan hasil evaluasi komparatif, teridentifikasi empat kelas gestur yang

secara konsisten memiliki performa rendah baik pada skenario model LSTM maupun

Transformer, yaitu gestur 'Z', 'MENDENGAR', 'ANTARA', dan 'BERKATA'.

Persistensi kesalahan pada kedua arsitektur model mengindikasikan bahwa tantangan

utama bukan terletak pada kemampuan model mempelajari urutan, melainkan pada

ambiguitas fitur intrinsik dan kualitas representasi data pada kelas-kelas tersebut.

Berikut adalah analisis mendalam untuk masing-masing kasus.

Gestur 'Z' (Statis) Gestur ini mencatatkan akurasi terendah (hampir 0%) di

kedua skenario. Analisis menunjukkan bahwa kesalahan fatal ini disebabkan oleh

keterbatasan variasi pada dataset latih statis. Minimnya sampel yang

merepresentasikan variasi sudut pandang dan orientasi jari saat membentuk huruf 'Z'

menyebabkan model gagal mengenali pola tersebut saat diuji secara real-time dengan

pose yang sedikit berbeda dari data latih (overfitting pada pose statis tertentu).

Gestur 'MENDENGAR' (Statis) vs. 'KANAN' Kesalahan klasifikasi pada

gestur 'MENDENGAR' didominasi oleh prediksi yang tertukar dengan gestur

'KANAN'. Berdasarkan observasi karakteristik gestur, gestur 'MENDENGAR'

dilakukan dengan tangan terbuka di sebelah telinga, sedangkan gestur 'KANAN'

dilakukan dengan tangan menggenggam di posisi yang sama. Meskipun konfigurasi

jari kedua gestur ini berbeda secara signifikan, tingginya tingkat kesalahan

menunjukkan bahwa model lebih dominan mempelajari fitur spasial/posisi

dibandingkan fitur bentuk tangan. Posisi tangan yang identik yakni berada di area

lateral kepala dekat telinga menyebabkan koordinat keypoints pergelangan tangan dan

telapak tangan berada pada vektor lokasi yang sangat berdekatan. Dalam kondisi

90

pengujian real-time, model tampaknya kesulitan memprioritaskan fitur "kondisi jari"

di atas fitur "lokasi tangan", sehingga sering mengabaikan perbedaan bentuk

genggaman dan salah mengklasifikasikan gestur hanya berdasarkan kedekatan

posisinya di area telinga.

Gestur 'ANTARA' (Dinamis) vs. 'BELAJAR' Pada kategori gestur dinamis,

gestur 'ANTARA' sering mengalami misklasifikasi sebagai gestur 'BELAJAR'.

Analisis visual terhadap data uji menunjukkan adanya tumpang tindih pada pola

lintasan gerak. Kedua gestur ini melibatkan pergerakan kedua tangan di area depan

dada dengan tempo gerakan yang hampir serupa. Kemiripan pola kinematik ini

membuat fitur temporal yang diekstraksi baik oleh gate LSTM maupun attention

Transformer menjadi kurang terlihat perbedaannya, sehingga model kesulitan

menentukan batas pembeda yang tegas di antara keduanya.

Gestur 'BERKATA' (Dinamis) vs. 'AMBIL' Serupa dengan kasus sebelumnya,

gestur 'BERKATA' mengalami kebingungan prediksi yang signifikan terhadap gestur

'AMBIL'. Kesalahan ini diakibatkan oleh kemiripan transisi gerakan awal dan akhir.

Kedua gestur melibatkan pergerakan tangan yang bermula dari area tubuh bagian atas

menuju ke arah luar atau sebaliknya. Dalam kondisi pengambilan data real-time yang

bervariasi, nuansa perbedaan pada orientasi telapak tangan seringkali tersamarkan,

menyebabkan model menangkap fitur gerak global yang identik antara 'BERKATA'

(gerakan seperti mulut keluar) dan 'AMBIL' (gerakan meraih), yang berujung pada

kesalahan klasifikasi.

4.5.3. Analisis Statistik Signifikansi Performa (Uji Wilcoxon)

Meskipun data deskriptif pada subbab sebelumnya menunjukkan bahwa rata-

rata akurasi model Hybrid RF + Transformer (93%) lebih tinggi dibandingkan RF +

LSTM (86%), pembuktian secara statistik diperlukan untuk memastikan bahwa

perbedaan tersebut bersifat signifikan dan bukan terjadi karena kebetulan semata. Oleh

karena itu, dilakukan uji beda dua sampel berpasangan (paired sample test) terhadap

hasil akurasi dari 95 gestur dinamis.

Mengingat data akurasi tidak terdistribusi secara normal, metode statistik non-

parametrik Wilcoxon Signed-Rank Test dipilih sebagai instrumen pengujian. Pengujian

91

ini dilakukan dengan taraf signifikansi sebesar 0,05 atau 5%. Hipotesis yang diajukan

dalam pengujian ini adalah sebagai berikut:

• Hipotesis Nol (𝐻0): Tidak terdapat perbedaan yang signifikan antara

performa akurasi model RF + LSTM dan RF + Transformer.

• Hipotesis Alternatif (𝐻1): Terdapat perbedaan yang signifikan antara

performa akurasi model RF + LSTM dan RF + Transformer.

Hasil perhitungan statistik menggunakan perangkat lunak SPSS disajikan pada

Gambar 4.25 dan Gambar 4.26 berikut ini.

Gambar 4.25 Peringkat Tanda (Ranks) Uji Wilcoxon

Gambar 4.26 Hasil Statistik Uji Wilcoxon

92

Berdasarkan Gambar 4.26, hasil uji statistik menunjukkan nilai Asymp. Sig. (2-

tailed) sebesar 0,001. Nilai ini jauh lebih kecil dari taraf signifikansi yang ditetapkan

(0.001 < 0.05). Dengan demikian, 𝐻0 ditolak dan 𝐻1 diterima. Hal ini membuktikan

secara statistik bahwa penggantian arsitektur dari LSTM ke Transformer memberikan

dampak peningkatan akurasi yang nyata dan signifikan pada sistem klasifikasi

BISINDO real-time.

Analisis lebih lanjut pada Gambar 4.20 (Ranks) memperlihatkan dominasi

performa model Transformer. Data Positive Ranks (jumlah gestur di mana Transformer

unggul atas LSTM) tercatat jauh lebih banyak dibandingkan Negative Ranks (jumlah

gestur di mana LSTM unggul). Hal ini mengindikasikan bahwa perbaikan performa

terjadi secara merata pada mayoritas gestur dinamis yang diujikan.

Secara statistik, model RF + Transformer terbukti lebih robust dan andal untuk

diimplementasikan pada perangkat Raspberry Pi. Kesimpulannya, model Hybrid

Random Forest + Transformer adalah arsitektur yang paling direkomendasikan untuk

sistem penerjemah bahasa isyarat ini.

4.6. Evaluasi Kinerja Komputasi pada Raspberry Pi 5

Evaluasi kinerja komputasi dilakukan untuk memvalidasi efisiensi model Deep

Learning (LSTM dan Transformer) saat dijalankan pada perangkat edge Raspberry Pi

5. Pengujian ini difokuskan pada pengukuran kecepatan inferensi murni (inference

benchmark) untuk mengetahui batas maksimal kemampuan model dalam memproses

data tanpa dipengaruhi oleh latensi kamera atau antarmuka grafis. Berdasarkan

pengujian intensif yang dilakukan sebanyak 5 kali iterasi berturut-turut untuk setiap

model, diperoleh data performa yang sangat impresif sebagaimana dirangkum dalam

analisis berikut.

Sebelum membahas hasil performa waktu nyata, pengujian kecepatan inferensi

dilakukan terlebih dahulu untuk mengukur efisiensi komputasi model saat

diimplementasikan ke dalam format TensorFlow Lite. Metode pengukuran dilakukan

dengan menjalankan proses prediksi model pada serangkaian sampel data gestur secara

berulang pada perangkat uji, tanpa menyertakan waktu yang dibutuhkan untuk pre-

processing data. Total waktu eksekusi yang tercatat kemudian dibagi dengan jumlah

93

sampel untuk mendapatkan rata-rata waktu latensi per prediksi dalam satuan milidetik

(ms). Selain itu, metrik Frames Per Second (FPS) juga dihitung untuk mengetahui

berapa banyak gestur yang dapat diproses sistem dalam satu detik, di mana nilai FPS

berbanding terbalik dengan latensi.

Hasil pengujian kuantitatif menunjukkan bahwa model LSTM mencatatkan

efisiensi komputasi tertinggi dengan kecepatan pemrosesan mencapai 2.123 FPS. Jika

dikonversikan ke dalam satuan waktu respons, angka ini setara dengan latensi ultra-

rendah sebesar 0,47 milidetik per prediksi, yang diperoleh melalui perhitungan

matematis 𝐿𝑎𝑡𝑒𝑛𝑠𝑖 =
1000𝑚𝑠

2.123 𝐹𝑃𝑆
 = 0,47 𝑚𝑠 . Sementara itu, Model Transformer,

meskipun memiliki arsitektur yang lebih kompleks, tetap menunjukkan kinerja yang

luar biasa dengan rata-rata kecepatan inferensi 1.757 FPS. Berdasarkan rumus konversi

yang sama 𝐿𝑎𝑡𝑒𝑛𝑠𝑖 =
1000𝑚𝑠

1.757 𝐹𝑃𝑆
 = 0,57 𝑚𝑠, model ini menghasilkan latensi sebesar

0,57 milidetik. Selisih waktu inferensi sekitar 0,1 milidetik antara kedua model ini

tergolong sangat tidak signifikan dalam konteks penggunaan nyata, mengingat standar

waktu respons manusia berada di kisaran ratusan milidetik. Hal ini mengindikasikan

bahwa kedua model telah teroptimasi dengan sangat baik melalui kuantisasi

TensorFlow Lite, sehingga proses klasifikasi gestur dinamis hampir tidak memberikan

beban latensi tambahan pada sistem utama..

Dari aspek penggunaan sumber daya, Raspberry Pi 5 terbukti sangat mumpuni

dalam menangani beban komputasi kedua model tersebut. Selama pengujian

berlangsung, rata-rata penggunaan CPU untuk model LSTM tercatat stabil di angka

23,93%, sedangkan model Transformer sedikit lebih tinggi di angka 26,10%. Stabilitas

termal perangkat juga terjaga dengan baik, di mana suhu rata-rata operasional terpantau

berada di kisaran 48°C hingga 49°C, jauh di bawah batas thermal throttling (80°C).

Rendahnya konsumsi sumber daya dan suhu operasional ini menjamin bahwa sistem

dapat dijalankan dalam durasi panjang tanpa risiko penurunan performa (overheating),

menjadikan solusi ini sangat layak untuk diimplementasikan sebagai perangkat

penerjemah bahasa isyarat portabel yang andal.

94

Bab V

Simpulan dan Saran

5.1. Kesimpulan

Penelitian ini berhasil merancang dan mengimplementasikan sistem klasifikasi

bahasa isyarat BISINDO hibrida secara real-time pada perangkat edge Raspberry Pi 5

dengan efisiensi komputasi yang optimal. Melalui pemanfaatan format TensorFlow

Lite, sistem mampu memproses inferensi dengan latensi sangat rendah, berkisar antara

0,47 ms hingga 0,57 ms, sehingga memenuhi standar responsivitas yang dibutuhkan

untuk komunikasi langsung. Hasil pengujian komparatif pada 95 gestur dinamis

menunjukkan bahwa arsitektur Hybrid Random Forest + Transformer (Skenario B)

memiliki performa yang lebih superior dengan akurasi rata-rata mencapai 93%,

mengungguli arsitektur Hybrid Random Forest + LSTM (Skenario A) yang

mencatatkan akurasi 86%. Keunggulan ini telah divalidasi secara statistik melalui uji

Wilcoxon Signed-Rank Test dengan hasil yang signifikan (𝑝 < 0.05) membuktikan

bahwa mekanisme Self-Attention pada Transformer jauh lebih efektif dalam menangani

gestur kompleks dan ambigu seperti "BUKA (MATA)" dan "UTARA" dibandingkan

arsitektur rekuren. Selain itu, sistem menunjukkan tingkat robustitas yang baik saat

diuji oleh tiga partisipan yang terdiri dari satu penutur asli Tuli dan dua penutur dengar,

serta mampu mempertahankan konsistensi akurasi sempurna (100%) pada klasifikasi

gestur statis berkat keandalan komponen Random Forest.

Meskipun sistem menunjukkan performa komputasi dan akurasi yang optimal,

evaluasi lapangan dengan partisipan tunarungu menyingkap adanya tantangan teknis

pada sisi akuisisi data visual. Ditemukan adanya kesenjangan antara kecepatan alami

gerak isyarat penutur asli dengan kapabilitas tangkapan kamera dan algoritma deteksi

fitur. Kecepatan dan fluiditas gerakan tangan partisipan sering kali melampaui batas

frame rate kamera serta kecepatan pemrosesan landmark oleh MediaPipe pada

perangkat edge, yang mengakibatkan terjadinya efek motion blur dan hilangnya

pelacakan titik tangan. Kondisi ini menyebabkan kegagalan segmentasi gestur yang

mengharuskan pengguna untuk mengulang gerakan dari posisi awal, mengindikasikan

95

bahwa keandalan sistem dalam kondisi nyata tidak hanya bergantung pada model

klasifikasi, tetapi juga sangat dipengaruhi oleh spesifikasi perangkat keras akuisisi citra

dalam menangani dinamika gerakan cepat.

