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LEARNING 
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Universitas Ma Chung 

 

Abstrak 

Proses penyortiran buah jeruk di tingkat produsen saat ini umumnya masih 

dilakukan secara manual yang memiliki keterbatasan dari segi efisiensi waktu dan 

konsistensi, serta rentan terhadap human error akibat faktor kelelahan. Penelitian ini 

bertujuan untuk merancang sistem penyortiran otomatis yang mengintegrasikan 

metode Deep Learning dengan lengan robot OpenManipulator-X. Sistem dibangun 

menggunakan komponen utama berupa lengan robot 4-DOF, kamera sebagai sensor 

visual, dan NVIDIA Jetson Nano sebagai unit pemroses data.  

Pada sisi perangkat lunak, algoritma Convolutional Neural Network (CNN) 

dengan arsitektur MobileNetV2 digunakan untuk mengklasifikasikan kualitas jeruk 

berdasarkan fitur warna dan tekstur secara real-time. Hasil klasifikasi tersebut 

dikonversi menjadi perintah gerak robot menggunakan prinsip Inverse Kinematics 

untuk memindahkan buah ke wadah yang sesuai.  

Berdasarkan hasil pengujian, model ini mampu menghasilkan akurasi 

klasifikasi sebesar 96%. Secara mekanis, sistem berhasil melakukan penyortiran 

dengan tingkat keberhasilan 100% dan rata-rata waktu proses 31 detik per buah. 

Penelitian ini diharapkan dapat menjadi solusi alternatif dalam penerapan teknologi 

otomatisasi di bidang pertanian. 

 

Kata Kunci: OpenManipulator, Machine Learning, Penyortiran Jeruk, 

Convolutional Neural Network, NVIDIA Jetson Nano. 
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IMPLEMENTATION OF OPENMANIPULATOR ROBOTIC ARM FOR 

ORANGE SORTING USING MACHINE LEARNING 

 

Shelly Margareth, Romy Budhi, Mochamad Subianto 

Universitas Ma Chung 

 

Abstract 

Proses Currently, the orange sorting process at the producer level is largely 

performed manually. This method has limitations in terms of time efficiency, 

consistency and is prone to human error due to fatigue. This study aims to design an 

automated sorting system integrating Deep Learning methods with the 

OpenManipulator-X robotic arm. The system is built using main components 

consisting of a 4-DOF robotic arm, a camera as a visual sensor, and an NVIDIA 

Jetson Nano as the data processing unit.  

On the software side, a Convolutional Neural Network (CNN) algorithm 

with MobileNetV2 architecture is used to classify orange quality based on color and 

texture features in real-time. The classification results are converted into robot 

movement commands using Inverse Kinematics principles to move the fruit to the 

appropriate container.  

Based on test results, the model achieved a classification accuracy of 96%. 

Mechanically, the system successfully performed sorting with a success rate of 100% 

and an average processing time of 31 seconds per fruit. This study is expected to 

serve as an alternative solution for the application of automation technology in 

agriculture. 

 

Keywords: OpenManipulator, Machine Learning, Orange Sorting, Convolutional 

Neural Network, NVIDIA Jetson Nano. 

 

  



 

viii 

 

DAFTAR ISI 

LEMBAR PENGESAHAN .................................................................................... ii 

KATA PENGANTAR ............................................................................................. iii 

DAFTAR ISI ........................................................................................................ viii 

DAFTAR GAMBAR................................................................................................x 

DAFTAR TABEL................................................................................................... xi 

BAB I .......................................................................................................................1 

PENDAHULUAN....................................................................................................1 

1.1 Latar Belakang .........................................................................................1 

1.2 Identifikasi Masalah .................................................................................3 

1.3 Batasan Masalah.......................................................................................3 

1.4 Rumusan Masalah ....................................................................................4 

1.5 Tujuan Penelitian......................................................................................4 

1.6 Luaran ......................................................................................................5 

1.7 Manfaat Penelitian ...................................................................................5 

1.8 Sistematika Penulisan...............................................................................6 

BAB II ......................................................................................................................7 

TINJAUAN PUSTAKA ...........................................................................................7 

2.1 Bahasa C/C++ ..........................................................................................7 

2.2 Arduino IDE .............................................................................................9 

2.3 Mikrokontroler STM32F746ZGT6 ........................................................ 11 

2.4 OpenCR ..................................................................................................13 

2.5 OpenManipulator-X ...............................................................................17 

2.6 Dynamixel XM430-W350-T ..................................................................22 

2.7 Mikrokomputer ......................................................................................23 

2.8 Jetson Nano ............................................................................................24 

2.9 Machine Learning ..................................................................................26 

2.10 Penelitian Terdahulu ...............................................................................33 

BAB III...................................................................................................................36 

ANALISIS DAN PERANCANGAN SISTEM  .....................................................36 

3.1 Tahapan Penelitian .................................................................................36 

3.1.1 DataSet ...............................................................................................39 



 

ix 

 

3.2 Proses Pengerjaan...................................................................................42 

3.3 Metode Evaluasi .....................................................................................43 

BAB IV ..................................................................................................................46 

HASIL DAN PEMBAHASAN ..............................................................................46 

4.1 Rincian Penelitian ..................................................................................46 

4.1.1 Tempat dan Waktu ..............................................................................46 

4.1.2 Alat dan Komponen ...........................................................................46 

4.2 Pengambilan Data ..................................................................................48 

4.3 Implementasi Kode Program..................................................................53 

4.3.1 Kode Implementasi CNN ...................................................................53 

4.3.2 Kode Transmitter................................................................................54 

4.3.3 Kode Receiver ....................................................................................56 

4.3.4 Tampilan Jendela Monitoring.............................................................58 

4.4 Hasil Pengujian ......................................................................................60 

4.5 Analisis dan Pembahasan .......................................................................62 

BAB V ....................................................................................................................64 

SIMPULAN DAN SARAN ...................................................................................64 

5.1   Simpulan ....................................................................................................64 

5.2   Saran...........................................................................................................64 

DAFTAR PUSTAKA .............................................................................................66 

Lampiran ................................................................................................................68 

  



 

x 

 

DAFTAR GAMBAR 

Gambar 2. 1 Tampilan Arduino IDE ......................................................................10 

Gambar 2. 2  OpenCR 1.0 ......................................................................................14 

Gambar 2. 3 OpenCR PinOuts ...............................................................................15 

Gambar 2. 4 OpenManipulator-X ..........................................................................18 

Gambar 2. 5 Spesifikasi OpenManipulator-X ........................................................19 

Gambar 2. 6 Desain dan Dimensi OpenManipulator-X .........................................21 

Gambar 2. 7 DYNAMIXEL-X ..............................................................................22 

Gambar 2. 8 Jetson Nano .......................................................................................25 

Gambar 2. 9 Proses pelatihan CNN .......................................................................28 

Gambar 2. 10 Arsitektur MobileNetV2 ..................................................................30 

Gambar 3. 1 Diagram alir tahapan penelitian ........................................................35 

Gambar 3. 2 ID Servo ............................................................................................36 

Gambar 3. 3 Diagram alur penerapan Machine learning .......................................38 

Gambar 3. 4 Dataset jeruk sehat.............................................................................39 

Gambar 3. 5 Dataset jeruk tidak sehat....................................................................39 

Gambar 3. 6 Diagram Alur Komunikasi Jetson Nano dengan OpenCR ................40 

Gambar 3. 7 Topologi Perangkat............................................................................41 

Gambar 3. 8 Ilustrasi Posisi OpenManipulator Arm ..............................................43 

Gambar 4. 1 Rangkaian Prototipe ..........................................................................47 

Gambar 4. 2 Input citra jeruk yang digunakan .......................................................47 

Gambar 4. 3 Input citra jeruk yang digunakan (2) .................................................48 

Gambar 4. 4 Grafik training validation ..................................................................50 

Gambar 4. 5 Confusion matrix train data ...............................................................50 

Gambar 4. 6 Confusion matrix test data.................................................................51 

Gambar 4. 7 ID robot Arm .....................................................................................52 

Gambar 4. 8 Implementasi machine learning CNN  ...............................................53 

Gambar 4. 9 Kode fungsi untuk menjalankan model .............................................54 

Gambar 4. 10 Kode fungsi untuk keberadaan jeruk ...............................................55 

Gambar 4. 11 Kode klasifikasi jeruk berdasarkan model machine learning ..........55 

Gambar 4. 12 Kode transmitter dari Jetson Nano ke OpenCR ..............................56 

Gambar 4. 13 Kode receiver dan menjalankan robot Arm.....................................57 

Gambar 4. 14 Jendela untuk memantau hasil klasifikasi pada Jetson Nano ..........58 

Gambar 4. 15 Jendela untuk memantau memperlihatkan hasil jeruk sehat ...........58 

Gambar 4. 16 Jedela untuk memantau memperlihatkan hasil jeruk tidak sehat ....59 

Gambar 4. 17 Jendela untuk memantau memperlihatkan kondisi setelah machine 

learning berhasil mengklasifikasi ...........................................................................59 

Gambar 4. 18 Waktu satu siklus klasifikasi ...........................................................62 

 



 

xi 

 

 

DAFTAR TABEL 

Tabel 3. 1 Jenis dan Fungsi Layer pada MobilenetV2 ...........................................31 

Tabel 3. 2 Tabel Pengujian .....................................................................................45 

Tabel 3. 3 Tabel Pengujian Pergerakan ..................................................................45 

Tabel 4. 1 Hasil akurasi data train ..........................................................................49 

Tabel 4. 2 Hasil akurasi data test ............................................................................49 

Tabel 4. 3 Data posisi robot Arm............................................................................50 

Tabel 4. 4 Pengujian klasifikasi machine learning .................................................60 

Tabel 4. 5 Tabel hasil pengujian gerak robot Arm .................................................61 

 

 

 

 



 

1 

 

BAB I 

PENDAHULUAN 

 

1.1  Latar Belakang 

Perkembangan teknologi robotika dan otomasi telah memberikan dampak 

signifikan dalam berbagai aspek kehidupan, khususnya pada sektor industri pangan. 

Salah satu proses penting dalam produksi adalah penyortiran buah, yang hingga 

kini umumnya masih dilakukan secara manual oleh tenaga kerja manusia. Metode 

manual memiliki sejumlah keterbatasan, seperti keterlambatan, kelelahan, serta 

potensi kesalahan dalam menentukan kualitas buah. Kondisi ini berakibat pada 

menurunnya efisiensi sekaligus kualitas hasil produksi (Inuwa et al., 2025). 

Selain itu, kualitas buah jeruk sangat memengaruhi harga jual serta tingkat 

penerimaan konsumen. Konsumen cenderung memilih jeruk dengan kondisi sehat, 

dan bebas dari cacat. Oleh karena itu, dalam proses penyortiran sangat penting 

untuk memastikan hanya jeruk dengan kualitas baik yang didistribusikan ke pasar. 

Jika jeruk dengan kualitas rendah ikut terjual dapat menurunkan kepercayaan 

konsumen, memengaruhi citra produk, serta berdampak pada turunnya daya saing 

industri. Dalam industri pertanian modern, penyortiran buah secara otomatis 

penting dilakukan untuk menjaga konsistensi dan kualitas produk yang diterima 

konsumen. Penampilan buah khususnya warna kulit yang cerah dan bebas dari noda 

sangat menentukan keputusan pembelian jeruk oleh konsumen, karena aspek visual 

menjadi indikator utama kesegaran dan mutu buah (Hj & Rostiati, 2015). 

Untuk mengatasi permasalahan penyortiran jeruk secara manual yang 

lambat, tidak konsisten, dan rentan kesalahan, penerapan teknologi robotika dengan 

AI menjadi solusi yang menjanjikan. Contohnya, pada penelitian berjudul 

Computer Vision and Machine learning Based Control for a 6 Degree of Freedom 

Robotic Arm (De Assis et al., 2025), digunakan pendekatan supervised learning 

dengan metode Artificial Neural Network (ANN) untuk mengendalikan lengan 

robot berdasarkan gerakan manusia. Model ANN dilatih menggunakan data hasil 

tangkapan kamera melalui framework Mediapipe, yang mendeteksi titik-titik 
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penting pada tubuh operator seperti bahu, jari telunjuk, dan ibu jari. Hasil penelitian 

menunjukkan bahwa model berhasil mengklasifikasi sudut setiap sendi (joint angle) 

pada keenam servo motor lengan robot dengan tingkat akurasi mencapai 82,03%. 

Klasifikasi ini memungkinkan lengan robot meniru pergerakan tangan manusia 

secara real-time pada lingkungan simulasi Gazebo menggunakan ROS. 

Dalam penelitian ini digunakan lengan robot Arm OpenManipulator-X, 

yaitu robot Arm open-source yang fleksibel dan dirancang untuk kebutuhan 

pengembangan, pendidikan, serta penelitian. Sistem kendali utama menggunakan 

OpenCR (Open-source Control Robot) yang memiliki prosesor kompeten, 

dukungan komunikasi lengkap, serta kompatibel dengan berbagai sistem robotika. 

Penggunaan OpenCR pada robot Arm telah banyak diterapkan dalam berbagai 

penelitian, misalnya oleh (Kashani et al., 2025) yang meneliti tentang 

pengembangan sistem kendali cerdas untuk robot Arm OpenManipulator-X, fokus 

utamanya adalah pada peningkatan presisi Gerakan dan kestabilan sistem dengan 

cara menggabungkan metode control klasik Fixed-Time Sliding Mode Control 

(FTSM) dan algoritma pembelajaran penguatan Deep Deterministic Policy 

Gradient (DDPG) agar dapat menghadapi kondisi lingkungan yang berubah-ubah. 

(Automation & Automation, 2024) misalnya, membantu individu yang berhasil 

bertahan dari stroke biasanya membutuhkan bantuan untuk melakukan tugas-tugas 

dasar. Alat bantu robotik, seperti Arm OpenManipulator melakukan berbagai 

aktivitas dengan cara mengambil dan menyerahkan benda kepada pasien. Dalam 

proyek ini, sarung tangan berbasis kendali gerakan (gesture control) dirancang 

untuk meningkatkan proses handover dari robot ke pengguna. Sarung tangan 

dilengkapi dua sensor MPU-6050 dan dua sensor lentur (flex sensor) untuk 

mendeteksi orientasi tangan dan tekukan jari. Data dari sarung tangan dikirim ke 

Arm Manipulator guna menggerakkan manipulator dan mengoperasikan gripper 

secara terpisah. Pengujian dilakukan dengan lima jenis benda sebanyak 20 kali 

masing-masing. Hasil menunjukkan rata-rata waktu penyerahan 7,76 detik dengan 

tingkat kesalahan 18,03%. Perbedaan waktu antar benda menunjukkan pengaruh 

dari lingkungan pengujian, pengguna yang sama, dan keterbatasan perangkat keras.  
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Penelitian-penelitian terdahulu menunjukkan bahwa penggunaan teknologi 

visi komputer pada perangkat seperti Jetson Nano dapat dimanfaatkan untuk 

mendeteksi fitur fisik objek secara real-time, demikian juga penggunaan metode 

Artificial Neural Network (ANN) yang terbukti efektif dalam mengklasifikasi 

gerakan dan mengklasifikasikan kualitas objek dengan akurasi tinggi. Selain itu, 

implementasi lengan robot OpenManipulator-X dengan kontroler OpenCR telah 

teruji mampu memberikan stabilitas dan presisi dalam manipulasi benda. Oleh 

sebab itu, pada penelitian ini dihipotesiskan beberapa hal yang bisa dilakukan, yaitu 

membangun komunikasi data yang efisien antar mikrokontroler (antara unit 

pemroses citra dan OpenCR) untuk menerjemahkan hasil deteksi kualitas jeruk 

menjadi perintah gerak penyortiran yang akurat dan otomatis. 

1.2  Identifikasi Masalah 

Berdasarkan latar belakang tersebut, dapat diidentifikasi beberapa masalah 

sebagai berikut: 

1. Proses penyortiran jeruk yang masih dilakukan secara manual kurang 

efisien, memerlukan banyak tenaga kerja, serta rawan terjadi kesalahan. 

2. Kualitas jeruk sangat memengaruhi harga jual dan penerimaan 

konsumen, sehingga diperlukan metode penyortiran yang lebih akurat 

agar hanya jeruk sehat yang terdistribusi ke pasar. 

3. Belum adanya pemanfaatan robot manipulator sederhana berbasis 

mikrokontroler yang terintegrasi dengan kecerdasan buatan untuk 

melakukan penyortiran buah secara otomatis. 

4. Diperlukan sistem kendali yang mampu menghubungkan hasil 

klasifikasi machine learning dengan pergerakan robot Arm agar proses 

penyortiran dapat berjalan cepat, konsisten, presisi, dan otomatis. 

1.3  Batasan Masalah 

1. Penelitian difokuskan pada proses penyortiran buah jeruk menggunakan 

robot Arm OpenManipulator yang dikendalikan oleh OpenCR. 

2. Sistem kecerdasan buatan hanya terbatas pada klasifikasi jeruk sehat dan 

jeruk tidak sehat menggunakan model machine learning Convolutional 
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neural network (CNN) sederhana dengan 2 fitur utama yaitu warna dan 

tekstur(bercak / noda).  

3. Hasil klasifikasi dikirimkan dalam format Jetson Nano melalui komunikasi 

UART sebagai dasar pergerakan robot Arm. 

4. Penelitian tidak mencakup pengolahan citra lanjutan seperti deteksi ukuran, 

warna kompleks, maupun tingkat kematangan buah. 

5. Ruang lingkup penelitian hanya berupa prototipe sederhana dan tidak 

membahas implementasi pada skala industri besar. 

Batasan ini ditetapkan guna menjaga fokus pembahasan pada peran penulis 

dalam merancang dan menguji mekanisme pengendalian gerakan robot Arm 

OpenManipulator berbasis board OpenCR serta integrasi dengan modul kamera, 

sehingga tidak mencakup pembahasan aspek implementasi industri berskala besar 

atau penggunaan perangkat tambahan di luar lingkup prototipe sederhana yang 

dirancang. 

