PENGENDALIAN ROBOT ARM OPENMANIPULATOR UNTUK
PENYORTIRAN BUAH JERUK MENGGUNAKAN MACHINE
LEARNING

TUGAS AKHIR

=

UNIVERSITAS

MA CHUNG

SHELLY MARGARETH

NIM : 312210024

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG
MALANG
2025

LEMBAR PENGESAHAN

TUGAS AKHIR

PENGENDALIAN ROBOT ARM OPENMANIPULATOR UNTUK
PENYORTIRAN BUAH JERUK MENGGUNAKAN MACHINE

LEARNING

Oleh: |
SHELLY MARGARETH
NIM. 312210024

Dart:
PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG

Dosen Pembimbing I, Dosen Pem 1mb
(‘ [/,
Prof. Dr.Eng. Rom Budhi, ST., MT., M.Pd. Moch ublanto 5.Kom., M.Cs.
NIP. 20070035 NIP. 20100002

Dekan Fakultas Teknologi dan Desain,

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd.
NIP. 20070035

KATA PENGANTAR

Segala puji dan syukur penulis panjatkan ke hadirat Tuhan Yang Maha Esa atas

limpahan rahmat dan kasih karunia-Nya selama 4 tahun masa perkuliahan sehingga

penulis dapat menyelesaikan laporan Tugas Akhir dengan dengan judul ”
PENGENDALIAN ROBOT ARM OPENMANIPULATOR UNTUK
PENYORTIRAN BUAH JERUK MENGGUNAKAN MACHINE LEARNING

” sebagai salah satu prasyarat untuk mendapatkan gelar Sarjana Komputer di

Universitas Ma Chung. Melalui pengalaman ini, penulis memperoleh banyak

pembelajaran berharga serta bantuan dari banyak pihak

Penulis menyampaikan terima kasih yang sebesar-besarnya kepada:

1.
2.

Tuhan yang Maha Esa atas berkat dan kasih karunia-Nya.

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd, dan selaku dosen
pembimbing I , sekeligus dekan Fakultas Teknologi dan Desain atas
bimbingan, arahan, dan dukungan yang telah diberikan selama
pelaksanaan Tugas Akhir hingga penyusunan laporan ini.

Bapak Mochamad Subianto, S.Kom., M.Cs. selaku dosen pembimbing
II, atas bimbingan, arahan, dan dukungan yang telah diberikan selama
pelaksanaan Tugas Akhir hingga penyusunan laporan ini.

Bapak/Ibu dosen Program Studi Teknik Informatika Universitas Ma
Chung, atas ilmu dan wawasan yang telah dibekalkan selama
perkuliahan;

Keluarga dan teman-teman yang senantiasa memberikan semangat, doa,
dan dukungan selama proses penelitian hingga penyusunan laporan

Tugas Akhir ini.

Penulis menyadari bahwa laporan ini masih jauh dari sempurna. Oleh

karena itu, penulis sangat mengharapkan masukan, saran, dan kritik yang

membangun dari para pembaca. Akhir kata, penulis berharap laporan ini

bermanfaat dan berguna untuk semua pihak yang membutuhkan.

Malang, 05 Januari 2026

Shelly Margareth

PERNYATAAN KEASLIAN TUGAS AKHIR

Yang bertanda tangan dibawah ini :

Nama : Shelly Margareth

NIM : 312210034

Program Studi : Teknik Informatika
Perguruan Tinggi : Universitas Ma Chung

Dengan ini menyatakan bahwa isi sebagian maupun keseluruhan Tugas
Akhir saya dengan judul “PENGENDALIAN ROBOT ARM
OPENMANIPULATOR UNTUK = PENYORTIRAN BUAH JERUK
MENGGUNAKAN MACHINE LEARNING” adalah asli (orisinil) atau tidak plagiat
dan benar hasil karya intelektual mandiri, dan belum pernah

diterbitkan/dipublikasikan dimanapun dan dalam bentuk apapun.

Surat penyataan ini saya buat dengan sebenar-benarnya dengan kesaran
sendiri dan tanpa ada paksaan dari pihak manapun. Apabila dikemudian hari diduga
kuat ada ketidaksesuai antara fakta dengan dokumen pernyataan ini, saya bersedia
diproses oleh Universitas Ma Chung, dengan sanksi terberat berupa pembatalan

kelulusan atau pencabutan sarjana.

Malang, 05 Januari 2026,

Z RN

Shelly Margareth

NIM 312210024

PENGENDALIAN ROBOT ARM OPENMANIPULATOR UNTUK
PENYORTIRAN BUAH JERUK MENGGUNAKAN MACHINE
LEARNING

Shelly Margareth, Romy Budhi, Mochamad Subianto.

Universitas Ma Chung

Abstrak

Proses penyortiran buah jeruk di tingkat produsen saat ini umumnya masih
dilakukan secara manual yang memiliki keterbatasan dari segi efisiensi waktu dan
konsistensi, serta rentan terhadap Auman error akibat faktor kelelahan. Penelitian ini
bertujuan untuk merancang sistem penyortiran otomatis yang mengintegrasikan
metode Deep Learning dengan lengan robot OpenManipulator-X. Sistem dibangun
menggunakan komponen utama berupa lengan robot 4-DOF, kamera sebagai sensor
visual, dan NVIDIA Jetson Nano sebagai unit pemroses data.

Pada sisi perangkat lunak, algoritma Convolutional Neural Network (CNN)
dengan arsitektur MobileNetV2 digunakan untuk mengklasifikasikan kualitas jeruk
berdasarkan fitur warna dan tekstur secara real-time. Hasil klasifikasi tersebut
dikonversi menjadi perintah gerak robot menggunakan prinsip Inverse Kinematics
untuk memindahkan buah ke wadah yang sesuai.

Berdasarkan hasil pengujian, model ini mampu menghasilkan akurasi
klasifikasi sebesar 96%. Secara mekanis, sistem berhasil melakukan penyortiran
dengan tingkat keberhasilan 100% dan rata-rata waktu proses 31 detik per buah.
Penelitian ini diharapkan dapat menjadi solusi alternatif dalam penerapan teknologi
otomatisasi di bidang pertanian.

Kata Kunci: OpenManipulator, Machine Learning, Penyortiran Jeruk,
Convolutional Neural Network, NVIDIA Jetson Nano.

Vi

IMPLEMENTATION OF OPENMANIPULATOR ROBOTIC ARM FOR
ORANGE SORTING USING MACHINE LEARNING

Shelly Margareth, Romy Budhi, Mochamad Subianto

Universitas Ma Chung

Abstract

Proses Currently, the orange sorting process at the producer level is largely
performed manually. This method has limitations in terms of time efficiency,
consistency and is prone to human error due to fatigue. This study aims to design an
automated sorting system integrating Deep Learning methods with the
OpenManipulator-X robotic arm. The system is built using main components
consisting of a 4-DOF robotic arm, a camera as a visual sensor, and an NVIDIA
Jetson Nano as the data processing unit.

On the software side, a Convolutional Neural Network (CNN) algorithm
with MobileNetV2 architecture is used to classify orange quality based on color and
texture features in real-time. The classification results are converted into robot
movement commands using Inverse Kinematics principles to move the fruit to the
appropriate container.

Based on test results, the model achieved a classification accuracy of 96%.
Mechanically, the system successfully performed sorting with a success rate of 100%
and an average processing time of 31 seconds per fruit. This study is expected to
serve as an alternative solution for the application of automation technology in
agriculture.

Keywords: OpenManipulator, Machine Learning, Orange Sorting, Convolutional
Neural Network, NVIDIA Jetson Nano.

Vii

DAFTAR ISI

LEMBAR PENGESAHAN L...ootiiiiiieeee ettt ii
KATA PENGANTAR ...ttt sttt ii
DAFTAR IST ..ottt ettt sttt ettt s enneenneas viii
DAFTAR GAMBAR ...ttt X
DAFTAR TABEL ...ttt sttt Xi
BAB L ettt st 1
PENDAHULUAN ...ttt sttt esseeaessaesseessessaesseensessaensnas 1
1.1 Latar BelaKangocoveeeiiiiiiiieeiiie e 1
1.2 Identifikasi Masalah........cocoiiiiiiiiiiiiiiiiiniceeeee e 3
1.3 Batasan Masalah............ccccoiiiiiiiiiiii e 3
1.4 Rumusan Masalah...........occoiiiiiniiiiiiiiisteee e 4
1.5 Tujuan Penelitian..........ccocueeiiiiieiiiecieecciee et 4
1.6 LUATAM (.ot 5
1.7 Manfaat Penelitiancccueeeiiiieiiieeiie et 5
1.8 Sistematika Penulisan..........ccoccooiiiiiiiiiiiiiiiee 6
BAB IL ...ttt ettt ettt sttt et aenteeteentenneennens 7
TINJAUAN PUSTAKA ...ttt sttt 7
2.1 Bahasa C/CHt .o 7
2.2 Arduino IDE......c.cooiiiiiii i 9
2.3 Mikrokontroler STM32F746ZGTOcccocvviuiniiieieeieiiiieeee e 11
2.4 OPENCR ...ttt ettt e et e e e et eenanes 13
2.5 OpenManipulator-Xcc.eeeeivieerieeeiieeeciieesereeesaeeeeeeeeesseseesneeeenseeesenens 17
2.6 Dynamixel XM430-W350-T.....ccccovieriiiriieieeieeiieeieenieeereeieeeveeneee s 22
2.7 MIKIOKOMPULETooueiiiiiiiiiiniieicieeteee et 23
2.8 JetSON NANO ... 24
2.9 MaAChine LEATNINGcccveeeiaiiaaiieiieeeee ettt 26
2.10 Penelitian TerdahulU...........ccooieiiiiiiiiii e 33
BAB L.ttt s 36
ANALISIS DAN PERANCANGAN SISTEMcoociiiiiieiieieeieeeeeee e 36
3.1 Tahapan Penelitiancccooeviieiiiiriiiiieeiieeeee e 36
3.1.1 DataSet......evviieeiiie e raaa e e 39

3.2 Proses Pengerjaan........co.cooeviiiiiiiiniiniiiiiecee e 42

33 Metode Evaluasi.......cooeeiiiiiiiiiiiiiieiccee e 43
BAB IV et st 46
HASIL DAN PEMBAHASAN ...ttt 46

4.1 Rincian Penelitiancocoooeiiiiiiiiiieiiencceeee e 46

4.1.1 Tempat dan Waktu.........ocouiieiiieiiiieeee e 46

4.1.2 Alat dan KOmMpPOnencoccveeviieiiieniieniiecieeieeeee et 46

4.2 Pengambilan Data.........ccocooiiiiiiiiiiii e 48

4.3 Implementasi Kode Program..........cccccoocveeviieniieiieeiieniecieeeeee e 53

43.1 Kode Implementasi CNNccooiiiiiiiiiienieeie et 53

432 Kode TranSmitter...........coervirieriiriinienieieeie et 54

433 KoOde RECRIVETeiiiiiiiiiiieie et 56

434 Tampilan Jendela MONItOTING.cc.covveeriieriieeriieeiienieeiieeeire e 58

4.4 Hasil PengUjiancccvveeeiiiieiee ettt 60

4.5 Analisis dan Pembahasan...........ccccceoeviiiiniiinieniieieeeee 62
BAB V ettt ettt ettt et e e nteeneenteenee e 64
SIMPULAN DAN SARAN ...ttt sttt e 64

5.1 SIMPUIAN ..ottt st 64

5.2 SATANL.coutiiiiiiitie ettt ettt et 64
DAFTAR PUSTAKA ...ttt st se e st st snn et 66
| BF: 3501000 1 o S S S USSR 68

DAFTAR GAMBAR

Gambar 2. 1 Tampilan Arduino IDE ..o 10
Gambar 2. 2 OpenCR 1.0 ..ccuuiiiiiieiieeieeeee e s s 14
Gambar 2. 3 OpenCR PINOULSccovviiiiiiiiiieeiee e e 15
Gambar 2. 4 OpenManipulator-Xcccccervieriirinienieneeeerese e 18
Gambar 2. 5 Spesifikasi OpenManipulator-X........ccoecveverienienienienieneeeeeeseene 19
Gambar 2. 6 Desain dan Dimensi OpenManipulator-X.........cccceeeervveneenieneeneenne. 21
Gambar 2. 7 DYNAMIXEL-X ...ccuiiiiiiiiieienieerieeteseesie ettt 22
Gambar 2. 8 JEtSON NANOeeruvieiiiiiiesiie ettt sne e 25
Gambar 2. 9 Proses pelatihan CNNccccoceviiiiiiniiniiiieeeeee 28
Gambar 2. 10 Arsitektur MObileNetV2.......cocueiiiiiiiiiiiiieeeeeeeee e 30
Gambar 3. 1 Diagram alir tahapan penelitianc.ccceeeeveeeiieennieeeniieciee e 35
Gambar 3. 2 ID SEIVOcoiiiiiiiaiieiee e 36
Gambar 3. 3 Diagram alur penerapan Machine learningcc.ccoccevceivciiiennnenne. 38
Gambar 3. 4 Dataset jeruk sehat..........cccocuveeiiieiiiiccie e 39
Gambar 3. 5 Dataset jeruk tidak sehat...............cocoeieriiiiiiiiiieiieeeeecee e 39
Gambar 3. 6 Diagram Alur Komunikasi Jetson Nano dengan OpenCR................. 40
Gambar 3. 7 Topologi Perangkat.............oooiiiiiiiiiiiiiiiiie e 41
Gambar 3. 8 Ilustrasi Posisi OpenManipulator Arm............ccceeeevveeecieeeciveeeeneeenne 43
Gambar 4. 1 Rangkaian PrototiPeccecueereerieriieniieeieeieesieesiee st 47
Gambar 4. 2 Input citra jeruk yang digunakan..........ccccceeeeerierieenieeniesieenieseens 47
Gambar 4. 3 Input citra jeruk yang digunakan (2)ccccceerveeeriieeniieeiniieenneee e 48
Gambar 4. 4 Grafik training validation.........ccccceeeviriiniieiiiiicce 50
Gambar 4. 5 Confusion matrixX train data.........ccceeveeereerieeieeenee e 50
Gambar 4. 6 Confusion matrixX test data........ccceevueeieeriieiiienieesiteecse e 51
Gambar 4. 7 ID TODOt AT ...cooiiiiiiiiiiie ettt 52
Gambar 4. 8 Implementasi machine learning CNNccoocveeriiiiniienniieeeniee e 53
Gambar 4. 9 Kode fungsi untuk menjalankan model..........c.c.occcoiiiiiiniiincnnenns 54
Gambar 4. 10 Kode fungsi untuk keberadaan jeruk...........ccocoeeveeniiniienienniennncns 55
Gambar 4. 11 Kode klasifikasi jeruk berdasarkan model machine learning.......... 55
Gambar 4. 12 Kode transmitter dari Jetson Nano ke OpenCRccocveerneennee. 56
Gambar 4. 13 Kode receiver dan menjalankan robot Arm............cceecveervveeriueeennne 57
Gambar 4. 14 Jendela untuk memantau hasil klasifikasi pada Jetson Nano.......... 58
Gambar 4. 15 Jendela untuk memantau memperlihatkan hasil jeruk sehat 58
Gambar 4. 16 Jedela untuk memantau memperlihatkan hasil jeruk tidak sehat59
Gambar 4. 17 Jendela untuk memantau memperlihatkan kondisi setelah machine

learning berhasil mengklasifikasi........ccoocuveerieiriiiiniiie e 59
Gambar 4. 18 Waktu satu siklus klasifikasiccceceevieriiiniiniiiicccecee 62

Tabel 3.
Tabel 3.
Tabel 3.
Tabel 4.
Tabel 4.
Tabel 4.
Tabel 4.
Tabel 4.

DAFTAR TABEL

1 Jenis dan Fungsi Layer pada MobilenetV2ccocceevviiiriieiniieennnennne 31
2 Tabel PenUIIANcccvvveeeiieiiiieeeiteeeree e s 45
3 Tabel Pengujian Pergerakancccoceeveriiiniiiiniinicniecnecceceseeen 45
1 Hasil akurasi data train.........ccccoeeeereerieiienecneeecseee e 49
2 Hasil akurasi data test.........cceeveevierieniniiinicnieseccece e 49
3 Data posiSi TODOt ATMN....cc.eeriiiiiieeiieiie et 50
4 Pengujian klasifikasi machine learning............ccceceeveiiiienieenicnneennen. 60
5 Tabel hasil pengujian gerak robot Armccccevveiiiiiiniiniininiicneene. 61

Xi

BAB I
PENDAHULUAN

1.1 Latar Belakang

Perkembangan teknologi robotika dan otomasi telah memberikan dampak
signifikan dalam berbagai aspek kehidupan, khususnya pada sektor industri pangan.
Salah satu proses penting dalam produksi adalah penyortiran buah, yang hingga
kini umumnya masih dilakukan secara manual oleh tenaga kerja manusia. Metode
manual memiliki sejumlah keterbatasan, seperti keterlambatan, kelelahan, serta
potensi kesalahan dalam menentukan kualitas buah. Kondisi ini berakibat pada

menurunnya efisiensi sekaligus kualitas hasil produksi (Inuwa et al., 2025).

