
PENGENDALIAN ROBOT ARM OPENMANIPULATOR UNTUK

PENYORTIRAN BUAH JERUK MENGGUNAKAN MACHINE

LEARNING

TUGAS AKHIR

SHELLY MARGARETH

NIM : 312210024

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

MALANG

2025

iii

KATA PENGANTAR

Segala puji dan syukur penulis panjatkan ke hadirat Tuhan Yang Maha Esa atas

limpahan rahmat dan kasih karunia-Nya selama 4 tahun masa perkuliahan sehingga

penulis dapat menyelesaikan laporan Tugas Akhir dengan dengan judul ”

PENGENDALIAN ROBOT ARM OPENMANIPULATOR UNTUK

PENYORTIRAN BUAH JERUK MENGGUNAKAN MACHINE LEARNING

” sebagai salah satu prasyarat untuk mendapatkan gelar Sarjana Komputer di

Universitas Ma Chung. Melalui pengalaman ini, penulis memperoleh banyak

pembelajaran berharga serta bantuan dari banyak pihak

Penulis menyampaikan terima kasih yang sebesar-besarnya kepada:

1. Tuhan yang Maha Esa atas berkat dan kasih karunia-Nya.

2. Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd, dan selaku dosen

pembimbing I , sekeligus dekan Fakultas Teknologi dan Desain atas

bimbingan, arahan, dan dukungan yang telah diberikan selama

pelaksanaan Tugas Akhir hingga penyusunan laporan ini.

3. Bapak Mochamad Subianto, S.Kom., M.Cs. selaku dosen pembimbing

II, atas bimbingan, arahan, dan dukungan yang telah diberikan selama

pelaksanaan Tugas Akhir hingga penyusunan laporan ini.

4. Bapak/Ibu dosen Program Studi Teknik Informatika Universitas Ma

Chung, atas ilmu dan wawasan yang telah dibekalkan selama

perkuliahan;

5. Keluarga dan teman-teman yang senantiasa memberikan semangat, doa,

dan dukungan selama proses penelitian hingga penyusunan laporan

Tugas Akhir ini.

Penulis menyadari bahwa laporan ini masih jauh dari sempurna. Oleh

karena itu, penulis sangat mengharapkan masukan, saran, dan kritik yang

membangun dari para pembaca. Akhir kata, penulis berharap laporan ini

bermanfaat dan berguna untuk semua pihak yang membutuhkan.

iv

Malang, 05 Januari 2026

Shelly Margareth

v

PERNYATAAN KEASLIAN TUGAS AKHIR

Yang bertanda tangan dibawah ini :

Nama : Shelly Margareth

NIM : 312210034

Program Studi : Teknik Informatika

Perguruan Tinggi : Universitas Ma Chung

Dengan ini menyatakan bahwa isi sebagian maupun keseluruhan Tugas

Akhir saya dengan judul “PENGENDALIAN ROBOT ARM

OPENMANIPULATOR UNTUK PENYORTIRAN BUAH JERUK

MENGGUNAKAN MACHINE LEARNING” adalah asli (orisinil) atau tidak plagiat

dan benar hasil karya intelektual mandiri, dan belum pernah

diterbitkan/dipublikasikan dimanapun dan dalam bentuk apapun.

Surat penyataan ini saya buat dengan sebenar-benarnya dengan kesaran

sendiri dan tanpa ada paksaan dari pihak manapun. Apabila dikemudian hari diduga

kuat ada ketidaksesuai antara fakta dengan dokumen pernyataan ini, saya bersedia

diproses oleh Universitas Ma Chung, dengan sanksi terberat berupa pembatalan

kelulusan atau pencabutan sarjana.

Malang, 05 Januari 2026,

Shelly Margareth

NIM 312210024

vi

PENGENDALIAN ROBOT ARM OPENMANIPULATOR UNTUK

PENYORTIRAN BUAH JERUK MENGGUNAKAN MACHINE

LEARNING

Shelly Margareth, Romy Budhi, Mochamad Subianto.

Universitas Ma Chung

Abstrak

Proses penyortiran buah jeruk di tingkat produsen saat ini umumnya masih

dilakukan secara manual yang memiliki keterbatasan dari segi efisiensi waktu dan

konsistensi, serta rentan terhadap human error akibat faktor kelelahan. Penelitian ini

bertujuan untuk merancang sistem penyortiran otomatis yang mengintegrasikan

metode Deep Learning dengan lengan robot OpenManipulator-X. Sistem dibangun

menggunakan komponen utama berupa lengan robot 4-DOF, kamera sebagai sensor

visual, dan NVIDIA Jetson Nano sebagai unit pemroses data.

Pada sisi perangkat lunak, algoritma Convolutional Neural Network (CNN)

dengan arsitektur MobileNetV2 digunakan untuk mengklasifikasikan kualitas jeruk

berdasarkan fitur warna dan tekstur secara real-time. Hasil klasifikasi tersebut

dikonversi menjadi perintah gerak robot menggunakan prinsip Inverse Kinematics

untuk memindahkan buah ke wadah yang sesuai.

Berdasarkan hasil pengujian, model ini mampu menghasilkan akurasi

klasifikasi sebesar 96%. Secara mekanis, sistem berhasil melakukan penyortiran

dengan tingkat keberhasilan 100% dan rata-rata waktu proses 31 detik per buah.

Penelitian ini diharapkan dapat menjadi solusi alternatif dalam penerapan teknologi

otomatisasi di bidang pertanian.

Kata Kunci: OpenManipulator, Machine Learning, Penyortiran Jeruk,

Convolutional Neural Network, NVIDIA Jetson Nano.

vii

IMPLEMENTATION OF OPENMANIPULATOR ROBOTIC ARM FOR

ORANGE SORTING USING MACHINE LEARNING

Shelly Margareth, Romy Budhi, Mochamad Subianto

Universitas Ma Chung

Abstract

Proses Currently, the orange sorting process at the producer level is largely

performed manually. This method has limitations in terms of time efficiency,

consistency and is prone to human error due to fatigue. This study aims to design an

automated sorting system integrating Deep Learning methods with the

OpenManipulator-X robotic arm. The system is built using main components

consisting of a 4-DOF robotic arm, a camera as a visual sensor, and an NVIDIA

Jetson Nano as the data processing unit.

On the software side, a Convolutional Neural Network (CNN) algorithm

with MobileNetV2 architecture is used to classify orange quality based on color and

texture features in real-time. The classification results are converted into robot

movement commands using Inverse Kinematics principles to move the fruit to the

appropriate container.

Based on test results, the model achieved a classification accuracy of 96%.

Mechanically, the system successfully performed sorting with a success rate of 100%

and an average processing time of 31 seconds per fruit. This study is expected to

serve as an alternative solution for the application of automation technology in

agriculture.

Keywords: OpenManipulator, Machine Learning, Orange Sorting, Convolutional

Neural Network, NVIDIA Jetson Nano.

viii

DAFTAR ISI

LEMBAR PENGESAHAN .. ii

KATA PENGANTAR ... iii

DAFTAR ISI .. viii

DAFTAR GAMBAR..x

DAFTAR TABEL... xi

BAB I ...1

PENDAHULUAN..1

1.1 Latar Belakang ...1

1.2 Identifikasi Masalah ...3

1.3 Batasan Masalah...3

1.4 Rumusan Masalah ..4

1.5 Tujuan Penelitian..4

1.6 Luaran ..5

1.7 Manfaat Penelitian ...5

1.8 Sistematika Penulisan...6

BAB II ..7

TINJAUAN PUSTAKA ...7

2.1 Bahasa C/C++ ..7

2.2 Arduino IDE ...9

2.3 Mikrokontroler STM32F746ZGT6 .. 11

2.4 OpenCR ..13

2.5 OpenManipulator-X ...17

2.6 Dynamixel XM430-W350-T ..22

2.7 Mikrokomputer ..23

2.8 Jetson Nano ..24

2.9 Machine Learning ..26

2.10 Penelitian Terdahulu ...33

BAB III...36

ANALISIS DAN PERANCANGAN SISTEM ...36

3.1 Tahapan Penelitian ...36

3.1.1 DataSet ...39

ix

3.2 Proses Pengerjaan...42

3.3 Metode Evaluasi ...43

BAB IV ..46

HASIL DAN PEMBAHASAN ..46

4.1 Rincian Penelitian ..46

4.1.1 Tempat dan Waktu ..46

4.1.2 Alat dan Komponen ...46

4.2 Pengambilan Data ..48

4.3 Implementasi Kode Program..53

4.3.1 Kode Implementasi CNN ...53

4.3.2 Kode Transmitter..54

4.3.3 Kode Receiver ..56

4.3.4 Tampilan Jendela Monitoring...58

4.4 Hasil Pengujian ..60

4.5 Analisis dan Pembahasan ...62

BAB V ..64

SIMPULAN DAN SARAN ...64

5.1 Simpulan ..64

5.2 Saran...64

DAFTAR PUSTAKA ...66

Lampiran ..68

x

DAFTAR GAMBAR

Gambar 2. 1 Tampilan Arduino IDE ..10

Gambar 2. 2 OpenCR 1.0 ..14

Gambar 2. 3 OpenCR PinOuts ...15

Gambar 2. 4 OpenManipulator-X ..18

Gambar 2. 5 Spesifikasi OpenManipulator-X ..19

Gambar 2. 6 Desain dan Dimensi OpenManipulator-X ...21

Gambar 2. 7 DYNAMIXEL-X ..22

Gambar 2. 8 Jetson Nano ...25

Gambar 2. 9 Proses pelatihan CNN ...28

Gambar 2. 10 Arsitektur MobileNetV2 ..30

Gambar 3. 1 Diagram alir tahapan penelitian ..35

Gambar 3. 2 ID Servo ..36

Gambar 3. 3 Diagram alur penerapan Machine learning38

Gambar 3. 4 Dataset jeruk sehat...39

Gambar 3. 5 Dataset jeruk tidak sehat..39

Gambar 3. 6 Diagram Alur Komunikasi Jetson Nano dengan OpenCR40

Gambar 3. 7 Topologi Perangkat..41

Gambar 3. 8 Ilustrasi Posisi OpenManipulator Arm ..43

Gambar 4. 1 Rangkaian Prototipe ..47

Gambar 4. 2 Input citra jeruk yang digunakan ...47

Gambar 4. 3 Input citra jeruk yang digunakan (2) ...48

Gambar 4. 4 Grafik training validation ..50

Gambar 4. 5 Confusion matrix train data ...50

Gambar 4. 6 Confusion matrix test data...51

Gambar 4. 7 ID robot Arm ...52

Gambar 4. 8 Implementasi machine learning CNN ...53

Gambar 4. 9 Kode fungsi untuk menjalankan model ...54

Gambar 4. 10 Kode fungsi untuk keberadaan jeruk ...55

Gambar 4. 11 Kode klasifikasi jeruk berdasarkan model machine learning55

Gambar 4. 12 Kode transmitter dari Jetson Nano ke OpenCR56

Gambar 4. 13 Kode receiver dan menjalankan robot Arm.....................................57

Gambar 4. 14 Jendela untuk memantau hasil klasifikasi pada Jetson Nano58

Gambar 4. 15 Jendela untuk memantau memperlihatkan hasil jeruk sehat58

Gambar 4. 16 Jedela untuk memantau memperlihatkan hasil jeruk tidak sehat59

Gambar 4. 17 Jendela untuk memantau memperlihatkan kondisi setelah machine

learning berhasil mengklasifikasi ...59

Gambar 4. 18 Waktu satu siklus klasifikasi ...62

xi

DAFTAR TABEL

Tabel 3. 1 Jenis dan Fungsi Layer pada MobilenetV2 ...31

Tabel 3. 2 Tabel Pengujian ...45

Tabel 3. 3 Tabel Pengujian Pergerakan ..45

Tabel 4. 1 Hasil akurasi data train ..49

Tabel 4. 2 Hasil akurasi data test ..49

Tabel 4. 3 Data posisi robot Arm..50

Tabel 4. 4 Pengujian klasifikasi machine learning ...60

Tabel 4. 5 Tabel hasil pengujian gerak robot Arm ...61

1

BAB I

PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi robotika dan otomasi telah memberikan dampak

signifikan dalam berbagai aspek kehidupan, khususnya pada sektor industri pangan.

Salah satu proses penting dalam produksi adalah penyortiran buah, yang hingga

kini umumnya masih dilakukan secara manual oleh tenaga kerja manusia. Metode

manual memiliki sejumlah keterbatasan, seperti keterlambatan, kelelahan, serta

potensi kesalahan dalam menentukan kualitas buah. Kondisi ini berakibat pada

menurunnya efisiensi sekaligus kualitas hasil produksi (Inuwa et al., 2025).

Selain itu, kualitas buah jeruk sangat memengaruhi harga jual serta tingkat

penerimaan konsumen. Konsumen cenderung memilih jeruk dengan kondisi sehat,

dan bebas dari cacat. Oleh karena itu, dalam proses penyortiran sangat penting

untuk memastikan hanya jeruk dengan kualitas baik yang didistribusikan ke pasar.

Jika jeruk dengan kualitas rendah ikut terjual dapat menurunkan kepercayaan

konsumen, memengaruhi citra produk, serta berdampak pada turunnya daya saing

industri. Dalam industri pertanian modern, penyortiran buah secara otomatis

penting dilakukan untuk menjaga konsistensi dan kualitas produk yang diterima

konsumen. Penampilan buah khususnya warna kulit yang cerah dan bebas dari noda

sangat menentukan keputusan pembelian jeruk oleh konsumen, karena aspek visual

menjadi indikator utama kesegaran dan mutu buah (Hj & Rostiati, 2015).

Untuk mengatasi permasalahan penyortiran jeruk secara manual yang

lambat, tidak konsisten, dan rentan kesalahan, penerapan teknologi robotika dengan

AI menjadi solusi yang menjanjikan. Contohnya, pada penelitian berjudul

Computer Vision and Machine learning Based Control for a 6 Degree of Freedom

Robotic Arm (De Assis et al., 2025), digunakan pendekatan supervised learning

dengan metode Artificial Neural Network (ANN) untuk mengendalikan lengan

robot berdasarkan gerakan manusia. Model ANN dilatih menggunakan data hasil

tangkapan kamera melalui framework Mediapipe, yang mendeteksi titik-titik

2

penting pada tubuh operator seperti bahu, jari telunjuk, dan ibu jari. Hasil penelitian

menunjukkan bahwa model berhasil mengklasifikasi sudut setiap sendi (joint angle)

pada keenam servo motor lengan robot dengan tingkat akurasi mencapai 82,03%.

Klasifikasi ini memungkinkan lengan robot meniru pergerakan tangan manusia

secara real-time pada lingkungan simulasi Gazebo menggunakan ROS.

Dalam penelitian ini digunakan lengan robot Arm OpenManipulator-X,

yaitu robot Arm open-source yang fleksibel dan dirancang untuk kebutuhan

pengembangan, pendidikan, serta penelitian. Sistem kendali utama menggunakan

OpenCR (Open-source Control Robot) yang memiliki prosesor kompeten,

dukungan komunikasi lengkap, serta kompatibel dengan berbagai sistem robotika.

Penggunaan OpenCR pada robot Arm telah banyak diterapkan dalam berbagai

penelitian, misalnya oleh (Kashani et al., 2025) yang meneliti tentang

pengembangan sistem kendali cerdas untuk robot Arm OpenManipulator-X, fokus

utamanya adalah pada peningkatan presisi Gerakan dan kestabilan sistem dengan

cara menggabungkan metode control klasik Fixed-Time Sliding Mode Control

(FTSM) dan algoritma pembelajaran penguatan Deep Deterministic Policy

Gradient (DDPG) agar dapat menghadapi kondisi lingkungan yang berubah-ubah.

(Automation & Automation, 2024) misalnya, membantu individu yang berhasil

bertahan dari stroke biasanya membutuhkan bantuan untuk melakukan tugas-tugas

dasar. Alat bantu robotik, seperti Arm OpenManipulator melakukan berbagai

aktivitas dengan cara mengambil dan menyerahkan benda kepada pasien. Dalam

proyek ini, sarung tangan berbasis kendali gerakan (gesture control) dirancang

untuk meningkatkan proses handover dari robot ke pengguna. Sarung tangan

dilengkapi dua sensor MPU-6050 dan dua sensor lentur (flex sensor) untuk

mendeteksi orientasi tangan dan tekukan jari. Data dari sarung tangan dikirim ke

Arm Manipulator guna menggerakkan manipulator dan mengoperasikan gripper

secara terpisah. Pengujian dilakukan dengan lima jenis benda sebanyak 20 kali

masing-masing. Hasil menunjukkan rata-rata waktu penyerahan 7,76 detik dengan

tingkat kesalahan 18,03%. Perbedaan waktu antar benda menunjukkan pengaruh

dari lingkungan pengujian, pengguna yang sama, dan keterbatasan perangkat keras.

3

Penelitian-penelitian terdahulu menunjukkan bahwa penggunaan teknologi

visi komputer pada perangkat seperti Jetson Nano dapat dimanfaatkan untuk

mendeteksi fitur fisik objek secara real-time, demikian juga penggunaan metode

Artificial Neural Network (ANN) yang terbukti efektif dalam mengklasifikasi

gerakan dan mengklasifikasikan kualitas objek dengan akurasi tinggi. Selain itu,

implementasi lengan robot OpenManipulator-X dengan kontroler OpenCR telah

teruji mampu memberikan stabilitas dan presisi dalam manipulasi benda. Oleh

sebab itu, pada penelitian ini dihipotesiskan beberapa hal yang bisa dilakukan, yaitu

membangun komunikasi data yang efisien antar mikrokontroler (antara unit

pemroses citra dan OpenCR) untuk menerjemahkan hasil deteksi kualitas jeruk

menjadi perintah gerak penyortiran yang akurat dan otomatis.

1.2 Identifikasi Masalah

Berdasarkan latar belakang tersebut, dapat diidentifikasi beberapa masalah

sebagai berikut:

1. Proses penyortiran jeruk yang masih dilakukan secara manual kurang

efisien, memerlukan banyak tenaga kerja, serta rawan terjadi kesalahan.