1.4  Rumusan Masalah 

Bagaimana merancang dan mengimplementasikan sistem pengendalian 

robot Arm OpenManipulator berbasis board OpenCR yang terintegrasi dengan 

modul kamera dan mikrokontroler Jetson Nano untuk menyortir jeruk secara 

otomatis. Permasalahan yang diangkat mencakup bagaimana proses klasifikasi 

jeruk sehat dan tidak sehat dilakukan melalui pemrosesan citra berbasis machine 

learning pada mikrokontroler Jetson Nano, bagaimana hasil klasifikasi tersebut 

dikirimkan melalui komunikasi UART ke OpenCR, serta bagaimana sistem kendali 

robot Arm diatur agar dapat mengeksekusi gerakan penyortiran secara tepat dan 

efisien. 

1.5  Tujuan Penelitian 

1. Merancang dan mengimplementasikan sistem pengendalian gerakan robot 

Arm OpenManipulator berbasis board OpenCR yang terintegrasi dengan 

modul kamera dan mikrokontroler Jetson Nano untuk melakukan 

penyortiran jeruk secara otomatis. 
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2. Menguji kinerja robot Arm dalam melakukan penyortiran jeruk sesuai hasil 

klasifikasi machine learning yang membedakan antara jeruk sehat dan tidak 

sehat. 

3. Menilai efektivitas sistem yang dikembangkan dalam mendukung proses 

penyortiran jeruk, khususnya dalam hal akurasi, konsistensi, dan efisiensi, 

sehingga dapat menjadi gambaran awal penerapan otomasi pada industri 

pangan. 

1.6  Luaran 

1. Prototipe sistem penyortiran jeruk berbasis robot Arm OpenManipulator, 

board OpenCR, dan mikrokontroler Jetson Nano. 

2. Dokumentasi berupa laporan tugas akhir yang memuat rancangan, 

implementasi, serta hasil pengujian sistem. 

3. Publikasi ilmiah berupa artikel yang dapat dijadikan referensi untuk 

penelitian sejenis di bidang otomasi dan robotika. 

1.7  Manfaat Penelitian 

a. Bagi industri: memberikan alternatif solusi otomasi penyortiran buah agar 

lebih efisien, konsisten, dan akurat. Walaupun masih berupa prototipe 

sederhana, rancangan ini dapat menjadi gambaran awal penerapan sistem 

robotik skala kecil yang berpotensi dikembangkan ke arah aplikasi industri 

sebenarnya. 

b. Bagi akademik: menjadi referensi sekaligus dasar pengembangan lebih 

lanjut mengenai implementasi robot manipulator berbasis mikrokontroler. Hasil 

penelitian ini juga memperkaya literatur tentang integrasi modul kamera dengan 

sistem kendali robot pada bidang otomasi. 

c. Bagi peneliti: memberikan pengalaman praktis dalam merancang, 

memprogram, dan mengendalikan sistem robotik sederhana yang relevan 

dengan kebutuhan industri, serta menjadi bekal untuk penelitian lanjutan 

dengan skala dan kompleksitas yang lebih tinggi. 
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1.8  Sistematika Penulisan 

Berikut merupakan sistematika penulisan penelitian ini:  

1. BAB I Pendahuluan 

Bab ini berisi latar belakang penelitian, identifikasi masalah, batasan masalah, 

rumusan masalah, tujuan penelitian, luaran, manfaat penelitian, serta 

sistematika penulisan. 

2. BAB II Tinjauan Pustaka 

Bab ini membahas teori-teori dan konsep yang mendasari penelitian, antara lain 

mengenai robot manipulator, board OpenCR, modul kamera, mikrokontroler 

Jetson Nano, komunikasi UART, machine learning untuk klasifikasi citra, serta 

penelitian-penelitian terdahulu yang relevan. 

3. BAB III Analisis dan Perancangan Sistem 

Bab ini menguraikan analisis kebutuhan, desain sistem, arsitektur perangkat 

keras dan perangkat lunak, perancangan alur komunikasi, serta perancangan 

logika pengendalian robot Arm OpenManipulator untuk penyortiran jeruk. 

4. BAB IV Hasil dan Pembahasan 

Bab ini menyajikan hasil implementasi sistem, pengujian prototipe, analisis 

kinerja robot Arm dalam melakukan penyortiran, serta pembahasan mengenai 

efektivitas dan keterbatasan sistem yang dikembangkan. 

5. BAB V Simpulan dan Saran 

Bab ini memuat simpulan yang diperoleh dari penelitian serta saran yang dapat 

dijadikan acuan untuk pengembangan penelitian lebih lanjut.
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BAB II 

TINJAUAN PUSTAKA 

 

2.1  Bahasa C/C++ 

Bahasa C merupakan bahasa pemrograman prosedural yang 

dikembangkan oleh Dennis Ritchie pada awal tahun 1970-an. Bahasa ini 

dirancang untuk efisien dalam pengelolaan memori dan performa, serta 

dekat dengan bahasa mesin, sehingga sangat cocok digunakan dalam 

pengembangan sistem operasi dan perangkat keras. Dalam konteks sistem 

tertanam, seperti pada mikrokontroler OpenCR, bahasa C menjadi standar 

industri karena kemampuannya dalam mengakses dan mengontrol 

perangkat keras secara langsung. Selain itu, kompiler untuk bahasa C juga 

tersedia luas dan mendukung berbagai arsitektur prosesor. 

Tipe data adalah klasifikasi atau jenis data yang menentukan nilai 

yang dapat disimpan dalam suatu variabel dan operasi apa yang dapat 

dilakukan terhadap data tersebut. Dalam bahasa C menentukan ukuran dan 

jenis nilai yang dapat disimpan dalam variabel. Berikut adalah beberapa tipe 

data dasar yang umum digunakan: 

• int – menyimpan bilangan bulat (positif atau negatif). 

• char – menyimpan karakter ASCII. 

• float dan double – menyimpan angka pecahan atau bilangan desimal. 

• uint8_t, uint16_t, uint32_t – tipe data integer tak bertanda (unsigned 

integer) dengan ukuran tetap. 

Variabel dalam pemrograman adalah sebuah nama atau identifikasi 

yang diberikan untuk menyimpan suatu nilai data dalam memori komputer. 

Nilai ini dapat dapat diubah atau dimanipulasi selama eksekusi program. 

Setiap variabel memiliki tipe data yang menentukan jenis nilai yang dapat 

disimpan, seperti angka, teks, atau struktur data yang lebih kompleks. Nama 

variabel yang dipilih biasanya mendeskripsikan data yang disimpan, 

memudahkan pemahaman dan pengelolaan kode. Dalam pemrograman, 
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variabel memungkinkan programmer untuk menyimpan data, 

mengubahnya, dan mengaksesnya kapan pun selama program berjalan. 

Dengan demikian, penulisan kode menjadi lebih fleksibel karena nilai yang 

spesifik bisa disimpan dan diubah hanya di satu tempat, namun dapat 

digunakan di banyak bagian dalam program. 

Setelah mengenal tipe data dan variabel ada juga fungsi, dalam 

bahasa C merupakan blok kode yang dirancang untuk menjalankan tugas 

tertentu dan dapat dipanggil berkali-kali. Fungsi membantu dalam mengatur 

kode, membuatnya lebih mudah dibaca, dipahami, dan dikelola, serta 

memungkinkan penggunaan kode berulang. Contoh penulisan function pada 

Bahasa C 

void warning() 

{ 

  Serial.println(); 

  Serial.println("WARNING!!! OpenManipulator-X operates in 5 

seconds."); 

  delay_ms(1000); 

  open_manipulator.receiveAllJointActuatorValue(); 

  open_manipulator.receiveAllToolActuatorValue(); 

  open_manipulator.enableAllActuator(); 

  delay_ms(1000); 

} 

Fungsi warning() adalah sebuah fungsi sederhana dalam bahasa C 

yang digunakan untuk memberi peringatan dan memunculkan di serial 

monitor pada Arduino IDE. Fungsi ini tidak menerima parameter apa pun 

dan tidak mengembalikan nilai karena bertipe void.  
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Bahasa C memiliki relevansi yang sangat tinggi dalam 

pengembangan sistem embedded karena kedekatannya dengan perangkat 

keras. Bahasa ini memungkinkan pemrogram untuk mengontrol register 

mikrokontroler secara langsung, mengakses fitur interrupt dan berbagai  

peripheral seperti UART, SPI, dan I2C, serta mengatur manajemen memori 

dengan presisi tinggi. Selain itu, bahasa C juga digunakan untuk menulis 

driver bagi perangkat-perangkat seperti sensor dan aktuator. Kemampuan 

tersebut menjadikan C sebagai fondasi utama dalam pengembangan 

firmware profesional, termasuk pada perangkat seperti OpenCR (Kernighan 

& Ritchie, 1988). 

2.2   Arduino IDE 

Arduino Integrated Development Environment (IDE) merupakan 

perangkat lunak utama yang digunakan dalam proses pengembangan sistem 

berbasis mikrokontroler Arduino maupun mikrokontroler lain yang 

mendukung ekosistemnya. Arduino IDE berfungsi sebagai sarana untuk 

menulis, mengompilasi, dan mengunggah program ke papan mikrokontroler 

dengan antaemuka yang sederhana dan intuitif. Keunggulan utama dari IDE 

ini adalah kemampuannya untuk menjembatani pengguna dari berbagai 

tingkat kemampuan baik pemula yang baru belajar pemrograman maupun 

peneliti yang sedang mengembangkan sistem robotika atau otomasi tingkat 

lanjut. Melalui desain yang ramah pengguna, Arduino IDE mempermudah 

proses pembelajaran pemrograman mikrokontroler tanpa memerlukan 

pemahaman mendalam terhadap konfigurasi perangkat keras atau bahasa 

pemrograman tingkat rendah. 
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Gambar 2. 1 Tampilan Arduino IDE 

Gambar 2.1 menunjukan tampilan Arduino IDE saat pertama kali 

membuka Arduino dan membuat file baru. Arduino memiliki beberapa fitur 

penting, salah satu fitur penting dari Arduino IDE adalah serial monitor, 

yaitu alat bantu untuk menampilkan data dari mikrokontroler secara real 

time. Fitur ini sangat berguna untuk melakukan proses debugging, analisis 

sensor, serta komunikasi antar perangkat. Arduino IDE juga terintegrasi 

dengan berbagai pustaka open-source yang dapat diunduh langsung dari 

library manager, memudahkan peneliti untuk mengembangkan sistem yang 

lebih kompleks seperti Internet of Things (IoT), sistem kontrol otomatis, 

hingga robotika. Kemudahan integrasi dengan pustaka eksternal seperti 

WiFi.h, Servo.h, SoftwareSerial.h, dan DynamixelWorkbench.h 

menjadikan Arduino IDE pilihan utama bagi banyak developer. 

Dalam konteks penelitian dan pengembangan robotika, Arduino IDE 

banyak digunakan untuk memprogram mikrokontroler seperti OpenCR 

yang digunakan pada robot Arm OpenManipulator. Melalui IDE ini, 

pengguna dapat menulis algoritma kontrol gerak, komunikasi data dengan 

sensor, serta pengaturan aktuator seperti motor Dynamixel. Tidak hanya 

terbatas pada perangkat Arduino asli, IDE ini juga mendukung berbagai 

papan berbasis ARM, ESP, dan STM32 yang memiliki kemampuan 

komputasi lebih tinggi. Keberagaman ini menjadikan Arduino IDE sebagai 
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alat yang sangat fleksibel untuk berbagai kebutuhan riset, mulai dari 

eksperimen akademik hingga implementasi industri. 

Arduino juga memiliki komunitas yang sangat besar sehingga 

memberikan peran penting terhadap pengembangan IDE. Arduino memiliki 

ribuan contoh kode, dokumentasi serta forum diskusi yang membantu 

penggunanya memecahkan permasalahan teknis yang sedang dihadapi. 

Pembaruan versi IDE juga dilakukan secara berkala untuk meningkatkan 

stabilitas, kompatibilitas, dan fitur-fitur baru seperti integrasi dengan 

Arduino Cloud dan dukungan debugger bawaan. Dengan dukungan 

ekosistem yang kuat ini, Arduino IDE menjadi salah satu platform 

pengembangan paling populer di dunia teknik elektro, mekatronika, dan 

ilmu komputer terapan (Banzi & Shiloh, 2014). 

2.3  Mikrokontroler STM32F746ZGT6 

Mikrokontroler merupakan sebuah komputer kecil yang terdapat di 

dalam satu chip sirkuit terpadu (Integrated Circuit/IC) yang berisi CPU 

(Central Processing Unit), memori, serta perangkat input dan output (I/O) 

yang dapat diprogram untuk menjalankan fungsi tertentu. Mikrokontroler 

sering disebut sebagai otak dari berbagai sistem tertanam (embedded 

system) karena memiliki kemampuan untuk memproses data, mengambil 

keputusan, dan mengendalikan perangkat lain sesuai instruksi yang telah 

ditanamkan ke dalam programnya. Secara umum, mikrokontroler bekerja 

dengan menjalankan serangkaian instruksi yang disimpan dalam memori 

internalnya untuk mengontrol sinyal dari sensor maupun aktuator, sehingga 

memungkinkan interaksi langsung antara sistem digital dengan lingkungan 

fisik. 

Menurut Valvano (2017), mikrokontroler memiliki peran utama 

sebagai pusat kendali dalam sistem tertanam yang mengintegrasikan 

perangkat lunak (software) dan perangkat keras (hardware) untuk 

melaksanakan tugas spesifik secara otomatis dan efisien. Berbeda dengan 

mikroprosesor yang membutuhkan komponen eksternal seperti memori dan 

perangkat I/O tambahan, mikrokontroler telah menggabungkan seluruh 
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komponen utama tersebut ke dalam satu chip tunggal. Hal ini menjadikan 

mikrokontroler lebih hemat energi, berbiaya rendah, serta mudah 

diintegrasikan pada berbagai aplikasi industri maupun non-industri. Dalam 

sistem otomasi modern, mikrokontroler mampu menjalankan operasi real-

time, yaitu memproses masukan dan menghasilkan keluaran secara 

langsung tanpa jeda yang signifikan, sehingga sangat cocok digunakan pada 

sistem kendali dan monitoring. 

Fungsi utama mikrokontroler terletak pada kemampuannya untuk 

membaca input dari lingkungan luar, seperti sinyal dari sensor suhu, cahaya, 

tekanan, atau arus listrik, kemudian memproses informasi tersebut untuk 

menghasilkan respon yang sesuai melalui aktuator seperti motor, relay, atau 

modul komunikasi. Dalam konteks ini, mikrokontroler bertindak sebagai 

jembatan antara dunia analog (lingkungan fisik) dan dunia digital (sistem 

pemrosesan). Proses ini terjadi secara berulang dan teratur sesuai program 

yang ditanamkan, sehingga mikrokontroler dapat menjalankan sistem 

otomatis dengan presisi tinggi. 

Efisiensi dan fleksibilitas mikrokontroler menjadikannya sangat 

populer dalam berbagai bidang penerapan. Mikrokontroler digunakan 

dalam perangkat rumah tangga seperti mesin cuci, pendingin udara, dan 

oven, sistem otomasi industri seperti robotik dan kontrol mesin; peralatan 

medis seperti alat pemantau detak jantung dan pompa infus, serta kendaraan 

modern untuk mengontrol sistem injeksi bahan bakar, sistem pengereman 

ABS, hingga sensor parkir. Pada Internet of Things (IoT), mikrokontroler 

menjadi komponen kunci yang memungkinkan perangkat-perangkat cerdas 

berkomunikasi melalui jaringan internet, mengumpulkan data, serta 

melakukan analisis sederhana secara lokal sebelum dikirim ke server atau 

cloud. 

Kemajuan teknologi juga mendorong munculnya berbagai jenis 

mikrokontroler dengan kemampuan yang semakin kompleks, seperti seri 

AVR, PIC, ARM Cortex-M, dan ESP32 yang telah dilengkapi dengan fitur 

WiFi, Bluetooth, serta kecepatan pemrosesan yang lebih tinggi. Salah satu 
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jenis mikrokontroler yang banyak digunakan dalam sistem tertanam modern 

adalah STM32F746ZGT6, yang merupakan bagian dari keluarga STM32F7 

Series buatan STMicroelectronics. Mikrokontroler ini berbasis pada 

arsitektur ARM Cortex-M7 dengan frekuensi clock hingga 216 MHz, yang 

memberikan kinerja tinggi dan efisiensi daya yang baik untuk aplikasi 

pemrosesan real-time. STM32F746ZGT6 dilengkapi dengan memori flash 

sebesar 1 MB, RAM 320 KB, serta berbagai peripheral canggih seperti 

ADC, DAC, UART, SPI, I2C, CAN, USB, dan Ethernet. Dukungan fitur 

Floating Point Unit (FPU) dan Digital Signal Processing (DSP) 

memungkinkan mikrokontroler ini melakukan perhitungan matematis 

kompleks dengan cepat, sehingga cocok digunakan dalam sistem robotik, 

kendali motor, pengolahan sinyal, dan aplikasi berbasis visi komputer. 

Dalam konteks pengembangan sistem kendali, STM32F746ZGT6 

menawarkan fleksibilitas tinggi karena dapat diprogram melalui berbagai 

lingkungan pengembangan seperti STM32CubeIDE, Keil µVision, atau 

PlatformIO, dengan dukungan pustaka perangkat keras (HAL dan LL 

driver) yang disediakan oleh STMicroelectronics. Hal ini memudahkan 

pengembang untuk melakukan konfigurasi peripheral, manajemen clock, 

serta komunikasi antar modul melalui antarmuka digital seperti SPI atau 

UART. Selain itu, mikrokontroler ini juga mendukung fitur Direct Memory 

Access (DMA) dan Real-Time Operating System (RTOS) yang 

memungkinkan pengolahan data lebih cepat dan efisien dalam sistem 

multitasking. Dalam bidang robotika, mikrokontroler ini digunakan untuk 

mengendalikan lengan robot atau manipulator melalui komunikasi serial 

berkecepatan tinggi dengan aktuator dan sensor. Beberapa platform seperti 

OpenCR (Open-source Control Robot) juga menggunakan 

STM32F746ZGT6 sebagai otak utama untuk mengontrol motor Dynamixel, 

membaca data sensor 

2.4  OpenCR 

OpenCR (Open-source Control Module for ROS) merupakan papan 

kendali terbuka yang dikembangkan oleh ROBOTIS untuk mendukung 
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sistem robotik berbasis ROS (Robot Operating System). Papan ini berfungsi 

sebagai pengendali utama yang menghubungkan antara perangkat keras 

robot, seperti aktuator, sensor, dan modul komunikasi, dengan sistem 

perangkat lunak pengendali pada komputer atau mikrokontroler lain. 