Selain itu, kualitas buah jeruk sangat memengaruhi harga jual serta tingkat
penerimaan konsumen. Konsumen cenderung memilih jeruk dengan kondisi sehat,
dan bebas dari cacat. Oleh karena itu, dalam proses penyortiran sangat penting
untuk memastikan hanya jeruk dengan kualitas baik yang didistribusikan ke pasar.
Jika jeruk dengan kualitas rendah ikut terjual dapat menurunkan kepercayaan
konsumen, memengaruhi citra produk, serta berdampak pada turunnya daya saing
industri. Dalam industri pertanian modern, penyortiran buah secara otomatis
penting dilakukan untuk menjaga konsistensi dan kualitas produk yang diterima
konsumen. Penampilan buah khususnya warna kulit yang cerah dan bebas dari noda
sangat menentukan keputusan pembelian jeruk oleh konsumen, karena aspek visual

menjadi indikator utama kesegaran dan mutu buah (Hj & Rostiati, 2015).

Untuk mengatasi permasalahan penyortiran jeruk secara manual yang
lambat, tidak konsisten, dan rentan kesalahan, penerapan teknologi robotika dengan
Al menjadi solusi yang menjanjikan. Contohnya, pada penelitian berjudul
Computer Vision and Machine learning Based Control for a 6 Degree of Freedom
Robotic Arm (De Assis et al., 2025), digunakan pendekatan supervised learning
dengan metode Artificial Neural Network (ANN) untuk mengendalikan lengan
robot berdasarkan gerakan manusia. Model ANN dilatih menggunakan data hasil

tangkapan kamera melalui framework Mediapipe, yang mendeteksi titik-titik

penting pada tubuh operator seperti bahu, jari telunjuk, dan ibu jari. Hasil penelitian
menunjukkan bahwa model berhasil mengklasifikasi sudut setiap sendi (joint angle)
pada keenam servo motor lengan robot dengan tingkat akurasi mencapai 82,03%.
Klasifikasi ini memungkinkan lengan robot meniru pergerakan tangan manusia

secara real-time pada lingkungan simulasi Gazebo menggunakan ROS.

Dalam penelitian ini digunakan lengan robot Arm OpenManipulator-X,
yaitu robot Arm open-source yang fleksibel dan dirancang untuk kebutuhan
pengembangan, pendidikan, serta penelitian. Sistem kendali utama menggunakan
OpenCR (Open-source Control Robot) yang memiliki prosesor kompeten,
dukungan komunikasi lengkap, serta kompatibel dengan berbagai sistem robotika.
Penggunaan OpenCR pada robot Arm telah banyak diterapkan dalam berbagai
penelitian, misalnya oleh (Kashani et al., 2025) yang meneliti tentang
pengembangan sistem kendali cerdas untuk robot 4rm OpenManipulator-X, fokus
utamanya adalah pada peningkatan presisi Gerakan dan kestabilan sistem dengan
cara menggabungkan metode control klasik Fixed-Time Sliding Mode Control
(FTSM) dan algoritma pembelajaran penguatan Deep Deterministic Policy
Gradient (DDPG) agar dapat menghadapi kondisi lingkungan yang berubah-ubah.
(Automation & Automation, 2024) misalnya, membantu individu yang berhasil
bertahan dari stroke biasanya membutuhkan bantuan untuk melakukan tugas-tugas
dasar. Alat bantu robotik, seperti Arm OpenManipulator melakukan berbagai
aktivitas dengan cara mengambil dan menyerahkan benda kepada pasien. Dalam
proyek ini, sarung tangan berbasis kendali gerakan (gesture control) dirancang
untuk meningkatkan proses handover dari robot ke pengguna. Sarung tangan
dilengkapi dua sensor MPU-6050 dan dua sensor lentur (f/ex sensor) untuk
mendeteksi orientasi tangan dan tekukan jari. Data dari sarung tangan dikirim ke
Arm Manipulator guna menggerakkan manipulator dan mengoperasikan gripper
secara terpisah. Pengujian dilakukan dengan lima jenis benda sebanyak 20 kali
masing-masing. Hasil menunjukkan rata-rata waktu penyerahan 7,76 detik dengan
tingkat kesalahan 18,03%. Perbedaan waktu antar benda menunjukkan pengaruh

dari lingkungan pengujian, pengguna yang sama, dan keterbatasan perangkat keras.

Penelitian-penelitian terdahulu menunjukkan bahwa penggunaan teknologi
visi komputer pada perangkat seperti Jetson Nano dapat dimanfaatkan untuk
mendeteksi fitur fisik objek secara real-time, demikian juga penggunaan metode
Artificial Neural Network (ANN) yang terbukti efektif dalam mengklasifikasi
gerakan dan mengklasifikasikan kualitas objek dengan akurasi tinggi. Selain itu,
implementasi lengan robot OpenManipulator-X dengan kontroler OpenCR telah
teruji mampu memberikan stabilitas dan presisi dalam manipulasi benda. Oleh
sebab itu, pada penelitian ini dihipotesiskan beberapa hal yang bisa dilakukan, yaitu
membangun komunikasi data yang efisien antar mikrokontroler (antara unit
pemroses citra dan OpenCR) untuk menerjemahkan hasil deteksi kualitas jeruk

menjadi perintah gerak penyortiran yang akurat dan otomatis.

1.2 Identifikasi Masalah

Berdasarkan latar belakang tersebut, dapat diidentifikasi beberapa masalah

sebagai berikut:

1. Proses penyortiran jeruk yang masih dilakukan secara manual kurang
efisien, memerlukan banyak tenaga kerja, sertarawan terjadi kesalahan.

2. Kualitas jeruk sangat memengaruhi harga jual dan penerimaan
konsumen, sehingga diperlukan metode penyortiran yang lebih akurat
agar hanya jeruk sehat yang terdistribusi ke pasar.

3. Belum adanya pemanfaatan robot manipulator sederhana berbasis
mikrokontroler yang terintegrasi dengan kecerdasan buatan untuk
melakukan penyortiran buah secara otomatis.

4. Diperlukan sistem kendali yang mampu menghubungkan hasil
klasifikasi machine learning dengan pergerakan robot Arm agar proses

penyortiran dapat berjalan cepat, konsisten, presisi, dan otomatis.

1.3 Batasan Masalah

1. Penelitian difokuskan pada proses penyortiran buah jeruk menggunakan
robot Arm OpenManipulator yang dikendalikan oleh OpenCR.
2. Sistem kecerdasan buatan hanya terbatas pada klasifikasi jeruk sehat dan

jeruk tidak sehat menggunakan model machine learning Convolutional

neural network (CNN) sederhana dengan 2 fitur utama yaitu warna dan
tekstur(bercak / noda).

3. Hasil klasifikasi dikirimkan dalam format Jetson Nano melalui komunikasi
UART sebagai dasar pergerakan robot Arm.

4. Penelitian tidak mencakup pengolahan citra lanjutan seperti deteksi ukuran,
warna kompleks, maupun tingkat kematangan buah.

5. Ruang lingkup penelitian hanya berupa prototipe sederhana dan tidak

membahas implementasi pada skala industri besar.

Batasan ini ditetapkan guna menjaga fokus pembahasan pada peran penulis
dalam merancang dan menguji mekanisme pengendalian gerakan robot Arm
OpenManipulator berbasis board OpenCR serta integrasi dengan modul kamera,
sehingga tidak mencakup pembahasan aspek implementasi industri berskala besar
atau penggunaan perangkat tambahan di luar lingkup prototipe sederhana yang

dirancang.

1.4 Rumusan Masalah

Bagaimana merancang dan mengimplementasikan sistem pengendalian
robot Arm OpenManipulator berbasis board OpenCR yang terintegrasi dengan
modul kamera dan mikrokontroler Jetson Nano untuk menyortir jeruk secara
otomatis. Permasalahan yang diangkat mencakup bagaimana proses klasifikasi
jeruk sehat dan tidak sehat dilakukan melalui pemrosesan citra berbasis machine
learning pada mikrokontroler Jetson Nano, bagaimana hasil klasifikasi tersebut
dikirimkan melalui komunikasi UART ke OpenCR, serta bagaimana sistem kendali
robot Arm diatur agar dapat mengeksekusi gerakan penyortiran secara tepat dan

efisien.

1.5 Tujuan Penelitian

1. Merancang dan mengimplementasikan sistem pengendalian gerakan robot
Arm OpenManipulator berbasis board OpenCR yang terintegrasi dengan
modul kamera dan mikrokontroler Jetson Nano untuk melakukan

penyortiran jeruk secara otomatis.

2. Menguji kinerjarobot Arm dalam melakukan penyortiran jeruk sesuai hasil
klasifikasi machine learning yang membedakan antara jeruk sehat dan tidak
sehat.

3. Menilai efektivitas sistem yang dikembangkan dalam mendukung proses
penyortiran jeruk, khususnya dalam hal akurasi, konsistensi, dan efisiensi,
sehingga dapat menjadi gambaran awal penerapan otomasi pada industri

pangan.

1.6 Luaran

1. Prototipe sistem penyortiran jeruk berbasis robot Arm OpenManipulator,

board OpenCR, dan mikrokontroler Jetson Nano.

2. Dokumentasi berupa laporan tugas akhir yang memuat rancangan,

implementasi, serta hasil pengujian sistem.

3. Publikasi ilmiah berupa artikel yang dapat dijadikan referensi untuk

penelitian sejenis di bidang otomasi dan robotika.

1.7 Manfaat Penelitian

a. Bagi industri: memberikan alternatif solusi otomasi penyortiran buah agar
lebih efisien, konsisten, dan akurat. Walaupun masih berupa prototipe
sederhana, rancangan ini dapat menjadi gambaran awal penerapan sistem
robotik skala kecil yang berpotensi dikembangkan ke arah aplikasi industri

sebenarnya.

b. Bagi akademik: menjadi referensi sekaligus dasar pengembangan lebih
lanjut mengenai implementasi robot manipulator berbasis mikrokontroler. Hasil
penelitian ini juga memperkaya literatur tentang integrasi modul kamera dengan

sistem kendali robot pada bidang otomasi.

c. Bagi peneliti: memberikan pengalaman praktis dalam merancang,
memprogram, dan mengendalikan sistem robotik sederhana yang relevan
dengan kebutuhan industri, serta menjadi bekal untuk penelitian lanjutan

dengan skala dan kompleksitas yang lebih tinggi.

1.8 Sistematika Penulisan

Berikut merupakan sistematika penulisan penelitian ini:
1. BAB I Pendahuluan

Bab ini berisi latar belakang penelitian, identifikasi masalah, batasan masalah,
rumusan masalah, tujuan penelitian, luaran, manfaat penelitian, serta

sistematika penulisan.
2. BAB II Tinjauan Pustaka

Bab ini membahas teori-teori dan konsep yang mendasari penelitian, antara lain
mengenai robot manipulator, board OpenCR, modul kamera, mikrokontroler
Jetson Nano, komunikasi UART, machine learning untuk klasifikasi citra, serta

penelitian-penelitian terdahulu yang relevan.
3. BAB III Analisis dan Perancangan Sistem

Bab ini menguraikan analisis kebutuhan, desain sistem, arsitektur perangkat
keras dan perangkat lunak, perancangan alur komunikasi, serta perancangan

logika pengendalian robot Arm OpenManipulator untuk penyortiran jeruk.
4. BAB IV Hasil dan Pembahasan

Bab ini menyajikan hasil implementasi sistem, pengujian prototipe, analisis
kinerja robot Arm dalam melakukan penyortiran, serta pembahasan mengenai

efektivitas dan keterbatasan sistem yang dikembangkan.
5. BAB V Simpulan dan Saran

Bab ini memuat simpulan yang diperoleh dari penelitian serta saran yang dapat

dijadikan acuan untuk pengembangan penelitian lebih lanjut.

BAB 11
TINJAUAN PUSTAKA

2.1 Bahasa C/C++

Bahasa C merupakan bahasa pemrograman prosedural yang
dikembangkan oleh Dennis Ritchie pada awal tahun 1970-an. Bahasa ini
dirancang untuk efisien dalam pengelolaan memori dan performa, serta
dekat dengan bahasa mesin, sehingga sangat cocok digunakan dalam
pengembangan sistem operasi dan perangkat keras. Dalam konteks sistem
tertanam, seperti pada mikrokontroler OpenCR, bahasa C menjadi standar
industri karena kemampuannya dalam mengakses dan mengontrol
perangkat keras secara langsung. Selain itu, kompiler untuk bahasa C juga

tersedia luas dan mendukung berbagai arsitektur prosesor.

Tipe data adalah klasifikasi atau jenis data yang menentukan nilai
yang dapat disimpan dalam suatu variabel dan operasi apa yang dapat
dilakukan terhadap data tersebut. Dalam bahasa C menentukan ukuran dan
jenis nilai yang dapat disimpan dalam variabel. Berikut adalah beberapa tipe

data dasar yang umum digunakan:

. int — menyimpan bilangan bulat (positif atau negatif).

. char — menyimpan karakter ASCIL.

. float dan double — menyimpan angka pecahan atau bilangan desimal.
. uint8 t,uintl6 t,uint32 t— tipe data integer tak bertanda (unsigned

integer) dengan ukuran tetap.

Variabel dalam pemrograman adalah sebuah nama atau identifikasi
yang diberikan untuk menyimpan suatu nilai data dalam memori komputer.
Nilai ini dapat dapat diubah atau dimanipulasi selama eksekusi program.
Setiap variabel memiliki tipe data yang menentukan jenis nilai yang dapat
disimpan, seperti angka, teks, atau struktur data yang lebih kompleks. Nama
variabel yang dipilih biasanya mendeskripsikan data yang disimpan,

memudahkan pemahaman dan pengelolaan kode. Dalam pemrograman,

variabel ~memungkinkan programmer untuk menyimpan data,
mengubahnya, dan mengaksesnya kapan pun selama program berjalan.
Dengan demikian, penulisan kode menjadi lebih fleksibel karena nilai yang
spesifik bisa disimpan dan diubah hanya di satu tempat, namun dapat

digunakan di banyak bagian dalam program.

Setelah mengenal tipe data dan variabel ada juga fungsi, dalam
bahasa C merupakan blok kode yang dirancang untuk menjalankan tugas
tertentu dan dapat dipanggil berkali-kali. Fungsi membantu dalam mengatur
kode, membuatnya lebih mudah dibaca, dipahami, dan dikelola, serta

memungkinkan penggunaan kode berulang. Contoh penulisan function pada
Bahasa C

void warning()
{
Serial.println();

Serial.printin("WARNING!!! OpenManipulator-X operates in 5

seconds.");
delay ms(1000);
open_manipulator.receiveAllJointActuator Value();
open_manipulator.receiveAll Tool Actuator Value();
open_manipulator.enableAll Actuator();

delay_ms(1000);

}

Fungsi warning() adalah sebuah fungsi sederhana dalam bahasa C
yang digunakan untuk memberi peringatan dan memunculkan di serial
monitor pada Arduino IDE. Fungsi ini tidak menerima parameter apa pun

dan tidak mengembalikan nilai karena bertipe void.

Bahasa C memiliki relevansi yang sangat tinggi dalam
pengembangan sistem embedded karena kedekatannya dengan perangkat
keras. Bahasa ini memungkinkan pemrogram untuk mengontrol register
mikrokontroler secara langsung, mengakses fitur interrupt dan berbagai
peripheral seperti UART, SPI, dan 12C, serta mengatur manajemen memori
dengan presisi tinggi. Selain itu, bahasa C juga digunakan untuk menulis
driver bagi perangkat-perangkat seperti sensor dan aktuator. Kemampuan
tersebut menjadikan C sebagai fondasi utama dalam pengembangan
firmware profesional, termasuk pada perangkat seperti OpenCR (Kernighan

& Ritchie, 1988).

2.2 Arduino IDE

Arduino Integrated Development Environment (IDE) merupakan
perangkat lunak utama yang digunakan dalam proses pengembangan sistem
berbasis mikrokontroler Arduino maupun mikrokontroler lain yang
mendukung ekosistemnya. Arduino IDE berfungsi sebagai sarana untuk
menulis, mengompilasi, dan mengunggah program ke papan mikrokontroler
dengan antaemuka yang sederhana dan intuitif. Keunggulan utama dari IDE
ini adalah kemampuannya untuk menjembatani pengguna dari berbagai
tingkat kemampuan baik pemula yang baru belajar pemrograman maupun
peneliti yang sedang mengembangkan sistem robotika atau otomasi tingkat
lanjut. Melalui desain yang ramah pengguna, Arduino IDE mempermudah
proses pembelajaran pemrograman mikrokontroler tanpa memerlukan
pemahaman mendalam terhadap konfigurasi perangkat keras atau bahasa

pemrograman tingkat rendah.

L) A

0]

Gambar 2. 1 Tampilan Arduino IDE

Gambar 2.1 menunjukan tampilan Arduino IDE saat pertama kali
membuka Arduino dan membuat file baru. Arduino memiliki beberapa fitur
penting, salah satu fitur penting dari Arduino IDE adalah serial monitor,
yaitu alat bantu untuk menampilkan data dari mikrokontroler secara real
time. Fitur ini sangat berguna untuk melakukan proses debugging, analisis
sensor, serta komunikasi antar perangkat. Arduino IDE juga terintegrasi
dengan berbagai pustaka open-source yang dapat diunduh langsung dari
library manager, memudahkan peneliti untuk mengembangkan sistem yang
lebih kompleks seperti Internet of Things (10T), sistem kontrol otomatis,
hingga robotika. Kemudahan integrasi dengan pustaka eksternal seperti
WiFih, Servo.h, SoftwareSerial.h, dan DynamixelWorkbench.h
menjadikan Arduino IDE pilihan utama bagi banyak developer.

Dalam konteks penelitian dan pengembangan robotika, Arduino IDE
banyak digunakan untuk memprogram mikrokontroler seperti OpenCR
yang digunakan pada robot Arm OpenManipulator. Melalui IDE ini,
pengguna dapat menulis algoritma kontrol gerak, komunikasi data dengan
sensor, serta pengaturan aktuator seperti motor Dynamixel. Tidak hanya
terbatas pada perangkat Arduino asli, IDE ini juga mendukung berbagai
papan berbasis ARM, ESP, dan STM32 yang memiliki kemampuan

komputasi lebih tinggi. Keberagaman ini menjadikan Arduino IDE sebagai

10

alat yang sangat fleksibel untuk berbagai kebutuhan riset, mulai dari

eksperimen akademik hingga implementasi industri.