2. Kualitas jeruk sangat memengaruhi harga jual dan penerimaan

konsumen, sehingga diperlukan metode penyortiran yang lebih akurat

agar hanya jeruk sehat yang terdistribusi ke pasar.

3. Belum adanya pemanfaatan robot manipulator sederhana berbasis

mikrokontroler yang terintegrasi dengan kecerdasan buatan untuk

melakukan penyortiran buah secara otomatis.

4. Diperlukan sistem kendali yang mampu menghubungkan hasil

klasifikasi machine learning dengan pergerakan robot Arm agar proses

penyortiran dapat berjalan cepat, konsisten, presisi, dan otomatis.

1.3 Batasan Masalah

1. Penelitian difokuskan pada proses penyortiran buah jeruk menggunakan

robot Arm OpenManipulator yang dikendalikan oleh OpenCR.

2. Sistem kecerdasan buatan hanya terbatas pada klasifikasi jeruk sehat dan

jeruk tidak sehat menggunakan model machine learning Convolutional

4

neural network (CNN) sederhana dengan 2 fitur utama yaitu warna dan

tekstur(bercak / noda).

3. Hasil klasifikasi dikirimkan dalam format Jetson Nano melalui komunikasi

UART sebagai dasar pergerakan robot Arm.

4. Penelitian tidak mencakup pengolahan citra lanjutan seperti deteksi ukuran,

warna kompleks, maupun tingkat kematangan buah.

5. Ruang lingkup penelitian hanya berupa prototipe sederhana dan tidak

membahas implementasi pada skala industri besar.

Batasan ini ditetapkan guna menjaga fokus pembahasan pada peran penulis

dalam merancang dan menguji mekanisme pengendalian gerakan robot Arm

OpenManipulator berbasis board OpenCR serta integrasi dengan modul kamera,

sehingga tidak mencakup pembahasan aspek implementasi industri berskala besar

atau penggunaan perangkat tambahan di luar lingkup prototipe sederhana yang

dirancang.

1.4 Rumusan Masalah

Bagaimana merancang dan mengimplementasikan sistem pengendalian

robot Arm OpenManipulator berbasis board OpenCR yang terintegrasi dengan

modul kamera dan mikrokontroler Jetson Nano untuk menyortir jeruk secara

otomatis. Permasalahan yang diangkat mencakup bagaimana proses klasifikasi

jeruk sehat dan tidak sehat dilakukan melalui pemrosesan citra berbasis machine

learning pada mikrokontroler Jetson Nano, bagaimana hasil klasifikasi tersebut

dikirimkan melalui komunikasi UART ke OpenCR, serta bagaimana sistem kendali

robot Arm diatur agar dapat mengeksekusi gerakan penyortiran secara tepat dan

efisien.

1.5 Tujuan Penelitian

1. Merancang dan mengimplementasikan sistem pengendalian gerakan robot

Arm OpenManipulator berbasis board OpenCR yang terintegrasi dengan

modul kamera dan mikrokontroler Jetson Nano untuk melakukan

penyortiran jeruk secara otomatis.

5

2. Menguji kinerja robot Arm dalam melakukan penyortiran jeruk sesuai hasil

klasifikasi machine learning yang membedakan antara jeruk sehat dan tidak

sehat.

3. Menilai efektivitas sistem yang dikembangkan dalam mendukung proses

penyortiran jeruk, khususnya dalam hal akurasi, konsistensi, dan efisiensi,

sehingga dapat menjadi gambaran awal penerapan otomasi pada industri

pangan.

1.6 Luaran

1. Prototipe sistem penyortiran jeruk berbasis robot Arm OpenManipulator,

board OpenCR, dan mikrokontroler Jetson Nano.

2. Dokumentasi berupa laporan tugas akhir yang memuat rancangan,

implementasi, serta hasil pengujian sistem.

3. Publikasi ilmiah berupa artikel yang dapat dijadikan referensi untuk

penelitian sejenis di bidang otomasi dan robotika.

1.7 Manfaat Penelitian

a. Bagi industri: memberikan alternatif solusi otomasi penyortiran buah agar

lebih efisien, konsisten, dan akurat. Walaupun masih berupa prototipe

sederhana, rancangan ini dapat menjadi gambaran awal penerapan sistem

robotik skala kecil yang berpotensi dikembangkan ke arah aplikasi industri

sebenarnya.

b. Bagi akademik: menjadi referensi sekaligus dasar pengembangan lebih

lanjut mengenai implementasi robot manipulator berbasis mikrokontroler. Hasil

penelitian ini juga memperkaya literatur tentang integrasi modul kamera dengan

sistem kendali robot pada bidang otomasi.

c. Bagi peneliti: memberikan pengalaman praktis dalam merancang,

memprogram, dan mengendalikan sistem robotik sederhana yang relevan

dengan kebutuhan industri, serta menjadi bekal untuk penelitian lanjutan

dengan skala dan kompleksitas yang lebih tinggi.

6

1.8 Sistematika Penulisan

Berikut merupakan sistematika penulisan penelitian ini:

1. BAB I Pendahuluan

Bab ini berisi latar belakang penelitian, identifikasi masalah, batasan masalah,

rumusan masalah, tujuan penelitian, luaran, manfaat penelitian, serta

sistematika penulisan.

2. BAB II Tinjauan Pustaka

Bab ini membahas teori-teori dan konsep yang mendasari penelitian, antara lain

mengenai robot manipulator, board OpenCR, modul kamera, mikrokontroler

Jetson Nano, komunikasi UART, machine learning untuk klasifikasi citra, serta

penelitian-penelitian terdahulu yang relevan.

3. BAB III Analisis dan Perancangan Sistem

Bab ini menguraikan analisis kebutuhan, desain sistem, arsitektur perangkat

keras dan perangkat lunak, perancangan alur komunikasi, serta perancangan

logika pengendalian robot Arm OpenManipulator untuk penyortiran jeruk.

4. BAB IV Hasil dan Pembahasan

Bab ini menyajikan hasil implementasi sistem, pengujian prototipe, analisis

kinerja robot Arm dalam melakukan penyortiran, serta pembahasan mengenai

efektivitas dan keterbatasan sistem yang dikembangkan.

5. BAB V Simpulan dan Saran

Bab ini memuat simpulan yang diperoleh dari penelitian serta saran yang dapat

dijadikan acuan untuk pengembangan penelitian lebih lanjut.

7

BAB II

TINJAUAN PUSTAKA

2.1 Bahasa C/C++

Bahasa C merupakan bahasa pemrograman prosedural yang

dikembangkan oleh Dennis Ritchie pada awal tahun 1970-an. Bahasa ini

dirancang untuk efisien dalam pengelolaan memori dan performa, serta

dekat dengan bahasa mesin, sehingga sangat cocok digunakan dalam

pengembangan sistem operasi dan perangkat keras. Dalam konteks sistem

tertanam, seperti pada mikrokontroler OpenCR, bahasa C menjadi standar

industri karena kemampuannya dalam mengakses dan mengontrol

perangkat keras secara langsung. Selain itu, kompiler untuk bahasa C juga

tersedia luas dan mendukung berbagai arsitektur prosesor.

Tipe data adalah klasifikasi atau jenis data yang menentukan nilai

yang dapat disimpan dalam suatu variabel dan operasi apa yang dapat

dilakukan terhadap data tersebut. Dalam bahasa C menentukan ukuran dan

jenis nilai yang dapat disimpan dalam variabel. Berikut adalah beberapa tipe

data dasar yang umum digunakan:

• int – menyimpan bilangan bulat (positif atau negatif).

• char – menyimpan karakter ASCII.

• float dan double – menyimpan angka pecahan atau bilangan desimal.

• uint8_t, uint16_t, uint32_t – tipe data integer tak bertanda (unsigned

integer) dengan ukuran tetap.

Variabel dalam pemrograman adalah sebuah nama atau identifikasi

yang diberikan untuk menyimpan suatu nilai data dalam memori komputer.

Nilai ini dapat dapat diubah atau dimanipulasi selama eksekusi program.

Setiap variabel memiliki tipe data yang menentukan jenis nilai yang dapat

disimpan, seperti angka, teks, atau struktur data yang lebih kompleks. Nama

variabel yang dipilih biasanya mendeskripsikan data yang disimpan,

memudahkan pemahaman dan pengelolaan kode. Dalam pemrograman,

8

variabel memungkinkan programmer untuk menyimpan data,

mengubahnya, dan mengaksesnya kapan pun selama program berjalan.

Dengan demikian, penulisan kode menjadi lebih fleksibel karena nilai yang

spesifik bisa disimpan dan diubah hanya di satu tempat, namun dapat

digunakan di banyak bagian dalam program.

Setelah mengenal tipe data dan variabel ada juga fungsi, dalam

bahasa C merupakan blok kode yang dirancang untuk menjalankan tugas

tertentu dan dapat dipanggil berkali-kali. Fungsi membantu dalam mengatur

kode, membuatnya lebih mudah dibaca, dipahami, dan dikelola, serta

memungkinkan penggunaan kode berulang. Contoh penulisan function pada

Bahasa C

void warning()

{

 Serial.println();

 Serial.println("WARNING!!! OpenManipulator-X operates in 5

seconds.");

 delay_ms(1000);

 open_manipulator.receiveAllJointActuatorValue();

 open_manipulator.receiveAllToolActuatorValue();

 open_manipulator.enableAllActuator();

 delay_ms(1000);

}

Fungsi warning() adalah sebuah fungsi sederhana dalam bahasa C

yang digunakan untuk memberi peringatan dan memunculkan di serial

monitor pada Arduino IDE. Fungsi ini tidak menerima parameter apa pun

dan tidak mengembalikan nilai karena bertipe void.

9

Bahasa C memiliki relevansi yang sangat tinggi dalam

pengembangan sistem embedded karena kedekatannya dengan perangkat

keras. Bahasa ini memungkinkan pemrogram untuk mengontrol register

mikrokontroler secara langsung, mengakses fitur interrupt dan berbagai

peripheral seperti UART, SPI, dan I2C, serta mengatur manajemen memori

dengan presisi tinggi. Selain itu, bahasa C juga digunakan untuk menulis

driver bagi perangkat-perangkat seperti sensor dan aktuator. Kemampuan

tersebut menjadikan C sebagai fondasi utama dalam pengembangan

firmware profesional, termasuk pada perangkat seperti OpenCR (Kernighan

& Ritchie, 1988).

2.2 Arduino IDE

Arduino Integrated Development Environment (IDE) merupakan

perangkat lunak utama yang digunakan dalam proses pengembangan sistem

berbasis mikrokontroler Arduino maupun mikrokontroler lain yang

mendukung ekosistemnya. Arduino IDE berfungsi sebagai sarana untuk

menulis, mengompilasi, dan mengunggah program ke papan mikrokontroler

dengan antaemuka yang sederhana dan intuitif. Keunggulan utama dari IDE

ini adalah kemampuannya untuk menjembatani pengguna dari berbagai

tingkat kemampuan baik pemula yang baru belajar pemrograman maupun

peneliti yang sedang mengembangkan sistem robotika atau otomasi tingkat

lanjut. Melalui desain yang ramah pengguna, Arduino IDE mempermudah

proses pembelajaran pemrograman mikrokontroler tanpa memerlukan

pemahaman mendalam terhadap konfigurasi perangkat keras atau bahasa

pemrograman tingkat rendah.

10

Gambar 2. 1 Tampilan Arduino IDE

Gambar 2.1 menunjukan tampilan Arduino IDE saat pertama kali

membuka Arduino dan membuat file baru. Arduino memiliki beberapa fitur

penting, salah satu fitur penting dari Arduino IDE adalah serial monitor,

yaitu alat bantu untuk menampilkan data dari mikrokontroler secara real

time. Fitur ini sangat berguna untuk melakukan proses debugging, analisis

sensor, serta komunikasi antar perangkat. Arduino IDE juga terintegrasi

dengan berbagai pustaka open-source yang dapat diunduh langsung dari

library manager, memudahkan peneliti untuk mengembangkan sistem yang

lebih kompleks seperti Internet of Things (IoT), sistem kontrol otomatis,

hingga robotika. Kemudahan integrasi dengan pustaka eksternal seperti

WiFi.h, Servo.h, SoftwareSerial.h, dan DynamixelWorkbench.h

menjadikan Arduino IDE pilihan utama bagi banyak developer.

Dalam konteks penelitian dan pengembangan robotika, Arduino IDE

banyak digunakan untuk memprogram mikrokontroler seperti OpenCR

yang digunakan pada robot Arm OpenManipulator. Melalui IDE ini,

pengguna dapat menulis algoritma kontrol gerak, komunikasi data dengan

sensor, serta pengaturan aktuator seperti motor Dynamixel. Tidak hanya

terbatas pada perangkat Arduino asli, IDE ini juga mendukung berbagai

papan berbasis ARM, ESP, dan STM32 yang memiliki kemampuan

komputasi lebih tinggi. Keberagaman ini menjadikan Arduino IDE sebagai

11

alat yang sangat fleksibel untuk berbagai kebutuhan riset, mulai dari

eksperimen akademik hingga implementasi industri.

Arduino juga memiliki komunitas yang sangat besar sehingga

memberikan peran penting terhadap pengembangan IDE. Arduino memiliki

ribuan contoh kode, dokumentasi serta forum diskusi yang membantu

penggunanya memecahkan permasalahan teknis yang sedang dihadapi.

Pembaruan versi IDE juga dilakukan secara berkala untuk meningkatkan

stabilitas, kompatibilitas, dan fitur-fitur baru seperti integrasi dengan

Arduino Cloud dan dukungan debugger bawaan. Dengan dukungan

ekosistem yang kuat ini, Arduino IDE menjadi salah satu platform

pengembangan paling populer di dunia teknik elektro, mekatronika, dan

ilmu komputer terapan (Banzi & Shiloh, 2014).

2.3 Mikrokontroler STM32F746ZGT6

Mikrokontroler merupakan sebuah komputer kecil yang terdapat di

dalam satu chip sirkuit terpadu (Integrated Circuit/IC) yang berisi CPU

(Central Processing Unit), memori, serta perangkat input dan output (I/O)

yang dapat diprogram untuk menjalankan fungsi tertentu. Mikrokontroler

sering disebut sebagai otak dari berbagai sistem tertanam (embedded

system) karena memiliki kemampuan untuk memproses data, mengambil

keputusan, dan mengendalikan perangkat lain sesuai instruksi yang telah

ditanamkan ke dalam programnya. Secara umum, mikrokontroler bekerja

dengan menjalankan serangkaian instruksi yang disimpan dalam memori

internalnya untuk mengontrol sinyal dari sensor maupun aktuator, sehingga

memungkinkan interaksi langsung antara sistem digital dengan lingkungan

fisik.

Menurut Valvano (2017), mikrokontroler memiliki peran utama

sebagai pusat kendali dalam sistem tertanam yang mengintegrasikan

perangkat lunak (software) dan perangkat keras (hardware) untuk

melaksanakan tugas spesifik secara otomatis dan efisien. Berbeda dengan

mikroprosesor yang membutuhkan komponen eksternal seperti memori dan

perangkat I/O tambahan, mikrokontroler telah menggabungkan seluruh

12

komponen utama tersebut ke dalam satu chip tunggal. Hal ini menjadikan

mikrokontroler lebih hemat energi, berbiaya rendah, serta mudah

diintegrasikan pada berbagai aplikasi industri maupun non-industri. Dalam

sistem otomasi modern, mikrokontroler mampu menjalankan operasi real-

time, yaitu memproses masukan dan menghasilkan keluaran secara

langsung tanpa jeda yang signifikan, sehingga sangat cocok digunakan pada

sistem kendali dan monitoring.

Fungsi utama mikrokontroler terletak pada kemampuannya untuk

membaca input dari lingkungan luar, seperti sinyal dari sensor suhu, cahaya,

tekanan, atau arus listrik, kemudian memproses informasi tersebut untuk

menghasilkan respon yang sesuai melalui aktuator seperti motor, relay, atau

modul komunikasi. Dalam konteks ini, mikrokontroler bertindak sebagai

jembatan antara dunia analog (lingkungan fisik) dan dunia digital (sistem

pemrosesan). Proses ini terjadi secara berulang dan teratur sesuai program

yang ditanamkan, sehingga mikrokontroler dapat menjalankan sistem

otomatis dengan presisi tinggi.

Efisiensi dan fleksibilitas mikrokontroler menjadikannya sangat

populer dalam berbagai bidang penerapan. Mikrokontroler digunakan

dalam perangkat rumah tangga seperti mesin cuci, pendingin udara, dan

oven, sistem otomasi industri seperti robotik dan kontrol mesin; peralatan

medis seperti alat pemantau detak jantung dan pompa infus, serta kendaraan

modern untuk mengontrol sistem injeksi bahan bakar, sistem pengereman

ABS, hingga sensor parkir. Pada Internet of Things (IoT), mikrokontroler

menjadi komponen kunci yang memungkinkan perangkat-perangkat cerdas

berkomunikasi melalui jaringan internet, mengumpulkan data, serta

melakukan analisis sederhana secara lokal sebelum dikirim ke server atau

cloud.

Kemajuan teknologi juga mendorong munculnya berbagai jenis

mikrokontroler dengan kemampuan yang semakin kompleks, seperti seri

AVR, PIC, ARM Cortex-M, dan ESP32 yang telah dilengkapi dengan fitur

WiFi, Bluetooth, serta kecepatan pemrosesan yang lebih tinggi. Salah satu

13

jenis mikrokontroler yang banyak digunakan dalam sistem tertanam modern

adalah STM32F746ZGT6, yang merupakan bagian dari keluarga STM32F7

Series buatan STMicroelectronics. Mikrokontroler ini berbasis pada

arsitektur ARM Cortex-M7 dengan frekuensi clock hingga 216 MHz, yang

memberikan kinerja tinggi dan efisiensi daya yang baik untuk aplikasi

pemrosesan real-time. STM32F746ZGT6 dilengkapi dengan memori flash

sebesar 1 MB, RAM 320 KB, serta berbagai peripheral canggih seperti

ADC, DAC, UART, SPI, I2C, CAN, USB, dan Ethernet. Dukungan fitur

Floating Point Unit (FPU) dan Digital Signal Processing (DSP)

memungkinkan mikrokontroler ini melakukan perhitungan matematis

kompleks dengan cepat, sehingga cocok digunakan dalam sistem robotik,

kendali motor, pengolahan sinyal, dan aplikasi berbasis visi komputer.

