PENGEMBANGAN SISTEM KLASIFIKASI BAHASA ISYARAT BISINDO
SECARA REAL-TIME DENGAN RASPBERRY PI

TUGAS AKHIR

=

UNIVERSITAS

MA CHUNG

OLFAT HARITS ALATAS
312210018

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG
MALANG
2025

LEMBAR PENGESAHAN
TUGAS AKHIR

PENGEMBANGAN SISTEM KLASIFIKAST BAHASA ISYARAT BISINDO
SECARA REAL-TIME DENGAN RASPBERRY PI

Oleh:
OLFAT HARITS ALATAS
NIM. 312210018

dari
PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan dan
berhak mendapatkan gelar Sarjana Komputer (S.Kom)

Dosen Pembimbing I

(‘5

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd.

NIP. 20070035

NIP. 20070035

PERNYATAAN KEASLIAN TUGAS AKHIR

Yang bertanda tangan dibawah ini :
Nama : Olfat Harits Alatas

NIM : 312210018

Program Studi : Teknik Informatika

Perguruan Tinggi : Universitas Ma Chung

Dengan ini menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir
saya dengan judul “PENGEMBANGAN SISTEM KLASIFIKASI BAHASA
ISYARAT BISINDO SECARA REAL-TIME DENGAN RASPBERRY PI”adalah
asli (orisinil) atau tidak plagiat dan benar hasil karya intelektual mandiri, dan belum

pernah diterbitkan/dipublikasikan dimanapun dan dalam bentuk apapun.

Surat penyataan ini saya buat dengan sebenar-benarnya dengan kesaran sendiri
dan tanpa ada paksaan dari pihak manapun. Apabila dikemudian hari diduga kuat ada
ketidaksesuai antara fakta dengan dokumen pernyataan ini, saya bersedia diproses oleh
Universitas Ma Chung, dengan sanksi terberat berupa pembatalan kelulusan atau

pencabutan sarjana.

Malang, 14 Januari 2026

E "ra|“ﬂ .:Il.u.

NIM. 312210018

il

KATA PENGANTAR

Puji dan syukur Penulis panjatkan ke hadirat Allah SWT, oleh karena anugerah-
Nya yang melimpah, kemurahan dan kasih sayang-Nya yang besar, senantiasa menjadi
penolong bagi Penulis sepanjang hidupnya. Hanya karena kebaikan dan ridho-Nya lah
yang menuntun Penulis dalam mengerjakan laporan proyek tugas akhir dengan judul
“PENGEMBANGAN SISTEM KLASIFIKASI BAHASA ISYARAT BISINDO
SECARA REAL-TIME DENGAN RASPBERRY PI”, sehingga dapat diselesaikan
dengan baik.

Laporan proyek tugas akhir ini disusun untuk memenuhi salah satu syarat guna
memperoleh gelar Sarjana Komputer pada Program Studi Teknik Informatika
Universitas Ma Chung. Penulis berharap dengan dibuatnya laporan ini dapat memperluas

pengetahuan dan wawasan bagi para pembaca.

Penulis menyadari sepenuhnya bahwa usulan proposal penelitian ini masih jauh
dari kesempurnaan karena segala keterbatasan yang ada. Dengan tersusunnya laporan
proyek tugas akhir ini, Penulis menyampaikan terima kasih kepada para pihak yang telah
memberi dukungan kepada Penulis baik secara moril maupun materil, di antaranya yang

terhormat:

1. Bapak Dr. Ir. Stefanus Yufra Manahen Taneo, M.S., M.Sc., selaku Rektor
Universitas Ma Chung.

2. Bapak Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd., selaku Dekan Fakultas
Teknologi dan Desain Universitas Ma Chung serta sekaligus sebagai Dosen
Pembimbing 1, yang memberikan dukungan yang luar biasa, saran dan masukan
dengan sangat baik dan bijaksana dalam menyempurnakan Laporan Tugas Akhir
ini.

3. Bapak Hendry Setiawan, S.T., M.Kom, selaku Ketua Program Studi Teknik

Informatika Universitas Ma Chung.

il

Bapak Mochamad Subianto, S.Kom., M.Cs. selaku Dosen Pembimbing 2, yang
memberikan saran dan masukan dengan sangat baik dan bijaksana dalam
menyempurnakan Laporan Tugas Akhir ini.

Bapak Windra Swastika, S.Kom., MT., Ph.D. selaku Dosen Penguji yang telah
memberikan saran terhadap Laporan Tugas Akhir ini.

Keluarga Penulis yang telah memberikan doa, kasih sayang, dorongan, semangat,
serta motivasi kepada Penulis dalam berbagai pihak.

Devinda Gusmananda, S.Farm, terima kasih karena telah menjadi support system
terbaik, yang senantiasa mendampingi, mendengarkan keluh kesah, serta
memberikan dukungan moril dan semangat tanpa henti di samping Penulis
selama proses pengerjaan Tugas Akhir ini.

Seluruh Partisipan Penelitian yang tidak dapat Penulis sebutkan namanya satu
per satu. Terima kasih yang sebesar-besarnya atas kesediaan waktu dan
kerjasamanya dalam proses pengambilan data, yang menjadi pondasi utama
dalam pembentukan dataset penelitian ini.

Teman-teman angkatan 2022 yang telah menemani Penulis dalam lika-liku

perkuliahan.

Semoga Allah SWT senantiasa memberikan rahmat dan berkah-Nya atas

ketulusan dan kebaikan yang telah diberikan kepada Penulis. Demikian dan semoga

Laporan Tugas Akhir ini dapat bermanfaat bagi pembaca.

Malang, 9 Januari 2026

Penulis

(Olfat Harits Alatas)

v

PENGEMBANGAN SISTEM KLASIFIKASI BAHASA ISYARAT BISINDO
SECARA REAL-TIME DENGAN RASPBERRY PI

Olfat Harits Alatas, Romy Budhi, Mochamad Subianto

Universitas Ma Chung

ABSTRAK

Komunikasi merupakan kebutuhan fundamental manusia, namun kesenjangan
komunikasi masih sering terjadi antara masyarakat dengar dan komunitas Tuli yang
menggunakan Bahasa Isyarat Indonesia (BISINDO). Solusi teknologi yang ada saat ini
seringkali bergantung pada perangkat keras mahal atau komputasi cloud yang tidak
praktis untuk penggunaan sehari-hari. Penelitian ini bertujuan untuk mengembangkan
sistem penerjemah bahasa isyarat portable dan real-time berbasis embedded system
menggunakan Raspberry Pi 5.

Penelitian ini menerapkan pendekatan Aybrid dalam mengklasifikasikan gestur.
Untuk gestur statis (huruf, angka dan kata statis), digunakan algoritma Random Forest
karena efisiensinya pada data tabular. Sedangkan untuk gestur dinamis, dilakukan studi
perbandingan antara arsitektur Long Short-Term Memory (LSTM) dan Transformer
untuk menangkap dependensi spasio-temporal. Ekstraksi fitur dilakukan menggunakan
MediaPipe Hands yang menghasilkan 21 titik koordinat kerangka tangan (landmarks).

Hasil pengujian membuktikan bahwa pendekatan /ybrid sangat efektif. Pada
gestur statis, Random Forest mencatatkan performa sempurna dengan akurasi 100%.
Temuan signifikan terlihat pada klasifikasi gestur dinamis, di mana arsitektur
Transformer berhasil mengungguli LSTM dengan akurasi uji 98,57% berbanding
94,50%. Keunggulan ini semakin teruji pada validasi real-time, di mana Transformer
mampu mempertahankan stabilitas prediksi dengan akurasi 93%, jauh melampaui
LSTM yang hanya mencapai 86%. Hal ini menunjukkan bahwa mekanisme Self-
Attention pada Transformer lebih efektif dalam menangkap konteks spasio-temporal
jangka panjang dibandingkan gerbang memori LSTM, menjadikan sistem ini solusi
yang lebih andal untuk implementasi di dunia nyata.

Kata Kunci: BISINDO, Raspberry Pi, Random Forest, LSTM, Transformer,
Computer Vision.

DEVELOPMENT OF A REAL-TIME BISINDO SIGN LANGUAGE
CLASSIFICATION SYSTEM USING RASPBERRY PI

Olfat Harits Alatas, Romy Budhi, Mochamad Subianto

Universitas Ma Chung

ABSTRACT

Communication is a fundamental human need, however, a significant
communication gap persists between the hearing society and the Deaf community who
utilize Indonesian Sign Language (BISINDO). Current technological solutions often rely
on expensive hardware or cloud computing, rendering them impractical for daily usage.
This study aims to develop a portable, real-time sign language translation system based
on an embedded system utilizing Raspberry Pi 5.

This research implements a hybrid approach for gesture classification. For static
gestures (letters, numbers, and static words), the Random Forest algorithm is employed
due to its efficiency with tabular data. Meanwhile, for dynamic gestures, a comparative
study is conducted between Long Short-Term Memory (LSTM) and Transformer
architectures to capture spatiotemporal dependencies. Feature extraction utilizes
MediaPipe Hands, generating 21 hand skeletal coordinate points (landmarks).

Experimental results demonstrate that the hybrid approach is highly effective. In
static gesture classification, Random Forest achieved perfect performance with 100%
accuracy. Significant findings emerged in dynamic gesture classification, where the
Transformer architecture successfully outperformed LSTM with a test accuracy of 98.57%
compared to 94.50%. This superiority was further validated in real-time testing, where
Transformer maintained prediction stability with 93% accuracy, significantly surpassing
LSTM which only reached 86%. These results indicate that the Self-Attention
mechanism in the Transformer is more effective in capturing long-term spatiotemporal
contexts compared to LSTM's memory gates, rendering this system a more reliable
solution for real-world implementation.

Keywords: BISINDO, Embedded System, Random Forest, LSTM, Transformer,
Spatiotemporal.

vi

DAFTAR ISI

PERNYATAAN KEASLIAN TUGAS AKHIR........cooiiiiiiieiecieeeeeeeeeee e il
KATA PENGANTAR ..ottt s et ane e es il
ABSTRAK ...ttt ettt ettt ettt et e b e sbeebaesabeenbeennnas A%
DAFTAR IST..ooieee ettt ettt st e e e et esabeesaeeenbaessneensaens vii
DAFTAR GAMBARoooiieeeeeee ettt e ae et enas X
DAFTAR TABEL ...ttt ettt et et esbeessaesnbeesanesnsaessseensaens Xii
DAFTAR PERSAMAAN ..ottt ettt eeieesie e s steesieeeveestaeessaesaneesseensneenneas xiii
Bab I Pendahuluan..............oooiiiiiiiiiiiiie ettt e e e eaveeeeneas 1
1.1. Latar BelaKangc..cocieiieiiieiieiiieieiieeniee ettt eesiae et e esevaeseveesbeessneenseens 1
1.2. Identifikasi Masalahccoooviiiiiiiiieiiie sttt 8
1.3. Batasan Masalal.........cccciiiiiiiiiieieiie ettt aae e eaae e s aae e e e eara s e nnn e enes 8
1.4. Rumusan Masalahccoocioiiiiiiiiiiiiie ettt ettt e e e e seaeeneens 9
1.5. Tujuan Penelitian............cccoeeiiiiiiiiiiieieiiieeriee et esiee et e s seeeveeseeeesreessneenneens 9
1.6. Luaran Penelitian...........cccooiiiiiiiiiiieiie ettt 9
L7, MANTAQL.....ccuiiiiiiieeiee ettt e e s e e et e e et e e et e et eenbee e nbeeenneeea 10
1.8. Sistematika PenuliSan............cccccviiiiiiiiiiiiiiiieeieeeeece et 10
Bab II Tinjauan Pustakacccoviiiiiiiiiiiiiiicececeeeee e 12
2.1. Bahasa ISyarat......c.c.ioo ittt it 12
2.1.1. BISINDO (Bahasa Isyarat Indonesia)cceeeieeveeriiiiireniecieereeene. 13
2.1.2. SIBI (Sistem Isyarat Bahasa Indonesia)...........ccceoceevieeviienieenienieeeeee. 14

2.2 PYHROMN. ..t ettt st 14
2.2 1. OPEN CV ettt ettt st e e et e e eneae s s e e ete e e baeennseeennnae e nnaeens 15
2,220 INUINIPY wetteeiiieeeite ettt ettt ettt e ettt e ettt e st e e sabteesabteesabteesaseeenabeesnneenas 15
2.2.3. PaAndas......cooouieiiieiieeee e 16
2.2.4. SCIKIt-IAIN ..eeueeieciiieeciie ettt e e e e esabeeenseeens 16
2.2.5. MEAIAPIPE....vieuiieeiiieiieeiteeiee ettt sttt e et et e et e et e e beeenbeebeesaaeebeennnas 17
2.2.6. TeNSOTTIOW ..eoouiiiiiiiiieeie ettt ettt st 18
2.2.7. JOBIID oottt eneas 18
2.2.8. COlIECIONS. ...ecueieiiieiieeiie ettt ettt et e s e et e saaeeseesenas 19
2.2.9. PACKI@ ..ot 19

vil

2.2.10. MatplothiD....coeeieeiieiiecie e 19

2.2 1T REEEXK cueteeeiiiee ettt ettt et e ettt e et e ettt e et e st e e et e e s bt e e nabeeeeabee e nteeen 19
2.2.12.08 (Operating SYSLEIM)eeevueeerieeeieireeieieeeireesieeesreeesreeessreeessseeessseeens 20
2.2.13. Long Short Term Memory (LSTM)ccccoeviiiiiiiiiiieieeeeeeeee e 20
2.2.14. Random FOTEStcccueeiiiiiieeiieiieeieeiteee ettt 21
2.2, 15, TTanSTOIMIETveeeiie ettt ettt e et e e e e e et e e e bae e s abeeesaseeesaseeenseeens 23
2.2.16. TenSOTfIOW Ltcccieeiieiieeiieiieeieeieeee e 24
2.2.17. AUZMENLAST CItTA...eevieeiiieiieeiieeieeeie ettt ereeie e e e e e e eteeseaeenseenenas 25
2.3. RASPDEITY Pl ettt 26
2.3. 1. Pl CAMETA ...eiiiiiieiiie et eeiiteestee e tte et e e e siase e sbae e eeteeennseeesnseesnnseeennseeens 31
Bab III Analisis dan Perancangan SiStemcceevueerieerieerireniieeiinieenieeieesveeeeens 34
3.1. Metode Penelitian.............covviiiiiieiiiesiee et e et e esaeeeeereeeesbasesnne s enereeenreeens 34
3.2. Analisis KebUTUNAN w.cvu.ieviiieiciiiiiiiecie et e e 36
3.2.1. Kebutuhan Fungsionalitas..............cccecvieriiieciienieeiieenieeieeceeiiee e 36
3.2.2. Kebutuhan Non-Fungsionalccoceeviiniininiiniiniiinicnccceicnee 36
3.2.3. Kebutuhan Data.............cciiiiiiiiiiiienieiieeieeie st 37
3.3. Pengumpulan Datacociieiiiiiiiieeiieeie st 37
3.4. Pembentukan Model KIasifikasi..........coccoiiiiiiiiiiiiiicieeeee e 43
3.4.1. Arsitektur Model Random Forest...........cccoevviveiiieiiiieniieeieceee e 44
3.4.2. Arsitektur Model LSTM.....cccooiiiiiiiiiiiieiieeeeeeeee e 45
3.4.3. Arsitektur Model Transformerccoeeeieienieiiieiniies it 48
3.5. Hybrid MOdElcooiiiiiiiiee et 53
Bab IV Hasil dan Pembahasan........cc.cc.coeoiiiiiiiiiiiineniiiiniiie e ceiese s s eesssnneeens 60
4.1, Profil PartiSIPamc...ooueiuiiiiiriiiieeiieeeienie sttt sttt e eb e s 60
4.2, Implementasi SISTEIMccciiiiiiieieiieeieeeseeeesteessaeeeeeeeesaeeeeesnaessseeesnnnasnnsees 60
4.2.1. Implementasi Perangkat Keras (Hardware)...........ccccoeevceeeecveeecveeennennns 60
4.2.2. Implementasi Antarmuka Pengguna (User Interface)c......... 62
4.3. Implementasi dan Analisis Kode Programcccocceeviiiiiiniieniiniieiee 65
4.3.1. Implementasi Augmentasi Citra untuk Gestur Statis..........cccceevvreeernnennne 65
4.3.2. Implementasi Model Random Forest (Gestur Statis).........ccccecverveeneennee. 67
4.3.3. Implementasi Model LSTM (Gestur Dinamis)ccccceeveveeriierieeneennen. 68
4.3.4. Implementasi Model Transformer (Gestur Dinamis)...........cccceeeveeennennne 70
4.4. Hasil Evaluasi Modelccccoeiiiiiiiiniieiiee e 71

viil

4.4.1. Evaluasi Model Gestur Statis (Random Forest)..........ccccceevvievierieeneenen. 72

4.4.2. Evaluasi Model Gestur Dinamis: LSTM.......cccccocevviiniininienienenieneeens 75
4.4.3. Evaluasi Model Gestur Dinamis: Transformerc.ccceevvveieieeennenns 78
4.4.4. Analisis Komparatif Model Dinamis (LSTM vs Transformer)............... 83

4.5. Pengujian Sistem Secara Real-Time pada Raspberry Pi........cccoeevvieiinnnnnne 85
4.5.1. SKenario Pengujian...........cccceecuieeiiieeiieeeiieeecieeeieeeeiee et eeseree e ens 85
4.5.2. Hasil Pengujian Akurasi Real-Time...........ccccooevievieniieniieniieieeieeeeee, 87
4.5.3. Analisis Statistik Signifikansi Performa (Uji Wilcoxon)..........cccceuveenee. 90

4.6. Evaluasi Kinerja Komputasi pada Raspberry Pi 5cccccoovveeiieicenieennnnne. 92
Bab V Simpulan dan Sarancceeiiiiiiiiiinieeesie st 94
5.1 KeSTMPUIAN.....ciiiiiiiiiiitiieieesiee et ecite et e saeesteesseessaaeseeeeseebeesssesseessseenseensnas 94
5.2 SATAN ...ttt ettt ettt et et s ab e et sn e et e eas 95
DAFTAR PUSTAKAcetiitiiietiee sttt ettt et st st e b snnesnesnaeenbesaesneens 97
LQMIPITAN ..ottt et eeie et eteeieestaeeteesaaeeeseessaaenseeessasssaeasssensaesssasnseennssanneenssesseens 101

X

DAFTAR GAMBAR

Gambar 2.1 Abjad Dalam BISINDOccccccieiiiiiiiiiiiieeieece e 13
Gambar 2.2 Abjad Dalam SIBI.........ccccooiiiiiiiieeeeeeee e 14
Gambar 2.3 Peta Mediapipe Hand Landmarks (Sumber: Al Google Dev) 18
Gambar 2.4 Raspberry Pi 5 (Sumber: Raspberry Pi Ltd, 2025)cccoevvveviieiiennnne. 28
Gambar 2.5 Pi Camera vl SMP (Sumber: Pomaska, 2019)........ccccceeevievieniinninennnnne. 33
Gambar 3.1 Flowchart Metode Penelitianccoocuevvieiiieiiieniiiienicceeeee 34
Gambar 3.2 Skema pengumpulan data gestur Statiscccoveneeneriienienienncnieneenns 41
Gambar 3.3 Dataset Random Forest Gestur "BAWAH" ... 41
Gambar 3.4 Pengambilan Dataset Gestur Dinamis..........cccoc.eevveeoeeriieeneensiienieennnennn. 42
Gambar 3.5 Hasil Pengambilan Dataset Gestur Dinamisccccccveevveeveenieeerennnann. 42
Gambar 3.6 Arsitektur Model Random Forest............cccooiiiiiiniiiiiiniiiee 45
Gambar 3.7 Arsitektur Model LSTM ..o 48
Gambar 3.8 Arsitektur Model Transformercoceevvieieiviiiinienieieeeeee e 51
Gambar 3.9 Flowchart Pembuatan Modelcociiiiniiiiiiiiice 52
Gambar 3.10 Diagram Alur Hybrid Model..........ccccoviniiniiiiniiiiiccecce 53
Gambar 3.11 Topologi Perangkatcccooeriiniiiiiiiniiiicececc e 55
Gambar 3.12 Topologi Tanpa INternet..........ccceerveviiiiueeeiieeeiieeeieeee e 56
Gambar 4.1 Implementasi Perangkat Keras.cccccevvviiiniiiiniiiinieeeeeeee e 61
Gambar 4.2 Implementasi Antarmuka Programccccoccooieniininiieniinecncsieneeienn 62
Gambar 4.3 Fase StabiliSasiccceevuieriiiiiiiiiie ittt e 63
Gambar 4.4 Fase ReCOTAING.......cc.oieiiiieiiieeiieceeeeeee e e e 64
Gambar 4.5 Fase HOIdINGooooiiiiiiieieeeeeeeeeeeee e 64
Gambar 4.6 Cuplikan Kode Augmentasi Citracceeeeeeiierieeiieeniieieesie e 66
Gambar 4.7 Code Pembagian Dataset dengan Stratifikasi.........cccceeceereenenvcniencnnnns 67
Gambar 4.8 Code Konfigurasi Model dan Cross-Validation...........cccccecveevvieennnennne. 68
Gambar 4.9 Code Arsitektur Model LSTMccccoiiiiiiiiiiieeeeeee 69
Gambar 4.10 Code Konfigurasi Pelatihan dan Callbacks...........cccceceniiniiiinincnnns 70
Gambar 4.11 Code Implementasi Positional Embedding pada Transformer.............. 70

Gambar 4.12 Code Mckanisme Perhatian (Attention) dan Stabilisasi Model 71

Gambar 4.13 Kurva Pembelajaran (Learning Curve) Model Random Forest 72
Gambar 4.14 Confusion Matrix Model Random Forest pada Data Uji....................... 74
Gambar 4.15 Kurva Akurasi dan Loss Model LSTM........ccccoiiiiiiiniiiiiiniceiiee 75
Gambar 4.16 Confusion Matrix Model LSTMccccooiiiiiiiiiniiniiiiccienccieeeeee 77
Gambar 4.17 Misklasifikasi Gestur “APA” Confusion Matrix LSTM.........c...cc.c..... 77
Gambar 4.18 Misklasifikasi Gestur "HANYA" Confusion Matrix LSTM................. 77
Gambar 4.19 Misklasifikasi Gestur "MEMBERI" Confusion Matrix LSTM 78
Gambar 4.20 Kurva Akurasi dan Loss Model Transformerccoccevveeveriiencennene 79
Gambar 4.21 Confusion Matrix Model Transformer pada Data Uji........................... 81
Gambar 4.22 Misklasifikasi Gestur “APA” Confusion Matrix Transformer 82

Gambar 4.23Misklasifikasi Gestur “HANYA” Confusion Matrix Transformer-........ 82
Gambar 4.24 Misklasifikasi Gestur “MEMBERI” Confusion Matrix Transformer... 82
Gambar 4.25 Peringkat Tanda (Ranks) Uji WilCOXONccovvereiiviiveniieiienieeieeeneee, 91
Gambar 4.26 Hasil Statistik Uji WIlCOXON ..eouviviiiniiriiiniiiiiiiieniineciceiceceeecee 91

X1

DAFTAR TABEL

Tabel 2.1 Versi Raspberty Pi.......c.cccuiiiiiiiiiiiiciiieeeee e 27
Tabel 2.2 Versi P1 Cameracccuoouiiiiiiiieiiieiee et 32
Tabel 3.1 Gestur yang dilatih Random Forestccccocveeeiiiiniiiinieeeeeee e 38
Tabel 3.2 Gestur kosakata yang dilatih LSTM dan Transformer...........c..ccccevcveveenene 38
Tabel 3.3 Hyperparameter Model Random Forest...........cccccveviieiiieniicniienieciiee, 44
Tabel 3.4 Hyperparameter Model LSTM.....ccccoooiiiiiiniiiiiiiieeceeee e 46
Tabel 3.5 Hyperarameter Model Transformercccevvieneenennicnicneencnicneenns 49
Tabel 3.6 Sumber Daya SIStem.......cc.ceveriiiiiiriiiiinieiestenee et 58
Tabel 4.1 Tabel Data SUDJEKcoviiiiiirieeciieriietiesie e esite et eveesaeereessassneeeeeee e 60
Tabel 4.2 Ringkasan Performa Model Random Forest pada Data Uji........................ 73
Tabel 4.3 Ringkasan Performa Model LSTM pada Data Uji......c..ccccocceniiieniinennnenn 76
Tabel 4.4 Ringkasan Performa Model Transformer pada Data Ujiccoceeuenene 80
Tabel 4.5 Perbandingan Performa Model LSTM dan Transformer.............ccccceeueenee. 83
Tabel 4.6 Perbandingan Gestur dengan Kemiripan Visual Tingg@i..........cccceeevvennnne. 84
Tabel 4.7 Hasil Pengujian Real-Time RF+ALSTMcccooiiiiniiniiiiniciccniceee 87
Tabel 4.8 Hasil Pengujian Real-Time RF+Transformer.........c..cccceeceniiniincnicncnnens 88

Xii

DAFTAR PERSAMAAN

Persamaan (1) Rumus Input Gateccccveeviiiiiriiiiniieiiece e 20
Persamaan (2) Rumus FOrget Gatecccooevvieeiiieeiiieeieeee e 21
Persamaan (3) Rumus Output Gate...........ceeeveeeiiieeiiieeieeeeie e e e 21
Persamaan (4) Rumus Random FOrest...........cccoeviieiiiiniiiiiiniicicceceece e 22
Persamaan (5) Rumus Transformeroccvevciierieeiienieeieeeieeiteee e 23

Xiii

Bab I

Pendahuluan

1.1. Latar Belakang

Bahasa Isyarat Indonesia (BISINDO) merupakan media komunikasi utama bagi
penyandang tunarungu dan tunawicara di Indonesia. Sebagai bahasa visual, BISINDO
memanfaatkan kombinasi gerakan tangan, ekspresi wajah, dan posisi tubuh, sehingga
sering kali sulit dipahami oleh masyarakat umum yang tidak terbiasa menggunakannya.
Kondisi ini kerap menjadi hambatan komunikasi antara penyandang disabilitas dengan
lingkungan sosialnya. Di Indonesia, dikenal dua sistem bahasa isyarat, yaitu Sistem
Isyarat Bahasa Indonesia (SIBI) dan BISINDO. Namun, BISINDO lebih banyak
digunakan karena berkembang secara alami di komunitas tunarungu, bersifat kultural,
serta tidak terikat pada struktur bahasa Indonesia formal. Mengingat cakupan
penggunaannya yang lebih luas dan praktis, penelitian ini memilih BISINDO sebagai
fokus utama dalam pengembangan sistem penerjemah bahasa isyarat otomatis untuk
mendukung komunikasi yang lebih inklusif.

Kemajuan teknologi kecerdasan buatan, khususnya machine learning, telah
memungkinkan komputer mengenali pola dari data secara efektif. Salah satu
penerapannya adalah pada sistem pengenalan bahasa isyarat berbasis citra. Sejumlah
studi menunjukkan keberhasilan algoritma machine learning seperti Random Forest dan
Long Short-Term Memory (LSTM) dalam mengklasifikasikan gerakan tangan.
Penelitian Fadlilah et al. (2022) berhasil membangun sistem pengenal isyarat dasar
BISINDO menggunakan kamera dan Raspberry Pi yang mampu menerjemahkan huruf
dan angka menjadi teks secara real-time.

Berbagai pendekatan teknologi telah dikembangkan untuk menjembatani
kesenjangan komunikasi ini. Salah satu metode yang umum digunakan adalah
pendekatan berbasis sensor (wearable devices). Sebagai contoh, penelitian yang
dilakukan oleh Wungow dkk (2022) mengembangkan sarung tangan penerjemah untuk
Sistem Bahasa Isyarat Indonesia (SIBI) menggunakan flex sensor yang dikombinasikan

dengan metode K-Nearest Neighbors (KNN) dan Artificial Neural Network (ANN).

Meskipun penelitian tersebut berhasil mencapai akurasi tinggi hingga 99% untuk
klasifikasi statis, penggunaan perangkat keras yang harus dipasang pada tubuh pengguna
dinilai kurang praktis untuk komunikasi sehari-hari. Selain itu, akurasi pada metode
berbasis sensor sangat bergantung pada kesesuaian dimensi tangan pengguna dengan alat,
di mana perbedaan ukuran tangan dapat menyebabkan sensor tidak menekuk secara
maksimal. Mengatasi keterbatasan tersebut, penelitian ini mengusulkan pendekatan
berbasis computer vision yang lebih fleksibel tanpa memerlukan alat tambahan pada
tubuh pengguna. Berbeda dengan penelitian sebelumnya yang berfokus pada SIBI,
penelitian ini akan berfokus pada BISINDO yang lebih umum digunakan oleh komunitas
Tuli, dengan memanfaatkan arsitektur Deep Learning.

Bahasa isyarat tidak hanya terdiri dari gestur statis, tetapi juga gestur dinamis
yang membentuk kata atau kalimat. Untuk mengenali urutan gerakan dalam dimensi
waktu, dibutuhkan model yang mampu menangani data sekuensial. LSTM, sebagai
bagian dari arsitektur Recurrent Neural Network (RNN), terbukti efektif untuk
memproses data urutan. Penelitian Aljabar dan Suharjito (2020) menggabungkan CNN
dan LSTM untuk pengenalan BISINDO real-time berbasis desktop, dengan capaian
akurasi hingga 96% dalam pengenalan kata tertentu.

Penelitian Kothadiya et al. (2022) mengusulkan sistem pengenalan bahasa isyarat
berbasis deep learning dengan mengombinasikan LSTM dan GRU. Dataset yang
digunakan, IISL2020, berisi sebelas kelas kata dengan ribuan sampel video yang direkam
dalam kondisi alami tanpa sensor tambahan. Fitur citra diekstraksi menggunakan
InceptionResNetV2, kemudian diproses oleh LSTM untuk memahami pola urutan
gerakan dan dilanjutkan ke GRU guna menyaring informasi sebelum diklasifikasikan
dengan softmax. Model ini dijalankan pada desktop dan mencapai akurasi sekitar 97%,
meskipun masih terbatas pada pengenalan gestur terisolasi.

Raspberry Pi menjadi platform yang menarik untuk pengembangan sistem ini
karena memiliki keunggulan dari sisi biaya, ukuran yang ringkas, dan portabilitas.
Integrasinya dengan kamera CSI (PiCamera) memungkinkan pengambilan citra
berkecepatan tinggi dengan latensi rendah, yang sangat penting untuk aplikasi real-time.

Abed dan Rahman (2017) menunjukkan bahwa Raspberry Pi dengan modul kamera

dapat digunakan untuk sistem pengenalan gestur tangan berbasis visi komputer dengan
akurasi hingga 98%, sekaligus menawarkan efisiensi yang tinggi untuk aplikasi lapangan.

Hasil penelitian Alexander dkk. (2023) mengungkapkan bahwa algoritma
Random Forest menunjukkan performa terbaik dibandingkan metode klasifikasi lain,
seperti K-Nearest Neighbor (KNN), Support Vector Machine (SVM), dan Decision Tree,
dalam mengidentifikasi gestur bahasa isyarat BISINDO. Pada pengujian data, Random
Forest mampu mencapai akurasi, presisi, f1-score, dan recall sebesar 97,9%, sedangkan
pada pengujian real-time memperoleh presisi 84%. Keunggulan lain yang dicapai adalah
waktu klasifikasi tercepat di antara model yang diuji, yaitu 34,6 kata per menit, sechingga
menjadikannya pilihan yang tepat untuk aplikasi berbasis kamera dengan kebutuhan
real-time.

Selain itu, optimalisasi model menggunakan 7ensorFlow Lite pada perangkat
edge computing seperti Raspberry Pi telah terbukti dapat meningkatkan efisiensi proses
inferensi sekaligus mempertahankan kinerja model untuk aplikasi real-time. Toyib et al.
(2025) mengimplementasikan ZensorFlow Lite pada aplikasi pengenalan Sistem Isyarat
Bahasa Indonesia (SIBI) secara real-time, dan hasilnya menunjukkan performa sistem
yang responsif dengan konsumsi sumber daya yang rendah.

Penelitian oleh Alatas & Widodo (2025) mengembangkan sistem penerjemah
bahasa isyarat BISINDO menggunakan kombinasi algoritma Random Forest untuk
gestur statis dan LSTM untuk gestur dinamis pada Raspberry Pi. Hasil penelitian tersebut
menunjukkan bahwa sistem mampu berjalan pada perangkat edge dengan tingkat akurasi
yang baik, namun akurasi real-time pada model LSTM masih dapat ditingkatkan. Hal ini
menjadi landasan utama pengembangan penelitian ini untuk mengoptimalkan akurasi
real-time melalui pemanfaatan 7ensorFlow Lite dan pengambilan citra menggunakan
PiCamera.

Penelitian oleh Hoque et al. (2018) mengembangkan sistem deteksi bahasa
isyarat Bangladeshi (BdSL) menggunakan algoritma Faster R-CNN dengan backbone
Inception V2. Sistem dilatih pada dataset BdSLImset yang berisi sepuluh kelas huruf
isyarat dengan variasi latar belakang dan kondisi pencahayaan. Hasil pengujian

menunjukkan bahwa model mampu mencapai akurasi rata-rata sebesar 98,2% dengan

waktu deteksi sekitar 90 milidetik per citra, sehingga dapat berjalan secara real-time.
Meskipun demikian, penelitian ini mencatat adanya kendala pada huruf dengan bentuk
isyarat yang mirip, sehingga akurasi pada kondisi tertentu masih dapat ditingkatkan.

Penelitian oleh Shin et al. (2023) mengembangkan sistem pengenalan bahasa
isyarat Korea (KSL) menggunakan pendekatan deep learning berbasis transformer
ringan. Model yang diusulkan memadukan keunggulan CNN untuk ekstraksi fitur lokal
dan Convolutional Layer-Based Transformer dengan Lightweight Multi-Head Self
Attention (LMHSA) untuk menangkap ketergantungan global, serta diperkuat dengan
grain module yang berfungsi menggantikan mekanisme patch tradisional pada Vision
Transformer agar representasi awal lebih efektif dan efisien. Sistem dilatih pada dataset
KSL dengan 77 kelas serta dataset tambahan berisi 20 kata penting dalam KSL. Hasil
pengujian menunjukkan bahwa model mencapai akurasi 89,0% pada dataset KSL dan
98,3% pada dataset usulan, melampaui performa metode sebelumnya. Meskipun
demikian, penelitian ini mencatat masih adanya keterbatasan pada ukuran dataset dan
kompleksitas komputasi, sehingga pengembangan lebih lanjut diperlukan untuk
meningkatkan generalisasi dan efisiensi sistem.

Penelitian oleh Chaudhary et al (2022) melalui model SignNet I menunjukkan
kinerja yang unggul secara kuantitatif dibandingkan pendekatan berbasis RNN dan
LSTM. Pada tugas sign-to-text translation, model ini mampu mencapai skor BLEU
hingga sekitar 23, lebih tinggi 4-6 poin dibanding baseline sebelumnya yang hanya
berkisar 15—18. Sementara pada arah text-to-sign translation, SignNet 1I menghasilkan
peningkatan akurasi urutan gloss sebesar 4% hingga 7% dibandingkan metode terdahulu.
Selain itu, penggunaan mekanisme shared representation menjadikan model ini lebih
efisien, dengan jumlah parameter dan waktu pelatihan yang lebih hemat sekitar 10—15%
dibandingkan jika melatih dua model terpisah. Hasil ini menegaskan bahwa arsitektur
Transformer tidak hanya lebih akurat, tetapi juga lebih efisien untuk tugas penerjemahan
dua arah bahasa isyarat, meskipun tantangan terkait keterbatasan data dan kebutuhan
evaluasi lebih luas masih perlu ditangani dalam penelitian lanjutan.