Arduino juga memiliki komunitas yang sangat besar sehingga
memberikan peran penting terhadap pengembangan IDE. Arduino memiliki
ribuan contoh kode, dokumentasi serta forum diskusi yang membantu
penggunanya memecahkan permasalahan teknis yang sedang dihadapi.
Pembaruan versi IDE juga dilakukan secara berkala untuk meningkatkan
stabilitas, kompatibilitas, dan fitur-fitur baru seperti integrasi dengan
Arduino Cloud dan dukungan debugger bawaan. Dengan dukungan
ekosistem yang kuat ini, Arduino IDE menjadi salah satu platform
pengembangan paling populer di dunia teknik elektro, mekatronika, dan

ilmu komputer terapan (Banzi & Shiloh, 2014).

2.3 Mikrokontroler STM32F746ZGT6

Mikrokontroler merupakan sebuah komputer kecil yang terdapat di
dalam satu chip sirkuit terpadu (/ntegrated Circuit/IC) yang berisi CPU
(Central Processing Unit), memori, serta perangkat input dan output (1/0)
yang dapat diprogram untuk menjalankan fungsi tertentu. Mikrokontroler
sering disebut sebagai otak dari berbagai sistem tertanam (embedded
system) karena memiliki kemampuan untuk memproses data, mengambil
keputusan, dan mengendalikan perangkat lain sesuai instruksi yang telah
ditanamkan ke dalam programnya. Secara umum, mikrokontroler bekerja
dengan menjalankan serangkaian instruksi yang disimpan dalam memori
internalnya untuk mengontrol sinyal dari sensor maupun aktuator, sehingga
memungkinkan interaksi langsung antara sistem digital dengan lingkungan

fisik.

Menurut Valvano (2017), mikrokontroler memiliki peran utama
sebagai pusat kendali dalam sistem tertanam yang mengintegrasikan
perangkat lunak (software) dan perangkat keras (hardware) untuk
melaksanakan tugas spesifik secara otomatis dan efisien. Berbeda dengan
mikroprosesor yang membutuhkan komponen eksternal seperti memori dan

perangkat I/O tambahan, mikrokontroler telah menggabungkan seluruh

11

komponen utama tersebut ke dalam satu chip tunggal. Hal ini menjadikan
mikrokontroler lebih hemat energi, berbiaya rendah, serta mudah
diintegrasikan pada berbagai aplikasi industri maupun non-industri. Dalam
sistem otomasi modern, mikrokontroler mampu menjalankan operasi real-
time, yaitu memproses masukan dan menghasilkan keluaran secara
langsung tanpa jeda yang signifikan, sehingga sangat cocok digunakan pada

sistem kendali dan monitoring.

Fungsi utama mikrokontroler terletak pada kemampuannya untuk
membaca input dari lingkungan luar, seperti sinyal dari sensor suhu, cahaya,
tekanan, atau arus listrik, kemudian memproses informasi tersebut untuk
menghasilkan respon yang sesuai melalui aktuator seperti motor, relay, atau
modul komunikasi. Dalam konteks ini, mikrokontroler bertindak sebagai
jembatan antara dunia analog (lingkungan fisik) dan dunia digital (sistem
pemrosesan). Proses ini terjadi secara berulang dan teratur sesuai program
yang ditanamkan, sehingga mikrokontroler dapat menjalankan sistem

otomatis dengan presisi tinggi.

Efisiensi dan fleksibilitas mikrokontroler menjadikannya sangat
populer dalam berbagai bidang penerapan. Mikrokontroler digunakan
dalam perangkat rumah tangga seperti mesin cuci, pendingin udara, dan
oven, sistem otomasi industri seperti robotik dan kontrol mesin; peralatan
medis seperti alat pemantau detak jantung dan pompa infus, serta kendaraan
modern untuk mengontrol sistem injeksi bahan bakar, sistem pengereman
ABS, hingga sensor parkir. Pada Internet of Things (1oT), mikrokontroler
menjadi komponen kunci yang memungkinkan perangkat-perangkat cerdas
berkomunikasi melalui jaringan internet, mengumpulkan data, serta
melakukan analisis sederhana secara lokal sebelum dikirim ke server atau

cloud.

Kemajuan teknologi juga mendorong munculnya berbagai jenis
mikrokontroler dengan kemampuan yang semakin kompleks, seperti seri
AVR, PIC, ARM Cortex-M, dan ESP32 yang telah dilengkapi dengan fitur
WiFi, Bluetooth, serta kecepatan pemrosesan yang lebih tinggi. Salah satu

12

jenis mikrokontroler yang banyak digunakan dalam sistem tertanam modern
adalah STM32F746ZGT6, yang merupakan bagian dari keluarga STM32F7
Series buatan STMicroelectronics. Mikrokontroler ini berbasis pada
arsitektur ARM Cortex-M7 dengan frekuensi clock hingga 216 MHz, yang
memberikan kinerja tinggi dan efisiensi daya yang baik untuk aplikasi
pemrosesan real-time. STM32F746ZGT6 dilengkapi dengan memori flash
sebesar 1 MB, RAM 320 KB, serta berbagai peripheral canggih seperti
ADC, DAC, UART, SPI, 12C, CAN, USB, dan Ethernet. Dukungan fitur
Floating Point Unit (FPU) dan Digital Signal Processing (DSP)
memungkinkan mikrokontroler ini melakukan perhitungan matematis
kompleks dengan cepat, sehingga cocok digunakan dalam sistem robotik,

kendali motor, pengolahan sinyal, dan aplikasi berbasis visi komputer.

Dalam konteks pengembangan sistem kendali, STM32F746ZGT6
menawarkan fleksibilitas tinggi karena dapat diprogram melalui berbagai
lingkungan pengembangan seperti STM32CubelDE, Keil pVision, atau
PlatformlO, dengan dukungan pustaka perangkat keras (HAL dan LL
driver) yang disediakan oleh STMicroelectronics. Hal ini memudahkan
pengembang untuk melakukan konfigurasi peripheral, manajemen clock,
serta komunikasi antar modul melalui antarmuka digital seperti SPI atau
UART. Selain itu, mikrokontroler ini juga mendukung fitur Direct Memory
Access (DMA) dan Real-Time Operating System (RTOS) yang
memungkinkan pengolahan data lebih cepat dan efisien dalam sistem
multitasking. Dalam bidang robotika, mikrokontroler ini digunakan untuk
mengendalikan lengan robot atau manipulator melalui komunikasi serial
berkecepatan tinggi dengan aktuator dan sensor. Beberapa platform seperti
OpenCR (Open-source Control ~ Robot) juga menggunakan
STM32F746ZGT6 sebagai otak utama untuk mengontrol motor Dynamixel,

membaca data sensor

2.4 OpenCR

OpenCR (Open-source Control Module for ROS) merupakan papan
kendali terbuka yang dikembangkan oleh ROBOTIS untuk mendukung

13

sistem robotik berbasis ROS (Robot Operating System). Papan ini berfungsi
sebagai pengendali utama yang menghubungkan antara perangkat keras
robot, seperti aktuator, sensor, dan modul komunikasi, dengan sistem
perangkat lunak pengendali pada komputer atau mikrokontroler lain.
Sebagai platform yang bersifat open source, seluruh perangkat lunak,
skematik rangkaian, dan firmware dari OpenCR dapat diakses,
dimodifikasi, serta dikembangkan secara bebas oleh pengguna, sehingga
menjadikannya solusi yang fleksibel dan adaptif dalam berbagai aplikasi

robotika, baik untuk keperluan pendidikan, penelitian, maupun industri.

Gambar 2. 2 OpenCR 1.0

Gambar 2.2 menunjukan OpenCR 1.0 yang penulis gunakan untuk
mengontrol Arm OpenManipulator, secara teknis OpenCR menggunakan
mikrokontroler STM32F7 Series ARM Cortex-M7 dengan kecepatan 216
MHz dan dilengkapi dengan floating point unit (FPU) yang memungkinkan
pengolahan data numerik kompleks secara efisien. Papan ini juga memiliki
berbagai antarmuka komunikasi seperti RS-485 dan TTL untuk koneksi
dengan aktuator DYNAMIXEL, UART, I?C, dan SPI untuk komunikasi
dengan sensor eksternal, serta port USB dan GPIO untuk input-output
umum maupun ekspansi sistem. Dukungan komunikasi yang beragam
tersebut memungkinkan OpenCR untuk berinteraksi dengan berbagai jenis

perangkat keras dalam sistem robotik secara andal dan serbaguna. Selain

14

itu, OpenCR dapat diprogram menggunakan dua pendekatan utama, yaitu
melalui lingkungan pengembangan Arduino IDE untuk sistem mandiri, atau
menggunakan ROS untuk sistem terdistribusiyang dijalankan di komputer.
Dengan kemampuan ini, OpenCR dapat digunakan baik sebagai pengendali

tunggal maupun sebagai bagian dari sistem kontrol yang lebih kompleks.

GPIO 3.3V 005Wo_| JTAG

1 6
2 [;Tms_swoio| 7 GND

D55 |13 | D60 | 18 | D65 3 GND 8 JTDI
4 | TCK SWCIK | 9 GND
5

GND 10 | MCU_NRESET

Gambar 2. 3 OpenCR PinOuts

Gambar 2.3 menunjukan susunan pin (pinout) pada papan OpenCR,
yang berfungsi untuk menghubungkan berbagai komponen eksternal seperti
sensor, aktuator, dan modul komunikasi. Setiap pin memiliki fungsi
spesifik, termasuk pin daya, komunikasi serial (UART, 12C, SPI), serta pin
input/output digital dan analog yang digunakan untuk mengendalikan
sistem robot. Dengan memahami konfigurasi pinout ini, pengguna dapat

melakukan koneksi perangkat keras dengan lebih tepat dan aman.

Dalam konteks sistem robotik, OpenCR berperan sebagai
pengendali tingkat rendah (low-level controller) yang bertugas
mengeksekusi perintah dari pengendali tingkat tinggi (high-level
controller). Fungsi utamanya meliputi pengendalian aktuator seperti motor
DYNAMIXEL, pembacaan data dari berbagai sensor, serta pengelolaan
komunikasi dua arah antara perangkat keras dan sistem pengendali

eksternal. Selain itu, OpenCR juga mampu menjalankan /oop control secara

15

lokal, seperti pengaturan posisi, kecepatan, maupun torsi pada tiap aktuator,
sehingga dapat mengurangi beban pemrosesan pada sistem komputer
utama. OpenCR juga dilengkapi dengan sistem catu daya yang mendukung
tegangan operasi 7-24volt DC, serta fitur proteksi terhadap arus lebih,
tegangan berlebih, dan suhu berlebih, yang menjadikannya andal digunakan

untuk aplikasi robotika jangka panjang.

Keunggulan utama OpenCR terletak pada sifatnya yang sepenuhnya
terbuka, baik dari sisi perangkat keras, perangkat lunak, maupun, sehingga
pengguna dapat memodifikasi sistem sesuai kebutuhan riset atau proyek.
Selain itu, OpenCR memiliki kompatibilitas tinggi dengan berbagai
platform robot ROBOTIS seperti TurtleBot3 dan 4rm OpenManipulator.
Dalam sistem Arm OpenManipulator, OpenCR berperan sebagai pengendali
utama yang menyalurkan perintah gerak dari sistem kendali eksternal
menuju motor DYNAMIXEL pada tiap sendi manipulator. Melalui
komunikasi berbasis ROS, komputer pengendali mengirimkan perintah
lintasan atau posisi (joint trajectory) ke OpenCR melalui jalur komunikasi
USB atau serial. Selanjutnya, OpenCR mengubah perintah tersebut menjadi
sinyal kontrol untuk mengatur profil kecepatan dan posisi setiap motor,
sehingga lengan manipulator dapat bergerak sesuai lintasan yang diinginkan

secara halus dan presisi.

Penggunaan OpenCR dalam sistem Arm OpenManipulator memiliki
keunggulan dibandingkan penggunaan antarmuka lain seperti U2D2, karena
OpenCR tidak hanya berfungsi sebagai penghubung komunikasi, tetapi juga
sebagai pengendali aktif'yang mampu menjalankan perintah dan melakukan
proses kendali langsung pada tingkat perangkat keras. Hal ini menjadikan
sistem lebih efisien dan responsif, serta mengurangi ketergantungan pada
komputer utama. OpenCR juga memungkinkan integrasi dengan berbagai
sensor tambahan tanpa memerlukan modul konversi eksternal, sehingga

lebih fleksibel untuk pengembangan sistem robotika yang kompleks.

Beberapa penelitian telah memanfaatkan OpenCR sebagai

pengendali utama dalam sistem robotik berbasis ROS. OpenCR secara

16

resmi menyatakan bahwa ROS kompatibel dijalankan pada OpenCR
contohnya pada penelitian dengan judul “Navigation and Task Planning of
a Mobile Robot under ROS Environment: A Case Study Using AutoRace
Challenge "(Shenetal., 2021) yang menggunakan platform TurtleBot3 pada
OpenCR untuk mengikuti tantangan AutoRace, robot harus mengenali jalur
dan mencapai tujuan secepat mungkin dengan kesalahan yang minim,
dengan memanfaatkan kamera dan sensor LiDAR 2D untuk navigasi dan
penerapan algoritma pengolahan citra dengan deep learning menghasilkan

robot yang mampu menyelesaikan misi dalam waktu 2-3 menit secara stabil.

Secara keseluruhan, OpenCR merupakan komponen penting dalam
ekosistem robotika modern. Kombinasi antara kemampuan pengolahan
sinyal yang cepat, fleksibilitas pemrograman, dan kompatibilitas tinggi
terhadap aktuator DYNAMIXEL menjadikan OpenCR sangat ideal
digunakan pada platform Arm OpenManipulator. Dukungan penuh terhadap
ekosistem open-source juga memberikan peluang luas bagi peneliti dan
pengembang untuk melakukan inovasi dalam sistem kendali robotika, baik

pada tingkat pendidikan, penelitian, maupun industri.

2.5 OpenManipulator-X

OpenManipulator-X merupakan salah satu platform robot
manipulator open-source yang dikembangkan oleh robotis dengan tujuan
mendukung kegiatan riset, pendidikan, serta pengembangan teknologi di
bidang robotika. Robot ini dirancang untuk meniru pergerakan lengan
manusia dengan beberapa derajat kebebasan (degree of freedom, DoF),
sehingga mampu melakukan berbagai tugas seperti memindahkan,
memegang, dan mengatur posisi objek secara otomatis. Keunggulan utama
OpenManipulator terletak pada sifatnya yang modular dan terbuka, baik
dari sisi perangkat keras maupun perangkat lunak, yang memungkinkan
pengguna untuk memodifikasi, menambah, atau mengganti bagian-bagian

tertentu sesuai kebutuhan penelitian.

17

Gambar 2. 4 OpenManipulator-X

Gambar 2.4 OpenManipulator-X menunjukan salah satu versi dari
OpenManipulator yang paling banyak digunakan adalah OpenManipulator-
X (RM-X52-TNM). Versi ini memiliki empat sendi utama dan satu gripper,
sehingga total lima derajat kebebasan yang dapat dikontrol. Masing-masing
sendi digerakkan oleh motor DYNAMIXEL X-Series, yaitu aktuator pintar
yang memiliki kemampuan feedback posisi, kecepatan, dan torsi melalui
komunikasi serial berbasis TTL atau RS-485. Struktur mekaniknya dapat
dimodifikasi menggunakan komponen 3D printing, menjadikan sistem ini

fleksibel untuk berbagai eksperimen kinematika dan kontrol gerak.

18

ltems Unit OpenMANIPULATOR-X

Actuator DYNAMIXEL XM430-W350-T
Input Voltage vV 12

DOF - 5(4 DOF + 1 DOF Gripper)
Payload g 500

Repeatability mm <0.2
Speed(Joint) RPM 46

Weight kg(lb) 0.70 (1.54)
Reach mm (in) 380 (14.9)

Gripper Stroke mm (in) 20~75 (0.79~2.95)

Communication - TTL Level Multidrop BUS
Software - ROS, DYNAMIXEL SDK, Arduino, Processing
Main Controller - PC, OpenCR

Gambar 2. 5 Spesifikasi OpenManipulator-X

Gambar 2.5 menunjukkan Spesifikasi OpenManipulator-X
memperlihatkan rincian teknis dari robot lengan OpenManipulator-X yang
digunakan pada penelitian ini. Robot ini menggunakan aktuator Dynamixel
XM430-W350-T sebagai penggerak utamanya, dengan sumber tegangan
kerja sebesar 12 volt. OpenManipulator-X memiliki 5 derajat kebebasan (4
DOF untuk sendi dan 1 DOF untuk gripper), serta mampu mengangkat
beban hingga 500 gram. Dari sisi presisi gerak, robot ini memiliki tingkat
pengulangan posisi kurang dari 0,2 mm, dengan kecepatan rotasi sendi
mencapai 46 RPM. Berat keseluruhan robot sekitar 0,7 kg dengan
jangkauan kerja mencapai 380 mm. Gripper yang digunakan memiliki
rentang bukaan antara 20 hingga 75 mm, sehingga dapat menyesuaikan
dengan berbagai ukuran objek. Sistem komunikasinya menggunakan TTL
Level Multidrop BUS, sementara pengendalian dan pemrograman didukung
oleh ROS (Robot Operating System), Dynamixel SDK, Arduino, serta

Processing. Robot ini dapat dikontrol menggunakan PC maupun

19

mikrokontroler OpenCR, menjadikannya fleksibel untuk berbagai aplikasi
penelitian, pengembangan, maupun integrasi dengan sistem penglihatan

komputer.