5.2. Saran

Berdasarkan hasil penelitian dan evaluasi kinerja sistem penerjemah bahasa

isyarat yang telah dilakukan, terdapat sejumlah rekomendasi strategis untuk

pengembangan penelitian di masa mendatang. Saran-saran ini difokuskan pada tiga

aspek utama: optimalisasi implementasi perangkat keras, peningkatan metodologi

pelatihan, dan perluasan fungsionalitas sistem.

Dari sisi implementasi perangkat keras, penelitian selanjutnya sangat

disarankan untuk menerapkan teknik optimasi model tingkat lanjut berupa Full Integer

Quantization (Int8) dan Model Pruning. Langkah ini bertujuan untuk mereduksi presisi

bobot model dan memangkas redundansi arsitektur, sehingga memungkinkan sistem

beroperasi secara efisien pada perangkat mikrokontroler hemat daya atau perangkat

wearable. Sejalan dengan itu, penggunaan sensor kamera dengan frame rate tinggi (60

FPS atau lebih) direkomendasikan untuk meningkatkan resolusi temporal agar gerakan

mikro penutur asli dapat tertangkap dengan presisi. Namun, guna menjaga efisiensi

daya pada perangkat portable, penggunaan kamera ini sebaiknya disertai dengan

penyesuaian resolusi input, mengingat ekstraksi fitur berbasis MediaPipe tidak

menuntut resolusi citra yang tinggi.

Dalam aspek metodologi dan data, penelitian lanjutan sangat disarankan untuk

memitigasi risiko bias demografis pada pembuatan dataset. Hal ini dapat dilakukan

dengan memperluas akuisisi data yang melibatkan partisipan dari dua kelompok

demografi utama, yaitu penutur asli dan non-penutur asli. Pelibatan penutur asli

bertujuan untuk menangkap karakteristik gerakan yang natural, fluida, dan

berkecepatan tinggi, sedangkan data dari non-penutur asli merepresentasikan variasi

gerakan yang lebih terstruktur. Kombinasi kedua spektrum data ini krusial untuk

melatih model agar memiliki kemampuan generalisasi yang tangguh dalam mengenali

pola gestur pada berbagai tingkat kecepatan dan gaya bahasa. Selain itu, guna

mendapatkan konfigurasi arsitektur model yang paling optimal tanpa bergantung pada

96

penyesuaian manual, disarankan untuk mengadopsi metode pencarian hyperparameter

otomatis seperti Bayesian Optimization. Metode ini menawarkan eksplorasi ruang

parameter yang lebih sistematis untuk menyeimbangkan akurasi dan kompleksitas

komputasi.

Terakhir, pengembangan fungsionalitas sistem diharapkan dapat bergerak

menuju pengenalan kalimat kontinu (Continuous Sign Language Recognition) yang

mampu menerjemahkan percakapan utuh secara mengalir tanpa jeda antar-kata.

Fungsionalitas ini idealnya diintegrasikan dengan fitur komunikasi dua arah (bi-

directional communication) yang dilengkapi modul Text-to-Speech (TTS) dan Speech-

to-Text. Dengan fitur ini, sistem tidak hanya memvisualisasikan isyarat ke dalam teks,

tetapi juga dapat menyuarakan terjemahan tersebut secara verbal, serta mengonversi

ucapan lawan bicara kembali menjadi teks atau visual isyarat, sehingga menciptakan

ekosistem komunikasi yang inklusif dan menyeluruh bagi penyandang disabilitas

rungu.

97

DAFTAR PUSTAKA

Abed, A.A. and Rahman, S.A., 2017. Python-based Raspberry Pi for hand gesture

recognition. International Journal of Computer Applications, 173(4), pp.18-24.

Alatas, O.H and Widodo, R.B., 2024. Klasifikasi Bahasa Isyarat BISINDO dengan

Input Kamera pada Raspberry Pi Menggunakan Algoritma Random Forest dan

Long Short-Term Memory. Laporan Praktik Kerja Lapangan. Malang:

Universitas Ma Chung.

Alexander, N., Widodo, R.B., & Swastika, W. Penggunaan Machine Learning Dalam

Klasifikasi Bahasa Isyarat BISINDO Menggunakan Kamera. Prosiding

Seminar Nasional Universitas Ma Chung(SENAM), 2023, (pp. 11-26).

Ali, Z., 2024. A Comprehensive Overview and Comparative Analysis of CNN, RNN-

LSTM and Transformer. RNN-LSTM and Transformer (December 31, 2024).

Aljabar, A., Suryani, D., and Prasetyo, E., 2020, ‘BISINDO Sign Language

Recognition Using CNN and LSTM’, Proceedings of the International

Conference on Computer Engineering, Network and Intelligent Multimedia, pp.

1–6.

Birajdar, G.S., Baz, M., Singh, R., Rashid, M., Gehlot, A., Akram, S.V., Alshamrani,

S.S. and AlGhamdi, A.S., 2021. Realization of people density and smoke flow

in buildings during fire accidents using raspberry and openCV. Sustainability,

13(19), p.11082.

Camgoz, N.C., Koller, O., Hadfield, S. and Bowden, R., 2020. Sign language

transformers: Joint end-to-end sign language recognition and translation. In

Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition (pp. 10023-10033).

Chaudhary, L., Ananthanarayana, T., Hoq, E. and Nwogu, I., 2022. Signnet ii: A

transformer-based two-way sign language translation model. IEEE

98

Transactions on Pattern Analysis and Machine Intelligence, 45(11), pp.12896-

12907.

Chen, Z., Lei, X., Yuan, Q., Qi, Y., Ma, Z., Qian, S. and Lyu, X., 2024. Key

technologies for autonomous fruit-and vegetable-picking robots: A review.

Agronomy, 14(10), p.2233.

Coffen, B. and Mahmud, M.S., 2021, March. Tinydl: Edge computing and deep

learning based real-time hand gesture recognition using wearable sensor. In

2020 IEEE international conference on e-health networking, application &

services (HEALTHCOM) (pp. 1-6). IEEE.

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N., Nappier,

I., Natraj, M., Wang, T. and Warden, P., 2021. Tensorflow lite micro:

Embedded machine learning for tinyml systems. Proceedings of machine

learning and systems, 3, pp.800-811.

Fadlilah, N., Suryani, D., and Prasetyo, E., 2022, ‘Modelling of Basic Indonesian Sign

Language Translator Based on Raspberry Pi Technology’, Journal of Physics:

Conference Series, 1(1), pp. 1–6.

Hoque, O.B., Jubair, M.I., Islam, M.S., Akash, A.F. and Paulson, A.S., 2018,

December. Real time bangladeshi sign language detection using faster r-cnn. In

2018 international conference on innovation in engineering and technology

(ICIET) (pp. 1-6). IEEE.

Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin,

N.E.Y., Yamamoto, R., Wang, X. and Watanabe, S., 2019, December. A

comparative study on transformer vs rnn in speech applications. In 2019 IEEE

automatic speech recognition and understanding workshop (ASRU) (pp. 449-

456). IEEE.

Konaite, M., Owolawi, P.A., Mapayi, T., Malele, V., Odeyemi, K., Aiyetoro, G. and

Ojo, J.S., 2021, December. Smart hat for the blind with real-time object

99

detection using raspberry pi and tensorflow lite. In Proceedings of the

International Conference on Artificial Intelligence and its Applications (pp. 1-

6).

Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-González, A.B. and Corchado,

J.M., 2022. Deepsign: Sign language detection and recognition using deep

learning. Electronics, 11(11), p.1780.

Pomaska, G., 2019. Stereo vision applying opencv and raspberry pi. The International

Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, 42, pp.265-269.

Raspberry Pi Foundation (2013–2023) Camera Module Documentation. Available at:

https://www.raspberrypi.com/documentation/accessories/camera.html

(Accessed: 14 September 2025).

Raspberry Pi Ltd (2023) Raspberry Pi 5. Available at:

https://www.raspberrypi.com/products/raspberry-pi-5/ (Accessed: 3 December

2025).

Shin, J., Musa Miah, A.S., Hasan, M.A.M., Hirooka, K., Suzuki, K., Lee, H.S. and Jang,

S.W., 2023. Korean sign language recognition using transformer-based deep

neural network. Applied Sciences, 13(5), p.3029.

Shiri, F.M., Perumal, T., Mustapha, N. and Mohamed, R., 2023. A comprehensive

overview and comparative analysis on deep learning models: CNN, RNN,

LSTM, GRU. arXiv preprint arXiv:2305.17473.

Symon, A.F., Hassan, N., Rashid, H., Ahmed, I.U. and Reza, S.T., 2017, September.

Design and development of a smart baby monitoring system based on

Raspberry Pi and Pi camera. In 2017 4th International Conference on Advances

in Electrical Engineering (ICAEE) (pp. 117-122). IEEE.

https://www.raspberrypi.com/documentation/accessories/camera.html

100

Toyib, R., Affandi Mussa, A. P., Wijaya, A. and Sonita, A. (2025) “Indonesian Sign

System Introduction Application with Tensorflow Lite and Firebase

Authentication”, Jurnal Teknik Informatika dan Sistem Informasi. Jakarta,

Indonesia, 11(1), pp. 31–48.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.

and Polosukhin, I., 2017. Attention is all you need. Advances in neural

information processing systems, 30.

Wungow, K.C., Widodo, R.B. and Subianto, M., 2022, September. Studi Klasifikasi

dengan KNN dan ANN pada Sarung Tangan Penerjemah Angka dan Alfabet

Bahasa Isyarat SIBI. In Prosiding Seminar Nasional Universitas Ma Chung

(Informatika & Sistem Informasi; Bahasa dan Seni; Farmasi) (Vol. 2, pp. 60-

74).

Xu, M., Yoon, S., Fuentes, A. and Park, D.S., 2023. A comprehensive survey of image

augmentation techniques for deep learning. Pattern Recognition, 137, p.109347.

Zhu, J., 2023. Comparative study of sequence-to-sequence models: From RNNs to

transformers. Appl Comput Eng, 42(67), pp.2755-2721.

101

Lampiran

Lampiran A. Hasil Evaluasi Real-Time

Lampiran A.1 Hasil Evaluasi Real-Time RF+LSTM

GESTURE SUBJECT AVERAGE (%)
ACCURACY

(%)