Berdasarkan temuan-temuan tersebut, penelitian ini mengembangkan sistem

klasifikasi bahasa isyarat BISINDO real-time berbasis Raspberry Pi dengan

memanfaatkan kombinasi algoritma Random Forest untuk gestur statis, serta LSTM dan
Transformer yang dioptimasi menggunakan TensorFlow Lite untuk gestur dinamis.
Penggunaan Pi Camera memungkinkan pengambilan citra berkecepatan tinggi,
sementara kombinasi kedua algoritma diharapkan dapat meningkatkan akurasi
pengenalan baik pada gestur statis maupun dinamis dalam kondisi penggunaan di
lapangan. Selain itu, penelitian ini juga menghadirkan pembaruan berupa penerapan
metode Transformer Kkhusus untuk pengenalan gestur dinamis, sehingga dapat
dibandingkan dengan LSTM dalam mendeteksi urutan gerakan bahasa isyarat serta
memberikan evaluasi terhadap efektivitas Transformer sebagai alternatif metode terkini.
Pemilihan Transformer dibandingkan GRU dan CNN didasarkan pada kemampuannya
dalam menangkap ketergantungan jangka panjang secara lebih efektif melalui
mekanisme self-attention, tanpa terjebak pada keterbatasan memori yang sering muncul
pada RNN maupun variannya. Selain itu, Transformer memungkinkan pemrosesan
paralel yang lebih cepat dibandingkan model sekuensial seperti GRU, sekaligus mampu
mengintegrasikan informasi spasial dan temporal lebih baik daripada CNN yang
umumnya berfokus pada pola lokal. Dengan demikian, 7ransformer dipandang sebagai
alternatif yang menjanjikan untuk meningkatkan akurasi dan efisiensi dalam pengenalan
gestur dinamis BISINDO secara real-time.

Arsitektur Deep Learning seperti Convolutional Neural Networks (CNN) dan
Recurrent Neural Networks (RNN), khususnya LSTM, telah lama menjadi pilihan utama
untuk tugas-tugas klasifikasi dan prediksi pada data sekuensial. Namun, kemunculan
arsitektur Transformer telah mengubah lanskap secara signifikan dan menjadi fokus
utama dalam pengembangan model pemrosesan data, termasuk untuk data audio. Sebuah
studi komparatif dilakukan untuk menguji kinerja ketiga arsitektur ini (CNN, RNN-
LSTM, dan Transformer) dalam tugas klasifikasi genre musik menggunakan Mel-
Frequency Cepstrum Coefficients (MFCCs) sebagai fitur masukan (Ali, 2024).

Studi tersebut menyoroti perbedaan kinerja yang signifikan antar model ketika
dihadapkan pada keterbatasan sumber daya komputasi. Model RNN-LSTM
menunjukkan kinerja terendah, dengan akurasi yang stagnan (flat line) di sekitar 66%

dan tidak menunjukkan tanda-tanda perbaikan meski epoch pelatihan ditambah. Model

CNN, di sisi lain, terbukti paling efektif untuk skenario waktu atau sumber daya yang
terbatas, dengan cepat mencapai akurasi puncak sekitar 75% sebelum akhirnya juga
mengalami stagnasi. Berbeda dari keduanya, model Transformer menunjukkan
karakteristik sebagai "pembelajar yang lambat namun konsisten”. Meskipun akurasi
awalnya lebih rendah, model Transformer menunjukkan pertumbuhan performa yang
terus-menerus dan stabil tanpa mengalami plateau, bahkan ketika durasi pelatihan
diperpanjang. Temuan ini mendukung kesimpulan bahwa dengan sumber daya dan data
yang memadai, arsitektur Transformer memiliki potensi untuk melampaui kinerja
model-model pendahulunya secara signifikan (Ali, 2024)

Arsitektur Transformer tidak hanya menggantikan RNN dalam tugas pemrosesan
bahasa alami, tetapi juga telah diuji secara intensif untuk aplikasi pemrosesan ucapan
(speech applications), seperti Automatic Speech Recognition (ASR), Speech Translation
(ST), dan Text-to-Speech (TTS). Perbedaan fundamentalnya adalah bahwa Transformer
mempelajari informasi sekuensial melalui mekanisme self-attention, sedangkan RNN
bergantung pada koneksi rekuren (Karita et al., 2019).

Dalam sebuah studi komparatif berskala besar yang membandingkan kedua
arsitektur pada 15 benchmark ASR yang berbeda, Transformer menunjukkan
superioritas yang mengejutkan dengan mengungguli RNN pada 13 dari 15 benchmark
tersebut. Keunggulan ini juga terlihat jelas dalam efisiensi pelatihan. Karena tidak
bergantung pada operasi sekuensial yang iteratif seperti RNN, pelatihan Transformer
dapat diparalelkan sepenuhnya. Hasilnya, pada salah satu benchmark (LibriSpeech),
model Transformer mampu mencapai tingkat akurasi terbaik yang dihasilkan RNN,
namun dengan waktu pelatihan delapan kali lebih cepat (Karita et al., 2019).

Studi ini juga mencatat bahwa strategi optimalisasi untuk kedua model ini
berbeda. Kinerja Transformer sangat diuntungkan oleh penggunaan minibatch berukuran
besar, yang secara simultan meningkatkan akurasi dan kecepatan pelatihan. Sebaliknya,
peningkatan ukuran minibatch tidak memberikan manfaat yang sama pada model RNN.
Selain itu, penggunaan dropout terbukti esensial untuk mencegah overfitting pada
Transformer, sementara teknik yang sama tidak menunjukkan peningkatan signifikan

pada RNN. Temuan ini menggarisbawahi bahwa Transformer tidak hanya unggul dalam

performa, tetapi juga memperkenalkan dinamika pelatihan yang berbeda dari arsitektur
berbasis rekuren (Karita et al., 2019).

Evolusi model sequence-to-sequence menunjukkan lintasan yang jelas, dimulai
dari Recurrent Neural Networks (RNNs) sebagai fondasi, beralih ke Long Short-Term
Memory (LSTM) untuk mengatasi kelemahan RNN, dan akhirnya mencapai pergeseran
paradigma dengan hadirnya arsitektur Transformer. Model RNN tradisional, meskipun
fundamental, memiliki keterbatasan dalam menangani sekuens panjang akibat masalah
vanishing gradient. Model LSTM dan variannya (seperti GRU) secara khusus dirancang
untuk mengatasi masalah ini, sehingga unggul dalam tugas-tugas yang menuntut memori
dependensi jangka panjang dan pemahaman struktur sintaktis yang kompleks (Zhu,
2023).

Di sisi lain, arsitektur 7ransformer membawa kemajuan baru dengan berfokus
pada mekanisme attention. Transformer terbukti lebih unggul untuk tugas-tugas yang
membutuhkan pemahaman konteks yang mendalam dan hubungan antara bagian-bagian
teks yang tidak berdekatan. Meskipun demikian, model LSTM masih mempertahankan
relevansinya untuk skenario spesifik. Ketika sebuah tugas sangat bergantung pada
analisis sintaktis yang mendalam atau membutuhkan interpretasi model yang lebih
transparan, arsitektur LSTM seringkali masih menjadi pilihan yang valid. Pada akhirnya,
pemilihan antara arsitektur berbasis rekuren (LSTM) dan berbasis attention
(Transformer) sangat bergantung pada kebutuhan spesifik dari tugas yang dihadapi (Zhu,
2023).

Arsitektur Transformer, yang diperkenalkan oleh Vaswani et al. pada tahun 2017,
telah menjadi model fundamental dalam deep learning, khususnya untuk data sekuensial.
Perbedaan utamanya dengan model-model klasik seperti Recurrent Neural Network
(RNN) adalah pada metode pemrosesan sekuens. Model RNN bersifat sekuensial dan
iteratif, yang menyebabkan proses pelatthannya memakan waktu lama. Sebaliknya,
Transformer mengganti mekanisme rekuren tersebut sepenuhnya dengan self-attention,
yang memungkinkan pelatihan dilakukan secara paralel. Kemampuan ini secara
signifikan meningkatkan efisiensi komputasi dan mempersingkat waktu yang

dibutuhkan untuk melatih model (Shiri et al., 2024).

Keunggulan ini telah dibuktikan secara empiris dalam sebuah studi komparatif.
Pada tugas analisis sentimen (dataset IMDB), model Transformer tidak hanya berhasil
mencapai akurasi klasifikasi tertinggi, mengungguli varian RNN seperti LSTM dan GRU,
tetapi juga memiliki waktu pelatihan yang jauh lebih singkat dibandingkan model RNN
berkinerja terbaik lainnya (Bi-GRU) (Shiri et al., 2024). Performa superior ini juga
terkonfirmasi pada jenis data sekuensial yang berbeda, yaitu data sensor untuk
pengenalan aktivitas manusia (dataset ARAS). Pada dataset tersebut, Transformer
kembali mengungguli model RNN lainnya dalam hal akurasi, recall, dan FI-score,
sekaligus menunjukkan kurva pelatihan yang lebih cepat stabil (Shiri et al., 2024). Studi
ini menyimpulkan bahwa mekanisme attention pada Transformer menjadikannya model
yang berkinerja lebih baik daripada model-model berbasis RNN klasik, terutama untuk
tugas analisis teks (Shiri et al., 2024).

1.2. Identifikasi Masalah

Permasalahan yang diangkat dalam penelitian in1 meliputi rendahnya
pemahaman masyarakat terhadap Bahasa Isyarat Indonesia (BISINDO), belum
tersedianya sistem penerjemah bahasa isyarat yang praktis dan real-time pada perangkat
portabel seperti Raspberry Pi, serta perlunya penerapan metode klasifikasi terpisah untuk

gestur statis dan gestur dinamis menggunakan algoritma yang sesuai.

1.3. Batasan Masalah

a) Sistem difokuskan untuk mengenali gestur Bahasa Isyarat Indonesia (BISINDO)
berupa huruf, angka, dan kosakata tertentu sesuai dataset penelitian.

b) Proses pengambilan data menggunakan webcam Logitech C270 dan pengujian
dilakukan menggunakan PiCamera vI yang terhubung ke Raspberry Pi 5
sebagai perangkat utama.

¢) Model klasifikasi yang digunakan terdiri dari Random Forest untuk gestur statis
serta LSTM dan Transformer untuk gestur dinamis yang dibandingkan

kinerjanya.

d) Dataset berupa citra dan data landmark tangan 3D (x, y, z) diperoleh

menggunakan MediaPipe Hands dan digunakan untuk pelatihan serta pengujian
sistem.
Sistem dirancang beroperasi secara offline pada Raspberry Pi, dengan seluruh

proses inferensi dan klasifikasi dilakukan secara lokal tanpa koneksi internet.

1.4. Rumusan Masalah

bahasa

Bagaimana merancang bangun dan menganalisis kinerja sistem klasifikasi

isyarat BISINDO secara real-time pada Raspberry Pi 5 yang mengintegrasikan

algoritma Random Forest untuk gestur statis serta membandingkan performa LSTM dan

Transformer untuk gestur dinamis guna mencapai akurasi dan stabilitas sistem yang

optimal?

1.5. Tujuan Penelitian

a)

b)

c)

d)

Membangun sistem klasifikasi bahasa isyarat BISINDO berbasis kamera CSI
PiCamera vl yang berjalan pada perangkat Raspberry Pi 5 RAM 16 GB.
Menerapkan algoritma Random Forest untuk klasifikasi gestur statis bahasa
isyarat BISINDO.

Membandingkan kinerja algoritma LSTM dengan metode Transformer dalam
klasifikasi gestur dinamis bahasa isyarat BISINDO.

Menguji kemampuan sistem dalam melakukan klasifikasi bahasa isyarat
BISINDO secara real-time pada perangkat Raspberry Pi 5 RAM 16 GB dengan
hasil yang akurat.

1.6. Luaran Penelitian

Luaran yang diharapkan dari penelitian ini adalah:

1. Rancangan dan implementasi sistem klasifikasi bahasa isyarat BISINDO
berbasis Raspberry Pi 5 dengan kamera CSI PiCamera vl yang mampu
melakukan deteksi dan klasifikasi gestur secara real-time.

2. Model klasifikasi gestur statis menggunakan algoritma Random Forest yang

terlatih pada dataset BISINDO.

3. Perbandingan kinerja antara algoritma LSTM dan metode Transformer
dalam mendeteksi gestur dinamis bahasa isyarat BISINDO secara real-time
pada perangkat edge.

4. Dataset hasil ekstraksi landmark tangan dari MediaPipe Hands yang
difokuskan pada deteksi tangan, digunakan sebagai data pelatihan dan
pengujian sistem.

5. Hasil pengujian performa sistem yang mencakup pengukuran akurasi, presisi,
recall, dan f1-score, baik untuk pengujian offline maupun real-time.

6. Analisis kinerja sistem pada perangkat Raspberry Pi, meliputi kecepatan

pemrosesan, tingkat akurasi, dan efisiensi penggunaan sumber daya.

1.7. Manfaat

a) Memberikan solusi teknologi yang dapat membantu komunikasi antara
penyandang tunarungu dan masyarakat umum melalui sistem penerjemah
BISINDO real-time berbasis Raspberry Pi.

b) Menjadi referensi dalam pengembangan sistem pengenalan bahasa isyarat
berbasis Raspberry Pi dan kamera CSI PiCamera dengan optimasi model
menggunakan TensorFlow Lite.

c) Memberikan informasi dan perbandingan performa antara algoritma Random
Forest untuk gestur statis, LSTM dan Transformer untuk gestur dinamis.

d) Mendorong pemanfaatan model deep learning berbasis sekuensial (LSTM)
maupun Transformer pada aplikasi pengenalan gestur dinamis yang dijalankan

di perangkat edge computing.

1.8. Sistematika Penulisan
Berikut ini adalah sistematika penulisan pada penelitian ini:
1. BAB I Pendahuluan
Berisi uraian pendahuluan penelitian yang mencakup latar belakang,

identifikasi masalah, batasan masalah, rumusan masalah, tujuan penelitian,

10

luaran penelitian, manfaat penelitian, sistematika penulisan, dan jadwal
penelitian.

2. BAB II Tinjauan Pustaka
Berisi teori-teori dasar dan ulasan penelitian terdahulu yang relevan dengan
pengembangan sistem klasifikasi bahasa isyarat BISINDO secara real-time
menggunakan Raspberry Pi dan kamera CSI PiCamera vi. Dalam bab ini
juga dibahas literatur terkait penerapan algoritma Random Forest untuk
gestur statis, LSTM dan Transformer yang dioptimasi dengan TensorFlow
Lite untuk gestur dinamis sebagai pembaruan metode untuk pengenalan
gestur dinamis. Selain itu, ditinjau pula penelitian-penelitian sebelumnya
dalam bidang pengenalan bahasa isyarat untuk melihat posisi dan kebaruan
penelitian ini.

3. BAB III Rancangan Sistem
Berisi tahapan perancangan sistem mulai dari metode pengumpulan data,
proses pengolahan data menggunakan MediaPipe Hands, perancangan
model klasifikasi, optimasi model dengan TensorFlow Lite, serta integrasi
sistem pada perangkat Raspberry Pi.

4. BAB IV Hasil dan Pembahasan
Berisi hasil implementasi sistem dan pembahasan mendalam terkait
performa algoritma, akurasi, presisi, recall, fi-score, serta evaluasi kinerja
real-time pada Raspberry Pi.

5. BAB V Simpulan dan Saran
Berisi simpulan menyeluruh dari hasil penelitian, kesesuaian dengan tujuan
penelitian, serta saran-saran untuk pengembangan lebih lanjut agar sistem

dapat digunakan secara optimal di lapangan.

11

Bab 11

Tinjauan Pustaka

2.1. Bahasa Isyarat

Bahasa isyarat merupakan sistem komunikasi visual-manual yang digunakan
oleh komunitas Tuli untuk menyampaikan informasi dan menjalin interaksi sosial.
Bahasa ini memiliki struktur linguistik yang kompleks yang mencakup fonologi,
morfologi, sintaksis, serta semantik, dan tidak bersifat universal karena tiap negara
memiliki bahasa isyaratnya masing-masing (Pujiati, 2019). Di Indonesia, terdapat dua
sistem yang dikenal luas, yaitu Bahasa Isyarat Indonesia (BISINDO) dan Sistem
Isyarat Bahasa Indonesia (SIBI), yang memiliki perbedaan mendasar dalam struktur
dan penggunaannya (Pujiati, 2019).

Selain sebagai alat komunikasi, bahasa isyarat juga merupakan bagian dari
identitas budaya komunitas Tuli. Penggunaan bahasa isyarat memberikan akses yang
lebih luas terhadap pendidikan, pekerjaan, dan kehidupan sosial secara umum. Namun,
pengakuan resmi terhadap bahasa isyarat sebagai bahasa nasional dan penerapannya
dalam kebijakan publik masih menjadi tantangan di berbagai negara, termasuk
Indonesia (Wijaya, 2018).

Dalam konteks pendidikan, pemahaman dan penguasaan bahasa isyarat
memiliki peranan penting dalam menciptakan lingkungan belajar yang inklusif bagi
siswa Tuli. Implementasi pembelajaran dengan pendekatan bilingual menggunakan
bahasa isyarat dan bahasa tulis mampu meningkatkan prestasi belajar dan
perkembangan kognitif siswa Tuli (Murni et al., 2024). Selain itu, pelatihan bahasa
isyarat bagi guru, teman sebaya, dan keluarga turut memperkuat dukungan sosial yang
mereka terima.

Seiring dengan kemajuan teknologi, banyak inovasi digital yang mendukung
pembelajaran bahasa isyarat, seperti aplikasi interaktif berbasis multimedia. Aplikasi
ini dirancang untuk mengajarkan kosakata bahasa isyarat melalui animasi, audio, dan
latihan visual, sehingga menarik minat pengguna dan meningkatkan efektivitas

pembelajaran (Assa et al., 2021).

12

2.1.1. BISINDO (Bahasa Isyarat Indonesia)

BISINDO adalah bahasa yang didorong pengembangannya oleh Gerakan
Kesejahteraan Tunarungu Indonesia (Gerkatin) dan dikembangkan secara mandiri oleh
komunitas tunarungu. Oleh karena itu, BISINDO menjadi sistem komunikasi yang
praktis dan efisien bagi penyandang tunarungu di Indonesia karena bahasa ini memang
lahir dari kebutuhan dan pengalaman langsung para tunarungu itu sendiri (Borman et
al., 2017). Karena berasal dari komunitas tunarungu itu sendiri, BISINDO lebih mudah
dipahami dan diterima dalam interaksi sehari-hari. Dibandingkan dengan SIBI yang
muncul belakangan, BISINDO telah digunakan lebih lama dan mencerminkan cara
berkomunikasi teman tuli secara alami. Dalam penggunaannya, BISINDO
menekankan ekspresi wajah dan gerakan mulut sebagai bagian penting dari makna
isyarat. Selain itu, struktur bahasa ini terdiri dari lima unsur utama, yaitu lokasi isyarat,
bentuk tangan, orientasi, gerakan tangan, dan ekspresi non-manual (Nugraheni et al.,
2021). Visualisasi dari beberapa contoh gestur BISINDO dapat dilihat pada Gambar
2.1, yang memperlihatkan bentuk tangan dan ekspresi khas yang digunakan dalam

komunikasi sehari-hari.

;s
g
f% i
\¢ 1 3
AR B EAL
/Qf Abjad dalam

Gambar 2.1 Abjad Dalam BISINDO

O A
A A
% X
A X

EE »% »ﬂ «w

»
4
M

(Sumber: Kompasiana, 2023)

13

2.1.2. SIBI (Sistem Isyarat Bahasa Indonesia)

SIBI (Sistem Isyarat Bahasa Indonesia) merupakan alat bantu komunikasi bagi
individu tunarungu yang menggabungkan unsur bahasa lisan, gerakan isyarat, ekspresi
wajah, dan gerak tubuh lainnya. Pemerintah menetapkan SIBI sebagai bahasa isyarat
resmi yang digunakan di Sekolah Luar Biasa (SLB). Namun, banyak penyandang
tunarungu merasa bahwa SIBI tidak sepenuhnya mewakili cara berkomunikasi mereka,
karena SIBI menggunakan aturan isyarat yang cenderung menyesuaikan dengan

struktur bahasa lisan dalam menyampaikan kosakata (Nugraheni et al., 2021). Gambar

2.2 menyajikan visualisasi dari beberapa contoh gestur dalam SIBI.

W
®
¢

o -F %
u@7’ o T~

<:%‘V§%
x T 5 @ By T

i@/?’?‘ip@ B o B

¢k

yin 18 B t% w D=

Abjad dalam

SIBI

Gambar 2.2 Abjad Dalam SIBI

(Sumber: Yayasan Peduli Kasih ABK, 2018)

2.2. Python

Python adalah bahasa pemrograman tingkat tinggi dan serbaguna yang
dikembangkan oleh Guido van Rossum pada akhir 1980-an dan pertama kali dirilis
pada 1991. Filosofi desainnya menekankan keterbacaan kode dengan penggunaan
indentasi yang signifikan, bersifat dinamis dalam pengecekan tipe data, dan
mendukung berbagai paradigma pemrograman seperti terstruktur, berorientasi objek,
dan fungsional. Sering disebut sebagai bahasa "batteries included" karena memiliki

pustaka standar yang komprehensif, Python telah berkembang melalui beberapa versi

14

utama (Python 2 dan Python 3) dan secara konsisten menduduki peringkat sebagai
salah satu bahasa pemrograman terpopuler, terutama dalam komunitas machine
learning. Nama "Python" diambil dari serial komedi Inggris "Monty Python's Flying
Circus", dan kepemimpinan proyeknya beralih dari Van Rossum (yang dijuluki
"benevolent dictator for life") kepada Steering Council beranggotakan lima orang pada
2019 (Van Rossum, G., 2007).

2.2.1. Open CV

Open Source Computer Vision Library (OpenCV) merupakan pustaka open-
source yang dikembangkan oleh Intel pada tahun 1999 sebagai bagian dari inisiatif
pengembangan aplikasi pemrosesan visual real-time yang efisien. Pustaka ini ditulis
dalam bahasa pemrograman C dan dioptimalkan untuk mendukung arsitektur prosesor
multicore, menjadikannya sangat cocok untuk aplikasi yang membutuhkan kecepatan
pemrosesan tinggi (Bradski dan Kaehler, 2008; Kaehler dan Bradski, 2016). OpenCV
kini telah berkembang menjadi salah satu pustaka paling populer dalam pengembangan
sistem computer vision karena sifatnya yang fleksibel dan dapat dijalankan di berbagai
platform.

Menurut Dawson-Howe (2019), OpenCV memiliki beragam fungsi penting,
mulai dari pengolahan citra dasar seperti filtering, konversi warna, dan deteksi tepi,
hingga pemrosesan citra lanjutan seperti deteksi wajah, pelacakan objek, kalibrasi
kamera, serta pengenalan pola berbasis machine learning. Selain itu, OpenCV juga
banyak digunakan untuk pengolahan video, rekonstruksi 3D, dan implementasi
augmented reality serta sistem bantuan pengemudi. Kelengkapan dan kemudahan
integrasi pustaka ini membuat OpenCV menjadi alat yang sangat bermanfaat untuk riset
maupun pengembangan industri.

2.2.2. Numpy

NumPy (Numerical Python) adalah pustaka open-source dalam Python yang
digunakan untuk komputasi numerik, terutama pada array dan matriks berdimensi
banyak. Pustaka ini menyediakan fungsi-fungsi efisien untuk operasi matematika,
statistik, aljabar linier, transformasi Fourier, dan bilangan acak. NumPy dibangun di

atas kode C yang dioptimalkan, sehingga menawarkan kecepatan tinggi dengan sintaks

15

Python yang sederhana. Meskipun tidak menyediakan fungsi statistik lanjutan, NumPy
menjadi dasar penting bagi pustaka lain seperti pandas, terutama dalam pengolahan

data tabular (Gupta, P., dan Bagchi, A., 2024).

2.2.3. Pandas

Pandas adalah pustaka open-source dalam Python yang dirancang untuk
keperluan analisis dan manipulasi data, terutama data dalam bentuk tabel (tabular)
seperti spreadsheet dan database. Pustaka ini memungkinkan Python untuk melakukan
operasi pemrosesan data secara cepat dan efisien, seperti membaca, membersihkan,
menyusun ulang, menyatukan, hingga memodelkan dan menganalisis data. Pandas
menawarkan struktur data utama berupa Series (data satu dimensi) dan DataFrame
(data dua dimensi), yang memudahkan pengguna dalam mengelola data kompleks.

Pandas pertama kali dikembangkan oleh Wes McKinney pada tahun 2008, dan
dibangun di atas NumPy. Meskipun tidak menggantikan NumPy, Pandas memperluas
kemampuannya dengan menyediakan alat-alat analisis data yang lebih ekspresif dan
terstruktur. Pandas mendukung berbagai format data seperti CSV, Excel, JSON, dan
SQL, serta dapat menangani data heterogen, data waktu (time series), dan data tidak
lengkap (Gupta, P., dan Bagchi, A., 2024).

2.2.4. Scikit-learn

Scikit-learn adalah pustaka open-source untuk machine learning yang ditulis
dalam bahasa Python. Pustaka ini memungkinkan integrasi metode machine learning
secara cepat dan mudah ke dalam kode Python. Scikit-learn menyediakan berbagai
metode seperti klasifikasi, regresi, estimasi matriks kovarian, reduksi dimensi,
praproses data, hingga pembuatan dataset uji.

Pustaka ini dapat digunakan di berbagai sistem operasi dan terus dikembangkan
secara aktif. Scikit-learn banyak digunakan dalam aplikasi komersial, penelitian
akademik, dan publikasi ilmiah. Untuk meningkatkan efisiensi, beberapa algoritma
dalam scikit-learn ditulis dalam bahasa C dan diintegrasikan melalui Cython, yang

memungkinkan kompilasi Python secara lebih cepat. Selain itu, metode seperti SVM

16

dan logistic regression dalam scikit-learn menggunakan pustaka LIBSVM dan
LIBLINEAR sebagai dasar algoritmanya (Kramer, O., dan Kramer, O., 2016).
2.2.5. Mediapipe

MediaPipe adalah framework open-source yang dikembangkan oleh Google
untuk membangun pipeline pemrosesan data sensorik seperti video, audio, dan input
dari sensor lainnya secara modular dan real-time. Framework ini dirancang untuk
membantu pengembang dalam membangun sistem pemrosesan visual yang kompleks
dengan menyusun proses ke dalam bentuk graph kalkulator (calculator graph)—yaitu
kumpulan komponen modular yang dapat digunakan kembali dan dikombinasikan
sesuai kebutuhan.

MediaPipe mendukung berbagai platform, termasuk desktop, mobile
(Android/iOS), dan bahkan perangkat embedded seperti Raspberry Pi, menjadikannya
cocok untuk pengembangan sistem portabel. Framework ini dapat berjalan baik di CPU
maupun GPU, serta dilengkapi dengan alat bantu seperti Tracer dan Visualizer untuk
memantau performa pipeline. Keunggulan lainnya adalah kemampuannya untuk
melakukan sinkronisasi waktu yang presisi antar stream data, serta dukungan penuh
terhadap integrasi dengan model machine learning eksternal.

Salah satu komponen yang paling sering digunakan dalam MediaPipe adalah
modul hand tracking, yang dapat mendeteksi dan melacak 21 titik kunci (landmark)
pada tangan secara real-time. Titik-titik ini mencakup sendi dan ujung jari serta pusat
telapak tangan, dan direpresentasikan dalam koordinat tiga dimensi. Informasi
landmark ini menjadi sangat penting untuk mengenali bentuk dan pola gerakan tangan,
sehingga sangat relevan dalam konteks pengenalan bahasa isyarat, khususnya
BISINDO. Gambar 2.3 memperlihatkan peta visual dari 21 titik landmark tangan versi
MediaPipe, yang menjadi acuan dalam proses ekstraksi fitur gerakan untuk klasifikasi

gestur secara otomatis

17

g® ®16 0. WRIST 11. MIDDLE_FINGER_DIP
k: 117 4 1. THUMB_CMC 12. MIDDLE_FINGER_TIP
7 ¢ |10 2. THUMB_MCP 13. RING_FINGER_MCP
6® 10 14 /%0 3.THuMBIP 14. RING_FINGER_PIP
- oy JS19 4. THUMB_TIP 15. RING_FINGER_DIP
4 S\ 9 3 18 5. INDEX_FINGER_MCP 16. RING_FINGER_TIP
3® 17 6. INDEX_FINGER_PIP 17. PINKY_MCP
- 7. INDEX_FINGER_DIP 18. PINKY_PIP
2 8. INDEX_FINGER_TIP 19. PINKY_DIP
1 9. MIDDLE_FINGER_MCP 20. PINKY_TIP
) 10. MIDDLE_FINGER_PIP

Gambar 2.3 Peta Mediapipe Hand Landmarks (Sumber: Al Google Dev)

Dalam penelitian ini, MediaPipe digunakan untuk mengekstraksi fitur berupa
posisi tangan dari input video yang ditangkap oleh kamera. Data koordinat landmark
kemudian digunakan sebagai fitur masukan (input features) untuk algoritma machine
learning seperti Random Forest dalam mengenali isyarat statis, serta Long Short-Term
Memory (LSTM) untuk isyarat dinamis. Arsitektur MediaPipe yang ringan namun
akurat menjadikannya solusi ideal untuk dikombinasikan dengan Raspberry Pi,
menciptakan sistem penerjemah bahasa isyarat BISINDO yang portabel, efisien, dan
real-time (Lugaresi et al., 2019).

2.2.6. Tensorflow

TensorFlow merupakan framework open-source dari Google yang dirancang
untuk mendukung komputasi numerik berskala besar dalam konteks machine learning.
Framework ini memodelkan perhitungan sebagai struktur data berbasis computational
graph, yang memungkinkan optimasi eksekusi melalui pemetaan otomatis node-node
graf ke berbagai unit komputasi, baik itu CPU, GPU, maupun distribusi antar node
dalam sebuah cluster (Shukla, N., dan Fricklas, K., 2018).

2.2.7. Joblib

Joblib adalah pustaka Python yang menyediakan mekanisme pemrosesan
terstruktur secara efisien melalui konsep pipelining yang ringan. Pustaka ini
mendukung caching fungsi secara otomatis ke disk untuk menghindari komputasi
ulang, serta memungkinkan eksekusi paralel yang sederhana, sehingga cocok
digunakan dalam workflow machine learning dan pemrosesan data berskala besar

(Faouzi, J., dan Janati, H., 2020).

18

2.2.8. Collections

Modul collections menyediakan berbagai tipe data kontainer khusus yang
dirancang sebagai alternatif dari struktur data bawaan Python seperti dict, list, set, dan
tuple. Tipe-tipe ini menawarkan fungsionalitas tambahan dan efisiensi yang lebih
tinggi dalam kasus penggunaan tertentu, seperti pengurutan, penghitungan frekuensi,
atau struktur data berorientasi queue dan mapping (Van Rossum, G. and Drake, F.L.,
1995).
2.2.9. Pickle

Pickle adalah pustaka standar Python yang digunakan untuk melakukan
serialisasi dan deserialisasi objek Python ke dalam format biner. Dengan kata lain,
modul ini memungkinkan objek Python seperti list, dictionary, atau bahkan model
machine learning disimpan ke dalam file dan dimuat kembali di lain waktu tanpa
kehilangan struktur dan nilainya. Fitur ini sangat berguna dalam proses penyimpanan
model, caching data, atau transfer objek antar sistem, terutama dalam workflow
machine learning di mana hasil pelatithan model sering kali perlu disimpan dan
digunakan kembali tanpa perlu dilatih ulang (Rostami et al., 2024).
2.2.10. Matplotlib

Matplotlib adalah pustaka grafik dalam Python yang digunakan untuk
visualisasi data, dan merupakan bagian penting dalam ekosistem data science Python.
Library ini memungkinkan pembuatan berbagai jenis grafik seperti line chart, bar
chart, scatter plot, dan lain-lain dengan fleksibilitas tinggi. Matplotlib terintegrasi
dengan baik bersama pustaka lain seperti NumPy, Pandas, dan pustaka ilmiah lainnya,
sehingga memudahkan proses eksplorasi, analisis, dan presentasi data dalam bentuk
visual yang informatif dan interaktif (Sial et al., 2021).
2.2.11. Regex

Regular expression (atau regex) adalah pola yang digunakan untuk
merepresentasikan sekumpulan string yang sesuai dengan kriteria tertentu. Modul re
dalam Python menyediakan berbagai fungsi untuk memeriksa apakah suatu string
cocok dengan pola regex yang diberikan, atau sebaliknya, apakah suatu pola regex

cocok dengan string tertentu yang secara konsep merupakan hal yang sama. Regular

19

expression sangat berguna dalam pemrosesan teks, seperti pencarian pola, validasi
format data, hingga ekstraksi informasi dari teks secara efisien (Van Rossum, G. and
Drake, F.L., 1995).

2.2.12. OS (Operating System)

Modul os menyediakan antarmuka yang portabel untuk mengakses
fungsionalitas yang bergantung pada sistem operasi. Melalui modul ini, pengguna
dapat melakukan berbagai operasi sistem seperti mengelola file, direktori, dan variabel
lingkungan, tanpa harus bergantung pada detail sistem operasi tertentu.

Jika hanya ingin membaca atau menulis file, bisa langsung menggunakan
fungsi open(). Untuk manipulasi path, tersedia submodul os.path. Jika perlu membaca
seluruh baris dari banyak file yang diberikan melalui command line, modul fileinput
lebih sesuai. Untuk membuat file atau direktori sementara, dapat menggunakan modul
tempfile, dan untuk operasi tingkat tinggi seperti menyalin atau memindahkan file dan
folder, disarankan menggunakan modul shuti/ (Van Rossum, G. and Drake, F.L., 1995).
2.2.13. Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) merupakan pengembangan dari arsitektur
Recurrent Neural Network (RNN) yang dirancang untuk mengatasi kelemahan utama
RNN standar dalam memproses data sekuensial, yaitu masalah vanishing gradient di
mana informasi dari input awal cenderung hilang atau memudar saat jaringan
memproses urutan yang panjang (Graves, A., dan Graves, A,. 2012). Masalah ini
menyebabkan jaringan kesulitan dalam mempertahankan konteks jangka panjang,
sehingga tidak mampu mengenali pola yang membutuhkan informasi historis yang
lebih jauh.

LSTM mengatasi masalah ini dengan memperkenalkan blok memori yang
terdiri dari sel memori dan tiga jenis gerbang (gates):

1. Input gate (mengontrol kapan informasi baru dapat disimpan ke dalam memori.).

i©=ag(Wx® + Ry +p; © ¢t~V + i) (1)

2. Forget gate (memutuskan informasi mana dari memori sebelumnya yang perlu

dilupakan).

20

fO=0a(Wx® + Ry® +p, © D + by) 2)

3. Output gate (mengatur kapan informasi dalam sel memori digunakan sebagai
keluaran).

0 = g(Wyx® + Ry +p, © c® + b,) 3)

Ketiga gerbang ini bekerja secara bersamaan untuk memungkinkan jaringan
menyimpan, mempertahankan, dan membuang informasi secara selektif, sehingga
membuat LSTM sangat efektif dalam mempelajari ketergantungan jangka panjang
dalam data sekuensial.

Dalam ulasan komprehensif yang dilakukan oleh Van Houdt et al. (2020),
LSTM terbukti sangat efektif dan telah menjadi arsitektur utama dalam berbagai
aplikasi, termasuk pengenalan suara, terjemahan otomatis, hingga sistem interaktif
berbasis A1 sepertt Google Translate dan Amazon Alexa. LSTM juga banyak diadopsi
dalam domain computer vision untuk mengenali pola dalam data visual sekuensial
seperti video, gerakan tubuh, dan gesture recognition.