Contoh nyata penerapan OpenCR pada sistem OpenManipulator
dapat ditemukan dalam proyek Camera-based Augmented Reality
Endoscope Auxiliary System (Wang, 2021), di mana OpenCR digunakan
sebagai penghubung antara komputer dan aktuator DYNAMIXEL pada
OpenManipulator-X. Pada penelitian tersebut, OpenCR berfungsi sebagai
pengendali utama yang menerima perintah gerak dari ROS dan
meneruskannya ke motor, sekaligus menyediakan suplai daya serta
mengolah data kinematika. Sistem ini berhasil mengendalikan posisi end-
effector robot dengan ketelitian tinggi dan latensi kendali yang rendah,
menunjukkan bahwa integrasi OpenManipulator dan OpenCR efektifuntuk

aplikasi medis berbasis real-time control.

Selain menggunakan OpenCR, sistem OpenManipulator juga dapat
dikendalikan menggunakan U2D2, yaitu perangkat konverter USB-to-
TTL/RS-485 yang dikembangkan oleh robotis untuk komunikasi langsung
antara komputer dan motor DYNAMIXEL tanpa mikrokontroler tambahan.
Dalam konfigurasi ini, komputer (atau laptop) menjalankan seluruh proses
perencanaan gerak, komputasi kinematika, serta pengiriman perintah
melalui ROS. U2D2 hanya berfungsi sebagai antarmuka komunikasi fisik
antara PC dan jaringan motor, sehingga cocok untuk penelitian atau
pembelajaran yang berfokus pada pemrograman dan simulasi berbasis
komputer. Beberapa penelitian, seperti yang dilakukan oleh (Winartaet al.,
2024) dalam “Rancang Bangun Pengontrol Gerakan Robot
OpenManipulator dengan MATLAB”, menggunakan U2D2 untuk
menghubungkan OpenManipulator dengan MATLAB dan berhasil
menunjukkan bahwa sistem mampu mengikuti posisi target dengan akurasi

tinggi.

20

|0.024n1 0.124m
< - - © o

0.130m

0.128m

0.205m

0.077m

| 0.126m

A — Vv

Gambar 2. 6 Desain dan Dimensi OpenManipulator-X

Gambar 2.6 menunjukkan desain dan dimensi struktural dari robot
Arm OpenManipulator-X. Setiap bagian pada gambar merepresentasikan
panjang segmen lengan (/ink) dan posisi sambungan (joint) yang
membentuk keseluruhan konfigurasi robot. Ukuran setiap link ditunjukkan
dalam satuan meter, seperti 0.077 m, 0.128 m, 0.130 m, 0.124 m, dan 0.205
m, yang menggambarkan jarak antar sumbu rotasi maupun ukuran
komponen utama. Informasi ini sangat penting dalam analisis kinematika
dan dinamika, karena menjadi dasar dalam menentukan jangkauan gerak
(workspace) serta posisi end-effector. Selain itu, tampak pula bagian gripper
pada ujung lengan yang berfungsi untuk mengripper atau memegang objek,
yang juga memiliki ukuran spesifik agar sesuai dengan tugas manipulasi

yang diinginkan.

Secara keseluruhan, OpenManipulator-X memiliki keunggulan
dalam hal fleksibilitas, modularitas, dan dukungan sistem terbuka.
Kombinasi antara aktuator DYNAMIXEL, komunikasi berbasis ROS, serta
kemampuan integrasi dengan OpenCR maupun U2D2 menjadikan
OpenManipulator-X ini sangat cocok untuk berbagai keperluan riset dan
pendidikan. Dalam konteks penelitian modern, OpenManipulator-X tidak
hanya digunakan untuk studi kontrol dan kinematika, tetapi juga untuk

pengembangan sistem berbasis kecerdasan buatan, pengenalan visual, dan

21

otomasi cerdas termasuk aplikasi seperti penyortiran objek berdasarkan

citra atau robot kolaboratif yang berinteraksi langsung dengan manusia.

2.6 Dynamixel XM430-W350-T

Dynamixel XM430-W350-T merupakan salah satu jenis servo
motor cerdas (smart actuator) yang dikembangkan oleh Robotis, dan
banyak digunakan dalam berbagai aplikasi robotika, termasuk pada sistem
OpenManipulator-X. Modul ini dirancang untuk memberikan performa
tinggi dengan presisi gerak yang baik serta fleksibilitas dalam pengendalian
posisi, kecepatan, dan torsi. Berbeda dari motor servo konvensional,
Dynamixel XM430 dilengkapi dengan mikrokontroler internal, sensor
posisi absolut berbasis encoder, dan sistem komunikasi digital, sehingga
memungkinkan proses kendali dan monitoring dilakukan secara langsung

melalui jaringan komunikasi TTL atau RS-485, tergantung pada variannya.

Gambar 2. 7 DYNAMIXEL-X

Gambar 2.7 diatas merupakan DYNAMIXEL-X, Dynamixel
XM430-W350-T memiliki torsi maksimum mencapai sekitar 4,1 N-m pada
tegangan 12 V dan kecepatan hingga 46 rpm, menjadikannya cocok untuk
digunakan pada aplikasi yang membutuhkan kekuatan dan ketepatan gerak,
seperti lengan robot atau sistem aktuasi berderajat kebebasan tinggi. Selain
itu, motor ini mendukung pengendalian multi-turn, yang memungkinkan
rotasi lebih dari satu putaran penuh dengan akurasi tinggi, sehingga

memperluas fleksibilitas gerak manipulator.

22

Kelebihan utama dari XM430 terletak pada fitur PID control
terintegrasi, kompensasi suhu, perlindungan arus lebih, serta kemampuan
untuk mengirimkan data umpan balik seperti suhu, tegangan, posisi, dan
kecepatan secara real-time. Hal ini membuat aktuator ini sangat efisien
untuk sistem yang memerlukan kontrol tertutup (closed-loop control).
Casing motor yang terbuat dari aluminium alloy juga membantu menjaga
kestabilan termal dan kekuatan mekanis selama operasi berulang dalam

waktu lama.

2.7 Mikrokomputer

Mikrokomputer merupakan perangkat komputasi berukuran kecil
yang memiliki prosesor, memori, dan sistem input output yang
memungkinkan perangkat ini bekerja secara mandiri. Perangkat ini pada
dasarnya memiliki fungsi sama seperti komputer pada umumnya, hanya saja
dengan ukuran yang lebih ringkas dan sumber daya yang lebih efisien.
Mikrokomputer banyak digunakan untuk keperluan sistem tertanam
(embedded system), kontrol otomatis, serta penelitian di bidang robotika
karena kemampuannya dalam menjalankan program secara stabil dan hemat

daya.

Dalam sistem robotika, mikrokomputer sering berfungsi sebagai
otak utama yang memproses data dari berbagai sensor dan mengirimkan
perintah ke aktuator atau mikrokontroler. Beberapa jenis mikrokomputer
yang cukup populer digunakan di bidang ini adalah Raspberry Pi, NVIDIA
Jetson, dan LattePanda. Perangkat tersebut umumnya mendukung sistem
operasi Linux dan kompatibel dengan Robot Operating System (ROS),
sehingga mudah diintegrasikan dengan berbagai modul dan platform

robotik seperti 4rm OpenManipulator.

Selain digunakan secara mandiri, mikrokomputer juga sering
dipasangkan dengan mikrokontroler, seperti OpenCR, untuk membentuk
sistem kendali dua tingkat sehingga mikrokomputer menangani tugas-tugas
berat seperti perhitungan kinematika, pemrosesan data kamera, atau

algoritma kecerdasan buatan, sementara mikrokontroler fokus pada kendali

23

motor dan sensor secara langsung. Dengan pembagian tugas seperti ini,
sistem menjadi lebih efisien dan responsif dalam mengendalikan gerakan

robot.

Salah satu contoh penerapan mikrokomputer dalam penelitian
robotika adalah penelitian oleh (Xu, 2018) berjudul Remote Control and
Monitoring System of Robotic Arm Using Raspberry Pi. Dalam penelitian
tersebut, Raspberry Pi sebagai inti pengendali untuk melakukan perintah
secara remote. Hasil pengujian menunjukkan bahwa sistem ini mampu
mengirimkan perintah kendali dan mentransmisikan gambar dengan andal,
serta memungkinkan robot melakukan berbagai tugas kompleks dengan
stabil dan akurat. Sehingga dapat disimpulkan mikrokomputer memiliki
peran yang sangat penting dalam pengembangan robot modern.
Kemampuannya dalam melakukan pemrosesan data secara cepat,
mendukung berbagai bahasa pemrograman, serta kemudahan integrasi
dengan sistem komunikasi membuat perangkat ini menjadi pilihan utama

dalam riset dan implementasi sistem robotik berbasis ROS.

2.8 Jetson Nano

Jetson Nano merupakan salah satu mikrokomputer yang
dikembangkan oleh NVIDIA dan dirancang khusus untuk aplikasi berbasis
kecerdasan buatan (Al) serta komputasi visual. Perangkat ini dilengkapi
dengan prosesor quad-core ARM Cortex-A57 dan GPU NVIDIA Maxwell
dengan 128 CUDA cores, yang menjadikannya mampu menjalankan
pemrosesan paralel secara efisien. Dengan spesifikasi tersebut, Jetson Nano
tidak hanya mampu menjalankan sistem operasi linux, tetapi juga
mendukung berbagai framework pembelajaran mesin seperti TensorFlow,
PyTorch, dan OpenCV, sehingga sangat cocok digunakan untuk penelitian

di bidang robotika, visi komputer, dan sistem otonom.

24

Gambar 2. 8 Jetson Nano

Gambar 2.8 menunjukan mikrokomputer Jetson Nano, dalam
konteks robotika, Jetson Nano berperan sebagai pengendali utama yang
menangani proses komputasi berat, seperti deteksiobjek, pengenalan wajah,
navigasi visual, dan perencanaan lintasan. Kemampuan GPU-nya membuat
Jetson Nano mampu memproses data gambar atau video secara real-time,
sesuatu yang sulit dicapai jika hanya menggunakan mikrokontroler
konvensional. Selain itu, perangkat ini juga kompatibel dengan Robot
Operating System (ROS), yang memungkinkan integrasi langsung dengan
berbagai perangkat robotik seperti Arm OpenManipulator, TurtleBot3,

maupun sistem sensor eksternal.

Dalam beberapa penelitian, Jetson Nano sering digunakan sebagai
bagian dari sistem kendali dan bertugas menjalankan algoritma pengolahan
data dan pengambilan keputusan, dan mengirimkan hasil ke robot Arm.
Salah satu penelitian Jetson Nano yang berhubungan dengan robotika
berjudul Robot intelligent grasping experimental platform combining
Jetson Nano and machine vision (Bao etal., 2022). Pada penelitian tersebut,
Jetson Nano digunakan untuk memproses machine vision untuk
memindahkan objek secara otomatis, Penelitian ini berhasil membangun
sistem robot manipulator berbasis Jetson Nano dengan kemampuan deteksi

warna dan pengambilan objek otomatis menggunakan machine vision

25

berbasis dengan metode pengolahan citra dasar. Hasil uji menunjukkan
sistem sangat akurat dan efisien (100% deteksi warna dan 96% efisiensi

grasping), dengan waktu deteksi di bawah 5 detik.

2.9 Machine Learning

Machine learning atau pembelajaran mesin adalah cabang dari
kecerdasan buatan (Artificial Intelligence/Al) yang berfokus pada
kemampuan sistem untuk belajar dari data dan membuat keputusan tanpa
harus diprogram secara eksplisit. Konsep dasarnya adalah bagaimana
komputer dapat mengenali pola dari sejumlah data, kemudian menggunakan
pola tersebut untuk mengklasifikasi atau mengambil keputusan pada data
baru. Dalam konteks teknologi moderen, machine learning banyak
digunakan pada berbagai bidang seperti pengenalan wajah, klasifikasi citra,

analisis suara, serta sistem rekomendasi.

Dalam bidang robotika, machine learning berperan penting untuk
meningkatkan kemampuan adaptasi dan kecerdasan robot. Melalui
penerapan algoritma pembelajaran, robot dapat memahami lingkungan
sekitarnya, mengenali objek, serta menyesuaikan tindakan berdasarkan
pengalaman atau data yang telah dikumpulkan. Salah satu contoh penerapan
yang umum adalah pada sistem visi komputer (computer vision), biasanya
robot dilatih untuk membedakan bentuk, warna, atau kondisi suatu objek,
misalnya dalam proses penyortiran buah atau deteksi cacat produk di

industri manufaktur.

Machine learning terbagi menjadi tiga jenis utama, yaitu supervised
learning, unsupervised learning, dan reinforcement learning. Supervised
learning digunakan ketika data yang digunakan memiliki label atau
kategori, misalnya dalam klasifikasi gambar sehat dan tidak sehat.
Unsupervised learning digunakan untuk menemukan pola atau kelompok
dalam data tanpa label, sedangkan reinforcement learning berfokus pada
proses pembelajaran berbasis umpan balik dari lingkungan, misalnya robot
yang belajar mengambil keputusan untuk mencapai tujuan tertentu.

Beberapa algoritma yang sering digunakan dalam machine learning antara

26

lain Convolutional Neural Network (CNN), Decision Tree, Support Vector
Machine (SVM), dan K-Nearest Neighbor (KNN). Masing-masing
algoritma memiliki kelebihan tersendiri tergantung pada jenis data dan
tujuan analisis. Contohnya, penelitian dengan judul “Penerapan Metode
Decision Tree Untuk Mengklasifikasikan Mutu Buah Jeruk Berdasarkan
Fitur Warna Dan Ukuran” (Robianto et al., 2021) menunjukkan bahwa
metode Decision Tree mampu mengklasifikasikan kondisi buah dengan
tingkat akurasi lebih dari 92%. Hasil tersebut membuktikan bahwa
penerapan machine learning sangat membantu dalam proses otomasi

berbasis visual, khususnya dalam sistem penyortiran otomatis.

Convolutional Neural Network (CNN) adalah salah satu metode
dalam deep learning yang banyak digunakan untuk mengenali dan
mengolah gambar. CNN bekerja dengan mengenali pola visual, seperti
bentuk, warna, dan tekstur. Metode ini terdiri dari beberapa lapisan yang
bertugas mengenali ciri-ciri penting dari gambar hingga menghasilkan hasil
akhir berupa klasifikasi atau pengenalan objek. Proses pelatihannya
dilakukan dengan memberikan banyak contoh gambar yang sudah diberi
label agar sistem dapat belajar mengenali perbedaan antar objek. CNN
dikenal memiliki akurasi tinggi dalam mendeteksi dan mengklasifikasi

gambar, namun membutuhkan data dan sumber daya komputasi yang besar.

Memiliki empat lapisan utama, pertama ada Convolutional Layers
merupakan lapisan yang menerapkan operasi konvolusi pada citra input
menggunakan filter atau kernel untuk mendeteksi fitur tepi, tekstur dan pola
yang lebih kompleks. Convolutional Layers ini membantu mempertahankan
hubungan spasial antar piksel. Selanjutnya ada Pooling Layers merupakan
lapisan yang melakukan downsampling terhadap dimensi spasial dari
masukan sehingga mengurangi kompleksitas komputasi dan jumlah
parameter dalam jaringan. Max pooling merupakan operasi pooling yang
paling umum digunakan (nilai maksimum dari sekelompok piksel tetangga
dipilih). Layer selanjutnya adalah Activation Functions fungsi ini
memeperkenalkan non-linearitas ke dalam model, sehingga memungkinkan

jaringan untuk mempelajari hubungan yang lebih kompleks dalam data.

27

Lapisan terakhir adalah Fully Connected Layers merupakan lapisan yang
bertanggung jawab dalam membuat klasifikasi berdasarkan fitur Tingkat
tinggi yang telah dipelajari oleh lapisan-lapisan sebelumnya, setiap neuron

pada lapisan ini terhubung dengan setiap neuron pada lapisan berikutnya.

Cara dasar Convolutional Neural Network (CNN) bekerjaumumnya
dibagi menjadi 5 tahap, tahap pertama merupakan Input Image disini
Convolutional Neural Network (CNN) menerima sebuah gambar sebagai
masukan, biasanya ukuran pada gambar diubah menjadi 224x224 piksel dan
dikonversi formatnya (misal dari RGB ke bentuk numerik) agar model bisa
memprosesnya secara konsisten. Tahap kedua merupakan Convolutional
Layers, lapisan ini menggunakan filter(kernel) untuk memindai gambar dan
mengekstraksi ciri-ciri penting seperti tepi, bentuk, atau tekstur, setiap
filternya bisa mendeteksi pola tertentu di gambar misalnya satu filter
mendeteksi tepi horizontal filter yang lain mendeteksi warna, dll sehingga

hasilnya disebut feature map.

Tahap ketiga merupakan Pooling Layers, lapisan ini mengecilkan
ukuran peta fitur (downsampling) untuk mengurangi jumlah data yang harus
diproses, resiko overtfitting dan mempertahankan fitur yang paling penting
biasanya menggunakan max pooling (hanya mengambil nilai maksimum
dari area kecil misalnya 2x2 piksel). Tahap keempat merupakan Fully
Connected Layers, setelah fitur penting berhasil diekstraksi dan diperkecil,
hasilnya diratakan menjadi satu vector panjang dan dikirim ke lapisan
terhubung penuh, setiap neuron terhubung dengan neuron di lapisan
berikutnya, jaringan mempelajari hubungan antar fitur dan membuat
keputusan akhir (mengenali objek dalam gambar). Tahap terakhir
merupakan QOutput, lapisan ini menghasilkan klasifikasi akhir misalnya
label kelas seperti jeruk sehat dan tidak sehat atau nilai probabilitas untuk

setiap kelasnya.