0

1 100%

100%

2 100%

3 100%

1

1 100%

100%

2 100%

3 100%

2

1 100%

100%

2 100%

3 100%

3

1 100%

100%

2 100%

3 100%

4

1 100%

100%

2 100%

3 100%

5

1 60%

87%

2 100%

3 100%

6

1 100%

100%

2 100%

3 100%

7

1 100%

100%

2 100%

3 100%

8

1 40%

47%

2 0%

3 100%

9

1 0%

67%

2 100%

3 100%

102

10

1 100%

100%

2 100%

3 100%

A

1 40%

80%

2 100%

3 100%

B

1 100%

100%

2 100%

3 100%

C

1 100%

100%

2 100%

3 100%

D

1 100%

100%

2 100%

3 100%

E

1 100%

100%

2 100%

3 100%

F

1 100%

100%

2 100%

3 100%

G

1 100%

100%

2 100%

3 100%

H

1 100%

100%

2 100%

3 100%

I

1 100%

100%

2 100%

3 100%

J

1 100%

87%

2 60%

3 100%

K

1 100%

100%

2 100%

3 100%

L
1 100%

33%

2 0%

103

3 0%

M

1 100%

100%

2 100%

3 100%

N

1 100%

100%

2 100%

3 100%

O

1 100%

100%

2 100%

3 100%

P

1 100%

73%

2 100%

3 20%

Q

1 100%

100%

2 100%

3 100%

R

1 100%

100%

2 100%

3 100%

S

1 100%

100%

2 100%

3 100%

T

1 100%

100%

2 100%

3 100%

U

1 100%

100%

2 100%

3 100%

V

1 100%

100%

2 100%

3 100%

W

1 100%

100%

2 100%

3 100%

X

1 100%

100%

2 100%

3 100%

Y 1 100% 100%

104

2 100%

3 100%

Z

1 20%

7%

2 0%

3 0%

AIR

1 100%

100%

2 100%

3 100%

ANDA KAMU

1 100%

100%

2 100%

3 100%

ATAS

1 100%

100%

2 100%

3 100%

ATAU

1 100%

100%

2 100%

3 100%

BAWAH

1 80%

93%

2 100%

3 100%

BELAJAR

1 100%

100%

2 100%

3 100%

BISA

1 100%

100%

2 100%

3 100%

DARI

1 100%

100%

2 100%

3 100%

DIA

1 100%

33%

2 0%

3 0%

HANYA

1 80%

93%

2 100%

3 100%

INI

1 100%

100%

2 100%

3 100%

105

ITU MENUNJUK

1 100%

100%

2 100%

3 100%

JADI

1 100%

100%

2 100%

3 100%

JIKA KALAU

1 100%

100%

2 100%

3 100%

KERJA

1 100%

100%

2 100%

3 100%

LUAR

1 100%

100%

2 100%

3 100%

MAKAN

1 100%

100%

2 100%

3 100%

MINUM

1 100%

100%

2 100%

3 100%

NAIK

1 100%

100%

2 100%

3 100%

PERGI

1 100%

100%

2 100%

3 100%

ROTI

1 100%

100%

2 100%

3 100%

SAYA

1 100%

100%

2 100%

3 100%

SEPERTI

1 100%

100%

2 100%

3 100%

SIAPA
1 100%

100%

2 100%

106

3 100%

TAHUN

1 100%

100%

2 100%

3 100%

TAPI

1 100%

100%

2 100%

3 100%

UNTUK

1 100%

100%

2 100%

3 100%

AKAN

1 100%

100%

2 100%

3 100%

AMBIL

1 0%

40%

2 60%

3 60%

APA

1 60%

80%

2 80%

3 100%

BERKATA

1 100%

53%

2 60%

3 0%

DALAM

1 100%

100%

2 100%

3 100%

DAN

1 40%

80%

2 100%

3 100%

KITA

1 100%

100%

2 100%

3 100%

MEREKA

1 100%

87%

2 60%

3 100%

MILIK PUNYA

1 100%

100%

2 100%

3 100%

ORANG 1 100% 100%

107

2 100%

3 100%

SEMUA

1 20%

33%

2 60%

3 20%

TAHU PAHAM

1 100%

100%

2 100%

3 100%

TURUN

1 60%

73%

2 100%

3 60%

PULANG

1 100%

100%

2 100%

3 100%

NASI

1 100%

100%

2 100%

3 100%

TIDUR

1 100%

53%

2 60%

3 0%

BANGUN

1 100%

100%

2 100%

3 100%

LIHAT

1 100%

100%

2 100%

3 100%

DENGAR

1 60%

87%

2 100%

3 100%

BICARA

1 100%

100%

2 100%

3 100%

TULIS

1 100%

100%

2 100%

3 100%

BACA

1 100%

100%

2 100%

3 100%

108

JALAN

1 100%

87%

2 100%

3 60%

LARI

1 100%

100%

2 100%

3 100%

MEMBELI

1 100%

100%

2 100%

3 100%

MENJUAL

1 60%

87%

2 100%

3 100%

MEMBUKA

1 80%

33%

2 0%

3 20%

MENUTUP

1 100%

100%

2 100%

3 100%

MEMBERI

1 100%

47%

2 40%

3 0%

MENERIMA

1 60%

87%

2 100%

3 100%

MENOLONG

1 80%

67%

2 100%

3 20%

MENUNGGU

1 80%

93%

2 100%

3 100%

MEMINTA

1 80%

80%

2 100%

3 60%

MENONTON

1 60%

87%

2 100%

3 100%

DUDUK
1 40%

47%

2 100%

109

3 0%

BERDIRI

1 80%

87%

2 100%

3 80%

DATANG

1 100%

93%

2 100%

3 80%

MASUK

1 100%

93%

2 100%

3 80%

KELUAR

1 100%

93%

2 100%

3 80%

PAKAI

1 100%

87%

2 100%

3 60%

BUKA (MATA)

1 0%

13%

2 40%

3 0%

TUTUP (MATA)

1 40%

80%

2 100%

3 100%

MENANGIS

1 100%

80%

2 100%

3 40%

TERTAWA

1 100%

67%

2 100%

3 0%

MENJAWAB

1 60%

87%

2 100%

3 100%

MENANYAKAN

1 100%

100%

2 100%

3 100%

MENDENGAR

1 60%

20%

2 0%

3 0%

1 100% 100%

110

MEMBACA AL-

QURAN

2 100%

3 100%

MENONTON TV

1 100%

100%

2 100%

3 100%

MENYAPU

1 60%

87%

2 100%

3 100%

MENCUCI (BAJU)

1 100%

100%

2 100%

3 100%

MEMASAK

1 100%

100%

2 100%

3 100%

MENGIRIM

1 60%

67%

2 80%

3 60%

NAMA

1 100%

100%

2 100%

3 100%

MENERIMA PESAN

1 40%

60%

2 100%

3 40%

MENIKAH

1 100%

60%

2 0%

3 80%

BERCERITA

1 100%

100%

2 100%

3 100%

BERDOA

1 100%

100%

2 100%

3 100%

MINTA MAAF

1 100%

60%

2 60%

3 20%

MENYANYI

1 60%

87%

2 100%

3 100%

111

BERMAIN

1 100%

100%

2 100%

3 100%

DEPAN

1 100%

100%

2 100%

3 100%

BELAKANG

1 100%

80%

2 40%

3 100%

SAMPING

1 100%

100%

2 100%

3 100%

ANTARA

1 0%

40%

2 20%

3 100%

DEKAT

1 100%

100%

2 100%

3 100%

JAUH

1 100%

100%

2 100%

3 100%

DI SINI

1 40%

80%

2 100%

3 100%

DI SANA

1 100%

87%

2 100%

3 60%

SEBELUM

1 100%

100%

2 100%

3 100%

SESUDAH

1 100%

100%

2 100%

3 100%

TIMUR

1 40%

60%

2 100%

3 40%

BARAT
1 100%

93%

2 100%

112

3 80%

SELATAN

1 80%

47%

2 60%

3 0%

UTARA

1 80%

33%

2 20%

3 0%

KANAN

1 100%

100%

2 100%

3 100%

KIRI

1 100%

100%

2 100%

3 100%

 AVERAGE 88%

 AVERAGE RF 90%

AVERAGE

LSTM
86%

*1= Ibu Sumiati, 2=Olfat, 3=Shelly

Lampiran A.2 Hasil Evaluasi Real-Time RF+Transformer

GESTURE SUBJECT AVERAGE (%)
ACCURACY

(%)

0

1 100%

100%

2 100%

3 100%

1

1 100%

100%

2 100%

3 100%

2

1 100%

100%

2 100%

3 100%

3

1 100%

100%

2 100%

3 100%

4

1 100%

100%

2 100%

3 100%

113

5

1 100%

100%

2 100%

3 100%

6

1 100%

100%

2 100%

3 100%

7

1 100%

100%

2 100%

3 100%

8

1 100%

67%

2 0%

3 100%

9

1 100%

100%

2 100%

3 100%

10

1 100%

100%

2 100%

3 100%

A

1 40%

80%

2 100%

3 100%

B

1 100%

100%

2 100%

3 100%

C

1 100%

100%

2 100%

3 100%

D

1 100%

100%

2 100%

3 100%

E

1 100%

100%

2 100%

3 100%

F

1 100%

100%

2 100%

3 100%

G
1 100%

100%

2 100%

114

3 100%

H

1 100%

100%

2 100%

3 100%

I

1 100%

100%

2 100%

3 100%

J

1 100%

100%

2 100%

3 100%

K

1 100%

100%

2 100%

3 100%

L

1 100%

100%

2 100%

3 100%

M

1 100%

100%

2 100%

3 100%

N

1 100%

100%

2 100%

3 100%

O

1 100%

100%

2 100%

3 100%

P

1 100%

67%

2 100%

3 0%

Q

1 100%

100%

2 100%

3 100%

R

1 100%

100%

2 100%

3 100%

S

1 100%

100%

2 100%

3 100%

T 1 100% 67%

115

2 100%

3 0%

U

1 100%

100%

2 100%

3 100%

V

1 100%

100%

2 100%

3 100%

W

1 100%

100%

2 100%

3 100%

X

1 100%

33%

2 0%

3 0%

Y

1 100%

100%

2 100%

3 100%

Z

1 0%

0%

2 0%

3 0%

AIR

1 100%

100%

2 100%

3 100%

ANDA KAMU

1 100%

100%

2 100%

3 100%

ATAS

1 100%

100%

2 100%

3 100%

ATAU

1 100%

100%

2 100%

3 100%

BAWAH

1 100%

100%

2 100%

3 100%

BELAJAR

1 100%

100%

2 100%

3 100%

116

BISA

1 100%

100%

2 100%

3 100%

DARI

1 100%

100%

2 100%

3 100%

DIA

1 0%

67%

2 100%

3 100%

HANYA

1 60%

87%

2 100%

3 100%

INI

1 100%

100%

2 100%

3 100%

ITU MENUNJUK

1 100%

100%

2 100%

3 100%

JADI

1 100%

100%

2 100%

3 100%

JIKA KALAU

1 80%

93%

2 100%

3 100%

KERJA

1 100%

100%

2 100%

3 100%

LUAR

1 100%

100%

2 100%

3 100%

MAKAN

1 100%

100%

2 100%

3 100%

MINUM

1 0%

67%

2 100%

3 100%

NAIK
1 0%

67%

2 100%

117

3 100%

PERGI

1 100%

100%

2 100%

3 100%

ROTI

1 100%

100%

2 100%

3 100%

SAYA

1 100%

100%

2 100%

3 100%

SEPERTI

1 100%

100%

2 100%

3 100%

SIAPA

1 100%

100%

2 100%

3 100%

TAHUN

1 100%

100%

2 100%

3 100%

TAPI

1 100%

100%

2 100%

3 100%

UNTUK

1 100%

100%

2 100%

3 100%

AKAN

1 100%

100%

2 100%

3 100%

AMBIL

1 60%

87%

2 100%

3 100%

APA

1 80%

93%

2 100%

3 100%

BERKATA

1 100%

53%

2 60%

3 0%

DALAM 1 100% 100%

118

2 100%

3 100%

DAN

1 100%

100%

2 100%

3 100%

KITA

1 100%

100%

2 100%

3 100%

MEREKA

1 100%

100%

2 100%

3 100%

MILIK PUNYA

1 100%

100%

2 100%

3 100%

ORANG

1 100%

100%

2 100%

3 100%

SEMUA

1 100%

100%

2 100%

3 100%

TAHU PAHAM

1 100%

100%

2 100%

3 100%

TURUN

1 0%

67%

2 100%

3 100%

PULANG

1 100%

100%

2 100%

3 100%

NASI

1 100%

100%

2 100%

3 100%

TIDUR

1 100%

80%

2 100%

3 40%

BANGUN

1 100%

100%

2 100%

3 100%

119

LIHAT

1 100%

100%

2 100%

3 100%

DENGAR

1 100%

100%

2 100%

3 100%

BICARA

1 100%

100%

2 100%

3 100%

TULIS

1 0%

33%

2 0%

3 100%

BACA

1 100%

100%

2 100%

3 100%

JALAN

1 100%

100%

2 100%

3 100%

LARI

1 100%

100%

2 100%

3 100%

MEMBELI

1 100%

100%

2 100%

3 100%

MENJUAL

1 100%

100%

2 100%

3 100%

MEMBUKA

1 100%

100%

2 100%

3 100%

MENUTUP

1 100%

80%

2 100%

3 40%

MEMBERI

1 100%

100%

2 100%

3 100%

MENERIMA
1 100%

100%

2 100%

120

3 100%

MENOLONG

1 100%

100%

2 100%

3 100%

MENUNGGU

1 100%

100%

2 100%

3 100%

MEMINTA

1 40%

40%

2 60%

3 20%

MENONTON

1 60%

87%

2 100%

3 100%

DUDUK

1 100%

100%

2 100%

3 100%

BERDIRI

1 100%

93%

2 100%

3 80%

DATANG

1 0%

67%

2 100%

3 100%

MASUK

1 40%

80%

2 100%

3 100%

KELUAR

1 100%

100%

2 100%

3 100%

PAKAI

1 100%

100%

2 100%

3 100%

BUKA (MATA)

1 60%

87%

2 100%

3 100%

TUTUP (MATA)

1 40%

80%

2 100%

3 100%

MENANGIS 1 80% 80%

121

2 100%

3 60%

TERTAWA

1 60%

87%

2 100%

3 100%

MENJAWAB

1 0%

67%

2 100%

3 100%

MENANYAKAN

1 100%

100%

2 100%

3 100%

MENDENGAR

1 0%

7%

2 20%

3 0%

MEMBACA AL-

QURAN

1 100%

100%

2 100%

3 100%

MENONTON TV

1 100%

100%

2 100%

3 100%

MENYAPU

1 100%

100%

2 100%

3 100%

MENCUCI (BAJU)

1 100%

100%

2 100%

3 100%

MEMASAK

1 100%

100%

2 100%

3 100%

MENGIRIM

1 100%

100%

2 100%

3 100%

NAMA

1 100%

100%

2 100%

3 100%

MENERIMA PESAN

1 80%

93%

2 100%

3 100%

122

MENIKAH

1 80%

93%

2 100%

3 100%

BERCERITA

1 100%

100%

2 100%

3 100%

BERDOA

1 100%

100%

2 100%

3 100%

MINTA MAAF

1 60%

87%

2 100%

3 100%

MENYANYI

1 100%

100%

2 100%

3 100%

BERMAIN

1 100%

100%

2 100%

3 100%

DEPAN

1 100%

100%

2 100%

3 100%

BELAKANG

1 100%

100%

2 100%

3 100%

SAMPING

1 100%

100%

2 100%

3 100%

ANTARA

1 20%

53%

2 100%

3 40%

DEKAT

1 100%

100%

2 100%

3 100%

JAUH

1 100%

100%

2 100%

3 100%

DI SINI
1 100%

100%

2 100%

123

3 100%

DI SANA

1 100%

100%

2 100%

3 100%

SEBELUM

1 100%

100%

2 100%

3 100%

SESUDAH

1 100%

100%

2 100%

3 100%

TIMUR

1 100%

80%

2 100%

3 40%

BARAT

1 100%

100%

2 100%

3 100%

SELATAN

1 100%

80%

2 100%

3 40%

UTARA

1 100%

100%

2 100%

3 100%

KANAN

1 100%

100%

2 100%

3 100%

KIRI

1 100%

100%

2 100%

3 100%

 AVERAGE 93%

 AVERAGE RF 91%

AVERAGE

Transformer
93%

*1= Ibu Sumiati, 2=Olfat, 3=Shelly

Lampiran B. Source Code

Lampiran B.1 Source Code Koleksi Dataset Random Forest

1 import cv2

124

2 import os

3 import time

4

5 def capture_dataset_auto(save_path, person_name,

max_images=200, delay_ms=100, start_delay=5000):

6 """

7 Capture dataset gestur BISINDO otomatis dari

webcam

8

9 Parameters:

10 -----------

11 save_path : str

12 Path folder tempat menyimpan dataset

(contoh: "E:/Dataset.../Nic/SIAPA")

13 person_name : str

14 Nama orang/responden (contoh: "NICO")

15 max_images : int

16 Target jumlah gambar

17 delay_ms : int

18 Jeda antar capture gambar (dalam milidetik)

19 start_delay : int

20 Jeda awal sebelum mulai capture (dalam

milidetik)

21 """

22

23 # Cek apakah folder sudah ada

24 if not os.path.exists(save_path):

25 os.makedirs(save_path)

26 print(f" Folder baru dibuat: {save_path}")

27

28 # Inisialisasi webcam

29 cap = cv2.VideoCapture(0)

30 if not cap.isOpened():

31 print(" Tidak bisa membuka webcam")

32 return

33

34 print(f"▶ Persiapkan gestur di folder:

{save_path}")

35 print(f"Capture akan dimulai dalam

{start_delay/1000:.1f} detik...")