Dalam konteks pengembangan sistem kendali, STM32F746ZGT6

menawarkan fleksibilitas tinggi karena dapat diprogram melalui berbagai

lingkungan pengembangan seperti STM32CubeIDE, Keil µVision, atau

PlatformIO, dengan dukungan pustaka perangkat keras (HAL dan LL

driver) yang disediakan oleh STMicroelectronics. Hal ini memudahkan

pengembang untuk melakukan konfigurasi peripheral, manajemen clock,

serta komunikasi antar modul melalui antarmuka digital seperti SPI atau

UART. Selain itu, mikrokontroler ini juga mendukung fitur Direct Memory

Access (DMA) dan Real-Time Operating System (RTOS) yang

memungkinkan pengolahan data lebih cepat dan efisien dalam sistem

multitasking. Dalam bidang robotika, mikrokontroler ini digunakan untuk

mengendalikan lengan robot atau manipulator melalui komunikasi serial

berkecepatan tinggi dengan aktuator dan sensor. Beberapa platform seperti

OpenCR (Open-source Control Robot) juga menggunakan

STM32F746ZGT6 sebagai otak utama untuk mengontrol motor Dynamixel,

membaca data sensor

2.4 OpenCR

OpenCR (Open-source Control Module for ROS) merupakan papan

kendali terbuka yang dikembangkan oleh ROBOTIS untuk mendukung

14

sistem robotik berbasis ROS (Robot Operating System). Papan ini berfungsi

sebagai pengendali utama yang menghubungkan antara perangkat keras

robot, seperti aktuator, sensor, dan modul komunikasi, dengan sistem

perangkat lunak pengendali pada komputer atau mikrokontroler lain.

Sebagai platform yang bersifat open source, seluruh perangkat lunak,

skematik rangkaian, dan firmware dari OpenCR dapat diakses,

dimodifikasi, serta dikembangkan secara bebas oleh pengguna, sehingga

menjadikannya solusi yang fleksibel dan adaptif dalam berbagai aplikasi

robotika, baik untuk keperluan pendidikan, penelitian, maupun industri.

Gambar 2. 2 OpenCR 1.0

Gambar 2.2 menunjukan OpenCR 1.0 yang penulis gunakan untuk

mengontrol Arm OpenManipulator, secara teknis OpenCR menggunakan

mikrokontroler STM32F7 Series ARM Cortex-M7 dengan kecepatan 216

MHz dan dilengkapi dengan floating point unit (FPU) yang memungkinkan

pengolahan data numerik kompleks secara efisien. Papan ini juga memiliki

berbagai antarmuka komunikasi seperti RS-485 dan TTL untuk koneksi

dengan aktuator DYNAMIXEL, UART, I²C, dan SPI untuk komunikasi

dengan sensor eksternal, serta port USB dan GPIO untuk input-output

umum maupun ekspansi sistem. Dukungan komunikasi yang beragam

tersebut memungkinkan OpenCR untuk berinteraksi dengan berbagai jenis

perangkat keras dalam sistem robotik secara andal dan serbaguna. Selain

15

itu, OpenCR dapat diprogram menggunakan dua pendekatan utama, yaitu

melalui lingkungan pengembangan Arduino IDE untuk sistem mandiri, atau

menggunakan ROS untuk sistem terdistribusi yang dijalankan di komputer.

Dengan kemampuan ini, OpenCR dapat digunakan baik sebagai pengendali

tunggal maupun sebagai bagian dari sistem kontrol yang lebih kompleks.

Gambar 2. 3 OpenCR PinOuts

Gambar 2.3 menunjukan susunan pin (pinout) pada papan OpenCR,

yang berfungsi untuk menghubungkan berbagai komponen eksternal seperti

sensor, aktuator, dan modul komunikasi. Setiap pin memiliki fungsi

spesifik, termasuk pin daya, komunikasi serial (UART, I2C, SPI), serta pin

input/output digital dan analog yang digunakan untuk mengendalikan

sistem robot. Dengan memahami konfigurasi pinout ini, pengguna dapat

melakukan koneksi perangkat keras dengan lebih tepat dan aman.

Dalam konteks sistem robotik, OpenCR berperan sebagai

pengendali tingkat rendah (low-level controller) yang bertugas

mengeksekusi perintah dari pengendali tingkat tinggi (high-level

controller). Fungsi utamanya meliputi pengendalian aktuator seperti motor

DYNAMIXEL, pembacaan data dari berbagai sensor, serta pengelolaan

komunikasi dua arah antara perangkat keras dan sistem pengendali

eksternal. Selain itu, OpenCR juga mampu menjalankan loop control secara

16

lokal, seperti pengaturan posisi, kecepatan, maupun torsi pada tiap aktuator,

sehingga dapat mengurangi beban pemrosesan pada sistem komputer

utama. OpenCR juga dilengkapi dengan sistem catu daya yang mendukung

tegangan operasi 7–24volt DC, serta fitur proteksi terhadap arus lebih,

tegangan berlebih, dan suhu berlebih, yang menjadikannya andal digunakan

untuk aplikasi robotika jangka panjang.

Keunggulan utama OpenCR terletak pada sifatnya yang sepenuhnya

terbuka, baik dari sisi perangkat keras, perangkat lunak, maupun, sehingga

pengguna dapat memodifikasi sistem sesuai kebutuhan riset atau proyek.

Selain itu, OpenCR memiliki kompatibilitas tinggi dengan berbagai

platform robot ROBOTIS seperti TurtleBot3 dan Arm OpenManipulator.

Dalam sistem Arm OpenManipulator, OpenCR berperan sebagai pengendali

utama yang menyalurkan perintah gerak dari sistem kendali eksternal

menuju motor DYNAMIXEL pada tiap sendi manipulator. Melalui

komunikasi berbasis ROS, komputer pengendali mengirimkan perintah

lintasan atau posisi (joint trajectory) ke OpenCR melalui jalur komunikasi

USB atau serial. Selanjutnya, OpenCR mengubah perintah tersebut menjadi

sinyal kontrol untuk mengatur profil kecepatan dan posisi setiap motor,

sehingga lengan manipulator dapat bergerak sesuai lintasan yang diinginkan

secara halus dan presisi.

Penggunaan OpenCR dalam sistem Arm OpenManipulator memiliki

keunggulan dibandingkan penggunaan antarmuka lain seperti U2D2, karena

OpenCR tidak hanya berfungsi sebagai penghubung komunikasi, tetapi juga

sebagai pengendali aktif yang mampu menjalankan perintah dan melakukan

proses kendali langsung pada tingkat perangkat keras. Hal ini menjadikan

sistem lebih efisien dan responsif, serta mengurangi ketergantungan pada

komputer utama. OpenCR juga memungkinkan integrasi dengan berbagai

sensor tambahan tanpa memerlukan modul konversi eksternal, sehingga

lebih fleksibel untuk pengembangan sistem robotika yang kompleks.

Beberapa penelitian telah memanfaatkan OpenCR sebagai

pengendali utama dalam sistem robotik berbasis ROS. OpenCR secara

17

resmi menyatakan bahwa ROS kompatibel dijalankan pada OpenCR

contohnya pada penelitian dengan judul “Navigation and Task Planning of

a Mobile Robot under ROS Environment: A Case Study Using AutoRace

Challenge”(Shen et al., 2021) yang menggunakan platform TurtleBot3 pada

OpenCR untuk mengikuti tantangan AutoRace, robot harus mengenali jalur

dan mencapai tujuan secepat mungkin dengan kesalahan yang minim,

dengan memanfaatkan kamera dan sensor LiDAR 2D untuk navigasi dan

penerapan algoritma pengolahan citra dengan deep learning menghasilkan

robot yang mampu menyelesaikan misi dalam waktu 2-3 menit secara stabil.

Secara keseluruhan, OpenCR merupakan komponen penting dalam

ekosistem robotika modern. Kombinasi antara kemampuan pengolahan

sinyal yang cepat, fleksibilitas pemrograman, dan kompatibilitas tinggi

terhadap aktuator DYNAMIXEL menjadikan OpenCR sangat ideal

digunakan pada platform Arm OpenManipulator. Dukungan penuh terhadap

ekosistem open-source juga memberikan peluang luas bagi peneliti dan

pengembang untuk melakukan inovasi dalam sistem kendali robotika, baik

pada tingkat pendidikan, penelitian, maupun industri.

2.5 OpenManipulator-X

OpenManipulator-X merupakan salah satu platform robot

manipulator open-source yang dikembangkan oleh robotis dengan tujuan

mendukung kegiatan riset, pendidikan, serta pengembangan teknologi di

bidang robotika. Robot ini dirancang untuk meniru pergerakan lengan

manusia dengan beberapa derajat kebebasan (degree of freedom, DoF),

sehingga mampu melakukan berbagai tugas seperti memindahkan,

memegang, dan mengatur posisi objek secara otomatis. Keunggulan utama

OpenManipulator terletak pada sifatnya yang modular dan terbuka, baik

dari sisi perangkat keras maupun perangkat lunak, yang memungkinkan

pengguna untuk memodifikasi, menambah, atau mengganti bagian-bagian

tertentu sesuai kebutuhan penelitian.

18

Gambar 2. 4 OpenManipulator-X

Gambar 2.4 OpenManipulator-X menunjukan salah satu versi dari

OpenManipulator yang paling banyak digunakan adalah OpenManipulator-

X (RM-X52-TNM). Versi ini memiliki empat sendi utama dan satu gripper,

sehingga total lima derajat kebebasan yang dapat dikontrol. Masing-masing

sendi digerakkan oleh motor DYNAMIXEL X-Series, yaitu aktuator pintar

yang memiliki kemampuan feedback posisi, kecepatan, dan torsi melalui

komunikasi serial berbasis TTL atau RS-485. Struktur mekaniknya dapat

dimodifikasi menggunakan komponen 3D printing, menjadikan sistem ini

fleksibel untuk berbagai eksperimen kinematika dan kontrol gerak.

19

Gambar 2. 5 Spesifikasi OpenManipulator-X

Gambar 2.5 menunjukkan Spesifikasi OpenManipulator-X

memperlihatkan rincian teknis dari robot lengan OpenManipulator-X yang

digunakan pada penelitian ini. Robot ini menggunakan aktuator Dynamixel

XM430-W350-T sebagai penggerak utamanya, dengan sumber tegangan

kerja sebesar 12 volt. OpenManipulator-X memiliki 5 derajat kebebasan (4

DOF untuk sendi dan 1 DOF untuk gripper), serta mampu mengangkat

beban hingga 500 gram. Dari sisi presisi gerak, robot ini memiliki tingkat

pengulangan posisi kurang dari 0,2 mm, dengan kecepatan rotasi sendi

mencapai 46 RPM. Berat keseluruhan robot sekitar 0,7 kg dengan

jangkauan kerja mencapai 380 mm. Gripper yang digunakan memiliki

rentang bukaan antara 20 hingga 75 mm, sehingga dapat menyesuaikan

dengan berbagai ukuran objek. Sistem komunikasinya menggunakan TTL

Level Multidrop BUS, sementara pengendalian dan pemrograman didukung

oleh ROS (Robot Operating System), Dynamixel SDK, Arduino, serta

Processing. Robot ini dapat dikontrol menggunakan PC maupun

20

mikrokontroler OpenCR, menjadikannya fleksibel untuk berbagai aplikasi

penelitian, pengembangan, maupun integrasi dengan sistem penglihatan

komputer.

Contoh nyata penerapan OpenCR pada sistem OpenManipulator

dapat ditemukan dalam proyek Camera-based Augmented Reality

Endoscope Auxiliary System (Wang, 2021), di mana OpenCR digunakan

sebagai penghubung antara komputer dan aktuator DYNAMIXEL pada

OpenManipulator-X. Pada penelitian tersebut, OpenCR berfungsi sebagai

pengendali utama yang menerima perintah gerak dari ROS dan

meneruskannya ke motor, sekaligus menyediakan suplai daya serta

mengolah data kinematika. Sistem ini berhasil mengendalikan posisi end-

effector robot dengan ketelitian tinggi dan latensi kendali yang rendah,

menunjukkan bahwa integrasi OpenManipulator dan OpenCR efektif untuk

aplikasi medis berbasis real-time control.

Selain menggunakan OpenCR, sistem OpenManipulator juga dapat

dikendalikan menggunakan U2D2, yaitu perangkat konverter USB-to-

TTL/RS-485 yang dikembangkan oleh robotis untuk komunikasi langsung

antara komputer dan motor DYNAMIXEL tanpa mikrokontroler tambahan.

Dalam konfigurasi ini, komputer (atau laptop) menjalankan seluruh proses

perencanaan gerak, komputasi kinematika, serta pengiriman perintah

melalui ROS. U2D2 hanya berfungsi sebagai antarmuka komunikasi fisik

antara PC dan jaringan motor, sehingga cocok untuk penelitian atau

pembelajaran yang berfokus pada pemrograman dan simulasi berbasis

komputer. Beberapa penelitian, seperti yang dilakukan oleh (Winarta et al.,

2024) dalam “Rancang Bangun Pengontrol Gerakan Robot

OpenManipulator dengan MATLAB”, menggunakan U2D2 untuk

menghubungkan OpenManipulator dengan MATLAB dan berhasil

menunjukkan bahwa sistem mampu mengikuti posisi target dengan akurasi

tinggi.

21

Gambar 2. 6 Desain dan Dimensi OpenManipulator-X

Gambar 2.6 menunjukkan desain dan dimensi struktural dari robot

Arm OpenManipulator-X. Setiap bagian pada gambar merepresentasikan

panjang segmen lengan (link) dan posisi sambungan (joint) yang

membentuk keseluruhan konfigurasi robot. Ukuran setiap link ditunjukkan

dalam satuan meter, seperti 0.077 m, 0.128 m, 0.130 m, 0.124 m, dan 0.205

m, yang menggambarkan jarak antar sumbu rotasi maupun ukuran

komponen utama. Informasi ini sangat penting dalam analisis kinematika

dan dinamika, karena menjadi dasar dalam menentukan jangkauan gerak

(workspace) serta posisi end-effector. Selain itu, tampak pula bagian gripper

pada ujung lengan yang berfungsi untuk mengripper atau memegang objek,

yang juga memiliki ukuran spesifik agar sesuai dengan tugas manipulasi

yang diinginkan.

Secara keseluruhan, OpenManipulator-X memiliki keunggulan

dalam hal fleksibilitas, modularitas, dan dukungan sistem terbuka.

Kombinasi antara aktuator DYNAMIXEL, komunikasi berbasis ROS, serta

kemampuan integrasi dengan OpenCR maupun U2D2 menjadikan

OpenManipulator-X ini sangat cocok untuk berbagai keperluan riset dan

pendidikan. Dalam konteks penelitian modern, OpenManipulator-X tidak

hanya digunakan untuk studi kontrol dan kinematika, tetapi juga untuk

pengembangan sistem berbasis kecerdasan buatan, pengenalan visual, dan

22

otomasi cerdas termasuk aplikasi seperti penyortiran objek berdasarkan

citra atau robot kolaboratif yang berinteraksi langsung dengan manusia.

2.6 Dynamixel XM430-W350-T

Dynamixel XM430-W350-T merupakan salah satu jenis servo

motor cerdas (smart actuator) yang dikembangkan oleh Robotis, dan

banyak digunakan dalam berbagai aplikasi robotika, termasuk pada sistem

OpenManipulator-X. Modul ini dirancang untuk memberikan performa

tinggi dengan presisi gerak yang baik serta fleksibilitas dalam pengendalian

posisi, kecepatan, dan torsi. Berbeda dari motor servo konvensional,

Dynamixel XM430 dilengkapi dengan mikrokontroler internal, sensor

posisi absolut berbasis encoder, dan sistem komunikasi digital, sehingga

memungkinkan proses kendali dan monitoring dilakukan secara langsung

melalui jaringan komunikasi TTL atau RS-485, tergantung pada variannya.

Gambar 2. 7 DYNAMIXEL-X

 Gambar 2.7 diatas merupakan DYNAMIXEL-X, Dynamixel

XM430-W350-T memiliki torsi maksimum mencapai sekitar 4,1 N·m pada

tegangan 12 V dan kecepatan hingga 46 rpm, menjadikannya cocok untuk

digunakan pada aplikasi yang membutuhkan kekuatan dan ketepatan gerak,

seperti lengan robot atau sistem aktuasi berderajat kebebasan tinggi. Selain

itu, motor ini mendukung pengendalian multi-turn, yang memungkinkan

rotasi lebih dari satu putaran penuh dengan akurasi tinggi, sehingga

memperluas fleksibilitas gerak manipulator.

23

Kelebihan utama dari XM430 terletak pada fitur PID control

terintegrasi, kompensasi suhu, perlindungan arus lebih, serta kemampuan

untuk mengirimkan data umpan balik seperti suhu, tegangan, posisi, dan

kecepatan secara real-time. Hal ini membuat aktuator ini sangat efisien

untuk sistem yang memerlukan kontrol tertutup (closed-loop control).

Casing motor yang terbuat dari aluminium alloy juga membantu menjaga

kestabilan termal dan kekuatan mekanis selama operasi berulang dalam

waktu lama.

2.7 Mikrokomputer

Mikrokomputer merupakan perangkat komputasi berukuran kecil

yang memiliki prosesor, memori, dan sistem input output yang

memungkinkan perangkat ini bekerja secara mandiri. Perangkat ini pada

dasarnya memiliki fungsi sama seperti komputer pada umumnya, hanya saja

dengan ukuran yang lebih ringkas dan sumber daya yang lebih efisien.

Mikrokomputer banyak digunakan untuk keperluan sistem tertanam

(embedded system), kontrol otomatis, serta penelitian di bidang robotika

karena kemampuannya dalam menjalankan program secara stabil dan hemat

daya.