Data preparation Loss Function

\ J

Optimizer — Back Propagation

Y

Gambar 2. 9 Proses pelatihan CNN

28

Gambar 2.9 Proses pelatithan CNN menunjukan 4 tahap proses
pelatihan dari metode CNN. Dimulai dari Data preparation pada tahap awal
seluruh gambar dipersiapkan agar seragam misalnya diubah ke ukuran dan
format yang sama, kadang dilakukan normalisasi nilai piksel (dari 0-255
menjadi 0-1), atau dilakukan data augmentation misalnya rotasi, flipping,
dll agar model tidak mudah overfitiing. Tahap selanjutnya merupakan Loss
Function yang digunakan untuk mengukur seberapa baik CNN
mengklasifikasi hasil yang benar, jika klasifikasi model berbeda jauh dari
label aslinya, maka nilai loss akan besar, tujuan pelatihan ini adalah
meminimalkan nilai loss tersebut. Tahapan ketiga optimizer merupakan
tahapan yang bertugas untuk memperbarui bobot darti jaringan agar nilai
loss semakin kecil, menentukan arah dan seberapa besar perubahan bobot
tiap iterasi berdasarkan nilai loss yang dihitung sebelumnya contoh
optimizer yang umum digunakan adalah Stochastic Gradient Descent
(SGD), Adam dan RMSprop. Tahapan terakhir yaitu Backpropagation
merupakan teknik yang digunakan untuk menghitung gradien dari fungsi
kerugian (loss function) terhadap bobot-bobot (weights) pada CNN. Nilai
gradien tersebut kemudian digunakan oleh optimizer untuk memperbarui

bobot-bobot CNN agar hasil klasifikasi menjadi semakin akurat.

Efisiensi dari CNN dapat dievaluasi menjadi beberapa kriteria.
Pertama, akurasi adalah presentase seberapa tepat CNN mengklasifikasi

gambar uji dengan rumus

TP+ TN
TP+ TN+ FP +FN

€y

Kedua , presisi adalah presentase gambar uji yang diklasifikasi oleh
CNN sebagai kelas tertentu dan benar termasuk dalam kelas tersebut dengan

rumus

TP

TP+ FP)

29

Ketiga, recall adalah presentase gambar uji yang sebenarnya,
termasuk dalam suatu kelas dan berhasil diklasifikasi oleh CNN dengan

rumus

TP

TP+ FN)

Terakhir, flscore adalah rata-rata h4rmonik dari presisi dan recall.
Metrik ini baik digunakan untuk mengevaluasi kerja CNN terutama ketika

jumlah data antar kelas tidak seimbang dengan rumus

precision * recall
Flscore =2 - — (4)
precision + recall

Fitur yang sering digunakan untuk evaluasi adalah tabel confusion
matrix, tabel ini membandingkan hasil klasifikasi model dengan label
sebenarnya dari data uji. Dalam pengembangan sistem robotik modern,
machine learning sering digabungkan dengan platform seperti Jetson Nano
atau Raspberry Pi untuk melakukan pemrosesan data secara langsung.
Kombinasi antara kemampuan komputasi dari perangkat tersebut dengan
algoritma pembelajaran mesin memungkinkan robot bekerja secara cerdas
dan mandiri, misalnya mengenali objek yang akan diambil oleh Arm
OpenManipulator-X atau menentukan tindakan berdasarkan kondisi
lingkungan sekitar. Perkembangan ini membuat machine learning menjadi

salah satu komponen penting dalam pengembangan sistem robotik berbasis

kecerdasan buatan.
n=1280
O
. " n=32 O
& " n=96 n=1280 O ?»(;
B e
B 'I_’ ‘-fé-b -b‘-bo .\K\; O :
L - Ve O b »c
128x128x3 128x128 64 x 64 32x32 axa 3
- Softmax
O
Fully Connected

MobileNetv2
-»> -
Preprocessing 3x3 Conv, RelU Max pool 2x2

Gambar 2. 10 Arsitektur MobileNetV2

30

Gambar 2.10 menunjukan Arsitektur MobileNetV2 yang digunakan
pada penelitian ini dirancang untuk melakukan proses ekstraksi fitur dan
klasifikasi citra jeruk berdasarkan kondisi sehat dan tidak sehat. Struktur
jaringan terdiri dari beberapa lapisan utama yang saling terhubung, di mana
setiap lapisan memiliki fungsi tertentu dalam proses pembelajaran fitur
visual. Rancangan arsitektur CNN yang digunakan dalam penelitian ini

ditunjukkan pada tabel 3.1

Tabel 3. 1 Jenis dan Fungsi Layer pada MobilenetV2

Jenis Layer Fungsi

Prepocessing

Convolution Layer (3x3 Conv)

ReLU Activation

Max Pooling

Fully Connected Layer

Softmax Layer (Output)

Normalisasi nilai piksel agar berada
dalam rentang tertentu (biasanya 0-1)
sehingga proses training lebih stabil
dan cepat konvergen

Ekstraksi fitur dan citra dengan
mengalikan kernel/filter berukuran 3x3
terhadap area lokal pada citra
Menambahkan non-linearitas pada
jaringan dengan memotong nilai
negatif menjadi 0 agar model dapat
mempelajari fitur kompleks
Mengurangi dimensi fitur dengan
memilih nilai maksimum pada setiap
jendela 2x2 untuk mempertahankan
fitur dominan

Menghubungkan seluruh neuron dari
lapisan sebelumnya unuk melakukan
pengambilan keputusan berdasarkan
fitur yang telah diekstraksi

Mengubah skor keluaran menjadi nilai
probabilitas antar kelas, di mana
jumlah total probabilitas sama dengan
1.

Tabel 3.1 menunjukan jenis layer yang digunakan pada arsitektur

MobileNetV2 yang rangkanya terletak pada gambar 2.10 Setiap layer
memiliki fungsi dan rumus matematis yang menggambarkan proses
pengolahan citra dari tahap awal hingga menghasilkan output klasifikasi.
Proses dimulai dari tahap preprocessing, yaitu normalisasi nilai piksel agar
jaringan dapat belajar secara lebih stabil. Selanjutnya, convolution layer
(3%3 Conv) berfungsi untuk mengekstraksi fitur penting dari citra melalui

operasi konvolusi antara kernel dan citra masukan. Hasil konvolusi

31

kemudian diproses oleh fungsi aktivasi ReLU untuk menambahkan non-
linearitas dan menghilangkan nilai negatif yang tidak relevan lalu dilakukan
max pooling 2x2, yang bertujuan untuk mengurangi ukuran citra
(downsampling) dengan tetap mempertahankan fitur paling dominan.
Setelah fitur-fitur diekstraksidan direduksi, hasilnya diratakan (flatten) dan
masuk ke dalam fully connected layer, di mana seluruh neuron saling
terhubung untuk menggabungkan informasi fitur menjadi representasi yang
lebih bermakna. Terakhir, softmax layer digunakan sebagai lapisan keluaran
untuk mengubah nilai aktivasi menjadi probabilitas antar kelas, sehingga
jaringan dapat menentukan kelas dengan probabilitas tertinggi sebagai hasil
klasifikasi.

I, y,0)

I'(x;)’»c)— 255 (5)

a. I(x,y,c) = Intensitas piksel pada posisi (X,y) dan kanal warna ¢

b. I’(x,y,c) = Hasil normalisasi

Rumus (5) merupakan rumus normalisasi pada MobileNetV2. Proses

mengubah nilai intensitas piksel gambar dari rentang asli 0-255 menjadi

rentang 0-1
2 2 Cc-1
Zi,j,kzzz Wm,n,c,k Xi+m,j+n,c+ b (6)
m=0n=0c=0
a. X = Input feature map
b. W =Bobot filter ukuran 3x3

Bk = Bias untuk filter ke-k
d. Zi,j,k = Output ke-k pada posisi (i,))

S

Rumus (6) merupakan proses ekstraksi fitur gambar. Rumus ini menghitung
jumlah perkalian antara nilai piksel input (X) dengan bobot filter (W)

ditambah bias (b) untuk menghasilkan feature map baru.

f(x) = max(0,x) (7)

32

Rumus (7) berfungsi untuk menambahkan non-linearitas. Rumus ini
menyaring nilai negatif menjadi 0 dan membiarkan nilai positif tetap,
sehingga mempercepat komputasi tanpa menghilangkan informasi penting.

n
Z = Z WijXi + b; (8)
i=1

Rumus (8) merupakan tahap klasifikasi di mana data fitur yang sudah
didatarkan dikalikan dengan bobot (W) dan ditambah bias (b). Ini adalah
proses menyusun keputusan sebelum masuk ke output akhir.

4

P(y=jlx) = em— 9)

ke=1€7%
Rumus (9) merupakan lapisan output terakhir yang mengubah hasil
perhitungan angka menjadi nilai probabilitas. Nilai probabilitas tertinggi

menentukan hasil prediksi akhir (apakah Jeruk Sehat atau Tidak Sehat).

2.10 Penelitian Terdahulu

Bagian ini membahas beberapa hasil penelitian terdahulu yang relevan
dan dapat dijadikan sebagai dasar acuan dalam topik penelitian ini.
Penelitian-penelitian tersebut telah dipilih secara selektif agar sesuai dengan
fokus kajian yang diangkat, sehingga diharapkan dapat memberikan
gambaran yang lebih jelas serta menjadi referensi pendukung dalam
penyusunan dan penyelesaian penelitian ini. Berikut disajikan uraian

mengenai beberapa penelitian terdahulu yang menjadi rujukan.

Penelitian pertama, oleh Oki Saputra (2024) berjudul Uji Kinerja
Sistem Kontrol Gripper pada Robot Lengan untuk Pemetikan Tomat.
Penelitian ini meyakini bahwa inovasi dibutuhkan untuk peningkatan
efisiensi dalam pertanian salah satunya berupa pengenalan teknologi
robotiika dalam pertanian yang memudahkan pekerjaan di lapangan. Metode
yang dilakukan adalah metode eksperimental sehingga langkah-langkah
eksperimen melibatkan peran lengan robot yang dilengkapi dengan gripper:
Hasilnya gripper pada lengan dapat beroprasi secara efektif mencapai
presentase keberhasilan 100% dan dapat diandalkan untuk pengembangan

robotika bidang pertanian.

33

Penelitian kedua, oleh Muhammad Alif (2025) yang berjudul
Pengendalian Gerakan Robot OpenManipulator Untuk Operasi Pemindahan
Barang Berbasis MATLAB. Penelitian ini bertujuan untuk mengontrol
kecepatan dan mengatur sinkronasi gerakan servo agar bisa memindahkan
objek (tabung kimia) dari suatu titik ke titik lain sesuai gerakan robot industri
sehingga jika terdapat bahan kimia yang berbahaya bagi manusia dapat
digantikan oleh robot. Hasil dari penilitian ini menyatakan bahwa prototipe
robot Arm sudah berhasil memindahkan objek ke satu titik ke titik lain tetapi
masih pada dua titik terdekat dan pergerakannya tidak teratur sehingga dapat

membuat objek jatuh.

Penelitian ketiga, berjudul Automated fruit sorting system integrating
image processing and support vector machine techniques (Oyefeso et al.,
2025). Penelitian ini membahas sistem sortir buah otomatis (jeruk, tomat, dan
mangga) menggunakan kamera ESP32-CAM, pengolahan citra, dan
algoritma SVM untuk klasifikasi. Hasilnya menunjukkan tingkat akurasi
hingga 100%, dengan sistem mampu menyortir buah secara fisik ke wadah
berbeda sesuai hasil klasifikasi. Penelitian ini menunjukkan bahwa kombinasi
machine learning dan image processing efektif meningkatkan efisiensi dan

akurasi penyortiran buah.

Penelitian keempat, dengan judul CNN-MLP-Based Configurable
Robotic Arm for Smart Agriculture (Li et al., 2024) menjelaskan bahwa di
tengah meningkatnya populasi global dan berkurangnya lahan pertanian yang
dapat digarap, peningkatan produktivitas dan keberlanjutan di bidang
pertanian menjadi sangat penting. Untuk mengatasi ketidakefisienan sistem
pertanian tradisional yang kesulitan memenuhi kebutuhan produksi skala
besar, penelitian tersebut memperkenalkan sistem Configurable Agricultural
Robotic Arm (CARA), yang dirancang menggunakan Convolutional Neural
Network (CNN) dan Multilayer Perceptron (MLP). Sistem ini
mengintegrasikan lengan robot fleksibel, modul akuisisi citra, dan pusat
pemrosesan berbasis kecerdasan buatan, guna mendukung berbagai tugas
pertanian dengan presisi tinggi seperti pemanenan, penyemprotan pestisida,

dan inspeksi tanaman. Hasil pengujian menunjukkan sistem mampu

34

meningkatkan efisiensi operasional, beradaptasi dengan baik terhadap
berbagai kondisi pertanian, serta memperkuat presisi dan keberlanjutan

praktik pertanian.

35

BAB III
ANALISIS DAN PERANCANGAN SISTEM
3.1 Tahapan Penelitian

Pada bagian ini dijelaskan tahapan-tahapan penelitian yang dilakukan untuk
mencapai tujuan penelitian. Setiap tahapan disusun agar proses penelitian dapat

berjalan dengan baik dan menghasilkan data yang valid sesuai dengan

Identifikasi Masalah

permasalahan yang diteliti.

h 4

Perancangan Sistem

¥

» Pembuatan Program

h 4

Pengujian Program

TIDAK

Program Berjalan
dengan Baik

Implementasi dan Uji
Coba Alat

Gambar 3. 1 Diagram alir tahapan penelitian

36

Gambar 3.1 memperlihatkan tahapan penelitian yang dilakukan dalam
perancangan dan implementasi sistem penyortiran buah jeruk menggunakan robot
Arm OpenManipulator berbasis Jetson Nano dan OpenCR. Pada tahap identifikasi
masalah, diketahui bahwa proses penyortiran buah jeruk secara manual masih
kurang efisien dan rentan terhadap kesalahan penilaian kualitas. Oleh karena itu,
diperlukan sebuah sistem otomatis yang mampu membantu proses tersebut agar
lebih cepat dan konsisten. Berdasarkan hasil identifikasi ini, dilakukan analisis
kebutuhan untuk menentukan komponen perangkat keras dan perangkat lunak yang
diperlukan. Proses ini diawali dengan pencarian berbagai sumber dan hasil
penelitian sebelumnya yang membahas penerapan machine learning dan
penggunaan robot Arm dalam penyortiran objek. Selanjutnya, dilakukan
perancangan serta pembuatan program yang meliputi pelatihan model klasifikasi
kualitas buah pada Jetson Nano dan pengendalian gerakan robot Arm melalui
OpenCR. Dilakukan uji awal terhadap program guna memastikan bahwa
pergerakan robot berfungsi sebagaimana mestinya. Jika hasil uji belum sesuai,
dilakukan penyesuaian hingga sistem bekerja dengan baik. Setelah tahap tersebut
berhasil, dilakukan tahapan untuk implementasi machine learning-nya. Hasil uji ini
digunakan untuk menilai akurasi dan kinerja sistem serta menjadi dasar dalam

penarikan kesimpulan penelitian.

Gambar 3. 2 ID Servo

Gambar 3.2 ID Servo menunjukan posisi serta penomoran masing-masing
motor servo yang digunakan pada robot Arm OpenManipulator. Setiap servo
memiliki ID yang berbeda-beda, dimulai dari bagian pangkal hingga ke ujung
gripper, sehingga memudahkan proses identifikasi dan pengendalian setiap sendi
secara terpisah. Pemberian ID ini sangat penting karena sistem pengendalian pada
Arm OpenManipulator berbasis komunikasi digital melalui protokol Dynamixel, di

mana setiap perintah yang dikirim dari mikrokontroler akan diterima hanya oleh

37

servo dengan ID yang sesuai. Dengan demikian, koordinasi antar-sumbu gerak
dapat dilakukan secara sinkron dan presisi sesuai perintah yang diberikan melalui
perangkat lunak pengendali. Selain itu, penomoran ID juga membantu dalam proses
kalibrasi dan pemrograman gerakan, karena pengguna dapat dengan mudah
mengetahui servo mana yang bertanggung jawab terhadap pergerakan tertentu,

misalnya rotasi dasar, pergerakan lengan bawah, lengan atas, maupun pengripper

Dataset Collection

(gripper).

Y
Data Preprocessing

Resize: 160x160 piksel
Normalisasi: [-1, 1]

A4
CNN Architecture

Y
Model Training

y
Model Validation

A4
Model Evaluation

Y
Implementation

y

Gambar 3. 3 Diagram alur penerapan Machine learning

Gambar 3.3 menunjukan Diagram alur penerapan Machine learning. Tahap
awal dilakukan pengumpulan data set berupa citra buah jeruk yang digunakan
sebagai bahan penelitian model lalu dilakukan data prepocessing untuk
mempersiapkan data agar siap diproses, seperti pengubahan ukuran gambar,
normalisasi, dan augmentasi data, tahap berikutnya dilakukan perancangan CNN
Architecture disini penulis membuat arsitektur jaringan CNN yang digunakan untuk

mengenali pola pada citra jeruk. Setelah arsitektur terbentuk dilakukan Model

38

Training guna melatih model menggunakan data training diikuti oleh Model
Validation untuk mengevaluasi kinerja model terhadap data validasi, tahap ini
digunakan untuk mengukur performa model seperti akurasi, precision, recall, dan
Fl-score. Jika model dinyatakan memiliki performa terbaik maka dilakukan
Implementation, yaitu penerapan model ke dalam sistem yang telah dirancang.
Seluruh proses diakhiri dengan tahap Selesai yang menandakan model siap

digunakan untuk melakukan klasifikasi citra jeruk secara otomatis.