36

37 # Tampilkan countdown awal

38 start_time = time.time()

39 while (time.time() - start_time) * 1000 <

start_delay:

125

40 ret, frame = cap.read()

41 if not ret:

42 print(" Gagal membaca frame dari

webcam")

43 cap.release()

44 return

45 frame_resized = cv2.resize(frame, (640,

480))

46 remaining = int(start_delay/1000 -

(time.time() - start_time))

47 cv2.putText(frame_resized, f"Mulai dalam

{remaining} detik...",

48 (150, 240),

cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0,0,255), 3)

49 cv2.imshow("Capture Dataset", frame_resized)

50 cv2.waitKey(1)

51

52 # Cari nomor terakhir agar tidak overwrite file

lama

53 existing_files = [f for f in

os.listdir(save_path) if f.startswith(person_name)]

54 count_start = len(existing_files)

55

56 count = 0

57 print(f"▶ Mulai auto-capture: {max_images}

gambar | Delay: {delay_ms} ms per gambar")

58 print("Tekan 'q' jika ingin berhenti lebih

awal")

59

60 while count < max_images:

61 ret, frame = cap.read()

62 if not ret:

63 print(" Gagal membaca frame dari

webcam")

64 break

65

66 frame_resized = cv2.resize(frame, (640,

480))

67 cv2.putText(frame_resized, f"{person_name} |

{count+1}/{max_images}",

68 (20, 40),

cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 2)

69 cv2.imshow("Capture Dataset", frame_resized)

70

71 # Simpan gambar dengan nama berurutan

126

72 filename = f"{person_name}_({count_start +

count + 1}).jpg"

73 cv2.imwrite(os.path.join(save_path,

filename), frame)

74 print(f" Disimpan: {filename}")

75 count += 1

76

77 # Delay dalam ms

78 key = cv2.waitKey(delay_ms) & 0xFF

79 if key == ord("q"):

80 break

81

82 cap.release()

83 cv2.destroyAllWindows()

84 print(f" Selesai: {count} gambar disimpan di

{save_path}")

85

86

87 # -------------------

88 # Contoh penggunaan

89 # -------------------

90

91 # Path folder Anda (pastikan ganti sesuai path Anda)

92 save_path = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset RF\New Dataset

RF\MIGOZ\TIDUR"

93

94 # Capture 100 gambar, delay 500 ms, countdown awal

3000 ms

95 capture_dataset_auto(save_path=save_path,

person_name="MIGOZ", max_images=200, delay_ms=100,

start_delay=5000)

Lampiran B.2 Source Code Koleksi Dataset LSTM dan Transformer

1 import cv2

2 import mediapipe as mp

3 import numpy as np

4 import os

5

6 # ---------------------------

7 # Konfigurasi

8 # ---------------------------

9 GESTURE_NAME = "UTARA"

127

10 SAVE_DIR = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset LSTM

REV\MIGOZ"

11 SEQUENCE_LENGTH = 20 # jumlah frame per sequence

12 TOTAL_SEQUENCES = 105 # target dataset

13

14 # pastikan folder ada

15 os.makedirs(SAVE_DIR, exist_ok=True)

16

17 # ---------------------------

18 # Init MediaPipe

19 # ---------------------------

20 mp_hands = mp.solutions.hands

21 hands = mp_hands.Hands(

22 static_image_mode=False,

23 max_num_hands=2,

24 min_detection_confidence=0.6,

25 min_tracking_confidence=0.6

26)

27 mp_draw = mp.solutions.drawing_utils

28

29 # ---------------------------

30 # Kamera

31 # ---------------------------

32 cap = cv2.VideoCapture(0)

33 if not cap.isOpened():

34 raise RuntimeError("Kamera tidak bisa dibuka")

35

36 print(f"[INFO] Mulai otomatis rekam

{TOTAL_SEQUENCES} sequence untuk gestur: {GESTURE_NAME}")

37 print("[INFO] Jumlah tangan akan divalidasi otomatis

berdasarkan deteksi MediaPipe")

38 print("Tekan 'q' untuk berhenti.")

39

40 all_sequences = []

41 seq_count = 0

42 frame_buffer = []

43 last_status = None # simpan status valid/invalid

terakhir

44

45 def validate_sequence(seq, threshold=0.9):

46 """Validasi otomatis: pastikan sequence punya

cukup frame valid"""

47 seq = np.array(seq).reshape(SEQUENCE_LENGTH, 2,

21, 3)

128

48 valid_frames = 0

49 hand_counts = []

50

51 for frame in seq:

52 hands_detected = 0

53 for hand in frame:

54 if np.any(hand != 0):

55 hands_detected += 1

56 hand_counts.append(hands_detected)

57 if hands_detected > 0:

58 valid_frames += 1

59

60 frame_valid_ratio = valid_frames /

SEQUENCE_LENGTH

61 avg_hands = round(np.mean(hand_counts))

62

63 # valid jika deteksi tangan stabil (>=

threshold)

64 return frame_valid_ratio >= threshold,

frame_valid_ratio, avg_hands

65

66 while seq_count < TOTAL_SEQUENCES:

67 ret, frame = cap.read()

68 if not ret:

69 continue

70

71 frame = cv2.flip(frame, 1)

72 rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

73 results = hands.process(rgb)

74

75 landmarks_both = np.zeros((2, 21, 3))

76

77 if results.multi_hand_landmarks:

78 for h_idx, hand_landmarks in

enumerate(results.multi_hand_landmarks):

79 if h_idx > 1:

80 break

81 for i, lm in

enumerate(hand_landmarks.landmark):

82 landmarks_both[h_idx, i] = [lm.x,

lm.y, lm.z]

83 mp_draw.draw_landmarks(frame,

hand_landmarks, mp_hands.HAND_CONNECTIONS)

84

85 frame_buffer.append(landmarks_both.flatten())

129

86

87 # kalau buffer sudah SEQUENCE_LENGTH frame → cek

dan simpan

88 if len(frame_buffer) == SEQUENCE_LENGTH:

89 is_valid, ratio, avg_hands =

validate_sequence(frame_buffer)

90

91 if is_valid:

92

all_sequences.append(np.array(frame_buffer))

93 seq_count += 1

94 last_status = (f"VALID ({avg_hands}

hand)", (0, 255, 0))

95 print(f"[SAVED] Sequence

{seq_count}/{TOTAL_SEQUENCES} | Ratio={ratio:.2f},

Hands={avg_hands}")

96 else:

97 last_status = ("RETAKE", (0, 0, 255))

98 print(f"[RETAKE] Sequence tidak valid |

Ratio={ratio:.2f}")

99

100 frame_buffer = [] # reset buffer

101

102 # tampilkan info status

103 if last_status:

104 msg, color = last_status

105 cv2.putText(frame, f"{msg}", (10,70),

cv2.FONT_HERSHEY_SIMPLEX, 1.0, color, 3)

106

107 cv2.putText(frame, f"{GESTURE_NAME} Seq

{seq_count}/{TOTAL_SEQUENCES}",

108 (10,30), cv2.FONT_HERSHEY_SIMPLEX,

0.8, (0,0,255), 2)

109 cv2.imshow("Collect Dataset", frame)

110

111 if cv2.waitKey(1) & 0xFF == ord('q'):

112 break

113

114 cap.release()

115 cv2.destroyAllWindows()

116 hands.close()

117

118 # ---------------------------

119 # Simpan semua ke 1 file .npz

120 # ---------------------------

130

121 X = np.array(all_sequences) # (N, SEQUENCE_LENGTH,

126)

122 y = np.array([0]*len(all_sequences)) # label gestur

ini = 0

123

124 save_path = os.path.join(SAVE_DIR,

f"{GESTURE_NAME}_dataset.npz")

125 np.savez_compressed(save_path, X=X, y=y,

gesture=GESTURE_NAME)

126

127 print("\n[INFO] Dataset selesai!")

128 print(f"Total sequence: {X.shape[0]} | Shape data:

{X.shape}")

129 print("Disimpan ke:", save_path)

Lampiran B.4 Source Code Augmentasi Citra Dataset Random Forest

1 import cv2

2 import os

3 import numpy as np

4 import random

5 from concurrent.futures import ThreadPoolExecutor

6

7 # ==

8 # KONFIGURASI

9 # ==

10 DATASET_ROOT = r"E:\Dataset Penelitian Bahasa

Isyarat Olfat 2025\Tugas Akhir\Dataset RF\New Dataset RF"

11 AUGMENT_MULTIPLIER = 10 # Total variasi per gambar

12

13 def safe_augment_image(image):

14 h, w = image.shape[:2]

15

16 # --- 1. ROTASI (-10 s/d 10 derajat) ---

17 # Sudut diperkecil sedikit agar aman

18 angle = random.uniform(-10, 10)

19 center = (w // 2, h // 2)

20 M_rot = cv2.getRotationMatrix2D(center, angle,

1.0)

21 image = cv2.warpAffine(image, M_rot, (w, h),

borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0))

22

23 # --- 2. SAFE ZOOM (Fokus Zoom Out) ---

24 # Rentang scale: 0.85 (Jauh) sampai 1.05

(Sedikit Dekat)

131

25 # Kebanyakan akan menjauh (Zoom Out) agar tangan

tidak terpotong

26 scale = random.uniform(0.85, 1.05)

27

28 if scale < 1.0:

29 # === ZOOM OUT (Mengecil) ===

30 # Gambar dikecilkan, lalu ditempel di tengah

background hitam

31 # Ini 100% AMAN, tangan tidak akan hilang

32 new_h, new_w = int(h * scale), int(w *

scale)

33 resized = cv2.resize(image, (new_w, new_h))

34

35 # Buat kanvas hitam seukuran asli

36 canvas = np.zeros((h, w, 3), dtype=np.uint8)

37

38 # Hitung posisi tengah

39 y_off = (h - new_h) // 2

40 x_off = (w - new_w) // 2

41

42 # Tempel gambar kecil ke kanvas

43 canvas[y_off:y_off+new_h, x_off:x_off+new_w]

= resized

44 image = canvas

45

46 elif scale > 1.0:

47 # === ZOOM IN (Membesar) ===

48 # Dibatasi maksimal 5% agar tidak memotong

jari

49 new_h, new_w = int(h / scale), int(w /

scale)

50 top = (h - new_h) // 2

51 left = (w - new_w) // 2

52

53 cropped = image[top:top+new_h,

left:left+new_w]

54 image = cv2.resize(cropped, (w, h))

55

56 # --- 3. GESER SEDIKIT (Translation) ---

57 # Geser maksimal 5% dari lebar/tinggi gambar

58 tx = random.uniform(-0.05, 0.05) * w

59 ty = random.uniform(-0.05, 0.05) * h

60 M_trans = np.float32([[1, 0, tx], [0, 1, ty]])

61 image = cv2.warpAffine(image, M_trans, (w, h),

borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0))

132

62

63 return image

64

65 def process_file(file_info):

66 root, filename = file_info

67

68 if "_aug_" in filename:

69 return 0

70

71 img_path = os.path.join(root, filename)

72 image = cv2.imread(img_path)

73

74 if image is None: return 0

75

76 count = 0

77 base_name = os.path.splitext(filename)[0]

78

79 for i in range(AUGMENT_MULTIPLIER):

80 try:

81 aug_img = safe_augment_image(image)

82

83 new_filename =

f"{base_name}_aug_{i}.jpg"

84 save_path = os.path.join(root,

new_filename)

85 cv2.imwrite(save_path, aug_img)

86 count += 1

87 except Exception as e:

88 print(f"Error processing {filename}:

{e}")

89

90 return count

91

92 def main():

93 print(f" Memulai SAFE AUGMENTATION pada:

{DATASET_ROOT}")

94

95 all_files = []

96 for root, dirs, files in os.walk(DATASET_ROOT):

97 for file in files:

98 if file.lower().endswith(('.jpg',

'.jpeg', '.png')):

99 all_files.append((root, file))

100

101 print(f" Memproses {len(all_files)} file

133

gambar...")

102

103 with ThreadPoolExecutor(max_workers=8) as

executor:

104 results = executor.map(process_file,

all_files)

105 total = sum(results)

106

107 print(f"\n SELESAI! {total} gambar variasi

aman dibuat.")

108

109 if __name__ == "__main__":

110 main()

Lampiran B.4 Source Code Ekstrak Landmark Dataset Random Forest

1 import os

2 import cv2

3 import mediapipe as mp

4 import pandas as pd

5

6 # Inisialisasi Mediapipe Hands

7 mp_hands = mp.solutions.hands

8 hands = mp_hands.Hands(static_image_mode=True,

max_num_hands=2, min_detection_confidence=0.6)

9

10 def extract_landmarks_from_image(image_path,

do_flip=True):

11 """

12 Ekstrak landmark dari 1 gambar.

13 Bisa di-flip horizontal tanpa mengubah file

aslinya.