Sebagai platform yang bersifat open source, seluruh perangkat lunak, 

skematik rangkaian, dan firmware dari OpenCR dapat diakses, 

dimodifikasi, serta dikembangkan secara bebas oleh pengguna, sehingga 

menjadikannya solusi yang fleksibel dan adaptif dalam berbagai aplikasi 

robotika, baik untuk keperluan pendidikan, penelitian, maupun industri. 

 

Gambar 2. 2  OpenCR 1.0 

Gambar 2.2 menunjukan OpenCR 1.0 yang penulis gunakan untuk 

mengontrol Arm OpenManipulator, secara teknis OpenCR menggunakan 

mikrokontroler STM32F7 Series ARM Cortex-M7 dengan kecepatan 216 

MHz dan dilengkapi dengan floating point unit (FPU) yang memungkinkan 

pengolahan data numerik kompleks secara efisien. Papan ini juga memiliki 

berbagai antarmuka komunikasi seperti RS-485 dan TTL untuk koneksi 

dengan aktuator DYNAMIXEL, UART, I²C, dan SPI untuk komunikasi 

dengan sensor eksternal, serta port USB dan GPIO untuk input-output 

umum maupun ekspansi sistem. Dukungan komunikasi yang beragam 

tersebut memungkinkan OpenCR untuk berinteraksi dengan berbagai jenis 

perangkat keras dalam sistem robotik secara andal dan serbaguna. Selain 
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itu, OpenCR dapat diprogram menggunakan dua pendekatan utama, yaitu 

melalui lingkungan pengembangan Arduino IDE untuk sistem mandiri, atau 

menggunakan ROS untuk sistem terdistribusi yang dijalankan di komputer. 

Dengan kemampuan ini, OpenCR dapat digunakan baik sebagai pengendali 

tunggal maupun sebagai bagian dari sistem kontrol yang lebih kompleks. 

 

Gambar 2. 3 OpenCR PinOuts 

Gambar 2.3 menunjukan susunan pin (pinout) pada papan OpenCR, 

yang berfungsi untuk menghubungkan berbagai komponen eksternal seperti 

sensor, aktuator, dan modul komunikasi. Setiap pin memiliki fungsi 

spesifik, termasuk pin daya, komunikasi serial (UART, I2C, SPI), serta pin 

input/output digital dan analog yang digunakan untuk mengendalikan 

sistem robot. Dengan memahami konfigurasi pinout ini, pengguna dapat 

melakukan koneksi perangkat keras dengan lebih tepat dan aman. 

Dalam konteks sistem robotik, OpenCR berperan sebagai 

pengendali tingkat rendah (low-level controller) yang bertugas 

mengeksekusi perintah dari pengendali tingkat tinggi (high-level 

controller). Fungsi utamanya meliputi pengendalian aktuator seperti motor 

DYNAMIXEL, pembacaan data dari berbagai sensor, serta pengelolaan 

komunikasi dua arah antara perangkat keras dan sistem pengendali 

eksternal. Selain itu, OpenCR juga mampu menjalankan loop control secara 
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lokal, seperti pengaturan posisi, kecepatan, maupun torsi pada tiap aktuator, 

sehingga dapat mengurangi beban pemrosesan pada sistem komputer 

utama. OpenCR juga dilengkapi dengan sistem catu daya yang mendukung 

tegangan operasi 7–24volt DC, serta fitur proteksi terhadap arus lebih, 

tegangan berlebih, dan suhu berlebih, yang menjadikannya andal digunakan 

untuk aplikasi robotika jangka panjang. 

Keunggulan utama OpenCR terletak pada sifatnya yang sepenuhnya 

terbuka, baik dari sisi perangkat keras, perangkat lunak, maupun, sehingga 

pengguna dapat memodifikasi sistem sesuai kebutuhan riset atau proyek. 

Selain itu, OpenCR memiliki kompatibilitas tinggi dengan berbagai 

platform robot ROBOTIS seperti TurtleBot3 dan Arm OpenManipulator. 

Dalam sistem Arm OpenManipulator, OpenCR berperan sebagai pengendali 

utama yang menyalurkan perintah gerak dari sistem kendali eksternal 

menuju motor DYNAMIXEL pada tiap sendi manipulator. Melalui 

komunikasi berbasis ROS, komputer pengendali mengirimkan perintah 

lintasan atau posisi (joint trajectory) ke OpenCR melalui jalur komunikasi 

USB atau serial. Selanjutnya, OpenCR mengubah perintah tersebut menjadi 

sinyal kontrol untuk mengatur profil kecepatan dan posisi setiap motor, 

sehingga lengan manipulator dapat bergerak sesuai lintasan yang diinginkan 

secara halus dan presisi. 

Penggunaan OpenCR dalam sistem Arm OpenManipulator memiliki 

keunggulan dibandingkan penggunaan antarmuka lain seperti U2D2, karena 

OpenCR tidak hanya berfungsi sebagai penghubung komunikasi, tetapi juga 

sebagai pengendali aktif yang mampu menjalankan perintah dan melakukan 

proses kendali langsung pada tingkat perangkat keras. Hal ini menjadikan 

sistem lebih efisien dan responsif, serta mengurangi ketergantungan pada 

komputer utama. OpenCR juga memungkinkan integrasi dengan berbagai 

sensor tambahan tanpa memerlukan modul konversi eksternal, sehingga 

lebih fleksibel untuk pengembangan sistem robotika yang kompleks. 

Beberapa penelitian telah memanfaatkan OpenCR sebagai 

pengendali utama dalam sistem robotik berbasis ROS. OpenCR secara 
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resmi menyatakan bahwa ROS kompatibel dijalankan pada OpenCR 

contohnya pada penelitian dengan judul “Navigation and Task Planning of 

a Mobile Robot under ROS Environment: A Case Study Using AutoRace 

Challenge”(Shen et al., 2021) yang menggunakan platform TurtleBot3 pada 

OpenCR untuk mengikuti tantangan AutoRace, robot harus mengenali jalur 

dan mencapai tujuan secepat mungkin dengan kesalahan yang minim, 

dengan memanfaatkan kamera dan sensor LiDAR 2D untuk navigasi dan 

penerapan algoritma pengolahan citra dengan deep learning menghasilkan 

robot yang mampu menyelesaikan misi dalam waktu 2-3 menit secara stabil. 

Secara keseluruhan, OpenCR merupakan komponen penting dalam 

ekosistem robotika modern. Kombinasi antara kemampuan pengolahan 

sinyal yang cepat, fleksibilitas pemrograman, dan kompatibilitas tinggi 

terhadap aktuator DYNAMIXEL menjadikan OpenCR sangat ideal 

digunakan pada platform Arm OpenManipulator. Dukungan penuh terhadap 

ekosistem open-source juga memberikan peluang luas bagi peneliti dan 

pengembang untuk melakukan inovasi dalam sistem kendali robotika, baik 

pada tingkat pendidikan, penelitian, maupun industri. 

2.5  OpenManipulator-X 

OpenManipulator-X merupakan salah satu platform robot 

manipulator open-source yang dikembangkan oleh robotis dengan tujuan 

mendukung kegiatan riset, pendidikan, serta pengembangan teknologi di 

bidang robotika. Robot ini dirancang untuk meniru pergerakan lengan 

manusia dengan beberapa derajat kebebasan (degree of freedom, DoF), 

sehingga mampu melakukan berbagai tugas seperti memindahkan, 

memegang, dan mengatur posisi objek secara otomatis. Keunggulan utama 

OpenManipulator terletak pada sifatnya yang modular dan terbuka, baik 

dari sisi perangkat keras maupun perangkat lunak, yang memungkinkan 

pengguna untuk memodifikasi, menambah, atau mengganti bagian-bagian 

tertentu sesuai kebutuhan penelitian. 
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Gambar 2. 4 OpenManipulator-X 

Gambar 2.4 OpenManipulator-X menunjukan salah satu versi dari 

OpenManipulator yang paling banyak digunakan adalah OpenManipulator-

X (RM-X52-TNM). Versi ini memiliki empat sendi utama dan satu gripper, 

sehingga total lima derajat kebebasan yang dapat dikontrol. Masing-masing 

sendi digerakkan oleh motor DYNAMIXEL X-Series, yaitu aktuator pintar 

yang memiliki kemampuan feedback posisi, kecepatan, dan torsi melalui 

komunikasi serial berbasis TTL atau RS-485. Struktur mekaniknya dapat 

dimodifikasi menggunakan komponen 3D printing, menjadikan sistem ini 

fleksibel untuk berbagai eksperimen kinematika dan kontrol gerak. 
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Gambar 2. 5 Spesifikasi OpenManipulator-X 

Gambar 2.5 menunjukkan Spesifikasi OpenManipulator-X 

memperlihatkan rincian teknis dari robot lengan OpenManipulator-X yang 

digunakan pada penelitian ini. Robot ini menggunakan aktuator Dynamixel 

XM430-W350-T sebagai penggerak utamanya, dengan sumber tegangan 

kerja sebesar 12 volt. OpenManipulator-X memiliki 5 derajat kebebasan (4 

DOF untuk sendi dan 1 DOF untuk gripper), serta mampu mengangkat 

beban hingga 500 gram. Dari sisi presisi gerak, robot ini memiliki tingkat 

pengulangan posisi kurang dari 0,2 mm, dengan kecepatan rotasi sendi 

mencapai 46 RPM. Berat keseluruhan robot sekitar 0,7 kg dengan 

jangkauan kerja mencapai 380 mm. Gripper yang digunakan memiliki 

rentang bukaan antara 20 hingga 75 mm, sehingga dapat menyesuaikan 

dengan berbagai ukuran objek. Sistem komunikasinya menggunakan TTL 

Level Multidrop BUS, sementara pengendalian dan pemrograman didukung 

oleh ROS (Robot Operating System), Dynamixel SDK, Arduino, serta 

Processing. Robot ini dapat dikontrol menggunakan PC maupun 
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mikrokontroler OpenCR, menjadikannya fleksibel untuk berbagai aplikasi 

penelitian, pengembangan, maupun integrasi dengan sistem penglihatan 

komputer. 

Contoh nyata penerapan OpenCR pada sistem OpenManipulator 

dapat ditemukan dalam proyek Camera-based Augmented Reality 

Endoscope Auxiliary System (Wang, 2021), di mana OpenCR digunakan 

sebagai penghubung antara komputer dan aktuator DYNAMIXEL pada 

OpenManipulator-X. Pada penelitian tersebut, OpenCR berfungsi sebagai 

pengendali utama yang menerima perintah gerak dari ROS dan 

meneruskannya ke motor, sekaligus menyediakan suplai daya serta 

mengolah data kinematika. Sistem ini berhasil mengendalikan posisi end-

effector robot dengan ketelitian tinggi dan latensi kendali yang rendah, 

menunjukkan bahwa integrasi OpenManipulator dan OpenCR efektif untuk 

aplikasi medis berbasis real-time control. 

Selain menggunakan OpenCR, sistem OpenManipulator juga dapat 

dikendalikan menggunakan U2D2, yaitu perangkat konverter USB-to-

TTL/RS-485 yang dikembangkan oleh robotis untuk komunikasi langsung 

antara komputer dan motor DYNAMIXEL tanpa mikrokontroler tambahan. 

Dalam konfigurasi ini, komputer (atau laptop) menjalankan seluruh proses 

perencanaan gerak, komputasi kinematika, serta pengiriman perintah 

melalui ROS. U2D2 hanya berfungsi sebagai antarmuka komunikasi fisik 

antara PC dan jaringan motor, sehingga cocok untuk penelitian atau 

pembelajaran yang berfokus pada pemrograman dan simulasi berbasis 

komputer. Beberapa penelitian, seperti yang dilakukan oleh (Winarta et al., 

2024) dalam “Rancang Bangun Pengontrol Gerakan Robot 

OpenManipulator dengan MATLAB”, menggunakan U2D2 untuk 

menghubungkan OpenManipulator dengan MATLAB dan berhasil 

menunjukkan bahwa sistem mampu mengikuti posisi target dengan akurasi 

tinggi. 
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Gambar 2. 6 Desain dan Dimensi OpenManipulator-X 

Gambar 2.6 menunjukkan desain dan dimensi struktural dari robot 

Arm OpenManipulator-X. Setiap bagian pada gambar merepresentasikan 

panjang segmen lengan (link) dan posisi sambungan (joint) yang 

membentuk keseluruhan konfigurasi robot. Ukuran setiap link ditunjukkan 

dalam satuan meter, seperti 0.077 m, 0.128 m, 0.130 m, 0.124 m, dan 0.205 

m, yang menggambarkan jarak antar sumbu rotasi maupun ukuran 

komponen utama. Informasi ini sangat penting dalam analisis kinematika 

dan dinamika, karena menjadi dasar dalam menentukan jangkauan gerak 

(workspace) serta posisi end-effector. Selain itu, tampak pula bagian gripper 

pada ujung lengan yang berfungsi untuk mengripper atau memegang objek, 

yang juga memiliki ukuran spesifik agar sesuai dengan tugas manipulasi 

yang diinginkan. 

Secara keseluruhan, OpenManipulator-X memiliki keunggulan 

dalam hal fleksibilitas, modularitas, dan dukungan sistem terbuka. 

Kombinasi antara aktuator DYNAMIXEL, komunikasi berbasis ROS, serta 

kemampuan integrasi dengan OpenCR maupun U2D2 menjadikan 

OpenManipulator-X ini sangat cocok untuk berbagai keperluan riset dan 

pendidikan. Dalam konteks penelitian modern, OpenManipulator-X tidak 

hanya digunakan untuk studi kontrol dan kinematika, tetapi juga untuk 

pengembangan sistem berbasis kecerdasan buatan, pengenalan visual, dan 
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otomasi cerdas termasuk aplikasi seperti penyortiran objek berdasarkan 

citra atau robot kolaboratif yang berinteraksi langsung dengan manusia. 

2.6  Dynamixel XM430-W350-T 

Dynamixel XM430-W350-T merupakan salah satu jenis servo 

motor cerdas (smart actuator) yang dikembangkan oleh Robotis, dan 

banyak digunakan dalam berbagai aplikasi robotika, termasuk pada sistem 

OpenManipulator-X. Modul ini dirancang untuk memberikan performa 

tinggi dengan presisi gerak yang baik serta fleksibilitas dalam pengendalian 

posisi, kecepatan, dan torsi. Berbeda dari motor servo konvensional, 

Dynamixel XM430 dilengkapi dengan mikrokontroler internal, sensor 

posisi absolut berbasis encoder, dan sistem komunikasi digital, sehingga 

memungkinkan proses kendali dan monitoring dilakukan secara langsung 

melalui jaringan komunikasi TTL atau RS-485, tergantung pada variannya. 

 

Gambar 2. 7 DYNAMIXEL-X 

 Gambar 2.7 diatas merupakan DYNAMIXEL-X, Dynamixel 

XM430-W350-T memiliki torsi maksimum mencapai sekitar 4,1 N·m pada 

tegangan 12 V dan kecepatan hingga 46 rpm, menjadikannya cocok untuk 

digunakan pada aplikasi yang membutuhkan kekuatan dan ketepatan gerak, 

seperti lengan robot atau sistem aktuasi berderajat kebebasan tinggi. Selain 

itu, motor ini mendukung pengendalian multi-turn, yang memungkinkan 

rotasi lebih dari satu putaran penuh dengan akurasi tinggi, sehingga 

memperluas fleksibilitas gerak manipulator. 
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Kelebihan utama dari XM430 terletak pada fitur PID control 

terintegrasi, kompensasi suhu, perlindungan arus lebih, serta kemampuan 

untuk mengirimkan data umpan balik seperti suhu, tegangan, posisi, dan 

kecepatan secara real-time. Hal ini membuat aktuator ini sangat efisien 

untuk sistem yang memerlukan kontrol tertutup (closed-loop control). 

Casing motor yang terbuat dari aluminium alloy juga membantu menjaga 

kestabilan termal dan kekuatan mekanis selama operasi berulang dalam 

waktu lama.  

2.7  Mikrokomputer 

Mikrokomputer merupakan perangkat komputasi berukuran kecil 

yang memiliki prosesor, memori, dan sistem input output yang 

memungkinkan perangkat ini bekerja secara mandiri. Perangkat ini pada 

dasarnya memiliki fungsi sama seperti komputer pada umumnya, hanya saja 

dengan ukuran yang lebih ringkas dan sumber daya yang lebih efisien. 

Mikrokomputer banyak digunakan untuk keperluan sistem tertanam 

(embedded system), kontrol otomatis, serta penelitian di bidang robotika 

karena kemampuannya dalam menjalankan program secara stabil dan hemat 

daya. 

Dalam sistem robotika, mikrokomputer sering berfungsi sebagai 

otak utama yang memproses data dari berbagai sensor dan mengirimkan 

perintah ke aktuator atau mikrokontroler. Beberapa jenis mikrokomputer 

yang cukup populer digunakan di bidang ini adalah Raspberry Pi, NVIDIA 

Jetson, dan LattePanda. Perangkat tersebut umumnya mendukung sistem 

operasi Linux dan kompatibel dengan Robot Operating System (ROS), 

sehingga mudah diintegrasikan dengan berbagai modul dan platform 

robotik seperti Arm OpenManipulator. 

Selain digunakan secara mandiri, mikrokomputer juga sering 

dipasangkan dengan mikrokontroler, seperti OpenCR, untuk membentuk 

sistem kendali dua tingkat sehingga mikrokomputer menangani tugas-tugas 

berat seperti perhitungan kinematika, pemrosesan data kamera, atau 

algoritma kecerdasan buatan, sementara mikrokontroler fokus pada kendali 
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motor dan sensor secara langsung. Dengan pembagian tugas seperti ini, 

sistem menjadi lebih efisien dan responsif dalam mengendalikan gerakan 

robot. 