3.1.1 DataSet

Dataset didapatkan melalui Mendeley Data, memiliki jumlah 3000 dataset
per kategori nya (jeruk sehat, kanker jeruk, dan penyakit melanose) tujuan dataset
ini dikumpulkan adalah untuk mengetahui jenis penyakit jeruk apa yang paling
dominan ditemukan di wilayah timur Uganda. Dataset buah jeruk dikumpulkan
menggunakan kamera ponsel dalam format Highly Enhanced Image Container
(HEIC) dan kemudian dikonversi ke format JPEG. Penulis hanya menggunakan 2
kategori yaitu jeruk sehat, dan tidak sehat diambil dari 1500 dataset kanker jeruk

dan 1500 dataset penyakit melanose.

Qowamslzsé
.QQ." cm,mc‘g

]

&ﬂ'ﬁ»ﬁ.“fwh.ﬁ'
.?B‘ ‘

LA

Gambar 3. 4 Dataset jeruk sehat

Gambar 3.4 menujukan dataset untuk kategori/label jeruk sehat yang
digunakan dalam penelitian ini. Citra-citra pada kategori ini menampilkan jeruk
dengan kondisi kulit yang baik, warna merata, dan tidak memiliki cacat fisik seperti

bintik hitam, bercak busuk, atau perubahan warna mencolok. Data tersebut

39

digunakan sebagai representasi visual dari jeruk dengan kualitas normal yang akan

menjadi pembanding terhadap kategori jeruk tidak sehat dalam proses pelatihan

EFEEELLEEEE
 i37t7 1L
IRENOOEON

model Machine learning.

EE rrwww
IENE EBUUGE

--i’a—-n-ih

Gambar 3. 5 Dataset jeruk tidak sehat

Gambar 3.5 menunjukan dataset untuk kategori jeruk tidak sehat yang
digunakan dalam penelitian ini. Kategori ini menampilkan kondisi kulit yang
memiliki bercak hitam dari ukuran besar, kecil, banyak bercak maupun sedikit
bercak, ada pula jeruk yang seluruhnya berwarna hitam karena terkena penyakit

melanose.

40

Inisialisasi UART
Jetson Nano &
OpenCR

Y

Jetson Mano mengirim hasil
klasifikasi jeruk (jeruk
sehatftidak sehat) ke OpenCR

Y

Y

OpenCR menerima
daia via UART

h 4

OpenManipulator berjalan
sesuai hasil klasifikasi jeruk
sehattidak sehat

Perintah baru?

TIDAK

Gambar 3. 6 Diagram Alur Komunikasi Jetson Nano dengan OpenCR

Gambar 3.6 menunjukan Diagram alur komunikasi Jetson Nano dengan
OpenCR, alur proses komunikasi antara Jetson Nano sebagai pengendali utama dan
OpenCR sebagai penggerak robot Arm melalui protokol UART. Jetson Nano
mengirimkan hasil klasifikasi dari model machine learning dalam bentuk data serial
ke OpenCR. Setelah data diterima, OpenCR menginterpretasikan perintah tersebut
untuk menggerakkan motor servo sesuai hasil klasifikasi, misalnya untuk

mengarahkan atau memindahkan buah ke wadah tertentu.

41

3.2 Proses Pengerjaan

Proses pengerjaan penelitian ini dilakukan secara bertahap dan terstruktur
agar setiap bagian dari sistem dapat berfungsi sesuai dengan tujuan yang telah
ditetapkan. Tahapan dimulai dari tahap perancangan konsep sistem secara
keseluruhan, yaitu menentukan kebutuhan perangkat keras dan perangkat lunak
yang akan digunakan. Perangkat utama yang digunakan meliputi Jetson Nano
sebagai pusat pemrosesan data, OpenCR sebagai pengendali robot Arm
OpenManipulator, serta kamera sebagai alat pengambil citra buah jeruk. Pada tahap
ini juga dirancang alur kerja sistem mulai dari pengambilan gambar, penerapan
machine learning untuk analisis kualitas buah, hingga pengiriman hasil pengenalan

ke OpenCR agar robot dapat melakukan penyortiran secara otomatis.

Train Al

1

Test Al

Gambar 3. 7 Topologi Perangkat

Gambar 3.7 merupakan topologi perangkat sehingga proses berjalannya
prototipe dimulai dengan memberikan tegangan 10 volt melalui adaptor pada Jetson
Nano dan OpenCR agar dapat standalone. Tahap awal (nomor 1) berupa komputer
untuk melatih data, model yang telah jadi ditanam dan dijalankan oleh Jetson Nano
(nomor 2) berupa citra jeruk yang tertangkap kamera (nomor 3) membuat Jetson
Nano (nomor 4) menjalankan model Al untuk klasifikasi jeruk sesuai dengan model
machine learning yang digunakan, output dari model dikirim (nomor 5) dari Jetson
Nano ke OpenCR via UART. OpenCR kemudian memproses data tersebut untuk
menggerakkan (nomor 6) robot Arm OpenManipulator sesuai perintah yang
diterima, misalnya untuk memindahkan (nomor 7) jeruk sehat ke Box B dan jeruk
tidak sehat ke Box A berdasarkan hasil analisis. Setelah berhasil memindahkan jeruk
sesuai hasil klasifikasirobot Arm akan kembali ke posisi awal yaitu berada di center:

Tahap akhir berupa tahap pengujian untuk memastikan seluruh komponen dapat

42

berfungsi dengan baik. Pengujian dilakukan terhadap proses komunikasi data,
keakuratan pengenalan oleh machine learning, serta respon robot Arm terhadap
perintah yang dikirim. Hasil pengujian kemudian dianalisis untuk menilai kinerja
sistem secara keseluruhan. Jika ditemukan ketidaksesuaian, dilakukan perbaikan

pada bagian terkait hingga sistem dapat bekerja sesuai tujuan penelitian.

Keterangan:

1. Objek/ buah jeruk

2. Kamera webcam logitech C270 HD
3. Jetson Nano

4. OpenCR 1.0

5. Robot Arm OpenManipulator-X

6. Wadah (Box A/Box B) untuk sortir

3.3 Metode Evaluasi

Metode evaluasi digunakan untuk menilai kinerja sistem yang telah dibuat,
baik dari sisi penerapan machine learning maupun dari integrasi komunikasi antara
Jetson Nano dan OpenCR dalam mengendalikan robot Arm. Dua jenis evaluasi
dilakukan agar dapat diketahui sejauh mana sistem mampu bekerja sesuai dengan
tujuan penelitian, yaitu melakukan penyortiran buah jeruk berdasarkan kualitas

secara otomatis dan tepat.

Evaluasi model dilakukan untuk mengetahui seberapa akurat metode
machine learning yang diterapkan, evaluasi difokuskan pada tingkat akurasi model
dalam mengklasifikasikan citra buah jeruk. Hal ini dapat dinilai berdasarkan
perbandingan antara hasil klasifikasi yang diberikan oleh sistem dengan kondisi
aktual dari data uji. Sementara itu, pada evaluasi komunikasi serial, dilakukan
pengujian ketepatan transmisi data antara Jetson Nano dan OpenCR menggunakan
protokol UART yang dimonitoring melalui serial monitor untuk memastikan tidak
terjadi keterlambatan atau kehilangan data selama proses pengiriman perintah, yang
terakhir evaluasi akurasi pemindahan jeruk untuk mengetahui apakah pemindahan

dan deteksi pada buah jeruk sudah berjalan dengan baik sesuai topologi perangkat.

43

Dengan demikian, hasil evaluasi dapat menjadi dasar untuk melakukan perbaikan

dan penyempurnaan sistem agar dapat bekerja lebih optimal.

home & center ambil jeruk

Gambar 3. 8 Ilustrasi Posisi OpenManipulator Arm

Gambar 3.8 merupakan ilustrasi posisi arm OpenManipulator karena
memiliki keterbatasan jangkauan maka jarak antara Arm OpenManipulator ke box
A dan B tidak jauh. Proses sortir berlangsung secara otomatis setelah sistem
melakukan analisis terhadap citra jeruk seperti pada gambar 3.5. Dengan demikian,
gambar ini menggambarkan tahapan akhir dari proses pengambilan keputusan
berbasis machine learning, di mana hasil klasifikasilangsung berpengaruh terhadap
tindakan fisik yang dilakukan oleh sistem, yaitu memindahkan objek sesuai dengan

kategori yang telah ditentukan.

Keterangan:
1. Posisi awal terlihat pada gambar 3.8 (kiri), posisi mengambil terlihat pada

gambar 3.8 (kanan)

2. Kotak sebelah kanan OpenManipulator merupakan tempat jeruk tidak sehat

disortir

3. Kotak sebelah kiri OpenManipulator merupakan tempat jeruk sehat disortir

44

5

Tabel 3. 2 Tabel Pengujian

Jeruk Hasil Deteksi Benar / Salah Akurasi (0/100
%)

Rata-rata akurasi

Tabel 3.2 Hasil Pengujian menunjukan hasil dari penelitian yang diperoleh
dari penelitian yang telah dilakukan, berdasarkan hasil tersebut, dapat diketahui
bahwa sistem mampu bekerja sesuai dengan rancangan yang telah dibuat. Nilai-
nilai yang ditunjukkan pada tabel menggambarkan kinerja serta tingkat keakuratan

sistem dalam menjalankan fungsi utamanya.

Tabel 3. 3 Tabel Pengujian Pergerakan

Klasifikasi | Posisi Hasil Keterangan
pengambilan | Penempatan

Tabel 3.3 dirancang untuk mendokumentasikan hasil pengujian respon
gerak dari robot Arm OpenManipulator. Pengujian ini bertujuan untuk
memverifikasiakurasi penempatan objek berdasarkan klasifikasi yang diterima dari

Jetson Nano, serta memastikan konsistensi posisi pengambilan dan peletakan.

45

BAB IV

HASIL DAN PEMBAHASAN

4.1 Rincian Penelitian

Pada subbab ini, penulis menguraikan rincian pelaksanaan penelitian yang
mencakup aspek operasional dan teknis. Pembahasan diawali dengan deskripsi
lokasi dan rentang waktu pelaksanaan penelitian guna memberikan gambaran
konteks pengambilan data dan pengujian. Selanjutnya, dipaparkan rancangan
topologi sistem yang diusulkan untuk menggambarkan alur komunikasi data dan
arsitektur sistem secara keseluruhan. Bagian ini diakhiri dengan rincian spesifikasi
perangkat keras (hardware) dan perangkat lunak (software) yang digunakan sebagai

lingkungan pengembangan dan pengujian sistem.

4.1.1 Tempat dan Waktu

Penelitian dilaksanakan di lab Human Machine Interaction (HMI) gedung
Research and Development (RnD) 1t.6 Universitas Ma Chung Malang dengan
Alamat Jalan Villa Puncak Tidar Blok N No. 1 Karangwidoro, Kecamatan Dau,
Kabupaten Malang, Jawa Timur. Penelitian dimulaisejak Senin, 01 September 2025
dan diakhiri pada 23 Desember 2025. Hasil akhir penelitian memfokuskan uji sortir
buah jeruk menggunakan sistem standalone berbasis robot Arm OpenManipulator
dan board OpenCR, yang terintegrasi dengan modul kamera serta machine learning

pada Jetson Nano untuk menyortir jeruk secara otomatis.

4.1.2 Alat dan Komponen

Alat dan komponen yang digunakan dalam penelitian ini berupa power
adaptor 12 Volt sebagai input daya pada OpenCR dan 5 Volt pada JetsonNano,
OpenCR sebagai penerima klasifikasi dan pengendali robot Arm OpenManipulator,
robot Arm OpenManipulator sebagai robot penyortir, Jetson Nano sebagai tempat
model machine learning dijalankan dan hasil klasifikasi di kirim ke OpenCR,
webcam logitech C270 HD sebagai penangkap citra jeruk, kabel jumper sebagai
penghubung komunikasi serial UART, monitor, keyboard dan mouse sebagai alat
bantu pengendalian Jetson Nano, terakir berupa 20 buah jeruk dibagi menjadi 10

jeruk sehat dan 10 jeruk tidak sehat sebagai tahap terakir uji coba.

46

Gambar 4. 1 Rangkaian Prototipe

Gambar 4.1 memperlihatkan rangkaian keseluruhan prototipe yang
mengacu pada topologi perangkat di Gambar 3.7. Komunikasi antara Jetson Nano
dan OpenCR terjalin melalui protokol UART, di mana pin TX (GPIO 08) pada
Jetson Nano dihubungkan ke pin RX (GPIO _0) pada OpenCR, serta menyatukan
jalur ground menggunakan kabel jumper. Posisi kamera diarahkan langsung ke area

penempatan jeruk, dan tersedia dua kotak penampung untuk hasil akhir penyortiran.

Gambar 4. 2 Input citra jeruk yang digunakan

47

Gambar 4.2 menunjukan input data berupa 10 buah jeruk yang digunakan
penulis, terdiri dari 5 jeruk sehat dan 5 jeruk tidak sehat yang mirip dengan dataset

yang telah dilatih.

Gambar 4. 3 Input citra jeruk yang digunakan (2)

Gambar 4.3 memperlihatkan input jeruk 10 buah terakir yang digunakan,
terdiri dari 5 jeruk sehat dan 5 jeruk tidak sehat. Coretan spidol ditambahkan untuk

menekankan bahwa jeruk tersebut berupa jeruk tidak sehat.

4.2 Pengambilan Data

Dataset yang digunakan dalam penelitian ini merupakan dataset citra buah
jeruk yang dikelompokkan ke dalam dua kelas klasifikasi, yaitu kelas sehat
(Gambar 3.4) dan tidak sehat (Gambar 3.5). Kumpulan data ini dipersiapkan untuk
melatih arsitektur Convolutional Neural Network (CNN) berbasis MobileNetV2.
Total citra yang dikumpulkan berjumlah 3000 gambar. Sebelum masuk ke tahap
pelatihan, keseluruhan data tersebut dipilah melalui proses sp/iting dataset menjadi

data latih (#rain) dan data uji (test) dengan rasio perbandingan 80:20 sehingga
menghasilkan akurasi data seperti pada tabel 4.1 dan 4.2

48

Tabel 4. 1 Hasil akurasi data train

precision recall fl-score support
jeruk_sehat 0.96 0.98 0.97 2400
jeruk_tidak_sehat 0.98 0.96 0.97 2400
accuracy 0.97 4800
macro avg 0.97 0.97 0.97 4800
weighted avg 0.97 0.97 0.97 4800

Tabel 4.1 menunjukan hasil akurasi, recall, dan f1-score dari data latih (data

training) dengan hasil yang memuaskan akurasi 97% , precision 96% untuk

jeruk sehat 98% untuk jeruk tidak sehat, recall 98% untuk jeruk sehat 96% untuk

jeruk tidak sehat, fl1-score 97% untuk kedua kelas.

Tabel 4. 2 Hasil akurasi data test

precision recall fl-score support
jeruk_sehat 0.97 0.98 0.97 600
jeruk tidak sehat 0.98 0.96 0.97 600
accuracy 0.97 1200
macro avg 0.97 0.97 0.97 1200
weighted avg 0.97 0.97 0.97 1200

Tabel 4.2 menunjukan hasil akurasi, recall, dan f1-score dari data uji (data

test) dengan hasil yang memuaskan hampir sama dengan data latih akurasi 97% ,

precision 97% untuk jeruk sehat 98% untuk jeruk tidak sehat, recall 98% untuk

jeruk sehat 96% untuk jeruk tidak sehat, fl-score 97% untuk kedua kelas

menandakan bahwa model dapat mengklasifikasi buah jeruk dengan baik sesuai

kelas.

49

Training and Validation Accuracy

e . i i R

—— Training Accuracy
Validation Accuracy

0 2 4 6 8
Training and Validation Loss

~—— Training Loss

Validation Loss
0.8

o
o

Cross Entropy

o
&

)

o
=

epoch

Gambar 4. 4 Grafik training validation

Gambar 4.4 menunjukkan hasil pelatihan selama 10 epoch yang mencapai
konvergensi optimal. Grafik memperlihatkan peningkatan akurasi yang stabil
hingga 0.97 dan penurunan loss di bawah 0.1. Kurva training dan validation yang
bergerak beriringan menandakan model memiliki kemampuan generalisasi yang

baik membuktikan tidak adanya indikasi overfitting.

Jeruk Sehat

Label Asli (Actual)

Jeruk Tidak Sehat

Jeruk Sehat Jeruk Tidak Sehat
Label Prediksi (Predicted)

Gambar 4. 5 Confusion matrix train data

50

Gambar 4.5 memvisualisasikan detail performa klasifikasi model yang
merepresentasikan hasil evaluasi pada data train dengan total 2400 sampel. Pada
tahap ini, model menunjukkan akurasi tinggi dengan berhasil mendeteksi 2352

sampel sebagai jeruk sehat dan 2304 sampel sebagai jeruk tidak sehat secara tepat.

Jeruk Sehat

Label Asli (Actual)

Jeruk Tidak Sehat

JerukISehat Jeruk Tidak Sehat
Label Prediksi (Predicted)

Gambar 4. 6 Confusion matrix test data

Gambar 4.6 memvisualisasikan detail performa klasifikasi model yang
merepresentasikan hasil evaluasi pada data fest dengan total 600 sampel. Pada tahap
ini, model menunjukkan akurasi tinggi dengan berhasil mendeteksi 588 sampel

sebagai jeruk sehat dan 576 sampel sebagai jeruk tidak sehat secara tepat.