14 """

15 image = cv2.imread(image_path)

16 if image is None:

17 return None

18

19 # FLIP gambar jika ingin konsisten dengan kamera

20 if do_flip:

21 image = cv2.flip(image, 1)

22

23 image_rgb = cv2.cvtColor(image,

cv2.COLOR_BGR2RGB)

24 results = hands.process(image_rgb)

25

134

26 if not results.multi_hand_landmarks:

27 return None

28

29 data = []

30 for hand_landmarks in

results.multi_hand_landmarks:

31 for lm in hand_landmarks.landmark:

32 data.extend([lm.x, lm.y, lm.z])

33

34 # padding kalau hanya 1 tangan

35 if len(results.multi_hand_landmarks) == 1:

36 data.extend([0.0] * 63)

37

38 if len(data) != 126:

39 return None

40

41 return data

42

43 def process_dataset(root_dir, output_csv):

44 """Loop semua folder → ekstrak landmark → simpan

ke CSV"""

45 dataset = []

46

47 for person in os.listdir(root_dir):

48 person_path = os.path.join(root_dir, person)

49 if not os.path.isdir(person_path):

50 continue

51

52 for gesture in os.listdir(person_path):

53 gesture_path = os.path.join(person_path,

gesture)

54 if not os.path.isdir(gesture_path):

55 continue

56

57 for filename in

os.listdir(gesture_path):

58 if not

filename.lower().endswith((".jpg", ".jpeg", ".png")):

59 continue

60

61 file_path =

os.path.join(gesture_path, filename)

62 landmarks =

extract_landmarks_from_image(file_path)

63

135

64 if landmarks is not None:

65 dataset.append(landmarks +

[gesture])

66

67 # Buat DataFrame

68 num_landmarks = 42 * 3 # 42 titik (2 tangan),

tiap titik ada x,y,z

69 columns = [f"{axis}{i}" for i in range(42) for

axis in ["x", "y", "z"]]

70 columns.append("label")

71

72 df = pd.DataFrame(dataset, columns=columns)

73

74 # Simpan ke CSV

75 df.to_csv(output_csv, index=False)

76 print(f" Ekstraksi selesai, hasil disimpan di:

{output_csv}")

77

78

79 # -------------------

80 # Contoh penggunaan

81 # -------------------

82 root_dir = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset RF Old"

83 output_csv = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset RF

Old\dataset_landmarks_RF_OLD_DATASET.csv"

84

85 process_dataset(root_dir, output_csv)

Lampiran B.5 Source Code Train Random Forest

1 import pandas as pd

2 import numpy as np

3 from sklearn.model_selection import

train_test_split, StratifiedKFold, cross_val_score,

cross_val_predict, learning_curve

4 from sklearn.preprocessing import LabelEncoder

5 from sklearn.ensemble import RandomForestClassifier

6 from sklearn.metrics import classification_report,

confusion_matrix, accuracy_score

7 import pickle

8 import os

9 import matplotlib.pyplot as plt

10 import seaborn as sns

136

11

12 # =========================

13 # 1. Load dataset

14 # =========================

15 data_path = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset RF

Old\dataset_landmarks_RF_OLD_DATASET.csv"

16 df = pd.read_csv(data_path)

17

18 # Pisahkan fitur dan label

19 X = df.drop("label", axis=1).values

20 y = df["label"].values

21

22 # Encode label jika masih teks

23 if y.dtype.kind in {'U', 'S', 'O'}:

24 le = LabelEncoder()

25 y_encoded = le.fit_transform(y)

26 class_names = le.classes_

27 else:

28 y_encoded = y

29 le = None

30 class_names = np.unique(y)

31

32 # =========================

33 # 2. Split dataset (80/20)

34 # =========================

35 X_train, X_test, y_train, y_test = train_test_split(

36 X, y_encoded, test_size=0.2, stratify=y_encoded,

random_state=42

37)

38

39 # =========================

40 # 3. Train Random Forest (train-test split)

41 # =========================

42 print("[INFO] Melatih model Random Forest...")

43 rf = RandomForestClassifier(

44 n_estimators=100,

45 criterion="gini",

46 max_depth=None,

47 random_state=42

48)

49 rf.fit(X_train, y_train)

50

51 # =========================

52 # 4. Evaluasi train-test split

137

53 # =========================

54 y_pred = rf.predict(X_test)

55 acc = accuracy_score(y_test, y_pred)

56 print(f" Akurasi test (80/20 split): {acc:.2f}\n")

57

58 cm = confusion_matrix(y_test, y_pred)

59

60 # =========================

61 # 5. K-Fold Cross Validation & Learning Curve

62 # =========================

63 k = 5 # jumlah fold

64 skf = StratifiedKFold(n_splits=k, shuffle=True,

random_state=42)

65

66 print(f"[INFO] Menjalankan {k}-Fold Cross

Validation...")

67 cv_scores = cross_val_score(rf, X, y_encoded,

cv=skf)

68 print(f" K-Fold CV mean accuracy:

{cv_scores.mean():.2f} ± {cv_scores.std():.2f}")

69

70 y_pred_cv = cross_val_predict(rf, X, y_encoded,

cv=skf)

71 cv_cm = confusion_matrix(y_encoded, y_pred_cv)

72

73 # --- PLOT LEARNING CURVE (Kurva Pembelajaran) ---

74 print("[INFO] Membuat Learning Curve...")

75 train_sizes_abs, train_scores, val_scores =

learning_curve(

76 rf, X, y_encoded, cv=skf, n_jobs=-1,

77 train_sizes=np.linspace(0.1, 1.0, 10),

78 scoring="accuracy"

79)

80

81 train_scores_mean = np.mean(train_scores, axis=1)

82 train_scores_std = np.std(train_scores, axis=1)

83 val_scores_mean = np.mean(val_scores, axis=1)

84 val_scores_std = np.std(val_scores, axis=1)

85

86 # Direktori penyimpanan

87 results_dir = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Source Code\results train RF Old"

88 os.makedirs(results_dir, exist_ok=True)

89

90 plt.figure(figsize=(10, 6))

138

91 plt.title("Learning Curve (Random Forest)")

92 plt.xlabel("Jumlah Data Latih")

93 plt.ylabel("Akurasi")

94 plt.grid(True, linestyle="--", alpha=0.6)

95 plt.fill_between(train_sizes_abs, train_scores_mean

- train_scores_std,

96 train_scores_mean +

train_scores_std, alpha=0.1, color="blue")

97 plt.fill_between(train_sizes_abs, val_scores_mean -

val_scores_std,

98 val_scores_mean + val_scores_std,

alpha=0.1, color="orange")

99 plt.plot(train_sizes_abs, train_scores_mean, 'o-',

color="blue", label="Skor Training")

100 plt.plot(train_sizes_abs, val_scores_mean, 'o-',

color="orange", label="Skor Validasi (CV)")

101 plt.legend(loc="best")

102 plt.savefig(os.path.join(results_dir,

"learning_curve_rf.png"))

103 plt.close()

104

105 # =========================

106 # 6. Simpan Model

107 # =========================

108 model_path = os.path.join(results_dir,

"random_forest_bisindo_kcross.pkl")

109 with open(model_path, "wb") as f:

110 pickle.dump(rf, f)

111

112 if le is not None:

113 le_path = os.path.join(results_dir,

"label_encoder_kcross.pkl")

114 with open(le_path, "wb") as f:

115 pickle.dump(le, f)

116

117 print(f"\n Model disimpan di: {model_path}")

118

119 # =========================

120 # 7. Simpan Laporan & Confusion Matrix (SUPER JELAS)

121 # =========================

122

123 # --- A. Simpan Classification Reports ---

124 report_path = os.path.join(results_dir,

"classification_report_split_rf.txt")

125 with open(report_path, "w") as f:

139

126 f.write("=== Classification Report (80/20 Split)

===\n")

127 f.write(classification_report(y_test, y_pred,

target_names=class_names))

128

129 cv_report_path = os.path.join(results_dir,

"classification_report_cv_rf.txt")

130 with open(cv_report_path, "w") as f:

131 f.write(f"=== Classification Report ({k}-Fold

Cross Validation) ===\n")

132 f.write(classification_report(y_encoded,

y_pred_cv, target_names=class_names))

133

134 # --- B. Simpan Confusion Matrix 80/20 Split (UKURAN

BESAR) ---

135 print("[INFO] Menyimpan Confusion Matrix 80/20 (High

Res)...")

136 fig_cm, ax_cm = plt.subplots(figsize=(40, 40)) # <-

-- Ukuran Raksasa

137

138 sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",

139 xticklabels=class_names,

yticklabels=class_names,

140 ax=ax_cm, annot_kws={"size": 6}) # Font

angka kecil agar muat

141

142 ax_cm.set_xticklabels(ax_cm.get_xticklabels(),

rotation=90, fontsize=8)

143 ax_cm.set_yticklabels(ax_cm.get_yticklabels(),

rotation=0, fontsize=8)

144 ax_cm.set_xlabel("Predicted Label", fontsize=15)

145 ax_cm.set_ylabel("True Label", fontsize=15)

146 ax_cm.set_title("Confusion Matrix (80/20 Split)",

fontsize=20)

147

148 plt.savefig(os.path.join(results_dir,

"confusion_matrix_split_rf.png"), dpi=300,

bbox_inches='tight')

149 plt.savefig(os.path.join(results_dir,

"confusion_matrix_split_rf.svg"), bbox_inches='tight')

150 plt.close(fig_cm)

151

152 # --- C. Simpan Confusion Matrix Cross-Validation

(UKURAN BESAR) ---

153 print("[INFO] Menyimpan Confusion Matrix CV (High

140

Res)...")

154 fig_cvcm, ax_cvcm = plt.subplots(figsize=(40, 40)) #

<--- Ukuran Raksasa

155

156 sns.heatmap(cv_cm, annot=True, fmt="d",

cmap="Greens",

157 xticklabels=class_names,

yticklabels=class_names,

158 ax=ax_cvcm, annot_kws={"size": 6}) #

Font angka kecil agar muat

159

160 ax_cvcm.set_xticklabels(ax_cvcm.get_xticklabels(),

rotation=90, fontsize=8)

161 ax_cvcm.set_yticklabels(ax_cvcm.get_yticklabels(),

rotation=0, fontsize=8)

162 ax_cvcm.set_xlabel("Predicted Label", fontsize=15)

163 ax_cvcm.set_ylabel("True Label", fontsize=15)

164 ax_cvcm.set_title(f"Confusion Matrix ({k}-Fold Cross

Validation)", fontsize=20)

165

166 plt.savefig(os.path.join(results_dir,

"confusion_matrix_cv_rf.png"), dpi=300,

bbox_inches='tight')

167 plt.savefig(os.path.join(results_dir,

"confusion_matrix_cv_rf.svg"), bbox_inches='tight')

168 plt.close(fig_cvcm)

169

170 print(f"\n Semua hasil (Learning Curve, Conf

Matrix Besar, Laporan) tersimpan di: {results_dir}")

Lampiran B.6 Source Code Train LSTM

1 import os

2 import numpy as np

3 import tensorflow as tf

4 from tensorflow.keras import layers, models,

regularizers

5 from sklearn.model_selection import

train_test_split, KFold

6 from tensorflow.keras.utils import to_categorical

7 from tensorflow.keras.callbacks import

EarlyStopping, ModelCheckpoint, ReduceLROnPlateau

8 import matplotlib.pyplot as plt

9 import seaborn as sns

10 from sklearn.metrics import confusion_matrix,

141

classification_report

11

12 # ------------------------------

13 # Konfigurasi

14 # ------------------------------

15 dataset_path = r"E:\Dataset Penelitian Bahasa

Isyarat Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset

LSTM REV"

16 SEQ_LENGTH = 20

17 FEATURES = 126

18 K_FOLDS = 5

19

20 RESULTS_DIR = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Source Code\results train

new\LSTM"

21 os.makedirs(RESULTS_DIR, exist_ok=True)

22

23 # ------------------------------

24 # Load dataset

25 # ------------------------------

26 X_all, y_all = [], []

27 gestures = {}

28 class_counter = 0

29

30 def normalize_sequence(seq, target_len=SEQ_LENGTH):

31 if seq.shape[0] < target_len:

32 pad_width = target_len - seq.shape[0]

33 padding = np.zeros((pad_width,

seq.shape[1]))

34 return np.vstack([seq, padding])

35 elif seq.shape[0] > target_len:

36 return seq[:target_len]

37 else:

38 return seq

39

40 print("[INFO] Memuat dataset...")