Dengan kemampuannya tersebut, LSTM menjadi arsitektur yang sangat tepat
untuk digunakan dalam penelitian ini, khususnya dalam mengenali gestur dinamis
dalam Bahasa Isyarat Indonesia (BISINDO). Untuk mendukung pengenalan gestur
statis, digunakan algoritma Random Forest, yang menurut penelitian oleh Alexander
dkk. (2023), menunjukkan performa akurasi yang tinggi dan waktu klasifikasi yang
efisien dibandingkan dengan algoritma lainnya seperti KNN, SVM, dan Decision Tree.
Oleh karena itu, dalam penelitian ini dikembangkan pendekatan gabungan Random
Forest dan LSTM, dengan tujuan mengoptimalkan akurasi sistem penerjemah bahasa
isyarat berbasis kamera yang mampu berjalan secara real-time di perangkat Raspberry
Pi.

2.2.14. Random Forest

Random Forest merupakan metode ensemble learning berbasis pohon

keputusan yang pertama kali diperkenalkan oleh Breiman (2001). Metode ini

membentuk sekumpulan (forest) pohon keputusan yang dilatih menggunakan teknik

21

bootstrap aggregating (bagging), di mana setiap pohon dibangun dari subset data
pelatihan yang diambil secara acak dengan pengembalian. Selain itu, pada setiap
percabangan (splif) dalam pohon, hanya sebagian acak dari fitur yang
dipertimbangkan, guna menciptakan keragaman struktural antar pohon dalam
ensemble. Tujuan utama pendekatan ini adalah untuk mengurangi variance tanpa
meningkatkan bias, sehingga menghasilkan model yang lebih stabil dan memiliki
performa yang lebih tinggi dibandingkan model decision tree.

Secara formal, misalkan D,, = ((Xl,Yl), ey (X Yn)) adalah data pelatihan
dengan X; € RP sebagai vektor fitur dan Y; sebagai label target (untuk klasifikasi),
maka estimator Random Forest didefinisikan sebagai rata-rata dari prediksi seluruh

pohon:

M
1
Mu (601, ...Om Dn) = MZ M, (2,0, Dy) 4)
j=1

Biau dan Scornet (2016) menjelaskan bahwa model ini dapat dikaji lebih lanjut
melalui versi yang disederhanakan, seperti purely random trees, untuk memahami
karakteristik bias dan konvergensinya secara teoritis. Dalam varian ini, pemisahan
dilakukan tanpa mempertimbangkan label data, yang memungkinkan analisis sifat
konsistensi model terhadap fungsi target dalam regresi.

Keunggulan lain dari Random Forest adalah kemampuannya untuk
mengevaluasi performa model secara internal menggunakan metode Out-of-Bag
(OOB) error. Teknik ini memanfaatkan data yang tidak terambil selama proses
bootstrap untuk menguji akurasi model, sehingga tidak memerlukan pembagian
eksplisit antara data latih dan data uji. Selain itu, Random Forest juga menyediakan
metrik feature importance yang memungkinkan interpretasi terhadap pengaruh relatif
masing-masing fitur dalam proses prediksi. Dua metrik umum yang digunakan adalah
Mean Decrease in Impurity (MDI) dan Mean Decrease in Accuracy (MDA), yang
dapat memberikan wawasan penting dalam analisis variabel.

Biau dan Scornet (2016) juga membandingkan Random Forest dengan

22

algoritma populer lainnya seperti SVM dan KNN. Mereka menekankan bahwa
meskipun SVM unggul dalam masalah klasifikasi margin sempit dan KNN
menawarkan pendekatan berbasis tetangga terdekat yang intuitif, Random Forest lebih
unggul dalam hal ketahanan terhadap noise, efisiensi pada data berdimensi tinggi, serta
kemampuannya menangani fitur numerik dan kategorikal secara bersamaan tanpa perlu
normalisasi.

Secara keseluruhan, karakteristik non-parametrik, ketahanan terhadap
overfitting, serta kemampuannya dalam memberikan estimasi generalisasi dan
interpretabilitas menjadikan Random Forest sebagai model yang sangat sesuai untuk
aplikasi klasifikasi dalam berbagai domain, termasuk dalam sistem pengenalan gestur
bahasa isyarat berbasis landmark tangan.

2.2.15. Transformer

Arsitektur Transformer yang diperkenalkan oleh Vaswani et al. (2017) melalui
makalah Attention Is All You Need menjadi terobosan besar dalam pemodelan data
sekuensial. Model ini menggantikan Recurrent Neural Networks (RNN) dan
Convolutional Neural Networks (CNN) dengan sepenuhnya mengandalkan mekanisme
self-attention. Mekanisme inti yang digunakan adalah Scaled Dot-Product Attention,

yang diformulasikan sebagai:

. QK"
Attention(Q,K,V) = softmax %4 (5)

Vi

Dengan Q (query), K (key), V (value), dan d; dimensi kunci. Rumus ini
memungkinkan transformer untuk secara efisien menangkap ketergantungan jangka
panjang antar elemen dalam sebuah urutan, sekaligus memfasilitasi paralelisasi
sehingga pelatihan menjadi lebih cepat dibanding arsitektur berbasis RNN.

Kemampuan transformer ini kemudian diadaptasi pada domain pengenalan
bahasa isyarat oleh Camgoz et al. (2020) yang mengusulkan Sign Language
Transformer (SLT). Mereka membangun model end-to-end yang dapat melakukan
Continuous Sign Language Recognition (CSLR) dan Sign Language Translation (SLT)

secara bersamaan. Dengan memanfaatkan encoder—decoder berbasis transformer,

23

model ini terbukti mencapai hasil state-of-the-art pada dataset RWTH-PHOENIX-
Weather-2014T.

Selanjutnya, Chaudhary et al. (2022) mengembangkan SignNet II, yaitu model
berbasis transformer untuk penerjemahan dua arah bahasa isyarat (sign-to-text dan text-
to-sign). Melalui mekanisme dual learning dan metric embedding learning, mereka
berhasil meningkatkan kualitas translasi secara signifikan, khususnya dalam
mempertahankan kesamaan antar tanda pada representasi pose. Hasil tersebut semakin
memperkuat posisi transformer sebagai arsitektur yang fleksibel dan efektif dalam
pemrosesan multimodal.

Dalam konteks penelitian ini, pengembangan sistem klasifikasi Bahasa Isyarat
Indonesia (BISINDO) secara real-time dengan Raspberry Pi 5 RAM 16 GB dilakukan
dengan menghadirkan transformer sebagai metode pembaruan dari penelitian
sebelumnya. Penyisipan transformer diharapkan mampu memberikan peningkatan
performa, khususnya dalam menangkap pola spasio-temporal yang kompleks pada
data gerakan bahasa isyarat, sekaligus menjadi kontribusi yang selaras dengan tren
penelitian terkini.

2.2.16. Tensorflow Lite

TensorFlow Lite (TFLite) merupakan kerangka kerja open-source yang
dikembangkan oleh Google untuk menjalankan model pembelajaran mesin pada
perangkat dengan sumber daya terbatas seperti ponsel, IoT, dan mikrokontroler.
Framework ini hadir sebagai solusi dari kebutuhan 7iny Machine Learning (TinyML)
yang memungkinkan model deep learning dijalankan secara langsung pada perangkat
edge dengan keterbatasan daya, memori, dan komputasi (David et al., 2021).

Cara kerja TFLite dimulai dari konversi model yang telah dilatih di TensorFlow
ke dalam format FlatBuffer (.tflite). Proses konversi ini sering disertai dengan berbagai
optimasi, antara lain quantization (mengubah representasi bobot dari 32-bit float ke 8-
bit integer), operator fusion, dan constant folding. Optimasi tersebut membuat ukuran
model lebih kecil, konsumsi memori lebih rendah, serta kecepatan inferensi meningkat

tanpa mengurangi akurasi secara signifikan. Setelah itu, model dijalankan

24

menggunakan TFLite Interpreter, yaitu komponen ringan yang dirancang untuk
memfasilitasi eksekusi model di berbagai platform edge (David et al., 2021).

Keunggulan utama TFLite adalah efisiensi dan portabilitasnya. Penelitian
Coffen & Mahmud (2021) menunjukkan bahwa model LSTM untuk pengenalan
gesture yang awalnya berukuran 2.8 MB dapat diperkecil dengan teknik konversi dan
kuantisasi sehingga mampu dijalankan langsung pada perangkat edge. Dengan
demikian, konsumsi daya berkurang dan sistem tidak perlu lagi bergantung pada
komunikasi data ke server eksternal. Penelitian lain oleh Konaite et al. (2021)
memperlihatkan bahwa Raspberry Pi 4 yang menjalankan model SSD MobileNet v2
melalui TFLite dapat mendeteksi objek secara real-time dengan kecepatan rata-rata 5
frame per detik. Hal ini menegaskan bahwa TFLite mampu menjembatani kebutuhan
deep learning di perangkat dengan keterbatasan sumber daya, sekaligus tetap
mempertahankan performa yang baik.

Dengan karakteristik tersebut, TFLite menjadi komponen penting dalam
pengembangan aplikasi machine learning modern yang bersifat portabel, hemat energi,
dan dapat beroperasi secara real-time. Hal ini membuatnya relevan dalam berbagai
bidang, mulai dari sistem pengenalan gesture hingga perangkat wearable yang
membutuhkan pemrosesan data langsung di perangkat.

2.2.17. Augmentasi Citra

Augmentasi citra merupakan strategi fundamental dalam pengembangan model
Deep Learning, khususnya pada bidang visi komputer, yang bertujuan untuk
meningkatkan kuantitas dan variabilitas data latih secara artifisial tanpa melalui proses
akuisisi data baru yang memakan biaya. Urgensi penerapan metode ini didasari oleh
kebutuhan model dengan parameter besar terhadap volume data yang masif guna
mencapai kinerja yang kompetitif dan mencegah terjadinya overfitting atau fenomena
di mana model mengingat data spesifik akibat keterbatasan sampel pelatihan. Secara
teoritis, mekanisme augmentasi citra bekerja dengan memanipulasi distribusi data
melalui konsep vicinity distribution. Konsep ini mengasumsikan bahwa distribusi
probabilitas data tidak hanya terpaku pada titik tunggal sampel asli, melainkan dapat

diperluas ke area sekitarnya melalui modifikasi visual yang tetap mempertahankan

25

label semantiknya, sehingga model dapat mempelajari fitur yang lebih general dan
tangguh (robust).

Berdasarkan jurnal yang dipaparkan oleh Xu et al. (2023), metode augmentasi
citra diklasifikasikan ke dalam beberapa kategori utama, di mana pendekatan yang
diterapkan dalam penelitian ini tergolong sebagai Model-free Single-image
Augmentation. Kategori ini memanfaatkan teknik pengolahan citra konvensional pada
citra tunggal untuk menghasilkan variasi baru, dengan fokus utama pada transformasi
geometris. Transformasi geometris bertujuan untuk memodifikasi hubungan spasial
antar piksel guna mensimulasikan variasi kondisi fisik objek di dunia nyata. Teknik-
teknik spesifik yang termasuk dalam domain ini meliputi translasi untuk
memvariasikan posisi objek dalam bingkai , rotasi untuk mengubah perspektif sudut
pandang objek , serta penskalaan yang berfungsi meniru variasi jarak atau ukuran objek.
Penerapan kombinasi transformasi ini terbukti efektif dalam memperkaya distribusi
data latih, khususnya pada dataset dengan tantangan variasi deformasi dan posisi objek.
2.3. Raspberry Pi

Raspberry Pi adalah komputer mini berukuran sebesar kartu kredit yang
dikembangkan oleh Raspberry Pi Foundation di Inggris, dengan tujuan menyediakan
perangkat komputasi murah dan portabel untuk pendidikan dan pengembangan
teknologi. Raspberry Pi mendukung berbagai bahasa pemrograman seperti Python, C,
C++, Java, dan lainnya, serta dapat menjalankan sistem operasi berbasis Linux seperti
Raspbian (sekarang Raspberry Pi OS), Debian, dan lainnya.

Seiring perkembangan teknologinya, Raspberry Pi telah dirilis dalam berbagai
varian model dengan spesifikasi dan fungsi yang disesuaikan untuk kebutuhan yang
berbeda. Beberapa di antaranya dirancang untuk penggunaan umum dan edukasi,
seperti Raspberry Pi 3 dan 4, sementara model lain seperti Raspberry Pi Zero dan
Compute Module lebih ditujukan untuk proyek embedded dan aplikasi industri. Tiap
model memiliki perbedaan signifikan dalam hal kapasitas RAM, kecepatan prosesor,
jumlah port, serta dukungan terhadap fitur seperti Wi-Fi, Bluetooth, dan antarmuka
video. Tabel 2.1. berikut menyajikan ringkasan spesifikasi dari berbagai versi

Raspberry Pi yang telah dirilis hingga saat ini.

26

Tabel 2.1 Versi Raspberry Pi

HDMI /
Model RAM CPU Port USB Konektivitas
Display
Raspberry 4/8/16 4x24 4(2xUSB 2xmicro- WiFi &
Pi5 GB GHz 3.0) HDMI Bluetooth
Raspbe 4x1.8 4((2xUSB WiFi &
poerty 4GB (Ya
Pi 400 GHz 3.0) Bluetooth
Raspberry 1/2/4/8 4x1.5 4(2xUSB 2xmicro- WiFi &
Pi4B GB GHz 3.0) HDMI Bluetooth
Compute 1/2/4/8 4x1.5 Tidak
Tidak ada Opsional
Module 4 GB GHz ada
Raspbe 4x1.4 WiFi &
P 4 1 GB 4 Ya
Pi3 B+ GHz Bluetooth
Raspbe 4x1.4 WiFi &
il 512 MB 1 Tidak
Pi3 A+ GHz Bluetooth
Raspberry 4x1 WiFi &
512 MB 1 (micro) Tidak
PiZero 2 W GHz Bluetooth
Raspberry I x1 WiFi &
512 MB 1 (micro) Tidak
Pi Zero W GHz Bluetooth
Raspberry 1 x1
512 MB 1 (micro) Tidak Tidak ada
Pi Zero GHz
Raspbe 4 %900
poeTLy 1 GB 4 Ya Tidak ada
Pi2B MHz

Versi terbaru saat ini, Raspberry Pi 5, menawarkan peningkatan spesifikasi
yang signifikan dengan prosesor quad-core Arm Cortex-A76 berkecepatan 2.4GHz dan
kapasitas RAM hingga 16GB. Model ini juga dilengkapi dengan konektivitas yang
lebih canggih, termasuk dua port USB 3.0 dengan bandwidth simultan penuh, Wi-Fi,
Bluetooth 5.0, port micro-HDMI ganda, serta tambahan antarmuka PCle 2.0 untuk

27

periferal berkecepatan tinggi. Dengan lonjakan performa tersebut, Raspberry Pi 5
sangat mumpuni untuk menangani beban komputasi menengah hingga berat,
menjadikannya platform yang ideal untuk menjalankan algoritma machine learning
dan sistem computer vision yang kompleks secara lebih responsif.

Meskipun begitu, Monk (2023) juga mengingatkan bahwa Raspberry Pi
memiliki keterbatasan, terutama dalam hal manajemen suhu. Raspberry Pi 4, misalnya,
rentan terhadap overheating saat digunakan untuk komputasi intensif dalam jangka
waktu lama. Untuk mengatasi hal ini, disarankan penggunaan sistem pendingin aktif
seperti kipas (fan), heatsink, atau casing berpendingin. Selain itu, pemilihan SD card
berkecepatan tinggi (minimal Class 10) dan power supply 5V 3A juga penting untuk

menjamin kestabilan sistem.

Gambar 2.4 Raspberry Pi 5 (Sumber: Raspberry Pi Ltd, 2025)

Gambar 2.4. memperlihatkan tampilan fisik Raspberry Pi yang digunakan
dalam penelitian ini. Pada gambar tersebut, beberapa komponen utama diberi
penomoran untuk mempermudah identifikasi dan penjelasan masing-masing
fungsinya. Berikut ini adalah uraian dari komponen-komponen penting yang ditandai:

1. Gigabit Ethernet

Port ini digunakan untuk konektivitas jaringan kabel (LAN) dengan
kecepatan hingga 1 Gbps. Gigabit Ethernet sangat berguna untuk keperluan

28

transfer data berkecepatan tinggi, komunikasi antarmuka dengan server,
atau ketika Raspberry Pi digunakan dalam jaringan lokal yang stabil dan
responsif.
USB 3.0

2. Port USB 3.0 (berwarna biru) menawarkan kecepatan transfer data yang
jauh lebih tinggi dibandingkan USB 2.0, hingga 5 Gbps. Dalam penelitian
ini, USB 3.0 dapat dimanfaatkan untuk menghubungkan kamera eksternal
(webcam), flashdisk, atau perangkat penyimpanan lainnya untuk
mempercepat pemrosesan dan penyimpanan data.

3. USB2.0
Port USB 2.0 digunakan untuk koneksi perangkat seperti mouse, keyboard,
atau perangkat input-output lainnya yang tidak membutuhkan kecepatan
transfer tinggi. Keberadaan USB 2.0 memungkinkan Raspberry Pi
berfungsi layaknya komputer desktop dalam skala mini.1

4. Micro HDMI
Raspberry Pi 5 dilengkapi dua port micro HDMI yang dapat digunakan
untuk menampilkan output grafis ke layar monitor atau TV. Port ini
mendukung output video hingga resolusi 4K. Dalam konteks pengujian
sistem deteksi gesture, micro HDMI digunakan untuk menampilkan
antarmuka visual dan hasil klasifikasi secara langsung di layar eksternal.

5. USB Type-C (Power Supply)
Port ini berfungsi sebagai jalur utama untuk memasok daya ke Raspberry
Pi. Dibandingkan versi sebelumnya yang menggunakan micro USB, port
USB Type-C mampu menyediakan arus listrik yang lebih stabil dan cukup
untuk mendukung komponen-komponen tambahan seperti kamera, sensor,
atau layar tambahan.

Raspberry Pi sangat populer dalam pengembangan sistem tertanam (embedded

systems), terutama karena harganya yang murah, ukuran kecil, dan fleksibilitas tinggi.
Keunggulannya antara lain: dukungan terhadap banyak sensor dan perangkat eksternal

melalui GPIO, kompatibilitas dengan berbagai jenis kode, serta dapat difungsikan

29

sebagai komputer portabel. Dalam penelitian ini, Raspberry Pi digunakan sebagai
platform utama untuk menjalankan sistem klasifikasi bahasa isyarat BISINDO secara
real-time, karena kemampuannya yang cukup untuk memproses input dari kamera dan
menjalankan model machine learning secara efisien.

Namun, Raspberry Pi juga memiliki keterbatasan, seperti tidak adanya
penyimpanan internal (mengandalkan SD card), kinerja grafis yang terbatas, serta
potensi overheating jika digunakan dalam waktu lama tanpa pendingin tambahan.
Meskipun demikian, kombinasi fleksibilitas, portabilitas, dan kemudahan
pemrograman menjadikan Raspberry Pi sangat ideal untuk proyek-proyek inovatif
berbasis 4/ dan pengolahan citra (Ghael et al., 2020).

Kemampuan Raspberry Pi sebagai unit pemrosesan computer vision telah
dibuktikan dalam berbagai implementasi praktis. Sebagai contoh, Raspberry Pi telah
digunakan sebagai inti dari sistem visi berbasis Deep Neural Network (DNN) untuk
tugas-tugas keselamatan gedung. Dalam studi tersebut, sistem yang dikembangkan
mampu mendeteksi aliran asap sekaligus melakukan estimasi kepadatan manusia di
dalam ruangan secara real-time selama simulasi insiden kebakaran. Platform yang
sama juga telah diusulkan untuk sistem penghitungan manusia dalam sebuah adegan
dengan memanfaatkan deteksi kepala (Birajdar et al., 2021).

Selain itu, Raspberry Pijuga populer digunakan sebagai unit pemrosesan utama
dalam sistem tertanam (embedded systems) yang lebih kompleks, seperti robotika
otonom. Sebuah tinjauan teknologi pada robot pemetik buah dan sayuran menyoroti
peran krusial modul visi yang seringkali ditenagai oleh single-board computer. Dalam
aplikasi tersebut, sistem visi menggunakan kamera untuk menangkap citra, yang
kemudian diproses menggunakan algoritma machine learning untuk mengidentifikasi
secara akurat jenis, lokasi, dan bahkan tingkat kematangan dari hasil panen. Data hasil
pemrosesan visual ini kemudian digunakan oleh robot untuk menentukan lokasinya
secara presisi dan merencanakan aktuasi lengan robotik untuk melakukan pemetikan

(Chen et al, 2024).

30

2.3.1. PiCamera

Kamera Raspberry Pi atau Pi Camera merupakan modul kamera yang
dirancang khusus untuk papan pengembangan Raspberry Pi. Modul ini terhubung
melalui Camera Serial Interface (CSI) dengan kabel pita 15-pin sehingga mampu
berkomunikasi langsung dengan GPU Raspberry Pi. Keunggulan ini membuat Pi
Camera dapat melakukan pemrosesan gambar dengan cepat tanpa membebani CPU,
serta mendukung perekaman video berkualitas tinggi seperti HD video, time-lapse,
maupun slow-motion (Symon et al., 2017). Fitur tersebut menjadikan Pi Camera
banyak dimanfaatkan dalam aplikasi berbasis visi komputer, sistem pemantauan,
maupun pengembangan sistem cerdas yang membutuhkan pengolahan citra secara
real-time.

Dalam penelitian Symon et al. (2017), Pi Camera digunakan sebagai sensor
visual utama pada sistem pemantauan bayi berbasis Raspberry Pi. Kamera ini bekerja
secara terintegrasi dengan sensor lain, seperti PIR sensor untuk mendeteksi gerakan
dan mikrofon untuk mendeteksi suara tangisan bayi. Hasil tangkapan kamera
ditampilkan secara real-time melalui LCD display, sementara buzzer digunakan
sebagai alarm jika bayi terdeteksi bergerak atau menangis. Penelitian ini menunjukkan
bahwa Pi Camera tidak hanya berfungsi sebagai perangkat pengambil gambar, tetapi
juga sebagai komponen penting dalam embedded system yang memerlukan monitoring
visual secara langsung.

Seiring perkembangannya, Pi Camera telah hadir dalam berbagai versi dengan
peningkatan resolusi, kualitas sensor, dan fitur tambahan. Perbandingan versi Pi

Camera dapat dilihat pada Tabel 2.2.

31

Tabel 2.2 Versi Pi Camera

Tahun
Versi Sensor Resolusi Foto Resolusi Video
Rilis
1080 301ps, 720
OmniVision 5 MP p @30fp P
Vi @601ps, 480p 2013
0oVv5647 (2592%1944)
@901ps
1080 301ps, 720
V2 S IMX219 8 MP @p6f)@f i)180 i 2016
ony ps, p
(3280%2464)
@901ps
HQ 12.3 MP
Sony IMX477 4K @301fps 2020
Camera (4056%3040)
Camera
Sony IMX708 12 MP 4608%2592 @601fps 2023
Module 3

Berdasarkan tabel tersebut, dapat dilihat bahwa Raspberry Pi Camera telah
mengalami perkembangan signifikan dari versi 1 hingga Camera Module 3, baik dari
segi resolusi, sensor, maupun fitur tambahan. Perkembangan ini memperluas cakupan
aplikasi Pi Camera, mulai dari penelitian akademik, sistem pengenalan citra, hingga
penggunaan profesional dalam bidang industri dan IoT.

Pada penelitian ini, penulis menggunakan Pi Camera Module vI yang
dilengkapi sensor OmniVision OV5647 dengan resolusi 5 megapiksel. Modul ini
mampu merekam video hingga 1080p pada 30 fps, sehingga cukup mendukung
kebutuhan pengolahan citra untuk sistem pengenalan bahasa isyarat berbasis Raspberry
Pi. Walaupun spesifikasi modul vl masih terbatas dibanding generasi terbaru,
penggunaannya tetap relevan karena konsumsi daya yang rendah, kemudahan integrasi,
serta ketersediaannya yang luas di komunitas pengembang. Hal ini menjadikan Pi
Camera v1 pilihan yang tepat untuk tahap awal pengembangan sistem portabel berbasis

Raspberry Pi. Bentuk fisik dari modul kamera ini dapat dilihat pada Gambar 2.5.

32

}!!ll}lllllllll]lllll”ll]

0 02

Gambar 2.5 Pi Camera vl SMP (Sumber: Pomaska, 2019)

33

Bab III

Analisis dan Perancangan Sistem

3.1. Metode Penelitian

Untuk mencapai tujuan penelitian yang telah dirumuskan, penelitian ini
dilaksanakan melalui serangkaian tahapan yang sistematis dan terstruktur. Metode
penelitian yang diterapkan menggunakan pendekatan eksperimental untuk
mengembangkan sistem klasifikasi bahasa isyarat BISINDO pada perangkat embedded.

Secara garis besar, alur tahapan penelitian ini digambarkan dalam Flowchart pada

Gambar 3.1.

Perancangan
Studi Literatur dan Pelatihan
Model
Identifikasi]11(;131];111&1:351
Masalah paca Raspberry
P15
Pengumpulan Penguijian
Data Sistem No
Preprocessing Analisis Hasil
Data tan Pembahasan|
Hasil Sesuai
A Target?

Penarikan
Kesimpulan

34

Gambar 3.1 Flowchart Metode Penelitian

Berdasarkan Gambar 3.1, tahapan penelitian dijelaskan secara rinci sebagai

berikut;

1.

Studi Literatur: Tahap awal dilakukan dengan mengkaji teori terkait
BISINDO, pengolahan citra digital, arsitektur Deep Learning (LSTM dan
Transformer), serta implementasi pada Raspberry Pi.

Identifikasi Masalah: Merumuskan permasalahan terkait kendala
komunikasi teman Tuli dan kebutuhan sistem penerjemah yang portabel
dan real-time.

Pengumpulan Data: Melakukan pengambilan data citra gestur statis dan
sequence gestur dinamis menggunakan kamera, yang kemudian diproses
menggunakan MediaPipe untuk mendapatkan fitur /andmark tangan.
Perancangan Sistem: Merancang arsitektur perangkat keras
menggunakan Raspberry Pi 5 dan Pi Camera vI, serta merancang
arsitektur model Random Forest, LSTM, dan Transformer.

Implementasi Model: Melatih model klasifikasi menggunakan dataset
yang telah dikumpulkan, melakukan optimasi hyperparameter, dan
mengonversi model ke format TensorFlow Lite.

Pengujian dan Evaluasi: Tahap ini dilakukan untuk memvalidasi kinerja
sistem melalui dua skenario pengujian utama:

e Evaluasi Model: Mengukur performa model klasifikasi
menggunakan data uji yang telah dipisahkan. Evaluasi dilakukan
menggunakan metrik Confusion Matrix, Akurasi, Presisi, Recall,
dan FI-Score untuk mengetahui kemampuan model dalam
mengenali gestur sebelum diimplementasikan ke perangkat keras.

e Evaluasi Sistem Real-Time: Menguji integrasi sistem secara
langsung pada perangkat Raspberry Pi 5. Pengujian ini mencakup
akurasi deteksi gestur secara real-time oleh pengguna, serta
pengukuran kinerja komputasi yang meliputi kecepatan inferensi
(latency), Frame Rate (FPS), penggunaan CPU, dan stabilitas suhu
perangkat.

35

7. Analisis dan Kesimpulan: Menganalisis hasil pengujian untuk
membandingkan kinerja antara metode LSTM dan Transformer, serta

menarik kesimpulan dari penelitian yang dilakukan.

3.2. Analisis Kebutuhan

Analisis kebutuhan dilakukan untuk merumuskan spesifikasi sistem yang akan
dikembangkan agar sesuai dengan tujuan penelitian. Sistem yang dirancang adalah
pengembangan sistem klasifikasi Bahasa Isyarat Indonesia (BISINDO) secara real-
time berbasis Raspberry Pi, dengan pembaruan berupa integrasi metode Random Forest
untuk gestur statis, serta perbandingan antara Long Short-Term Memory (LSTM) dan
Transformer dalam pengenalan gestur dinamis. Analisis ini menjadi landasan dalam
merancang arsitektur, algoritma, dan implementasi sistem yang handal, portabel, serta
dapat bekerja pada perangkat dengan keterbatasan sumber daya.
3.2.1. Kebutuhan Fungsionalitas

Kebutuhan fungsional menjelaskan fungsi utama yang harus dimiliki sistem

agar dapat berjalan sesuai dengan tujuan penelitian, yaitu:

1. Sistem mampu menangkap gerakan tangan pengguna melalui kamera yang
terpasang pada Raspberry Pi.

2. Sistem dapat mendeteksi dan mengekstraksi landmark tangan secara real-
time menggunakan pustaka MediaPipe.

3. Sistem mengklasifikasikan gestur statis BISINDO menggunakan algoritma
Random Forest.

4. Sistem mengklasifikasikan gestur dinamis dengan menggunakan dua
pendekatan berbeda, yaitu LSTM dan Transformer, untuk kemudian
dilakukan analisis perbandingan performa.

5. Sistem dapat menampilkan hasil prediksi gestur dalam bentuk label teks
secara real-time.

3.2.2. Kebutuhan Non-Fungsional
Selain fungsi utama, sistem juga harus memenuhi aspek non-fungsional agar

dapat digunakan secara efektif, yaitu:

36

1. Kinerja: sistem harus dapat memproses input video secara real-time dengan

latensi rendah.

2. Portabilitas: sistem dijalankan pada perangkat Raspberry Pi sehingga dapat

digunakan secara mandiri tanpa ketergantungan pada komputer eksternal.

3. Efisiensi: penggunaan daya dan memori harus dioptimalkan mengingat

keterbatasan perangkat keras.

4. Kemudahan penggunaan: antarmuka sistem dirancang sederhana agar dapat

dipahami dan digunakan tanpa kesulitan oleh pengguna awam.
3.2.3. Kebutuhan Data

Sistem memerlukan dataset yang terdiri dari dua jenis gestur, yaitu gestur statis

dan gestur dinamis.

e Gestur statis: dikumpulkan dalam bentuk citra tunggal tangan pada posisi
tertentu yang mewakili huruf, angka, atau kosakata BISINDO. Data ini
digunakan untuk pelatithan model Random Forest.

e Gestur dinamis: dikumpulkan dalam bentuk rangkaian frame (sequence)
berisi koordinat landmark tangan. Dataset ini digunakan untuk pelatihan
model LSTM dan Transformer. Setiap kelas gestur dinamis dikumpulkan
minimal 105 sequence dengan panjang 20 frame per sequence, sehingga

cukup mewakili variasi antar-subjek.

3.3. Pengumpulan Data

Jenis gestur yang digunakan dalam penelitian ini diklasifikasikan menjadi dua
kategori utama, yaitu gestur statis dan gestur dinamis, berdasarkan karakteristik
pergerakannya. Gestur statis merupakan bentuk isyarat yang dapat dikenali dari satu
citra tunggal tanpa memerlukan analisis urutan waktu, seperti huruf alfabet, angka, dan
beberapa kosakata BISINDO yang tidak melibatkan perubahan posisi tangan secara
signifikan. Gestur-gestur tersebut dilatih menggunakan algoritma Random Forest,
yang efektif dalam mengenali pola visual tetap dari koordinat landmark tangan. Daftar

lengkap gestur statis yang digunakan sebagai data pelatihan dan pengujian dalam

37

penelitian ini disajikan pada Tabel 3.1, yang mencakup seluruh kata statis dalam

BISINDO.

Tabel 3.1 Gestur yang dilatih Random Forest

A-Z BAWAH MENDENGAR
0-10 BISA BERDOA
ANDA KAMU MAKAN KANAN
ITU MENUNJUK TIDUR KIRI
SAYA BACA

Sementara itu, gestur dinamis dilatih menggunakan metode LSTM dan
Transformer karena kedua model tersebut mampu mempelajari pola temporal dari
rangkaian gerakan tangan. Gestur dinamis mencakup kosakata yang direpresentasikan
dalam bentuk sequence pergerakan tangan. Daftar gestur dinamis yang digunakan

dalam penelitian ini ditampilkan pada Tabel 3.2.

Tabel 3.2 Gestur kosakata yang dilatth LSTM dan Transformer

AIR SEPERTI TAHUN DARI TURUN
INI ATAU BELAJAR MINUM HANYA
ROTI DALAM LUAR ORANG DAN
MILIK
ATAS SIAPA DIA APA
PUNYA
JADI KERJA UNTUK NAIK NASI
JIKA
MEREKA KITA G BANGUN
KALAU
BICARA TULIS JALAN LARI MEMBELI
MENUTUP MEMBERI MENERIMA MENOLONG MENUNGGU
DUDUK BERDIRI DATANG MASUK KELUAR

38

TUTUP
MENANGIS TERTAWA MENJAWAB MENANYAKAN

(MATA)
MENCUCI
MENYAPU MEMASAK MENGIRIM NAMA
BAJU
MINTA
BERCERITA MENYANYI BERMAIN DEPAN
MAAF
ANTARA DEKAT JAUH DI SINI DI SANA
TIMUR BARAT SELATAN UTARA R
TAHU
J TAPI SEMUA LIHAT
PAHAM

MEMBACA MENERIMA
MENJUAL MEMINTA PAKAI

AL QURAN PESAN
BELAKANG SEBELUM BERKATA AMBIL AKAN
PULANG PERGI DENGAR ~ MEMBUKA MENONTON
BUKA MENONTON

MENIKAH SAMPING SESUDAH
(MATA) TV

Proses pengumpulan data dalam penelitian ini dibedakan menjadi dua tahap
sesuai dengan karakteristik model yang digunakan, yaitu Random Forest untuk
klasifikasi gestur statis dan LSTM/Transformer untuk klasifikasi gestur dinamis.

Seluruh proses akuisisi data dilaksanakan di lingkungan Laboratorium Human-
Machine Interaction (HMI). Kondisi pencahayaan di area pengambilan data dipantau
secara ketat menggunakan alat ukur Luxmeter, dengan intensitas cahaya dijaga stabil
pada rentang 200 hingga 300 Lux untuk memastikan visibilitas fitur tangan tetap
optimal bagi sensor kamera. Berbeda dengan pendekatan yang menggunakan latar
belakang polos, penelitian ini menerapkan kondisi latar belakang natural yang
kompleks yang memuat berbagai objek inventaris laboratorium. Hal ini bertujuan
untuk menguji ketahanan model dalam memisahkan objek tangan dari gangguan visual

di lingkungan nyata.

39

Untuk menjaga konsistensi proporsi dan skala citra tangan, jarak antara subjek
dan kamera dipertahankan konstan pada rentang 50 hingga 80 cm, baik pada fase
pengumpulan data maupun pengujian. Namun, terdapat perbedaan pada spesifikasi
perangkat keras akuisisi yang digunakan. Pada tahap pengumpulan dataset latih,
perekaman dilakukan menggunakan Webcam Logitech C270 dengan konfigurasi
resolusi 1280x720 piksel dan kecepatan 30 fps. Sedangkan pada tahap evaluasi sistem
real-time, perangkat digantikan oleh modul PiCamera vl yang terhubung dengan
sistem pemroses, dengan pengaturan jarak dan sudut pandang yang identik serta
resolusi input yang disesuaikan untuk menjaga validitas performa model pada
embedded device.

Pada tahap pertama, data untuk model Random Forest diperoleh dalam bentuk
citra tunggal dari setiap gestur statis. Proses pengambilan dilakukan menggunakan PC
yang terhubung dengan webcam sebagai perangkat perekaman. Terdapat 6 partisipan
dalam proses pengambilan data, yang seluruhnya merupakan mahasiswa berusia 20—
23 tahun. Setiap partisipan diminta memperagakan gestur sesuai kategori yang
ditentukan, kemudian direkam sebanyak 200 gambar per gestur dengan bantuan
pustaka OpenCV. Seluruh citra hasil tangkapan kamera selanjutnya diproses
menggunakan MediaPipe Hands untuk mengekstraksi titik-titik koordinat tangan
dalam bentuk tiga dimensi (x, y, z). Data landmark tersebut digunakan sebagai
representasi fitur yang kemudian dilatih dengan model Random Forest. Kategori gestur
yang dikumpulkan meliputi 104 kosakata harian, huruf alfabet A—Z, serta angka 0-10,
sehingga dataset mencakup variasi gerakan yang luas untuk mendukung pengenalan
gestur statis BISINDO. Alur proses pengumpulan data ini dapat dilihat pada Gambar
3.2. beserta juga contoh data yang diperoleh pada Gambar 3.3.