Salah satu contoh penerapan mikrokomputer dalam penelitian 

robotika adalah penelitian oleh (Xu, 2018) berjudul Remote Control and 

Monitoring System of Robotic Arm Using Raspberry Pi. Dalam penelitian 

tersebut, Raspberry Pi sebagai inti pengendali untuk melakukan perintah 

secara remote. Hasil pengujian menunjukkan bahwa sistem ini mampu 

mengirimkan perintah kendali dan mentransmisikan gambar dengan andal, 

serta memungkinkan robot melakukan berbagai tugas kompleks dengan 

stabil dan akurat. Sehingga dapat disimpulkan mikrokomputer memiliki 

peran yang sangat penting dalam pengembangan robot modern. 

Kemampuannya dalam melakukan pemrosesan data secara cepat, 

mendukung berbagai bahasa pemrograman, serta kemudahan integrasi 

dengan sistem komunikasi membuat perangkat ini menjadi pilihan utama 

dalam riset dan implementasi sistem robotik berbasis ROS. 

2.8  Jetson Nano 

Jetson Nano merupakan salah satu mikrokomputer yang 

dikembangkan oleh NVIDIA dan dirancang khusus untuk aplikasi berbasis 

kecerdasan buatan (AI) serta komputasi visual. Perangkat ini dilengkapi 

dengan prosesor quad-core ARM Cortex-A57 dan GPU NVIDIA Maxwell 

dengan 128 CUDA cores, yang menjadikannya mampu menjalankan 

pemrosesan paralel secara efisien. Dengan spesifikasi tersebut, Jetson Nano 

tidak hanya mampu menjalankan sistem operasi linux, tetapi juga 

mendukung berbagai framework pembelajaran mesin seperti TensorFlow, 

PyTorch, dan OpenCV, sehingga sangat cocok digunakan untuk penelitian 

di bidang robotika, visi komputer, dan sistem otonom. 
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Gambar 2. 8 Jetson Nano 

Gambar 2.8 menunjukan mikrokomputer Jetson Nano, dalam 

konteks robotika, Jetson Nano berperan sebagai pengendali utama yang 

menangani proses komputasi berat, seperti deteksi objek, pengenalan wajah, 

navigasi visual, dan perencanaan lintasan. Kemampuan GPU-nya membuat 

Jetson Nano mampu memproses data gambar atau video secara real-time, 

sesuatu yang sulit dicapai jika hanya menggunakan mikrokontroler 

konvensional. Selain itu, perangkat ini juga kompatibel dengan Robot 

Operating System (ROS), yang memungkinkan integrasi langsung dengan 

berbagai perangkat robotik seperti Arm OpenManipulator, TurtleBot3, 

maupun sistem sensor eksternal. 

Dalam beberapa penelitian, Jetson Nano sering digunakan sebagai 

bagian dari sistem kendali dan bertugas menjalankan algoritma pengolahan 

data dan pengambilan keputusan, dan mengirimkan hasil ke robot Arm. 

Salah satu penelitian Jetson Nano yang berhubungan dengan robotika 

berjudul Robot intelligent grasping experimental platform combining 

Jetson Nano and machine vision (Bao et al., 2022). Pada penelitian tersebut, 

Jetson Nano digunakan untuk memproses machine vision untuk 

memindahkan objek secara otomatis, Penelitian ini berhasil membangun 

sistem robot manipulator berbasis Jetson Nano dengan kemampuan deteksi 

warna dan pengambilan objek otomatis menggunakan machine vision 
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berbasis dengan metode pengolahan citra dasar. Hasil uji menunjukkan 

sistem sangat akurat dan efisien (100% deteksi warna dan 96% efisiensi 

grasping), dengan waktu deteksi di bawah 5 detik. 

2.9  Machine Learning 

Machine learning atau pembelajaran mesin adalah cabang dari 

kecerdasan buatan (Artificial Intelligence/AI) yang berfokus pada 

kemampuan sistem untuk belajar dari data dan membuat keputusan tanpa 

harus diprogram secara eksplisit. Konsep dasarnya adalah bagaimana 

komputer dapat mengenali pola dari sejumlah data, kemudian menggunakan 

pola tersebut untuk mengklasifikasi atau mengambil keputusan pada data 

baru. Dalam konteks teknologi moderen, machine learning banyak 

digunakan pada berbagai bidang seperti pengenalan wajah, klasifikasi citra, 

analisis suara, serta sistem rekomendasi. 

Dalam bidang robotika, machine learning berperan penting untuk 

meningkatkan kemampuan adaptasi dan kecerdasan robot. Melalui 

penerapan algoritma pembelajaran, robot dapat memahami lingkungan 

sekitarnya, mengenali objek, serta menyesuaikan tindakan berdasarkan 

pengalaman atau data yang telah dikumpulkan. Salah satu contoh penerapan 

yang umum adalah pada sistem visi komputer (computer vision), biasanya 

robot dilatih untuk membedakan bentuk, warna, atau kondisi suatu objek, 

misalnya dalam proses penyortiran buah atau deteksi cacat produk di 

industri manufaktur.  

Machine learning terbagi menjadi tiga jenis utama, yaitu supervised 

learning, unsupervised learning, dan reinforcement learning. Supervised 

learning digunakan ketika data yang digunakan memiliki label atau 

kategori, misalnya dalam klasifikasi gambar sehat dan tidak sehat. 

Unsupervised learning digunakan untuk menemukan pola atau kelompok 

dalam data tanpa label, sedangkan reinforcement learning berfokus pada 

proses pembelajaran berbasis umpan balik dari lingkungan, misalnya robot 

yang belajar mengambil keputusan untuk mencapai tujuan tertentu. 

Beberapa algoritma yang sering digunakan dalam machine learning antara 
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lain Convolutional Neural Network (CNN), Decision Tree, Support Vector 

Machine (SVM), dan K-Nearest Neighbor (KNN). Masing-masing 

algoritma memiliki kelebihan tersendiri tergantung pada jenis data dan 

tujuan analisis. Contohnya, penelitian dengan judul “Penerapan Metode 

Decision Tree Untuk Mengklasifikasikan Mutu Buah Jeruk Berdasarkan 

Fitur Warna Dan Ukuran” (Robianto et al., 2021) menunjukkan bahwa 

metode Decision Tree mampu mengklasifikasikan kondisi buah dengan 

tingkat akurasi lebih dari 92%. Hasil tersebut membuktikan bahwa 

penerapan machine learning sangat membantu dalam proses otomasi 

berbasis visual, khususnya dalam sistem penyortiran otomatis. 

Convolutional Neural Network (CNN) adalah salah satu metode 

dalam deep learning yang banyak digunakan untuk mengenali dan 

mengolah gambar. CNN bekerja dengan mengenali pola visual, seperti 

bentuk, warna, dan tekstur. Metode ini terdiri dari beberapa lapisan yang 

bertugas mengenali ciri-ciri penting dari gambar hingga menghasilkan hasil 

akhir berupa klasifikasi atau pengenalan objek. Proses pelatihannya 

dilakukan dengan memberikan banyak contoh gambar yang sudah diberi 

label agar sistem dapat belajar mengenali perbedaan antar objek. CNN 

dikenal memiliki akurasi tinggi dalam mendeteksi dan mengklasifikasi 

gambar, namun membutuhkan data dan sumber daya komputasi yang besar. 

Memiliki empat lapisan utama, pertama ada Convolutional Layers 

merupakan lapisan yang menerapkan operasi konvolusi pada citra input 

menggunakan filter atau kernel untuk mendeteksi fitur tepi, tekstur dan pola 

yang lebih kompleks. Convolutional Layers ini membantu mempertahankan 

hubungan spasial antar piksel. Selanjutnya ada Pooling Layers merupakan 

lapisan yang melakukan downsampling terhadap dimensi spasial dari 

masukan sehingga mengurangi kompleksitas komputasi dan jumlah 

parameter dalam jaringan. Max pooling merupakan operasi pooling yang 

paling umum digunakan (nilai maksimum dari sekelompok piksel tetangga 

dipilih). Layer selanjutnya adalah Activation Functions fungsi ini 

memeperkenalkan non-linearitas ke dalam model, sehingga memungkinkan 

jaringan untuk mempelajari hubungan yang lebih kompleks dalam data. 
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Lapisan terakhir adalah Fully Connected Layers merupakan lapisan yang 

bertanggung jawab dalam membuat klasifikasi berdasarkan fitur Tingkat 

tinggi yang telah dipelajari oleh lapisan-lapisan sebelumnya, setiap neuron 

pada lapisan ini terhubung dengan setiap neuron pada lapisan berikutnya. 

Cara dasar Convolutional Neural Network (CNN) bekerja umumnya 

dibagi menjadi 5 tahap, tahap pertama merupakan Input Image disini 

Convolutional Neural Network (CNN) menerima sebuah gambar sebagai 

masukan, biasanya ukuran pada gambar diubah menjadi 224x224 piksel dan 

dikonversi formatnya (misal dari RGB ke bentuk numerik) agar model bisa 

memprosesnya secara konsisten. Tahap kedua merupakan Convolutional 

Layers, lapisan ini menggunakan filter(kernel) untuk memindai gambar dan 

mengekstraksi ciri-ciri penting seperti tepi, bentuk, atau tekstur, setiap 

filternya bisa mendeteksi pola tertentu di gambar misalnya satu filter 

mendeteksi tepi horizontal filter yang lain mendeteksi warna, dll sehingga 

hasilnya disebut feature map. 

Tahap ketiga merupakan Pooling Layers, lapisan ini mengecilkan 

ukuran peta fitur (downsampling) untuk mengurangi jumlah data yang harus 

diproses, resiko overtfitting dan mempertahankan fitur yang paling penting 

biasanya menggunakan max pooling (hanya mengambil nilai maksimum 

dari area kecil misalnya 2x2 piksel). Tahap keempat merupakan Fully 

Connected Layers, setelah fitur penting berhasil diekstraksi dan diperkecil, 

hasilnya diratakan menjadi satu vector panjang dan dikirim ke lapisan 

terhubung penuh, setiap neuron terhubung dengan neuron di lapisan 

berikutnya, jaringan mempelajari hubungan antar fitur dan membuat 

keputusan akhir (mengenali objek dalam gambar). Tahap terakhir 

merupakan Output, lapisan ini menghasilkan klasifikasi akhir misalnya 

label kelas seperti jeruk sehat dan tidak sehat atau nilai probabilitas untuk 

setiap kelasnya. 

 

Gambar 2. 9 Proses pelatihan CNN 
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Gambar 2.9 Proses pelatihan CNN menunjukan 4 tahap proses 

pelatihan dari metode CNN. Dimulai dari Data preparation pada tahap awal 

seluruh gambar dipersiapkan agar seragam misalnya diubah ke ukuran dan 

format yang sama, kadang dilakukan normalisasi nilai piksel (dari 0-255 

menjadi 0-1), atau dilakukan data augmentation misalnya rotasi, flipping, 

dll agar model tidak mudah overfitiing. Tahap selanjutnya merupakan Loss 

Function yang digunakan untuk mengukur seberapa baik CNN 

mengklasifikasi hasil yang benar, jika klasifikasi model berbeda jauh dari 

label aslinya, maka nilai loss akan besar, tujuan pelatihan ini adalah 

meminimalkan nilai loss tersebut. Tahapan ketiga optimizer merupakan 

tahapan yang bertugas untuk memperbarui bobot darti jaringan agar nilai 

loss semakin kecil, menentukan arah dan seberapa besar perubahan bobot 

tiap iterasi berdasarkan nilai loss yang dihitung sebelumnya contoh 

optimizer yang umum digunakan adalah Stochastic Gradient Descent 

(SGD), Adam dan RMSprop. Tahapan terakhir yaitu Backpropagation 

merupakan teknik yang digunakan untuk menghitung gradien dari fungsi 

kerugian (loss function) terhadap bobot-bobot (weights) pada CNN. Nilai 

gradien tersebut kemudian digunakan oleh optimizer untuk memperbarui 

bobot-bobot CNN agar hasil klasifikasi menjadi semakin akurat. 

Efisiensi dari CNN dapat dievaluasi menjadi beberapa kriteria. 

Pertama, akurasi adalah presentase seberapa tepat CNN mengklasifikasi 

gambar uji dengan rumus 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Kedua , presisi adalah presentase gambar uji yang diklasifikasi oleh 

CNN sebagai kelas tertentu dan benar termasuk dalam kelas tersebut dengan 

rumus  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 
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Ketiga, recall adalah presentase gambar uji yang sebenarnya, 

termasuk dalam suatu kelas dan berhasil diklasifikasi oleh CNN dengan 

rumus 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)  

Terakhir, f1score adalah rata-rata hArmonik dari presisi dan recall. 

Metrik ini baik digunakan untuk mengevaluasi kerja CNN terutama ketika 

jumlah data antar kelas tidak seimbang dengan rumus 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

 Fitur yang sering digunakan untuk evaluasi adalah tabel confusion 

matrix, tabel ini membandingkan hasil klasifikasi model dengan label 

sebenarnya dari data uji. Dalam pengembangan sistem robotik modern, 

machine learning sering digabungkan dengan platform seperti Jetson Nano 

atau Raspberry Pi untuk melakukan pemrosesan data secara langsung. 

Kombinasi antara kemampuan komputasi dari perangkat tersebut dengan 

algoritma pembelajaran mesin memungkinkan robot bekerja secara cerdas 

dan mandiri, misalnya mengenali objek yang akan diambil oleh Arm 

OpenManipulator-X atau menentukan tindakan berdasarkan kondisi 

lingkungan sekitar. Perkembangan ini membuat machine learning menjadi 

salah satu komponen penting dalam pengembangan sistem robotik berbasis 

kecerdasan buatan.  

 

Gambar 2. 10 Arsitektur MobileNetV2 
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Gambar 2.10 menunjukan Arsitektur MobileNetV2 yang digunakan 

pada penelitian ini dirancang untuk melakukan proses ekstraksi fitur dan 

klasifikasi citra jeruk berdasarkan kondisi sehat dan tidak sehat. Struktur 

jaringan terdiri dari beberapa lapisan utama yang saling terhubung, di mana 

setiap lapisan memiliki fungsi tertentu dalam proses pembelajaran fitur 

visual. Rancangan arsitektur CNN yang digunakan dalam penelitian ini 

ditunjukkan pada tabel 3.1 

Tabel 3. 1 Jenis dan Fungsi Layer pada MobilenetV2 

Jenis Layer Fungsi  

Prepocessing Normalisasi nilai piksel agar berada 

dalam rentang tertentu (biasanya 0-1) 

sehingga proses training lebih stabil 

dan cepat konvergen 

Convolution Layer (3x3 Conv) Ekstraksi fitur dan citra dengan 

mengalikan kernel/filter berukuran 3x3 

terhadap area lokal pada citra 

ReLU Activation Menambahkan non-linearitas pada 

jaringan dengan memotong nilai 

negatif menjadi 0 agar model dapat 

mempelajari fitur kompleks 

Max Pooling Mengurangi dimensi fitur dengan 

memilih nilai maksimum pada setiap 

jendela 2x2 untuk mempertahankan 

fitur dominan 

Fully Connected Layer Menghubungkan seluruh neuron dari 

lapisan sebelumnya unuk melakukan 

pengambilan keputusan berdasarkan 

fitur yang telah diekstraksi 

Softmax Layer (Output) Mengubah skor keluaran menjadi nilai 

probabilitas antar kelas, di mana 

jumlah total probabilitas sama dengan 

1. 

Tabel 3.1 menunjukan jenis layer yang digunakan pada arsitektur 

MobileNetV2 yang rangkanya terletak pada gambar 2.10 Setiap layer 

memiliki fungsi dan rumus matematis yang menggambarkan proses 

pengolahan citra dari tahap awal hingga menghasilkan output klasifikasi. 

Proses dimulai dari tahap preprocessing, yaitu normalisasi nilai piksel agar 

jaringan dapat belajar secara lebih stabil. Selanjutnya, convolution layer 

(3×3 Conv) berfungsi untuk mengekstraksi fitur penting dari citra melalui 

operasi konvolusi antara kernel dan citra masukan. Hasil konvolusi 
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kemudian diproses oleh fungsi aktivasi ReLU untuk menambahkan non-

linearitas dan menghilangkan nilai negatif yang tidak relevan lalu dilakukan 

max pooling 2×2, yang bertujuan untuk mengurangi ukuran citra 

(downsampling) dengan tetap mempertahankan fitur paling dominan. 

Setelah fitur-fitur diekstraksi dan direduksi, hasilnya diratakan (flatten) dan 

masuk ke dalam fully connected layer, di mana seluruh neuron saling 

terhubung untuk menggabungkan informasi fitur menjadi representasi yang 

lebih bermakna. Terakhir, softmax layer digunakan sebagai lapisan keluaran 

untuk mengubah nilai aktivasi menjadi probabilitas antar kelas, sehingga 

jaringan dapat menentukan kelas dengan probabilitas tertinggi sebagai hasil 

klasifikasi. 

𝐼′(𝑥, 𝑦, 𝑐) =
𝐼(𝑥, 𝑦, 𝑐)

255
 (5) 

a. I(x,y,c) = Intensitas piksel pada posisi (x,y) dan kanal warna c 

b. I’(x,y,c) = Hasil normalisasi 

Rumus (5) merupakan rumus normalisasi pada MobileNetV2. Proses 

mengubah nilai intensitas piksel gambar dari rentang asli 0–255 menjadi 

rentang 0–1 

𝑍𝑖, 𝑗, 𝑘 = ∑ ∑ ∑ 𝑊𝑚, 𝑛, 𝑐, 𝑘 ∙ 𝑋𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐 + 𝑏𝑘

𝐶−1

𝑐=0

2

𝑛=0

2

𝑚=0

 (6 ) 

a. X = Input feature map 

b. W = Bobot filter ukuran 3x3 

c. Bk = Bias untuk filter ke-k 

d. Zi,j,k = Output ke-k pada  posisi (i,j) 

Rumus (6) merupakan proses ekstraksi fitur gambar. Rumus ini menghitung 

jumlah perkalian antara nilai piksel input (X) dengan bobot filter (W) 

ditambah bias (b) untuk menghasilkan feature map baru. 