Dalam sistem robotika, mikrokomputer sering berfungsi sebagai

otak utama yang memproses data dari berbagai sensor dan mengirimkan

perintah ke aktuator atau mikrokontroler. Beberapa jenis mikrokomputer

yang cukup populer digunakan di bidang ini adalah Raspberry Pi, NVIDIA

Jetson, dan LattePanda. Perangkat tersebut umumnya mendukung sistem

operasi Linux dan kompatibel dengan Robot Operating System (ROS),

sehingga mudah diintegrasikan dengan berbagai modul dan platform

robotik seperti Arm OpenManipulator.

Selain digunakan secara mandiri, mikrokomputer juga sering

dipasangkan dengan mikrokontroler, seperti OpenCR, untuk membentuk

sistem kendali dua tingkat sehingga mikrokomputer menangani tugas-tugas

berat seperti perhitungan kinematika, pemrosesan data kamera, atau

algoritma kecerdasan buatan, sementara mikrokontroler fokus pada kendali

24

motor dan sensor secara langsung. Dengan pembagian tugas seperti ini,

sistem menjadi lebih efisien dan responsif dalam mengendalikan gerakan

robot.

Salah satu contoh penerapan mikrokomputer dalam penelitian

robotika adalah penelitian oleh (Xu, 2018) berjudul Remote Control and

Monitoring System of Robotic Arm Using Raspberry Pi. Dalam penelitian

tersebut, Raspberry Pi sebagai inti pengendali untuk melakukan perintah

secara remote. Hasil pengujian menunjukkan bahwa sistem ini mampu

mengirimkan perintah kendali dan mentransmisikan gambar dengan andal,

serta memungkinkan robot melakukan berbagai tugas kompleks dengan

stabil dan akurat. Sehingga dapat disimpulkan mikrokomputer memiliki

peran yang sangat penting dalam pengembangan robot modern.

Kemampuannya dalam melakukan pemrosesan data secara cepat,

mendukung berbagai bahasa pemrograman, serta kemudahan integrasi

dengan sistem komunikasi membuat perangkat ini menjadi pilihan utama

dalam riset dan implementasi sistem robotik berbasis ROS.

2.8 Jetson Nano

Jetson Nano merupakan salah satu mikrokomputer yang

dikembangkan oleh NVIDIA dan dirancang khusus untuk aplikasi berbasis

kecerdasan buatan (AI) serta komputasi visual. Perangkat ini dilengkapi

dengan prosesor quad-core ARM Cortex-A57 dan GPU NVIDIA Maxwell

dengan 128 CUDA cores, yang menjadikannya mampu menjalankan

pemrosesan paralel secara efisien. Dengan spesifikasi tersebut, Jetson Nano

tidak hanya mampu menjalankan sistem operasi linux, tetapi juga

mendukung berbagai framework pembelajaran mesin seperti TensorFlow,

PyTorch, dan OpenCV, sehingga sangat cocok digunakan untuk penelitian

di bidang robotika, visi komputer, dan sistem otonom.

25

Gambar 2. 8 Jetson Nano

Gambar 2.8 menunjukan mikrokomputer Jetson Nano, dalam

konteks robotika, Jetson Nano berperan sebagai pengendali utama yang

menangani proses komputasi berat, seperti deteksi objek, pengenalan wajah,

navigasi visual, dan perencanaan lintasan. Kemampuan GPU-nya membuat

Jetson Nano mampu memproses data gambar atau video secara real-time,

sesuatu yang sulit dicapai jika hanya menggunakan mikrokontroler

konvensional. Selain itu, perangkat ini juga kompatibel dengan Robot

Operating System (ROS), yang memungkinkan integrasi langsung dengan

berbagai perangkat robotik seperti Arm OpenManipulator, TurtleBot3,

maupun sistem sensor eksternal.

Dalam beberapa penelitian, Jetson Nano sering digunakan sebagai

bagian dari sistem kendali dan bertugas menjalankan algoritma pengolahan

data dan pengambilan keputusan, dan mengirimkan hasil ke robot Arm.

Salah satu penelitian Jetson Nano yang berhubungan dengan robotika

berjudul Robot intelligent grasping experimental platform combining

Jetson Nano and machine vision (Bao et al., 2022). Pada penelitian tersebut,

Jetson Nano digunakan untuk memproses machine vision untuk

memindahkan objek secara otomatis, Penelitian ini berhasil membangun

sistem robot manipulator berbasis Jetson Nano dengan kemampuan deteksi

warna dan pengambilan objek otomatis menggunakan machine vision

26

berbasis dengan metode pengolahan citra dasar. Hasil uji menunjukkan

sistem sangat akurat dan efisien (100% deteksi warna dan 96% efisiensi

grasping), dengan waktu deteksi di bawah 5 detik.

2.9 Machine Learning

Machine learning atau pembelajaran mesin adalah cabang dari

kecerdasan buatan (Artificial Intelligence/AI) yang berfokus pada

kemampuan sistem untuk belajar dari data dan membuat keputusan tanpa

harus diprogram secara eksplisit. Konsep dasarnya adalah bagaimana

komputer dapat mengenali pola dari sejumlah data, kemudian menggunakan

pola tersebut untuk mengklasifikasi atau mengambil keputusan pada data

baru. Dalam konteks teknologi moderen, machine learning banyak

digunakan pada berbagai bidang seperti pengenalan wajah, klasifikasi citra,

analisis suara, serta sistem rekomendasi.

Dalam bidang robotika, machine learning berperan penting untuk

meningkatkan kemampuan adaptasi dan kecerdasan robot. Melalui

penerapan algoritma pembelajaran, robot dapat memahami lingkungan

sekitarnya, mengenali objek, serta menyesuaikan tindakan berdasarkan

pengalaman atau data yang telah dikumpulkan. Salah satu contoh penerapan

yang umum adalah pada sistem visi komputer (computer vision), biasanya

robot dilatih untuk membedakan bentuk, warna, atau kondisi suatu objek,

misalnya dalam proses penyortiran buah atau deteksi cacat produk di

industri manufaktur.

Machine learning terbagi menjadi tiga jenis utama, yaitu supervised

learning, unsupervised learning, dan reinforcement learning. Supervised

learning digunakan ketika data yang digunakan memiliki label atau

kategori, misalnya dalam klasifikasi gambar sehat dan tidak sehat.

Unsupervised learning digunakan untuk menemukan pola atau kelompok

dalam data tanpa label, sedangkan reinforcement learning berfokus pada

proses pembelajaran berbasis umpan balik dari lingkungan, misalnya robot

yang belajar mengambil keputusan untuk mencapai tujuan tertentu.

Beberapa algoritma yang sering digunakan dalam machine learning antara

27

lain Convolutional Neural Network (CNN), Decision Tree, Support Vector

Machine (SVM), dan K-Nearest Neighbor (KNN). Masing-masing

algoritma memiliki kelebihan tersendiri tergantung pada jenis data dan

tujuan analisis. Contohnya, penelitian dengan judul “Penerapan Metode

Decision Tree Untuk Mengklasifikasikan Mutu Buah Jeruk Berdasarkan

Fitur Warna Dan Ukuran” (Robianto et al., 2021) menunjukkan bahwa

metode Decision Tree mampu mengklasifikasikan kondisi buah dengan

tingkat akurasi lebih dari 92%. Hasil tersebut membuktikan bahwa

penerapan machine learning sangat membantu dalam proses otomasi

berbasis visual, khususnya dalam sistem penyortiran otomatis.

Convolutional Neural Network (CNN) adalah salah satu metode

dalam deep learning yang banyak digunakan untuk mengenali dan

mengolah gambar. CNN bekerja dengan mengenali pola visual, seperti

bentuk, warna, dan tekstur. Metode ini terdiri dari beberapa lapisan yang

bertugas mengenali ciri-ciri penting dari gambar hingga menghasilkan hasil

akhir berupa klasifikasi atau pengenalan objek. Proses pelatihannya

dilakukan dengan memberikan banyak contoh gambar yang sudah diberi

label agar sistem dapat belajar mengenali perbedaan antar objek. CNN

dikenal memiliki akurasi tinggi dalam mendeteksi dan mengklasifikasi

gambar, namun membutuhkan data dan sumber daya komputasi yang besar.

Memiliki empat lapisan utama, pertama ada Convolutional Layers

merupakan lapisan yang menerapkan operasi konvolusi pada citra input

menggunakan filter atau kernel untuk mendeteksi fitur tepi, tekstur dan pola

yang lebih kompleks. Convolutional Layers ini membantu mempertahankan

hubungan spasial antar piksel. Selanjutnya ada Pooling Layers merupakan

lapisan yang melakukan downsampling terhadap dimensi spasial dari

masukan sehingga mengurangi kompleksitas komputasi dan jumlah

parameter dalam jaringan. Max pooling merupakan operasi pooling yang

paling umum digunakan (nilai maksimum dari sekelompok piksel tetangga

dipilih). Layer selanjutnya adalah Activation Functions fungsi ini

memeperkenalkan non-linearitas ke dalam model, sehingga memungkinkan

jaringan untuk mempelajari hubungan yang lebih kompleks dalam data.

28

Lapisan terakhir adalah Fully Connected Layers merupakan lapisan yang

bertanggung jawab dalam membuat klasifikasi berdasarkan fitur Tingkat

tinggi yang telah dipelajari oleh lapisan-lapisan sebelumnya, setiap neuron

pada lapisan ini terhubung dengan setiap neuron pada lapisan berikutnya.

Cara dasar Convolutional Neural Network (CNN) bekerja umumnya

dibagi menjadi 5 tahap, tahap pertama merupakan Input Image disini

Convolutional Neural Network (CNN) menerima sebuah gambar sebagai

masukan, biasanya ukuran pada gambar diubah menjadi 224x224 piksel dan

dikonversi formatnya (misal dari RGB ke bentuk numerik) agar model bisa

memprosesnya secara konsisten. Tahap kedua merupakan Convolutional

Layers, lapisan ini menggunakan filter(kernel) untuk memindai gambar dan

mengekstraksi ciri-ciri penting seperti tepi, bentuk, atau tekstur, setiap

filternya bisa mendeteksi pola tertentu di gambar misalnya satu filter

mendeteksi tepi horizontal filter yang lain mendeteksi warna, dll sehingga

hasilnya disebut feature map.

Tahap ketiga merupakan Pooling Layers, lapisan ini mengecilkan

ukuran peta fitur (downsampling) untuk mengurangi jumlah data yang harus

diproses, resiko overtfitting dan mempertahankan fitur yang paling penting

biasanya menggunakan max pooling (hanya mengambil nilai maksimum

dari area kecil misalnya 2x2 piksel). Tahap keempat merupakan Fully

Connected Layers, setelah fitur penting berhasil diekstraksi dan diperkecil,

hasilnya diratakan menjadi satu vector panjang dan dikirim ke lapisan

terhubung penuh, setiap neuron terhubung dengan neuron di lapisan

berikutnya, jaringan mempelajari hubungan antar fitur dan membuat

keputusan akhir (mengenali objek dalam gambar). Tahap terakhir

merupakan Output, lapisan ini menghasilkan klasifikasi akhir misalnya

label kelas seperti jeruk sehat dan tidak sehat atau nilai probabilitas untuk

setiap kelasnya.

Gambar 2. 9 Proses pelatihan CNN

29

Gambar 2.9 Proses pelatihan CNN menunjukan 4 tahap proses

pelatihan dari metode CNN. Dimulai dari Data preparation pada tahap awal

seluruh gambar dipersiapkan agar seragam misalnya diubah ke ukuran dan

format yang sama, kadang dilakukan normalisasi nilai piksel (dari 0-255

menjadi 0-1), atau dilakukan data augmentation misalnya rotasi, flipping,

dll agar model tidak mudah overfitiing. Tahap selanjutnya merupakan Loss

Function yang digunakan untuk mengukur seberapa baik CNN

mengklasifikasi hasil yang benar, jika klasifikasi model berbeda jauh dari

label aslinya, maka nilai loss akan besar, tujuan pelatihan ini adalah

meminimalkan nilai loss tersebut. Tahapan ketiga optimizer merupakan

tahapan yang bertugas untuk memperbarui bobot darti jaringan agar nilai

loss semakin kecil, menentukan arah dan seberapa besar perubahan bobot

tiap iterasi berdasarkan nilai loss yang dihitung sebelumnya contoh

optimizer yang umum digunakan adalah Stochastic Gradient Descent

(SGD), Adam dan RMSprop. Tahapan terakhir yaitu Backpropagation

merupakan teknik yang digunakan untuk menghitung gradien dari fungsi

kerugian (loss function) terhadap bobot-bobot (weights) pada CNN. Nilai

gradien tersebut kemudian digunakan oleh optimizer untuk memperbarui

bobot-bobot CNN agar hasil klasifikasi menjadi semakin akurat.

Efisiensi dari CNN dapat dievaluasi menjadi beberapa kriteria.

Pertama, akurasi adalah presentase seberapa tepat CNN mengklasifikasi

gambar uji dengan rumus

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

Kedua , presisi adalah presentase gambar uji yang diklasifikasi oleh

CNN sebagai kelas tertentu dan benar termasuk dalam kelas tersebut dengan

rumus

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

30

Ketiga, recall adalah presentase gambar uji yang sebenarnya,

termasuk dalam suatu kelas dan berhasil diklasifikasi oleh CNN dengan

rumus

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

Terakhir, f1score adalah rata-rata hArmonik dari presisi dan recall.

Metrik ini baik digunakan untuk mengevaluasi kerja CNN terutama ketika

jumlah data antar kelas tidak seimbang dengan rumus

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

 Fitur yang sering digunakan untuk evaluasi adalah tabel confusion

matrix, tabel ini membandingkan hasil klasifikasi model dengan label

sebenarnya dari data uji. Dalam pengembangan sistem robotik modern,

machine learning sering digabungkan dengan platform seperti Jetson Nano

atau Raspberry Pi untuk melakukan pemrosesan data secara langsung.

Kombinasi antara kemampuan komputasi dari perangkat tersebut dengan

algoritma pembelajaran mesin memungkinkan robot bekerja secara cerdas

dan mandiri, misalnya mengenali objek yang akan diambil oleh Arm

OpenManipulator-X atau menentukan tindakan berdasarkan kondisi

lingkungan sekitar. Perkembangan ini membuat machine learning menjadi

salah satu komponen penting dalam pengembangan sistem robotik berbasis

kecerdasan buatan.

Gambar 2. 10 Arsitektur MobileNetV2

31

Gambar 2.10 menunjukan Arsitektur MobileNetV2 yang digunakan

pada penelitian ini dirancang untuk melakukan proses ekstraksi fitur dan

klasifikasi citra jeruk berdasarkan kondisi sehat dan tidak sehat. Struktur

jaringan terdiri dari beberapa lapisan utama yang saling terhubung, di mana

setiap lapisan memiliki fungsi tertentu dalam proses pembelajaran fitur

visual. Rancangan arsitektur CNN yang digunakan dalam penelitian ini

ditunjukkan pada tabel 3.1

Tabel 3. 1 Jenis dan Fungsi Layer pada MobilenetV2

Jenis Layer Fungsi

Prepocessing Normalisasi nilai piksel agar berada

dalam rentang tertentu (biasanya 0-1)

sehingga proses training lebih stabil

dan cepat konvergen

Convolution Layer (3x3 Conv) Ekstraksi fitur dan citra dengan

mengalikan kernel/filter berukuran 3x3

terhadap area lokal pada citra

ReLU Activation Menambahkan non-linearitas pada

jaringan dengan memotong nilai

negatif menjadi 0 agar model dapat

mempelajari fitur kompleks

Max Pooling Mengurangi dimensi fitur dengan

memilih nilai maksimum pada setiap

jendela 2x2 untuk mempertahankan

fitur dominan

Fully Connected Layer Menghubungkan seluruh neuron dari

lapisan sebelumnya unuk melakukan

pengambilan keputusan berdasarkan

fitur yang telah diekstraksi

Softmax Layer (Output) Mengubah skor keluaran menjadi nilai

probabilitas antar kelas, di mana

jumlah total probabilitas sama dengan

1.

Tabel 3.1 menunjukan jenis layer yang digunakan pada arsitektur

MobileNetV2 yang rangkanya terletak pada gambar 2.10 Setiap layer

memiliki fungsi dan rumus matematis yang menggambarkan proses

pengolahan citra dari tahap awal hingga menghasilkan output klasifikasi.

Proses dimulai dari tahap preprocessing, yaitu normalisasi nilai piksel agar

jaringan dapat belajar secara lebih stabil. Selanjutnya, convolution layer

(3×3 Conv) berfungsi untuk mengekstraksi fitur penting dari citra melalui

operasi konvolusi antara kernel dan citra masukan. Hasil konvolusi

32

kemudian diproses oleh fungsi aktivasi ReLU untuk menambahkan non-

linearitas dan menghilangkan nilai negatif yang tidak relevan lalu dilakukan

max pooling 2×2, yang bertujuan untuk mengurangi ukuran citra

(downsampling) dengan tetap mempertahankan fitur paling dominan.

Setelah fitur-fitur diekstraksi dan direduksi, hasilnya diratakan (flatten) dan

masuk ke dalam fully connected layer, di mana seluruh neuron saling

terhubung untuk menggabungkan informasi fitur menjadi representasi yang

lebih bermakna. Terakhir, softmax layer digunakan sebagai lapisan keluaran

untuk mengubah nilai aktivasi menjadi probabilitas antar kelas, sehingga

jaringan dapat menentukan kelas dengan probabilitas tertinggi sebagai hasil

klasifikasi.

𝐼′(𝑥, 𝑦, 𝑐) =
𝐼(𝑥, 𝑦, 𝑐)

255
 (5)

a. I(x,y,c) = Intensitas piksel pada posisi (x,y) dan kanal warna c

b. I’(x,y,c) = Hasil normalisasi

Rumus (5) merupakan rumus normalisasi pada MobileNetV2. Proses

mengubah nilai intensitas piksel gambar dari rentang asli 0–255 menjadi

rentang 0–1

𝑍𝑖, 𝑗, 𝑘 = ∑ ∑ ∑ 𝑊𝑚, 𝑛, 𝑐, 𝑘 ∙ 𝑋𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐 + 𝑏𝑘

𝐶−1

𝑐=0

2

𝑛=0

2

𝑚=0

 (6)

a. X = Input feature map

b. W = Bobot filter ukuran 3x3

c. Bk = Bias untuk filter ke-k

d. Zi,j,k = Output ke-k pada posisi (i,j)

Rumus (6) merupakan proses ekstraksi fitur gambar. Rumus ini menghitung

jumlah perkalian antara nilai piksel input (X) dengan bobot filter (W)

ditambah bias (b) untuk menghasilkan feature map baru.