Konversi

Gestur Deteksi 21 Landmarks

40

Gambar 3.2 Skema pengumpulan data gestur statis dan titik-titik landmark yang akan
dikonversi dalam format file CSV

Gambar 3.3 Dataset Random Forest Gestur "BAWAH"

Berbeda dengan Random Forest, pengumpulan data untuk model LSTM dan
Transformer dilakukan dalam bentuk rangkaian sequence yang merepresentasikan
gestur dinamis. Proses pengambilan juga dilakukan menggunakan PC dan webcam
dengan dukungan pustaka MediaPipe Hands. Setiap sequence terdiri dari 20 frame
berurutan, dengan setiap frame berisi koordinat tiga dimensi dari 21 titik landmark
tangan. Untuk setiap kelas gestur dinamis, dikumpulkan sebanyak 105 sequence dari
setiap partisipan. Agar partisipan tidak mengalami kelelahan akibat repetisi yang
berulang, pengambilan data dirancang dengan memberi jeda istirahat selama 1 menit
setiap kali selesai satu kelas gestur. Dataset hasil perekaman kemudian disimpan dalam
format .npz, yang berisi array berdimensi (105, 20, 63/126) tergantung jumlah tangan
yang terdeteksi, serta metadata seperti identitas partisipan, kategori gestur, dan
parameter perekaman. Struktur data ini dipilih karena sesuai dengan kebutuhan input

model LSTM dan Transformer yang memerlukan representasi sekuensial. Visualisasi

41

akuisisi dataset gestur dinamis ditampilkan pada Gambar 3.4 dan hasil akuisisi dataset

ditampilkan pada gambar 3.5.

Gambar 3.5 Hasil Pengambilan Dataset Gestur Dinamis

Dengan adanya perbedaan metode pengumpulan data ini, sistem dapat
menangani dua jenis gestur dengan pendekatan yang sesuai. Gestur statis
direpresentasikan dalam bentuk citra tunggal, diekstraksi menjadi landmark tangan
menggunakan MediaPipe Hands, lalu dilatith menggunakan Random Forest. Sementara
itu, gestur dinamis direpresentasikan sebagai sequence frame, diekstraksi dengan cara
yang sama menggunakan MediaPipe Hands, lalu digunakan sebagai input untuk
melatih model LSTM maupun 7Transformer agar pola temporal pergerakan dapat

dipelajari secara lebih mendalam.

42

Sebelum digunakan dalam pelatihan model, seluruh gestur yang dikumpulkan
divalidasi oleh ahli Bahasa Isyarat Indonesia (BISINDO) untuk memastikan kesesuaian
bentuk gestur dengan standar bahasa isyarat yang berlaku. Setelah divalidasi, dataset
dibagi dengan rasio 80:20 untuk data latih dan data uji. Selain itu, pelatihan model juga
menerapkan 5-Fold Cross-Validation untuk meningkatkan reliabilitas dan generalisasi
model terhadap data baru. Dengan adanya perbedaan metode pengumpulan dan
pengolahan data ini, sistem mampu mengenali baik gestur statis maupun dinamis
secara efektif sesuai karakteristik model masing-masing.

3.4. Pembentukan Model Klasifikasi

Pembentukan model klasifikasi dalam penelitian ini dilakukan dengan tiga
pendekatan utama, yaitu Random Forest, LSTM (Long Short-Term Memory), dan
Transformer. Seluruh model dilatih menggunakan dataset BISINDO yang telah
diproses menjadi representasi koordinat landmark tangan hasil ekstraksi dari
MediaPipe. Untuk menjamin konsistensi dan reliabilitas model, data dibagi menjadi
80% untuk pelatihan dan validasi, serta 20% untuk pengujian akhir. Selain itu, pada
tahap pelatihan diterapkan 5-Fold Cross Validation pada data latih untuk memperoleh
evaluasi yang lebih menyeluruh serta mengurangi potensi bias akibat pemisahan data
tunggal.

Dalam proses pelatihan model, penentuan nilai hyperparameter memegang
peranan krusial terhadap performa akhir sistem. Pemilihan hyperparameter pada
penelitian ini dilakukan menggunakan pendekatan empiris melalui serangkaian
eksperimen iteratif. Nilai parameter tidak ditentukan menggunakan pencarian otomatis,
melainkan disesuaikan secara manual berdasarkan observasi terhadap konvergensi /oss
dan akurasi model pada data validasi.

Proses ini dimulai dengan mengadopsi nilai standar yang direkomendasikan
dalam literatur terkait, kemudian dilakukan penyesuaian bertahap untuk mendapatkan
konfigurasi yang paling optimal bagi karakteristik dataset gestur yang digunakan.
Konfigurasi akhir yang dipilih adalah konfigurasi yang menghasilkan keseimbangan
terbaik antara akurasi pelatihan dan kemampuan generalisasi guna menghindari

overfitting.

43

3.4.1. Arsitektur Model Random Forest

Model Random Forest dirancang untuk mengklasifikasikan gestur statis,
seperti huruf alfabet, angka, dan beberapa kosakata BISINDO. Masukan model berupa
vektor fitur tunggal dari koordinat landmark tangan. Random Forest dibangun sebagai
kumpulan pohon keputusan yang masing-masing dilatih pada subset acak dari data,
kemudian hasil prediksi digabungkan menggunakan mekanisme majority voting. Pada
perancangan ini, parameter utama yang digunakan adalah jumlah pohon (n_estimators),
fungsi pemisahan (criterion), serta kedalaman pohon (max_depth), yang ditentukan
untuk menyeimbangkan kompleksitas dan kemampuan generalisasi model. Struktur
model ini divisualisasikan pada Gambar 3.6, yang menunjukkan hubungan hierarkis
antar pohon keputusan dalam menghasilkan prediksi akhir berdasarkan mayoritas hasil
klasifikasi. Detail pengaturan hyperparameter yang digunakan pada model Random
Forest ditampilkan pada Tabel 3.3. Pemilihan parameter dilakukan secara empiris
berdasarkan hasil beberapa percobaan awal untuk menyeimbangkan antara akurasi,
waktu pelatihan, dan kemampuan generalisasi model terhadap variasi data gestur.
Nilai-nilai tersebut menghasilkan performa terbaik pada pengujian train-test split

(80:20) maupun 5-fold cross-validation.

Tabel 3.3 Hyperparameter Model Random Forest

Nilai yang
Parameter Keterangan

Digunakan

Jumlah pohon keputusan yang digunakan

n_estimators 100 dalam ensemble. Semakin besar nilainya,

semakin stabil hasil prediksi.
Fungsi pengukuran impurity yang digunakan
criterion Gini untuk menentukan pemisahan optimal pada

setiap node.

44

Nilai yang
Parameter Keterangan
Digunakan

Kedalaman maksimum pohon tidak dibatasi

max_depth None untuk memberi fleksibilitas pada proses
pembelajaran.
Nilai seed acak untuk memastikan hasil
random_state 42)) ‘
pelatihan dapat direproduksi.
Rasio pembagian dataset antara data latih dan
test_size 0.2 .
data uji sebesar 80:20.
Validasi silang digunakan untuk mengevaluasi
cross_validation 5-Fold

kestabilan dan konsistensi performa model.

[
L] L]

v v \J
Result 1 Result 2 Result 3 Resu!t 100

| \ |

Gambar 3.6 Arsitektur Model Random Forest

3.4.2. Arsitektur Model LSTM
Model LSTM digunakan untuk mengklasifikasikan gestur dinamis, yaitu pola
bahasa isyarat yang terdiri dari urutan beberapa frame berturut-turut. Dataset

sekuensial disimpan dalam format NPZ, yang memuat representasi koordinat landmark

tangan untuk setiap frame. Setiap sampel masukan memiliki dimensi 20 frame dengan
126 fitur per frame, merepresentasikan pergerakan tangan dalam bentuk sekuensial.
Arsitektur LSTM terdiri dari beberapa lapisan berurutan yang dirancang untuk
menangkap hubungan temporal antar frame, dilengkapi dengan dropout sebagai
regularisasi, serta lapisan Dense dengan aktivasi ReLU sebelum menuju lapisan
keluaran (output layer) yang menggunakan fungsi aktivasi softmax untuk klasifikasi
multi-kelas. Ilustrasi arsitektur LSTM ditunjukkan pada Gambar 3.7, yang
menggambarkan alur pemrosesan data sekuensial dari input hingga output dengan
mekanisme memori jangka panjang antar lapisan. Detail konfigurasi arsitektur dan
hyperparameter model LSTM yang digunakan dalam penelitian ini ditampilkan pada
Tabel 3.4. Nilai parameter ditentukan berdasarkan hasil percobaan awal untuk
memperoleh keseimbangan antara akurasi, stabilitas pelatihan, serta efisiensi
komputasi agar dapat diimplementasikan secara optimal pada perangkat Raspberry Pi.
Proses pelatihan dilakukan dengan rasio data latith dan uji sebesar 80:20, serta
menggunakan validasi silang (5-Fold Cross Validation) untuk memastikan model

memiliki kemampuan generalisasi yang baik terhadap variasi data gestur dinamis.

Tabel 3.4 Hyperparameter Model LSTM

Parameter Nilai Keterangan

Setiap sampel berisi 20

Input Shape (20, 126) frame dengan 126 fitur
koordinat per frame.
64 unit, Menangkap hubungan
Lapisan LSTM return_sequences=False, temporal antar frame
unroll=True gestur dinamis.
Menyaring fitur hasil
. 32 neuron, aktivasi ReLU, .
Lapisan Dense o ekstraksi dari LSTM dan
regularisasi L2(0.001)

mencegah overfitting.

46

Parameter Nilai Keterangan
Mengurangi risiko
‘ overfitting dengan
Lapisan Dropout 0.3

Lapisan Output

Optimizer

Loss Function

Batch Size

Epochs Maksimal

Validation Split

Early Stopping

Learning Rate

Scheduler

Dense(num_ classes,

activation='softmax")

Adam

Categorical Crossentropy

16

300

5-Fold Cross Validation

patience=10,

restore best weights=True

ReduceLROnPlateau
(factor=0.5, patience=5,

min_lr=1e-6)

menonaktifkan sebagian
neuron selama pelatihan.
Menghasilkan probabilitas
untuk setiap kelas gestur.
Menyesuaikan bobot
model secara adaptif
untuk mempercepat
konvergensi.

Digunakan untuk tugas
klasifikasi multi-kelas.

Jumlah sampel yang
diproses dalam satu iterasi
pelatihan.

Jumlah iterasi pelatihan
dengan early stopping
otomatis jika validasi

tidak membaik.
Mengukur stabilitas
performa model di setiap
lipatan data.
Menghentikan pelatihan
lebih awal untuk
mencegah overfitting.
Menurunkan learning rate
secara adaptif ketika

validasi stagnan.

47

Input (20 Frame x
126 Fitur)

Y

LSTM Layer (64 Units)

Y

{ Dense Layer (32 |

Units, ReLU)

Y

Dropout (0.3)

A

Dense Output
Layer (Softmax)

A

Prediksi Gestur

Gambar 3.7 Arsitektur Model LSTM

3.4.3. Arsitektur Model Transformer

Sementara itu, model Transformer dirancang untuk mendeteksi pola temporal
gestur dinamis menggunakan mekanisme self-attention. Dataset yang sama dalam
format NPZ digunakan untuk melatih model Transformer. Proses pelatihan dilakukan
dengan membagi data menjadi mini-batch sekuensial, kemudian melewati blok
encoder Transformer yang terdiri dari lapisan multi-head attention, normalisasi, dan
feed-forward network. Lapisan keluaran menggunakan fungsi aktivasi sofimax dengan
jumlah neuron sesuai jumlah kelas gestur, sehingga mampu menghasilkan distribusi
probabilitas atas setiap kategori. Rancangan arsitektur 7ransformer ini divisualisasikan
pada Gambar 3.8, yang menampilkan dua blok encoder bertingkat yang memproses

informasi temporal secara paralel untuk memperoleh representasi fitur yang

48

kontekstual. Detail konfigurasi arsitektur dan hyperparameter model Transformer
yang digunakan dalam penelitian ini disajikan pada Tabel 3.5. Nilai-nilai parameter
ditentukan melalui proses eksplorasi empiris untuk menyeimbangkan antara
kompleksitas model dan efisiensi komputasi, mengingat model ini akan
diimplementasikan pada perangkat Raspberry Pi. Pelatihan dilakukan menggunakan
pembagian data sebesar 80% untuk pelatihan dan validasi serta 20% untuk pengujian,
dengan skema 5-Fold Cross Validation pada data latih. Tujuannya adalah untuk
memastikan bahwa model Transformer mampu mempelajari hubungan temporal antar
frame secara efektif melalui mekanisme self-attention, sekaligus menjaga stabilitas

generalisasi terhadap variasi gerakan tangan antar partisipan.

Tabel 3.5 Hyperarameter Model Transformer

Parameter Nilai Keterangan

Setiap sampel terdiri dari 20
frame dengan 126 fitur
Input Shape (20,126)
koordinat 3D dari 21 titik
tangan per frame.

o Mengubah dimensi fitur input
Dense Projection

64 unit menjadi representasi vektor
Layer .)
berdimensi tetap (d_model).
Menambahkan informasi posisi
Positional
. Panjang sekuens 20 tiap frame agar model
Embbeding :
memahami urutan temporal.
Tiap blok terdiri dari Multi-
Jumlah Blok 5 Head Attention, Layer
Encoder Normalization, dan Feed

Forward Network.

49

Parameter

Nilai

Keterangan

Multi-Head

Attention

Feed Forward

Network

Dropout Rate

Global Average
Pooling

Dense Layer

Optimizer

Loss Function

Batch Size

Epochs Maksimal

Validation Split

4 head, key dim = 64

64 unit, aktivasi ReLU

0.3

64 — Softmax (jumlah
kelas)

Adam (learning rate =

0.001)

Sparse Categorical
Crossentropy
16

300

5-Fold Cross Validation

Menangkap hubungan antar
frame dari berbagai perspektif
secara paralel.
Mengubah representasi hasil
attention menjadi fitur non-
linear yang lebih dalam.
Mengurangi risiko overfitting
selama pelatihan.
Merata-ratakan keluaran
temporal menjadi satu vektor
global.
Menghasilkan distribusi
probabilitas untuk setiap kelas
gestur.
Menyesuaikan bobot secara
adaptif agar konvergensi cepat
dan stabil.

Cocok untuk klasifikasi multi-
kelas dengan label integer.
Ukuran mini-batch pada proses
pelatihan.

Proses pelatihan berhenti lebih
awal jika performa validasi
tidak meningkat.
Mengukur konsistensi performa

pada tiap lipatan data.

50

Parameter Nilai Keterangan

Menghentikan pelatihan

Early Stopping patience = 10 otomatis untuk mencegah
overfitting.
_ Menurunkan learning rate
Learning Rate ReduceLROnPlateau ‘ ‘ o
_ secara adaptif ketika validasi
Scheduler (factor=0.5, patience=5)

stagnan.

126 Fitur)

l

Dense Projection (64
Dimensions)

l

Positional Encoding

!

Transformer
Encoder Block x 2

!

Global Average
Pooling

l

Dense (ReLU)

l

Dense (Softmax)

Y

‘ Input (20 Frame x |

Prediksi Gestur

Gambar 3.8 Arsitektur Model Transformer

51

Setelah seluruh model selesai dirancang, hasil pelatihan akan dikonversi ke
format TensorFlow Lite (TFLite) menggunakan skrip konversi. Format ini dipilih
karena lebih ringan dan efisien untuk dijalankan pada perangkat dengan keterbatasan
sumber daya. Selanjutnya, model Random Forest, LSTM, dan Transformer akan
diintegrasikan dalam sebuah arsitektur hybrid. Hybrid model ini memungkinkan
perbandingan performa antara LSTM dan Transformer dalam mengenali gestur
dinamis, sementara Random Forest tetap menangani gestur statis. Setelah integrasi,
keseluruhan sistem kemudian diimplementasikan pada Raspberry Pi 5 dengan input
dari PiCamera v1, sehingga mampu melakukan pengenalan BISINDO secara real-time
dan portabel.

Alur proses pembentukan model hingga implementasi sistem secara

keseluruhan dapat dilihat pada Gambar 3.9.

sestur BISINDO
ari MediaPipe)

v

Dataset Split (80% - 20%)
Train/Val - Test

v

K-Fold Cross Validation

(5 Fold)

Random Forest LST™M Transformer

valuasi Model
on Report dan

ni on Matrix)

Hybrid Model

N

Deploy ke Raspberry Pi 5

Gambar 3.9 Flowchart Pembuatan Model

52

3.5. Hybrid Model

Hybrid model dalam penelitian ini dirancang untuk menangani perbedaan
karakteristik antara gestur statis dan gestur dinamis pada bahasa isyarat BISINDO.
Gestur statis, seperti huruf alfabet dan angka, lebih sesuai diklasifikasikan
menggunakan Random Forest karena cukup dilihat sebagai snapshot tunggal tanpa
pola pergerakan. Sementara itu, gestur dinamis seperti kata atau frasa memerlukan
analisis temporal antarframe, sehingga lebih tepat diproses menggunakan model
sekuensial seperti LSTM maupun Transformer.

Dalam implementasinya, sistem terlebih dahulu mengekstrak landmark tangan
dari input kamera menggunakan MediaPipe. Jika gerakan tangan terdeteksi stabil pada
beberapa frame, input dianggap sebagai gestur statis dan diproses oleh Random Forest.
Sebaliknya, ketika terdapat perubahan posisi tangan yang signifikan dalam urutan
frame, maka data sekuensial akan diteruskan ke model sekuensial (LSTM atau
Transformer) untuk mengenali pola gerakan dinamis. Alur proses pengambilan
keputusan antara model statis dan dinamis tersebut ditunjukkan pada Gambar 3.10,
yang menggambarkan topologi sistem hybrid dalam mengenali gestur secara real-time

pada perangkat Raspberry Pi.

PiCamera Input

Med\aplpe Hand Tracking
Tangan
YES —
(Stabil? |
‘ Random Forest Model LSTM/Transformer Model |
| Final Prediction ‘ [Final Prediction |

’ Tampilkan Prediksi |

Gambar 3.10 Diagram Alur Hybrid Model

53

Berdasarkan Gambar 3.10, sistem /Aybrid dimulai dari proses akuisisi citra
secara real-time menggunakan kamera yang terhubung ke Raspberry Pi. Setiap frame
yang diterima kemudian dikonversi menjadi format RGB dan diproses oleh MediaPipe
Hands untuk mendeteksi serta mengekstraksi 21 titik koordinat landmark dari satu atau
dua tangan pengguna. Koordinat tersebut disimpan secara berurutan dalam bentuk
urutan frame agar dapat dianalisis lebih lanjut oleh sistem.

Selanjutnya, sistem menganalisis perubahan posisi tangan antar frame untuk
menentukan apakah gerakan yang dilakukan bersifat statis atau dinamis. Jika
pergerakan tangan terdeteksi stabil dalam beberapa frame berturut-turut, maka sistem
menganggapnya sebagai gestur statis dan mengirimkan data ke model Random Forest
untuk klasifikasi. Sebaliknya, apabila sistem mendeteksi adanya perubahan posisi
tangan yang signifikan dalam rentang waktu tertentu, maka urutan frame tersebut
diteruskan ke model LSTM TensorFlow Lite / Transformer TensorFlow Lite untuk
mengenali pola pergerakan dinamis.

Hasil klasifikasi dari kedua model akan ditampilkan secara langsung di layar
dengan keterangan jenis model yang digunakan. Sistem juga memberikan jeda waktu
singkat setelah setiap prediksi untuk mencegah pengenalan ganda terhadap gestur yang
sama. Dengan pendekatan ini, sistem mampu melakukan klasifikasi secara adaptif
berdasarkan pola pergerakan tangan pengguna, sehingga menghasilkan proses deteksi
gestur yang efisien dan akurat pada perangkat Raspberry Pi 5 tanpa memerlukan
koneksi internet.

Agar sistem tetap ringan dijalankan pada Raspberry Pi 5, penelitian ini
menggunakan pendekatan hybrid bergantian. Skenario pertama adalah kombinasi RF
+ LSTM untuk menguji akurasi klasifikasi statis dan dinamis. Skenario kedua adalah
kombinasi RF + Transformer dengan fungsi yang sama. Hasil dari kedua skenario
tersebut kemudian dibandingkan untuk mengevaluasi performa model sekuensial
(LSTM dan Transformer) dalam konteks pengenalan BISINDO secara real-time.
Dengan strategi ini, pengujian dapat dilakukan secara objektif tanpa membebani

perangkat keras karena hanya dua model dijalankan pada satu waktu.

54

Selain arsitektur algoritmik, penelitian ini juga memperhatikan topologi
perangkat keras yang digunakan. Sistem terdiri atas Raspberry Pi 5 sebagai pusat
komputasi, kamera CSI PiCamera vI sebagai perangkat akuisisi data visual, serta kipas
pendingin untuk menjaga kestabilan suhu operasional. Raspberry Pi terhubung ke
monitor melalui micro-HDMI untuk menampilkan hasil klasifikasi secara real-time,
dengan dukungan catu daya eksternal 5V 3A. Topologi perangkat ini divisualisasikan
pada Gambar 3.11, yang menunjukkan susunan komponen serta keterhubungan

antarperangkat dalam sistem secara keseluruhan.

PiCamera v1 5SMP Raspberry Pi 5 Monitor

Power Supply
Mouse dan Keyboard

-Q

Micro HDMI

Gambar 3.11 Topologi Perangkat

55

Pengguna Melakukan Gestur
Tangan

\

Pi Camera v1 Menangkap Citra
Video

\

Mediapipe Hands Deteksi &
Ekstraksi Landmark

"

Raspberry Pi 5 (Pemrosesan
Lokal, tanpa Koneksi Internet)

L

Output Tampil di Layar
Monitor

Gambar 3.12 Topologi Tanpa Internet

Topologi sistem yang digunakan dalam penelitian ini bersifat sepenuhnya
offline, Visualisasi arsitektur ini disajikan pada Gambar 3.12, di mana seluruh proses
deteksi dan klasifikasi dilakukan secara lokal pada Raspberry Pi 5 tanpa memerlukan
koneksi internet. Sistem diawali dengan pengguna yang memperagakan gestur tangan
di depan kamera (menggunakan Pi Camera vI). Kamera berfungsi menangkap citra
tangan secara real-time, yang kemudian dikirim ke MediaPipe Hands untuk
mendeteksi dan mengekstraksi titik-titik koordinat tangan (landmark) dalam bentuk
tiga dimensi (X, y, z).

Hasil ekstraksi landmark ini menjadi masukan bagi sistem klasifikasi yang
terdiri dari tiga model, yaitu Random Forest, serta LSTM dan Transformer yang
berbasis TensorFlow Lite. Model Random Forest digunakan untuk mengenali gestur
statis, yaitu gestur yang tidak melibatkan pergerakan tangan secara berurutan antar
frame.

Sementara itu, LSTM dan Transformer digunakan untuk mengenali gestur

dinamis yang mengandung urutan gerakan dalam waktu tertentu. Kedua model ini

56

bekerja dengan cara menganalisis pola sekuensial dari 20 frame berurutan (sequence)
untuk menentukan jenis gestur yang dilakukan.

Dalam implementasinya, baik model LSTM maupun Transformer dikonversi
ke dalam format TensorFlow Lite (TFLite) agar dapat dijalankan secara efisien pada
perangkat Raspberry Pi yang memiliki sumber daya terbatas. Penggunaan format
TFLite pada kedua model ini bertujuan untuk memastikan perbandingan performa yang
adil dalam hal kecepatan inferensi dan penggunaan memori, khususnya untuk melihat
kemampuan Transformer sebagai pembanding terhadap LSTM dalam mengenali
urutan gerakan dengan kompleksitas tinggi.

Seluruh proses mulai dari penangkapan citra, deteksi landmark, klasifikasi
gestur, hingga penampilan hasil di layar dilakukan secara lokal dan offline, sehingga
sistem dapat beroperasi tanpa ketergantungan terhadap server eksternal atau koneksi
jaringan.

Sistem penerjemah BISINDO berbasis Raspberry Pi ini dibangun dengan
memanfaatkan kombinasi sumber daya perangkat keras dan perangkat lunak yang
mendukung pengolahan citra serta inferensi model secara offline. Seluruh komponen
yang digunakan dirancang agar sistem dapat berjalan mandiri tanpa ketergantungan
pada koneksi internet. Komponen utama yang digunakan meliputi Raspberry Pi 5
sebagai unit pemrosesan utama, Pi Camera vI untuk menangkap citra tangan, serta
perangkat pendukung seperti monitor, keyboard, dan mouse untuk interaksi pengguna.

Dari sisi perangkat lunak, sistem dikembangkan menggunakan bahasa
pemrograman Python dengan dukungan pustaka MediaPipe Hands untuk ekstraksi
landmark tangan, OpenCV untuk pemrosesan citra, dan TensorFlow Lite sebagai mesin
inferensi ringan untuk model LSTM dan Transformer yang dijalankan pada Raspberry
Pi. Selain itu, sistem juga mengintegrasikan model Random Forest untuk mendeteksi
gestur statis, serta LSTM dan Transformer (TFLite) untuk mengenali gestur dinamis.
Penggunaan TensorFlow Lite bertujuan agar model dapat berjalan lebih efisien dengan
konsumsi memori rendah tanpa mengorbankan kecepatan prediksi.

Rincian lengkap sumber daya perangkat keras dan perangkat lunak yang

digunakan dalam penelitian ini dapat dilihat pada Tabel 3.6.

57

Tabel 3.6 Sumber Daya Sistem

Jenis Sumber

Keterangan

Perangkat/Komponen
Daya
Raspberry Pi 5
Pi Camera Module v1
Perangkat Keras
(Hardware)
Monitor, Keyboard,
Mouse
MicroSD 32 GB
Raspberry Pi OS
Python
OpenCV
Perangkat
Lunak
MediaPipe Hands
(Software)

TensorFlow &

TensorFlow Lite

Unit pemrosesan utama dengan 16
GB RAM, menjalankan seluruh
proses inferensi dan klasifikasi

secara offline
Kamera utama dengan sensor
OV5647, digunakan untuk
menangkap citra tangan secara real-
time
Antarmuka pengguna untuk
menampilkan hasil dan melakukan
interaksi selama pengujian
Media penyimpanan sistem operasi,
program, dan model machine
learning
Sistem operasi utama berbasis Linux
Bahasa pemrograman utama untuk
pengembangan sistem
Digunakan untuk pengambilan citra
dan pengolahan frame video
Untuk deteksi dan ekstraksi 21 titik
landmark tangan dalam format
koordinat (x, y, z)
Framework machine learning;
TFLite digunakan untuk
menjalankan model LSTM secara

efisien di Raspberry Pi

58

Jenis Sumber
Perangkat/Komponen
Daya

Keterangan

Scikit-learn

NumPy & Pandas

Matplotlib

Joblib

Digunakan untuk implementasi dan
inferensi model Random Forest
Digunakan untuk manipulasi dan
analisis data landmark
Untuk visualisasi hasil pelatihan dan
evaluasi model
Untuk memuat model Random

Forest yang telah dilatih sebelumnya

59

Bab IV

Hasil dan Pembahasan

4.1. Profil Partisipan
Berikut adalah data subjek deteksi bahasa isyarat BISINDO menggunakan

input kamera secara real-time pada Raspberry Pi yang terlampir pada Tabel 4.1..

Tabel 4.1 Tabel Data Subjek

No Umur Jenis Kelamin Profesi
1 2] Tahun Laki-Laki Mahasiswa
2 23 Tahun Perempuan Mahasiswa
3 21 Tahun Laki-Laki = Mahasiswa
4 21 Tahun Laki-Laki =~ Mahasiswa
5 21 Tahun Perempuan Mahasiswa
6 23 Tahun Laki-Laki = Mahasiswa

4.2. Implementasi Sistem

4.2.1. Implementasi Perangkat Keras (Hardware)

60

Input Gestur PiCamera v1 Raspberry Pi 5/16GB Output Display

= xt in 0-3s !&

Kabel CSI/Ribbon

(b)

Gambar 4.1 Implementasi Perangkat Keras: (a) Setup Perangkat Keseluruhan dan (b)
Diagram Blok Koneksi Perangkat.

Realisasi perangkat keras pada sistem ini berfokus pada integrasi unit
embedded system yang berperan sebagai pusat pemrosesan algoritma kecerdasan
buatan secara mandiri. Komponen utama yang digunakan adalah Raspberry Pi 5 yang
bertugas menjalankan sistem operasi sekaligus mengeksekusi beban komputasi dari
arsitektur model hibrida yang diterapkan. Untuk kebutuhan akuisisi visual, sistem ini
memanfaatkan modul kamera khusus yaitu Pi Camera vI yang dihubungkan langsung
ke papan utama melalui antarmuka serial berkecepatan tinggi, bukan melalui jalur USB
standar. Penggunaan jalur antarmuka dedikasi ini dipilih untuk meminimalisir latensi
pengiriman data citra (frame), sehingga proses deteksi gestur tangan baik yang bersifat
diam maupun bergerak dapat direspons oleh sistem tanpa penundaan yang signifikan.

Implementasi fisik dari konfigurasi tersebut diperlihatkan secara rinci pada
Gambar 4.1. Dalam ilustrasi tersebut, unit komputasi utama terlihat ditempatkan pada
permukaan datar dan terhubung ke sensor visual menggunakan kabel fleksibel pipih,
sementara modul kamera diposisikan secara strategis menempel pada bingkai layar

monitor eksternal. Penempatan ini bertujuan untuk mendapatkan sudut pandang yang

61

optimal dan sejajar dengan pengguna, memastikan area tubuh bagian atas dan
pergerakan tangan masuk sepenuhnya ke dalam bingkai tangkapan kamera. Hasil
pemrosesan visual dan antarmuka pengguna kemudian ditransmisikan ke monitor
tersebut, memungkinkan pengguna untuk melihat umpan balik sistem secara langsung
saat melakukan gerakan isyarat. Sementara itu, perangkat periferal standar
diintegrasikan di sekitar unit utama untuk keperluan inisialisasi program dan
konfigurasi sistem selama tahap pengujian berlangsung.

4.2.2. Implementasi Antarmuka Pengguna (User Interface)

Implementasi antarmuka pada sistem, sebagaimana divisualisasikan pada
Gambar 4.2, dirancang untuk menyediakan umpan balik visual secara real-time dengan
memanfaatkan pustaka OpenCV sebagai backend visualisasi utama. Alur pemrosesan
visual dimulai dengan membalikkan frame kamera secara horizontal (horizontal flip)
menggunakan fungsi cv2.flip untuk menciptakan efek cermin yang intuitif bagi
pengguna. Di atas lapisan video tersebut, sistem mengintegrasikan modul visualisasi
MediaPipe (mp_draw) yang memetakan kerangka tangan (hand landmarks) beserta
garis koneksi antar sendi.

Mekanisme interaksi pengguna dibangun berbasis state-driven display yang
memberikan panduan tekstual pada setiap tahapan klasifikasi. Untuk menjamin

keterbacaan informasi di berbagai kondisi pencahayaan latar, seluruh elemen teks

62

dirender menggunakan fungsi kustom yang menambahkan latar belakang persegi

panjang berwarna hitam pada setiap label informasi. Sistem secara dinamis

menampilkan status sistem berdasarkan stabilitas gerakan tangan:

Fase Stabilisasi: Visualisasi fase stabilisasi sistem dapat dilihat pada Gambar
4.3. Saat tangan pertama kali dideteksi, sistem mengaktifkan timer jeda
(grace time) dan menampilkan status "Stabilizing..." untuk mencegah

pengambilan data yang prematur.

Gambar 4.3 Fase Stabilisasi

Fase Akuisisi Data: Berdasarkan kalkulasi rata-rata pergerakan (motion
score), antarmuka akan menampilkan status sistem sebagaimana
divisualisasikan pada Gambar 4.4 dan Gambar 4.5. Sistem akan
menampilkan status "Recording" (Gambar 4.4) yang menghitung jumlah
buffer sekuensial untuk model dinamis, atau beralih ke status "Holding"
(Gambar 4.5) jika gerakan berada di bawah ambang batas (threshold) 0.005

untuk memicu klasifikasi statis.

63

Gambar 4.5 Fase Holding

Sebagai bentuk validasi akhir kepada pengguna, hasil prediksi ditampilkan
dengan pembedaan visual yang tegas berdasarkan model yang melakukan inferensi.
Hasil klasifikasi dari model Random Forest (gestur statis) direpresentasikan dengan
label teks berwarna merah, sedangkan luaran dari model Deep Learning (LSTM atau
Transformer) ditandai dengan warna hijau. Setiap label prediksi juga menyertakan
sufiks sumber model (misalnya "(RF)", "(LSTM)", atau "(7Transformer)") untuk

transparansi proses hybrid yang berjalan di latar belakang. Selain itu, fitur cooldown

64

visual diterapkan pasca-prediksi dengan menampilkan hitung mundur ("Next in...")
untuk mencegah redundansi luaran pada satu gerakan yang sama.

4.3. Implementasi dan Analisis Kode Program

4.3.1. Implementasi Augmentasi Citra untuk Gestur Statis

Pada tahap awal eksperimen pelatihan model Random Forest, ditemukan
indikasi overfitting di mana model memiliki performa sangat tinggi pada data latih
namun kurang optimal dalam mengenali variasi gestur pada pengujian real-time. Hal
ini disebabkan oleh terbatasnya variasi posisi dan skala tangan pada dataset murni hasil
pengambilan awal. Untuk mengatasi permasalahan tersebut, penelitian ini
mengimplementasikan teknik augmentasi citra (image augmentation) secara
terprogram sebelum data diekstraksi fitur landmark-nya.

Implementasi augmentasi dilakukan menggunakan pustaka OpenCV dengan
menerapkan transformasi geometris yang tetap mempertahankan makna semantik
gestur. Kode program dirancang untuk menghasilkan variasi data baru secara otomatis
melalui tiga teknik manipulasi utama:

e Rotasi (Rotation): Citra diputar dengan sudut acak antara -10 hingga 10 derajat
untuk mensimulasikan orientasi tangan pengguna yang tidak selalu tegak lurus.
e Penskalaan (Scaling/Safe Zoom): Citra diperbesar atau diperkecil dengan rasio

0.85 hingga 1.05. Teknik padding (penambahan piksel hitam) diterapkan saat

zoom-out untuk memastikan tidak ada bagian tangan yang terpotong.

e Translasi (7Translation): Objek tangan digeser secara horizontal atau vertikal
dalam rentang 5% dari dimensi citra untuk mengantisipasi posisi tangan yang

tidak selalu tepat di tengah frame.

Realisasi teknis dari ketiga transformasi tersebut ditunjukkan pada Gambar 4.6
berikut, yang memperlihatkan fungsi inti safe augment image dalam memproses

matriks citra input.