 

𝑓(𝑥)  = max(0, 𝑥) (7) 
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Rumus (7) berfungsi untuk menambahkan non-linearitas. Rumus ini 

menyaring nilai negatif menjadi 0 dan membiarkan nilai positif tetap, 

sehingga mempercepat komputasi tanpa menghilangkan informasi penting. 

𝑍𝑗 =  ∑ 𝑊𝑖𝑗𝑋𝑖 + 𝑏𝑗  

𝑛

𝑖=1

(8) 

Rumus (8) merupakan tahap klasifikasi di mana data fitur yang sudah 

didatarkan dikalikan dengan bobot (W) dan ditambah bias (b). Ini adalah 

proses menyusun keputusan sebelum masuk ke output akhir. 

𝑃(𝑦 = 𝑗|𝑥) =  
𝑒 𝑧𝑗

∑ 𝑒𝑧𝑘𝐶
𝑘=1

 (9) 

 Rumus (9) merupakan lapisan output terakhir yang mengubah hasil 

perhitungan angka menjadi nilai probabilitas. Nilai probabilitas tertinggi 

menentukan hasil prediksi akhir (apakah Jeruk Sehat atau Tidak Sehat). 

2.10   Penelitian Terdahulu 

Bagian ini membahas beberapa hasil penelitian terdahulu yang relevan 

dan dapat dijadikan sebagai dasar acuan dalam topik penelitian ini. 

Penelitian-penelitian tersebut telah dipilih secara selektif agar sesuai dengan 

fokus kajian yang diangkat, sehingga diharapkan dapat memberikan 

gambaran yang lebih jelas serta menjadi referensi pendukung dalam 

penyusunan dan penyelesaian penelitian ini. Berikut disajikan uraian 

mengenai beberapa penelitian terdahulu yang menjadi rujukan. 

Penelitian pertama, oleh Oki Saputra (2024) berjudul Uji Kinerja 

Sistem Kontrol Gripper pada Robot Lengan untuk Pemetikan Tomat. 

Penelitian ini meyakini bahwa inovasi dibutuhkan untuk peningkatan 

efisiensi dalam pertanian salah satunya berupa pengenalan teknologi 

robotiika dalam pertanian yang memudahkan pekerjaan di lapangan. Metode 

yang dilakukan adalah metode eksperimental sehingga langkah-langkah 

eksperimen melibatkan peran lengan robot yang dilengkapi dengan gripper. 

Hasilnya gripper pada lengan dapat beroprasi secara efektif mencapai 

presentase keberhasilan 100% dan dapat diandalkan untuk pengembangan 

robotika bidang pertanian. 
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Penelitian kedua, oleh Muhammad Alif (2025) yang berjudul 

Pengendalian Gerakan Robot OpenManipulator Untuk Operasi Pemindahan 

Barang Berbasis MATLAB. Penelitian ini bertujuan untuk mengontrol 

kecepatan dan mengatur sinkronasi gerakan servo agar bisa memindahkan 

objek (tabung kimia) dari suatu titik ke titik lain sesuai gerakan robot industri 

sehingga jika terdapat bahan kimia yang berbahaya bagi manusia dapat 

digantikan oleh robot. Hasil dari penilitian ini menyatakan bahwa prototipe 

robot Arm sudah berhasil memindahkan objek ke satu titik ke titik lain tetapi 

masih pada dua titik terdekat dan pergerakannya tidak teratur sehingga dapat 

membuat objek jatuh. 

Penelitian ketiga, berjudul Automated fruit sorting system integrating 

image processing and support vector machine techniques (Oyefeso et al., 

2025). Penelitian ini membahas sistem sortir buah otomatis (jeruk, tomat, dan 

mangga) menggunakan kamera ESP32-CAM, pengolahan citra, dan 

algoritma SVM untuk klasifikasi. Hasilnya menunjukkan tingkat akurasi 

hingga 100%, dengan sistem mampu menyortir buah secara fisik ke wadah 

berbeda sesuai hasil klasifikasi. Penelitian ini menunjukkan bahwa kombinasi 

machine learning dan image processing efektif meningkatkan efisiensi dan 

akurasi penyortiran buah. 

Penelitian keempat, dengan judul CNN-MLP-Based Configurable 

Robotic Arm for Smart Agriculture (Li et al., 2024) menjelaskan bahwa di 

tengah meningkatnya populasi global dan berkurangnya lahan pertanian yang 

dapat digarap, peningkatan produktivitas dan keberlanjutan di bidang 

pertanian menjadi sangat penting. Untuk mengatasi ketidakefisienan sistem 

pertanian tradisional yang kesulitan memenuhi kebutuhan produksi skala 

besar, penelitian tersebut memperkenalkan sistem Configurable Agricultural 

Robotic Arm (CARA), yang dirancang menggunakan Convolutional Neural 

Network (CNN) dan Multilayer Perceptron (MLP). Sistem ini 

mengintegrasikan lengan robot fleksibel, modul akuisisi citra, dan pusat 

pemrosesan berbasis kecerdasan buatan, guna mendukung berbagai tugas 

pertanian dengan presisi tinggi seperti pemanenan, penyemprotan pestisida, 

dan inspeksi tanaman. Hasil pengujian menunjukkan sistem mampu 
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meningkatkan efisiensi operasional, beradaptasi dengan baik terhadap 

berbagai kondisi pertanian, serta memperkuat presisi dan keberlanjutan 

praktik pertanian. 
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BAB III  

ANALISIS DAN PERANCANGAN SISTEM 

3.1 Tahapan Penelitian 

Pada bagian ini dijelaskan tahapan-tahapan penelitian yang dilakukan untuk 

mencapai tujuan penelitian. Setiap tahapan disusun agar proses penelitian dapat 

berjalan dengan baik dan menghasilkan data yang valid sesuai dengan 

permasalahan yang diteliti. 

 

Gambar 3. 1 Diagram alir tahapan penelitian 
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Gambar 3.1 memperlihatkan tahapan penelitian yang dilakukan dalam 

perancangan dan implementasi sistem penyortiran buah jeruk menggunakan robot 

Arm OpenManipulator berbasis Jetson Nano dan OpenCR. Pada tahap identifikasi 

masalah, diketahui bahwa proses penyortiran buah jeruk secara manual masih 

kurang efisien dan rentan terhadap kesalahan penilaian kualitas. Oleh karena itu, 

diperlukan sebuah sistem otomatis yang mampu membantu proses tersebut agar 

lebih cepat dan konsisten. Berdasarkan hasil identifikasi ini, dilakukan analisis 

kebutuhan untuk menentukan komponen perangkat keras dan perangkat lunak yang 

diperlukan. Proses ini diawali dengan pencarian berbagai sumber dan hasil 

penelitian sebelumnya yang membahas penerapan machine learning dan 

penggunaan robot Arm dalam penyortiran objek. Selanjutnya, dilakukan 

perancangan serta pembuatan program yang meliputi pelatihan model klasifikasi 

kualitas buah pada Jetson Nano dan pengendalian gerakan robot Arm melalui 

OpenCR. Dilakukan uji awal terhadap program guna memastikan bahwa 

pergerakan robot berfungsi sebagaimana mestinya. Jika hasil uji belum sesuai, 

dilakukan penyesuaian hingga sistem bekerja dengan baik. Setelah tahap tersebut 

berhasil, dilakukan tahapan untuk implementasi machine learning-nya. Hasil uji ini 

digunakan untuk menilai akurasi dan kinerja sistem serta menjadi dasar dalam 

penarikan kesimpulan penelitian. 

 

Gambar 3. 2 ID Servo 

Gambar 3.2 ID Servo menunjukan posisi serta penomoran masing-masing 

motor servo yang digunakan pada robot Arm OpenManipulator. Setiap servo 

memiliki ID yang berbeda-beda, dimulai dari bagian pangkal hingga ke ujung 

gripper, sehingga memudahkan proses identifikasi dan pengendalian setiap sendi 

secara terpisah. Pemberian ID ini sangat penting karena sistem pengendalian pada 

Arm OpenManipulator berbasis komunikasi digital melalui protokol Dynamixel, di 

mana setiap perintah yang dikirim dari mikrokontroler akan diterima hanya oleh 
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servo dengan ID yang sesuai. Dengan demikian, koordinasi antar-sumbu gerak 

dapat dilakukan secara sinkron dan presisi sesuai perintah yang diberikan melalui 

perangkat lunak pengendali. Selain itu, penomoran ID juga membantu dalam proses 

kalibrasi dan pemrograman gerakan, karena pengguna dapat dengan mudah 

mengetahui servo mana yang bertanggung jawab terhadap pergerakan tertentu, 

misalnya rotasi dasar, pergerakan lengan bawah, lengan atas, maupun pengripper 

(gripper).  

 

Gambar 3. 3 Diagram alur penerapan Machine learning 

Gambar 3.3 menunjukan Diagram alur penerapan Machine learning. Tahap 

awal dilakukan pengumpulan data set berupa citra buah jeruk yang digunakan 

sebagai bahan penelitian model lalu dilakukan data prepocessing untuk 

mempersiapkan data agar siap diproses, seperti pengubahan ukuran gambar, 

normalisasi, dan augmentasi data, tahap berikutnya dilakukan perancangan CNN 

Architecture disini penulis membuat arsitektur jaringan CNN yang digunakan untuk 

mengenali pola pada citra jeruk. Setelah arsitektur terbentuk dilakukan Model 
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Training guna melatih model menggunakan data training diikuti oleh Model 

Validation untuk mengevaluasi kinerja model terhadap data validasi , tahap ini 

digunakan untuk mengukur performa model seperti akurasi, precision, recall, dan 

F1-score. Jika model dinyatakan memiliki performa terbaik maka dilakukan 

Implementation, yaitu penerapan model ke dalam sistem yang telah dirancang. 

Seluruh proses diakhiri dengan tahap Selesai yang menandakan model siap 

digunakan untuk melakukan klasifikasi citra jeruk secara otomatis. 

3.1.1 DataSet 

Dataset didapatkan melalui Mendeley Data, memiliki jumlah 3000 dataset 

per kategori nya (jeruk sehat, kanker jeruk, dan penyakit melanose) tujuan dataset 

ini dikumpulkan adalah untuk mengetahui jenis penyakit jeruk apa yang paling 

dominan ditemukan di wilayah timur Uganda. Dataset buah jeruk dikumpulkan 

menggunakan kamera ponsel dalam format Highly Enhanced Image Container 

(HEIC) dan kemudian dikonversi ke format JPEG. Penulis hanya menggunakan 2 

kategori yaitu jeruk sehat, dan tidak sehat diambil dari 1500 dataset kanker jeruk 

dan 1500 dataset penyakit melanose. 

 

Gambar 3. 4 Dataset jeruk sehat 

 Gambar 3.4 menujukan dataset untuk kategori/label jeruk sehat yang 

digunakan dalam penelitian ini. Citra-citra pada kategori ini menampilkan jeruk 

dengan kondisi kulit yang baik, warna merata, dan tidak memiliki cacat fisik seperti 

bintik hitam, bercak busuk, atau perubahan warna mencolok. Data tersebut 
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digunakan sebagai representasi visual dari jeruk dengan kualitas normal yang akan 

menjadi pembanding terhadap kategori jeruk tidak sehat dalam proses pelatihan 

model Machine learning. 

 

Gambar 3. 5 Dataset jeruk tidak sehat 

 Gambar 3.5 menunjukan dataset untuk kategori jeruk tidak sehat yang 

digunakan dalam penelitian ini. Kategori ini menampilkan kondisi kulit yang 

memiliki bercak hitam dari ukuran besar, kecil, banyak bercak maupun sedikit 

bercak, ada pula jeruk yang seluruhnya berwarna hitam karena terkena penyakit 

melanose. 
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Gambar 3. 6 Diagram Alur Komunikasi Jetson Nano dengan OpenCR 

Gambar 3.6 menunjukan Diagram alur komunikasi Jetson Nano dengan 

OpenCR, alur proses komunikasi antara Jetson Nano sebagai pengendali utama dan 

OpenCR sebagai penggerak robot Arm melalui protokol UART. Jetson Nano 

mengirimkan hasil klasifikasi dari model machine learning dalam bentuk data serial 

ke OpenCR. Setelah data diterima, OpenCR menginterpretasikan perintah tersebut 

untuk menggerakkan motor servo sesuai hasil klasifikasi, misalnya untuk 

mengarahkan atau memindahkan buah ke wadah tertentu.  
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3.2  Proses Pengerjaan 

Proses pengerjaan penelitian ini dilakukan secara bertahap dan terstruktur 

agar setiap bagian dari sistem dapat berfungsi sesuai dengan tujuan yang telah 

ditetapkan. Tahapan dimulai dari tahap perancangan konsep sistem secara 

keseluruhan, yaitu menentukan kebutuhan perangkat keras dan perangkat lunak 

yang akan digunakan. Perangkat utama yang digunakan meliputi Jetson Nano 

sebagai pusat pemrosesan data, OpenCR sebagai pengendali robot Arm 

OpenManipulator, serta kamera sebagai alat pengambil citra buah jeruk. Pada tahap 

ini juga dirancang alur kerja sistem mulai dari pengambilan gambar, penerapan 

machine learning untuk analisis kualitas buah, hingga pengiriman hasil pengenalan 

ke OpenCR agar robot dapat melakukan penyortiran secara otomatis. 

 

Gambar 3. 7 Topologi Perangkat 

Gambar 3.7 merupakan topologi perangkat sehingga proses berjalannya 

prototipe dimulai dengan memberikan tegangan 10 volt melalui adaptor pada Jetson 

Nano dan OpenCR agar dapat standalone. Tahap awal (nomor 1) berupa komputer 

untuk melatih data, model yang telah jadi ditanam dan dijalankan oleh Jetson Nano 

(nomor 2) berupa citra jeruk yang tertangkap kamera (nomor 3) membuat Jetson 

Nano (nomor 4) menjalankan model AI untuk klasifikasi jeruk sesuai dengan model 

machine learning yang digunakan, output dari model dikirim (nomor 5) dari Jetson 

Nano ke OpenCR via UART. OpenCR kemudian memproses data tersebut untuk 

menggerakkan (nomor 6) robot Arm OpenManipulator sesuai perintah yang 

diterima, misalnya untuk memindahkan (nomor 7)  jeruk sehat ke Box B dan jeruk 

tidak sehat ke Box A berdasarkan hasil analisis. Setelah berhasil memindahkan jeruk 

sesuai hasil klasifikasi robot Arm akan kembali ke posisi awal yaitu berada di center. 

Tahap akhir berupa tahap pengujian untuk memastikan seluruh komponen dapat 
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berfungsi dengan baik. Pengujian dilakukan terhadap proses komunikasi data, 

keakuratan pengenalan oleh machine learning, serta respon robot Arm terhadap 

perintah yang dikirim. Hasil pengujian kemudian dianalisis untuk menilai kinerja 

sistem secara keseluruhan. Jika ditemukan ketidaksesuaian, dilakukan perbaikan 

pada bagian terkait hingga sistem dapat bekerja sesuai tujuan penelitian. 

Keterangan: 

1. Objek/ buah jeruk 

2. Kamera webcam logitech C270 HD 

3. Jetson Nano  

4. OpenCR 1.0 

5. Robot Arm OpenManipulator-X 

6. Wadah (Box A/Box B) untuk sortir 

3.3  Metode Evaluasi 

Metode evaluasi digunakan untuk menilai kinerja sistem yang telah dibuat, 

baik dari sisi penerapan machine learning maupun dari integrasi komunikasi antara 

Jetson Nano dan OpenCR dalam mengendalikan robot Arm. Dua jenis evaluasi 

dilakukan agar dapat diketahui sejauh mana sistem mampu bekerja sesuai dengan 

tujuan penelitian, yaitu melakukan penyortiran buah jeruk berdasarkan kualitas 

secara otomatis dan tepat.  

 Evaluasi model dilakukan untuk mengetahui seberapa akurat metode 

machine learning yang diterapkan, evaluasi difokuskan pada tingkat akurasi model 

dalam mengklasifikasikan citra buah jeruk. Hal ini dapat dinilai berdasarkan 

perbandingan antara hasil klasifikasi yang diberikan oleh sistem dengan kondisi 

aktual dari data uji. Sementara itu, pada evaluasi komunikasi serial, dilakukan 

pengujian ketepatan transmisi data antara Jetson Nano dan OpenCR menggunakan 

protokol UART yang dimonitoring melalui serial monitor untuk memastikan tidak 

terjadi keterlambatan atau kehilangan data selama proses pengiriman perintah, yang 

terakhir evaluasi akurasi pemindahan jeruk untuk mengetahui apakah pemindahan 

dan deteksi pada buah jeruk sudah berjalan dengan baik sesuai topologi perangkat. 
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Dengan demikian, hasil evaluasi dapat menjadi dasar untuk melakukan perbaikan 

dan penyempurnaan sistem agar dapat bekerja lebih optimal. 

 

Gambar 3. 8 Ilustrasi Posisi OpenManipulator Arm 

Gambar 3.8 merupakan ilustrasi posisi arm OpenManipulator karena 

memiliki keterbatasan jangkauan maka jarak antara  Arm  OpenManipulator ke box 

A dan B tidak jauh. Proses sortir berlangsung secara otomatis setelah sistem 

melakukan analisis terhadap citra jeruk seperti pada gambar 3.5. Dengan demikian, 

gambar ini menggambarkan tahapan akhir dari proses pengambilan keputusan 

berbasis machine learning, di mana hasil klasifikasi langsung berpengaruh terhadap 

tindakan fisik yang dilakukan oleh sistem, yaitu memindahkan objek sesuai dengan 

kategori yang telah ditentukan. 