41 for root, dirs, files in os.walk(dataset_path):

42 for file in files:

43 if file.endswith(".npz"):

44 path = os.path.join(root, file)

45 data = np.load(path, allow_pickle=True)

46 X, y = data["X"], data["y"]

47 X_norm =

np.array([normalize_sequence(seq) for seq in X])

48 gesture_name =

142

file.replace("_dataset.npz", "")

49 if gesture_name not in gestures:

50 gestures[gesture_name] =

class_counter

51 class_counter += 1

52 y_label = gestures[gesture_name]

53 X_all.append(X_norm)

54 y_all.append(np.full(len(X_norm),

y_label))

55 print(f"[INFO] Loaded {file} from

{os.path.basename(root)}: {X_norm.shape}")

56

57 X_all = np.concatenate(X_all, axis=0)

58 y_all = np.concatenate(y_all, axis=0)

59 gesture_list = list(gestures.keys())

60 num_classes = len(gesture_list)

61 y_cat_all = to_categorical(y_all,

num_classes=num_classes)

62

63 print(f"[INFO] Total Data: {X_all.shape}, Total

Kelas: {num_classes}")

64

65 # ------------------------------

66 # Split dataset 80% train+val / 20% test

67 # ------------------------------

68 X_train_val, X_test, y_train_val, y_test =

train_test_split(

69 X_all, y_cat_all, test_size=0.2, stratify=y_all,

random_state=42

70)

71

72 # ------------------------------

73 # K-Fold Cross Validation pada train+val

74 # ------------------------------

75 kf = KFold(n_splits=K_FOLDS, shuffle=True,

random_state=42)

76 fold_no = 1

77 histories = []

78

79 for train_idx, val_idx in kf.split(X_train_val):

80 print(f"\n[INFO] Training fold

{fold_no}/{K_FOLDS}")

81

82 X_train, X_val = X_train_val[train_idx],

X_train_val[val_idx]

143

83 y_train, y_val = y_train_val[train_idx],

y_train_val[val_idx]

84

85 # Dropout di sini Anda set 0.3 pada kode

sebelumnya,

86 # Anda bisa ubah ke 0.6 jika ingin kembali ke

konfigurasi awal

87 model = models.Sequential([

88 layers.Input(shape=(SEQ_LENGTH, FEATURES)),

89 layers.LSTM(64, return_sequences=False,

unroll=True),

90 layers.Dense(32, activation='relu',

kernel_regularizer=regularizers.l2(0.001)),

91 layers.Dropout(0.3),

92 layers.Dense(num_classes,

activation='softmax')

93])

94

95 model.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

96

97 callbacks = [

98 EarlyStopping(monitor="val_loss",

patience=10, restore_best_weights=True),

99

ModelCheckpoint(f"{RESULTS_DIR}/best_model_fold{fold_no}.

h5", monitor="val_loss", save_best_only=True),

100 ReduceLROnPlateau(monitor="val_loss",

factor=0.5, patience=5, min_lr=1e-6)

101]

102

103 history = model.fit(

104 X_train, y_train,

105 validation_data=(X_val, y_val),

106 epochs=300,

107 batch_size=16,

108 callbacks=callbacks,

109 verbose=1

110)

111

112 histories.append(history)

113

114 # --- BAGIAN SIMPAN REPORT & MATRIX PER FOLD

DIHAPUS ---

115

144

116 print(f"[INFO] Fold {fold_no} selesai.")

117 fold_no += 1

118

119 # ------------------------------

120 # Train final model pada seluruh train+val

121 # ------------------------------

122 print("\n[INFO] Melatih model final pada seluruh

data train+val...")

123 # Pastikan nilai Dropout konsisten dengan yang Anda

inginkan (misal 0.3 atau 0.6)

124 model_final = models.Sequential([

125 layers.Input(shape=(SEQ_LENGTH, FEATURES)),

126 layers.LSTM(64, return_sequences=False,

unroll=True),

127 layers.Dense(32, activation='relu',

kernel_regularizer=regularizers.l2(0.001)),

128 layers.Dropout(0.6),

129 layers.Dense(num_classes, activation='softmax')

130])

131 model_final.compile(optimizer='adam',

loss='categorical_crossentropy', metrics=['accuracy'])

132

133 callbacks_final = [

134 EarlyStopping(monitor="val_loss", patience=10,

restore_best_weights=True),

135

ModelCheckpoint(f"{RESULTS_DIR}/best_model_lstm.h5",

monitor="val_loss", save_best_only=True),

136 ReduceLROnPlateau(monitor="val_loss",

factor=0.5, patience=5, min_lr=1e-6)

137]

138

139 history_final = model_final.fit(

140 X_train_val, y_train_val,

141 validation_data=(X_test, y_test),

142 epochs=300,

143 batch_size=16,

144 callbacks=callbacks_final

145)

146

147 # ------------------------------

148 # Save final model & gestures

149 # ------------------------------

150 model_final.save(os.path.join(RESULTS_DIR,

"model_lstm.h5"))

145

151 np.save(os.path.join(RESULTS_DIR,

"gestures_labels.npy"), gesture_list)

152

153 # ------------------------------

154 # Plot Kurva Akurasi & Loss

155 # ------------------------------

156 plt.figure(figsize=(12, 5))

157

158 # Kurva Akurasi

159 plt.subplot(1, 2, 1)

160 plt.plot(history_final.history["accuracy"],

label="Train Accuracy", color='blue')

161 plt.plot(history_final.history["val_accuracy"],

label="Validation Accuracy", color='orange')

162 plt.title("LSTM Model Accuracy")

163 plt.xlabel("Epoch")

164 plt.ylabel("Accuracy")

165 plt.legend()

166 plt.grid(True, linestyle="--", alpha=0.6)

167

168 # Kurva Loss

169 plt.subplot(1, 2, 2)

170 plt.plot(history_final.history["loss"], label="Train

Loss", color='blue')

171 plt.plot(history_final.history["val_loss"],

label="Validation Loss", color='orange')

172 plt.title("LSTM Model Loss")

173 plt.xlabel("Epoch")

174 plt.ylabel("Loss")

175 plt.legend()

176 plt.grid(True, linestyle="--", alpha=0.6)

177

178 plt.tight_layout()

179 plt.savefig(os.path.join(RESULTS_DIR,

"training_curves_lstm.png"))

180 plt.show()

181

182 print(f"[INFO] Kurva akurasi dan loss disimpan di

{RESULTS_DIR}/training_curves_lstm.png")

183

184 # ------------------------------

185 # Evaluasi akhir pada test set (TETAP DISIMPAN)

186 # ------------------------------

187 print("[INFO] Evaluasi akhir pada Test Set...")

188 y_test_true = np.argmax(y_test, axis=1)

146

189 y_test_pred = np.argmax(model_final.predict(X_test,

verbose=0), axis=1)

190

191 # --- CONFUSION MATRIX FINAL (TEST SET) ---

192 cm_test = confusion_matrix(y_test_true, y_test_pred,

labels=range(num_classes))

193

194 # Buat figure besar

195 fig, ax = plt.subplots(figsize=(40, 40))

196 sns.heatmap(

197 cm_test,

198 annot=True,

199 fmt="d",

200 cmap="Blues",

201 xticklabels=gesture_list,

202 yticklabels=gesture_list,

203 ax=ax,

204 annot_kws={"size": 6}

205)

206

207 ax.set_xticklabels(ax.get_xticklabels(),

rotation=90, fontsize=8)

208 ax.set_yticklabels(ax.get_yticklabels(), rotation=0,

fontsize=8)

209 ax.set_title("Confusion Matrix (Test Set)",

fontsize=20)

210 ax.set_ylabel("True Label", fontsize=15)

211 ax.set_xlabel("Predicted Label", fontsize=15)

212

213 # Simpan PNG & SVG

214 plt.savefig(os.path.join(RESULTS_DIR,

"confusion_matrix_test_lstm_cross.png"), dpi=300,

bbox_inches='tight')

215 plt.savefig(os.path.join(RESULTS_DIR,

"confusion_matrix_test_lstm_cross.svg"),

bbox_inches='tight')

216 plt.close(fig)

217

218 report_test = classification_report(y_test_true,

y_test_pred, target_names=gesture_list, digits=4)

219 with open(os.path.join(RESULTS_DIR,

"classification_report_test_lstm_cross.txt"), "w") as f:

220 f.write(report_test)

221

222 print(f"[INFO] Evaluasi test set selesai. Confusion

147

matrix & classification report disimpan di

{RESULTS_DIR}")

Lampiran B.7 Source Code Train Transformer

1 import numpy as np

2 import tensorflow as tf

3 from tensorflow import keras

4 from tensorflow.keras import layers

5 from sklearn.model_selection import StratifiedKFold,

train_test_split

6 from sklearn.metrics import classification_report,

confusion_matrix

7 import matplotlib.pyplot as plt

8 import seaborn as sns

9 import os

10

11 # ===

12 # 1. Konfigurasi & Memuat Dataset

13 # ===

14 DATASET_DIR = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset LSTM REV"

15 SAVE_DIR = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Source Code\results train

new\Transformer Dropout 0.3"

16 SEQ_LENGTH = 20

17 NUM_FOLDS = 5

18 BATCH_SIZE = 16 # DISAMAKAN dengan LSTM

19 EPOCHS = 300 # DISAMAKAN dengan LSTM

20 DROPOUT_RATE = 0.3 # DISAMAKAN dengan LSTM

21

22 # Buat folder simpan

23 os.makedirs(SAVE_DIR, exist_ok=True)

24

25 def normalize_sequence(seq, target_len=SEQ_LENGTH):

26 if seq.shape[0] > target_len: return

seq[:target_len]

27 if seq.shape[0] < target_len:

28 pad_width = target_len - seq.shape[0]

29 padding = np.zeros((pad_width,

seq.shape[1]))

30 return np.vstack([seq, padding])

31 return seq

32

33 X_all, y_all, gestures, class_counter = [], [], {},

148

0

34

35 print("[INFO] Memuat dataset secara rekursif...")

36 for root, dirs, files in os.walk(DATASET_DIR):

37 for file in files:

38 if file.endswith(".npz"):

39 path = os.path.join(root, file)

40 try:

41 data = np.load(path,

allow_pickle=True)

42 X_sequences = data["X"]

43

44 # Cek jika file kosong

45 if len(X_sequences) == 0:

46 continue

47

48 X_norm =

np.array([normalize_sequence(seq) for seq in

X_sequences])

49 gesture_name =

file.replace("_dataset.npz", "")

50

51 if gesture_name not in gestures:

52 gestures[gesture_name] =

class_counter

53 class_counter += 1

54

55 y_label = gestures[gesture_name]

56 X_all.append(X_norm)

57 y_all.append(np.full(len(X_norm),

y_label))

58 # print(f"[INFO] Loaded {file}")

59 except Exception as e:

60 print(f"[ERROR] Gagal load {file}:

{e}")

61

62 if len(X_all) == 0:

63 print("[CRITICAL] Tidak ada data ditemukan!")

64 exit()

65

66 X = np.concatenate(X_all, axis=0)

67 y = np.concatenate(y_all, axis=0)

68 CLASS_NAMES = list(gestures.keys())

69 NUM_CLASSES = len(CLASS_NAMES)

70

149

71 print(f"[INFO] Total Data: {X.shape[0]} sequences,

{NUM_CLASSES} kelas.")

72

73 # --- SPLIT 80% (train+val) dan 20% (test) ---

74 X_train_val, X_test, y_train_val, y_test =

train_test_split(

75 X, y, test_size=0.2, stratify=y, random_state=42

76)

77

78 # ===

79 # 2. Arsitektur Transformer (DIPERBAIKI)

80 # ===

81 def build_transformer_model(input_shape,

num_classes, d_model=64, num_heads=4, ff_dim=64,

num_transformer_blocks=2, dropout=DROPOUT_RATE):

82 inputs = keras.Input(shape=input_shape)

83 x = layers.Dense(d_model,

name="dense_projection")(inputs)

84

85 # Positional Encoding

86 positions = tf.range(start=0,

limit=input_shape[0], delta=1)

87 pos_embedding =

keras.layers.Embedding(input_dim=input_shape[0],

output_dim=d_model)(positions)

88 x = x + pos_embedding

89

90 # Transformer Blocks

91 for _ in range(num_transformer_blocks):

92 # Attention dengan Dropout variabel

93 attn_output = layers.MultiHeadAttention(

94 num_heads=num_heads, key_dim=d_model,

dropout=dropout

95)(query=x, value=x, key=x)

96 x = layers.LayerNormalization(epsilon=1e-

6)(x + attn_output)

97

98 # Feed Forward

99 ffn_output = keras.Sequential([

100 layers.Dense(ff_dim, activation="relu"),

101 layers.Dense(d_model)

102])(x)

103 x = layers.LayerNormalization(epsilon=1e-

6)(x + ffn_output)

104

150

105 # Classification Head

106 x = layers.GlobalAveragePooling1D()(x)

107

108 # --- PERBAIKAN: Menggunakan variabel dropout

(0.3), bukan hardcode 0.2 ---

109 x = layers.Dropout(dropout)(x)

110 # --

111

112 x = layers.Dense(ff_dim, activation="relu")(x)

113 outputs = layers.Dense(num_classes,

activation="softmax")(x)

114

115 return keras.Model(inputs=inputs,

outputs=outputs)

116

117 # ===

118 # 3. K-Fold Cross-Validation (Setara LSTM)

119 # ===

120 skf = StratifiedKFold(n_splits=NUM_FOLDS,

shuffle=True, random_state=42)

121 cv_scores = []

122 fold_no = 1

123

124 print("\n[INFO] Memulai 5-Fold Cross Validation...")

125 for train_index, val_index in skf.split(X_train_val,

y_train_val):

126 print(f"--- FOLD {fold_no}/{NUM_FOLDS} ---")

127

128 X_train, X_val = X_train_val[train_index],

X_train_val[val_index]

129 y_train, y_val = y_train_val[train_index],

y_train_val[val_index]

130

131 INPUT_SHAPE = (X_train.shape[1],

X_train.shape[2])

132

133 # Build Model

134 model =

build_transformer_model(input_shape=INPUT_SHAPE,

num_classes=NUM_CLASSES, dropout=DROPOUT_RATE)

135

136

model.compile(optimizer=keras.optimizers.Adam(learning_ra

te=0.001),

151

137

loss="sparse_categorical_crossentropy",

138 metrics=["accuracy"])

139

140 # Callbacks (Sama seperti LSTM: EarlyStopping +

ReduceLR)

141 callbacks_cv = [

142

keras.callbacks.EarlyStopping(monitor="val_loss",

patience=10, restore_best_weights=True),

143

keras.callbacks.ReduceLROnPlateau(monitor="val_loss",

factor=0.5, patience=5, min_lr=1e-6)

144]

145

146 # Train dengan Batch Size 16 & Epoch 300

147 model.fit(X_train, y_train,

148 batch_size=BATCH_SIZE,

149 epochs=EPOCHS,

150 validation_data=(X_val, y_val),

151 callbacks=callbacks_cv,

152 verbose=0) # verbose 0 agar rapi

153

154 scores = model.evaluate(X_val, y_val, verbose=0)

155 print(f" Skor untuk fold {fold_no}: Akurasi

{scores[1]*100:.2f}%")

156 cv_scores.append(scores[1])

157 fold_no += 1

158

159 print("\n--- Hasil Cross-Validation ---")

160 print(f"Akurasi Rata-rata:

{np.mean(cv_scores)*100:.2f}% (+/-

{np.std(cv_scores)*100:.2f}%)")

161

162 # ===

163 # 4. Training Final & Evaluasi Akhir (Setara LSTM)

164 # ===

165 print("\n[INFO] Melatih model final pada seluruh 80%

data...")