1 def safe augment image (image) :
h, w = image.shape[:2]

N

65

4 # 1. ROTASI (-10 s/d 10 derajat)

5 angle = random.uniform(-10, 10)

6 center = (w // 2, h // 2)

7 M rot = cv2.getRotationMatrix2D(center, angle,
1.0)

8 image = cv2.warpAffine(image, M rot, (w, h),
borderMode=cv2.BORDER CONSTANT)

9

10 # 2. SAFE ZOOM (Fokus Zoom Out untuk menjaga
fitur tangan)

11 scale = random.uniform(0.85, 1.05)

12

13 if scale < 1.0: # Logika Zoom Out dengan Padding
14 new h, new w = int(h * scale), int(w *
scale)

15 resized = cvZ.resize (image, (new _w, new h))
16

17 # Buat kanvas hitam seukuran asli agar
dimensi tetap terjaga

18 canvas = np.zeros((h, w, 3), dtype=np.uint8)
19 y off = (h = new h) // 2

20 x off = (w - new w) // 2

21 canvas [y off:y off+new h, x off:x off+new w]
= resized

22 image = canvas

23

24 # 3. TRANSLASI (Geser Posisi max 5%)

25 tx = random.uniform(-0.05, 0.05) * w

26 ty = random.uniform(-0.05, 0.05) * h

27 M trans = np.float32([[1, 0, tx], [0, 1, tyll)
28 image = cvZ.warpAffine(image, M trans, (w, h),
borderMode=cv2.BORDER CONSTANT)

29

30 return image

Gambar 4.6 Cuplikan Kode Augmentasi Citra

Melalui skrip augmentasi di atas, jumlah dataset gestur statis dilipatgandakan
dengan faktor pengali (AUGMENT MULTIPLIER) sebesar 10 kali lipat. Proses ini
memungkinkan model Random Forest untuk mempelajari distribusi fitur landmark
yang lebih luas dan menghasilkan model yang lebih robust terhadap variasi

pengambilan gambar di lapangan.

66

Augmentasi data difokuskan secara intensif pada kategori gestur statis untuk
mengatasi variabilitas posisi dan orientasi tangan yang sering memicu misklasifikasi
pada pengujian awal.

Sebaliknya, pada kategori gestur dinamis, augmentasi data sintetis tidak
diterapkan. Keputusan ini didasarkan pada hasil eksperimen pendahuluan yang
menunjukkan bahwa fitur temporal pada gestur dinamis memiliki tingkat perbedaan
yang sangat kuat dibandingkan gestur statis. Model terbukti mampu mencapai
generalisasi yang optimal dan performa klasifikasi yang tinggi hanya dengan
menggunakan variasi data natural. Oleh karena itu, integritas data urutan waktu pada
gestur dinamis dipertahankan tanpa modifikasi buatan untuk mencegah distorsi pola
gerakan yang justru dapat menurunkan akurasi deteksi pada skenario real-time.

4.3.2. Implementasi Model Random Forest (Gestur Statis)

Implementasi klasifikasi gestur statis dibangun menggunakan algoritma
Random Forest dengan memanfaatkan pustaka Scikit-learn. Sebelum proses pelatihan,
dataset yang memuat koordinat landmark tangan dipisahkan menjadi set fitur dan label.
Untuk menjaga distribusi kelas yang seimbang antara data latih dan data uji, diterapkan
teknik stratified sampling saat pembagian dataset dengan rasio 80:20. Hal ini
diimplementasikan menggunakan fungsi train_test split dengan parameter stratify,
yang memastikan setiap kelas gestur terwakili secara proporsional di kedua subset data,

sehingga mencegah bias pada model saat proses evaluasi.

1 # Split dataset (80% train, 20% test) dengan stratify
2 X train, X test, y train, y test = train test split(
3 X, y_encoded, test size=0.2, stratify=y encoded,
random state=42

4)

Gambar 4.7 Code Pembagian Dataset dengan Stratifikasi

Konfigurasi model diatur berdasarkan parameter yang telah ditentukan pada
tahap perancangan. Model diinisialisasi dengan parameter n_estimators=100, yang

berarti model akan membentuk seratus pohon keputusan (decision trees) untuk

67

melakukan prediksi secara ensemble. Kriteria pemisahan node menggunakan indeks gini
untuk mengukur tingkat impurity. Selanjutnya, untuk menguji konsistensi performa
model terhadap variasi data yang berbeda, diterapkan metode Stratified K-Fold Cross
Validation dengan k=5. Metode ini membagi data latih menjadi lima lipatan (folds)
berbeda, di mana model dilatih dan divalidasi secara iteratif pada setiap lipatan untuk

mendapatkan metrik akurasi rata-rata yang lebih reliabel.

1 # Inisialisasi model Random Forest dengan 100 pohon
2 rf = RandomForestClassifier (

3 n _estimators=100,

4 criterion="gini",

5 max depth=None,

6 random state=42

7)

8

9 # Penerapan 5-Fold Cross Validation

10 skf = StratifiedKFold(n splits=5, shuffle=True,
random_state=42)

11 cv _scores = cross val score(rf, X, y encoded,
cv=skf)

Gambar 4.8 Code Konfigurasi Model dan Cross-Validation

4.3.3. Implementasi Model LSTM (Gestur Dinamis)

Pada pengenalan gestur dinamis, arsitektur Long Short-Term Memory (LSTM)
diimplementasikan menggunakan kerangka kerja 7TensorFlow Keras. Model disusun
secara sekuensial (Sequential Model) untuk memproses data urutan (sequence data)
dengan panjang tetap, yaitu 20 frame per sampel. Lapisan inti LSTM dikonfigurasi
dengan 64 unit memori. Parameter krusial yang diterapkan di sini adalah unroll=True.
Pengaturan ini memaksa jaringan untuk membuka gulungan (unroll) loop LSTM saat
kompilasi, yang bertujuan untuk meningkatkan kecepatan eksekusi pada saat inferensi,
meskipun dengan konsekuensi penggunaan memori yang sedikit lebih besar.

Selanjutnya, hasil pemrosesan LSTM diteruskan ke lapisan Dense dengan 32 neuron

68

yang dilengkapi aktivasi ReLU dan regularisasi L2 (kernel regularizer) sebesar 0.001

untuk membatasi besaran bobot dan mencegah overfitting.

1 model = models.Sequential ([

2 layers.Input (shape=(SEQ LENGTH, FEATURES)),

3 # Unroll=True untuk mempercepat eksekusi (speed
optimization)

4 layers.LSTM (64, return sequences=False,
unroll=True),

5 # Regularisasi L2 untuk mencegah overfitting pada
dense layer

0 layers.Dense (32, activation='relu',
kernel regularizer=regularizers.12(0.001)),

7 layers.Dropout (0.3),

38 layers.Dense (num classes, activation='softmax')

9 1)

Gambar 4.9 Code Arsitektur Model LSTM

Untuk mengoptimalkan proses pembelajaran, model dikompilasi menggunakan
pengoptimal (optimizer) adam dan fungsi kerugian categorical crossentropy yang
sesuai untuk klasifikasi multi-kelas. Strategi pelatihan diperkuat dengan penerapan
mekanisme callbacks. EarlyStopping digunakan untuk memantau nilai validation loss
dan akan menghentikan pelatihan secara otomatis jika tidak terjadi penurunan loss
selama 10 epoch berturut-turut (parameter patience=10), serta mengembalikan bobot
terbaik yang pernah dicapai (restore best weights=True). Selain itu,
ReduceLROnPlateau diterapkan untuk menurunkan /earning rate sebesar 50% (faktor
0.5) jika model mengalami stagnasi, memungkinkan model untuk mencari local

minima yang lebih presisi.

1 model .compile (optimizer="adam',

loss="'categorical crossentropy', metrics=['accuracy'])

2

3 callbacks = [

4 # Hentikan training jika val loss tidak membaik
dalam 10 epoch

5 EarlyStopping (monitor="val loss", patience=10,

69

restore best weights=True),

6 # Turunkan learning rate jika performa stagnan
7 ReducelLROnPlateau (monitor="val loss",
factor=0.5, patience=5, min lr=le-6)

8]

Gambar 4.10 Code Konfigurasi Pelatihan dan Callbacks

4.3.4. Implementasi Model Transformer (Gestur Dinamis)

Sebagai pembanding utama terhadap model LSTM, penelitian ini
mengimplementasikan arsitektur Transformer yang menawarkan pendekatan berbeda
dalam mempelajari pola waktu. Jika model rekuren seperti LSTM memproses data
secara berurutan (sekuensial) yang seringkali membatasi kecepatan pelatihan
Transformer dirancang untuk memproses seluruh urutan data sekaligus secara paralel.
Namun, keunggulan pemrosesan paralel ini membawa tantangan tersendiri: model
kehilangan pemahaman inheren mengenai urutan waktu. Tanpa penanda khusus,
Transformer tidak dapat membedakan antara gerakan awal dan gerakan akhir dalam
sebuah gestur. Untuk mengatasi hal ini, langkah pertama dalam implementasi kode
adalah melakukan proyeksi fitur input ke dalam dimensi internal model (Dense
Projection) sebesar 64 unit, yang kemudian dipadukan dengan informasi posisi
(Positional Embedding). Teknik ini secara efektif mengintegrasikan"penanda waktu"
ke dalam setiap frame data, sehingga model dapat memahami konteks urutan gerakan
dengan benar misalnya, membedakan arah gerakan tangan dari kiri ke kanan dengan

sebaliknya meskipun seluruh data diproses secara bersamaan.

[EY

Proyeksi fitur input ke dimensi d model
x = layers.Dense (64, name="dense projection") (inputs)

N

3 # Membuat dan menambahkan Positional Embedding

4 positions = tf.range(start=0, limit=input shapel[0],
delta=1)

5 pos_embedding =
keras.layers.Embedding (input dim=input shape[0],

output dim=64) (positions)

6 X = X 1+ pos embedding

Gambar 4.11 Code Implementasi Positional Embedding pada Transformer

70

Komponen inti dari model ini terletak pada blok Multi-Head Attention. Dalam
implementasinya, blok ini dikonfigurasi untuk memiliki 4 "kepala" (heads) perhatian.
Secara sederhana, ini memungkinkan model untuk memfokuskan perhatiannya pada
empat aspek berbeda dari gerakan tangan secara bersamaan misalnya, satu kepala fokus
pada posisi ibu jari, sementara kepala lain fokus pada pergerakan kelingking. Hal ini
membuat model sangat peka terhadap detail-detail kecil dalam gestur yang kompleks.
Selain itu, untuk menjaga agar proses belajar model tetap stabil dan tidak stabil
(exploding gradient), setiap hasil pemrosesan dilapisi dengan normalisasi
(LayerNormalization) dan koneksi sisa (residual connection), yang memastikan

informasi asli dari input tidak hilang tertimpa oleh proses komputasi yang dalam.

1 # Blok Attention: Memungkinkan model fokus pada bagian
penting dari gestur
2 attn output = layers.MultiHeadAttention (

3 num heads=4, key dim=64, dropout=0.3

4) (query=x, value=x, key=x)

5

6 # Normalisasi dan Koneksi Sisa (menjaga kestabilan
informasi)

7 X = layers.LayerNormalization (epsilon=1le-6) (x +
attn output)

8

9 # Jaringan Feed Forward untuk pemrosesan lebih lanjut
10 ffn output = keras.Sequential ([

11 layers.Dense (64, activation="relu"),

12 layers.Dense (64)

13 1) (%)

14 x = layers.LayerNormalization (epsilon=1le-6) (x +

ffn output)

Gambar 4.12 Code Mekanisme Perhatian (Atfention) dan Stabilisasi Model

4.4. Hasil Evaluasi Model
Evaluasi model dilakukan secara offline menggunakan data uji (test set) yang
telah dipisahkan sebesar 20% dari total dataset sebelum proses pelatihan dimulai.

Pengujian ini bertujuan untuk mengukur kinerja model dalam mengenali gestur pada

71

data yang belum pernah dilihat sebelumnya, serta memastikan bahwa model tidak
mengalami overfitting.
4.4.1. Evaluasi Model Gestur Statis (Random Forest)

Kinerja model Random Forest dievaluasi secara komprehensif menggunakan
data uji (fest sef) yang mencakup gestur statis berupa huruf (A-Z), angka (0-10), dan
kosakata statis lainnya. Evaluasi diawali dengan analisis kurva pembelajaran (learning
curve) untuk memastikan model mempelajari pola data dengan benar tanpa mengalami

overfitting atau underfitting.

Learning Curve (Random Forest)

1.0+ L4 g & & & g & & &

0.9

0.8

Accuracy
o
~

0.6

0.51

—e— Training Score
Cross Validation Score

0.4 q

T T T T
100000 200000 300000 400000
Training Set Size

Gambar 4.13 Kurva Pembelajaran (Learning Curve) Model Random Forest

Sebagaimana terlihat pada Gambar 4.13, kurva pembelajaran (learning curve)
menunjukkan dampak signifikan dari penerapan augmentasi data terhadap performa
model. Penting untuk dicatat bahwa kurva validasi (oranye) pada grafik ini
merepresentasikan rata-rata akurasi dari proses 5-Fold Cross-Validation, yang menguji
model pada seluruh bagian dataset secara objektif. Garis skor validasi (oranye)
memperlihatkan tren peningkatan yang tajam dan konsisten seiring dengan
bertambahnya volume data latih yang kini mencapai lebih dari 450.000 sampel.
Meskipun skor validasi berawal dari titik yang relatif rendah (sekitar 0.4) yang

mengindikasikan kompleksitas variasi data akibat rotasi dan penskalaan model mampu

72

mempelajari pola tersebut secara efektif seiring penambahan data. Pada akhirnya,
kurva validasi berhasil konvergen sempurna dengan skor pelatihan (garis biru) di titik
akurasi 1.0 (100%). Pertemuan kedua garis pada titik maksimal ini membuktikan
bahwa strategi augmentasi data berhasil mengeliminasi indikasi overfitting yang
sebelumnya muncul, menghasilkan model yang memiliki kemampuan generalisasi
sangat baik dan stabil (robust) terhadap variasi gestur.

Hasil evaluasi kuantitatif terhadap kinerja model Random Forest dirangkum
secara rinci dalam Tabel 4.2. Berdasarkan hasil pengujian yang melibatkan 115.392
sampel data jumlah yang meningkat signifikan akibat proses augmentasi model
Random Forest menunjukkan performa yang sempurna. Model berhasil mencapai
tingkat akurasi global sebesar 100%. Konsistensi kinerja ini juga tercermin secara
merata pada seluruh metrik evaluasi, di mana nilai rata-rata tertimbang (weighted
average) untuk presisi (precision), recall, dan fI-score seluruhnya tercatat sempurna
pada angka 1.00. Capaian akurasi absolut ini dapat diatribusikan pada dua faktor utama:
karakteristik fitur landmark tangan statis yang memiliki distingsi spasial yang sangat
tegas antar-kelas, serta efektivitas algoritma Random Forest dalam mempelajari pola
data berdimensi tinggi yang telah diperkaya variabilitasnya melalui teknik augmentasi.

Tabel 4.2 Ringkasan Performa Model Random Forest pada Data Uji

Metrik Evaluasi Precision Recall F1-Score
Macro Average 1.00 1.00 1.00
Weighted Average 1.00 1.00 1.00
Akurasi Global 1.00 (100%)
Total Sampel Uji 115.392 Data

Untuk memverifikasi detail prediksi per kelas, dilakukan analisis menggunakan

Confusion Matrix.

73

ekl

Gambar 4.14 Confusion Matrix Model Random Forest pada Data Uji

Visualisasi Confusion Matrix pada Gambar 4.14 memperlihatkan dominasi pola
diagonal utama yang sangat tegas, merefleksikan akurasi absolut model terhadap 115.392
sampel uji. Seluruh prediksi terkonsentrasi sempurna pada garis diagonal (7rue Positive),
sementara area off-diagonal tampak benar-benar bersih tanpa adanya indikasi kesalahan
klasifikasi (misclassification). Absennya sebaran nilai di luar diagonal ini membuktikan
bahwa model memiliki kemampuan diskriminatif yang sangat tinggi; ia mampu
membedakan setiap gestur statis termasuk yang memiliki kemiripan konfigurasi jari
dengan presisi mutlak. Hal ini juga mengonfirmasi bahwa variasi data yang dihasilkan
melalui proses augmentasi berhasil dipelajari dengan baik oleh model tanpa

menimbulkan ambiguitas atau kebingungan antar-kelas.

74

4.4.2. Evaluasi Model Gestur Dinamis: LSTM

Evaluasi terhadap model Long Short-Term Memory (LSTM) difokuskan pada
kemampuannya mengenali pola gestur dinamis yang melibatkan urutan waktu. Analisis
diawali dengan pemeriksaan kurva pelatihan untuk memastikan proses pembelajaran

berjalan dengan baik.

LSTM Model Accuracy LSTM Model Loss

—— Train Loss
3.5 Validation Loss

0.8

0.6

Accuracy

0.4 4

0.2

—— Train Accuracy 054
Validation Accuracy

T T T T T T T T T T
[20 40 60 80] 20 40 60 80
Epoch Epoch

Gambar 4.15 Kurva Akurasi dan Loss Model LSTM

Evaluasi model dilakukan dengan strategi pembagian data yang bertingkat
untuk menjamin validitas hasil. Sebelum pelatihan final, stabilitas arsitektur diuji
terlebih dahulu melalui metode 5-Fold Cross Validation, di mana data validasi diambil
secara bergantian dari 80% himpunan data latih (¢raining set). Setelah validitas internal
teruji, dilakukan pelatihan final yang hasilnya ditunjukkan pada Gambar 4.15. Perlu
diperjelas bahwa kurva validasi (oranye) pada grafik ini merepresentasikan evaluasi
terhadap 20% data uji (test set) yang sepenuhnya terpisah dan tidak pernah digunakan
dalam proses K-Fold maupun pelatihan.

Pada grafik tersebut, terlihat pola konvergensi yang unik di mana garis akurasi
validasi (oranye) cenderung bergerak lebih tinggi dibandingkan akurasi pelatihan (biru)
pada fase awal hingga pertengahan. Fenomena ini terjadi akibat penerapan lapisan
Dropout sebesar 0.3 selama proses pelatihan, yang secara acak mematikan 30% neuron

untuk mencegah model menghafal data (overfitting). Namun, saat fase validasi pada

75

data uji, Dropout dinonaktifkan sehingga model dapat menggunakan kapasitas penuh
jaringannya, menghasilkan performa yang lebih optimal. Secara umum, kurva loss
menunjukkan penurunan yang stabil, menandakan model berhasil meminimalkan
kesalahan seiring bertambahnya epoch.

Hasil evaluasi kuantitatif terhadap model LSTM pada tahap pengujian akhir
dirangkum dalam Tabel 4.3. Berdasarkan data yang tersaji, model menunjukkan kinerja
yang memuaskan dengan mencapai tingkat akurasi global sebesar 94,50% dari total
11.970 sampel uji. Konsistensi performa model juga tercermin dari keseimbangan nilai
rata-rata tertimbang (weighted average) pada metrik evaluasi lainnya, di mana presisi
tercatat sebesar 94,57%, recall sebesar 94,50%, dan F[-score sebesar 94,48%. Angka-
angka ini mengindikasikan bahwa model LSTM cukup handal dalam mengenali pola

gestur dinamis meskipun terdapat kompleksitas urutan gerakan.

Tabel 4.3 Ringkasan Performa Model LSTM pada Data Uji

Metrik Evaluasi Precision Recall F1-Score
Macro Average 0.95 0.95 0.94
Weighted Average 0.95 0.95 0.94

Akurasi Global ~ 0.95 (94.50%)
Total Sampel Uji =~ 11.970 Data

Meskipun akurasi keseluruhan tinggi, analisis lebih dalam menggunakan
Confusion Matrix dan detail per kelas mengungkapkan adanya kesulitan model pada

gestur-gestur tertentu yang memiliki ambiguitas gerakan.

76

APA = D 0 1] 0 81 18 0 0 i}] 13

HAMNYA o RUE o ¢ 13 b

Gambar 4.18 Misklasifikasi Gestur "HANYA" Confusion Matrix LSTM

77

MEMBERI - & o [[0 12 1 0 & a I 0 I 13

Gambar 4.19 Misklasifikasi Gestur "MEMBERI" Confusion Matrix LSTM

Visualisasi Confusion Matrix secara keseluruhan pada Gambar 4.16
memperlihatkan distribusi prediksi model yang mengindikasikan adanya tantangan
signifikan pada beberapa kelas gestur yang memiliki kemiripan visual tinggi. Untuk
menganalisis kesalahan ini secara lebih mendalam, dilakukan proses perbesaran pada

area yang terindikasi memiliki tingkat error tertinggi.

Berdasarkan Gambar 4.17, terlihat secara spesifik bahwa gestur 'APA' sering
mengalami misklasifikasi sebagai gestur 'ROTI' dan 'SEMUA'. Hal ini disebabkan oleh
pola lintasan gerak yang sangat mirip antar-ketiga gestur tersebut, sehingga arsitektur
LSTM kesulitan membedakan nuansa transisinya. Pola kesalahan serupa juga terlihat
pada Gambar 4.18, di mana gestur 'MEMBERI' sering salah dideteksi menjadi gestur
'APA', 'ROTT, dan 'SEMUA' akibat tumpang tindih fitur gerakan yang kompleks. Selain
itu, Gambar 4.19 menunjukkan bahwa gestur 'HANYA' juga mengalami kebingungan
prediksi, di mana model cenderung salah mengklasifikasikannya sebagai gestur

'MEREKA' atau "PULANG" dikarenakan kemiripan posisi tangan.

Sebaliknya, di luar kasus-kasus tersebut, konsentrasi warna yang pekat sempurna
pada garis diagonal utama untuk gestur 'DART', 'DENGAR', dan 'DUDUK' menunjukkan
bahwa model mampu memprediksi gestur-gestur ini tanpa kesalahan. Keberhasilan ini
dikarenakan ketiga gestur tersebut memiliki pola gerakan yang berbeda secara signifikan
dibandingkan gestur lainnya, sehingga fitur-fiturnya dapat diekstraksi dengan baik tanpa
ambiguitas.

4.4.3. Evaluasi Model Gestur Dinamis: Transformer
Berbeda dengan LSTM yang berbasis rekurensi, evaluasi pada model

Transformer difokuskan untuk melihat efektivitas mekanisme Self-Attention dalam

78

menangkap pola global dari gestur tangan. Analisis diawali dengan pengamatan

terhadap dinamika pembelajaran model melalui kurva pelatihan.

Transformer Model Accuracy Transformer Model Loss

1.04 e —— Train Loss
e ————— Validation Loss

= 2.0

Accuracy
(=]
3
Loss

2
o

0.5

=
n

—— Train Accurac ¥ e

—_\————
Validation Accuracy 0.0

I
-

o 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epoch Epoch

Gambar 4.20 Kurva Akurasi dan Loss Model Transformer

Sebagaimana diperlihatkan pada Gambar 4.20, kurva pelatihan model
Transformer menunjukkan karakteristik konvergensi yang sangat cepat dan stabil. Pada
grafik sebelah kiri (Accuracy), garis akurasi validasi (oranye) yang dievaluasi
menggunakan 20% data uji (fest sef) yang terpisah sepenuhnya dari proses pelatihan
melesat naik sejak epoch awal dan stabil di angka tinggi (>95%) hanya dalam kurang
dari 20 epoch, seiring dengan garis akurasi pelatihan (biru). Hal yang sama terlihat pada
grafik Loss (kanan), di mana loss validasi menurun tajam dan mendatar di angka yang
sangat rendah (mendekati 0.0) tanpa adanya divergensi yang menandakan overfitting
parah. Hal ini mengindikasikan bahwa arsitektur 7ransformer dengan konfigurasi
Dropout 0.3 mampu mempelajari generalisasi pola gestur dengan sangat efisien.
Dibandingkan dengan kurva LSTM yang membutuhkan waktu lebih lama untuk stabil,
Transformer membuktikan efisiensi pemrosesan paralelnya dalam menangkap fitur
spasio-temporal yang kompleks. Konsistensi hasil ini sekaligus memvalidasi tahap
pengujian sebelumnya yang menggunakan metode 5-Fold Cross-Validation, di mana
validasi internal dilakukan dengan merotasi 80% data latih utama, memastikan bahwa

model memiliki stabilitas yang kokoh sebelum dievaluasi pada data uji final.

79

Secara kuantitatif, hasil pengujian pada data uji menempatkan model
Transformer sebagai model dengan performa paling superior, sebagaimana dirincikan
pada Tabel 4.4. Berdasarkan laporan klasifikasi (Classification Report) yang dihasilkan
pada data uji final, model ini berhasil mencatatkan tingkat akurasi global sebesar 98.57%
pada 11.970 sampel uji. Kualitas prediksi juga sangat konsisten di seluruh metrik, dengan
nilai rata-rata tertimbang (weighted average) untuk presisi, recall, dan fi-score
semuanya mencapai 98.57%. Angka ini menunjukkan peningkatan performa yang

signifikan dibandingkan model LSTM.

Tabel 4.4 Ringkasan Performa Model Transformer pada Data Uji

Metrik Evaluasi Precision Recall F1-Score
Macro Average 0.99 0.99 0.99
Weighted Average 0.99 0.99 0.99

Akurasi Global 0,99 (98,57%)
Total Sampel Uji 11.970 Data

Untuk memverifikasi distribusi kesalahan prediksi secara mendetail, dilakukan

analisis visual menggunakan Confusion Matrix.

80

Gambar 4.21 Confusion Matrix Model Transformer pada Data Uji

Visualisasi Confusion Matrix pada Gambar 4.21 memperlihatkan dominasi
warna biru gelap yang sangat pekat pada garis diagonal utama, yang menandakan
tingginya densitas prediksi yang benar untuk hampir seluruh kelas gestur. Area off-
diagonal (kesalahan prediksi) terlihat sangat bersih, mengindikasikan minimnya

kesalahan klasifikasi antar-kelas (misclassification).

81

AFA = © o o il n o

Gambar 4.22 Misklasifikasi Gestur “APA” Confusion Matrix Transformer

HANYA - 113 I 3

Gambar 4.23Misklasifikasi Gestur “HANY A” Confusion Matrix Transformer

MEMBER] - N

Gambar 4.24 Misklasifikasi Gestur “MEMBERI” Confusion Matrix Transformer

Keunggulan arsitektur Transformer terlihat lebih nyata ketika dilakukan analisis
mendalam pada gestur-gestur yang sebelumnya bermasalah di model LSTM.
Berdasarkan hasil perbesaran pada Gambar 4.22, gestur '"APA' kini menunjukkan tingkat
kesalahan yang sangat minim, di mana misklasifikasi hanya terjadi dalam frekuensi
rendah terhadap gestur 'SEMUA' akibat kemiripan gerakan. Hal serupa terlihat pada
Gambar 4.23, di mana gestur ' MEMBERI' berhasil dikenali dengan sangat baik dengan
hanya sedikit kesalahan klasifikasi terhadap gestur MENERIMA' yang memiliki bentuk
tangan serupa namun arah berlawanan. Peningkatan stabilitas model juga terbukti pada
Gambar 4.24, di mana gestur 'HANYA' yang sebelumnya sangat rentan tertukar, kini
hanya memiliki tingkat kesalahan yang dapat diabaikan terhadap gestur MEREKA' dan
'PULANG".

Secara komparatif, jika disandingkan dengan hasil model LSTM yang
mengalami kebingungan signifikan pada ketiga gestur tersebut, hasil ini membuktikan
bahwa mekanisme self-attention pada Transformer jauh lebih andal dalam membedakan

fitur-fitur halus. Model mampu memisahkan gestur dengan kemiripan visual tinggi

82

secara presisi, menjadikannya solusi yang lebih superior untuk sistem penerjemah bahasa

isyarat yang membutuhkan akurasi tinggi.

4.4.4. Analisis Komparatif Model Dinamis (LSTM vs Transformer)

Setelah dilakukan pengujian dan evaluasi terhadap masing-masing model
secara terpisah, tahap selanjutnya adalah melakukan analisis komparatif antara
algoritma LSTM dan Transformer untuk mengukur efektivitasnya dalam mengenali
gestur dinamis BISINDO. Perbandingan ini difokuskan pada metrik akurasi global
serta rata-rata performa (precision, recall, fl-score) pada data uji yang sama kemudian
efisiensi komputasi selama proses pelatihan dan tingkat keyakinan (confidence score)
model dalam melakukan prediksi benar. Ringkasan perbandingan kinerja kedua model

disajikan pada Tabel 4.5.

Tabel 4.5 Perbandingan Performa Model LSTM dan Transformer

Model Akurasi Rata-rata Rata-rata Rata-rata Selisih
Arsitektur Global Precision Recall F1-Score (AKkurasi)

LSTM 94,50% 94,57% 94,50% 94,48% -
Transformer 98,57% 98,59% 98,57% 98,57% +4,07%

Berdasarkan hasil benchmark kecepatan pelatihan pada lingkungan komputasi
yang sama, ditemukan perbedaan signifikan dalam waktu eksekusi per epoch.
Sebagaimana tercatat dalam laporan estimasi, model LSTM mencatatkan waktu
pelatihan rata-rata 8,86 detik per epoch, sedangkan model Transformer membutuhkan
waktu 18,80 detik per epoch. Data ini menunjukkan bahwa arsitektur Transformer
memiliki beban komputasi sekitar 2,12 kali lebih tinggi dibandingkan LSTM.
Peningkatan beban ini merupakan konsekuensi logis dari mekanisme Multi-Head
Attention pada Transformer yang harus memproses matriks hubungan antar-seluruh
frame secara paralel, berbeda dengan LSTM yang memproses data secara sekuensial
namun dengan operasi matematis yang lebih ringkas dan efisien pada setiap langkah

waktunya.

83

Meskipun menuntut sumber daya komputasi yang lebih besar, model
Transformer membuktikan keunggulannya melalui superioritas nyata dalam hal
ketegasan prediksi. Berdasarkan analisis probabilitas pada data uji, rata-rata skor
keyakinan (avg confidence) pada prediksi yang benar untuk 7ransformer mencapai
angka 99,62%, lebih tinggi 6,55% dibandingkan model LSTM yang mencatatkan rata-
rata keyakinan sebesar 93,07%. Tingginya probabilitas ini mengindikasikan bahwa
fitur Self-Attention pada Transformer sangat efektif dalam memisahkan batas
keputusan (decision boundary) antar-kelas gestur secara tegas. Hal ini bermakna bahwa
ketika Transformer memprediksi suatu gestur, model tersebut memiliki tingkat
kepastian yang hampir absolut, meminimalkan keraguan ambiguitas yang terkadang
masih terlihat pada prediksi model LSTM.

Analisis lebih mendalam dilakukan untuk melihat seberapa efektif model
Transformer memperbaiki kesalahan yang sering dilakukan oleh model LSTM. Tabel

4.6 memperlihatkan daftar gestur yang mengalami peningkatan akurasi paling drastis.

Tabel 4.6 Perbandingan Gestur dengan Kemiripan Visual Tinggi

Label Gestur F1-Score LSTM F1-Score Transformer Peningkatan
A. Gestur Ambigu

APA 62,79% 92,49% +29,70%
MEMBERI 66,67% 92,13% +25,46%
HANYA 78,36% 97,14% +18,78%
B. Gestur Invers
BUKA (MATA) 81,57% 92,74% +11,17%
TUTUP (MATA) 81,12% 93,33% +12,21%
C. Gestur Variasi
MENERIMA PESAN 79,49% 95,12% +15,63%
MENERIMA 86,27% 93,85% +7,58%

Peningkatan performa paling dramatis terlihat pada kategori gestur ambigu,

yaitu kelompok gestur yang memiliki pola gerakan samar atau sangat mirip secara

84

visual dengan gestur lain sehingga sering memicu kebingungan model. Contoh
signifikannya adalah gestur 'APA' dan 'MEMBERI', di mana Transformer mampu
meningkatkan f7-score masing-masing sebesar 29,70% dan 25,46%. Hal ini
mengindikasikan bahwa mekanisme Self-Attention sukses menangkap detail transisi
gerakan halus yang sebelumnya gagal diproses oleh memori sekuensial LSTM.

Keunggulan Transformer juga teruji pada kategori gestur invers, yang
melibatkan pasangan gerakan dengan arah lintasan yang saling berkebalikan. Pada
model LSTM, pasangan gestur 'BUKA (MATA)' dan 'TUTUP (MATA)' sering
mengalami kesalahan klasifikasi dengan skor di kisaran 81%, namun Transformer
berhasil memperbaikinya hingga mencapai 93,33%.

Selain itu, model ini juga sangat sensitif terhadap kategori gestur variasi, yakni
gestur gabungan yang terbentuk dari pengembangan atau penambahan gerakan pada
gestur dasar. Kasus ini terlihat jelas pada gestur ' MENERIMA PESAN'. Jika LSTM
kesulitan membedakan gestur ini dari gestur dasarnya ‘(MENERIMA") terlihat dari skor
rendah 79,49% maka Transformer mampu mengidentifikasi nuansa tambahan tersebut
dengan sangat baik, mencatatkan skor 95,12%. Secara keseluruhan, data ini
mengonfirmasi bahwa Transformer memiliki kemampuan superior dalam
membedakan gestur yang memiliki kemiripan struktural.

4.5. Pengujian Sistem Secara Real-Time pada Raspberry Pi

Setelah melalui tahap evaluasi model secara terpisah (offline), tahap selanjutnya
adalah pengujian integrasi sistem secara real-time. Pengujian ini dilakukan dengan
menjalankan aplikasi utama pada perangkat Raspberry Pi 5 yang telah terhubung
dengan Pi Camera vI dan layar monitor. Tujuan utama dari pengujian ini adalah untuk
memvalidasi kemampuan sistem hybrid dalam mengenali gestur tangan pengguna
secara langsung di lingkungan nyata, di mana terdapat variabel dinamis seperti
kecepatan gerakan tangan dan variasi pencahayaan yang tidak ditemukan pada data
latih statis.

4.5.1. Skenario Pengujian
Pengujian sistem secara real-time melibatkan tiga orang partisipan utama yang

merupakan penutur asli BISINDO (tunarungu) dan dua penutur non-asli. Pelibatan

85

penutur asli bertujuan untuk memvalidasi kinerja sistem terhadap gestur yang alami,
cepat, dan fluiditas tinggi. Sementara itu, partisipan non-asli disertakan untuk menguji
ketahanan model dalam mengenali variasi gerakan yang mungkin kurang presisi atau
memiliki tempo yang berbeda, sehingga merepresentasikan kemampuan generalisasi
sistem terhadap berbagai tipe pengguna.

Pengujian performa sistem secara real-time dilaksanakan untuk memvalidasi
kemampuan model saat dijalankan pada perangkat embedded. Skenario pengujian
dilakukan di lingkungan Laboratorium HMI dengan kondisi pencahayaan terukur
antara 200 hingga 300 Lux dan latar belakang kompleks. Kondisi lingkungan ini
disetarakkan dengan kondisi pada fase pelatihan data untuk menjaga konsistensi
variabel eksternal.

Perangkat akuisisi citra yang digunakan pada tahap ini adalah PiCamera vi
yang terintegrasi dengan modul Raspberry Pi. Subjek ditempatkan pada jarak 50
hingga 80 cm di depan kamera, dengan resolusi input yang disesuaikan untuk
pemrosesan model. Penggunaan latar belakang yang tidak polos dan pencahayaan
ruang kerja yang natural dalam pengujian ini bertujuan untuk membuktikan ketahanan
sistem dalam mengenali gestur pada kondisi operasional yang sesungguhnya, di mana
noise visual dari lingkungan sekitar tidak dihilangkan.

Prosedur pengujian dilakukan dengan langkah-langkah sebagai berikut:

1. Lingkungan Pengujian: Pengujian dilakukan di dalam ruangan dengan
pencahayaan lampu standar (sekitar 200-300 /ux) untuk menyimulasikan
kondisi penggunaan sehari-hari. Jarak antara pengguna dan kamera diatur
pada kisaran 50-80 cm agar frame kamera dapat menangkap gestur tangan
secara utuh.

2. Tugas Partisipan: Dalam setiap pengujian, partisipan diinstruksikan untuk
memperagakan gestur secara tanpa adanya interupsi atau pergantian sesi.
Alur tugas dimulai dengan memperagakan gestur statis (Huruf A-Z, Angka
0-10 dan Kata Statis), kemudian langsung dilanjutkan dengan
memperagakan gestur dinamis untuk melihat transisi dan responsivitas

sistem.

86

3. Metode Pengambilan Data: Untuk membandingkan performa arsitektur
model, pengujian dibagi menjadi dua sesi eksperimen utama:
e Sesi 1: Hybrid (Random Forest + LSTM TFLite).
o Sesi 2: Hybrid (Random Forest + Transformer TF Lite).