Keterangan: 

1. Posisi awal terlihat pada gambar 3.8 (kiri), posisi mengambil terlihat pada 

gambar 3.8 (kanan) 

2. Kotak sebelah kanan OpenManipulator merupakan tempat jeruk tidak sehat 

disortir 

3. Kotak sebelah kiri OpenManipulator merupakan tempat jeruk  sehat disortir 



 

45 

 

Tabel 3. 2 Tabel Pengujian 

Jeruk Hasil Deteksi Benar / Salah Akurasi ( 0/100 

%) 

    

 

 

   

    

Rata-rata akurasi  

Tabel 3.2 Hasil Pengujian menunjukan hasil dari penelitian yang diperoleh 

dari penelitian yang telah dilakukan, berdasarkan hasil tersebut, dapat diketahui 

bahwa sistem mampu bekerja sesuai dengan rancangan yang telah dibuat. Nilai-

nilai yang ditunjukkan pada tabel menggambarkan kinerja serta tingkat keakuratan 

sistem dalam menjalankan fungsi utamanya. 

Tabel 3. 3 Tabel Pengujian Pergerakan 

Klasifikasi Posisi 

pengambilan 

Hasil 

Penempatan 

Keterangan 

    

    

Tabel 3.3 dirancang untuk mendokumentasikan hasil pengujian respon 

gerak dari robot Arm OpenManipulator. Pengujian ini bertujuan untuk 

memverifikasi akurasi penempatan objek berdasarkan klasifikasi yang diterima dari 

Jetson Nano, serta memastikan konsistensi posisi pengambilan dan peletakan. 
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BAB IV 

HASIL DAN PEMBAHASAN 

4.1   Rincian Penelitian 

Pada subbab ini, penulis menguraikan rincian pelaksanaan penelitian yang 

mencakup aspek operasional dan teknis. Pembahasan diawali dengan deskripsi 

lokasi dan rentang waktu pelaksanaan penelitian guna memberikan gambaran 

konteks pengambilan data dan pengujian. Selanjutnya, dipaparkan rancangan 

topologi sistem yang diusulkan untuk menggambarkan alur komunikasi data dan 

arsitektur sistem secara keseluruhan. Bagian ini diakhiri dengan rincian spesifikasi 

perangkat keras (hardware) dan perangkat lunak (software) yang digunakan sebagai 

lingkungan pengembangan dan pengujian sistem. 

4.1.1 Tempat dan Waktu 

Penelitian dilaksanakan di lab Human Machine Interaction (HMI) gedung 

Research and Development (RnD) lt.6 Universitas Ma Chung Malang dengan 

Alamat Jalan Villa Puncak Tidar Blok N No. 1 Karangwidoro, Kecamatan Dau, 

Kabupaten Malang, Jawa Timur. Penelitian dimulai sejak Senin, 01 September 2025 

dan diakhiri pada 23 Desember 2025. Hasil akhir penelitian memfokuskan uji sortir 

buah jeruk menggunakan sistem standalone berbasis robot Arm OpenManipulator 

dan board OpenCR, yang terintegrasi dengan modul kamera serta machine learning 

pada Jetson Nano untuk menyortir jeruk secara otomatis. 

4.1.2 Alat dan Komponen 

Alat dan komponen yang digunakan dalam penelitian ini berupa power 

adaptor 12 Volt sebagai input daya pada OpenCR dan 5 Volt pada JetsonNano, 

OpenCR sebagai penerima klasifikasi dan pengendali robot Arm OpenManipulator, 

robot Arm OpenManipulator sebagai robot penyortir, Jetson Nano sebagai tempat 

model machine learning dijalankan dan hasil klasifikasi di kirim ke OpenCR, 

webcam logitech C270 HD sebagai penangkap citra jeruk, kabel jumper sebagai 

penghubung komunikasi serial UART, monitor, keyboard dan mouse sebagai alat 

bantu pengendalian Jetson Nano, terakir berupa 20 buah jeruk dibagi menjadi 10 

jeruk sehat dan 10 jeruk tidak sehat sebagai tahap terakir uji coba. 
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Gambar 4. 1 Rangkaian Prototipe 

Gambar 4.1 memperlihatkan rangkaian keseluruhan prototipe yang 

mengacu pada topologi perangkat di Gambar 3.7. Komunikasi antara Jetson Nano 

dan OpenCR terjalin melalui protokol UART, di mana pin TX (GPIO_08) pada 

Jetson Nano dihubungkan ke pin RX (GPIO_0) pada OpenCR, serta menyatukan 

jalur ground menggunakan kabel jumper. Posisi kamera diarahkan langsung ke area 

penempatan jeruk, dan tersedia dua kotak penampung untuk hasil akhir penyortiran. 

 

Gambar 4. 2 Input citra jeruk yang digunakan 
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Gambar 4.2 menunjukan input data berupa 10 buah jeruk yang digunakan 

penulis, terdiri dari 5 jeruk sehat dan 5 jeruk tidak sehat yang mirip dengan dataset 

yang telah dilatih. 

 

Gambar 4. 3 Input citra jeruk yang digunakan (2) 

Gambar 4.3 memperlihatkan input jeruk 10 buah terakir yang digunakan, 

terdiri dari 5 jeruk sehat dan 5 jeruk tidak sehat. Coretan spidol ditambahkan untuk 

menekankan bahwa jeruk tersebut berupa jeruk tidak sehat. 

4.2    Pengambilan Data 

Dataset yang digunakan dalam penelitian ini merupakan dataset citra buah 

jeruk yang dikelompokkan ke dalam dua kelas klasifikasi, yaitu kelas sehat 

(Gambar 3.4) dan tidak sehat (Gambar 3.5). Kumpulan data ini dipersiapkan untuk 

melatih arsitektur Convolutional Neural Network (CNN) berbasis MobileNetV2. 

Total citra yang dikumpulkan berjumlah 3000 gambar. Sebelum masuk ke tahap 

pelatihan, keseluruhan data tersebut dipilah melalui proses spliting dataset menjadi 

data latih (train) dan data uji (test) dengan rasio perbandingan 80:20 sehingga 

menghasilkan akurasi data seperti pada tabel 4.1 dan 4.2 
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Tabel 4. 1 Hasil akurasi data train 

 precision recall f1-score support 

jeruk_sehat 0.96 0.98 0.97 2400 

jeruk_tidak_sehat 0.98 0.96 0.97 2400 

     

accuracy   0.97 4800 

macro avg 0.97 0.97 0.97 4800 

weighted avg 0.97 0.97 0.97 4800 

 

Tabel 4.1 menunjukan hasil akurasi, recall, dan f1-score dari data latih (data 

training) dengan hasil yang memuaskan akurasi 97% , precision 96% untuk 

jeruk_sehat 98% untuk jeruk_tidak_sehat, recall 98% untuk jeruk_sehat 96% untuk 

jeruk_tidak_sehat, f1-score 97% untuk kedua kelas. 

Tabel 4. 2 Hasil akurasi data test 

 precision recall f1-score support 

jeruk_sehat 0.97 0.98 0.97 600 

jeruk_tidak_sehat 0.98 0.96 0.97 600 

     

accuracy   0.97 1200 

macro avg 0.97 0.97 0.97 1200 

weighted avg 0.97 0.97 0.97 1200 

 

Tabel 4.2 menunjukan hasil akurasi, recall, dan f1-score dari data uji (data 

test) dengan hasil yang memuaskan hampir sama dengan data latih akurasi 97% , 

precision 97% untuk jeruk_sehat 98% untuk jeruk_tidak_sehat, recall 98% untuk 

jeruk_sehat 96% untuk jeruk_tidak_sehat, f1-score 97% untuk kedua kelas 

menandakan bahwa model dapat mengklasifikasi buah jeruk dengan baik sesuai 

kelas. 

 

 



 

50 

 

 

Gambar 4. 4 Grafik training validation 

Gambar 4.4 menunjukkan hasil pelatihan selama 10 epoch yang mencapai 

konvergensi optimal. Grafik memperlihatkan peningkatan akurasi yang stabil 

hingga 0.97 dan penurunan loss di bawah 0.1. Kurva training dan validation yang 

bergerak beriringan menandakan model memiliki kemampuan generalisasi yang 

baik membuktikan tidak adanya indikasi overfitting.  

 

Gambar 4. 5 Confusion matrix train data 
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Gambar 4.5 memvisualisasikan detail performa klasifikasi model yang 

merepresentasikan hasil evaluasi pada data train dengan total 2400 sampel. Pada 

tahap ini, model menunjukkan akurasi tinggi dengan berhasil mendeteksi 2352 

sampel sebagai jeruk sehat dan 2304 sampel sebagai jeruk tidak sehat secara tepat. 

 

Gambar 4. 6 Confusion matrix test data 

Gambar 4.6 memvisualisasikan detail performa klasifikasi model yang 

merepresentasikan hasil evaluasi pada data test dengan total 600 sampel. Pada tahap 

ini, model menunjukkan akurasi tinggi dengan berhasil mendeteksi 588 sampel 

sebagai jeruk sehat dan 576 sampel sebagai jeruk tidak sehat secara tepat. 

Tabel 4. 3 Data posisi robot Arm 

ID  

Servo 

Posisi  

Home 

Posisi  

Ambil 

Posisi 

Jeruk 

Sehat 

Posisi Jeruk 

Tidak Sehat 

ID 11 -0.057 1.000 -0.471 0.437 

ID 12 -0.202 -0.202 0.753 0.718 

ID 13 -0.397 -0.397 -1.002 -0.822 

ID 14 1.150 1.150 1.534 1.163 

ID 15 0.010 0.005 0.010 0.010 
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Tabel 4.3 memperlihatkan data joint robot Arm untuk posisi home, posisi 

mengambil buah jeruk, posisi sortir jeruk sehat dan posisi sortir jeruk tidak sehat. 

Data ini diambil dengan cara menjalankan program open manipulator chain 

teaching pada Arduino IDE agar bisa mendapat posisi / joint yang diinginkan. 

Sesuai dengan namanya chain teaching dilakukan dengan menggerakkan robot ke 

posisi yang sesuai lalu pada serial monitor akan menampilkan angka joint nya. 

Visualisasi id bisa dilihat pada gambar 4.4  

 

 

Gambar 4. 7 ID robot Arm 

Gambar 4.7 memperlihatkan visualisasi ID pada robot Arm dimana robot 

Arm terdiri dari 5 servo dengan ID 11 s/d ID 15. 



 

53 

 

4.3    Implementasi Kode Program 

4.3.1 Kode Implementasi CNN 

Gambar 4. 8 Implementasi machine learning CNN 

Gambar 4.8 menunjukan potongan kode untuk implementasi machine 

learning CNN. Pada baris 1-9 dataset dibagi menjadi 80% data latih dan 20% data 

validasi menggunakan metode stratified sampling pada variabel stratify . Metode 

ini menjamin bahwa model dilatih dan diuji dengan tingkat kesulitan yang 

seimbang untuk setiap kategori, sehingga menghindari bias pada hasil akurasi. Pada 

baris 8-15 bertujuan menginisialisasi arsitektur MobileNetV2 sebagai 

pengekstraksi fitur untuk metode transfer learning. Input diatur agar menerima citra 

berwarna (RGB) yang telah dinormalisasi sesuai standar model. Model dimuat 

menggunakan bobot pre-trained ImageNet tanpa lapisan klasifikasi bawaan 

(include_top=False), lalu seluruh parameternya dibekukan (trainable=False) agar 

kemampuan dasar model dalam mengenali fitur visual tidak rusak saat dilatih 

dengan dataset jeruk. Pada baris 17-19 menunjukan arsitektur klasifikasi tambahan 

yang dirancang untuk memproses fitur visual hasil ekstraksi MobileNetV2 menjadi 

1. train_paths, val_paths, train_labels, val_labels 
= train_test_split( 

2. all_filepaths, 
3. all_labels, 
4. test_size=0.2, 
5. random_state=123,  
6. stratify=all_labels  
7. ) 

 

8. input_shape = IMG_SIZE + (3,) 
9. preprocess_input = 

tf.keras.applications.mobilenet_v2.preprocess_in

put 

10. base_model = MobileNetV2( 

11. input_shape=input_shape, 

12. include_top=False, 

13. weights='imagenet' 

14. ) 

15. base_model.trainable = False 

16.  

17. x = layers.GlobalAveragePooling2D()(x)  

18. x = layers.Dropout(0.2)(x 

19. outputs = layers.Dense(1, 

activation='sigmoid')(x)  
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sebuah keputusan akhir. Dimulai dengan mereduksi dimensi data secara efisien 

menggunakan global average pooling, dilanjutkan dengan penerapan teknik 

regularisasi dropout untuk mencegah, dan diakhiri dengan lapisan dense tunggal 

beraktivasis sigmoid yang bertugas menghasilkan probabilitas biner (nilai 0 hingga 

1) untuk menentukan kategori jeruk (sehat atau tidak). Hasil akhir code ini berupa 

model dalam format .npz agar sesuai dengan Jetson Nano. 

4.3.2 Kode Transmitter 

Gambar 4. 9 Kode fungsi untuk menjalankan model 

Gambar 4.9 menunjukan kode fungsi untuk menjalankan model .npz yang 

telah dilatih dengan machine learning CNN (baris 1-11) pada Jetson Nano dengan 

cara merekonstruksi ulang arsitektur model agar sama persis dengan struktur saat 

pelatihan. Fungsi ini menyusun lapisan input, base model MobileNetV2, dan 

lapisan klasifikasi tambahan agar siap dimuati oleh bobot dari .npz yang telah 

disimpan. 

1. def cek_keberadaan_jeruk(frame): 

2. hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 

3. mask_orange = cv2.inRange(hsv, LOWER_ORANGE, 

UPPER_ORANGE) 

4. mask_green = cv2.inRange(hsv, LOWER_GREEN, 

UPPER_GREEN) 

5. combined_mask = cv2.bitwise_or(mask_orange, 

mask_green) 

6. kernel = np.ones((5,5), np.uint8) 

 

1. def build_manual_model(): 
2. inputs = Input(shape=IMG_SIZE + (3,)) 
3. x = 

tf.keras.applications.mobilenet_v2.preprocess_in

put(inputs) 

4. base_model = MobileNetV2(input_shape=IMG_SIZE + 
(3,), include_top=False, weights=None) 

5. base_model.trainable = False 
6. x = base_model(x, training=False) 
7. x = layers.GlobalAveragePooling2D()(x) 
8. x = layers.Dropout(0.2)(x) 
9. x = layers.Dense(128, activation='relu')(x) 
10. outputs = layers.Dense(1, 

activation='sigmoid')(x) 

11. return tf.keras.Model(inputs, outputs) 
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7. combined_mask = cv2.morphologyEx(combined_mask, 

cv2.MORPH_OPEN, kernel) 

8. pixel_count = cv2.countNonZero(combined_mask) 

9. return pixel_count > MIN_AREA_PIXEL, 

combined_mask 

Gambar 4. 10 Kode fungsi untuk keberadaan jeruk 

Gambar 4.10 menunjukan kode fungsi untuk mendeteksi keberadaan buah 

jeruk berdasarkan rentang warna oranye dan hijau dalam format HSV. Jika jumlah 

piksel warna yang terdeteksi melebihi batas tertentu (MIN_AREA_PIXEL = 5000), 

sistem akan menganggap ada jeruk dan mengizinkan model AI untuk mulai bekerja. 

Ini bertujuan agar AI tidak berjalan saat meja kosong. Jadi meskipun kamera 

menyala pada background apapun, jika tidak ada objek jeruk yang tertangkap pada 

kamera maka AI tidak akan berjalan (tidak adanya klasifikasi yang muncul). Setelah 

kamera dipastikan menangkap objek jeruk maka jeruk akan menjadi input dan 

diproses dengan kode pada gambar 4.11 

 

1. img_input = cv2.resize(rgb, IMG_SIZE) 

2. img_array = np.expand_dims(np.array(img_input), 

axis=0) 

 

3. klasifikasi = model.predict(img_array) 

4. score = klasifikasi[0][0] 

 

5. if score < 0.5: 

6. current_label = "JERUK SEHAT" 

7. data_to_send = CMD_SEHAT 

8. else: 

9. current_label = "JERUK TIDAK SEHAT" 

10. data_to_send = CMD_TIDAK_SEHAT 

Gambar 4. 11 Kode klasifikasi jeruk berdasarkan model machine learning 

Gambar 4.11 merupakan proses klasifikasi, singkatnya gambar jeruk yang 

terdeteksi kamera akan menjadi input untuk menjalankan model, gambar tersebut 

akan diperkecil ke 160x160 agar sesuai dengan model MobileNetV2. Selanjutnya, 

model melakukan predict untuk menghasilkan nilai antara 0 atau 1. Penentuan 

keputusan dilakukan menggunakan nilai threshold sebesar 0.5. Jika skor klasifikasi 
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bernilai di bawah 0.5, sistem akan mengklasifikasikan objek sebagai jeruk sehat 

dan menyiapkan perintah CMD_SEHAT. Sebaliknya, jika skor berada di atas 0.5, 

objek diklasifikasikan sebagai jeruk tidak sehat dengan perintah 

CMD_TIDAK_SEHAT yang siap dikirimkan ke mikrokontroler.  

1. if current_label == last_prediction: 
2.                         consistent_frames += 1 
3.                     else: 
4.                         consistent_frames = 0 
5.                     last_prediction = 

current_label 

6.  
7.                     if consistent_frames >= 

FRAMES_TO_VALIDATE: 

8.                         print(f" MENGIRIM: 
{current_label}") 

9.                          
10.  

11.     if ser is not None: ser.close() 

12.     cap.release() 

13.     cv2.destroyAllWindows() 

Gambar 4. 12 Kode transmitter dari Jetson Nano ke OpenCR 

Gambar 4.12 menunjukan potongan kode untuk mengirim data yang telah 

berhasil di klasifikasi oleh CNN ke OpenCR melalui UART.  Pada baris 1-7 

menunjukan agar klasifikasi CNN lebih akurat, kamera harus menangkap sebanyak 

15 frame dahulu (FRAMES_TO_VALIDATE = 15) jika dalam 15 frame hasilnya 

sama semua secara beruntun maka hasil tersebut akan dikirim ke OpenCR melalui 

kode baris 11-13. Serial port yang digunakan pada Jetson Nano agar bisa 

berkomunikasi dengan OpenCR dengan kabel jumper Bernama ttyTHS1. 