𝑓(𝑥) = max(0, 𝑥) (7)

33

Rumus (7) berfungsi untuk menambahkan non-linearitas. Rumus ini

menyaring nilai negatif menjadi 0 dan membiarkan nilai positif tetap,

sehingga mempercepat komputasi tanpa menghilangkan informasi penting.

𝑍𝑗 = ∑ 𝑊𝑖𝑗𝑋𝑖 + 𝑏𝑗

𝑛

𝑖=1

(8)

Rumus (8) merupakan tahap klasifikasi di mana data fitur yang sudah

didatarkan dikalikan dengan bobot (W) dan ditambah bias (b). Ini adalah

proses menyusun keputusan sebelum masuk ke output akhir.

𝑃(𝑦 = 𝑗|𝑥) =
𝑒 𝑧𝑗

∑ 𝑒𝑧𝑘𝐶
𝑘=1

 (9)

 Rumus (9) merupakan lapisan output terakhir yang mengubah hasil

perhitungan angka menjadi nilai probabilitas. Nilai probabilitas tertinggi

menentukan hasil prediksi akhir (apakah Jeruk Sehat atau Tidak Sehat).

2.10 Penelitian Terdahulu

Bagian ini membahas beberapa hasil penelitian terdahulu yang relevan

dan dapat dijadikan sebagai dasar acuan dalam topik penelitian ini.

Penelitian-penelitian tersebut telah dipilih secara selektif agar sesuai dengan

fokus kajian yang diangkat, sehingga diharapkan dapat memberikan

gambaran yang lebih jelas serta menjadi referensi pendukung dalam

penyusunan dan penyelesaian penelitian ini. Berikut disajikan uraian

mengenai beberapa penelitian terdahulu yang menjadi rujukan.

Penelitian pertama, oleh Oki Saputra (2024) berjudul Uji Kinerja

Sistem Kontrol Gripper pada Robot Lengan untuk Pemetikan Tomat.

Penelitian ini meyakini bahwa inovasi dibutuhkan untuk peningkatan

efisiensi dalam pertanian salah satunya berupa pengenalan teknologi

robotiika dalam pertanian yang memudahkan pekerjaan di lapangan. Metode

yang dilakukan adalah metode eksperimental sehingga langkah-langkah

eksperimen melibatkan peran lengan robot yang dilengkapi dengan gripper.

Hasilnya gripper pada lengan dapat beroprasi secara efektif mencapai

presentase keberhasilan 100% dan dapat diandalkan untuk pengembangan

robotika bidang pertanian.

34

Penelitian kedua, oleh Muhammad Alif (2025) yang berjudul

Pengendalian Gerakan Robot OpenManipulator Untuk Operasi Pemindahan

Barang Berbasis MATLAB. Penelitian ini bertujuan untuk mengontrol

kecepatan dan mengatur sinkronasi gerakan servo agar bisa memindahkan

objek (tabung kimia) dari suatu titik ke titik lain sesuai gerakan robot industri

sehingga jika terdapat bahan kimia yang berbahaya bagi manusia dapat

digantikan oleh robot. Hasil dari penilitian ini menyatakan bahwa prototipe

robot Arm sudah berhasil memindahkan objek ke satu titik ke titik lain tetapi

masih pada dua titik terdekat dan pergerakannya tidak teratur sehingga dapat

membuat objek jatuh.

Penelitian ketiga, berjudul Automated fruit sorting system integrating

image processing and support vector machine techniques (Oyefeso et al.,

2025). Penelitian ini membahas sistem sortir buah otomatis (jeruk, tomat, dan

mangga) menggunakan kamera ESP32-CAM, pengolahan citra, dan

algoritma SVM untuk klasifikasi. Hasilnya menunjukkan tingkat akurasi

hingga 100%, dengan sistem mampu menyortir buah secara fisik ke wadah

berbeda sesuai hasil klasifikasi. Penelitian ini menunjukkan bahwa kombinasi

machine learning dan image processing efektif meningkatkan efisiensi dan

akurasi penyortiran buah.

Penelitian keempat, dengan judul CNN-MLP-Based Configurable

Robotic Arm for Smart Agriculture (Li et al., 2024) menjelaskan bahwa di

tengah meningkatnya populasi global dan berkurangnya lahan pertanian yang

dapat digarap, peningkatan produktivitas dan keberlanjutan di bidang

pertanian menjadi sangat penting. Untuk mengatasi ketidakefisienan sistem

pertanian tradisional yang kesulitan memenuhi kebutuhan produksi skala

besar, penelitian tersebut memperkenalkan sistem Configurable Agricultural

Robotic Arm (CARA), yang dirancang menggunakan Convolutional Neural

Network (CNN) dan Multilayer Perceptron (MLP). Sistem ini

mengintegrasikan lengan robot fleksibel, modul akuisisi citra, dan pusat

pemrosesan berbasis kecerdasan buatan, guna mendukung berbagai tugas

pertanian dengan presisi tinggi seperti pemanenan, penyemprotan pestisida,

dan inspeksi tanaman. Hasil pengujian menunjukkan sistem mampu

35

meningkatkan efisiensi operasional, beradaptasi dengan baik terhadap

berbagai kondisi pertanian, serta memperkuat presisi dan keberlanjutan

praktik pertanian.

36

BAB III

ANALISIS DAN PERANCANGAN SISTEM

3.1 Tahapan Penelitian

Pada bagian ini dijelaskan tahapan-tahapan penelitian yang dilakukan untuk

mencapai tujuan penelitian. Setiap tahapan disusun agar proses penelitian dapat

berjalan dengan baik dan menghasilkan data yang valid sesuai dengan

permasalahan yang diteliti.

Gambar 3. 1 Diagram alir tahapan penelitian

37

Gambar 3.1 memperlihatkan tahapan penelitian yang dilakukan dalam

perancangan dan implementasi sistem penyortiran buah jeruk menggunakan robot

Arm OpenManipulator berbasis Jetson Nano dan OpenCR. Pada tahap identifikasi

masalah, diketahui bahwa proses penyortiran buah jeruk secara manual masih

kurang efisien dan rentan terhadap kesalahan penilaian kualitas. Oleh karena itu,

diperlukan sebuah sistem otomatis yang mampu membantu proses tersebut agar

lebih cepat dan konsisten. Berdasarkan hasil identifikasi ini, dilakukan analisis

kebutuhan untuk menentukan komponen perangkat keras dan perangkat lunak yang

diperlukan. Proses ini diawali dengan pencarian berbagai sumber dan hasil

penelitian sebelumnya yang membahas penerapan machine learning dan

penggunaan robot Arm dalam penyortiran objek. Selanjutnya, dilakukan

perancangan serta pembuatan program yang meliputi pelatihan model klasifikasi

kualitas buah pada Jetson Nano dan pengendalian gerakan robot Arm melalui

OpenCR. Dilakukan uji awal terhadap program guna memastikan bahwa

pergerakan robot berfungsi sebagaimana mestinya. Jika hasil uji belum sesuai,

dilakukan penyesuaian hingga sistem bekerja dengan baik. Setelah tahap tersebut

berhasil, dilakukan tahapan untuk implementasi machine learning-nya. Hasil uji ini

digunakan untuk menilai akurasi dan kinerja sistem serta menjadi dasar dalam

penarikan kesimpulan penelitian.

Gambar 3. 2 ID Servo

Gambar 3.2 ID Servo menunjukan posisi serta penomoran masing-masing

motor servo yang digunakan pada robot Arm OpenManipulator. Setiap servo

memiliki ID yang berbeda-beda, dimulai dari bagian pangkal hingga ke ujung

gripper, sehingga memudahkan proses identifikasi dan pengendalian setiap sendi

secara terpisah. Pemberian ID ini sangat penting karena sistem pengendalian pada

Arm OpenManipulator berbasis komunikasi digital melalui protokol Dynamixel, di

mana setiap perintah yang dikirim dari mikrokontroler akan diterima hanya oleh

38

servo dengan ID yang sesuai. Dengan demikian, koordinasi antar-sumbu gerak

dapat dilakukan secara sinkron dan presisi sesuai perintah yang diberikan melalui

perangkat lunak pengendali. Selain itu, penomoran ID juga membantu dalam proses

kalibrasi dan pemrograman gerakan, karena pengguna dapat dengan mudah

mengetahui servo mana yang bertanggung jawab terhadap pergerakan tertentu,

misalnya rotasi dasar, pergerakan lengan bawah, lengan atas, maupun pengripper

(gripper).

Gambar 3. 3 Diagram alur penerapan Machine learning

Gambar 3.3 menunjukan Diagram alur penerapan Machine learning. Tahap

awal dilakukan pengumpulan data set berupa citra buah jeruk yang digunakan

sebagai bahan penelitian model lalu dilakukan data prepocessing untuk

mempersiapkan data agar siap diproses, seperti pengubahan ukuran gambar,

normalisasi, dan augmentasi data, tahap berikutnya dilakukan perancangan CNN

Architecture disini penulis membuat arsitektur jaringan CNN yang digunakan untuk

mengenali pola pada citra jeruk. Setelah arsitektur terbentuk dilakukan Model

39

Training guna melatih model menggunakan data training diikuti oleh Model

Validation untuk mengevaluasi kinerja model terhadap data validasi , tahap ini

digunakan untuk mengukur performa model seperti akurasi, precision, recall, dan

F1-score. Jika model dinyatakan memiliki performa terbaik maka dilakukan

Implementation, yaitu penerapan model ke dalam sistem yang telah dirancang.

Seluruh proses diakhiri dengan tahap Selesai yang menandakan model siap

digunakan untuk melakukan klasifikasi citra jeruk secara otomatis.

3.1.1 DataSet

Dataset didapatkan melalui Mendeley Data, memiliki jumlah 3000 dataset

per kategori nya (jeruk sehat, kanker jeruk, dan penyakit melanose) tujuan dataset

ini dikumpulkan adalah untuk mengetahui jenis penyakit jeruk apa yang paling

dominan ditemukan di wilayah timur Uganda. Dataset buah jeruk dikumpulkan

menggunakan kamera ponsel dalam format Highly Enhanced Image Container

(HEIC) dan kemudian dikonversi ke format JPEG. Penulis hanya menggunakan 2

kategori yaitu jeruk sehat, dan tidak sehat diambil dari 1500 dataset kanker jeruk

dan 1500 dataset penyakit melanose.

Gambar 3. 4 Dataset jeruk sehat

 Gambar 3.4 menujukan dataset untuk kategori/label jeruk sehat yang

digunakan dalam penelitian ini. Citra-citra pada kategori ini menampilkan jeruk

dengan kondisi kulit yang baik, warna merata, dan tidak memiliki cacat fisik seperti

bintik hitam, bercak busuk, atau perubahan warna mencolok. Data tersebut

40

digunakan sebagai representasi visual dari jeruk dengan kualitas normal yang akan

menjadi pembanding terhadap kategori jeruk tidak sehat dalam proses pelatihan

model Machine learning.

Gambar 3. 5 Dataset jeruk tidak sehat

 Gambar 3.5 menunjukan dataset untuk kategori jeruk tidak sehat yang

digunakan dalam penelitian ini. Kategori ini menampilkan kondisi kulit yang

memiliki bercak hitam dari ukuran besar, kecil, banyak bercak maupun sedikit

bercak, ada pula jeruk yang seluruhnya berwarna hitam karena terkena penyakit

melanose.

41

Gambar 3. 6 Diagram Alur Komunikasi Jetson Nano dengan OpenCR

Gambar 3.6 menunjukan Diagram alur komunikasi Jetson Nano dengan

OpenCR, alur proses komunikasi antara Jetson Nano sebagai pengendali utama dan

OpenCR sebagai penggerak robot Arm melalui protokol UART. Jetson Nano

mengirimkan hasil klasifikasi dari model machine learning dalam bentuk data serial

ke OpenCR. Setelah data diterima, OpenCR menginterpretasikan perintah tersebut

untuk menggerakkan motor servo sesuai hasil klasifikasi, misalnya untuk

mengarahkan atau memindahkan buah ke wadah tertentu.

42

3.2 Proses Pengerjaan

Proses pengerjaan penelitian ini dilakukan secara bertahap dan terstruktur

agar setiap bagian dari sistem dapat berfungsi sesuai dengan tujuan yang telah

ditetapkan. Tahapan dimulai dari tahap perancangan konsep sistem secara

keseluruhan, yaitu menentukan kebutuhan perangkat keras dan perangkat lunak

yang akan digunakan. Perangkat utama yang digunakan meliputi Jetson Nano

sebagai pusat pemrosesan data, OpenCR sebagai pengendali robot Arm

OpenManipulator, serta kamera sebagai alat pengambil citra buah jeruk. Pada tahap

ini juga dirancang alur kerja sistem mulai dari pengambilan gambar, penerapan

machine learning untuk analisis kualitas buah, hingga pengiriman hasil pengenalan

ke OpenCR agar robot dapat melakukan penyortiran secara otomatis.

Gambar 3. 7 Topologi Perangkat

Gambar 3.7 merupakan topologi perangkat sehingga proses berjalannya

prototipe dimulai dengan memberikan tegangan 10 volt melalui adaptor pada Jetson

Nano dan OpenCR agar dapat standalone. Tahap awal (nomor 1) berupa komputer

untuk melatih data, model yang telah jadi ditanam dan dijalankan oleh Jetson Nano

(nomor 2) berupa citra jeruk yang tertangkap kamera (nomor 3) membuat Jetson

Nano (nomor 4) menjalankan model AI untuk klasifikasi jeruk sesuai dengan model

machine learning yang digunakan, output dari model dikirim (nomor 5) dari Jetson

Nano ke OpenCR via UART. OpenCR kemudian memproses data tersebut untuk

menggerakkan (nomor 6) robot Arm OpenManipulator sesuai perintah yang

diterima, misalnya untuk memindahkan (nomor 7) jeruk sehat ke Box B dan jeruk

tidak sehat ke Box A berdasarkan hasil analisis. Setelah berhasil memindahkan jeruk

sesuai hasil klasifikasi robot Arm akan kembali ke posisi awal yaitu berada di center.

Tahap akhir berupa tahap pengujian untuk memastikan seluruh komponen dapat

43

berfungsi dengan baik. Pengujian dilakukan terhadap proses komunikasi data,

keakuratan pengenalan oleh machine learning, serta respon robot Arm terhadap

perintah yang dikirim. Hasil pengujian kemudian dianalisis untuk menilai kinerja

sistem secara keseluruhan. Jika ditemukan ketidaksesuaian, dilakukan perbaikan

pada bagian terkait hingga sistem dapat bekerja sesuai tujuan penelitian.

Keterangan:

1. Objek/ buah jeruk

2. Kamera webcam logitech C270 HD

3. Jetson Nano

4. OpenCR 1.0

5. Robot Arm OpenManipulator-X

6. Wadah (Box A/Box B) untuk sortir

3.3 Metode Evaluasi

Metode evaluasi digunakan untuk menilai kinerja sistem yang telah dibuat,

baik dari sisi penerapan machine learning maupun dari integrasi komunikasi antara

Jetson Nano dan OpenCR dalam mengendalikan robot Arm. Dua jenis evaluasi

dilakukan agar dapat diketahui sejauh mana sistem mampu bekerja sesuai dengan

tujuan penelitian, yaitu melakukan penyortiran buah jeruk berdasarkan kualitas

secara otomatis dan tepat.

 Evaluasi model dilakukan untuk mengetahui seberapa akurat metode

machine learning yang diterapkan, evaluasi difokuskan pada tingkat akurasi model

dalam mengklasifikasikan citra buah jeruk. Hal ini dapat dinilai berdasarkan

perbandingan antara hasil klasifikasi yang diberikan oleh sistem dengan kondisi

aktual dari data uji. Sementara itu, pada evaluasi komunikasi serial, dilakukan

pengujian ketepatan transmisi data antara Jetson Nano dan OpenCR menggunakan

protokol UART yang dimonitoring melalui serial monitor untuk memastikan tidak

terjadi keterlambatan atau kehilangan data selama proses pengiriman perintah, yang

terakhir evaluasi akurasi pemindahan jeruk untuk mengetahui apakah pemindahan

dan deteksi pada buah jeruk sudah berjalan dengan baik sesuai topologi perangkat.

44

Dengan demikian, hasil evaluasi dapat menjadi dasar untuk melakukan perbaikan

dan penyempurnaan sistem agar dapat bekerja lebih optimal.

Gambar 3. 8 Ilustrasi Posisi OpenManipulator Arm

Gambar 3.8 merupakan ilustrasi posisi arm OpenManipulator karena

memiliki keterbatasan jangkauan maka jarak antara Arm OpenManipulator ke box

A dan B tidak jauh. Proses sortir berlangsung secara otomatis setelah sistem

melakukan analisis terhadap citra jeruk seperti pada gambar 3.5. Dengan demikian,

gambar ini menggambarkan tahapan akhir dari proses pengambilan keputusan

berbasis machine learning, di mana hasil klasifikasi langsung berpengaruh terhadap

tindakan fisik yang dilakukan oleh sistem, yaitu memindahkan objek sesuai dengan

kategori yang telah ditentukan.

Keterangan:

1. Posisi awal terlihat pada gambar 3.8 (kiri), posisi mengambil terlihat pada

gambar 3.8 (kanan)

2. Kotak sebelah kanan OpenManipulator merupakan tempat jeruk tidak sehat

disortir

3. Kotak sebelah kiri OpenManipulator merupakan tempat jeruk sehat disortir

45

Tabel 3. 2 Tabel Pengujian

Jeruk Hasil Deteksi Benar / Salah Akurasi (0/100

%)

Rata-rata akurasi

Tabel 3.2 Hasil Pengujian menunjukan hasil dari penelitian yang diperoleh

dari penelitian yang telah dilakukan, berdasarkan hasil tersebut, dapat diketahui

bahwa sistem mampu bekerja sesuai dengan rancangan yang telah dibuat. Nilai-

nilai yang ditunjukkan pada tabel menggambarkan kinerja serta tingkat keakuratan

sistem dalam menjalankan fungsi utamanya.