4.5.2. Hasil Pengujian Akurasi Real-Time

Pengujian sistem secara real-time dilakukan dengan melibatkan satu partisipan
Tunarungu dan dua partisipan non-difabel untuk memvalidasi kinerja sistem dalam
kondisi penggunaan yang sebenarnya. Pengujian ini bertujuan untuk mengukur tingkat
akurasi sistem dalam mengenali gestur statis dan dinamis, tidak hanya pada gerakan
yang natural dari penutur asli, tetapi juga pada pola gerakan yang diperagakan oleh
penutur non-asli. Pengujian dibagi menjadi dua skenario utama, yaitu Skenario A yang
menggunakan kombinasi Random Forest dan LSTM, serta Skenario B yang
menggabungkan Random Forest dengan Transformer.

Pada Skenario A, sistem yang diuji dengan model Hybrid (Random Forest +
LSTM) berhasil mencapai tingkat akurasi keseluruhan sebesar 88%, sebagaimana
dirincikan pada Tabel 4.7. Secara spesifik, model Random Forest menunjukkan kinerja
yang sangat andal dalam mendeteksi gestur statis (Huruf, Angka dan Kata Statis)
dengan akurasi rata-rata mencapai 90%. Sementara itu, model LSTM yang bertugas
menangani gestur dinamis mencatatkan akurasi sebesar 86%. Selisih akurasi ini
mengindikasikan bahwa tantangan dalam pengenalan gestur dinamis relatif lebih tinggi
dibandingkan gestur statis, terutama dalam hal menangkap variabilitas pola pergerakan

tangan secara temporal.

Tabel 4.7 Hasil Pengujian Real-Time RF+LSTM

Rata — Rata
Random Forest LSTM
90% 86%

*Data lengkap berada di Lampiran A.1

87

Beralih ke Skenario B, di mana model LSTM digantikan oleh Transformer,
hasil pengujian yang disajikan pada Tabel 4.8 menunjukkan adanya peningkatan
performa secara umum dengan capaian akurasi total sebesar 93%. Pada sesi ini, deteksi
gestur statis mencatatkan akurasi yang lebih tinggi yaitu 91%, yang kembali
menegaskan konsistensi algoritma Random Forest dalam mengenali bentuk tangan
statis. Untuk pengenalan gestur dinamis, model 7ransformer memperoleh akurasi rata-
rata sebesar 93%, mencatatkan peningkatan performa yang signifikan dibandingkan

model LSTM pada skenario sebelumnya yang hanya mencapai 86%.

Tabel 4.8 Hasil Pengujian Real-Time RF+Transformer

Rata — Rata

Random Forest Transformer

91% 93%

*Data lengkap berada di Lampiran A.2

Berdasarkan analisis komparatif antara kedua skenario, terlihat bahwa Skenario
B (RF + Transformer) memberikan hasil keseluruhan yang lebih unggul dibandingkan
Skenario A. Analisis mendalam pada tingkat gestur dinamis mengungkapkan disparitas
performa yang cukup signifikan, di mana model Transformer mencatatkan rata-rata
akurasi sebesar 93%, mengungguli model LSTM yang berada di angka 86%. Meskipun
demikian, model LSTM menunjukkan dominasi performa yang spesifik pada gestur-
gestur dengan pola gerakan linier atau repetitif yang tegas, seperti gestur "MINUM",
"NAIK" dan "TULIS”. Pada gestur-gestur ini, LSTM berhasil mempertahankan
stabilitas tinggi dengan akurasi sempurna (100%), sementara Transformer mengalami
penurunan performa.

Sebaliknya, keunggulan utama Transformer terletak pada kemampuannya
menangani gestur yang memiliki kompleksitas tinggi atau ambiguitas bentuk tangan
antar-frame. Hal ini terbukti dari lonjakan akurasi yang drastis pada gestur "SEMUA",
"DUDUK", "UTARA", dan "MEMBUKA". Pada gestur-gestur ini, Transformer

mampu mencapai akurasi 100%, jauh meninggalkan LSTM yang hanya berkisar di

88

angka 33-47%, menciptakan selisih performa hingga lebih dari 60%. Temuan ini
mengonfirmasi bahwa mekanisme Self-Attention pada Transformer sangat efektif
dalam membedakan konteks gerakan dengan transisi halus yang sering luput dari
arsitektur rekuren LSTM. Di sisi lain, keandalan sistem dalam mengenali gestur statis
terbukti sangat konsisten pada kedua skenario, di mana mayoritas gestur abjad (seperti
B, C, D, hingga W) dapat dikenali dengan akurasi 100%, memvalidasi peran Random
Forest sebagai komponen hybrid yang efisien untuk menangani isyarat non-temporal.

Berdasarkan hasil evaluasi komparatif, teridentifikasi empat kelas gestur yang
secara konsisten memiliki performa rendah baik pada skenario model LSTM maupun
Transformer, yaitu gestur 'Z'; 'MENDENGAR', 'ANTARA', dan 'BERKATA'
Persistensi kesalahan pada kedua arsitektur model mengindikasikan bahwa tantangan
utama bukan terletak pada kemampuan model mempelajari urutan, melainkan pada
ambiguitas fitur intrinsik dan kualitas representasi data pada kelas-kelas tersebut.
Berikut adalah analisis mendalam untuk masing-masing kasus.

Gestur 'Z' (Statis) Gestur ini mencatatkan akurasi terendah (hampir 0%) di
kedua skenario. Analisis menunjukkan bahwa kesalahan fatal ini disebabkan oleh
keterbatasan variasi pada dataset latith statis. Minimnya sampel yang
merepresentasikan variasi sudut pandang dan orientasi jari saat membentuk huruf 'Z'
menyebabkan model gagal mengenali pola tersebut saat diuji secara real-time dengan
pose yang sedikit berbeda dari data latih (overfitting pada pose statis tertentu).

Gestur 'MENDENGAR' (Statis) vs. 'KANAN' Kesalahan klasifikasi pada
gestur 'MENDENGAR' didominasi oleh prediksi yang tertukar dengan gestur
'KANAN'. Berdasarkan observasi karakteristik gestur, gestur 'MENDENGAR'
dilakukan dengan tangan terbuka di sebelah telinga, sedangkan gestur 'KANAN'
dilakukan dengan tangan menggenggam di posisi yang sama. Meskipun konfigurasi
jari kedua gestur ini berbeda secara signifikan, tingginya tingkat kesalahan
menunjukkan bahwa model lebih dominan mempelajari fitur spasial/posisi
dibandingkan fitur bentuk tangan. Posisi tangan yang identik yakni berada di area
lateral kepala dekat telinga menyebabkan koordinat keypoints pergelangan tangan dan

telapak tangan berada pada vektor lokasi yang sangat berdekatan. Dalam kondisi

89

pengujian real-time, model tampaknya kesulitan memprioritaskan fitur "kondisi jari"
di atas fitur "lokasi tangan", sehingga sering mengabaikan perbedaan bentuk
genggaman dan salah mengklasifikasikan gestur hanya berdasarkan kedekatan
posisinya di area telinga.

Gestur '"ANTARA' (Dinamis) vs. 'BELAJAR' Pada kategori gestur dinamis,
gestur 'ANTARA' sering mengalami misklasifikasi sebagai gestur 'BELAJAR'.
Analisis visual terhadap data uji menunjukkan adanya tumpang tindih pada pola
lintasan gerak. Kedua gestur ini melibatkan pergerakan kedua tangan di area depan
dada dengan tempo gerakan yang hampir serupa. Kemiripan pola kinematik ini
membuat fitur temporal yang diekstraksi baik oleh gate LSTM maupun attention
Transformer menjadi kurang terlihat perbedaannya, sehingga model kesulitan
menentukan batas pembeda yang tegas di antara keduanya.

Gestur 'BERKATA' (Dinamis) vs. '"AMBIL' Serupa dengan kasus sebelumnya,
gestur 'BERKATA' mengalami kebingungan prediksi yang signifikan terhadap gestur
'AMBIL'. Kesalahan ini diakibatkan oleh kemiripan transisi gerakan awal dan akhir.
Kedua gestur melibatkan pergerakan tangan yang bermula dari area tubuh bagian atas
menuju ke arah luar atau sebaliknya. Dalam kondisi pengambilan data real-time yang
bervariasi, nuansa perbedaan pada orientasi telapak tangan seringkali tersamarkan,
menyebabkan model menangkap fitur gerak global yang identik antara 'BERKATA'
(gerakan seperti mulut keluar) dan 'AMBIL' (gerakan meraih), yang berujung pada
kesalahan klasifikasi.

4.5.3. Analisis Statistik Signifikansi Performa (Uji Wilcoxon)

Meskipun data deskriptif pada subbab sebelumnya menunjukkan bahwa rata-
rata akurasi model Hybrid RF + Transformer (93%) lebih tinggi dibandingkan RF +
LSTM (86%), pembuktian secara statistik diperlukan untuk memastikan bahwa
perbedaan tersebut bersifat signifikan dan bukan terjadi karena kebetulan semata. Oleh
karena itu, dilakukan uji beda dua sampel berpasangan (paired sample test) terhadap
hasil akurasi dari 95 gestur dinamis.

Mengingat data akurasi tidak terdistribusi secara normal, metode statistik non-

parametrik Wilcoxon Signed-Rank Test dipilih sebagai instrumen pengujian. Pengujian

90

ini dilakukan dengan taraf signifikansi sebesar 0,05 atau 5%. Hipotesis yang diajukan
dalam pengujian ini adalah sebagai berikut:
e Hipotesis Nol (Hy): Tidak terdapat perbedaan yang signifikan antara
performa akurasi model RF + LSTM dan RF + Transformer-.
e Hipotesis Alternatif (H;): Terdapat perbedaan yang signifikan antara
performa akurasi model RF + LSTM dan RF + Transformer-.

Hasil perhitungan statistik menggunakan perangkat lunak SPSS disajikan pada
Gambar 4.25 dan Gambar 4.26 berikut ini.

Ranks
Sum of
[+l Mean Rank Ranks
Akurasi_Transformer - Megative Ranks 112 22.45 247.00
Akurasi_LSTM - b
FPositive Ranks 35 23.83 834.00
Ties 49"
Total 95

a. Akurasi_Transformer = Akurasi_LSTM
h. Akurasi_Transformer = Akurasi_LSTM

c. Akurasi_Transformer = Akurasi_LSTM

Gambar 4.25 Peringkat Tanda (Ranks) Uji Wilcoxon

Test Statistics®

Akurasi_Tran

sformer-
Akurasi_LST
[T}
z -3.219"
Asymp. Sig. (2-tailed) .0

a. Wilcoxon Signed Ranks Test

b. Based on negative ranks.

Gambar 4.26 Hasil Statistik Uji Wilcoxon

91

Berdasarkan Gambar 4.26, hasil uji statistik menunjukkan nilai Asymp. Sig. (2-
tailed) sebesar 0,001. Nilai ini jauh lebih kecil dari taraf signifikansi yang ditetapkan
(0.001 < 0.05). Dengan demikian, H, ditolak dan H; diterima. Hal ini membuktikan
secara statistik bahwa penggantian arsitektur dari LSTM ke Transformer memberikan
dampak peningkatan akurasi yang nyata dan signifikan pada sistem klasifikasi
BISINDO real-time.

Analisis lebih lanjut pada Gambar 4.20 (Ranks) memperlihatkan dominasi
performa model Transformer. Data Positive Ranks (jumlah gestur di mana Transformer
unggul atas LSTM) tercatat jauh lebih banyak dibandingkan Negative Ranks (jumlah
gestur di mana LSTM unggul). Hal ini mengindikasikan bahwa perbaikan performa
terjadi secara merata pada mayoritas gestur dinamis yang diujikan.

Secara statistik, model RF + Transformer terbukti lebih robust dan andal untuk
diimplementasikan pada perangkat Raspberry Pi. Kesimpulannya, model Hybrid
Random Forest + Transformer adalah arsitektur yang paling direkomendasikan untuk
sistem penerjemah bahasa isyarat ini.

4.6. Evaluasi Kinerja Komputasi pada Raspberry Pi 5

Evaluasi kinerja komputasi dilakukan untuk memvalidasi efisiensi model Deep
Learning (LSTM dan Transformer) saat dijalankan pada perangkat edge Raspberry Pi
5. Pengujian ini difokuskan pada pengukuran kecepatan inferensi murni (inference
benchmark) untuk mengetahui batas maksimal kemampuan model dalam memproses
data tanpa dipengaruhi oleh latensi kamera atau antarmuka grafis. Berdasarkan
pengujian intensif yang dilakukan sebanyak 5 kali iterasi berturut-turut untuk setiap
model, diperoleh data performa yang sangat impresif sebagaimana dirangkum dalam
analisis berikut.

Sebelum membahas hasil performa waktu nyata, pengujian kecepatan inferensi
dilakukan terlebih dahulu untuk mengukur efisiensi komputasi model saat
diimplementasikan ke dalam format TensorFlow Lite. Metode pengukuran dilakukan
dengan menjalankan proses prediksi model pada serangkaian sampel data gestur secara
berulang pada perangkat uji, tanpa menyertakan waktu yang dibutuhkan untuk pre-

processing data. Total waktu eksekusi yang tercatat kemudian dibagi dengan jumlah

92

sampel untuk mendapatkan rata-rata waktu latensi per prediksi dalam satuan milidetik
(ms). Selain itu, metrik Frames Per Second (FPS) juga dihitung untuk mengetahui
berapa banyak gestur yang dapat diproses sistem dalam satu detik, di mana nilai FPS
berbanding terbalik dengan latensi.

Hasil pengujian kuantitatif menunjukkan bahwa model LSTM mencatatkan
efisiensi komputasi tertinggi dengan kecepatan pemrosesan mencapai 2.123 FPS. Jika
dikonversikan ke dalam satuan waktu respons, angka ini setara dengan latensi ultra-

rendah sebesar 0,47 milidetik per prediksi, yang diperoleh melalui perhitungan

1000ms
2.123 FPS

matematis Latensi = = 0,47 ms . Sementara itu, Model Transformer,

meskipun memiliki arsitektur yang lebih kompleks, tetap menunjukkan kinerja yang

luar biasa dengan rata-rata kecepatan inferensi 1.757 FPS. Berdasarkan rumus konversi

1000ms
1.757 FPS

yang sama Latensi = = 0,57 ms, model ini menghasilkan latensi sebesar

0,57 milidetik. Selisih waktu inferensi sekitar 0,1 milidetik antara kedua model ini
tergolong sangat tidak signifikan dalam konteks penggunaan nyata, mengingat standar
waktu respons manusia berada di kisaran ratusan milidetik. Hal ini mengindikasikan
bahwa kedua model telah teroptimasi dengan sangat baik melalui kuantisasi
TensorFlow Lite, sehingga proses klasifikasi gestur dinamis hampir tidak memberikan
beban latensi tambahan pada sistem utama..

Dari aspek penggunaan sumber daya, Raspberry Pi 5 terbukti sangat mumpuni
dalam menangani beban komputasi kedua model tersebut. Selama pengujian
berlangsung, rata-rata penggunaan CPU untuk model LSTM tercatat stabil di angka
23,93%, sedangkan model Transformer sedikit lebih tinggi di angka 26,10%. Stabilitas
termal perangkat juga terjaga dengan baik, di mana suhu rata-rata operasional terpantau
berada di kisaran 48°C hingga 49°C, jauh di bawah batas thermal throttling (80°C).
Rendahnya konsumsi sumber daya dan suhu operasional ini menjamin bahwa sistem
dapat dijalankan dalam durasi panjang tanpa risiko penurunan performa (overheating),
menjadikan solusi ini sangat layak untuk diimplementasikan sebagai perangkat

penerjemah bahasa isyarat portabel yang andal.

93

Bab V

Simpulan dan Saran

5.1. Kesimpulan

Penelitian ini berhasil merancang dan mengimplementasikan sistem klasifikasi
bahasa isyarat BISINDO hibrida secara real-time pada perangkat edge Raspberry Pi 5
dengan efisiensi komputasi yang optimal. Melalui pemanfaatan format TensorFlow
Lite, sistem mampu memproses inferensi dengan latensi sangat rendah, berkisar antara
0,47 ms hingga 0,57 ms, sehingga memenuhi standar responsivitas yang dibutuhkan
untuk komunikasi langsung. Hasil pengujian komparatif pada 95 gestur dinamis
menunjukkan bahwa arsitektur Hybrid Random Forest + Transformer (Skenario B)
memiliki performa yang lebih superior dengan akurasi rata-rata mencapai 93%,
mengungguli arsitektur Hybrid Random Forest + LSTM (Skenario A) yang
mencatatkan akurasi 86%. Keunggulan ini telah divalidasi secara statistik melalui uji
Wilcoxon Signed-Rank Test dengan hasil yang signifikan (p < 0.05) membuktikan
bahwa mekanisme Self-Attention pada Transformer jauh lebih efektif dalam menangani
gestur kompleks dan ambigu seperti "BUKA (MATA)" dan "UTARA" dibandingkan
arsitektur rekuren. Selain itu, sistem menunjukkan tingkat robustitas yang baik saat
diuji oleh tiga partisipan yang terdiri dari satu penutur asli Tuli dan dua penutur dengar,
serta mampu mempertahankan konsistensi akurasi sempurna (100%) pada klasifikasi
gestur statis berkat keandalan komponen Random Forest.

Meskipun sistem menunjukkan performa komputasi dan akurasi yang optimal,
evaluasi lapangan dengan partisipan tunarungu menyingkap adanya tantangan teknis
pada sisi akuisisi data visual. Ditemukan adanya kesenjangan antara kecepatan alami
gerak isyarat penutur asli dengan kapabilitas tangkapan kamera dan algoritma deteksi
fitur. Kecepatan dan fluiditas gerakan tangan partisipan sering kali melampaui batas
frame rate kamera serta kecepatan pemrosesan landmark oleh MediaPipe pada
perangkat edge, yang mengakibatkan terjadinya efek motion blur dan hilangnya
pelacakan titik tangan. Kondisi ini menyebabkan kegagalan segmentasi gestur yang

mengharuskan pengguna untuk mengulang gerakan dari posisi awal, mengindikasikan

94

bahwa keandalan sistem dalam kondisi nyata tidak hanya bergantung pada model
klasifikasi, tetapi juga sangat dipengaruhi oleh spesifikasi perangkat keras akuisisi citra
dalam menangani dinamika gerakan cepat.

5.2. Saran

Berdasarkan hasil penelitian dan evaluasi kinerja sistem penerjemah bahasa
isyarat yang telah dilakukan, terdapat sejumlah rekomendasi strategis untuk
pengembangan penelitian di masa mendatang. Saran-saran ini difokuskan pada tiga
aspek utama: optimalisasi implementasi perangkat keras, peningkatan metodologi
pelatihan, dan perluasan fungsionalitas sistem.

Dari sisi implementasi perangkat keras, penelitian selanjutnya sangat
disarankan untuk menerapkan teknik optimasi model tingkat lanjut berupa Full Integer
Quantization (Int§) dan Model Pruning. Langkah ini bertujuan untuk mereduksi presisi
bobot model dan memangkas redundansi arsitektur, sehingga memungkinkan sistem
beroperasi secara efisien pada perangkat mikrokontroler hemat daya atau perangkat
wearable. Sejalan dengan itu, penggunaan sensor kamera dengan frame rate tinggi (60
FPS atau lebih) direkomendasikan untuk meningkatkan resolusi temporal agar gerakan
mikro penutur asli dapat tertangkap dengan presisi. Namun, guna menjaga efisiensi
daya pada perangkat portable, penggunaan kamera ini sebaiknya disertai dengan
penyesuaian resolusi input, mengingat ekstraksi fitur berbasis MediaPipe tidak
menuntut resolusi citra yang tinggi.

Dalam aspek metodologi dan data, penelitian lanjutan sangat disarankan untuk
memitigasi risiko bias demografis pada pembuatan dataset. Hal ini dapat dilakukan
dengan memperluas akuisisi data yang melibatkan partisipan dari dua kelompok
demografi utama, yaitu penutur asli dan non-penutur asli. Pelibatan penutur asli
bertujuan untuk menangkap karakteristik gerakan yang natural, fluida, dan
berkecepatan tinggi, sedangkan data dari non-penutur asli merepresentasikan variasi
gerakan yang lebih terstruktur. Kombinasi kedua spektrum data ini krusial untuk
melatih model agar memiliki kemampuan generalisasi yang tangguh dalam mengenali
pola gestur pada berbagai tingkat kecepatan dan gaya bahasa. Selain itu, guna

mendapatkan konfigurasi arsitektur model yang paling optimal tanpa bergantung pada

95

penyesuaian manual, disarankan untuk mengadopsi metode pencarian hyperparameter
otomatis seperti Bayesian Optimization. Metode ini menawarkan eksplorasi ruang
parameter yang lebih sistematis untuk menyeimbangkan akurasi dan kompleksitas
komputasi.

Terakhir, pengembangan fungsionalitas sistem diharapkan dapat bergerak
menuju pengenalan kalimat kontinu (Continuous Sign Language Recognition) yang
mampu menerjemahkan percakapan utuh secara mengalir tanpa jeda antar-kata.
Fungsionalitas ini idealnya diintegrasikan dengan fitur komunikasi dua arah (bi-
directional communication) yang dilengkapi modul Text-to-Speech (TTS) dan Speech-
to-Text. Dengan fitur ini, sistem tidak hanya memvisualisasikan isyarat ke dalam teks,
tetapi juga dapat menyuarakan terjemahan tersebut secara verbal, serta mengonversi
ucapan lawan bicara kembali menjadi teks atau visual isyarat, sehingga menciptakan
ekosistem komunikasi yang inklusif dan menyeluruh bagi penyandang disabilitas

rungu.

96

DAFTAR PUSTAKA

Abed, A.A. and Rahman, S.A., 2017. Python-based Raspberry Pi for hand gesture
recognition. International Journal of Computer Applications, 173(4), pp.18-24.

Alatas, O.H and Widodo, R.B., 2024. Klasifikasi Bahasa Isyarat BISINDO dengan
Input Kamera pada Raspberry Pi Menggunakan Algoritma Random Forest dan
Long Short-Term Memory. Laporan Praktik Kerja Lapangan. Malang:
Universitas Ma Chung.

Alexander, N., Widodo, R.B., & Swastika, W. Penggunaan Machine Learning Dalam
Klasifikasi Bahasa Isyarat BISINDO Menggunakan Kamera. Prosiding
Seminar Nasional Universitas Ma Chung(SENAM), 2023, (pp. 11-26).

Ali, Z.,2024. A Comprehensive Overview and Comparative Analysis of CNN, RNN-
LSTM and Transformer. RNN-LSTM and Transformer (December 31, 2024).

Aljabar, A., Suryani, D., and Prasetyo, E., 2020, ‘BISINDO Sign Language
Recognition Using CNN and LSTM’, Proceedings of the International

Conference on Computer Engineering, Network and Intelligent Multimedia, pp.
1-6.

Birajdar, G.S., Baz, M., Singh, R., Rashid, M., Gehlot, A., Akram, S.V., Alshamrani,
S.S. and AlGhamdi, A.S., 2021. Realization of people density and smoke flow
in buildings during fire accidents using raspberry and openCV. Sustainability,
13(19), p.11082.

Camgoz, N.C., Koller, O., Hadfield, S. and Bowden, R., 2020. Sign language
transformers: Joint end-to-end sign language recognition and translation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 10023-10033).

Chaudhary, L., Ananthanarayana, T., Hoq, E. and Nwogu, 1., 2022. Signnet ii: A
transformer-based two-way sign language translation model. IEEE

97

Transactions on Pattern Analysis and Machine Intelligence, 45(11), pp.12896-
12907.

Chen, Z., Lei, X., Yuan, Q., Qi, Y., Ma, Z., Qian, S. and Lyu, X., 2024. Key
technologies for autonomous fruit-and vegetable-picking robots: A review.
Agronomy, 14(10), p.2233.

Coffen, B. and Mahmud, M.S., 2021, March. Tinydl: Edge computing and deep
learning based real-time hand gesture recognition using wearable sensor. In

2020 IEEE international conference on e-health networking, application &
services (HEALTHCOM) (pp. 1-6). IEEE.

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N., Nappier,
I., Natraj, M., Wang, T. and Warden, P., 2021. Tensorflow lite micro:
Embedded machine learning for tinyml systems. Proceedings of machine
learning and systems, 3, pp.800-811.

Fadlilah, N., Suryani, D., and Prasetyo, E., 2022, ‘Modelling of Basic Indonesian Sign
Language Translator Based on Raspberry Pi Technology’, Journal of Physics:
Conference Series, 1(1), pp. 1-6.

Hoque, O.B., Jubair, M.L., Islam, M.S., Akash, A.F. and Paulson, A.S., 2018,
December. Real time bangladeshi sign language detection using faster r-cnn. In

2018 international conference on innovation in engineering and technology
(ICIET) (pp. 1-6). IEEE.

Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin,
N.E.Y., Yamamoto, R., Wang, X. and Watanabe, S., 2019, December. A
comparative study on transformer vs rnn in speech applications. In 2019 IEEE
automatic speech recognition and understanding workshop (ASRU) (pp. 449-
456). IEEE.

Konaite, M., Owolawi, P.A., Mapayi, T., Malele, V., Odeyemi, K., Aiyetoro, G. and
Ojo, J.S., 2021, December. Smart hat for the blind with real-time object

98

detection using raspberry pi and tensorflow lite. In Proceedings of the
International Conference on Artificial Intelligence and its Applications (pp. 1-
6).

Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-Gonzalez, A.B. and Corchado,
J.M., 2022. Deepsign: Sign language detection and recognition using deep
learning. Electronics, 11(11), p.1780.

Pomaska, G., 2019. Stereo vision applying opencv and raspberry pi. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 42, pp.265-269.

Raspberry Pi Foundation (2013-2023) Camera Module Documentation. Available at:
https://www.raspberrypi.com/documentation/accessories/camera.html
(Accessed: 14 September 2025).

Raspberry Pi Ltd (2023) Raspberry Pi 5. Available at:
https://www.raspberrypi.com/products/raspberry-pi-5/ (Accessed: 3 December
2025).

Shin, J., Musa Miah, A.S., Hasan, M.A.M., Hirooka, K., Suzuki, K., Lee, H.S. and Jang,
S.W., 2023. Korean sign language recognition using transformer-based deep
neural network. Applied Sciences, 13(5), p.3029.

Shiri, F.M., Perumal, T., Mustapha, N. and Mohamed, R., 2023. A comprehensive
overview and comparative analysis on deep learning models: CNN, RNN,
LSTM, GRU. arXiv preprint arXiv:2305.17473.

Symon, A.F., Hassan, N., Rashid, H., Ahmed, I.U. and Reza, S.T., 2017, September.
Design and development of a smart baby monitoring system based on
Raspberry Pi and Pi camera. In 2017 4th International Conference on Advances
in Electrical Engineering (ICAEE) (pp. 117-122). IEEE.

99

https://www.raspberrypi.com/documentation/accessories/camera.html

Toyib, R., Affandi Mussa, A. P., Wijaya, A. and Sonita, A. (2025) “Indonesian Sign
System Introduction Application with Tensorflow Lite and Firebase

Authentication”, Jurnal Teknik Informatika dan Sistem Informasi. Jakarta,
Indonesia, 11(1), pp. 31-48.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.
and Polosukhin, 1., 2017. Attention is all you need. Advances in neural
information processing systems, 30.

Wungow, K.C., Widodo, R.B. and Subianto, M., 2022, September. Studi Klasifikasi
dengan KNN dan ANN pada Sarung Tangan Penerjemah Angka dan Alfabet
Bahasa Isyarat SIBI. In Prosiding Seminar Nasional Universitas Ma Chung
(Informatika & Sistem Informasi; Bahasa dan Seni; Farmasi) (Vol. 2, pp. 60-
74).

Xu, M., Yoon, S., Fuentes, A. and Park, D.S., 2023. A comprehensive survey of image
augmentation techniques for deep learning. Pattern Recognition, 137, p.109347.

Zhu, J., 2023. Comparative study of sequence-to-sequence models: From RNNs to
transformers. Appl Comput Eng, 42(67), pp.2755-2721.

100

Lampiran

Lampiran A. Hasil Evaluasi Real-Time

Lampiran A.1 Hasil Evaluasi Real-Time RF+LSTM

GESTURE

SUBJECT AVERAGE (%)

ACCURACY
(%)

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

60%

100%

100%

87%

100%

100%

100%

100%

100%

100%

100%

100%

40%

0%

100%

47%

0%

100%

WIN (R |WIN [~ | WIN|—[WIN R, [W[IN R WIN|— [WIN |~ [W|INR|WIN|[— W[N]~

100%

67%

101

10

100%

100%

100%

100%

40%

100%

100%

80%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

60%

100%

87%

100%

100%

100%

100%

100%

N =W [W[N] WIN =W =W [— W[N] W[[W[N[—=[WIN|—|WIN | [W[N|— W[~

0%

33%

102

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

20%

73%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

— RN = [W[[W= W= |W|N W[= W[N] WIN (W[|—= W [N | [W|IN W[N] —|WwW

100%

100%

103

100%

100%

20%

0%

0%

7%

AIR

100%

100%

100%

100%

ANDA KAMU

100%

100%

100%

100%

ATAS

100%

100%

100%

100%

ATAU

100%

100%

100%

100%

BAWAH

80%

100%

100%

93%

BELAJAR

100%

100%

100%

100%

BISA

100%

100%

100%

100%

DARI

100%

100%

100%

100%

DIA

100%

0%

0%

33%

HANYA

80%

100%

100%

93%

INI

100%

100%

WIN = [W[[WIN =W =W [=WIN W= |W[IN[—[WIN[— W]|W[N|— W[|[—W| N

100%

100%

104

ITU MENUNJUK

100%

100%

100%

100%

JADI

100%

100%

100%

100%

JIKA KALAU

100%

100%

100%

100%

KERJA

100%

100%

100%

100%

LUAR

100%

100%

100%

100%

MAKAN

100%

100%

100%

100%

MINUM

100%

100%

100%

100%

NAIK

100%

100%

100%

100%

PERGI

100%

100%

100%

100%

ROTI

100%

100%

100%

100%

SAYA

100%

100%

100%

100%

SEPERTI

100%

100%

100%

100%

SIAPA

100%

N =W [W[N] WIN =W =W [— W[N] W[[W[N[—=[WIN|—|WIN | [W[N|— W[~

100%

100%

105

100%

TAHUN

100%

100%

100%

100%

TAPI

100%

100%

100%

100%

UNTUK

100%

100%

100%

100%

AKAN

100%

100%

100%

100%

AMBIL

0%

60%

60%

40%

APA

60%

80%

100%

80%

BERKATA

100%

60%

0%

53%

DALAM

100%

100%

100%

100%

DAN

40%

100%

100%

80%

KITA

100%

100%

100%

100%

MEREKA

100%

60%

100%

87%

MILIK PUNYA

100%

100%

100%

100%

ORANG

— W IN [R[WRN[—|WIN P |WIIN R, W [R[WINR|WIN R, R[N P[RR |WIN |~ W~ W[|[—|Ww

100%

100%

106

100%

100%

SEMUA

20%

60%

20%

33%

TAHU PAHAM

100%

100%

100%

100%

TURUN

60%

100%

60%

73%

PULANG

100%

100%

100%

100%

NASI

100%

100%

100%

100%

TIDUR

100%

60%

0%

53%

BANGUN

100%

100%

100%

100%

LIHAT

100%

100%

100%

100%

DENGAR

60%

100%

100%

87%

BICARA

100%

100%

100%

100%

TULIS

100%

100%

100%

100%

BACA

100%

100%

WIN = [W[[WIN =W =W [=WIN W= |W[IN[—[WIN[— W]|W[N|— W[|[—W| N

100%

100%

107

JALAN

100%

100%

60%

87%

LARI

100%

100%

100%

100%

MEMBELI

100%

100%

100%

100%

MENJUAL

60%

100%

100%

87%

MEMBUKA

80%

0%

20%

33%

MENUTUP

100%

100%

100%

100%

MEMBERI

100%

40%

0%

47%

MENERIMA

60%

100%

100%

87%

MENOLONG

80%

100%

20%

67%

MENUNGGU

80%

100%

100%

93%

MEMINTA

80%

100%

60%

80%

MENONTON

60%

100%

100%

87%

DUDUK

40%

N (=W =W WIN[PWIN|—= WP |WIN|=[WIN = W[[WIN|—= W |—|WIN [W|N|—

100%

47%

108

0%

BERDIRI

80%

100%

80%

87%

DATANG

100%

100%

80%

93%

MASUK

100%

100%

80%

93%

KELUAR

100%

100%

80%

93%

PAKAI

100%

100%

60%

87%

BUKA (MATA)

0%

40%

0%

13%

TUTUP (MATA)

40%

100%

100%

80%

MENANGIS

100%

100%

40%

80%

TERTAWA

100%

100%

0%

67%

MENJAWAB

60%

100%

100%

87%

MENANYAKAN

100%

100%

100%

100%

MENDENGAR

60%

0%

0%

20%

=W [WIN[R[WIN =W —|WIN[R[W[N =W |WIN[R[W[N =W — [WIN[—R W[N]~ W

100%

100%

109

MEMBACA AL-
QURAN

100%

100%

MENONTON TV

100%

100%

100%

100%

MENYAPU

60%

100%

100%

87%

MENCUCI (BAJU)

100%

100%

100%

100%

MEMASAK

100%

100%

100%

100%

MENGIRIM

60%

80%

60%

67%

NAMA

100%

100%

100%

100%

MENERIMA PESAN

40%

100%

40%

60%

MENIKAH

100%

0%

80%

60%

BERCERITA

100%

100%

100%

100%

BERDOA

100%

100%

100%

100%

MINTA MAAF

100%

60%

20%

60%

MENYANYI

60%

100%

WIN = [W[[WIN =W =W [=WIN W= |W[IN[—[WIN[— W]|W[N|— W[|[—W| N

100%

87%

110

BERMAIN

100%

100%

100%

100%

DEPAN

100%

100%

100%

100%

BELAKANG

100%

40%

100%

80%

SAMPING

100%

100%

100%

100%

ANTARA

0%

20%

100%

40%

DEKAT

100%

100%

100%

100%

JAUH

100%

100%

100%

100%

DI SINI

40%

100%

100%

80%

DI SANA

100%

100%

60%

87%

SEBELUM

100%

100%

100%

100%

SESUDAH

100%

100%

100%

100%

TIMUR

40%

100%

40%

60%

BARAT

100%

N (=W =W WIN[PWIN|—= WP |WIN|=[WIN = W[[WIN|—= W |—|WIN [W|N|—

100%

93%

111

80%
80%
60% 47%

0%
80%
20% 33%

0%
100%
100% 100%
100%
100%
100% 100%
100%
AVERAGE 88%
AVERAGE RF 90%
AVERAGE 86%

LSTM
*1= Ibu Sumiati, 2=Olfat, 3=Shelly

SELATAN

UTARA

KANAN

KIRI

WIN | —, [W[N] WIN |~ |W[IN|— W

Lampiran A.2 Hasil Evaluasi Real-Time RF+Transformer

ACCURACY

GESTURE SUBJECT AVERAGE (%) (%)