4.3.3 Kode Receiver 

 

1. double G_BUKA  = 0.010;  
2. double G_TUTUP = 0.005;  

 

3. void setup() { 
4. Serial.begin(115200);        
5. JETSON_SERIAL.begin(115200);  

 

6. else if (step == 6) { 
7. if (tujuan_sehat == false) {  
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Gambar 4. 13 Kode receiver dan menjalankan robot Arm 

Gambar 4.13 memperlihatkan kode pada OpenCR yang menerima data dari 

Jetson Nano dan menjalankan robot Arm untuk klasifikasi ke posisi jeruk sehat dan 

jeruk tidak sehat. Baris 1 dan 2 mendefinisikan joint gripper untuk buka dan tutup, 

lalu baris 4 dan 5 menunjukan baudrate yang sama antara Jetson Nano dengan 

OpenCR agar data yang disampaikan bersih. Pada baris 6-15 menunjukan joint 

pergerakan untuk sortir ke jeruk sehat dan jeruk tidak sehat. Pada masa percobaan 

penulis melihat melalui serial monitor Arduino IDE apakah data klasifikasi dari 

Jetson Nano ke OpenCR berhasil terkirim, setelah berhasil dan di program 

sedemikian rupa sesuai dengan posisi klasifikasi baru usb antar laptop dan OpenCR 

dilepas agar 100% hardware (standalone). 

 

 

8. target.push_back(0.437); 
target.push_back(0.718); target.push_back(-

0.822); target.push_back(1.163); 

9. } else { 
10. target.push_back(-0.471); 

target.push_back(0.753); target.push_back(-

1.002); target.push_back(1.534); 

11. } 

12. open_manipulator.makeJointTrajectory(target

, 4.0); 

13. step++; step_timer = millis() + 5000; 

14. } 

 

15. } 
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4.3.4 Tampilan Jendela Monitoring  

 

Gambar 4. 14 Jendela untuk memantau hasil klasifikasi pada Jetson Nano 

Gambar 4.14 memperlihatkan kamera yang sudah siap untuk merekam citra 

jeruk, terlihat dari keterangan di atas kiri dengan tulisan siap – letakan jeruk. Lanjut 

ke tahap berikutnya yaitu meletakkan jeruk, setelah jeruk diletakkan barulah model 

machine learning akan melakukan klasifikasi apakah jeruk yang tertangkap kamera 

ini berupa jeruk sehat atau jeruk tidak sehat, untuk contoh jeruk sehat bisa dilihat 

pada gambar 4.15 

 

Gambar 4. 15 Jendela untuk memantau memperlihatkan hasil jeruk sehat  
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Gambar 4.15 memperlihatkan keterangan jeruk sehat yang berasal dari 

klasifikasi machine learning terhadap jeruk sehat, garis putih pada bawah kotak 

jeruk sehat berjalan dari kiri ke kanan untuk menunjukan bahwa frame ditangkap 

sebanyak 15 kali dengan hasil yang sama, jika hasil berbeda dan belum sampai 15 

kali frame maka garis putih akan mengulang kembali sampai berhasil berjalan 15 

kali (garis putih full). Demikian pula hasil pada jeruk tidak sehat gambar 4.16 

 

Gambar 4. 16 Jedela untuk memantau memperlihatkan hasil jeruk tidak sehat  

Gambar 4.16 memperlihatkan keterangan jeruk tidak sehat yang berasal dari 

klasifikasi machine learning terhadap jeruk tidak sehat, dengan indicator warna 

merah yang memperlihatkan kondisi seakan jeruk tersebut tidak sehat. 

 

Gambar 4. 17 Jendela untuk memantau memperlihatkan kondisi setelah machine 

learning berhasil mengklasifikasi 
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Gambar 4.17 memperlihatkan kondisi dimana machine learning telah 

berhasil mengklasifikasi suatu jeruk, lalu menunggu diambil oleh robot Arm, 

sehingga untuk sortir jeruk selanjutnya menunggu jeruk yang didepan kamera 

diambil, setelah berhasil diambil oleh robot arm, jendela pemantau akan kembali 

pada keterangan siap – letakkan jeruk.  

4.4   Hasil Pengujian 

Hasil pengujian terdiri dari pengujian pada klasifikasi machine learning dan 

pengujian ketepatan pada pergerakan robot Arm.  

Tabel 4. 4 Pengujian klasifikasi machine learning 

Jeruk Hasil 

Deteksi 

Benar / 

Salah 

Akurasi  

(0/100 %) 

Sehat Sehat Benar 100% 

Sehat Sehat Benar 100% 

Tidak sehat Tidak sehat Benar 100% 

Tidak sehat Tidak sehat Benar 100% 

Sehat Tidak sehat Salah 0% 

Sehat Sehat  Benar 100% 

Tidak sehat Tidak sehat Benar 100% 

Tidak sehat Tidak sehat Benar 100% 

Sehat Sehat Benar 100% 

Tidak sehat Tidak sehat Benar 100% 

Tidak sehat Tidak sehat Benar 100% 

Sehat Sehat Benar 100% 

Sehat Sehat Benar 100% 

Tidak sehat Sehat Salah 0% 

Sehat Sehat Benar 100% 

Sehat Sehat Benar 100% 

Tidak sehat Tidak sehat Benar 100% 

Sehat Sehat Benar 100% 

Tidak sehat Tidak sehat Benar 100% 
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Pada tabel 4.4 terlihat bahwa rata-rata akurasi yang didapatkan pada 

pengujian ini sebesar 90%, dalam percobaan kamera menangkap 20 citra jeruk 

mendapatkan hasil yang salah  dalam mendeteksi 1 jeruk sehat dan 1 jeruk tidak 

sehat. Membuktikan bahwa machine learning tergolong akurat, kesalahan yang 

terjadi kebanyakan diakibatkan pencahayaan dan background saat menangkap citra 

jeruk, dapat dibuktikan saat jeruk diarahkan lagi di kamera hasilnya sesuai dengan 

kenyataan. 

Tabel 4. 5 Tabel hasil pengujian gerak robot Arm 

Klasifikasi Posisi 

Pengambilan 

Hasil 

Penempatan 

Keterangan 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

Jeruk tidak sehat ✓ ✓ Berhasil 

 

Jeruk Hasil 

Deteksi 

Benar / 

Salah 

Akurasi  

(0/100 %) 

Tidak sehat Tidak sehat Benar 100% 

Rata-rata akurasi 90% 
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Pada tabel 4.5 memperlihatkan hasil pengujian gerak robot Arm yang 

seluruhnya mengalami keberhasilan, membuktikan bahwa komunikasi UART dapat 

berjalan dengan baik dan tidak ada kesalahan kode pada receiver di OpenCR, 

simbol ✓ menandakan posisi pengambilan dan penempatan yang benar.  

 

Gambar 4. 18 Waktu satu siklus klasifikasi 

Gambar 4.10 secara spesifik memperlihatkan waktu klasifikasi 15 frame 

pada Jetson Nano adalah 3 (tiga) detik dan waktu tanggap robot setelah menerima 

data klasifikasi bersifat real-time jedanya <1ms sedangkan waktu yang dibutuhkan 

robot untuk menyelesaikan satu proses pemindahan, dimulai dari posisi tengah, 

turun mengambil jeruk, hingga meletakkannya ke wadah kategori jeruk sehat / sakit 

adalah 28 (dua puluh delapan) detik. Durasi ini merupakan hasil penjumlahan dari 

delay yang ditetapkan pada setiap langkah pergerakan program. Rincian pergerakan 

meliputi waktu 4 (empat) detik untuk joint saat turun mengambil jeruk dan 

membawa jeruk keposisi tengah, 2 (dua) detik saat gripping, dan 5 (lima) detik 

untuk posisi mengangkat jeruk dan menaruh ke wadah. Sehingga untuk satu siklus 

penuh total waktu yang dihabiskan berjumlah 31(tiga puluh satu) detik. 

4.5   Analisis dan Pembahasan 

Sistem integrasi antara Jetson Nano dan OpenManipulator terbukti mampu 

beroperasi secara standalone dengan kinerja yang andal. Salah satu keunggulan 

signifikan dari sistem ini adalah model MobileNetV2 dalam melakukan klasifikasi 

pada latar belakang (background) yang beragam. Kemampuan ini didasari oleh 
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prinsip kerja Convolutional Neural Network (CNN) yang tidak memproses citra 

sebagai satu kesatuan gambar statis, melainkan berfokus pada ekstraksi fitur visual 

(feature extraction). Model ini telah terlatih untuk mengenali karakteristik intrinsik 

yang melekat pada objek jeruk seperti tekstur pori kulit, gradasi warna, dan 

geometri bentuk, sehingga latar belakang dianggap sebagai noise yang tidak 

mempengaruhi hasil klasifikasi. Oleh karena itu, selama variabel lingkungan seperti 

jarak pengambilan citra antara kamera dan objek serta kondisi pencahayaan 

ruangan dijaga konstan, sistem mampu memisahkan objek utama dari latar 

belakangnya secara efektif tanpa memerlukan penyeragaman background. Selain 

kemampuan adaptasi visual tersebut, ketepatan pemilahan juga dijamin oleh 

penerapan algoritma validasi temporal sebanyak 15 frame sebelum pengiriman 

instruksi agar lengan robot hanya menerima perintah eksekusi yang konsisten guna 

meminimalisir kesalahan gerak pada aktuator. 

Meskipun model mampu beradaptasi dengan berbagai latar belakang, 

instabilitas intensitas cahaya yang ekstrem tetap menjadi kendala yang dapat 

mendistorsi fitur visual dan menyebabkan kesalahan klasifikasi. Di sisi mekanik, 

batasan fisik lebar bukaan gripper menjadi hambatan utama, di mana proses 

pengambilan dan pengangkatan seringkali gagal pada jeruk berukuran besar, 

sehingga sistem saat ini hanya mampu beroperasi secara optimal pada objek uji 

berupa jeruk varietas Siam berukuran medium. Potensi kegagalan lainnya terletak 

pada aspek integrasi perangkat keras, seperti kesalahan pendefinisian alamat port 

serial atau kualitas penyambungan kabel jumper pada pin GPIO yang kurang 

presisi, yang dapat memutus transmisi data instruksi dari Jetson Nano ke OpenCR 

meskipun deteksi visual berhasil dilakukan. 
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BAB V 

SIMPULAN DAN SARAN 

5.1   Simpulan 

Berdasarkan hasil perancangan dan pengujian yang telah dilakukan, 

penelitian ini berhasil mengimplementasikan sistem pengendalian gerakan robot 

OpenManipulator berbasis board OpenCR yang terintegrasi secara penuh dengan 

modul kamera dan Jetson Nano untuk melakukan penyortiran otomatis. Sistem 

terbukti mampu beroperasi secara mandiri (standalone), di mana komunikasi data 

melalui jalur serial UART berjalan stabil dalam menghubungkan hasil pemrosesan 

citra cerdas dengan instruksi pergerakan robot. 

Dalam hal kinerja penyortiran, lengan robot menunjukkan kemampuan 

yang andal dalam memisahkan jeruk berdasarkan klasifikasi kondisi sehat dan tidak 

sehat. Keakuratan aksi mekanik ini sangat didukung oleh penerapan logika validasi 

temporal pada perangkat lunak, yang secara efektif meredam fluktuasi pembacaan 

data sehingga robot hanya mengeksekusi perintah saat hasil deteksi sudah 

konsisten. Hal ini memastikan bahwa setiap gerakan penyortiran yang dilakukan 

robot benar-benar sesuai dengan keputusan sistem machine learning. 

Secara keseluruhan, sistem ini telah menunjukkan efektivitas yang baik 

sebagai gambaran awal penerapan otomasi pada industri pangan, khususnya dalam 

aspek akurasi logika pemilahan. Namun, evaluasi terhadap efisiensi penanganan 

fisik menunjukkan adanya batasan pada mekanisme gripper bawaan yang hanya 

bekerja optimal pada jeruk varietas Siam berukuran sedang. Kendala teknis masih 

ditemukan saat menangani jeruk dengan dimensi yang lebih besar, di mana 

keterbatasan lebar bukaan gripper seringkali menyebabkan kegagalan 

pengangkatan, sehingga aspek fleksibilitas mekanik ini menjadi catatan penting 

dalam penilaian efisiensi sistem secara menyeluruh. 

5.2   Saran 

 Untuk penyempurnaan sistem di masa mendatang, fokus utama sebaiknya 

diarahkan pada pembaruan mekanisme robot dan sistem visi komputer. Disarankan 

untuk beralih menggunakan robot dengan mekanisme vacuum gripper (sistem 
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hisap) sebagai alternatif penjepit mekanis, guna meminimalkan risiko kerusakan 

fisik pada buah sehingga robot bisa memilah jeruk jika dalam total yang banyak. 

Selain itu, sistem deteksi visual perlu ditingkatkan dengan mengimplementasikan 

konfigurasi multi-kamera atau menggunakan kamera yang dapat berputar 360 

derajat. Peningkatan ini bertujuan agar jeruk dapat dianalisis dari berbagai sudut 

pandang dengan minimal dua sisi, sehingga penilaian kualitas buah menjadi jauh 

lebih akurat dan menyeluruh. 
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Lampiran 

Lampiran A. Manual Book 

1. Tahap menyalakan Jetson Nano  

a. Hubungkan ke power adaptor (5V), HDMI, Keyboard, Mouse, Webcam 

portnya untuk USB bebas 

 

b. Jika tidak muncul gambar seperti ini saat booting, maka SD Card harus 

di flash ulang.  

Refrensi: https://www.youtube.com/watch?v=IVw1cyanRi0 

 
c. Selanjutnya jika muncul gambar seperti diatas, maka tampilan 

selanjutnya adalah anda diminta untuk memasukan password, 

username: machung, password: machung123 
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d. Tampilan jika anda sudah berhasil masuk ke Jetson Nano 

 
e. Memindahkan data dari PC ke Jetson Nano saya menggunakan wifi 

(lewat drive) bisa juga menggunakan flashdisk. Jika melalui drive maka 

bisa masuk ke chromium web browser bawaan jetson nano (gambar 

point d pojok kiri bawah) 

f. Masuk ke LXTerminal, dan masuk directory tempat filemu, contoh file 

saya ada di Downloads, maka perintahnya adalah cd Downloads, lalu 

tinggal jalankan file nya, saya menggunakan bahasa pemrograman 

python, jadi diawali dengan python3 lalu “nama file.py” ini merupakan 

proses uploading ke jetson nano 

 

g. Pastikan kabel Jumper pada Jetson Nano dan OpenCR sudah benar, 

Jetson Nano GPIO_08 terhubung dengan OpenCR GPIO_0, dan GND 

saling terhubung. 
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h. Jika UART tidak bisa connect, keluar dengan cara ctrl+z lalu ketik 

command sudo chmod  666/ dev/ttyTHS1 lalu run ulang programnya 

 
 

2. Tahap menyalakan dan menggerakan OpenManipulator 

a. Setup OpenCR karena OpenCR sebagai driver, hubungkan openCR 

dengan power adaptor 12V, sambungkan TTL dari OpenManipulator ke 

OpenCR, pastikan bahwa switch ON, jika OFF maka robot tidak akan 

bergerak 

 
b. Untuk upload program pada OpenCR, anda harus mengunduh board 

OpenCR pada Arduino UNO.  

Refrensi: https://emanual.robotis.com/docs/en/software/arduino_ide/  
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c. Saat board sudah terdownload dibutuhkan usb yang terhubung dari 

laptop/pc ke OpenCR, dan memilih menu board menjadi OpenCR, 

sesuaikan dengan COM pada board manager anda 

 

d. Pastikan bahwa indikasi pojok kanan bawah adalah connected, jika not 

connected bisa menekan tombol reset. 

 
e. Setelah sudah connect, selanjutnya upload dengan cara menekan tombol 

panah ke kanan, setelah dilakukan uploading maka sudah tersimpan di 

chip anda bisa melepas usb yang terhubung dengan OpenCR. 

 
f. Jika proses uploading gagal maka anda harus masuk ke bootloader 

dengan cara menekan Reset + SW2.  

Refrensi: 

https://emanual.robotis.com/docs/en/parts/controller/opencr10/  

https://emanual.robotis.com/docs/en/parts/controller/opencr10/
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Lampiran B. Kode Training CNN  

1. import tensorflow as tf 
2. from tensorflow.keras import layers, models 
3. from tensorflow.keras.applications import 

MobileNetV2 

4. import matplotlib.pyplot as plt 
5. import numpy as np 
6. from sklearn.metrics import 

classification_report 

7. from sklearn.model_selection import 
train_test_split # <-- KITA PAKAI INI 

8. import os 
9. import sys 

 

10. # --- 1. Konfigurasi Awal --- 

11. IMG_SIZE = (160, 160) 

12. BATCH_SIZE = 16 

13. EPOCHS = 10 

14. LEARNING_RATE = 0.0001 

15. DATA_DIR = 'dataset'  

 

16. print("--- Membaca daftar file dari 

'dataset' ---") 

 

17. all_filepaths = [] 

18. all_labels = [] 

 

19. class_names = sorted(os.listdir(DATA_DIR)) 

20. if len(class_names) < 2: 

21. print(f"ERROR: Hanya ditemukan 1 kelas di 

{DATA_DIR}. Periksa folder dataset Anda.") 

22. sys.exit(1) 

 

23. print(f"Kelas terdeteksi: {class_names}")  

 

24. for i, class_name in 

enumerate(class_names): 

25. class_dir = os.path.join(DATA_DIR, 

class_name) 
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26. if not os.path.isdir(class_dir): 

27. continue 

 

28. filepaths = [os.path.join(class_dir, f) for 

f in os.listdir(class_dir) if 

f.endswith(('.jpg', '.jpeg', '.png'))] 

29. labels = [i] * len(filepaths)  

 

30. all_filepaths.extend(filepaths) 

31. all_labels.extend(labels) 

 

32. print(f"Total gambar ditemukan: 

{len(all_filepaths)}") 

33. if len(all_filepaths) == 0: 

34. print("ERROR: Tidak ada gambar 

.jpg/.jpeg/.png yang ditemukan di dalam folder 

dataset.") 