Tabel 4. 3 Data posisi robot Arm

ID Posisi Posisi Posisi Posisi Jeruk
Servo Home Ambil Jeruk Tidak Sehat
Sehat
ID11 -0.057 1.000 -0.471 0.437
ID12 -0.202 -0.202 0.753 0.718
ID13 -0.397 -0.397 -1.002 -0.822
ID14 1.150 1.150 1.534 1.163
ID15 0.010 0.005 0.010 0.010

51

Tabel 4.3 memperlihatkan data joint robot Arm untuk posisi home, posisi
mengambil buah jeruk, posisi sortir jeruk sehat dan posisi sortir jeruk tidak sehat.
Data ini diambil dengan cara menjalankan program open manipulator chain
teaching pada Arduino IDE agar bisa mendapat posisi / joint yang diinginkan.
Sesuai dengan namanya chain teaching dilakukan dengan menggerakkan robot ke
posisi yang sesuai lalu pada serial monitor akan menampilkan angka joint nya.

Visualisasi id bisa dilihat pada gambar 4.4

Gambar 4. 7 ID robot Arm

Gambar 4.7 memperlihatkan visualisasi ID pada robot 4rm dimana robot

Arm terdiri dari 5 servo dengan ID 11 s/d ID 15.

52

4.3 Implementasi Kode Program

4.3.1 Kode Implementasi CNN

1. train paths, val paths, train labels, val labels
= train test split(

. all filepaths,

.all labels,

. test size=0.2,

. random state=123,

. stratify=all labels

.)

~N oy U1 b W DN

(ee]

. input shape = IMG SIZE + (3,)

. preprocess input =
tf.keras.applications.mobilenet v2.preprocess in
put

10. base model = MobileNetV2 (

11. input shape=input shape,

12. include top=False,

13. weights="'imagenet'

14.)

15. base model.trainable = False

16.

17. x = layers.GlobalAveragePooling2D () (x)

18. x = layers.Dropout (0.2) (x

19. outputs = layers.Dense (1,

activation='sigmoid') (x)

Gambar 4. 8 Implementasi machine learning CNN

Ne

Gambar 4.8 menunjukan potongan kode untuk implementasi machine
learning CNN. Pada baris 1-9 dataset dibagi menjadi 80% data latih dan 20% data
validasi menggunakan metode stratified sampling pada variabel stratify . Metode
ini menjamin bahwa model dilatih dan diuji dengan tingkat kesulitan yang
seimbang untuk setiap kategori, sechingga menghindari bias pada hasil akurasi. Pada
baris 8-15 bertujuan menginisialisasi arsitektur MobileNetV2 sebagai
pengekstraksi fitur untuk metode transfer learning. Input diatur agar menerima citra
berwarna (RGB) yang telah dinormalisasi sesuai standar model. Model dimuat
menggunakan bobot pre-trained ImageNet tanpa lapisan klasifikasi bawaan
(include top=False), lalu seluruh parameternya dibekukan (trainable=False) agar
kemampuan dasar model dalam mengenali fitur visual tidak rusak saat dilatih
dengan dataset jeruk. Pada baris 17-19 menunjukan arsitektur klasifikasi tambahan

yang dirancang untuk memproses fitur visual hasil ekstraksi MobileNetV2 menjadi

53

sebuah keputusan akhir. Dimulai dengan mereduksi dimensi data secara efisien
menggunakan global average pooling, dilanjutkan dengan penerapan teknik
regularisasi dropout untuk mencegah, dan diakhiri dengan lapisan dense tunggal
beraktivasis sigmoid yang bertugas menghasilkan probabilitas biner (nilai 0 hingga
1) untuk menentukan kategori jeruk (sehat atau tidak). Hasil akhir code ini berupa

model dalam format .npz agar sesuai dengan Jetson Nano.

4.3.2 Kode Transmitter

1. def build manual model () :

2. inputs = Input (shape=IMG SIZE + (3,))

3.x = B
tf.keras.applications.mobilenet vZ2.preprocess in
put (inputs)

4. base model = MobileNetV2 (input shape=IMG SIZE +
(3,), include top=False, weights=None)

5. base model.trainable = False

6. x = base model (x, training=False)

7. x = layers.GlobalAveragePooling2D () (x)

8. x = layers.Dropout (0.2) (x)

9. x = layers.Dense (128, activation='relu') (x)

10. outputs = layers.Dense (1,
activation='sigmoid') (x)

11. return tf.keras.Model (inputs, outputs)

Gambar 4. 9 Kode fungsi untuk menjalankan model

Gambar 4.9 menunjukan kode fungsi untuk menjalankan model .npz yang
telah dilatih dengan machine learning CNN (baris 1-11) pada Jetson Nano dengan
cara merekonstruksi ulang arsitektur model agar sama persis dengan struktur saat
pelatihan. Fungsi ini menyusun lapisan input, base model MobileNetV2, dan
lapisan klasifikasi tambahan agar siap dimuati oleh bobot dari .npz yang telah

disimpan.

1. def cek keberadaan jeruk(frame) :

2. hsv = cvZ2.cvtColor (frame, cv2.COLOR BGRZHSV)

3. mask orange = cv2Z.inRange (hsv, LOWER ORANGE,
UPPER ORANGE)

4. mask green = cvZ.inRange (hsv, LOWER GREEN,
UPPER GREEN)

5. combined mask = cv2.bitwise or (mask orange,
mask green)

6. kernel = np.ones((5,5), np.uint8)

54

7. combined mask = cvZ.morphologyEx (combined mask,
cv2.MORPH OPEN, kernel)
8. pixel count = cvZ.countNonZero (combined mask)
9. return pixel count > MIN AREA PIXEL,
combined mask

Gambar 4. 10 Kode fungsi untuk keberadaan jeruk

Gambar 4.10 menunjukan kode fungsi untuk mendeteksi keberadaan buah
jeruk berdasarkan rentang warna oranye dan hijau dalam format HSV. Jika jumlah
piksel warna yang terdeteksi melebihi batas tertentu (MIN AREA PIXEL = 5000),
sistem akan menganggap ada jeruk dan mengizinkan model Al untuk mulai bekerja.
Ini bertujuan agar Al tidak berjalan saat meja kosong. Jadi meskipun kamera
menyala pada background apapun, jika tidak ada objek jeruk yang tertangkap pada
kamera maka Al tidak akan berjalan (tidak adanya klasifikasi yang muncul). Setelah
kamera dipastikan menangkap objek jeruk maka jeruk akan menjadi input dan

diproses dengan kode pada gambar 4.11

1. img input = cvZ.resize(rgb, IMG SIZE)
2. 1mg array = np.expand dims(np.array(img input),
axis=0)

3. klasifikasi = model.predict(img array)
4. score = klasifikasi[0][0]

. if score < 0.5:

. current label = "JERUK SEHAT"

. data to send = CMD_SEHAT

. else:

. current label = "JERUK TIDAK SEHAT"
0. data to send = CMD TIDAK SEHAT

= O 00 J o O

Gambar 4. 11 Kode klasifikasi jeruk berdasarkan model machine learning

Gambar 4.11 merupakan proses klasifikasi, singkatnya gambar jeruk yang
terdeteksi kamera akan menjadi input untuk menjalankan model, gambar tersebut
akan diperkecil ke 160x160 agar sesuai dengan model MobileNetV2. Selanjutnya,
model melakukan predict untuk menghasilkan nilai antara 0 atau 1. Penentuan

keputusan dilakukan menggunakan nilai threshold sebesar 0.5. Jika skor klasifikasi

55

bernilai di bawah 0.5, sistem akan mengklasifikasikan objek sebagai jeruk sehat

dan menyiapkan perintah CMD_SEHAT. Sebaliknya, jika skor berada di atas 0.5,

objek diklasifikasikan sebagai jeruk tidak sehat dengan
CMD TIDAK SEHAT yang siap dikirimkan ke mikrokontroler.

perintah

0

1. 1if current label == last prediction:

2. consistent frames += 1

3. else:

4., consistent frames =

5. last prediction =
current label

6.

7. if consistent frames >=
FRAMES TO VALIDATE:

8. N print (£" MENGIRIM:
{current label}")

Sp

10.

11. if ser is not None: ser.close ()

12. cap.release()

13. cv2.destroyAllWindows ()

Gambar 4. 12 Kode transmitter dari Jetson Nano ke OpenCR

Gambar 4.12 menunjukan potongan kode untuk mengirim data yang telah

berhasil di klasifikasi oleh CNN ke OpenCR melalui UART. Pada baris 1-7

menunjukan agar klasifikasi CNN lebih akurat, kamera harus menangkap sebanyak

15 frame dahulu (FRAMES TO VALIDATE = 15) jika dalam 15 frame hasilnya

sama semua secara beruntun maka hasil tersebut akan dikirim ke OpenCR melalui

kode baris 11-13. Serial port yang digunakan pada Jetson Nano agar bisa

berkomunikasi dengan OpenCR dengan kabel jumper Bernama tty THS1.

4.3.3 Kode Receiver

1. double G BUKA = 0.010;
2. double G TUTUP 0.005;

3. void setup () {
4. Serial.begin(115200);
5. JETSON SERIAL.begin (115200) ;

6. else if (step == 6) {
7. 1if (tujuan sehat == false) {

56

8. target.push back (0.437);
target.push back(0.718); target.push back(-
0.822); target.push back(1.163);

9.} else {

10. target.push back(-0.471);
target.push back(0.753); target.push back(-
1.002); target.push back(1.534);

11. }

12. open manipulator.makeJointTrajectory (target
o 4.0);

13. step++; step timer = millis() + 5000;

14. }

15. }

Gambar 4. 13 Kode receiver dan menjalankan robot Arm

Gambar 4.13 memperlihatkan kode pada OpenCR yang menerima data dari
Jetson Nano dan menjalankan robot 4rm untuk klasifikasi ke posisi jeruk sehat dan
jeruk tidak sehat. Baris 1 dan 2 mendefinisikan joint gripper untuk buka dan tutup,
lalu baris 4 dan 5 menunjukan baudrate yang sama antara Jetson Nano dengan
OpenCR agar data yang disampaikan bersih. Pada baris 6-15 menunjukan joint
pergerakan untuk sortir ke jeruk sehat dan jeruk tidak sehat. Pada masa percobaan
penulis melihat melalui serial monitor Arduino IDE apakah data klasifikasi dari
Jetson Nano ke OpenCR berhasil terkirim, setelah berhasil dan di program
sedemikian rupa sesuai dengan posisi klasifikasi baru usb antar laptop dan OpenCR

dilepas agar 100% hardware (standalone).

57

4.3.4 Tampilan Jendela Monitoring

Sistem Sortir

Gambar 4. 14 Jendela untuk memantau hasil klasifikasi pada Jetson Nano

Gambar 4.14 memperlihatkan kamera yang sudah siap untuk merekam citra
jeruk, terlihat dari keterangan di atas kiri dengan tulisan siap — letakan jeruk. Lanjut
ke tahap berikutnya yaitu meletakkan jeruk, setelah jeruk diletakkan barulah model
machine learning akan melakukan klasifikasi apakah jeruk yang tertangkap kamera

ini berupa jeruk sehat atau jeruk tidak sehat, untuk contoh jeruk sehat bisa dilihat

pada gambar 4.15

Sistem Sortir
o

JERUK SEHAT

Gambar 4. 15 Jendela untuk memantau memperlihatkan hasil jeruk sehat

58

Gambar 4.15 memperlihatkan keterangan jeruk sehat yang berasal dari
klasifikasi machine learning terhadap jeruk sehat, garis putih pada bawah kotak
jeruk sehat berjalan dari kiri ke kanan untuk menunjukan bahwa frame ditangkap
sebanyak 15 kali dengan hasil yang sama, jika hasil berbeda dan belum sampai 15
kali frame maka garis putih akan mengulang kembali sampai berhasil berjalan 15

kali (garis putih full). Demikian pula hasil pada jeruk tidak sehat gambar 4.16

Gambar 4. 16 Jedela untuk memantau memperlihatkan hasil jeruk tidak sehat

Gambar 4.16 memperlihatkan keterangan jeruk tidak sehat yang berasal dari
klasifikasi machine learning terhadap jeruk tidak sehat, dengan indicator warna
merah yang memperlihatkan kondisi seakan jeruk tersebut tidak sehat.

Sistem Sortir

MENUNGGU DIAMBIL...

Gambar 4. 17 Jendela untuk memantau memperlihatkan kondisi setelah machine
learning berhasil mengklasifikasi

59

Gambar 4.17 memperlihatkan kondisi dimana machine learning telah
berhasil mengklasifikasi suatu jeruk, lalu menunggu diambil oleh robot Arm,
sehingga untuk sortir jeruk selanjutnya menunggu jeruk yang didepan kamera
diambil, setelah berhasil diambil oleh robot arm, jendela pemantau akan kembali

pada keterangan siap — letakkan jeruk.

4.4 Hasil Pengujian

Hasil pengujian terdiri dari pengujian pada klasifikasi machine learning dan

pengujian ketepatan pada pergerakan robot Arm.

Tabel 4. 4 Pengujian klasifikasi machine learning

Jeruk Hasil Benar / Akurasi
Deteksi Salah (0/100 %)

Sehat Sehat Benar 100%
Sehat Sehat Benar 100%
Tidak sehat Tidak sehat Benar 100%
Tidak sehat ~ Tidak sehat Benar 100%
Sehat Tidak sehat Salah 0%

Sehat Sehat Benar 100%
Tidak sehat Tidak sehat Benar 100%
Tidak sehat Tidak sehat = Benar 100%
Sehat Sehat Benar 100%
Tidak sehat Tidak sehat Benar 100%
Tidak sehat Tidak sehat Benar 100%
Sehat Sehat Benar 100%
Sehat Sehat Benar 100%
Tidak sehat Sehat Salah 0%

Sehat Sehat Benar 100%
Sehat Sehat Benar 100%
Tidak sehat Tidak sehat Benar 100%
Sehat Sehat Benar 100%
Tidak sehat ~ Tidak sehat Benar 100%

60

Jeruk Hasil Benar / AKkurasi

Deteksi Salah (0/100 %)
Tidak sehat Tidak sehat Benar 100%
Rata-rata akurasi 90%

Pada tabel 4.4 terlihat bahwa rata-rata akurasi yang didapatkan pada
pengujian ini sebesar 90%, dalam percobaan kamera menangkap 20 citra jeruk
mendapatkan hasil yang salah dalam mendeteksi 1 jeruk sehat dan 1 jeruk tidak
sehat. Membuktikan bahwa machine learning tergolong akurat, kesalahan yang
terjadi kebanyakan diakibatkan pencahayaan dan background saat menangkap citra

jeruk, dapat dibuktikan saat jeruk diarahkan lagi di kamera hasilnya sesuai dengan

kenyataan.
Tabel 4. 5 Tabel hasil pengujian gerak robot Arm
Klasifikasi Posisi Hasil Keterangan
Pengambilan Penempatan
Jeruk sehat V4 v Berhasil
Jeruk sehat v Vv Berhasil
Jeruk tidak sehat v v Berhasil
Jeruk tidak sehat v v Berhasil
Jeruk sehat v V4 Berhasil
Jeruk sehat v v Berhasil
Jeruk tidak sehat v v Berhasil
Jeruk tidak sehat N4 N4 Berhasil
Jeruk sehat V4 v Berhasil
Jeruk tidak sehat v v Berhasil
Jeruk tidak sehat V4 N4 Berhasil
Jeruk sehat v v Berhasil
Jeruk sehat v V4 Berhasil
Jeruk tidak sehat v v Berhasil
Jeruk sehat v v Berhasil
Jeruk sehat v V4 Berhasil
Jeruk tidak sehat Vv N4 Berhasil
Jeruk sehat v v Berhasil
Jeruk tidak sehat v v Berhasil
Jeruk tidak sehat N4 N4 Berhasil

61

Pada tabel 4.5 memperlihatkan hasil pengujian gerak robot Arm yang
seluruhnya mengalami keberhasilan, membuktikan bahwa komunikasi UART dapat
berjalan dengan baik dan tidak ada kesalahan kode pada receiver di OpenCR,

simbol v/ menandakan posisi pengambilan dan penempatan yang benar.

,\\
KLAShIAFLIKASI‘\
" J ¥

\ S g
y B \
ROBOT ARM \ .
robot Arm = sorTiIR | 1siklus = KIRIM \
K

: BERDASARKAN . LASIFIKASI |
28detik \‘kiasiikasi) S1detik | keopencr /
/ 4

_

Gambar 4. 18 Waktu satu siklus klasifikasi

Gambar 4.10 secara spesifik memperlihatkan waktu klasifikasi 15 frame
pada Jetson Nano adalah 3 (tiga) detik dan waktu tanggap robot setelah menerima
data klasifikasi bersifat real-time jedanya <Ims sedangkan waktu yang dibutuhkan
robot untuk menyelesaikan satu proses pemindahan, dimulai dari posisi tengah,
turun mengambil jeruk, hingga meletakkannya ke wadah kategori jeruk sehat / sakit
adalah 28 (dua puluh delapan) detik. Durasi ini merupakan hasil penjumlahan dari
delay yang ditetapkan pada setiap langkah pergerakan program. Rincian pergerakan
meliputi waktu 4 (empat) detik untuk joint saat turun mengambil jeruk dan
membawa jeruk keposisi tengah, 2 (dua) detik saat gripping, dan 5 (lima) detik
untuk posisi mengangkat jeruk dan menaruh ke wadah. Sehingga untuk satu siklus

penuh total waktu yang dihabiskan berjumlah 31(tiga puluh satu) detik.