100%
100% 100%
100%

100%
100% 100%
100%

100%
100% 100%
100%

100%
100% 100%
100%

100%
100% 100%
100%

N
Q| = |[W N [N ||| L[| —

112

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

100%

67%

100%

100%

100%

100%

10

100%

100%

100%

100%

40%

100%

100%

80%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

N = W [—R[[W[N|—|WIN|—m[|W[IN |~ [WN [[[WIN || WIIN R [W[N[R[WIN|—|WIN |~ W[~ W[|—

100%

100%

113

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

67%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

=R (W[W[W[]|WIIN MW WIN | [WIN | WIN | W= W[W[|[—]|Ww

100%

67%

114

100%

0%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

0%

0%

33%

100%

100%

100%

100%

0%

0%

0%

0%

100%

AIR

100%

100%

100%

100%

ANDA KAMU

100%

100%

100%

100%

ATAS

100%

100%

100%

100%

ATAU

100%

100%

100%

100%

BAWAH

100%

100%

100%

100%

BELAJAR

100%

N
W N[=W [[WIN |]|WIN = W[[WN [WIN | [W[IN[—[WIN[— W]|W[N = W[W[

100%

100%

115

BISA

100%

100%

100%

100%

DARI

100%

100%

100%

100%

DIA

0%

100%

100%

67%

HANYA

60%

100%

100%

87%

INI

100%

100%

100%

100%

ITU MENUNJUK

100%

100%

100%

100%

JADI

100%

100%

100%

100%

JIKA KALAU

80%

100%

100%

93%

KERJA

100%

100%

100%

100%

LUAR

100%

100%

100%

100%

MAKAN

100%

100%

100%

100%

MINUM

0%

100%

100%

67%

NAIK

0%

N = W [—R[[W[N|—|WIN|—m[|W[IN |~ [WN [[[WIN || WIIN R [W[N[R[WIN|—|WIN |~ W[~ W[|—

100%

67%

116

100%

PERGI

100%

100%

100%

100%

ROTI

100%

100%

100%

100%

SAYA

100%

100%

100%

100%

SEPERTI

100%

100%

100%

100%

SIAPA

100%

100%

100%

100%

TAHUN

100%

100%

100%

100%

TAPI

100%

100%

100%

100%

UNTUK

100%

100%

100%

100%

AKAN

100%

100%

100%

100%

AMBIL

60%

100%

100%

87%

APA

80%

100%

100%

93%

BERKATA

100%

60%

0%

53%

DALAM

=R (W[W[W[]|WIIN MW WIN | [WIN | WIN | W= W[W[|[—]|Ww

100%

100%

117

100%

100%

DAN

100%

100%

100%

100%

KITA

100%

100%

100%

100%

MEREKA

100%

100%

100%

100%

MILIK PUNYA

100%

100%

100%

100%

ORANG

100%

100%

100%

100%

SEMUA

100%

100%

100%

100%

TAHU PAHAM

100%

100%

100%

100%

TURUN

0%

100%

100%

67%

PULANG

100%

100%

100%

100%

NASI

100%

100%

100%

100%

TIDUR

100%

100%

40%

80%

BANGUN

100%

100%

W N[=W [[WIN |]|WIN = W[[WN [WIN | [W[IN[—[WIN[— W]|W[N = W[W[

100%

100%

118

LIHAT

100%

100%

100%

100%

DENGAR

100%

100%

100%

100%

BICARA

100%

100%

100%

100%

TULIS

0%

0%

100%

33%

BACA

100%

100%

100%

100%

JALAN

100%

100%

100%

100%

LARI

100%

100%

100%

100%

MEMBELI

100%

100%

100%

100%

MENJUAL

100%

100%

100%

100%

MEMBUKA

100%

100%

100%

100%

MENUTUP

100%

100%

40%

80%

MEMBERI

100%

100%

100%

100%

MENERIMA

100%

N = W [—R[[W[N|—|WIN|—m[|W[IN |~ [WN [[[WIN || WIIN R [W[N[R[WIN|—|WIN |~ W[~ W[|—

100%

100%

119

100%

MENOLONG

100%

100%

100%

100%

MENUNGGU

100%

100%

100%

100%

MEMINTA

40%

60%

20%

40%

MENONTON

60%

100%

100%

87%

DUDUK

100%

100%

100%

100%

BERDIRI

100%

100%

80%

93%

DATANG

0%

100%

100%

67%

MASUK

40%

100%

100%

80%

KELUAR

100%

100%

100%

100%

PAKAI

100%

100%

100%

100%

BUKA (MATA)

60%

100%

100%

87%

TUTUP (MATA)

40%

100%

100%

80%

MENANGIS

=R (W[W[W[]|WIIN MW WIN | [WIN | WIN | W= W[W[|[—]|Ww

80%

80%

120

100%

60%

TERTAWA

60%

100%

100%

87%

MENJAWAB

0%

100%

100%

67%

MENANYAKAN

100%

100%

100%

100%

MENDENGAR

0%

20%

0%

7%

MEMBACA AL-
QURAN

100%

100%

100%

100%

MENONTON TV

100%

100%

100%

100%

MENYAPU

100%

100%

100%

100%

MENCUCI (BAJU)

100%

100%

100%

100%

MEMASAK

100%

100%

100%

100%

MENGIRIM

100%

100%

100%

100%

NAMA

100%

100%

100%

100%

MENERIMA PESAN

80%

100%

W N[=W [[WIN |]|WIN = W[[WN [WIN | [W[IN[—[WIN[— W]|W[N = W[W[

100%

93%

121

MENIKAH

80%

100%

100%

93%

BERCERITA

100%

100%

100%

100%

BERDOA

100%

100%

100%

100%

MINTA MAAF

60%

100%

100%

87%

MENYANYI

100%

100%

100%

100%

BERMAIN

100%

100%

100%

100%

DEPAN

100%

100%

100%

100%

BELAKANG

100%

100%

100%

100%

SAMPING

100%

100%

100%

100%

ANTARA

20%

100%

40%

53%

DEKAT

100%

100%

100%

100%

JAUH

100%

100%

100%

100%

DI SINI

100%

N = W [—R[[W[N|—|WIN|—m[|W[IN |~ [WN [[[WIN || WIIN R [W[N[R[WIN|—|WIN |~ W[~ W[|—

100%

100%

122

100%

100%
100% 100%
100%

DI SANA

100%
100% 100%
100%

SEBELUM

100%
100% 100%
100%

SESUDAH

100%
100% 80%
40%

TIMUR

100%
100% 100%
100%

BARAT

100%
100% 80%
40%

SELATAN

100%
100% 100%
100%

UTARA

100%
100% 100%
100%

KANAN

100%
100% 100%
100%

KIRI

W IN [W [W N WIN W[=W [W[N W[|W[N|—]|Ww

AVERAGE 93%

AVERAGE RF 91%

AVERAGE 93%
Transformer

*1= Ibu Sumiati, 2=Olfat, 3=Shelly

Lampiran B. Source Code

Lampiran B.1 Source Code Koleksi Dataset Random Forest

‘1 import cv2

123

2 import os

3 import time
4
5

def capture dataset auto(save path, person name,
max images=200, delay ms=100, start delay=5000):
6 wwn

7 Capture dataset gestur BISINDO otomatis dari
webcam

8

9 Parameters:

10 e

11 save path : str

12 Path folder tempat menyimpan dataset
(contoh: "E:/Dataset.../Nic/SIAPA")

13 person name : Str

14 Nama orang/responden (contoh: "NICO")
15 max images : int

16 Target jumlah gambar

17 delay ms : int

18 Jeda antar capture gambar (dalam milidetik)
19 start delay : int

20 Jeda awal sebelum mulai capture (dalam
milidetik)

21 mwen

22

23 # Cek apakah folder sudah ada

24 if not os.path.exists(save path):

25 os.makedirs (save path)

26 print (f"[J Folder baru dibuat: {save path}")
27

28 # Inisialisasi webcam

29 cap = cvZ2.VideoCapture (0)

30 if not cap.isOpened() :

31 print(")(Tidak bisa membuka webcam")
32 return

33

34 print (£"P Persiapkan gestur di folder:
{save path}")

35 print (f"Capture akan dimulai dalam

{start delay/1000:.1f} detik...")

36

37 # Tampilkan countdown awal

38 start time = time.time ()

39 while (time.time() - start time) * 1000 <

start delay:

124

40 ret, frame = cap.read()

41 if not ret:

42 print(")(Gagal membaca frame dari
webcam")

43 cap.release ()

44 return

45 frame resized = cv2.resize (frame, (640,
480))

46 remaining = int (start delay/1000 -
(time.time () - start time))

477 cvZ2.putText (frame resized, f"Mulai dalam
{remaining} detik...",

48 (150, 240),

cv2.FONT HERSHEY SIMPLEX, 1.5, (0,0,255), 3)

49 cv2.imshow ("Capture Dataset", frame resized)
50 cvz.waitKey (1)

51

52 # Cari nomor terakhir agar tidak overwrite file
lama

53 existing files = [f for f in
os.listdir(save path) if f.startswith (person name)]
54 count start = len(existing files)

55

56 count = 0

57 print (£"P» Mulai auto-capture: {max images}
gambar | Delay: {delay ms} ms per gambar")

58 print ("Tekan 'qg' jika ingin berhenti lebih
awal")

59

60 while count < max_images:

ol ret, frame = cap.read/()

62 if not ret:

63 print(")(Gagal membaca frame dari
webcam")

64 break

65

66 frame resized = cv2.resize (frame, (640,
480))

67 cv2.putText (frame resized, f"{person name} |
{count+1}/{max images}",

68 (20, 40),

cv2.FONT HERSHEY SIMPLEX, 1, (0,255,0), 2)

09 cvZ2.imshow ("Capture Dataset", frame resized)
70

71 # Simpan gambar dengan nama berurutan

125

72 filename = f"{person name} ({count start +
count + 11}).Jjpg"

73 cvZ2.imwrite (os.path.join(save path,
filename), frame)

74 print(f" Disimpan: {filename}")

75 count += 1

76

77 # Delay dalam ms

78 key = cvZ2.waitKey(delay ms) & OxFF

79 if key == ord("gq"):

80 break

81

82 cap.release ()

83 cv2.destroyAllWindows ()

84 print (£"[J Selesai: {count} gambar disimpan di
{save path}")

85

86

87 Y ——— 2 N

88 # x Contoh penggunaan

89 et 7 T~

90

91 # Path folder Anda (pastikan ganti sesuai path Anda)
92 save path = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset RF\New Dataset
REF\MIGOZ\TIDUR"

93

94 # Capture 100 gambar, delay 500 ms, countdown awal
3000 ms

95 capture dataset auto(save path=save path,

person name="MIGOZ", max images=200, delay ms=100,
start _delay=5000)

Lampiran B.2 Source Code Koleksi Dataset LSTM dan Transformer

import cv2

import mediapipe as mp
import numpy as np
import os

O 00 J o U W DN

GESTURE NAME = "UTARA"

126

10 SAVE DIR = r"E:\Dataset Penelitian Bahasa Isyarat
Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset LSTM
REV\MIGOZ"

11 SEQUENCE LENGTH = 20 # jumlah frame per sequence
12 TOTAL SEQUENCES 105 # target dataset

13

14 # pastikan folder ada

15 os.makedirs (SAVE DIR, exist ok=True)

16

17 —mmmm e
18 # Init MediaPipe

19 —mmmmmmm e _

20 mp_hands = mp.solutions.hands
21 hands = mp hands.Hands (

22 static image mode=False,

23 max num hands=2,

24 min detection confidence=0.6,

25 min tracking confidence=0.6

26)

27 mp draw = mp.solutions.drawing utils
28

29 i === g — > — — ===

30 # Kamera

31 #

32 cap = cv2.VideoCapture (0)

33 if not cap.isOpened() :

34 raise RuntimeError ("Kamera tidak bisa dibuka™)
35

36 print (f" [INFO] Mulai otomatis rekam

{TOTAL SEQUENCES} sequence untuk gestur: {GESTURE NAME}")
37 print (" [INFO] Jumlah tangan akan divalidasi otomatis
berdasarkan deteksi MediaPipe")

38 print ("Tekan 'qg' untuk berhenti.")

39

40 all sequences = []

41 seq _count = 0

42 frame buffer = []

43 last status = None # simpan status valid/invalid
terakhir

44

45 def validate sequence (seq, threshold=0.9):

46 """Validasi otomatis: pastikan sequence punya
cukup frame wvalid"""

47 seq = np.array (seq) .reshape (SEQUENCE LENGTH, 2,
21, 3)

127

48 valid frames = 0
]

49 hand counts = [

50

51 for frame in seq:

52 hands detected = 0

53 for hand in frame:

54 if np.any(hand !'= 0):

55 hands detected += 1

56 hand counts.append (hands detected)
57 if hands detected > 0:

58 valid frames += 1

59

60 frame valid ratio = valid frames /
SEQUENCE LENGTH

ol avg hands = round(np.mean (hand counts))
62

63 # valid jika deteksi tangan stabil (>=
threshold)

04 return frame valid ratio >= threshold,
frame valid ratio, avg_hands

65

66 while seq count < TOTAL SEQUENCES:

67 ret, frame = cap.read()

68 if not ret:

69 continue

70

71 frame = cv2.flip(frame, 1)

72 rgb = cvZ2.cvtColor (frame, cv2.COLOR BGRZRGB)
73 results = hands.process (rgb)

74

75 landmarks both = np.zeros((2, 21, 3))
76

77 if results.multi hand landmarks:

78 for h idx, hand landmarks in
enumerate (results.multi hand landmarks) :

79 if h idx > 1:

80 break

81 for i, 1m in
enumerate (hand landmarks.landmark) :

82 landmarks both[h idx, 1i] = [lm.x,
Im.y, 1m.z]

83 mp draw.draw landmarks (frame,

hand landmarks, mp hands.HAND CONNECTIONS)
84
85 frame buffer.append(landmarks both.flatten())

128

86

87 # kalau buffer sudah SEQUENCE LENGTH frame - cek
dan simpan

88 if len(frame buffer) == SEQUENCE LENGTH:

89 is valid, ratio, avg hands =

validate sequence (frame buffer)

90

91 if is valid:

92

all sequences.append(np.array (frame buffer))

93 seq count += 1

94 last status = (f£"VALID ({avg hands}
hand)", (0, 255, 0))

95 print (£f" [SAVED] Sequence

{seq_count}/{TOTAL_SEQUENCES} | Ratio={ratio:.2f},
Hands={avg hands}")

96 else:

97 last status = ("RETAKE", (0, 0, 255))
98 print (£f" [RETAKE] Sequence tidak wvalid |
Ratio={ratio:.2f}")

99

100 frame buffer = [] # reset buffer

101

102 # tampilkan info status

103 if last status:

104 msg, color = last status

105 cv2.putText (frame, f"{msg}", (10,70),
cv2. FONT HERSHEY SIMPLEX, 1. 0, color, 3)

106

107 cvZ2.putText (frame, f"{GESTURE NAME} Seqg

{seq count}/{TOTAL SEQUENCES}",

108 (10, 30y, cv2.FONT_HERSHEY_SIMPLEX,
0.8, (0,0,255), 2)

109 cv2.imshow ("Collect Dataset", frame)

110

111 if cv2.waitKey(l) & OxFF == ord('qg'):

112 break

113

114 cap.release()
115 cv2.destroyAllWindows ()
116 hands.close()

117

118 # ——mmmm e
119 # Simpan semua ke 1 file .npz
120 # —=——mm e

129

121 X = np.array(all sequences) # (N, SEQUENCE LENGTH,
126)

122 y = np.array([0]*len(all sequences)) # label gestur
ini = 0

123

124 save path = os.path.join (SAVE DIR,
f"{GESTURE NAME} dataset.npz")

125 np.savez compressed(save path, X=X, y=y,
gesture=GESTURE NAME)

126

127 print ("\n[INFO] Dataset selesail!")

128 print (f"Total sequence: {X.shape[0]} | Shape data:
{X.shape}™)

129 print("Disimpan ke:", save path)

Lampiran B.4 Source Code Augmentasi Citra Dataset Random Forest

import cv2

import os

import numpy as np

import random

from concurrent.futures import ThreadPoolExecutor

O Jo b Wb

O
=

10 DATASET ROOT = r"E:\Dataset Penelitian Bahasa
Isyarat Olfat 2025\Tugas Akhir\Dataset RF\New Dataset RF"
11 AUGMENT MULTIPLIER = 10 # Total variasi per gambar
12

13 def safe augment image (image) :

14 h, w = image.shape[:2]

15

16 # =——— 1. ROTASI (=10 s/d 10 derajat) =---

17 # Sudut diperkecil sedikit agar aman

18 angle = random.uniform(-10, 10)

19 center = (w // 2, h // 2)

20 M rot = cvZ.getRotationMatrix2D (center, angle,
1.0)

21 image = cv2.warpAffine(image, M rot, (w, h),

borderMode=cv2.BORDER CONSTANT, borderValue=(0,0,0))
22

23 # ——— 2. SAFE ZOOM (Fokus Zoom Out) ---

24 # Rentang scale: 0.85 (Jauh) sampai 1.05
(Sedikit Dekat)

130

25 # Kebanyakan akan menjauh (Zoom Out) agar tangan
tidak terpotong

26 scale = random.uniform(0.85, 1.05)

27

28 if scale < 1.0:

29 # === ZOOM OUT (Mengecil) ===

30 # Gambar dikecilkan, lalu ditempel di tengah
background hitam

31 # Ini 100% AMAN, tangan tidak akan hilang
32 new h, new w = int(h * scale), int(w *
scale)

33 resized = cv2Z.resize (image, (new w, new h))
34

35 # Buat kanvas hitam seukuran asli

36 canvas = np.zeros((h, w, 3), dtype=np.uint8)
37

38 # Hitung posisi tengah

39 y off = (h - new h) // 2

40 x off = (w - new w) // 2

41

42 # Tempel gambar kecil ke kanvas

43 canvas |y off:y off+new h, x off:x off+new w]
= resized

44 image = canvas

45

46 elif scale > 1.0:

47 # === ZOOM IN (Membesar) ===

48 # Dibatasi maksimal 5% agar tidak memotong
Jari

49 new h, new w = int(h / scale), int(w /
scale)

50 top = (h - new h) // 2

51 left = (w = new w) // 2

52

53 cropped = image[top:top+new h,
left:left+new w]

54 image = cv2.resize(cropped, (w, h))

55

56 # —-—— 3. GESER SEDIKIT (Translation) ---

57 # Geser maksimal 5% dari lebar/tinggi gambar
58 tx = random.uniform(-0.05, 0.05) * w

59 ty = random.uniform(-0.05, 0.05) * h

60 M trans = np.float32([[1, O, tx], [0, 1, tyll)
6l image = cv2.warpAffine(image, M trans, (w, h),

borderMode=cv2.BORDER CONSTANT, borderValue=(0,0,0))

131

62

63 return image

64

65 def process file(file info):

66 root, filename = file info

67

68 if " aug " in filename:

69 return 0

70

71 img path = os.path.join(root, filename)

72 image = cvZ.imread(img path)

73

74 if image is None: return O

75

76 count = 0

77 base name = os.path.splitext (filename) [0]
78

79 for 1 in range (AUGMENT MULTIPLIER) :

80 try:

81 aug_img = safe augment image (image)
82

83 new filename =
f"{base name} aug {i}.jpg"

84 save path = os.path.join(root,

new filename)

85 cv2.imwrite (save path, aug img)

86 count += 1

87 except Exception as e:

88 print (f"Error processing {filename}:
{el")

89

90 return count

91

92 def main () :

93 print(f"‘? Memulai SAFE AUGMENTATION pada:
{DATASET ROOT}")

94

95 all files = []

96 for root, dirs, files in os.walk (DATASET ROOT) :
97 for file in files:

98 if file.lower () .endswith(('.Jjpg',
'.jpeg', '.png')):

99 all files.append((root, file))
100

101 print(f"[] Memproses {len(all files)} file

132

gambar...")

102

103 with ThreadPoolExecutor (max workers=8) as
executor:

104 results = executor.map (process file,
all files)

105 total = sum(results)

106

107 print(f"\n SELESAI! {total} gambar variasi
aman dibuat.")

108

109 if name == " main_ ":

110 main ()

Lampiran B.4 Source Code Ekstrak Landmark Dataset Random Forest

import os

import cv2

import mediapipe as mp
import pandas as pd

Inisialisasi Mediapipe Hands

mp_hands = mp.solutions.hands

hands = mp hands.Hands (static image mode=True,
max num hands=2, min detection confidence=0.6)

9

O J oy Ul WD

10 def extract landmarks from image (image path,

do_ flip=True) :

11 men

12 Ekstrak landmark dari 1 gambar.

13 Bisa di-flip horizontal tanpa mengubah file
aslinya.

14 T

15 image = cv2.imread(image path)

16 if image is None:

17 return None

18

19 # FLIP gambar jika ingin konsisten dengan kamera
20 if do_ flip:

21 image = cv2.flip(image, 1)

22

23 image rgb = cv2.cvtColor (image,
cv2.COLOR_BGR2RGB)

24 results = hands.process (image rgb)

25

133

26 if not results.multi hand landmarks:

277 return None

28

29 data = []

30 for hand landmarks in
results.multi hand landmarks:

31 for Im in hand landmarks.landmark:

32 data.extend([1lm.x, Im.y, 1lm.z])

33

34 # padding kalau hanya 1 tangan

35 if len(results.multi hand landmarks) == 1:
36 data.extend ([0.0] * 63)

37

38 if len(data) != 126:

39 return None

40

41 return data

42

43 def process dataset (root dir, output csv):

44 """TLoop semua folder — ekstrak landmark — simpan
ke Ccsy"""

45 dataset = []

46

47 for person in os.listdir (root dir):

48 person path = os.path.join(root dir, person)
49 if not os.path.isdir (person path):

50 continue

51

52 for gesture in os.listdir (person_path):
53 gesture path = os.path.join(person path,
gesture)

54 if not os.path.isdir (gesture path):
55 continue

56

57 for filename in

os.listdir (gesture path):

58 if not
filename.lower () .endswith ((".jpg", ".jpeg", ".png")):
59 continue

60

61 file path =
os.path.join(gesture path, filename)

62 landmarks =

extract landmarks from image (file path)

63

134

64 if landmarks i1s not None:

65 dataset.append(landmarks +
[gesture])

66

67 # Buat DataFrame

68 num landmarks = 42 * 3 # 42 titik (2 tangan),
tiap titik ada x,vy,z

69 columns = [f"{axis}{i}" for i in range(42) for
axis in ["x", "y", "z"]]

70 columns.append ("label")

71

72 df = pd.DataFrame (dataset, columns=columns)

73

74 # Simpan ke CSV

75 df.to_csv (output csv, index=False)

76 print(f" Ekstraksi selesai, hasil disimpan di:
{output csv}")

77

78

79 # -G e — — — 2=

80 i x Contoh penggunaan

81 o

82 root dir = r"E:\Dataset Penelitian Bahasa Isyarat
Olfat 2025\Tugas Akhir\Dataset RF 0Old"

83 output csv = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset RF
Old\dataset landmarks RF OLD DATASET.csv"
84

85 process dataset (root dir, output csv)

Lampiran B.S Source Code Train Random Forest

1 import pandas as pd
2 import numpy as np
3 from sklearn.model selection import

train test split, StratifiedKFold, cross val score,
cross val predict, learning curve

4 from sklearn.preprocessing import LabelEncoder

5 from sklearn.ensemble import RandomForestClassifier
6 from sklearn.metrics import classification report,
confusion matrix, accuracy score

7 import pickle

8 import os

9 import matplotlib.pyplot as plt

10 import seaborn as sns

135

11
12
13
14
15

data path = r"E:\Dataset Penelitian Bahasa Isyarat

Olfat 2025\Tugas Akhir\Dataset RF
Old\dataset landmarks RF OLD DATASET.csv"

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

df = pd.read csv(data path)

Pisahkan fitur dan label
X = df.drop("label", axis=1l) .values
df ["label"] .values

y

Encode label jika masih teks

if y.dtype.kind in {'U', 'S', 'O'}:
le = LabelEncoder ()
y encoded = le.fit transform(y)
class names = le.classes

else:
y_encoded = y
le = None

class names = np.unique (y)
P R S
2. Split dataset (80/20)
3ttt T+ttt

X train, X test, y train, y test = train test split(
X, y encoded, test size=0.2, stratify=y encoded,

random state=42

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

3. Train Random Forest (train-test split)

print (" [INFO] Melatih model Random Forest...")
rf = RandomForestClassifier (

n _estimators=100,

criterion="gini",

max depth=None,

random state=42

)
rf.fit(X train, y train)

4. Evaluasi train-test split

136

53 # =========================
54 y pred = rf.predict (X test)
55 acc = accuracy score(y test, y pred)
56 print (f"4 Akurasi test (80/20 split): {acc:.2f}\n")
57

58 cm = confusion matrix(y test, y pred)
59

61 # 5. K-Fold Cross Validation & Learning Curve
63 k =5 # jumlah fold

04 skf StratifiedKFold(n splits=k, shuffle=True,
random state=42)
65

66 print (f" [INFO] Menjalankan {k}-Fold Cross
Validation...")

o7 Ccv_scores = cross val score(rf, X, y encoded,
cv=skf)

68 print(f" K-Fold CV mean accuracy:
{cv_scores.mean():.2f} £ {cv scores.std():.2£}")

69

70 y pred cv = cross val predict(rf, X, y encoded,
cv=skf)

71 cv_cm = confusion matrix(y encoded, y pred cv)

72

73 # —--- PLOT LEARNING CURVE (Kurva Pembelajaran) ---
74 print ("[INFO] Membuat Learning Curve...")

75 train sizes abs, train scores, val scores =
learning curve(

76 rf, X, y encoded, cv=skf, n jobs=-1,

77 train sizes=np.linspace(0.1, 1.0, 10),

78 scoring="accuracy"

79)

80

81 train scores mean = np.mean(train_ scores, axis=1)
82 train scores std = np.std(train scores, axis=1l)

83 val scores mean = np.mean(val scores, axis=1)

84 val scores std = np.std(val scores, axis=l)

85

86 # Direktori penyimpanan

87 results dir = r"E:\Dataset Penelitian Bahasa Isyarat
Olfat 2025\Tugas Akhir\Source Codel\results train RF 01d"
88 os.makedirs (results dir, exist ok=True)

89

90 plt.figure(figsize=(10, 6))

137

91 plt.title("Learning Curve (Random Forest)")
92 plt.xlabel ("Jumlah Data Latih")
93 plt.ylabel ("Akurasi")

94 plt.grid(True, linestyle="--", alpha=0.6)

95 plt.fill between(train sizes abs, train scores mean
- train scores_ std,

96 train scores mean +

train scores std, alpha=0.1, color="blue")

97 plt.fill between(train sizes abs, val scores mean -
val scores std,

98 val scores mean + val scores std,

alpha=0.1, color="orange")

99 plt.plot(train sizes abs, train scores mean, 'o-',
color="blue", label="Skor Training")

100 plt.plot(train sizes abs, val scores mean, 'o-',
color="orange", label="Skor Validasi (CV)"™)

101 plt.legend(loc="best")

102 plt.savefig(os.path.join(results dir,
"learning curve rf.png"))

103 plt.close()

104
106 # 6. Simpan Model
107 # =============—c=———oooooo

108 model path = os.path.join(results dir,
"random forest bisindo kcross.pkl")
109 with open(model path, "wb") as f:

110 pickle.dump (rf, f£f)

111

112 if le is not None:

113 le path = os.path.join(results dir,
"label encoder kcross.pkl")

114 with open(le path, "wb") as f:

115 pickle.dump (le, f)

116

117 print (f"\nfd Model disimpan di: {model path}")

118

119 # ===============——========

120 # 7. Simpan Laporan & Confusion Matrix (SUPER JELAS)
121 # ==============—c—=—======

122

123 # --- A. Simpan Classification Reports —---

124 report path = os.path.join(results dir,
"classification report split rf.txt")

125 with open(report path, "w") as f:

138

126 f.write("=== Classification Report (80/20 Split)
===\n")

127 f.write(classification report(y test, y pred,
target names=class names))
128

129 c¢v _report path = os.path.join(results dir,
"classification report cv rf.txt")
130 with open(cv _report path, "w") as f:

131 f.write (f"=== Classification Report ({k}-Fold
Cross Validation) ===\n")

132 f.write(classification report(y encoded,

y _pred cv, target names=class names))

133

134 4 --- B. Simpan Confusion Matrix 80/20 Split (UKURAN
BESAR) ---

135 print ("[INFO] Menyimpan Confusion Matrix 80/20 (High
Res)...")

136 fig cm, ax_cm = plt.subplots (figsize=(40, 40)) # <-
—-— Ukuran Raksasa

137

138 sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
139 xticklabels=class names,
yticklabels=class names,

140 ax=ax_cm, annot kws={"size": 6}) # Font
angka kecil agar muat

141

142 ax cm.set xticklabels(ax cm.get xticklabels(),
rotation=90, fontsize=8)

143 ax cm.set yticklabels (ax cm.get yticklabels(),
rotation=0, fontsize=8)

144 ax cm.set xlabel ("Predicted Label", fontsize=15)
145 ax cm.set ylabel ("True Label", fontsize=15)

146 ax cm.set title("Confusion Matrix (80/20 Split)",
fontsize=20)

147

148 plt.savefig(os.path.join(results dir,
"confusion matrix split rf.png"), dpi=300,

bbox inches='tight')

149 plt.savefig(os.path.join(results dir,
"confusion matrix split rf.svg"), bbox inches='tight')
150 plt.close(fig cm)

151

152 # --- C. Simpan Confusion Matrix Cross-Validation
(UKURAN BESAR) ---

153 print("[INFO] Menyimpan Confusion Matrix CV (High

139

Res)...™)

154 fig cvcm, ax cvcm = plt.subplots(figsize=(40, 40)) #
<--- Ukuran Raksasa

155

156 sns.heatmap(cv_cm, annot=True, fmt="d",
cmap="Greens",

157 xticklabels=class names,
yticklabels=class names,

158 ax=ax_cvcm, annot kws={"size": 6}) #
Font angka kecil agar muat

159

160 ax cvcm.set xticklabels (ax cvcm.get xticklabels(),
rotation=90, fontsize=8)

161 ax cvcm.set yticklabels(ax cvcm.get yticklabels(),
rotation=0, fontsize=8)

162 ax cvcm.set xlabel ("Predicted Label", fontsize=15)
163 ax cvcm.set ylabel ("True Label", fontsize=15)

164 ax cvcm.set title(f"Confusion Matrix ({k}-Fold Cross
Validation)", fontsize=20)

165

166 plt.savefig(os.path.join(results dir,
"confusion matrix cv_rf.png"), dpi=300,

bbox inches='tight"')

167 plt.savefig(os.path.join(results dir,
"confusion matrix cv_rf.svg"), bbox inches='tight')

168 plt.close(fig cvcm)

169

170 print(f"\n Semua hasil (Learning Curve, Conf
Matrix Besar, Laporan) tersimpan di: {results dir}")

Lampiran B.6 Source Code Train LSTM

1 import os

2 import numpy as np

3 import tensorflow as tf

4 from tensorflow.keras import layers, models,
regularizers

5 from sklearn.model selection import
train test split, KFold

6 from tensorflow.keras.utils import to categorical
7 from tensorflow.keras.callbacks import
EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
8 import matplotlib.pyplot as plt

9 import seaborn as sns

10 from sklearn.metrics import confusion matrix,

140

classification report

11

12 o mmm e
13 # Konfigurasi

14 —mmmmm e

15 dataset path = r"E:\Dataset Penelitian Bahasa
Isyarat Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset
LSTM REV"

16 SEQ LENGTH = 20

17 FEATURES = 126

18 K _FOLDS = 5

19

20 RESULTS DIR = r"E:\Dataset Penelitian Bahasa Isyarat
Olfat 2025\Tugas Akhir\Source Code\results train
new\LSTM"

21 os.makedirs (RESULTS DIR, exist ok=True)

22

23 ST L — — — e ——— ===V —

24 # Load dataset

25 N ———2F e — — Y — SERg— —

26 X all, y all = [], I[1

27 gestures = {}

28 class counter = 0

29

30 def normalize sequence (seq, target len=SEQ LENGTH) :
31 if seqg.shape[0] < target len:

32 pad width = target len - seqg.shapel0]
33 padding = np.zeros((pad width,
seq.shape[l]))

34 return np.vstack([seq, padding])

35 elif seqg.shape[0] > target len:

36 return seq[:target len]

37 else:

38 return seq

39

40 print (" [INFO] Memuat dataset...")

41 for root, dirs, files in os.walk(dataset path):
42 for file in files:

43 if file.endswith (".npz"):

44 path = os.path.join(root, file)

45 data = np.load(path, allow pickle=True)
46 X, y = data["X"], data["y"]

477 X norm =

np.array([normalize sequence (seq) for seq in X])
48 gesture name =

141

file.replace (" dataset.npz", "")

49 1f gesture name not in gestures:
50 gestures[gesture name] =
class counter

51 class counter += 1

52 y _label = gestures[gesture name]
53 X all.append (X norm)

54 y all.append(np.full (len(X norm),
y label))

55 print (£f" [INFO] Loaded {file} from
{os.path.basename (root) }: {X norm.shape}")

56

57 X all = np.concatenate (X all, axis=0)

58 y all = np.concatenate(y all, axis=0)

59 gesture list = list(gestures.keys())

60 num classes = len(gesture list)

61 y cat all = to categorical(y all,

num classes=num classes)

62

63 print (£" [INFO] Total Data: {X all.shape}, Total
Kelas: {num classes}")

64

65 ¥ el -

66 # Split dataset 80% traintval / 20% test
67 # -

68 X train val, X test, y train val, y test =
train test split(

69 X all, y cat all, test size=0.2, stratify=y all,
random state=42

70)

71

72 W O Gkt Sl g mEE

73 # K-Fold Cross Validation pada train+val
74 F —mmmmmm e

75 kf = KFold(n_splits=K FOLDS, shuffle=True,
random_ state=42)
76 fold no =1

77 histories []

78

79 for train idx, val idx in kf.split(X train val):
80 print (f"\n[INFO] Training fold

{fold no}/{K FOLDS}")

81

82 X train, X val = X train val[train idx],

X train vallval idx]

142

83 y train, y val = y train val[train idx],
y train val[val idx]

84

85 # Dropout di sini Anda set 0.3 pada kode
sebelumnya,

86 # Anda bisa ubah ke 0.6 jika ingin kembali ke
konfigurasi awal

87 model = models.Sequential ([

88 layers.Input (shape=(SEQ LENGTH, FEATURES)),
89 layers.LSTM (64, return sequences=False,
unroll=True),

90 layers.Dense (32, activation='relu',
kernel regularizer=regularizers.l1l2(0.001)),

91 layers.Dropout (0.3),

92 layers.Dense (num classes,
activation='softmax')

93 1)

94

95 model .compile (optimizer="adam',
loss='"categorical crossentropy', metrics=['accuracy'])
96

97 callbacks = [

98 EarlyStopping (monitor="val loss",
patience=10, restore best weights=True),

99

ModelCheckpoint (£"{RESULTS DIR}/best model fold{fold no}.
h5", monitor="val loss", save best only=True),

100 ReducelLROnPlateau (monitor="val loss",
factor=0.5, patience=5, min lr=le-6)

101]

102

103 history = model.fit (

104 X train, y train,

105 validation data=(X val, y val),

106 epochs=300,

107 batch size=l6,

108 callbacks=callbacks,

109 verbose=1

110)

111

112 histories.append(history)

113

114 # —--— BAGIAN SIMPAN REPORT & MATRIX PER FOLD
DIHAPUS —---

115

143

116 print (f" [INFO] Fold {fold no} selesai.")

117 fold no +=1

118

119 # == e

120 # Train final model pada seluruh train+val

121 # === e

122 print ("\n[INFO] Melatih model final pada seluruh
data train+val...")