35. sys.exit(1) 

 

36. print("--- Membagi data (80% train, 20% 

validation) ---") 

37. train_paths, val_paths, train_labels, 

val_labels = train_test_split( 

38. all_filepaths, 

39. all_labels, 

40. test_size=0.2,     

41. random_state=123,  

42. stratify=all_labels  

43. ) 

 

44. print(f"Total data latih: 

{len(train_paths)}") 

45. print(f"Total data validasi: 

{len(val_paths)}") 

46.  

 

47. def load_and_preprocess_image(path, label): 

48. """Fungsi untuk memuat, decode, dan resize 

gambar""" 

49. image = tf.io.read_file(path) 

50. image = tf.image.decode_jpeg(image, 

channels=3) 

51. image = tf.image.resize(image, IMG_SIZE) 

52. return image, label 

 

53. AUTOTUNE = tf.data.AUTOTUNE 
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54. train_dataset = 

tf.data.Dataset.from_tensor_slices((train_paths, 

train_labels)) 

55. train_dataset = 

train_dataset.map(load_and_preprocess_image, 

num_parallel_calls=AUTOTUNE) 

56. train_dataset = 

train_dataset.cache().shuffle(len(train_paths)).

batch(BATCH_SIZE).prefetch(buffer_size=AUTOTUNE) 

 

57. val_dataset = 

tf.data.Dataset.from_tensor_slices((val_paths, 

val_labels)) 

58. val_dataset = 

val_dataset.map(load_and_preprocess_image, 

num_parallel_calls=AUTOTUNE) 

59. val_dataset = 

val_dataset.batch(BATCH_SIZE).cache().prefetch(b

uffer_size=AUTOTUNE) 

 

60. data_augmentation = models.Sequential([ 

61. layers.RandomFlip('horizontal'), 

62. layers.RandomRotation(0.2), 

63. ], name="augmentation") 

 

64. print("--- Membangun model ---") 

65. input_shape = IMG_SIZE + (3,) 

66. preprocess_input = 

tf.keras.applications.mobilenet_v2.preprocess_in

put 

67. base_model = MobileNetV2( 

68. input_shape=input_shape, 

69. include_top=False, 

70. weights='imagenet' 

71. ) 

72. base_model.trainable = False 

 

73. inputs = tf.keras.Input(shape=input_shape) 

 

74. x = data_augmentation(inputs) 

 

75. x = preprocess_input(x) 

 

76. x = base_model(x, training=False) 

77. x = layers.GlobalAveragePooling2D()(x) 

78. x = layers.Dropout(0.2)(x) 

79. x = layers.Dense(128, activation='relu')(x) 

80. outputs = layers.Dense(1, 

activation='sigmoid')(x) 
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81. model = tf.keras.Model(inputs, outputs) 

 

82. model.compile( 

83. optimizer=tf.keras.optimizers.Adam(learning

_rate=LEARNING_RATE), 

84. loss=tf.keras.losses.BinaryCrossentropy(), 

85. metrics=['accuracy'] 

86. ) 

87. model.summary() 

 

88. print("--- Memulai pelatihan model ---") 

89. history = model.fit( 

90. train_dataset, 

91. epochs=EPOCHS, 

92. validation_data=val_dataset 

93. ) 

 

94. print("--- Menyimpan model ---") 

95. model.save('model_klasifikasi_jeruk.keras') 

96. print("Model berhasil disimpan sebagai 

'model_klasifikasi_jeruk.keras'") 

 

97. print("\n--- Memulai Evaluasi Model (F1-

Score, dll.) ---") 

 

98. val_dataset_for_predict = 

tf.data.Dataset.from_tensor_slices((val_paths, 

val_labels)) 

99. val_dataset_for_predict = 

val_dataset_for_predict.map(load_and_preprocess_

image, num_parallel_calls=AUTOTUNE) 

100. val_dataset_for_predict = 

val_dataset_for_predict.batch(BATCH_SIZE) 

 

101. print("--- Memprediksi Validation Set ---") 

102. y_pred_probs_val = 

model.predict(val_dataset_for_predict) 

103. y_pred_val = 

np.where(y_pred_probs_val.flatten() > 0.5, 1, 0) 

104. y_true_val = np.array(val_labels) 

 

105. print("\n--- HASIL EVALUASI (VALIDATION / 

TEST SET) ---") 

106. print(classification_report(y_true_val, 

y_pred_val, target_names=class_names)) 

 

107. train_dataset_for_predict = 

tf.data.Dataset.from_tensor_slices((train_paths, 

train_labels)) 
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108. train_dataset_for_predict = 

train_dataset_for_predict.map(load_and_preproces

s_image, num_parallel_calls=AUTOTUNE) 

109. train_dataset_for_predict = 

train_dataset_for_predict.batch(BATCH_SIZE) 

 

110. print("--- Memprediksi Training Set ---") 

111. y_pred_probs_train = 

model.predict(train_dataset_for_predict) 

112. y_pred_train = 

np.where(y_pred_probs_train.flatten() > 0.5, 1, 

0) 

113. y_true_train = np.array(train_labels) 

 

114. print("\n--- HASIL EVALUASI (TRAINING SET) 

---") 

115. print(classification_report(y_true_train, 

y_pred_train, target_names=class_names)) 

 

116. print("--- Menampilkan plot Akurasi dan 

Loss ---") 

117. acc = history.history['accuracy'] 

118. val_acc = history.history['val_accuracy'] 

119. loss = history.history['loss'] 

120. val_loss = history.history['val_loss'] 

 

121. plt.figure(figsize=(8, 8)) 

122. plt.subplot(2, 1, 1) 

123. plt.plot(acc, label='Training Accuracy') 

124. plt.plot(val_acc, label='Validation 

Accuracy') 

125. plt.legend(loc='lower right') 

126. plt.ylabel('Accuracy') 

127. plt.ylim([min(plt.ylim()),1]) 

128. plt.title('Training and Validation 

Accuracy') 

 

129. plt.subplot(2, 1, 2) 

130. plt.plot(loss, label='Training Loss') 

131. plt.plot(val_loss, label='Validation Loss') 

132. plt.legend(loc='upper right') 

133. plt.ylabel('Cross Entropy') 

134. plt.ylim([0,1.0]) 

135. plt.title('Training and Validation Loss') 

136. plt.xlabel('epoch') 

137. plt.show() 
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Lampiran C. Kode testing dan sending 

1. import cv2 
2. import numpy as np 
3. import tensorflow as tf 
4. from tensorflow.keras import layers, models, 

Input 

5. from tensorflow.keras.applications import 
MobileNetV2 

6. import os 
7. import serial 
8. import time 

 

9. PATH_WEIGHTS = 'bobot_jeruk_final.npz'  
10. IMG_SIZE = (160, 160) 

 

11. SERIAL_PORT = '/dev/ttyTHS1'  

12. BAUD_RATE = 115200 

 

13. CMD_SEHAT = b'1' 

14. CMD_TIDAK_SEHAT = b'0' 

 

15. FRAMES_TO_VALIDATE = 15      

16. MIN_AREA_PIXEL = 5000        

 

17. LOWER_ORANGE = np.array([10, 100, 100]) 

18. UPPER_ORANGE = np.array([30, 255, 255]) 

19. LOWER_GREEN = np.array([35, 50, 50]) 

20. UPPER_GREEN = np.array([85, 255, 255]) 

 

21. def build_manual_model(): 

22. inputs = Input(shape=IMG_SIZE + (3,)) 

23. x = 

tf.keras.applications.mobilenet_v2.preprocess_in

put(inputs) 

24. base_model = 

MobileNetV2(input_shape=IMG_SIZE + (3,), 

include_top=False, weights=None) 

25. base_model.trainable = False 

26. x = base_model(x, training=False) 

27. x = layers.GlobalAveragePooling2D()(x) 

28. x = layers.Dropout(0.2)(x) 

29. x = layers.Dense(128, activation='relu')(x) 

30. outputs = layers.Dense(1, 

activation='sigmoid')(x) 

31. return tf.keras.Model(inputs, outputs) 

 

32. def cek_keberadaan_jeruk(frame): 
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33. hsv = cv2.cvtColor(frame, 

cv2.COLOR_BGR2HSV) 

34. mask_orange = cv2.inRange(hsv, 

LOWER_ORANGE, UPPER_ORANGE) 

35. mask_green = cv2.inRange(hsv, LOWER_GREEN, 

UPPER_GREEN) 

36. combined_mask = cv2.bitwise_or(mask_orange, 

mask_green) 

37. kernel = np.ones((5,5), np.uint8) 

38. combined_mask = 

cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN, 

kernel) 

39. pixel_count = 

cv2.countNonZero(combined_mask) 

40. return pixel_count > MIN_AREA_PIXEL, 

combined_mask 

 

41. def main(): 

42. # 1. SETUP UART 

43. ser = None 

44. try: 

45. ser = serial.Serial(SERIAL_PORT, BAUD_RATE, 

timeout=1) 

46. print(f"Terhubung ke OpenCR di 

{SERIAL_PORT}") 

47. except Exception as e: 

48. print(f"WARNING: Gagal konek UART: {e}") 

 

49. # 2. SETUP MODEL 

50. if not os.path.exists(PATH_WEIGHTS): 

51. print(f"ERROR: File {PATH_WEIGHTS} tidak 

ditemukan!") 

52. return 

 

53. try: 

54. model = build_manual_model() 

55. with np.load(PATH_WEIGHTS) as data: 

56. weight_list = [data[key] for key in 

data.files] 

57. model.set_weights(weight_list) 

58. print("MODEL SIAP!") 

 

59. dummy_img = np.zeros((1, 160, 160, 3)) 

60. model.predict(dummy_img) 

61. print("SIAP DETEKSI.") 

 

62. except Exception as e: 

63. print(f"Error Model: {e}") 

64. return 
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65. # 3. KAMERA 

66. cap = cv2.VideoCapture(0) 

67. if not cap.isOpened(): 

68. print("ERROR: Kamera error.") 

69. return 

 

70. consistent_frames = 0       

71. last_prediction = None      

72. data_sudah_dikirim = False   

 

73. while True: 

74. ret, frame = cap.read() 

75. if not ret: break 

 

76. frame_resized = cv2.resize(frame, (640, 

480)) 

77. ada_jeruk, mask_debug = 

cek_keberadaan_jeruk(frame_resized) 

 

78. if not ada_jeruk: 

 

79. display_text = "SIAP - LETAKKAN JERUK" 

80. box_color = (100, 100, 100)  

81. data_sudah_dikirim = False  

82. consistent_frames = 0 

83. frame_resized[380:480, 540:640] = [0,0,0] 

 

84. else: 

85. frame_resized[380:480, 540:640] = 

[255,255,255] 

 

86. if data_sudah_dikirim: 

87. display_text = "MENUNGGU DIAMBIL..." 

88. box_color = (0, 255, 255) # Kuning 

89. cv2.rectangle(frame_resized, (0,0), (640, 

60), (0,0,0), -1) 

 

90. else: 

 

91. try: 

92. rgb = cv2.cvtColor(frame_resized, 

cv2.COLOR_BGR2RGB) 

93. img_input = cv2.resize(rgb, IMG_SIZE) 

94. img_array = 

np.expand_dims(np.array(img_input), axis=0) 

 

95. prediksi = model.predict(img_array) 

96. score = prediksi[0][0] 
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97. if score < 0.5: 

98. current_label = "JERUK SEHAT" 

99. color = (0, 255, 0) 

100. data_to_send = CMD_SEHAT 

101. else: 

102. current_label = "JERUK TIDAK SEHAT" 

103. color = (0, 0, 255) 

104. data_to_send = CMD_TIDAK_SEHAT 

 

105. display_text = f"{current_label}" 

106. box_color = color 

 

107. if current_label == last_prediction: 

108. consistent_frames += 1 

109. else: 

110. consistent_frames = 0 

111. last_prediction = current_label 

 

112. if consistent_frames >= FRAMES_TO_VALIDATE: 

113. print(f"MENGIRIM: {current_label}") 

 

114. if ser is not None: 

115. ser.write(data_to_send) 

116. print(f"Data terkirim ke UART: 

{data_to_send}")  

 

117. data_sudah_dikirim = True  

118. consistent_frames = 0 

 

119. except Exception as e: 

120. print(f"Error Coding: {e}") 

 

 

121. cv2.rectangle(frame_resized, (10, 10), 

(450, 60), (0, 0, 0), -1)  

122. cv2.putText(frame_resized, display_text, 

(20, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.7, 

box_color, 2) 

 

123. if consistent_frames > 0 and not 

data_sudah_dikirim: 

124. bar_len = int((consistent_frames / 

FRAMES_TO_VALIDATE) * 340) 

125. cv2.rectangle(frame_resized, (10, 55), (10 

+ bar_len, 60), (255, 255, 255), -1) 

 

126. cv2.imshow('Sistem Sortir', frame_resized) 
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127. if cv2.waitKey(1) & 0xFF == ord('q'): 

128. break 

 

129. if ser is not None: ser.close() 

130. cap.release() 

131. cv2.destroyAllWindows() 

 

132. if __name__ == "__main__": 

133. main() 

 

 

 

Lampiran D. Kode menerima klasfikasi dan menggerkaan robot pada OpenCR 

1. #include <open_manipulator_libs.h> 
 

2. #define JETSON_SERIAL Serial1 
 

3. OpenManipulator open_manipulator; 
 

4. double control_time = 0.010; 
5. double previous_time = 0.0; 
6. unsigned long step_timer = 0; 
7. int step = 0; 

 

8. bool robot_sedang_kerja = false;  
9. bool tujuan_sehat = true;         

 

10. double G_BUKA  = 0.010;  

11. double G_TUTUP = 0.005;  

 

12. void setup() { 

13. Serial.begin(115200);        

14. JETSON_SERIAL.begin(115200);  

 

15. open_manipulator.setOpenManipulatorCustomJo

intId(11, 12, 13, 14, 15); 

16. open_manipulator.initOpenManipulator(true); 

17. open_manipulator.enableAllActuator(); 

 

 

18. while(JETSON_SERIAL.available() > 0) { 

19. char sampah = JETSON_SERIAL.read(); 

20. } 

 

21. } 

 

22. void loop() { 
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23. double present_time = millis()/1000.0; 

24. if(present_time - previous_time >= 

control_time) { 

25. open_manipulator.processOpenManipulator(pre

sent_time); 

26. previous_time = present_time; 

27. } 

 

28. if (robot_sedang_kerja == false) { 

 

29. if (JETSON_SERIAL.available() > 0) { 

30. char data = JETSON_SERIAL.read(); 

 

31. if (data == '1') { 

32. Serial.println("DITERIMA: JERUK SEHAT 

(1)"); 

33. tujuan_sehat = true;        

34. robot_sedang_kerja = true;  

35. step = 0;                   

36. step_timer = millis();      

 

37. }  

38. else if (data == '0') { 

39. Serial.println("DITERIMA: JERUK SAKIT 

(0)"); 

40. tujuan_sehat = false;       

41. robot_sedang_kerja = true;  

42. step = 0;                   

43. step_timer = millis();    

44. } 

45. } 

46. } 

 

47. if (robot_sedang_kerja == true) { 

 

48. if (millis() > step_timer) { 

49. std::vector<double> target; 

50. target.clear(); 

 

51. if (step == 0) { 

52. target.push_back(-0.057); 

target.push_back(-0.202); target.push_back(-

0.397); target.push_back(1.150); 

53. open_manipulator.makeJointTrajectory(target

, 3.0); 

54. open_manipulator.makeToolTrajectory("grippe

r", G_BUKA); 

55. step++; step_timer = millis() + 4000; 

56. } 
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57. else if (step == 1) { 

58. target.push_back(1.000); target.push_back(-

0.202); target.push_back(-0.397); 

target.push_back(1.150); 

59. open_manipulator.makeJointTrajectory(target

, 3.0); 

60. step++; step_timer = millis() + 4000; 

61. } 

 

62. else if (step == 2) { 

63. target.push_back(1.000); 

target.push_back(0.718); target.push_back(-

0.822); target.push_back(1.163); 

64. open_manipulator.makeJointTrajectory(target

, 3.0); 

65. step++; step_timer = millis() + 4000; 

66. } 

 

67. else if (step == 3) { 

68. open_manipulator.makeToolTrajectory("grippe

r", G_TUTUP); 

69. step++; step_timer = millis() + 2000; 

70. } 

 

71. else if (step == 4) { 

72. Serial.println("5. Angkat Lurus (Pinggang 

Tahan)..."); 

73. target.push_back(1.000); target.push_back(-

0.202); target.push_back(-0.397); 

target.push_back(1.150); 

74. open_manipulator.makeJointTrajectory(target

, 4.0); 

75. step++; step_timer = millis() + 5000; 

76. } 

 

77. else if (step == 5) { 

78. Serial.println("6. Ke Center..."); 

79. target.push_back(-0.057); 

target.push_back(-0.202); target.push_back(-

0.397); target.push_back(1.150); 

80. open_manipulator.makeJointTrajectory(target

, 3.0); 

81. step++; step_timer = millis() + 4000; 

82. } 

 

83. else if (step == 6) { 

84. if (tujuan_sehat == false) {  



 

84 

 

85. target.push_back(0.437); 

target.push_back(0.718); target.push_back(-

0.822); target.push_back(1.163); 

86. } else { 

87. target.push_back(-0.471); 

target.push_back(0.753); target.push_back(-

1.002); target.push_back(1.534); 

88. } 

89. open_manipulator.makeJointTrajectory(target

, 4.0); 

90. step++; step_timer = millis() + 5000; 

91. } 

 

92. else if (step == 7) { 

93. open_manipulator.makeToolTrajectory("grippe

r", G_BUKA); 

94. step++; step_timer = millis() + 2000; 

95. } 

 

96. else if (step == 8) { 

97. target.push_back(-0.057); 

target.push_back(-0.202); target.push_back(-

0.397); target.push_back(1.150); 

98. open_manipulator.makeJointTrajectory(target

, 4.0); 

99. open_manipulator.makeToolTrajectory("grippe

r", G_BUKA);  

 

100. step++; step_timer = millis() + 5000; 

101. } 

 

102. else if (step == 9) { 

103. robot_sedang_kerja = false;  

104. step = 0; 

105. step_timer = millis(); 

106. } 

107. } 

108. } 

109. } 

 

 

 