Tabel 3. 3 Tabel Pengujian Pergerakan

Klasifikasi Posisi

pengambilan

Hasil

Penempatan

Keterangan

Tabel 3.3 dirancang untuk mendokumentasikan hasil pengujian respon

gerak dari robot Arm OpenManipulator. Pengujian ini bertujuan untuk

memverifikasi akurasi penempatan objek berdasarkan klasifikasi yang diterima dari

Jetson Nano, serta memastikan konsistensi posisi pengambilan dan peletakan.

46

BAB IV

HASIL DAN PEMBAHASAN

4.1 Rincian Penelitian

Pada subbab ini, penulis menguraikan rincian pelaksanaan penelitian yang

mencakup aspek operasional dan teknis. Pembahasan diawali dengan deskripsi

lokasi dan rentang waktu pelaksanaan penelitian guna memberikan gambaran

konteks pengambilan data dan pengujian. Selanjutnya, dipaparkan rancangan

topologi sistem yang diusulkan untuk menggambarkan alur komunikasi data dan

arsitektur sistem secara keseluruhan. Bagian ini diakhiri dengan rincian spesifikasi

perangkat keras (hardware) dan perangkat lunak (software) yang digunakan sebagai

lingkungan pengembangan dan pengujian sistem.

4.1.1 Tempat dan Waktu

Penelitian dilaksanakan di lab Human Machine Interaction (HMI) gedung

Research and Development (RnD) lt.6 Universitas Ma Chung Malang dengan

Alamat Jalan Villa Puncak Tidar Blok N No. 1 Karangwidoro, Kecamatan Dau,

Kabupaten Malang, Jawa Timur. Penelitian dimulai sejak Senin, 01 September 2025

dan diakhiri pada 23 Desember 2025. Hasil akhir penelitian memfokuskan uji sortir

buah jeruk menggunakan sistem standalone berbasis robot Arm OpenManipulator

dan board OpenCR, yang terintegrasi dengan modul kamera serta machine learning

pada Jetson Nano untuk menyortir jeruk secara otomatis.

4.1.2 Alat dan Komponen

Alat dan komponen yang digunakan dalam penelitian ini berupa power

adaptor 12 Volt sebagai input daya pada OpenCR dan 5 Volt pada JetsonNano,

OpenCR sebagai penerima klasifikasi dan pengendali robot Arm OpenManipulator,

robot Arm OpenManipulator sebagai robot penyortir, Jetson Nano sebagai tempat

model machine learning dijalankan dan hasil klasifikasi di kirim ke OpenCR,

webcam logitech C270 HD sebagai penangkap citra jeruk, kabel jumper sebagai

penghubung komunikasi serial UART, monitor, keyboard dan mouse sebagai alat

bantu pengendalian Jetson Nano, terakir berupa 20 buah jeruk dibagi menjadi 10

jeruk sehat dan 10 jeruk tidak sehat sebagai tahap terakir uji coba.

47

Gambar 4. 1 Rangkaian Prototipe

Gambar 4.1 memperlihatkan rangkaian keseluruhan prototipe yang

mengacu pada topologi perangkat di Gambar 3.7. Komunikasi antara Jetson Nano

dan OpenCR terjalin melalui protokol UART, di mana pin TX (GPIO_08) pada

Jetson Nano dihubungkan ke pin RX (GPIO_0) pada OpenCR, serta menyatukan

jalur ground menggunakan kabel jumper. Posisi kamera diarahkan langsung ke area

penempatan jeruk, dan tersedia dua kotak penampung untuk hasil akhir penyortiran.

Gambar 4. 2 Input citra jeruk yang digunakan

48

Gambar 4.2 menunjukan input data berupa 10 buah jeruk yang digunakan

penulis, terdiri dari 5 jeruk sehat dan 5 jeruk tidak sehat yang mirip dengan dataset

yang telah dilatih.

Gambar 4. 3 Input citra jeruk yang digunakan (2)

Gambar 4.3 memperlihatkan input jeruk 10 buah terakir yang digunakan,

terdiri dari 5 jeruk sehat dan 5 jeruk tidak sehat. Coretan spidol ditambahkan untuk

menekankan bahwa jeruk tersebut berupa jeruk tidak sehat.

4.2 Pengambilan Data

Dataset yang digunakan dalam penelitian ini merupakan dataset citra buah

jeruk yang dikelompokkan ke dalam dua kelas klasifikasi, yaitu kelas sehat

(Gambar 3.4) dan tidak sehat (Gambar 3.5). Kumpulan data ini dipersiapkan untuk

melatih arsitektur Convolutional Neural Network (CNN) berbasis MobileNetV2.

Total citra yang dikumpulkan berjumlah 3000 gambar. Sebelum masuk ke tahap

pelatihan, keseluruhan data tersebut dipilah melalui proses spliting dataset menjadi

data latih (train) dan data uji (test) dengan rasio perbandingan 80:20 sehingga

menghasilkan akurasi data seperti pada tabel 4.1 dan 4.2

49

Tabel 4. 1 Hasil akurasi data train

 precision recall f1-score support

jeruk_sehat 0.96 0.98 0.97 2400

jeruk_tidak_sehat 0.98 0.96 0.97 2400

accuracy 0.97 4800

macro avg 0.97 0.97 0.97 4800

weighted avg 0.97 0.97 0.97 4800

Tabel 4.1 menunjukan hasil akurasi, recall, dan f1-score dari data latih (data

training) dengan hasil yang memuaskan akurasi 97% , precision 96% untuk

jeruk_sehat 98% untuk jeruk_tidak_sehat, recall 98% untuk jeruk_sehat 96% untuk

jeruk_tidak_sehat, f1-score 97% untuk kedua kelas.

Tabel 4. 2 Hasil akurasi data test

 precision recall f1-score support

jeruk_sehat 0.97 0.98 0.97 600

jeruk_tidak_sehat 0.98 0.96 0.97 600

accuracy 0.97 1200

macro avg 0.97 0.97 0.97 1200

weighted avg 0.97 0.97 0.97 1200

Tabel 4.2 menunjukan hasil akurasi, recall, dan f1-score dari data uji (data

test) dengan hasil yang memuaskan hampir sama dengan data latih akurasi 97% ,

precision 97% untuk jeruk_sehat 98% untuk jeruk_tidak_sehat, recall 98% untuk

jeruk_sehat 96% untuk jeruk_tidak_sehat, f1-score 97% untuk kedua kelas

menandakan bahwa model dapat mengklasifikasi buah jeruk dengan baik sesuai

kelas.

50

Gambar 4. 4 Grafik training validation

Gambar 4.4 menunjukkan hasil pelatihan selama 10 epoch yang mencapai

konvergensi optimal. Grafik memperlihatkan peningkatan akurasi yang stabil

hingga 0.97 dan penurunan loss di bawah 0.1. Kurva training dan validation yang

bergerak beriringan menandakan model memiliki kemampuan generalisasi yang

baik membuktikan tidak adanya indikasi overfitting.

Gambar 4. 5 Confusion matrix train data

51

Gambar 4.5 memvisualisasikan detail performa klasifikasi model yang

merepresentasikan hasil evaluasi pada data train dengan total 2400 sampel. Pada

tahap ini, model menunjukkan akurasi tinggi dengan berhasil mendeteksi 2352

sampel sebagai jeruk sehat dan 2304 sampel sebagai jeruk tidak sehat secara tepat.

Gambar 4. 6 Confusion matrix test data

Gambar 4.6 memvisualisasikan detail performa klasifikasi model yang

merepresentasikan hasil evaluasi pada data test dengan total 600 sampel. Pada tahap

ini, model menunjukkan akurasi tinggi dengan berhasil mendeteksi 588 sampel

sebagai jeruk sehat dan 576 sampel sebagai jeruk tidak sehat secara tepat.

Tabel 4. 3 Data posisi robot Arm

ID

Servo

Posisi

Home

Posisi

Ambil

Posisi

Jeruk

Sehat

Posisi Jeruk

Tidak Sehat

ID 11 -0.057 1.000 -0.471 0.437

ID 12 -0.202 -0.202 0.753 0.718

ID 13 -0.397 -0.397 -1.002 -0.822

ID 14 1.150 1.150 1.534 1.163

ID 15 0.010 0.005 0.010 0.010

52

Tabel 4.3 memperlihatkan data joint robot Arm untuk posisi home, posisi

mengambil buah jeruk, posisi sortir jeruk sehat dan posisi sortir jeruk tidak sehat.

Data ini diambil dengan cara menjalankan program open manipulator chain

teaching pada Arduino IDE agar bisa mendapat posisi / joint yang diinginkan.

Sesuai dengan namanya chain teaching dilakukan dengan menggerakkan robot ke

posisi yang sesuai lalu pada serial monitor akan menampilkan angka joint nya.

Visualisasi id bisa dilihat pada gambar 4.4

Gambar 4. 7 ID robot Arm

Gambar 4.7 memperlihatkan visualisasi ID pada robot Arm dimana robot

Arm terdiri dari 5 servo dengan ID 11 s/d ID 15.

53

4.3 Implementasi Kode Program

4.3.1 Kode Implementasi CNN

Gambar 4. 8 Implementasi machine learning CNN

Gambar 4.8 menunjukan potongan kode untuk implementasi machine

learning CNN. Pada baris 1-9 dataset dibagi menjadi 80% data latih dan 20% data

validasi menggunakan metode stratified sampling pada variabel stratify . Metode

ini menjamin bahwa model dilatih dan diuji dengan tingkat kesulitan yang

seimbang untuk setiap kategori, sehingga menghindari bias pada hasil akurasi. Pada

baris 8-15 bertujuan menginisialisasi arsitektur MobileNetV2 sebagai

pengekstraksi fitur untuk metode transfer learning. Input diatur agar menerima citra

berwarna (RGB) yang telah dinormalisasi sesuai standar model. Model dimuat

menggunakan bobot pre-trained ImageNet tanpa lapisan klasifikasi bawaan

(include_top=False), lalu seluruh parameternya dibekukan (trainable=False) agar

kemampuan dasar model dalam mengenali fitur visual tidak rusak saat dilatih

dengan dataset jeruk. Pada baris 17-19 menunjukan arsitektur klasifikasi tambahan

yang dirancang untuk memproses fitur visual hasil ekstraksi MobileNetV2 menjadi

1. train_paths, val_paths, train_labels, val_labels
= train_test_split(

2. all_filepaths,
3. all_labels,
4. test_size=0.2,
5. random_state=123,
6. stratify=all_labels
7.)

8. input_shape = IMG_SIZE + (3,)
9. preprocess_input =

tf.keras.applications.mobilenet_v2.preprocess_in

put

10. base_model = MobileNetV2(

11. input_shape=input_shape,

12. include_top=False,

13. weights='imagenet'

14.)

15. base_model.trainable = False

16.

17. x = layers.GlobalAveragePooling2D()(x)

18. x = layers.Dropout(0.2)(x

19. outputs = layers.Dense(1,

activation='sigmoid')(x)

54

sebuah keputusan akhir. Dimulai dengan mereduksi dimensi data secara efisien

menggunakan global average pooling, dilanjutkan dengan penerapan teknik

regularisasi dropout untuk mencegah, dan diakhiri dengan lapisan dense tunggal

beraktivasis sigmoid yang bertugas menghasilkan probabilitas biner (nilai 0 hingga

1) untuk menentukan kategori jeruk (sehat atau tidak). Hasil akhir code ini berupa

model dalam format .npz agar sesuai dengan Jetson Nano.

4.3.2 Kode Transmitter

Gambar 4. 9 Kode fungsi untuk menjalankan model

Gambar 4.9 menunjukan kode fungsi untuk menjalankan model .npz yang

telah dilatih dengan machine learning CNN (baris 1-11) pada Jetson Nano dengan

cara merekonstruksi ulang arsitektur model agar sama persis dengan struktur saat

pelatihan. Fungsi ini menyusun lapisan input, base model MobileNetV2, dan

lapisan klasifikasi tambahan agar siap dimuati oleh bobot dari .npz yang telah

disimpan.

1. def cek_keberadaan_jeruk(frame):

2. hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

3. mask_orange = cv2.inRange(hsv, LOWER_ORANGE,

UPPER_ORANGE)

4. mask_green = cv2.inRange(hsv, LOWER_GREEN,

UPPER_GREEN)

5. combined_mask = cv2.bitwise_or(mask_orange,

mask_green)

6. kernel = np.ones((5,5), np.uint8)

1. def build_manual_model():
2. inputs = Input(shape=IMG_SIZE + (3,))
3. x =

tf.keras.applications.mobilenet_v2.preprocess_in

put(inputs)

4. base_model = MobileNetV2(input_shape=IMG_SIZE +
(3,), include_top=False, weights=None)

5. base_model.trainable = False
6. x = base_model(x, training=False)
7. x = layers.GlobalAveragePooling2D()(x)
8. x = layers.Dropout(0.2)(x)
9. x = layers.Dense(128, activation='relu')(x)
10. outputs = layers.Dense(1,

activation='sigmoid')(x)

11. return tf.keras.Model(inputs, outputs)

55

7. combined_mask = cv2.morphologyEx(combined_mask,

cv2.MORPH_OPEN, kernel)

8. pixel_count = cv2.countNonZero(combined_mask)

9. return pixel_count > MIN_AREA_PIXEL,

combined_mask

Gambar 4. 10 Kode fungsi untuk keberadaan jeruk

Gambar 4.10 menunjukan kode fungsi untuk mendeteksi keberadaan buah

jeruk berdasarkan rentang warna oranye dan hijau dalam format HSV. Jika jumlah

piksel warna yang terdeteksi melebihi batas tertentu (MIN_AREA_PIXEL = 5000),

sistem akan menganggap ada jeruk dan mengizinkan model AI untuk mulai bekerja.

Ini bertujuan agar AI tidak berjalan saat meja kosong. Jadi meskipun kamera

menyala pada background apapun, jika tidak ada objek jeruk yang tertangkap pada

kamera maka AI tidak akan berjalan (tidak adanya klasifikasi yang muncul). Setelah

kamera dipastikan menangkap objek jeruk maka jeruk akan menjadi input dan

diproses dengan kode pada gambar 4.11

1. img_input = cv2.resize(rgb, IMG_SIZE)

2. img_array = np.expand_dims(np.array(img_input),

axis=0)

3. klasifikasi = model.predict(img_array)

4. score = klasifikasi[0][0]

5. if score < 0.5:

6. current_label = "JERUK SEHAT"

7. data_to_send = CMD_SEHAT

8. else:

9. current_label = "JERUK TIDAK SEHAT"

10. data_to_send = CMD_TIDAK_SEHAT

Gambar 4. 11 Kode klasifikasi jeruk berdasarkan model machine learning

Gambar 4.11 merupakan proses klasifikasi, singkatnya gambar jeruk yang

terdeteksi kamera akan menjadi input untuk menjalankan model, gambar tersebut

akan diperkecil ke 160x160 agar sesuai dengan model MobileNetV2. Selanjutnya,

model melakukan predict untuk menghasilkan nilai antara 0 atau 1. Penentuan

keputusan dilakukan menggunakan nilai threshold sebesar 0.5. Jika skor klasifikasi

56

bernilai di bawah 0.5, sistem akan mengklasifikasikan objek sebagai jeruk sehat

dan menyiapkan perintah CMD_SEHAT. Sebaliknya, jika skor berada di atas 0.5,

objek diklasifikasikan sebagai jeruk tidak sehat dengan perintah

CMD_TIDAK_SEHAT yang siap dikirimkan ke mikrokontroler.

1. if current_label == last_prediction:
2. consistent_frames += 1
3. else:
4. consistent_frames = 0
5. last_prediction =

current_label

6.
7. if consistent_frames >=

FRAMES_TO_VALIDATE:

8. print(f" MENGIRIM:
{current_label}")

9.
10.

11. if ser is not None: ser.close()

12. cap.release()

13. cv2.destroyAllWindows()

Gambar 4. 12 Kode transmitter dari Jetson Nano ke OpenCR

Gambar 4.12 menunjukan potongan kode untuk mengirim data yang telah

berhasil di klasifikasi oleh CNN ke OpenCR melalui UART. Pada baris 1-7

menunjukan agar klasifikasi CNN lebih akurat, kamera harus menangkap sebanyak

15 frame dahulu (FRAMES_TO_VALIDATE = 15) jika dalam 15 frame hasilnya

sama semua secara beruntun maka hasil tersebut akan dikirim ke OpenCR melalui

kode baris 11-13. Serial port yang digunakan pada Jetson Nano agar bisa

berkomunikasi dengan OpenCR dengan kabel jumper Bernama ttyTHS1.

4.3.3 Kode Receiver

1. double G_BUKA = 0.010;
2. double G_TUTUP = 0.005;

3. void setup() {
4. Serial.begin(115200);
5. JETSON_SERIAL.begin(115200);

6. else if (step == 6) {
7. if (tujuan_sehat == false) {

57

Gambar 4. 13 Kode receiver dan menjalankan robot Arm

Gambar 4.13 memperlihatkan kode pada OpenCR yang menerima data dari

Jetson Nano dan menjalankan robot Arm untuk klasifikasi ke posisi jeruk sehat dan

jeruk tidak sehat. Baris 1 dan 2 mendefinisikan joint gripper untuk buka dan tutup,

lalu baris 4 dan 5 menunjukan baudrate yang sama antara Jetson Nano dengan

OpenCR agar data yang disampaikan bersih. Pada baris 6-15 menunjukan joint

pergerakan untuk sortir ke jeruk sehat dan jeruk tidak sehat. Pada masa percobaan

penulis melihat melalui serial monitor Arduino IDE apakah data klasifikasi dari

Jetson Nano ke OpenCR berhasil terkirim, setelah berhasil dan di program

sedemikian rupa sesuai dengan posisi klasifikasi baru usb antar laptop dan OpenCR

dilepas agar 100% hardware (standalone).