166

167 INPUT_SHAPE = (X_train_val.shape[1],

X_train_val.shape[2])

168 final_model =

build_transformer_model(input_shape=INPUT_SHAPE,

num_classes=NUM_CLASSES, dropout=DROPOUT_RATE)

152

169

170 final_model.compile(optimizer=keras.optimizers.Adam(

learning_rate=0.001),

171

loss="sparse_categorical_crossentropy",

172 metrics=["accuracy"])

173

174 # Callbacks Final (Sama seperti LSTM)

175 callbacks_final = [

176

keras.callbacks.EarlyStopping(monitor="val_loss",

patience=10, restore_best_weights=True),

177

keras.callbacks.ModelCheckpoint(os.path.join(SAVE_DIR,

"transformer_best.keras"), save_best_only=True,

monitor="val_accuracy"),

178

keras.callbacks.ReduceLROnPlateau(monitor="val_loss",

factor=0.5, patience=5, min_lr=1e-6)

179]

180

181 # Training Final (Gunakan validation_data=(X_test,

y_test) seperti LSTM)

182 history = final_model.fit(

183 X_train_val, y_train_val,

184 batch_size=BATCH_SIZE, # 16

185 epochs=EPOCHS, # 300

186 validation_data=(X_test, y_test), # Konsisten

dengan LSTM

187 callbacks=callbacks_final,

188 verbose=1

189)

190

191 print("\n[INFO] Mengevaluasi model final pada 20%

data test...")

192 test_loss, test_acc = final_model.evaluate(X_test,

y_test)

193 print(f"\nAkurasi pada data uji final:

{test_acc:.4f}")

194

195 # Simpan Model & Label

196 final_model.save(os.path.join(SAVE_DIR,

"transformer_final.keras"))

197 np.save(os.path.join(SAVE_DIR, "labels.npy"),

np.array(CLASS_NAMES))

153

198

199 # Prediksi

200 y_pred = np.argmax(final_model.predict(X_test),

axis=1)

201

202 # Simpan Classification Report

203 report = classification_report(y_test, y_pred,

target_names=CLASS_NAMES, digits=4)

204 with open(os.path.join(SAVE_DIR,

"classification_report.txt"), "w") as f:

205 f.write(report)

206

207 # ===

208 # === CONFUSION MATRIX RESOLUSI TINGGI ===

209 # ===

210 print("[INFO] Membuat Confusion Matrix Resolusi

Tinggi...")

211 cm = confusion_matrix(y_test, y_pred)

212

213 fig, ax = plt.subplots(figsize=(40, 40)) # Ukuran

Besar

214 sns.heatmap(

215 cm,

216 annot=True,

217 fmt="d",

218 cmap="Blues",

219 xticklabels=CLASS_NAMES,

220 yticklabels=CLASS_NAMES,

221 ax=ax,

222 annot_kws={"size": 6}

223)

224

225 ax.set_xticklabels(ax.get_xticklabels(),

rotation=90, fontsize=8)

226 ax.set_yticklabels(ax.get_yticklabels(), rotation=0,

fontsize=8)

227 ax.set_title("Confusion Matrix (Final Test)",

fontsize=20)

228 ax.set_ylabel("True Label", fontsize=15)

229 ax.set_xlabel("Predicted Label", fontsize=15)

230

231 plt.savefig(os.path.join(SAVE_DIR,

"confusion_matrix.png"), dpi=300, bbox_inches='tight')

232 plt.savefig(os.path.join(SAVE_DIR,

"confusion_matrix.svg"), bbox_inches='tight')

154

233 plt.close(fig)

234

235 # Simpan Kurva

236 plt.figure(figsize=(12, 5))

237 plt.subplot(1, 2, 1)

238 plt.plot(history.history['accuracy'], label='Train

Acc')

239 plt.plot(history.history['val_accuracy'], label='Val

Acc')

240 plt.title('Accuracy')

241 plt.legend()

242 plt.grid(True, linestyle="--")

243

244 plt.subplot(1, 2, 2)

245 plt.plot(history.history['loss'], label='Train

Loss')

246 plt.plot(history.history['val_loss'], label='Val

Loss')

247 plt.title('Loss')

248 plt.legend()

249 plt.grid(True, linestyle="--")

250

251 plt.tight_layout()

252 plt.savefig(os.path.join(SAVE_DIR, "curves.png"))

253 plt.close()

254

255 print(f"\n[INFO] Selesai! Hasil disimpan di:

{SAVE_DIR}")

Lampiran B.8 Source Code Konversi Tensorflow Lite

1 import os

2 import numpy as np

3 import tensorflow as tf

4

5 # ------------------------------

6 # Path model input/output

7 # ------------------------------

8 keras_model_path = r"E:\Dataset Penelitian Bahasa

Isyarat Olfat 2025\Tugas Akhir\Source Code\results train

new\Transformer Dropout 0.3\transformer_best.keras"

9 tflite_out_dir = r"E:\Dataset Penelitian Bahasa

Isyarat Olfat 2025\Tugas Akhir\Source Code\results train

new\Transformer Dropout 0.3"

10 tflite_model_path = os.path.join(tflite_out_dir,

155

"model_transformer.tflite")

11

12 os.makedirs(tflite_out_dir, exist_ok=True)

13

14 # ------------------------------

15 # 1. Load model .keras

16 # ------------------------------

17 print("[INFO] Loading Keras model...")

18 model = tf.keras.models.load_model(keras_model_path,

compile=False)

19 model.summary()

20

21 # ------------------------------

22 # 2. Convert to TFLite (Float16 quantization)

23 # ------------------------------

24 print("\n[INFO] Converting to TensorFlow Lite

(float16 quantization)...")

25 converter =

tf.lite.TFLiteConverter.from_keras_model(model)

26

27 # Gunakan optimisasi default

28 converter.optimizations = [tf.lite.Optimize.DEFAULT]

29 # Targetkan tipe data float16 untuk bobot (lebih

ringan & cepat di ARM)

30 converter.target_spec.supported_types = [tf.float16]

31 # Pastikan inference tetap float32 agar kompatibel

32 converter.target_spec.supported_ops =

[tf.lite.OpsSet.TFLITE_BUILTINS]

33

34 # Konversi dan simpan

35 tflite_model = converter.convert()

36 with open(tflite_model_path, "wb") as f:

37 f.write(tflite_model)

38

39 size_kb = os.path.getsize(tflite_model_path) / 1024

40 print(f"[OK] Model berhasil disimpan:

{tflite_model_path} ({size_kb:.1f} KB)")

41

42 # ------------------------------

43 # 3. (Opsional) Cek input/output signature

44 # ------------------------------

45 interpreter =

tf.lite.Interpreter(model_path=tflite_model_path)

46 interpreter.allocate_tensors()

47 input_details = interpreter.get_input_details()

156

48 output_details = interpreter.get_output_details()

49

50 print("\n[INFO] Input Tensor:", input_details)

51 print("[INFO] Output Tensor:", output_details)

52 print("\n[INFO] Konversi selesai. Model siap

digunakan di Raspberry Pi.")

Lampiran B.9 Source Code Hybrid Model RF+LSTM

1 import sys

2 sys.path.append('/usr/lib/python3/dist-packages') #

pastikan picamera2 bisa diimport

3

4 import cv2

5 import numpy as np

6 import mediapipe as mp

7 import joblib

8 import time

9 # [UBAH BAGIAN INI] Menggunakan tflite_runtime

menggantikan tensorflow full

10 from tflite_runtime.interpreter import Interpreter

11 from picamera2 import Picamera2

12 from collections import deque

13

14 # ------------------------------

15 # Load Models & Labels

16 # ------------------------------

17 rf_model = joblib.load(

18

"/home/olfat/Desktop/projects/projectsenv/random_forest_b

isindo_kcross.pkl"

19)

20

21 # [UBAH BAGIAN INI] Load TFLite LSTM menggunakan

Interpreter dari tflite_runtime

22 interpreter =

Interpreter(model_path="/home/olfat/Desktop/projects/proj

ectsenv/model_lstm.tflite")

23 interpreter.allocate_tensors()

24 input_details = interpreter.get_input_details()

25 output_details = interpreter.get_output_details()

26

27 labels = np.load(

28

"/home/olfat/Desktop/projects/projectsenv/all_gestures_la

157

bels_lstm.npy", allow_pickle=True

29).item() # dict -> {"static": [...], "dynamic":

[...]}

30

31 # ------------------------------

32 # CONFIG

33 # ------------------------------

34 SEQ_LENGTH = 20

35 MIN_SEQ_FOR_LSTM = 12

36 MOTION_THRESHOLD = 0.005

37 HOLD_FRAMES = 6

38 COOLDOWN_TIME = 1.5

39 HAND_GRACE_TIME = 1.0 # jeda detik saat tangan

baru muncul

40

41 # ------------------------------

42 # State & Buffers

43 # ------------------------------

44 sequence_buffer = deque(maxlen=SEQ_LENGTH)

45 motion_scores = []

46 hold_counter = 0

47 last_pred_time = 0.0

48 last_result_text = ""

49 last_result_color = (255,255,255)

50 last_result_source = ""

51 prev_landmarks = None

52

53 hand_present = False

54 grace_start_time = None

55

56 print(f"[INFO] Models loaded. Using TFLite LSTM.

SEQ_LENGTH={SEQ_LENGTH}")

57

58 # ------------------------------

59 # Mediapipe

60 # ------------------------------

61 mp_hands = mp.solutions.hands

62 hands = mp_hands.Hands(

63 static_image_mode=False,

64 max_num_hands=2,

65 min_detection_confidence=0.7,

66 min_tracking_confidence=0.7

67)

68 mp_draw = mp.solutions.drawing_utils

69

158

70 # ------------------------------

71 # Helpers

72 # ------------------------------

73 def extract_landmarks(results):

74 if not results.multi_hand_landmarks:

75 return None

76 row = []

77 for hl in results.multi_hand_landmarks:

78 for lm in hl.landmark:

79 row.extend([lm.x, lm.y, lm.z])

80 if len(results.multi_hand_landmarks) == 1:

81 row.extend([0.0]*63)

82 if len(row) < 126:

83 row.extend([0.0]*(126-len(row)))

84 elif len(row) > 126:

85 row = row[:126]

86 return np.array(row, dtype=np.float32)

87

88 def predict_rf(feat):

89 probs = rf_model.predict_proba([feat])[0]

90 cid = int(np.argmax(probs))

91 return labels["static"][cid]

92

93 def predict_lstm_tflite(seq):

94 # ubah jadi numpy array

95 seq = np.array(seq, dtype=np.float32)

96

97 # kalau sequence belum penuh, lakukan padding

(ulang frame terakhir)

98 if len(seq) < SEQ_LENGTH:

99 last_frame = seq[-1] if len(seq) > 0 else

np.zeros((126,), dtype=np.float32)

100 pad_len = SEQ_LENGTH - len(seq)

101 pad_frames =

np.repeat(last_frame[np.newaxis, :], pad_len, axis=0)

102 seq = np.concatenate([seq, pad_frames],

axis=0)

103

104 # pastikan bentuknya (1, SEQ_LENGTH, 126)

105 X = np.expand_dims(seq, axis=0)

106

107

interpreter.set_tensor(input_details[0]['index'], X)

108 interpreter.invoke()

109 probs =

159

interpreter.get_tensor(output_details[0]['index'])[0]

110 cid = int(np.argmax(probs))

111 return labels["dynamic"][cid]

112

113 def draw_text_bg(img, text, pos=(10,40),

font_scale=1.0, color=(255,255,255)):

114 x,y = pos

115 font = cv2.FONT_HERSHEY_SIMPLEX

116 thickness = 2

117 (w,h), _ = cv2.getTextSize(text, font,

font_scale, thickness)

118 cv2.rectangle(img, (x-6,y-6), (x+w+6, y+h+6),

(0,0,0), -1)

119 cv2.putText(img, text, (x, y+h-6), font,

font_scale, color, thickness, cv2.LINE_AA)

120

121 # ------------------------------

122 # Camera Init

123 # ------------------------------

124 picam2 = Picamera2()

125 config =

picam2.create_preview_configuration(main={"format":

"XRGB8888", "size": (640, 480)})

126 picam2.configure(config)

127 picam2.start()

128

129 # ------------------------------

130 # Main loop

131 # ------------------------------

132 try:

133 while True:

134 frame = picam2.capture_array()

135 frame = cv2.flip(frame, 1)

136

137 image_rgb = cv2.cvtColor(frame,

cv2.COLOR_BGR2RGB)

138 results = hands.process(image_rgb)

139 image = cv2.cvtColor(image_rgb,

cv2.COLOR_RGB2BGR)

140

141 if results.multi_hand_landmarks:

142 for hl in results.multi_hand_landmarks:

143 mp_draw.draw_landmarks(image, hl,

mp_hands.HAND_CONNECTIONS)

144

160

145 # cooldown prediksi

146 if time.time() - last_pred_time <

COOLDOWN_TIME:

147 if last_result_text:

148 draw_text_bg(image,

f"{last_result_text} ({last_result_source})",

pos=(10,10), color=last_result_color)

149 remaining = COOLDOWN_TIME -

(time.time() - last_pred_time)

150 draw_text_bg(image, f"Next in

{remaining:.1f}s", pos=(10,60), font_scale=0.8,

color=(200,200,200))

151 cv2.imshow("Gesture Recognition", image)

152 if cv2.waitKey(1) & 0xFF == ord('q'):

153 break

154 continue

155

156 lm = extract_landmarks(results)

157 if lm is None:

158 sequence_buffer.clear()

159 motion_scores.clear()

160 hold_counter = 0

161 prev_landmarks = None

162 hand_present = False

163 grace_start_time = None

164

165 draw_text_bg(image, "Show your hand

(waiting)...", pos=(10,10), color=(200,200,200))

166 cv2.imshow("Gesture Recognition", image)

167 if cv2.waitKey(1) & 0xFF == ord('q'):

168 break

169 continue

170 else:

171 if not hand_present:

172 hand_present = True

173 grace_start_time = time.time()

174

175 if grace_start_time is not None and

(time.time() - grace_start_time < HAND_GRACE_TIME):

176 remaining = HAND_GRACE_TIME -

(time.time() - grace_start_time)

177 draw_text_bg(image, f"Stabilizing...