123 # Pastikan nilai Dropout konsisten dengan yang Anda
inginkan (misal 0.3 atau 0.6)

124 model final = models.Sequential ([

125 layers.Input (shape=(SEQ LENGTH, FEATURES)),
126 layers.LSTM(64, return sequences=False,
unroll=True),

127 layers.Dense (32, activation='relu',

kernel regularizer=regularizers.l12(0.001)),

128 layers.Dropout (0.6),

129 layers.Dense (num classes, activation='softmax')
130 1)

131 model final.compile(optimizer='adam',
loss='categorical crossentropy', metrics=['accuracy'])
132

133 callbacks final = [

134 EarlyStopping (monitor="val loss", patience=10,
restore best weights=True),

135

ModelCheckpoint (£"{RESULTS DIR}/best model lstm.h5",
monitor="val loss", save best only=True),

136 ReducelLROnPlateau (monitor="val loss",
factor=0.5, patience=5, min lr=le-6)

137]

138

139 history final = model final.fit(

140 X train val, y train val,

141 validation data=(X test, y test),
142 epochs=300,

143 batch size=16,

144 callbacks=callbacks final

145)

146

147 # —————— e

148 # Save final model & gestures

149 # ——mmmmmm e

150 model final.save(os.path.join(RESULTS DIR,
"model lstm.h5"))

144

151 np.save(os.path.join (RESULTS DIR,
"gestures labels.npy"), gesture list)

152

153 4 ==mmm e
154 # Plot Kurva Akurasi & Loss

155 4 ==mmmm e
156 plt.figure(figsize=(12, 5))

157

158 # Kurva Akurasi

159 plt.subplot(l, 2, 1)

160 plt.plot(history final.history["accuracy"],
label="Train Accuracy", color='blue')

161 plt.plot(history final.history["val accuracy"],
label="Validation Accuracy", color='orange')

162 plt.title("LSTM Model Accuracy")

163 plt.xlabel ("Epoch")

164 plt.ylabel ("Accuracy")

165 plt.legend()

166 plt.grid(True, linestyle="--", alpha=0.6)

167

168 # Kurva Loss

169 plt.subplot(l, 2, 2)

170 plt.plot(history final.history["loss"], label="Train
Loss", color='blue')

171 plt.plot(history final.history["val loss"],
label="Validation Loss", color='orange')

172 plt.title("LSTM Model Loss")

173 plt.xlabel ("Epoch")

174 plt.ylabel ("Loss")

175 plt.legend()

176 plt.grid(True, linestyle="--", alpha=0.6)

177

178 plt.tight layout()

179 plt.savefig(os.path.join (RESULTS DIR,
"training curves lstm.png"))

180 plt.show()

181

182 print (f"[INFO] Kurva akurasi dan loss disimpan di
{RESULTS DIR}/training curves lstm.png")

183

184 # ————————————— =

185 # Evaluasi akhir pada test set (TETAP DISIMPAN)
186 # -

187 print ("[INFO] Evaluasi akhir pada Test Set...")
188 y test true = np.argmax(y test, axis=1)

145

189 y test pred = np.argmax(model final.predict (X test,
verbose=0), axis=1)

190

191 # --- CONFUSION MATRIX FINAL (TEST SET) ---

192 cm test = confusion matrix(y test true, y test pred,
labels=range (num classes))

193

194 # Buat figure besar
195 fig, ax = plt.subplots(figsize=(40, 40))
196 sns.heatmap (

197 cm_test,

198 annot=True,

199 fmt="d",

200 cmap="Blues",

201 xticklabels=gesture list,
202 yticklabels=gesture list,
203 ax=ax,

204 annot kws={"size": 6}

205)

206

207 ax.set xticklabels(ax.get xticklabels(),
rotation=90, fontsize=8)

208 ax.set yticklabels (ax.get yticklabels (), rotation=0,
fontsize=8)

209 ax.set title("Confusion Matrix (Test Set)",
fontsize=20)

210 ax.set ylabel ("True Label", fontsize=15)

211 ax.set xlabel ("Predicted Label", fontsize=15)

212

213 # Simpan PNG & SVG

214 plt.savefig(os.path.join (RESULTS DIR,
"confusion matrix test lstm cross.png"), dpi=300,

bbox inches='tight')

215 plt.savefig(os.path.join (RESULTS DIR,
"confusion matrix test lstm cross.svg"),

bbox inches='tight')

216 plt.close(fiqg)

217

218 report test = classification report(y test true,

y test pred, target names=gesture list, digits=4)

219 with open(os.path.join (RESULTS DIR,
"classification report test lstm cross.txt"), "w") as f:
220 f.write(report test)

221

222 print (f" [INFO] Evaluasi test set selesai. Confusion

146

matrix & classification report disimpan di
{RESULTS DIR}")

Lampiran B.7 Source Code Train Transformer

1 import numpy as np

2 import tensorflow as tf

3 from tensorflow import keras

4 from tensorflow.keras import layers

5 from sklearn.model selection import StratifiedKFold,
train test split

6 from sklearn.metrics import classification report,
confusion matrix

7 import matplotlib.pyplot as plt

8 import seaborn as sns

9 import os

10

11 #f ===
12 # 1. Konfigurasi & Memuat Dataset

13 #f ===

14 DATASET DIR = r"E:\Dataset Penelitian Bahasa Isyarat
Olfat 2025\Tugas Akhir\Dataset LSTM\New Dataset LSTM REV"
15 SAVE DIR = r"E:\Dataset Penelitian Bahasa Isyarat
Olfat 2025\Tugas Akhir\Source Code\results train
new\Transformer Dropout 0.3"

16 SEQ LENGTH = 20

17 NUM FOLDS = 5

18 BATCH SIZE = 16 # DISAMAKAN dengan LSTM

19 EPOCHS = 300 # DISAMAKAN dengan LSTM

20 DROPOUT RATE = 0.3 # DISAMAKAN dengan LSTM

21

22 # Buat folder simpan

23 os.makedirs (SAVE DIR, exist ok=True)

24

25 def normalize sequence (seq, target len=SEQ LENGTH) :
26 if seqg.shape[0] > target len: return
seq[:target len]

27 if seqg.shape[0] < target len:

28 pad width = target len - seqg.shapel0]

29 padding = np.zeros ((pad width,
seq.shape[1l]))

30 return np.vstack([seq, padding])

31 return seq

32

33 X all, y all, gestures, class counter = [], [], {},

147

0

34

35 print ("[INFO] Memuat dataset secara rekursif...")
36 for root, dirs, files in os.walk (DATASET DIR):
37 for file in files:

38 if file.endswith(".npz"):

39 path = os.path.join(root, file)

40 try:

41 data = np.load(path,

allow pickle=True)

42 X sequences = data["X"]

43

44 # Cek jika file kosong

45 if len (X sequences) == 0:

46 continue

47

48 X norm =

np.array([normalize sequence (seq) for seq in
X sequences])

49 gesture name =
file.replace (" dataset.npz", "")

50

51 1f gesture name not in gestures:
52 gestures [gesture name] =
class counter

53 class counter += 1

54

55 y label = gestures|[gesture name]
56 X all.append (X norm)

57 y_all.append(np.full (len (X norm),
y label))

58 # print (f" [INFO] Loaded {file}")
59 except Exception as e:

60 print (£" [ERROR] Gagal load {file}:
{e}t™)

61

62 if len(X all) == O:

63 print (" [CRITICAL] Tidak ada data ditemukan!")
64 exit ()

65

06 X = np.concatenate (X all, axis=0)

67 y = np.concatenate(y all, axis=0)

68 CLASS_NAMES
69 NUM CLASSES
70

list (gestures.keys())
len (CLASS NAMES)

148

71 print (f" [INFO] Total Data: {X.shape[0]} sequences,
{NUM CLASSES} kelas.")

72

73 # —-—— SPLIT 80% (train+val) dan 20% (test) ---

74 X train val, X test, y train val, y test =
train test split(

75 X, y, test size=0.2, stratify=y, random state=42
76)

77

78 f ===
79 # 2. Arsitektur Transformer (DIPERBAIKI)

80 # ===
81 def build transformer model (input shape,

num classes, d model=64, num heads=4, ff dim=64,

num_ transformer blocks=2, dropout=DROPOUT RATE) :

82 inputs = keras.Input (shape=input shape)
83 x = layers.Dense (d model,

name="dense projection") (inputs)

84

85 # Positional Encoding

86 positions = tf.range (start=0,
limit=input shape[0], delta=1)

87 pos_embedding =

keras.layers.Embedding (input dim=input shapel[0],
output dim=d model) (positions)

88 X = X 1+ pos embedding

89

90 # Transformer Blocks

91 for in range (num transformer blocks) :

92 # Attention dengan Dropout variabel

93 attn output = layers.MultiHeadAttention (
94 num heads=num_ heads, key dim=d model,
dropout=dropout

95) (query=x, value=x, key=x)

96 x = layers.LayerNormalization (epsilon=le-
6) (x + attn output)

97

98 # Feed Forward

99 ffn output = keras.Sequential ([

100 layers.Dense (ff dim, activation="relu"),
101 layers.Dense (d _model)

102 1) (%)

103 x = layers.LayerNormalization (epsilon=le-
6) (x + £fn output)

104

149

105 # Classification Head

106 x = layers.GlobalAveragePoolinglD () (x)

107

108 # —--- PERBAIKAN: Menggunakan variabel dropout
(0.3), bukan hardcode 0.2 ---

109 x = layers.Dropout (dropout) (x)

110 $f -
111

112 x = layers.Dense (ff dim, activation="relu") (x)
113 outputs = layers.Dense (num classes,
activation="softmax") (x)

114

115 return keras.Model (inputs=inputs,
outputs=outputs)

116

117 # ===

118 # 3. K-Fold Cross-Validation (Setara LSTM)

119 # ===
120 skf = StratifiedKFold(n_splits=NUM FOLDS,
shuffle=True, random state=42)

121 cv_scores = []

122 fold no =1

123

124 print ("\n[INFO] Memulai 5-Fold Cross Validation...")
125 for train index, val index in skf.split(X train val,
y _train val):

126 print (£"--- FOLD {fold no}/{NUM FOLDS} ---")
127

128 X train, X val = X train val[train index],
X train val[val index]

129 y train, y val = y train val[train index],
y _train val[val index]

130

131 INPUT SHAPE = (X train.shapel[l],

X train.shape[2])

132

133 # Build Model

134 model =

build transformer model (input shape=INPUT SHAPE,

num classes=NUM CLASSES, dropout=DROPOUT RATE)

135

136

model.compile (optimizer=keras.optimizers.Adam(learning ra
te=0.001),

150

137

loss="sparse categorical crossentropy",

138 metrics=["accuracy"])

139

140 # Callbacks (Sama seperti LSTM: EarlyStopping +
ReducelLR)

141 callbacks cv = [

142

keras.callbacks.EarlyStopping (monitor="val loss",
patience=10, restore best weights=True),

143
keras.callbacks.ReducelLROnPlateau (monitor="val loss",
factor=0.5, patience=5, min lr=le-6)

144]

145

146 # Train dengan Batch Size 16 & Epoch 300

147 model.fit (X train, y train,

148 batch size=BATCH SIZE,

149 epochs=EPOCHS,

150 validation data=(X val, y wval),

151 callbacks=callbacks cv,

152 verbose=0) # verbose 0 agar rapi
153

154 scores = model.evaluate (X val, y val, verbose=0)
155 print (£" Skor untuk fold {fold no}: Akurasi
{scores[1]*100:.2f}%")

156 cv_scores.append(scores[1])

157 fold no += 1

158

159 print("\n--- Hasil Cross-Validation ---")

160 print(f"Akurasi Rata-rata:

{np.mean (cv_scores) *100:.2f}% (+/-

{np.std(cv _scores)*100:.2f}%)")

1ol

162 # ===
163 # 4. Training Final & Evaluasi Akhir (Setara LSTM)
164 # mmmmmmmm e e
165 print ("\n[INFO] Melatih model final pada seluruh 80%
data...")

166

167 INPUT SHAPE = (X train val.shapell],

X train val.shape[2])

168 final model =

build transformer model (input shape=INPUT SHAPE,
num classes=NUM CLASSES, dropout=DROPOUT RATE)

151

169
170 final model.compile (optimizer=keras.optimizers.Adam(
learning rate=0.001),

171

loss="sparse categorical crossentropy",

172 metrics=["accuracy"])
173

174 # Callbacks Final (Sama seperti LSTM)

175 callbacks final = [

176

keras.callbacks.EarlyStopping (monitor="val loss",
patience=10, restore best weights=True),

177
keras.callbacks.ModelCheckpoint (os.path.join (SAVE DIR,
"transformer best.keras"), save best only=True,
monitor="val accuracy"),

178
keras.callbacks.ReducelLROnPlateau (monitor="val loss",
factor=0.5, patience=5, min lr=le-6)

179]

180

181 # Training Final (Gunakan validation data=(X test,
y test) seperti LSTM)

182 history = final model.fit(

183 X train val, y train val,

184 batch size=BATCH SIZE, # 16

185 epochs=EPOCHS, # 300

186 validation data=(X test, y test), # Konsisten
dengan LSTM

187 callbacks=callbacks final,

188 verbose=1

189)

190

191 print ("\n[INFO] Mengevaluasi model final pada 20%
data test...")

192 test loss, test acc = final model.evaluate (X test,
y test)

193 print (f"\nAkurasi pada data uji final:

{test acc:.4f}")

194

195 # Simpan Model & Label

196 final model.save (os.path.join (SAVE DIR,
"transformer final.keras"))

197 np.save(os.path.join(SAVE DIR, "labels.npy"),
np.array (CLASS NAMES))

152

198

199 # Prediksi

200 y pred = np.argmax(final model.predict (X test),
axis=1)

201
202 # Simpan Classification Report
203 report = classification report(y test, y pred,

target names=CLASS NAMES, digits=4)
204 with open(os.path.join (SAVE DIR,

"classification report.txt"), "w") as f:

205 f.write (report)

206

207 # ========================s======================
208 # === CONFUSION MATRIX RESOLUSI TINGGI ===

209 # ===
210 print ("[INFO] Membuat Confusion Matrix Resolusi
Tinggi...")

211 cm = confusion matrix(y test, y pred)

212

213 fig, ax = plt.subplots(figsize=(40, 40)) # Ukuran
Besar
214 sns.heatmap (

215 cm,

216 annot=True,

217 fmt="d",

218 cmap="Blues",

219 xticklabels=CLASS_NAMES,
220 yticklabels=CLASS NAMES,
221 ax=ax,

222 annot kws={"size": 6}
223)

224

225 ax.set xticklabels(ax.get xticklabels(),
rotation=90, fontsize=8)

226 ax.set yticklabels(ax.get yticklabels (), rotation=0,
fontsize=8)

227 ax.set title("Confusion Matrix (Final Test)",
fontsize=20)

228 ax.set ylabel ("True Label", fontsize=15)

229 ax.set xlabel ("Predicted Label", fontsize=15)

230

231 plt.savefig(os.path.join (SAVE DIR,

"confusion matrix.png"), dpi=300, bbox inches='tight')
232 plt.savefig(os.path.join (SAVE DIR,

"confusion matrix.svg"), bbox inches='tight')

153

233 plt.close(fig)

234

235 # Simpan Kurva

236 plt.figure(figsize=(12, 5))

237 plt.subplot(l, 2, 1)

238 plt.plot(history.history['accuracy'], label='Train
Acc')

239 plt.plot (history.history['val accuracy'], label='Val
Acc'")

240 plt.title('Accuracy')

241 plt.legend()

242 plt.grid(True, linestyle="--")

243

244 plt.subplot(l, 2, 2)

245 plt.plot(history.history['loss'], label='Train
Loss"'")

246 plt.plot (history.history['val loss'], label='Val
Loss"'")

247 plt.title('Loss")

248 plt.legend()

249 plt.grid(True, linestyle="--")

250

251 plt.tight layout ()

252 plt.savefig(os.path.join(SAVE DIR, "curves.png"))
253 plt.close()

254

255 print (f"\n[INFO] Selesai! Hasil disimpan di:
{SAVE DIR}")

Lampiran B.8 Source Code Konversi Tensorflow Lite

1 import os

2 import numpy as np

3 import tensorflow as tf

4

5 $# -

6 # Path model input/output

7 $ -

8 keras model path = r"E:\Dataset Penelitian Bahasa

Isyarat Olfat 2025\Tugas Akhir\Source Codelresults train
new\Transformer Dropout 0.3\transformer best.keras"

9 tflite out dir = r"E:\Dataset Penelitian Bahasa
Isyarat Olfat 2025\Tugas Akhir\Source Codelresults train
new\Transformer Dropout 0.3"

10 tflite model path = os.path.join(tflite out dir,

154

"model transformer.tflite")

11

12 os.makedirs (tflite out dir, exist ok=True)
13

14 $y -

15 # 1. Load model .keras

16 $y -

17 print ("[INFO] Loading Keras model...")
18 model = tf.keras.models.load model (keras model path,
compile=False)

19 model . summary ()
20
21 I ey — — — —af ——o

22 # 2. Convert to TFLite (Floatl6 quantization)

23 g — — = =T == R — = =

24 print ("\n[INFO] Converting to TensorFlow Lite
(floatl6 gquantization)...")

25 converter =
tf.lite.TFLiteConverter.from keras model (model)

26

27 # Gunakan optimisasi default

28 converter.optimizations = [tf.lite.Optimize.DEFAULT]
29 # Targetkan tipe data floatl6 untuk bobot (lebih
ringan & cepat di ARM)

30 converter.target spec.supported types = [tf.floatl6]
31 # Pastikan inference tetap float32 agar kompatibel
32 converter.target spec.supported ops =
[tf.lite.OpsSet. TFLITE_BUILTINS]

33

34 # Konversi dan simpan

35 tflite model = converter.convert ()

36 with open(tflite model path, "wb") as f:

37 f.write(tflite model)

38

39 size kb = os.path.getsize(tflite model path) / 1024
40 print (£f" [OK] Model berhasil disimpan:

{tflite model path} ({size kb:.1f} KB)")

41

42 $f -

43 # 3. (Opsional) Cek input/output signature

44 #

45 interpreter =
tf.lite.Interpreter (model path=tflite model path)
46 interpreter.allocate tensors()

47 input details = interpreter.get input details()

155

48 output details = interpreter.get output details()
49

50 print ("\n[INFO] Input Tensor:", input details)

51 print ("[INFO] Output Tensor:", output details)

52 print ("\n[INFO] Konversi selesai. Model siap
digunakan di Raspberry Pi.")

Lampiran B.9 Source Code Hybrid Model RF+LSTM

1 import sys

2 sys.path.append('/usr/lib/python3/dist-packages') #
pastikan picamera2 bisa diimport

3

4 import cv2

5 import numpy as np

6 import mediapipe as mp

7 import joblib

8 import time

9 # [UBAH BAGIAN INI] Menggunakan tflite runtime
menggantikan tensorflow full

10 from tflite runtime.interpreter import Interpreter
11 from picamera? import PicameraZ?

12 from collections import deque

13

14 $ -

15 # Load Models & Labels

16 $ -

17 rf model = joblib.load(

18

"/home/olfat/Desktop/projects/projectsenv/random forest b
isindo kcross.pkl"

19)

20

21 # [UBAH BAGIAN INI] Load TFLite LSTM menggunakan
Interpreter dari tflite runtime

22 interpreter =

Interpreter (model path="/home/olfat/Desktop/projects/proj
ectsenv/model lstm.tflite")

23 interpreter.allocate tensors()

24 input details = interpreter.get input details()

25 output details = interpreter.get output details()

26

27 labels = np.load(

28
"/home/olfat/Desktop/projects/projectsenv/all gestures la

156

bels lstm.npy", allow pickle=True

29) .item () # dict -> {"static": [...], "dynamic":
[...1}

30

31 $f -

32 # CONFIG

33 $f -

34 SEQ LENGTH = 20

35 MIN SEQ FOR LSTM = 12

36 MOTION THRESHOLD = 0.005
37 HOLD FRAMES = 6
38 COOLDOWN TIME =
39 HAND GRACE TIME
baru muncul

I =
= oo

.0 # jeda detik saat tangan

40

41 LR~ — — o e — — o B — — ===

42 # State & Buffers

43 I it

44 sequence buffer = deque (maxlen=SEQ LENGTH)
45 motion scores = []

46 hold counter = 0
47 last pred time =
48 last result text
49 last result color = (255,255,255)

0.0

mww

50 last result source = ""
51 prev landmarks = None
52

53 hand present = False

54 grace start time = None
55

56 print (f" [INFO] Models loaded. Using TFLite LSTM.
SEQ_LENGTH={SEQ_LENGTH}")

57

58 B o W s s 3 B EER
59 # Mediapipe

60 #

61 mp hands = mp.solutions.hands
62 hands = mp hands.Hands (

63 static image mode=False,

04 max num hands=2,

65 min detection confidence=0.7,
66 min tracking confidence=0.7
67)

68 mp draw = mp.solutions.drawing utils
69

157

70 f mmmmmmmmmmm e
71 # Helpers

72 # —————

73 def extract landmarks (results):

74 i1f not results.multi hand landmarks:

75 return None

76 row = []

77 for hl in results.multi hand landmarks:

78 for Im in hl.landmark:

79 row.extend ([1lm.x, 1lm.y, 1lm.z])

80 if len(results.multi hand landmarks) == 1:
81 row.extend ([0.0]*63)

82 if len(row) < 126:

83 row.extend ([0.0]* (126-1len (row)))

84 elif len(row) > 126:

85 row = row[:126]

86 return np.array(row, dtype=np.float32)

87

88 def predict rf(feat):

89 probs = rf model.predict proba([feat]) [O]
90 cid = int (np.argmax (probs))

91 return labels["static"] [cid]

92

93 def predict lstm tflite(seq):

94 # ubah jadi numpy array

95 seq = np.array(seq, dtype=np.float32)

96

97 # kalau sequence belum penuh, lakukan padding
(ulang frame terakhir)

98 if len(seq) < SEQ LENGTH:

99 last frame = seq[-1] if len(seq) > 0 else
np.zeros ((126,), dtype=np.float32)

100 pad len = SEQ LENGTH - len (seq)

101 pad frames =
np.repeat (last frame[np.newaxis, :], pad len, axis=0)
102 seq = np.concatenate([seq, pad frames],
axis=0)

103

104 # pastikan bentuknya (1, SEQ LENGTH, 126)
105 X = np.expand dims (seq, axis=0)

106

107
interpreter.set tensor (input details[0]['index'], X)
108 interpreter.invoke ()

109 probs =

158

interpreter.get tensor (output details[0]['index']) [0]

110 cid = int (np.argmax (probs))
111 return labels["dynamic"] [cid]
112

113 def draw text bg(img, text, pos=(10,40),
font scale=1.0, color=(255,255,255)):

114 X,y = pPOs

115 font = CVZ.FONT_HERSHEY_SIMPLEX

116 thickness = 2

117 (w,h), = cvZ.getTextSize (text, font,
font scale, thickness)

118 cv2.rectangle (img, (x-6,y-6), (xt+tw+6,
(O/O/O)/ _l)

119 cv2.putText (img, text, (x, yth-6), font,

font scale, color, thickness, cv2.LINE AA)
120

121 # st = = =
122 # Camera Init

123 §# ————— - e — 2 — — —
124 picam2 = Picamera?2 ()

125 config

picamZ.create preview configuration (main={"format":

"XRGB8888", "size": (640, 480)})
126 picam2.configure (config)
127 picam2.start ()

128

129 # ————-—

130 # Main loop

131 # —mm e

132 try:

133 while True:

134 frame = picamZ2.capture array ()

135 frame = cv2.flip(frame, 1)

136

137 image rgb = cv2.cvtColor (frame,
cv2.COLOR_BGRZ2RGB)

138 results = hands.process (image rgb)

139 image = cv2.cvtColor (image rgb,
cv2.COLOR_RGB2BGR)

140

141 if results.multi hand landmarks:

142 for hl in results.multi hand landmarks:
143 mp draw.draw landmarks (image, hl,

mp hands.HAND CONNECTIONS)
144

159

145 # cooldown prediksi

146 if time.time() - last pred time <
COOLDOWN TIME:

147 if last result text:

148 draw text bg(image,

f"{last result text} ({last result source})",
pos=(10,10), color=last result color)

149 remaining = COOLDOWN TIME -
(time.time () - last pred time)
150 draw text bg(image, f"Next in

{remaining:.1f}s", pos=(10,60), font scale=0.8,
color=(200,200,200))

151 cv2.imshow ("Gesture Recognition", image)
152 if cv2.waitKey(l) & OxFF == ord('qg'):
153 break

154 continue

155

156 Im = extract landmarks (results)

157 if Im is None:

158 sequence buffer.clear ()

159 motion scores.clear ()

160 hold counter = 0

161 prev_landmarks = None

162 hand present = False

163 grace_start time = None

164

165 draw_text bg(image, "Show your hand
(waiting)...", pos=(10,10), color=(200,200,200))

166 cv2.imshow ("Gesture Recognition", image)
167 if cv2.waitKey(l) & OxFF == ord('qg'):
168 break

169 continue

170 else:

171 1f not hand present:

172 hand present = True

173 grace_start time = time.time ()
174

175 if grace start time is not None and
(time.time () - grace start time < HAND GRACE TIME) :
176 remaining = HAND GRACE TIME -
(time.time () - grace start time)

177 draw_ text bg(image, f"Stabilizing...
{remaining:.1f}s", pos=(10,10), color=(0,200,200))

178 cv2.imshow ("Gesture Recognition",
image)

160

179 if cv2.waitKey (l) & OxFF ==

ord('qg'):

180 break

181 continue

182

183 sequence buffer.append (1lm)

184

185 if prev landmarks is not None:
186 motion = np.mean (np.abs (lm -
prev landmarks))

187 else:

188 motion = 0.0

189 prev_landmarks = 1Im

190

191 motion scores.append (motion)

192 if len(motion scores) > SEQ LENGTH:
193 motion scores.pop (0)

194

195 draw_text bg(image, f"Recording

{len (sequence buffer)}/{SEQ LENGTH}", pos=(10,10),
color=(200,200,200))

196

197 if len(sequence buffer) >= 2:

198 avg motion =

float (np.mean (motion scores)) 1if motion scores else 0.0
199

200 if avg motion > MOTION THRESHOLD and
len (sequence buffer) >= MIN SEQ FOR LSTM:

201 result =

predict lstm tflite(list (sequence buffer))

202 last result text = result

203 last result source = "LSTM"

204 last result color = (0,255,0)
205 last pred time = time.time ()

206 sequence buffer.clear ()

207 motion scores.clear ()

208 prev_landmarks = None

209 hold counter = 0

210 draw_ text bg(image,

f"{last result text} (LSTM)", pos=(10,10),
color=last result color)

211
212 elif avg motion <= MOTION THRESHOLD:
213 hold counter += 1

214 draw text bg(image, f"Holding...

161

{hold counter}/{HOLD FRAMES}", pos=(10,60),
color=(200,200,200))

215 if hold counter >= HOLD FRAMES and
len (sequence buffer) >= 1:

216 result =

predict rf (sequence buffer[-1])

217 last result text = result
218 last result source = "RF"

219 last result color = (0,0,255)
220 last pred time = time.time ()
221 sequence buffer.clear ()

222 motion scores.clear ()

223 prev_landmarks = None

224 hold counter = 0

225 draw text bg(image,

f"{last result text} (RF)", pos=(10,10),
color=last result color)

226

227 cv2.imshow ("Gesture Recognition", image)
228 if cv2.waitKey(l) & OxFF == ord('qg'):
229 break

230

231 finally:

232 cv2.destroyAllWindows ()

233 hands.close ()

234 picam2.stop ()

Lampiran B.10 Source Code Hybrid Model RF+Transformer

1 import sys

2 sys.path.append('/usr/lib/python3/dist-packages"')
pastikan picamera2 bisa diimport

3

4 import cv2

5 import numpy as np

6 import mediapipe as mp

7 import joblib

8 import time

9 from tflite runtime.interpreter import Interpreter
!I lebih ringan dibanding tensorflow

10 from picamera? import PicameraZ?

11 from collections import deque

12

13 #

162

#

14 # 1. LOAD MODEL & LABELS

16 print ("[INFO] Memuat model Random Forest dan
Transformer...")

17

18 # Random Forest untuk gestur statis

19 rf model =

joblib.load ("/home/olfat/Desktop/projects/projectsenv/ran
dom forest bisindo kcross.pkl")

20
21 # Transformer (TensorFlow Lite)
22 interpreter =

Interpreter (model path="/home/olfat/Desktop/projects/proj
ectsenv/model_transformer.tflite")

23 interpreter.allocate tensors()

24 input details = interpreter.get input details ()

25 output details = interpreter.get output details()

26

27 # Label

28 labels =
np.load("/home/olfat/Desktop/projects/projectsenv/all ges
tures labels transformer.npy", allow pickle=True) .item()
{"static": [...], "dynamic": [...]}

29

30 print (£f" [INFO] Model loaded. Input:

{input details[0] ['shape']}, Output:

{output details[0] ['shape']}")

31

35 SEQ LENGTH = 20

36 MIN SEQ FOR _TRANSFORMER = 12

37 MOTION THRESHOLD = 0.005

38 HOLD FRAMES = 6

39 COOLDOWN TIME = 1.5
= 1.

40 HAND GRACE TIME 0 # detik jeda stabilisasi

tangan
41
42 #

43 # 3. STATE & BUFFER

163

45 sequence buffer = deque (maxlen=SEQ LENGTH)
46 motion scores = []
47 hold counter = 0

48 last pred time 0.0

49 last result text = ""

50 last result color = (255, 255, 255)
51 last result source = ""

52 prev landmarks = None

53

54 hand present = False

55 grace_start time = None

56

57 #

60 mp hands = mp.solutions.hands
61 hands = mp hands.Hands (

62 static image mode=False,

63 max num hands=2,

64 min detection confidence=0.7,
65 min tracking confidence=0.7
66)

67 mp draw = mp.solutions.drawing utils

71 #

72 def extract landmarks (results):

73 if not results.multi hand landmarks:

74 return None

75 row = []

76 for hl in results.multi hand landmarks:
77 for 1Im in hl.landmark:

78 row.extend([1lm.x, lm.y, 1lm.z])
79 if len(results.multi hand landmarks) == 1:
80 row.extend ([0.0] * 63)

81 if len(row) < 126:

82 row.extend ([0.0] * (126 - len(row)))
83 elif len(row) > 126:

164

84 row = row|[:126]

85 return np.array(row, dtype=np.float32)

86

87 def predict rf (feat):

88 probs = rf model.predict proba([feat]) [0]

89 cid = int (np.argmax (probs))

90 return labels["static"][cid]

91

92 def predict transformer tflite (seq):

93 seq = np.array(seq, dtype=np.float32)

94

95 # padding jika panjang sequence < 20

96 if len(seq) < SEQ LENGTH:

97 last frame = seq[-1] if len(seq) > 0 else
np.zeros((126,), dtype=np.float32)

98 pad len = SEQ LENGTH - len(seq)

99 pad frames =
np.repeat (last frame[np.newaxis, :], pad len, axis=0)
100 seq = np.concatenate([seq, pad frames],
axis=0)

101

102 X = np.expand dims (seq, axis=0) # (1, 20, 126)
103

104

interpreter.set tensor (input details[0]['index'], X)
105 interpreter.invoke ()

106 probs =
interpreter.get tensor (output details[0]['index']) [0]
107 cid = int (np.argmax (probs))

108 return labels["dynamic"] [cid]

109

110 def draw text bg(img, text, pos=(10,40),
font scale=1.0, color=(255,255,255)):

111 X, Yy = pos

112 font = CVZ.FONT_HERSHEY_SIMPLEX

113 thickness = 2

114 (w, h), = cvZ.getTextSize (text, font,
font scale, thickness)

115 cv2.rectangle (img, (x-6, y-6), (xtw+6, y+h+6),
(0,0,0), _1)

116 cv2.putText (img, text, (x, y+th-6), font,
font scale, color, thickness, cv2.LINE AA)

117

118 #

165

119 # 6. INISIALISASI KAMERA

121 picam2 = Picamera?2 ()

122 config =
picam2.create preview configuration (main={"format":
"XRGB8888", "size": (640, 480)1})

123 picam2.configure (confiqg)

124 picam2.start ()

125

126 print ("[INFO] Sistem siap. Tekan 'g' untuk keluar.")

130 #

131 try:

132 while True:

133 frame = picam2.capture array ()

134 frame = cv2.flip(frame, 1)

135

136 image rgb = cv2.cvtColor (frame,
CVZ.COLOR_BGRZRGB)

137 results = hands.process (image_ rgb)
138 image = cvZ.cvtColor (image rgb,
CVZ.COLOR_RGBZBGR)

139

140 1f results.multi hand landmarks:
141 for hl in results.multi hand landmarks:
142 mp draw.draw landmarks (image, hl,
mp hands.HAND CONNECTIONS)

143

144 # cooldown prediksi

145 if time.time () - last pred time <
COOLDOWN TIME:

146 if last result text:

147 draw_text bg(image,

f"{last result text} ({last result source})",
pos=(10,10), color=last result color)

148 remaining = COOLDOWN TIME -
(time.time () - last pred time)
149 draw text bg(image, f"Next in

{remaining:.1f}s", pos=(10,60), font scale=0.8,
color=(200,200,200))

166

150 cv2.imshow ("Gesture Recognition", image)

151 if cv2.waitKey(l) & OxFF == ord('qg'):
152 break

153 continue

154

155 Im = extract landmarks (results)

156 if 1Im is None:

157 sequence buffer.clear ()

158 motion scores.clear ()

159 hold counter = 0

160 prev_ landmarks = None

16l hand present = False

162 grace_start time = None

163

164 draw text bg(image, "Show your hand
(waiting)...", pos=(10,10), color=(200,200,200))

165 cv2.imshow ("Gesture Recognition", image)
166 if cv2.waitKey(l) & OxFF == ord('qg'):
167 break

168 continue

169 else:

170 if not hand present:

171 hand present = True

172 grace_start time = time.time ()
173

174 if grace start time is not None and
(time.time () - grace start time < HAND GRACE TIME) :
175 remaining = HAND GRACE TIME -
(time.time () - grace start time)

176 draw_text bg(image, f"Stabilizing...
{remaining:.1f}s", pos=(10,10), color=(0,200,200))

177 cv2.imshow ("Gesture Recognition",
image)

178 if cv2.waitKey(l) & OxXFF ==
ord('qg'):

179 break

180 continue

181

182 $f - =

183 # Proses sequence & motion

184 o

185 sequence buffer.append (1lm)

186 motion = np.mean (np.abs(lm -
prev_landmarks)) if prev landmarks is not None else 0.0
187 prev landmarks = 1Im

167

188 motion scores.append (motion)

189 if len(motion scores) > SEQ LENGTH:
190 motion scores.pop (0)

191

192 draw text bg(image, f"Recording

{len (sequence buffer)}/{SEQ LENGTH}", pos=(10,10),
color=(200,200,200))

193

194 if len(sequence buffer) >= 2:

195 avg motion =

float (np.mean (motion scores)) 1if motion scores else 0.0
196

197 I — —— — 2 —

198 # Dynamic Gesture — Transformer

199 TN = — — EEEE e —\ B — — —

200 if avg motion > MOTION THRESHOLD and
len (sequence buffer) >= MIN SEQ FOR TRANSFORMER:

201 result =

predict transformer tflite (list (sequence buffer))

202 last result text = result

203 last result source = "Transformer"
204 last result color = (0,255,0)
205 last pred time = time.time()

206 sequence buffer.clear ()

207 motion scores.clear ()

208 prev_landmarks = None

209 hold counter = 0

210 draw text bg (image,

f"{last result text} (Transformer)", pos=(10,10),
color=last result color)

211

212 it ———— B -

213 # Static Gesture — Random Forest

214 oo

215 elif avg motion <= MOTION THRESHOLD:
216 hold counter += 1

217 draw text bg(image, f"Holding...

{hold counter}/{HOLD FRAMES}", pos=(10,60),
color=(200,200,200))

218 if hold counter >= HOLD FRAMES and
len (sequence buffer) >= 1:

219 result =

predict rf (sequence buffer[-1])

220 last result text = result

221 last result source = "RF"

168

222 last result color = (0,0,255)

223 last pred time = time.time ()
224 sequence buffer.clear ()

225 motion scores.clear ()

226 prev_landmarks = None

2277 hold counter = 0

228 draw text bg(image,

f"{last result text} (RF)", pos=(10,10),
color=last result color)

229

230 cv2.imshow ("Gesture Recognition", image)
231 if cv2.waitKey(l) & OxFF == ord('qg'):
232 break

233

234 finally:

235 cv2.destroyAllWindows ()

236 hands.close ()

237 picam2.stop ()

169

		2026-01-14T22:02:52+0700
	JAKARTA
	e-meterai_signatures
	[LNAR5BRGCN0HJ2II000ML9] Ref-209714669377981