8. target.push_back(0.437);
target.push_back(0.718); target.push_back(-

0.822); target.push_back(1.163);

9. } else {
10. target.push_back(-0.471);

target.push_back(0.753); target.push_back(-

1.002); target.push_back(1.534);

11. }

12. open_manipulator.makeJointTrajectory(target

, 4.0);

13. step++; step_timer = millis() + 5000;

14. }

15. }

58

4.3.4 Tampilan Jendela Monitoring

Gambar 4. 14 Jendela untuk memantau hasil klasifikasi pada Jetson Nano

Gambar 4.14 memperlihatkan kamera yang sudah siap untuk merekam citra

jeruk, terlihat dari keterangan di atas kiri dengan tulisan siap – letakan jeruk. Lanjut

ke tahap berikutnya yaitu meletakkan jeruk, setelah jeruk diletakkan barulah model

machine learning akan melakukan klasifikasi apakah jeruk yang tertangkap kamera

ini berupa jeruk sehat atau jeruk tidak sehat, untuk contoh jeruk sehat bisa dilihat

pada gambar 4.15

Gambar 4. 15 Jendela untuk memantau memperlihatkan hasil jeruk sehat

59

Gambar 4.15 memperlihatkan keterangan jeruk sehat yang berasal dari

klasifikasi machine learning terhadap jeruk sehat, garis putih pada bawah kotak

jeruk sehat berjalan dari kiri ke kanan untuk menunjukan bahwa frame ditangkap

sebanyak 15 kali dengan hasil yang sama, jika hasil berbeda dan belum sampai 15

kali frame maka garis putih akan mengulang kembali sampai berhasil berjalan 15

kali (garis putih full). Demikian pula hasil pada jeruk tidak sehat gambar 4.16

Gambar 4. 16 Jedela untuk memantau memperlihatkan hasil jeruk tidak sehat

Gambar 4.16 memperlihatkan keterangan jeruk tidak sehat yang berasal dari

klasifikasi machine learning terhadap jeruk tidak sehat, dengan indicator warna

merah yang memperlihatkan kondisi seakan jeruk tersebut tidak sehat.

Gambar 4. 17 Jendela untuk memantau memperlihatkan kondisi setelah machine

learning berhasil mengklasifikasi

60

Gambar 4.17 memperlihatkan kondisi dimana machine learning telah

berhasil mengklasifikasi suatu jeruk, lalu menunggu diambil oleh robot Arm,

sehingga untuk sortir jeruk selanjutnya menunggu jeruk yang didepan kamera

diambil, setelah berhasil diambil oleh robot arm, jendela pemantau akan kembali

pada keterangan siap – letakkan jeruk.

4.4 Hasil Pengujian

Hasil pengujian terdiri dari pengujian pada klasifikasi machine learning dan

pengujian ketepatan pada pergerakan robot Arm.

Tabel 4. 4 Pengujian klasifikasi machine learning

Jeruk Hasil

Deteksi

Benar /

Salah

Akurasi

(0/100 %)

Sehat Sehat Benar 100%

Sehat Sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

Sehat Tidak sehat Salah 0%

Sehat Sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

Sehat Sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

Sehat Sehat Benar 100%

Sehat Sehat Benar 100%

Tidak sehat Sehat Salah 0%

Sehat Sehat Benar 100%

Sehat Sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

Sehat Sehat Benar 100%

Tidak sehat Tidak sehat Benar 100%

61

Pada tabel 4.4 terlihat bahwa rata-rata akurasi yang didapatkan pada

pengujian ini sebesar 90%, dalam percobaan kamera menangkap 20 citra jeruk

mendapatkan hasil yang salah dalam mendeteksi 1 jeruk sehat dan 1 jeruk tidak

sehat. Membuktikan bahwa machine learning tergolong akurat, kesalahan yang

terjadi kebanyakan diakibatkan pencahayaan dan background saat menangkap citra

jeruk, dapat dibuktikan saat jeruk diarahkan lagi di kamera hasilnya sesuai dengan

kenyataan.

Tabel 4. 5 Tabel hasil pengujian gerak robot Arm

Klasifikasi Posisi

Pengambilan

Hasil

Penempatan

Keterangan

Jeruk sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk tidak sehat ✓ ✓ Berhasil

Jeruk Hasil

Deteksi

Benar /

Salah

Akurasi

(0/100 %)

Tidak sehat Tidak sehat Benar 100%

Rata-rata akurasi 90%

62

Pada tabel 4.5 memperlihatkan hasil pengujian gerak robot Arm yang

seluruhnya mengalami keberhasilan, membuktikan bahwa komunikasi UART dapat

berjalan dengan baik dan tidak ada kesalahan kode pada receiver di OpenCR,

simbol ✓ menandakan posisi pengambilan dan penempatan yang benar.

Gambar 4. 18 Waktu satu siklus klasifikasi

Gambar 4.10 secara spesifik memperlihatkan waktu klasifikasi 15 frame

pada Jetson Nano adalah 3 (tiga) detik dan waktu tanggap robot setelah menerima

data klasifikasi bersifat real-time jedanya <1ms sedangkan waktu yang dibutuhkan

robot untuk menyelesaikan satu proses pemindahan, dimulai dari posisi tengah,

turun mengambil jeruk, hingga meletakkannya ke wadah kategori jeruk sehat / sakit

adalah 28 (dua puluh delapan) detik. Durasi ini merupakan hasil penjumlahan dari

delay yang ditetapkan pada setiap langkah pergerakan program. Rincian pergerakan

meliputi waktu 4 (empat) detik untuk joint saat turun mengambil jeruk dan

membawa jeruk keposisi tengah, 2 (dua) detik saat gripping, dan 5 (lima) detik

untuk posisi mengangkat jeruk dan menaruh ke wadah. Sehingga untuk satu siklus

penuh total waktu yang dihabiskan berjumlah 31(tiga puluh satu) detik.

4.5 Analisis dan Pembahasan

Sistem integrasi antara Jetson Nano dan OpenManipulator terbukti mampu

beroperasi secara standalone dengan kinerja yang andal. Salah satu keunggulan

signifikan dari sistem ini adalah model MobileNetV2 dalam melakukan klasifikasi

pada latar belakang (background) yang beragam. Kemampuan ini didasari oleh

63

prinsip kerja Convolutional Neural Network (CNN) yang tidak memproses citra

sebagai satu kesatuan gambar statis, melainkan berfokus pada ekstraksi fitur visual

(feature extraction). Model ini telah terlatih untuk mengenali karakteristik intrinsik

yang melekat pada objek jeruk seperti tekstur pori kulit, gradasi warna, dan

geometri bentuk, sehingga latar belakang dianggap sebagai noise yang tidak

mempengaruhi hasil klasifikasi. Oleh karena itu, selama variabel lingkungan seperti

jarak pengambilan citra antara kamera dan objek serta kondisi pencahayaan

ruangan dijaga konstan, sistem mampu memisahkan objek utama dari latar

belakangnya secara efektif tanpa memerlukan penyeragaman background. Selain

kemampuan adaptasi visual tersebut, ketepatan pemilahan juga dijamin oleh

penerapan algoritma validasi temporal sebanyak 15 frame sebelum pengiriman

instruksi agar lengan robot hanya menerima perintah eksekusi yang konsisten guna

meminimalisir kesalahan gerak pada aktuator.

Meskipun model mampu beradaptasi dengan berbagai latar belakang,

instabilitas intensitas cahaya yang ekstrem tetap menjadi kendala yang dapat

mendistorsi fitur visual dan menyebabkan kesalahan klasifikasi. Di sisi mekanik,

batasan fisik lebar bukaan gripper menjadi hambatan utama, di mana proses

pengambilan dan pengangkatan seringkali gagal pada jeruk berukuran besar,

sehingga sistem saat ini hanya mampu beroperasi secara optimal pada objek uji

berupa jeruk varietas Siam berukuran medium. Potensi kegagalan lainnya terletak

pada aspek integrasi perangkat keras, seperti kesalahan pendefinisian alamat port

serial atau kualitas penyambungan kabel jumper pada pin GPIO yang kurang

presisi, yang dapat memutus transmisi data instruksi dari Jetson Nano ke OpenCR

meskipun deteksi visual berhasil dilakukan.

64

BAB V

SIMPULAN DAN SARAN

5.1 Simpulan

Berdasarkan hasil perancangan dan pengujian yang telah dilakukan,

penelitian ini berhasil mengimplementasikan sistem pengendalian gerakan robot

OpenManipulator berbasis board OpenCR yang terintegrasi secara penuh dengan

modul kamera dan Jetson Nano untuk melakukan penyortiran otomatis. Sistem

terbukti mampu beroperasi secara mandiri (standalone), di mana komunikasi data

melalui jalur serial UART berjalan stabil dalam menghubungkan hasil pemrosesan

citra cerdas dengan instruksi pergerakan robot.

Dalam hal kinerja penyortiran, lengan robot menunjukkan kemampuan

yang andal dalam memisahkan jeruk berdasarkan klasifikasi kondisi sehat dan tidak

sehat. Keakuratan aksi mekanik ini sangat didukung oleh penerapan logika validasi

temporal pada perangkat lunak, yang secara efektif meredam fluktuasi pembacaan

data sehingga robot hanya mengeksekusi perintah saat hasil deteksi sudah

konsisten. Hal ini memastikan bahwa setiap gerakan penyortiran yang dilakukan

robot benar-benar sesuai dengan keputusan sistem machine learning.

Secara keseluruhan, sistem ini telah menunjukkan efektivitas yang baik

sebagai gambaran awal penerapan otomasi pada industri pangan, khususnya dalam

aspek akurasi logika pemilahan. Namun, evaluasi terhadap efisiensi penanganan

fisik menunjukkan adanya batasan pada mekanisme gripper bawaan yang hanya

bekerja optimal pada jeruk varietas Siam berukuran sedang. Kendala teknis masih

ditemukan saat menangani jeruk dengan dimensi yang lebih besar, di mana

keterbatasan lebar bukaan gripper seringkali menyebabkan kegagalan

pengangkatan, sehingga aspek fleksibilitas mekanik ini menjadi catatan penting

dalam penilaian efisiensi sistem secara menyeluruh.

5.2 Saran

 Untuk penyempurnaan sistem di masa mendatang, fokus utama sebaiknya

diarahkan pada pembaruan mekanisme robot dan sistem visi komputer. Disarankan

untuk beralih menggunakan robot dengan mekanisme vacuum gripper (sistem

65

hisap) sebagai alternatif penjepit mekanis, guna meminimalkan risiko kerusakan

fisik pada buah sehingga robot bisa memilah jeruk jika dalam total yang banyak.

Selain itu, sistem deteksi visual perlu ditingkatkan dengan mengimplementasikan

konfigurasi multi-kamera atau menggunakan kamera yang dapat berputar 360

derajat. Peningkatan ini bertujuan agar jeruk dapat dianalisis dari berbagai sudut

pandang dengan minimal dua sisi, sehingga penilaian kualitas buah menjadi jauh

lebih akurat dan menyeluruh.

66

DAFTAR PUSTAKA

Automation, P., & Automation, P. (2024). Facilitating Smooth Handovers with a

Gesture-Control Glove for Assistive Robotic Manipulators Dilara Yigit .

Bao, X., Li, L., Ou, W., & Zhou, L. (2022). Robot intelligent grasping

experimental platform combining Jetson NANO and machine vision. Journal

of Physics: Conference Series, 2303. https://doi.org/10.1088/1742-

6596/2303/1/012053

De Assis, J. P. B., Günther, G., Pellenz, M., & Teixeira, M. (2025). Computer

Vision and Machine Learning-Based Control for a 6-Degree-of-Freedom

Robotic Arm. 2025 IEEE International Conference on Industrial Technology

(ICIT), 1–6. https://doi.org/10.1109/ICIT63637.2025.10965279

Hj, O., & Rostiati, N. (2015). WILLINGNESS TO PAY KONSUMEN TERHADAP

BUAH JERUK IMPOR (Perspektif Konvensional vs Islam). 1, 23–38.

Inuwa, A. B., Ahmad, A. S., Auwal, S. T., Muhammad, M., Lukuman, A., &

Babangida, I. (2025). JOURNAL OF SUSTAINABLE ENGINEERING AND

Advances in Sensor-Based and Machine Learning Techniques for Automated

Tomato Sorting and Grading : A Review. 2(1), 1–12.

Kashani, M. R., Malekzadeh, M., Mansfield, D., & Montazeri, A. (2025). Robust

Control of OpenMANIPULATOR-X Using Reinforcement Learning. IFAC-

PapersOnLine, 59(10), 703–708.

https://doi.org/https://doi.org/10.1016/j.ifacol.2025.09.120

Li, M., Wu, F., Wang, F., Zou, T., Li, M., & Xiao, X. (2024). CNN-MLP-Based

Configurable Robotic Arm for Smart Agriculture. Agriculture (Switzerland),

14(9). https://doi.org/10.3390/agriculture14091624

Oyefeso, B. O., Oyewande, O. E., & Audu, J. (2025). Automated fruit sorting

system integrating image processing and support vector machine techniques.

International Journal of AI for Materials and Design, 2(2), 79–90.

https://doi.org/https://doi.org/10.36922/IJAMD025150011

Robianto, R., Sitorus, S. H., & Ristian, U. (2021). Penerapan Metode Decision

Tree Untuk Mengklasifikasikan Mutu Buah Jeruk Berdasarkan Fitur Warna

Dan Ukuran. Coding Jurnal Komputer Dan Aplikasi.

https://api.semanticscholar.org/CorpusID:270644864

Shen, D.-R., Chin, H.-L., Tu, C.-H., Chih, J.-S., Venglář, V., Chen, K.-S., Krejsa,

J., & Vechet, S. (2021). Navigation and Task Planning of a Mobile Robot

under ROS Environment: A Case Study Using AutoRace Challenge. 2021

60th Annual Conference of the Society of Instrument and Control Engineers

of Japan (SICE), 612–617.

Wang, T. (2021). Camera-based Augmented Reality Endoscope Auxiliary System

By. 9.

Winarta, D., Widodo, R., & Subianto, M. (2024). Rancang Bangun Pengontrol

Gerakan Robot Openmanipulator Dengan Matlab. Sainsbertek Jurnal Ilmiah

67

Sains & Teknologi, 5, 83–91. https://doi.org/10.33479/sb.v5i1.343

Xu, L. (2018). Remote Control and Monitoring System of Robotic Arm Using

Raspberry Pi. Advances in Intelligent Systems and Computing.

https://doi.org/10.1007/978-3-030-00214-5_81

Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language (2nd

ed.). Prentice Hall.

Banzi, M., & Shiloh, M. (2014). Getting started with Arduino: The open source

electronics prototyping platform (3rd ed.). Maker Media.

ROBOTIS. (2024). OpenManipulator-X. ROBOTIS e-Manual.

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/

https://www.google.com/search?q=https://emanual.robotis.com/docs/en/platform/openmanipulator_x/

68

Lampiran

Lampiran A. Manual Book

1. Tahap menyalakan Jetson Nano

a. Hubungkan ke power adaptor (5V), HDMI, Keyboard, Mouse, Webcam

portnya untuk USB bebas

b. Jika tidak muncul gambar seperti ini saat booting, maka SD Card harus

di flash ulang.

Refrensi: https://www.youtube.com/watch?v=IVw1cyanRi0

c. Selanjutnya jika muncul gambar seperti diatas, maka tampilan

selanjutnya adalah anda diminta untuk memasukan password,

username: machung, password: machung123

69

d. Tampilan jika anda sudah berhasil masuk ke Jetson Nano

e. Memindahkan data dari PC ke Jetson Nano saya menggunakan wifi

(lewat drive) bisa juga menggunakan flashdisk. Jika melalui drive maka

bisa masuk ke chromium web browser bawaan jetson nano (gambar

point d pojok kiri bawah)

f. Masuk ke LXTerminal, dan masuk directory tempat filemu, contoh file

saya ada di Downloads, maka perintahnya adalah cd Downloads, lalu

tinggal jalankan file nya, saya menggunakan bahasa pemrograman

python, jadi diawali dengan python3 lalu “nama file.py” ini merupakan

proses uploading ke jetson nano

g. Pastikan kabel Jumper pada Jetson Nano dan OpenCR sudah benar,

Jetson Nano GPIO_08 terhubung dengan OpenCR GPIO_0, dan GND

saling terhubung.

70

h. Jika UART tidak bisa connect, keluar dengan cara ctrl+z lalu ketik

command sudo chmod 666/ dev/ttyTHS1 lalu run ulang programnya

2. Tahap menyalakan dan menggerakan OpenManipulator

a. Setup OpenCR karena OpenCR sebagai driver, hubungkan openCR

dengan power adaptor 12V, sambungkan TTL dari OpenManipulator ke

OpenCR, pastikan bahwa switch ON, jika OFF maka robot tidak akan

bergerak

b. Untuk upload program pada OpenCR, anda harus mengunduh board

OpenCR pada Arduino UNO.

Refrensi: https://emanual.robotis.com/docs/en/software/arduino_ide/

71

c. Saat board sudah terdownload dibutuhkan usb yang terhubung dari

laptop/pc ke OpenCR, dan memilih menu board menjadi OpenCR,

sesuaikan dengan COM pada board manager anda

d. Pastikan bahwa indikasi pojok kanan bawah adalah connected, jika not

connected bisa menekan tombol reset.

e. Setelah sudah connect, selanjutnya upload dengan cara menekan tombol

panah ke kanan, setelah dilakukan uploading maka sudah tersimpan di

chip anda bisa melepas usb yang terhubung dengan OpenCR.

f. Jika proses uploading gagal maka anda harus masuk ke bootloader

dengan cara menekan Reset + SW2.