{remaining:.1f}s", pos=(10,10), color=(0,200,200))

178 cv2.imshow("Gesture Recognition",

image)

161

179 if cv2.waitKey(1) & 0xFF ==

ord('q'):

180 break

181 continue

182

183 sequence_buffer.append(lm)

184

185 if prev_landmarks is not None:

186 motion = np.mean(np.abs(lm -

prev_landmarks))

187 else:

188 motion = 0.0

189 prev_landmarks = lm

190

191 motion_scores.append(motion)

192 if len(motion_scores) > SEQ_LENGTH:

193 motion_scores.pop(0)

194

195 draw_text_bg(image, f"Recording

{len(sequence_buffer)}/{SEQ_LENGTH}", pos=(10,10),

color=(200,200,200))

196

197 if len(sequence_buffer) >= 2:

198 avg_motion =

float(np.mean(motion_scores)) if motion_scores else 0.0

199

200 if avg_motion > MOTION_THRESHOLD and

len(sequence_buffer) >= MIN_SEQ_FOR_LSTM:

201 result =

predict_lstm_tflite(list(sequence_buffer))

202 last_result_text = result

203 last_result_source = "LSTM"

204 last_result_color = (0,255,0)

205 last_pred_time = time.time()

206 sequence_buffer.clear()

207 motion_scores.clear()

208 prev_landmarks = None

209 hold_counter = 0

210 draw_text_bg(image,

f"{last_result_text} (LSTM)", pos=(10,10),

color=last_result_color)

211

212 elif avg_motion <= MOTION_THRESHOLD:

213 hold_counter += 1

214 draw_text_bg(image, f"Holding...

162

{hold_counter}/{HOLD_FRAMES}", pos=(10,60),

color=(200,200,200))

215 if hold_counter >= HOLD_FRAMES and

len(sequence_buffer) >= 1:

216 result =

predict_rf(sequence_buffer[-1])

217 last_result_text = result

218 last_result_source = "RF"

219 last_result_color = (0,0,255)

220 last_pred_time = time.time()

221 sequence_buffer.clear()

222 motion_scores.clear()

223 prev_landmarks = None

224 hold_counter = 0

225 draw_text_bg(image,

f"{last_result_text} (RF)", pos=(10,10),

color=last_result_color)

226

227 cv2.imshow("Gesture Recognition", image)

228 if cv2.waitKey(1) & 0xFF == ord('q'):

229 break

230

231 finally:

232 cv2.destroyAllWindows()

233 hands.close()

234 picam2.stop()

Lampiran B.10 Source Code Hybrid Model RF+Transformer

1 import sys

2 sys.path.append('/usr/lib/python3/dist-packages') #

pastikan picamera2 bisa diimport

3

4 import cv2

5 import numpy as np

6 import mediapipe as mp

7 import joblib

8 import time

9 from tflite_runtime.interpreter import Interpreter

lebih ringan dibanding tensorflow

10 from picamera2 import Picamera2

11 from collections import deque

12

13 #

===

163

14 # 1. LOAD MODEL & LABELS

15 #

===

16 print("[INFO] Memuat model Random Forest dan

Transformer...")

17

18 # Random Forest untuk gestur statis

19 rf_model =

joblib.load("/home/olfat/Desktop/projects/projectsenv/ran

dom_forest_bisindo_kcross.pkl")

20

21 # Transformer (TensorFlow Lite)

22 interpreter =

Interpreter(model_path="/home/olfat/Desktop/projects/proj

ectsenv/model_transformer.tflite")

23 interpreter.allocate_tensors()

24 input_details = interpreter.get_input_details()

25 output_details = interpreter.get_output_details()

26

27 # Label

28 labels =

np.load("/home/olfat/Desktop/projects/projectsenv/all_ges

tures_labels_transformer.npy", allow_pickle=True).item()

{"static": [...], "dynamic": [...]}

29

30 print(f"[INFO] Model loaded. Input:

{input_details[0]['shape']}, Output:

{output_details[0]['shape']}")

31

32 #

===

33 # 2. KONFIGURASI

34 #

===

35 SEQ_LENGTH = 20

36 MIN_SEQ_FOR_TRANSFORMER = 12

37 MOTION_THRESHOLD = 0.005

38 HOLD_FRAMES = 6

39 COOLDOWN_TIME = 1.5

40 HAND_GRACE_TIME = 1.0 # detik jeda stabilisasi

tangan

41

42 #

===

43 # 3. STATE & BUFFER

164

44 #

===

45 sequence_buffer = deque(maxlen=SEQ_LENGTH)

46 motion_scores = []

47 hold_counter = 0

48 last_pred_time = 0.0

49 last_result_text = ""

50 last_result_color = (255, 255, 255)

51 last_result_source = ""

52 prev_landmarks = None

53

54 hand_present = False

55 grace_start_time = None

56

57 #

===

58 # 4. MEDIAPIPE

59 #

===

60 mp_hands = mp.solutions.hands

61 hands = mp_hands.Hands(

62 static_image_mode=False,

63 max_num_hands=2,

64 min_detection_confidence=0.7,

65 min_tracking_confidence=0.7

66)

67 mp_draw = mp.solutions.drawing_utils

68

69 #

===

70 # 5. HELPER FUNCTIONS

71 #

===

72 def extract_landmarks(results):

73 if not results.multi_hand_landmarks:

74 return None

75 row = []

76 for hl in results.multi_hand_landmarks:

77 for lm in hl.landmark:

78 row.extend([lm.x, lm.y, lm.z])

79 if len(results.multi_hand_landmarks) == 1:

80 row.extend([0.0] * 63)

81 if len(row) < 126:

82 row.extend([0.0] * (126 - len(row)))

83 elif len(row) > 126:

165

84 row = row[:126]

85 return np.array(row, dtype=np.float32)

86

87 def predict_rf(feat):

88 probs = rf_model.predict_proba([feat])[0]

89 cid = int(np.argmax(probs))

90 return labels["static"][cid]

91

92 def predict_transformer_tflite(seq):

93 seq = np.array(seq, dtype=np.float32)

94

95 # padding jika panjang sequence < 20

96 if len(seq) < SEQ_LENGTH:

97 last_frame = seq[-1] if len(seq) > 0 else

np.zeros((126,), dtype=np.float32)

98 pad_len = SEQ_LENGTH - len(seq)

99 pad_frames =

np.repeat(last_frame[np.newaxis, :], pad_len, axis=0)

100 seq = np.concatenate([seq, pad_frames],

axis=0)

101

102 X = np.expand_dims(seq, axis=0) # (1, 20, 126)

103

104

interpreter.set_tensor(input_details[0]['index'], X)

105 interpreter.invoke()

106 probs =

interpreter.get_tensor(output_details[0]['index'])[0]

107 cid = int(np.argmax(probs))

108 return labels["dynamic"][cid]

109

110 def draw_text_bg(img, text, pos=(10,40),

font_scale=1.0, color=(255,255,255)):

111 x, y = pos

112 font = cv2.FONT_HERSHEY_SIMPLEX

113 thickness = 2

114 (w, h), _ = cv2.getTextSize(text, font,

font_scale, thickness)

115 cv2.rectangle(img, (x-6, y-6), (x+w+6, y+h+6),

(0,0,0), -1)

116 cv2.putText(img, text, (x, y+h-6), font,

font_scale, color, thickness, cv2.LINE_AA)

117

118 #

===

166

119 # 6. INISIALISASI KAMERA

120 #

===

121 picam2 = Picamera2()

122 config =

picam2.create_preview_configuration(main={"format":

"XRGB8888", "size": (640, 480)})

123 picam2.configure(config)

124 picam2.start()

125

126 print("[INFO] Sistem siap. Tekan 'q' untuk keluar.")

127

128 #

===

129 # 7. LOOP UTAMA

130 #

===

131 try:

132 while True:

133 frame = picam2.capture_array()

134 frame = cv2.flip(frame, 1)

135

136 image_rgb = cv2.cvtColor(frame,

cv2.COLOR_BGR2RGB)

137 results = hands.process(image_rgb)

138 image = cv2.cvtColor(image_rgb,

cv2.COLOR_RGB2BGR)

139

140 if results.multi_hand_landmarks:

141 for hl in results.multi_hand_landmarks:

142 mp_draw.draw_landmarks(image, hl,

mp_hands.HAND_CONNECTIONS)

143

144 # cooldown prediksi

145 if time.time() - last_pred_time <

COOLDOWN_TIME:

146 if last_result_text:

147 draw_text_bg(image,

f"{last_result_text} ({last_result_source})",

pos=(10,10), color=last_result_color)

148 remaining = COOLDOWN_TIME -

(time.time() - last_pred_time)

149 draw_text_bg(image, f"Next in

{remaining:.1f}s", pos=(10,60), font_scale=0.8,

color=(200,200,200))

167

150 cv2.imshow("Gesture Recognition", image)

151 if cv2.waitKey(1) & 0xFF == ord('q'):

152 break

153 continue

154

155 lm = extract_landmarks(results)

156 if lm is None:

157 sequence_buffer.clear()

158 motion_scores.clear()

159 hold_counter = 0

160 prev_landmarks = None

161 hand_present = False

162 grace_start_time = None

163

164 draw_text_bg(image, "Show your hand

(waiting)...", pos=(10,10), color=(200,200,200))

165 cv2.imshow("Gesture Recognition", image)

166 if cv2.waitKey(1) & 0xFF == ord('q'):

167 break

168 continue

169 else:

170 if not hand_present:

171 hand_present = True

172 grace_start_time = time.time()

173

174 if grace_start_time is not None and

(time.time() - grace_start_time < HAND_GRACE_TIME):

175 remaining = HAND_GRACE_TIME -

(time.time() - grace_start_time)

176 draw_text_bg(image, f"Stabilizing...

{remaining:.1f}s", pos=(10,10), color=(0,200,200))

177 cv2.imshow("Gesture Recognition",

image)

178 if cv2.waitKey(1) & 0xFF ==

ord('q'):

179 break

180 continue

181

182 # ------------------------------

183 # Proses sequence & motion

184 # ------------------------------

185 sequence_buffer.append(lm)

186 motion = np.mean(np.abs(lm -

prev_landmarks)) if prev_landmarks is not None else 0.0

187 prev_landmarks = lm

168

188 motion_scores.append(motion)

189 if len(motion_scores) > SEQ_LENGTH:

190 motion_scores.pop(0)

191

192 draw_text_bg(image, f"Recording

{len(sequence_buffer)}/{SEQ_LENGTH}", pos=(10,10),

color=(200,200,200))

193

194 if len(sequence_buffer) >= 2:

195 avg_motion =

float(np.mean(motion_scores)) if motion_scores else 0.0

196

197 # ------------------------------

198 # Dynamic Gesture → Transformer

199 # ------------------------------

200 if avg_motion > MOTION_THRESHOLD and

len(sequence_buffer) >= MIN_SEQ_FOR_TRANSFORMER:

201 result =

predict_transformer_tflite(list(sequence_buffer))

202 last_result_text = result

203 last_result_source = "Transformer"

204 last_result_color = (0,255,0)

205 last_pred_time = time.time()

206 sequence_buffer.clear()

207 motion_scores.clear()

208 prev_landmarks = None

209 hold_counter = 0

210 draw_text_bg(image,

f"{last_result_text} (Transformer)", pos=(10,10),

color=last_result_color)

211

212 # ------------------------------

213 # Static Gesture → Random Forest

214 # ------------------------------

215 elif avg_motion <= MOTION_THRESHOLD:

216 hold_counter += 1

217 draw_text_bg(image, f"Holding...

{hold_counter}/{HOLD_FRAMES}", pos=(10,60),

color=(200,200,200))

218 if hold_counter >= HOLD_FRAMES and

len(sequence_buffer) >= 1:

219 result =

predict_rf(sequence_buffer[-1])

220 last_result_text = result

221 last_result_source = "RF"

169

222 last_result_color = (0,0,255)

223 last_pred_time = time.time()

224 sequence_buffer.clear()

225 motion_scores.clear()

226 prev_landmarks = None

227 hold_counter = 0

228 draw_text_bg(image,

f"{last_result_text} (RF)", pos=(10,10),

color=last_result_color)

229

230 cv2.imshow("Gesture Recognition", image)

231 if cv2.waitKey(1) & 0xFF == ord('q'):

232 break

233

234 finally:

235 cv2.destroyAllWindows()

236 hands.close()

237 picam2.stop()

		2026-01-14T22:02:52+0700
	JAKARTA
	e-meterai_signatures
	[LNAR5BRGCN0HJ2II000ML9] Ref-209714669377981