Refrensi:

https://emanual.robotis.com/docs/en/parts/controller/opencr10/

https://emanual.robotis.com/docs/en/parts/controller/opencr10/

72

Lampiran B. Kode Training CNN

1. import tensorflow as tf
2. from tensorflow.keras import layers, models
3. from tensorflow.keras.applications import

MobileNetV2

4. import matplotlib.pyplot as plt
5. import numpy as np
6. from sklearn.metrics import

classification_report

7. from sklearn.model_selection import
train_test_split # <-- KITA PAKAI INI

8. import os
9. import sys

10. # --- 1. Konfigurasi Awal ---

11. IMG_SIZE = (160, 160)

12. BATCH_SIZE = 16

13. EPOCHS = 10

14. LEARNING_RATE = 0.0001

15. DATA_DIR = 'dataset'

16. print("--- Membaca daftar file dari

'dataset' ---")

17. all_filepaths = []

18. all_labels = []

19. class_names = sorted(os.listdir(DATA_DIR))

20. if len(class_names) < 2:

21. print(f"ERROR: Hanya ditemukan 1 kelas di

{DATA_DIR}. Periksa folder dataset Anda.")

22. sys.exit(1)

23. print(f"Kelas terdeteksi: {class_names}")

24. for i, class_name in

enumerate(class_names):

25. class_dir = os.path.join(DATA_DIR,

class_name)

73

26. if not os.path.isdir(class_dir):

27. continue

28. filepaths = [os.path.join(class_dir, f) for

f in os.listdir(class_dir) if

f.endswith(('.jpg', '.jpeg', '.png'))]

29. labels = [i] * len(filepaths)

30. all_filepaths.extend(filepaths)

31. all_labels.extend(labels)

32. print(f"Total gambar ditemukan:

{len(all_filepaths)}")

33. if len(all_filepaths) == 0:

34. print("ERROR: Tidak ada gambar

.jpg/.jpeg/.png yang ditemukan di dalam folder

dataset.")

35. sys.exit(1)

36. print("--- Membagi data (80% train, 20%

validation) ---")

37. train_paths, val_paths, train_labels,

val_labels = train_test_split(

38. all_filepaths,

39. all_labels,

40. test_size=0.2,

41. random_state=123,

42. stratify=all_labels

43.)

44. print(f"Total data latih:

{len(train_paths)}")

45. print(f"Total data validasi:

{len(val_paths)}")

46.

47. def load_and_preprocess_image(path, label):

48. """Fungsi untuk memuat, decode, dan resize

gambar"""

49. image = tf.io.read_file(path)

50. image = tf.image.decode_jpeg(image,

channels=3)

51. image = tf.image.resize(image, IMG_SIZE)

52. return image, label

53. AUTOTUNE = tf.data.AUTOTUNE

74

54. train_dataset =

tf.data.Dataset.from_tensor_slices((train_paths,

train_labels))

55. train_dataset =

train_dataset.map(load_and_preprocess_image,

num_parallel_calls=AUTOTUNE)

56. train_dataset =

train_dataset.cache().shuffle(len(train_paths)).

batch(BATCH_SIZE).prefetch(buffer_size=AUTOTUNE)

57. val_dataset =

tf.data.Dataset.from_tensor_slices((val_paths,

val_labels))

58. val_dataset =

val_dataset.map(load_and_preprocess_image,

num_parallel_calls=AUTOTUNE)

59. val_dataset =

val_dataset.batch(BATCH_SIZE).cache().prefetch(b

uffer_size=AUTOTUNE)

60. data_augmentation = models.Sequential([

61. layers.RandomFlip('horizontal'),

62. layers.RandomRotation(0.2),

63.], name="augmentation")

64. print("--- Membangun model ---")

65. input_shape = IMG_SIZE + (3,)

66. preprocess_input =

tf.keras.applications.mobilenet_v2.preprocess_in

put

67. base_model = MobileNetV2(

68. input_shape=input_shape,

69. include_top=False,

70. weights='imagenet'

71.)

72. base_model.trainable = False

73. inputs = tf.keras.Input(shape=input_shape)

74. x = data_augmentation(inputs)

75. x = preprocess_input(x)

76. x = base_model(x, training=False)

77. x = layers.GlobalAveragePooling2D()(x)

78. x = layers.Dropout(0.2)(x)

79. x = layers.Dense(128, activation='relu')(x)

80. outputs = layers.Dense(1,

activation='sigmoid')(x)

75

81. model = tf.keras.Model(inputs, outputs)

82. model.compile(

83. optimizer=tf.keras.optimizers.Adam(learning

_rate=LEARNING_RATE),

84. loss=tf.keras.losses.BinaryCrossentropy(),

85. metrics=['accuracy']

86.)

87. model.summary()

88. print("--- Memulai pelatihan model ---")

89. history = model.fit(

90. train_dataset,

91. epochs=EPOCHS,

92. validation_data=val_dataset

93.)

94. print("--- Menyimpan model ---")

95. model.save('model_klasifikasi_jeruk.keras')

96. print("Model berhasil disimpan sebagai

'model_klasifikasi_jeruk.keras'")

97. print("\n--- Memulai Evaluasi Model (F1-

Score, dll.) ---")

98. val_dataset_for_predict =

tf.data.Dataset.from_tensor_slices((val_paths,

val_labels))

99. val_dataset_for_predict =

val_dataset_for_predict.map(load_and_preprocess_

image, num_parallel_calls=AUTOTUNE)

100. val_dataset_for_predict =

val_dataset_for_predict.batch(BATCH_SIZE)

101. print("--- Memprediksi Validation Set ---")

102. y_pred_probs_val =

model.predict(val_dataset_for_predict)

103. y_pred_val =

np.where(y_pred_probs_val.flatten() > 0.5, 1, 0)

104. y_true_val = np.array(val_labels)

105. print("\n--- HASIL EVALUASI (VALIDATION /

TEST SET) ---")

106. print(classification_report(y_true_val,

y_pred_val, target_names=class_names))

107. train_dataset_for_predict =

tf.data.Dataset.from_tensor_slices((train_paths,

train_labels))

76

108. train_dataset_for_predict =

train_dataset_for_predict.map(load_and_preproces

s_image, num_parallel_calls=AUTOTUNE)

109. train_dataset_for_predict =

train_dataset_for_predict.batch(BATCH_SIZE)

110. print("--- Memprediksi Training Set ---")

111. y_pred_probs_train =

model.predict(train_dataset_for_predict)

112. y_pred_train =

np.where(y_pred_probs_train.flatten() > 0.5, 1,

0)

113. y_true_train = np.array(train_labels)

114. print("\n--- HASIL EVALUASI (TRAINING SET)

---")

115. print(classification_report(y_true_train,

y_pred_train, target_names=class_names))

116. print("--- Menampilkan plot Akurasi dan

Loss ---")

117. acc = history.history['accuracy']

118. val_acc = history.history['val_accuracy']

119. loss = history.history['loss']

120. val_loss = history.history['val_loss']

121. plt.figure(figsize=(8, 8))

122. plt.subplot(2, 1, 1)

123. plt.plot(acc, label='Training Accuracy')

124. plt.plot(val_acc, label='Validation

Accuracy')

125. plt.legend(loc='lower right')

126. plt.ylabel('Accuracy')

127. plt.ylim([min(plt.ylim()),1])

128. plt.title('Training and Validation

Accuracy')

129. plt.subplot(2, 1, 2)

130. plt.plot(loss, label='Training Loss')

131. plt.plot(val_loss, label='Validation Loss')

132. plt.legend(loc='upper right')

133. plt.ylabel('Cross Entropy')

134. plt.ylim([0,1.0])

135. plt.title('Training and Validation Loss')

136. plt.xlabel('epoch')

137. plt.show()

77

Lampiran C. Kode testing dan sending

1. import cv2
2. import numpy as np
3. import tensorflow as tf
4. from tensorflow.keras import layers, models,

Input

5. from tensorflow.keras.applications import
MobileNetV2

6. import os
7. import serial
8. import time

9. PATH_WEIGHTS = 'bobot_jeruk_final.npz'
10. IMG_SIZE = (160, 160)

11. SERIAL_PORT = '/dev/ttyTHS1'

12. BAUD_RATE = 115200

13. CMD_SEHAT = b'1'

14. CMD_TIDAK_SEHAT = b'0'

15. FRAMES_TO_VALIDATE = 15

16. MIN_AREA_PIXEL = 5000

17. LOWER_ORANGE = np.array([10, 100, 100])

18. UPPER_ORANGE = np.array([30, 255, 255])

19. LOWER_GREEN = np.array([35, 50, 50])

20. UPPER_GREEN = np.array([85, 255, 255])

21. def build_manual_model():

22. inputs = Input(shape=IMG_SIZE + (3,))

23. x =

tf.keras.applications.mobilenet_v2.preprocess_in

put(inputs)

24. base_model =

MobileNetV2(input_shape=IMG_SIZE + (3,),

include_top=False, weights=None)

25. base_model.trainable = False

26. x = base_model(x, training=False)

27. x = layers.GlobalAveragePooling2D()(x)

28. x = layers.Dropout(0.2)(x)

29. x = layers.Dense(128, activation='relu')(x)

30. outputs = layers.Dense(1,

activation='sigmoid')(x)

31. return tf.keras.Model(inputs, outputs)

32. def cek_keberadaan_jeruk(frame):

78

33. hsv = cv2.cvtColor(frame,

cv2.COLOR_BGR2HSV)

34. mask_orange = cv2.inRange(hsv,

LOWER_ORANGE, UPPER_ORANGE)

35. mask_green = cv2.inRange(hsv, LOWER_GREEN,

UPPER_GREEN)

36. combined_mask = cv2.bitwise_or(mask_orange,

mask_green)

37. kernel = np.ones((5,5), np.uint8)

38. combined_mask =

cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN,

kernel)

39. pixel_count =

cv2.countNonZero(combined_mask)

40. return pixel_count > MIN_AREA_PIXEL,

combined_mask

41. def main():

42. # 1. SETUP UART

43. ser = None

44. try:

45. ser = serial.Serial(SERIAL_PORT, BAUD_RATE,

timeout=1)

46. print(f"Terhubung ke OpenCR di

{SERIAL_PORT}")

47. except Exception as e:

48. print(f"WARNING: Gagal konek UART: {e}")

49. # 2. SETUP MODEL

50. if not os.path.exists(PATH_WEIGHTS):

51. print(f"ERROR: File {PATH_WEIGHTS} tidak

ditemukan!")

52. return

53. try:

54. model = build_manual_model()

55. with np.load(PATH_WEIGHTS) as data:

56. weight_list = [data[key] for key in

data.files]

57. model.set_weights(weight_list)

58. print("MODEL SIAP!")

59. dummy_img = np.zeros((1, 160, 160, 3))

60. model.predict(dummy_img)

61. print("SIAP DETEKSI.")

62. except Exception as e:

63. print(f"Error Model: {e}")

64. return

79

65. # 3. KAMERA

66. cap = cv2.VideoCapture(0)

67. if not cap.isOpened():

68. print("ERROR: Kamera error.")

69. return

70. consistent_frames = 0

71. last_prediction = None

72. data_sudah_dikirim = False

73. while True:

74. ret, frame = cap.read()

75. if not ret: break

76. frame_resized = cv2.resize(frame, (640,

480))

77. ada_jeruk, mask_debug =

cek_keberadaan_jeruk(frame_resized)

78. if not ada_jeruk:

79. display_text = "SIAP - LETAKKAN JERUK"

80. box_color = (100, 100, 100)

81. data_sudah_dikirim = False

82. consistent_frames = 0

83. frame_resized[380:480, 540:640] = [0,0,0]

84. else:

85. frame_resized[380:480, 540:640] =

[255,255,255]

86. if data_sudah_dikirim:

87. display_text = "MENUNGGU DIAMBIL..."

88. box_color = (0, 255, 255) # Kuning

89. cv2.rectangle(frame_resized, (0,0), (640,

60), (0,0,0), -1)

90. else:

91. try:

92. rgb = cv2.cvtColor(frame_resized,

cv2.COLOR_BGR2RGB)

93. img_input = cv2.resize(rgb, IMG_SIZE)

94. img_array =

np.expand_dims(np.array(img_input), axis=0)

95. prediksi = model.predict(img_array)

96. score = prediksi[0][0]

80

97. if score < 0.5:

98. current_label = "JERUK SEHAT"

99. color = (0, 255, 0)

100. data_to_send = CMD_SEHAT

101. else:

102. current_label = "JERUK TIDAK SEHAT"

103. color = (0, 0, 255)

104. data_to_send = CMD_TIDAK_SEHAT

105. display_text = f"{current_label}"

106. box_color = color

107. if current_label == last_prediction:

108. consistent_frames += 1

109. else:

110. consistent_frames = 0

111. last_prediction = current_label

112. if consistent_frames >= FRAMES_TO_VALIDATE:

113. print(f"MENGIRIM: {current_label}")

114. if ser is not None:

115. ser.write(data_to_send)

116. print(f"Data terkirim ke UART:

{data_to_send}")

117. data_sudah_dikirim = True

118. consistent_frames = 0

119. except Exception as e:

120. print(f"Error Coding: {e}")

121. cv2.rectangle(frame_resized, (10, 10),

(450, 60), (0, 0, 0), -1)

122. cv2.putText(frame_resized, display_text,

(20, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.7,

box_color, 2)

123. if consistent_frames > 0 and not

data_sudah_dikirim:

124. bar_len = int((consistent_frames /

FRAMES_TO_VALIDATE) * 340)

125. cv2.rectangle(frame_resized, (10, 55), (10

+ bar_len, 60), (255, 255, 255), -1)

126. cv2.imshow('Sistem Sortir', frame_resized)

81

127. if cv2.waitKey(1) & 0xFF == ord('q'):

128. break

129. if ser is not None: ser.close()

130. cap.release()

131. cv2.destroyAllWindows()

132. if __name__ == "__main__":

133. main()

Lampiran D. Kode menerima klasfikasi dan menggerkaan robot pada OpenCR

1. #include <open_manipulator_libs.h>

2. #define JETSON_SERIAL Serial1

3. OpenManipulator open_manipulator;

4. double control_time = 0.010;
5. double previous_time = 0.0;
6. unsigned long step_timer = 0;
7. int step = 0;

8. bool robot_sedang_kerja = false;
9. bool tujuan_sehat = true;

10. double G_BUKA = 0.010;

11. double G_TUTUP = 0.005;

12. void setup() {

13. Serial.begin(115200);

14. JETSON_SERIAL.begin(115200);

15. open_manipulator.setOpenManipulatorCustomJo

intId(11, 12, 13, 14, 15);

16. open_manipulator.initOpenManipulator(true);

17. open_manipulator.enableAllActuator();

18. while(JETSON_SERIAL.available() > 0) {

19. char sampah = JETSON_SERIAL.read();

20. }

21. }

22. void loop() {

82

23. double present_time = millis()/1000.0;

24. if(present_time - previous_time >=

control_time) {

25. open_manipulator.processOpenManipulator(pre

sent_time);

26. previous_time = present_time;

27. }

28. if (robot_sedang_kerja == false) {

29. if (JETSON_SERIAL.available() > 0) {

30. char data = JETSON_SERIAL.read();

31. if (data == '1') {

32. Serial.println("DITERIMA: JERUK SEHAT

(1)");

33. tujuan_sehat = true;

34. robot_sedang_kerja = true;

35. step = 0;

36. step_timer = millis();

37. }

38. else if (data == '0') {

39. Serial.println("DITERIMA: JERUK SAKIT

(0)");

40. tujuan_sehat = false;

41. robot_sedang_kerja = true;

42. step = 0;

43. step_timer = millis();

44. }

45. }

46. }

47. if (robot_sedang_kerja == true) {

48. if (millis() > step_timer) {

49. std::vector<double> target;

50. target.clear();

51. if (step == 0) {

52. target.push_back(-0.057);

target.push_back(-0.202); target.push_back(-

0.397); target.push_back(1.150);

53. open_manipulator.makeJointTrajectory(target

, 3.0);

54. open_manipulator.makeToolTrajectory("grippe

r", G_BUKA);

55. step++; step_timer = millis() + 4000;

56. }

83

57. else if (step == 1) {

58. target.push_back(1.000); target.push_back(-

0.202); target.push_back(-0.397);

target.push_back(1.150);

59. open_manipulator.makeJointTrajectory(target

, 3.0);

60. step++; step_timer = millis() + 4000;

61. }

62. else if (step == 2) {

63. target.push_back(1.000);

target.push_back(0.718); target.push_back(-

0.822); target.push_back(1.163);

64. open_manipulator.makeJointTrajectory(target

, 3.0);

65. step++; step_timer = millis() + 4000;

66. }

67. else if (step == 3) {

68. open_manipulator.makeToolTrajectory("grippe

r", G_TUTUP);

69. step++; step_timer = millis() + 2000;

70. }

71. else if (step == 4) {

72. Serial.println("5. Angkat Lurus (Pinggang

Tahan)...");

73. target.push_back(1.000); target.push_back(-

0.202); target.push_back(-0.397);

target.push_back(1.150);

74. open_manipulator.makeJointTrajectory(target

, 4.0);

75. step++; step_timer = millis() + 5000;

76. }

77. else if (step == 5) {

78. Serial.println("6. Ke Center...");

79. target.push_back(-0.057);

target.push_back(-0.202); target.push_back(-

0.397); target.push_back(1.150);

80. open_manipulator.makeJointTrajectory(target

, 3.0);

81. step++; step_timer = millis() + 4000;

82. }

83. else if (step == 6) {

84. if (tujuan_sehat == false) {

84

85. target.push_back(0.437);

target.push_back(0.718); target.push_back(-

0.822); target.push_back(1.163);

86. } else {

87. target.push_back(-0.471);

target.push_back(0.753); target.push_back(-

1.002); target.push_back(1.534);

88. }

89. open_manipulator.makeJointTrajectory(target

, 4.0);

90. step++; step_timer = millis() + 5000;

91. }

92. else if (step == 7) {

93. open_manipulator.makeToolTrajectory("grippe

r", G_BUKA);

94. step++; step_timer = millis() + 2000;

95. }

96. else if (step == 8) {

97. target.push_back(-0.057);

target.push_back(-0.202); target.push_back(-

0.397); target.push_back(1.150);

98. open_manipulator.makeJointTrajectory(target

, 4.0);

99. open_manipulator.makeToolTrajectory("grippe

r", G_BUKA);

100. step++; step_timer = millis() + 5000;

101. }

102. else if (step == 9) {

103. robot_sedang_kerja = false;

104. step = 0;

105. step_timer = millis();

106. }

107. }

108. }

109. }