4.5 Analisis dan Pembahasan
Sistem integrasi antara Jetson Nano dan OpenManipulator terbukti mampu

beroperasi secara standalone dengan kinerja yang andal. Salah satu keunggulan
signifikan dari sistem ini adalah model MobileNetV2 dalam melakukan klasifikasi

pada latar belakang (background) yang beragam. Kemampuan ini didasari oleh

62

prinsip kerja Convolutional Neural Network (CNN) yang tidak memproses citra
sebagai satu kesatuan gambar statis, melainkan berfokus pada ekstraksi fitur visual
(feature extraction). Model ini telah terlatih untuk mengenali karakteristik intrinsik
yang melekat pada objek jeruk seperti tekstur pori kulit, gradasi warna, dan
geometri bentuk, sehingga latar belakang dianggap sebagai noise yang tidak
mempengaruhi hasil klasifikasi. Oleh karena itu, selama variabel lingkungan seperti
jarak pengambilan citra antara kamera dan objek serta kondisi pencahayaan
ruangan dijaga konstan, sistem mampu memisahkan objek utama dari latar
belakangnya secara efektif tanpa memerlukan penyeragaman background. Selain
kemampuan adaptasi visual tersebut, ketepatan pemilahan juga dijamin oleh
penerapan algoritma validasi temporal sebanyak 15 frame sebelum pengiriman
instruksi agar lengan robot hanya menerima perintah eksekusi yang konsisten guna

meminimalisir kesalahan gerak pada aktuator.

Meskipun model mampu beradaptasi dengan berbagai latar belakang,
instabilitas intensitas cahaya yang ekstrem tetap menjadi kendala yang dapat
mendistorsi fitur visual dan menyebabkan kesalahan klasifikasi. Di sisi mekanik,
batasan fisik lebar bukaan gripper menjadi hambatan utama, di mana proses
pengambilan dan pengangkatan seringkali gagal pada jeruk berukuran besar,
sehingga sistem saat ini hanya mampu beroperasi secara optimal pada objek uji
berupa jeruk varietas Siam berukuran medium. Potensi kegagalan lainnya terletak
pada aspek integrasi perangkat keras, seperti kesalahan pendefinisian alamat port
serial atau kualitas penyambungan kabel jumper pada pin GPIO yang kurang
presisi, yang dapat memutus transmisi data instruksi dari Jetson Nano ke OpenCR

meskipun deteksi visual berhasil dilakukan.

63

BAB V

SIMPULAN DAN SARAN

5.1 Simpulan

Berdasarkan hasil perancangan dan pengujian yang telah dilakukan,
penelitian ini berhasil mengimplementasikan sistem pengendalian gerakan robot
OpenManipulator berbasis board OpenCR yang terintegrasi secara penuh dengan
modul kamera dan Jetson Nano untuk melakukan penyortiran otomatis. Sistem
terbukti mampu beroperasi secara mandiri (standalone), di mana komunikasi data
melaluijalur serial UART berjalan stabil dalam menghubungkan hasil pemrosesan

citra cerdas dengan instruksi pergerakan robot.

Dalam hal kinerja penyortiran, lengan robot menunjukkan kemampuan
yang andal dalam memisahkan jeruk berdasarkan klasifikasi kondisi sehat dan tidak
sehat. Keakuratan aksi mekanik ini sangat didukung oleh penerapan logika validasi
temporal pada perangkat lunak, yang secara efektif meredam fluktuasi pembacaan
data sehingga robot hanya mengeksekusi perintah saat hasil deteksi sudah
konsisten. Hal ini memastikan bahwa setiap gerakan penyortiran yang dilakukan

robot benar-benar sesuai dengan keputusan sistem machine learning.

Secara keseluruhan, sistem ini telah menunjukkan efektivitas yang baik
sebagai gambaran awal penerapan otomasi pada industri pangan, khususnya dalam
aspek akurasi logika pemilahan. Namun, evaluasi terhadap efisiensi penanganan
fisik menunjukkan adanya batasan pada mekanisme gripper bawaan yang hanya
bekerja optimal pada jeruk varietas Siam berukuran sedang. Kendala teknis masih
ditemukan saat menangani jeruk dengan dimensi yang lebih besar, di mana
keterbatasan lebar bukaan gripper seringkali menyebabkan kegagalan
pengangkatan, sehingga aspek fleksibilitas mekanik ini menjadi catatan penting

dalam penilaian efisiensi sistem secara menyeluruh.

5.2 Saran

Untuk penyempurnaan sistem di masa mendatang, fokus utama sebaiknya
diarahkan pada pembaruan mekanisme robot dan sistem visi komputer. Disarankan

untuk beralih menggunakan robot dengan mekanisme vacuum gripper (sistem

64

hisap) sebagai alternatif penjepit mekanis, guna meminimalkan risiko kerusakan
fisik pada buah sehingga robot bisa memilah jeruk jika dalam total yang banyak.
Selain itu, sistem deteksi visual perlu ditingkatkan dengan mengimplementasikan
konfigurasi multi-kamera atau menggunakan kamera yang dapat berputar 360
derajat. Peningkatan ini bertujuan agar jeruk dapat dianalisis dari berbagai sudut
pandang dengan minimal dua sisi, sehingga penilaian kualitas buah menjadi jauh

lebih akurat dan menyeluruh.

65

DAFTAR PUSTAKA

Automation, P., & Automation, P. (2024). Facilitating Smooth Handovers with a
Gesture-Control Glove for Assistive Robotic Manipulators Dilara Yigit.

Bao, X., Li, L., Ou, W., & Zhou, L. (2022). Robot intelligent grasping
experimental platform combining Jetson NANO and machine vision. Journal
of Physics: Conference Series, 2303. https://doi.org/10.1088/1742-
6596/2303/1/012053

De Assis, J. P. B, Giinther, G., Pellenz, M., & Teixeira, M. (2025). Computer
Vision and Machine Learning-Based Control for a 6-Degree-of-Freedom
Robotic Arm. 2025 IEEE International Conference on Industrial Technology
(ICIT), 1-6. https://doi.org/10.1109/ICIT63637.2025.10965279

Hj, O., & Rostiati, N. (2015). WILLINGNESS TO PAY KONSUMEN TERHADAP
BUAH JERUK IMPOR (Perspektif Konvensional vs Islam). 1, 23-38.

Inuwa, A. B., Ahmad, A. S., Auwal, S. T., Muhammad, M., Lukuman, A., &
Babangida, 1. (2025). JOURNAL OF SUSTAINABLE ENGINEERING AND
Advances in Sensor-Based and Machine Learning Techniques for Automated
Tomato Sorting and Grading : A Review. 2(1), 1-12.

Kashani, M. R., Malekzadeh, M., Mansfield, D., & Montazeri, A. (2025). Robust
Control of OpenMANIPULATOR-X Using Reinforcement Learning. /FAC-
PapersOnLine, 59(10), 703—708.
https://doi.org/https://doi.org/10.1016/j.ifacol.2025.09.120

Li, M., Wu, F., Wang, F., Zou, T., Li, M., & Xiao, X. (2024). CNN-MLP-Based
Configurable Robotic Arm for Smart Agriculture. Agriculture (Switzerland),
14(9). https://doi.org/10.3390/agriculture14091624

Oyefeso, B. O., Oyewande, O. E., & Audu, J. (2025). Automated fruit sorting
system integrating image processing and support vector machine techniques.
International Journal of Al for Materials and Design, 2(2), 79-90.
https://doi.org/https://doi.org/10.36922/1IJAMD025150011

Robianto, R., Sitorus, S. H., & Ristian, U. (2021). Penerapan Metode Decision
Tree Untuk Mengklasifikasikan Mutu Buah Jeruk Berdasarkan Fitur Warna
Dan Ukuran. Coding Jurnal Komputer Dan Aplikasi.
https://api.semanticscholar.org/CorpusID:270644864

Shen, D.-R., Chin, H.-L., Tu, C.-H., Chih, J.-S., Venglat, V., Chen, K.-S., Krejsa,
J., & Vechet, S. (2021). Navigation and Task Planning of a Mobile Robot
under ROS Environment: A Case Study Using AutoRace Challenge. 2021

60th Annual Conference of the Society of Instrument and Control Engineers
of Japan (SICE), 612—617.

Wang, T. (2021). Camera-based Augmented Reality Endoscope Auxiliary System
By. 9.

Winarta, D., Widodo, R., & Subianto, M. (2024). Rancang Bangun Pengontrol
Gerakan Robot Openmanipulator Dengan Matlab. Sainsbertek Jurnal llmiah

66

Sains & Teknologi, 5, 83-91. https://doi.org/10.33479/sb.v511.343

Xu, L. (2018). Remote Control and Monitoring System of Robotic Arm Using
Raspberry Pi. Advances in Intelligent Systems and Computing.
https://doi.org/10.1007/978-3-030-00214-5 81

Kernighan, B. W., & Ritchie, D. M. (1988). The C programming language (2nd
ed.). Prentice Hall.

Banzi, M., & Shiloh, M. (2014). Getting started with Arduino: The open source
electronics prototyping platform (3rd ed.). Maker Media.

ROBOTIS. (2024). OpenManipulator-X. ROBOTIS e-Manual.
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/

67

https://www.google.com/search?q=https://emanual.robotis.com/docs/en/platform/openmanipulator_x/

Lampiran
Lampiran A. Manual Book

1. Tahap menyalakan Jetson Nano
a. Hubungkan ke power adaptor (5V), HDMI, Keyboard, Mouse, Webcam
portnya untuk USB bebas

b. Jika tidak muncul gambar seperti ini saat booting, maka SD Card harus
di flash ulang.
Refrensi: https://www.youtube.com/watch?v=IVwlcyanRi0

NVIDIA

c. Selanjutnya jika muncul gambar seperti diatas, maka tampilan
selanjutnya adalah anda diminta untuk memasukan password,
username: machung, password: machung123

68

d. Tampilan jika anda sudah berhasil masuk ke Jetson Nano

e. Memindahkan data dari PC ke Jetson Nano saya menggunakan wifi
(lewat drive) bisa juga menggunakan flashdisk. Jika melalui drive maka
bisa masuk ke chromium web browser bawaan jetson nano (gambar
point d pojok kiri bawah)

Masuk ke LXTerminal, dan masuk directory tempat filemu, contoh file
saya ada di Downloads, maka perintahnya adalah cd Downloads, lalu
tinggal jalankan file nya, saya menggunakan bahasa pemrograman
python, jadi diawali dengan python3 lalu “nama file.py” ini merupakan
proses uploading ke jetson nano

sachung@machung-desktop: §
sachung@aaschung-desktop

. Pastikan kabel Jumper pada Jetson Nano dan OpenCR sudah benar,
Jetson Nano GPIO 08 terhubung dengan OpenCR GPIO 0, dan GND
saling terhubung.

69

h. Jika UART tidak bisa connect, keluar dengan cara ctrHZ lalu ketik

command sudo chmod 666/ dev/ttyTHS1 lalu run ulang programnya
machung@machung-desktop: ~/D¢

machung@nachung-desktop

machung@machung-desktop
[sudo] password for machung
machung@machung-desktop

2. Tahap menyalakan dan menggerakan OpenManipulator
a. Setup OpenCR karena OpenCR sebagai driver, hubungkan openCR
dengan power adaptor 12V, sambungkan TTL dari OpenManipulator ke
OpenCR, pastikan bahwa switch ON, jika OFF maka robot tidak akan
bergerak

power
adaptor

b. Untuk upload program pada OpenCR anda harus mengunduh board
OpenCR pada Arduino UNO.
Refrensi: https://emanual.robotis.com/docs/en/software/arduino_ide/

70

BOARDS MANAGER reciever_o
5
SREASL a4
E Type: All v 45
a6
I a7
OpenCR by ROBOTIS a8
1.5.3 installed 49
Boards included in this package: 59
OpencCR Board 51
More info 52
53
153 ~ REMOVE 54
55
56
57

58
59
6@
61
62

Saat board sudah terdownload dibutuhkan usb yang terhubung dari
laptop/pc ke OpenCR, dan memilih menu board menjadi OpenCR,

sesuaikan dengan COM pada board manager anda
reciever_openCR | Arduino IDE 2.3.6
File Edit Sketch Tools Help

LP L ' -

BOARDS MANAGER reciever_openCR.ino
“%3 11 nuuu
opencr a4
| 3 Twoe Al v 45 i (OFT

Pastikan bahwa indikasi pojok kanan bawah adalah connected, jika not
connected bisa menekan tombol reset.

Ln 128, Col 65 OpenCR Board on COM/7 [not connected] D B

Setelah sudah connect, selanjutnya upload dengan cara menekan tombol
panah ke kanan, setelah dilakukan uploading maka sudah tersimpan di
chip anda bisa melepas usb yang terhubung dengan OpenCR.

File Edit Sketch Tools Help

LP OpenCR i -

SNAGER reciever_openCR.ino

%43 11 ruoue

Upload
Jika proses uploading gagal maka anda harus masuk ke bootloader
dengan cara menekan Reset + SW2.
Refrensi:
https://emanual.robotis.com/docs/en/parts/controller/opencr10/

71

https://emanual.robotis.com/docs/en/parts/controller/opencr10/

PUSH sSw1

PUSH sSw2

Lampiran B. Kode Training CNN

1. import tensorflow as tf

2. from tensorflow.keras import layers, models

3. from tensorflow.keras.applications import
MobileNetV2

4. import matplotlib.pyplot as plt

5. import numpy as np

6. from sklearn.metrics import
classification report

7. from sklearn.model selection import
train test split # <—-—- KITA PAKAI INI

8. import os

9. import sys

10. # --— 1. Konfigurasi Awal ---

11. IMG SIZE = (160, 160)

12. BATCH_SIZE =16

13. EPOCHS = 10

14. LEARNING RATE = 0.0001

15. DATA DIR = 'dataset'

16. print ("--- Membaca daftar file dari
'dataset' ---")

17. all filepaths = []

18. all labels = []

19. class names = sorted(os.listdir (DATA DIR))

20. if len(class names) < 2:

21. print (f"ERROR: Hanya ditemukan 1 kelas di
{DATA DIR}. Periksa folder dataset Anda.")

22. sys.exit (1)

23. print (f"Kelas terdeteksi: {class names}")

24 . for i, class name in
enumerate (class names) :

25. class dir = os.path.join (DATA DIR,

class name)

72

26. if not os.path.isdir(class dir):

27. continue

28. filepaths = [os.path.join(class dir, f) for
f in os.listdir(class dir) if
f.endswith(('.jpg', '.Jjpeg', '.png'))]

29. labels = [i] * len(filepaths)

30. all filepaths.extend(filepaths)

31. all labels.extend(labels)

32. print (f"Total gambar ditemukan:
{len(all filepaths)}")

33. if len(all filepaths) ==

34. print ("ERROR: Tidak ada gambar

.Jpg/.Jjpeg/.png yang ditemukan di dalam folder
dataset.")

35. sys.exit (1)

36. print ("--- Membagi data (80% train, 20%
validation) ---")

37. train paths, val paths, train labels,
val labels = train test split(

38. all filepaths,

39. all labels,

40. test size=0.2,

41. randgm_state=123,

42. stratify=all labels

43.)

44. print (f"Total data latih:
{len(train paths)}")

45, print?f"Total data wvalidasi:
{len(val paths)}")

46.

47. def load and preprocess image (path, label):

48. """Fungsi untuk memuat, decode, dan resize
gambar"""

49, image = tf.io.read file(path)

50. image = tf.image.dgcode_jpeg(image,
channels=3)

51. image = tf.image.resize (image, IMG SIZE)

52. return image, label

53. AUTOTUNE = tf.data.AUTOTUNE

73

54. train dataset =
tf.data.Dataset.from tensor slices((train paths,
train labels))

55. train dataset =
train dataset.map(load and preprocess image,
num parallel calls=AUTOTUNE)

56. train dataset =
train dataset.cache () .shuffle(len(train paths)).
batch (BATCH SIZE) .prefetch (buffer size=AUTOTUNE)

57. val dataset =
tf.data.Dataset.from tensor slices((val paths,
val labels))

58. val dataset =
val dataset.map(load and preprocess image,
num parallel calls=AUTOTUNE)

59. val dataset =
val dataset.batch (BATCH SIZE) .cache () .prefetch (b
uffer size=AUTOTUNE)

60. data augmentation = models.Sequential ([

ol. layers.RandomFlip('horizontal'),

62. layers.RandomRotation (0.2),

63.], name="augmentation")

64. print ("--- Membangun model ---")

65. input shape = IMG SIZE + (3,)

66. preprocess input =
tf.keras.applications.mobilenet v2.preprocess in
put

67. base model = MobileNetV2 (

68. input shape=input shape,

69. include top=False,

70. weights='imagenet'

71.)

72. base model.trainable = False

73. inputs = tf.keras.Input (shape=input shape)

74. x = data augmentation (inputs)

75. X = preprocess_input (x)

76. x = base model (x, training=False)

7. x = layers.GlobalAveragePooling2D () (x)

78. x = layers.Dropout (0.2) (x)

79. x = layers.Dense (128, activation='relu') (x)

80. outputs = layers.Dense (1,
activation='sigmoid') (x)

74

81. model = tf.keras.Model (inputs, outputs)

82. model.compile (

83. optimizer=tf.keras.optimizers.Adam(learning
_rate=LEARNING RATE),

84. loss=tf.keras.losses.BinaryCrossentropy(),

85. metrics=['accuracy']

86.)

87. model . summary ()

88. print ("--- Memulai pelatihan model ---")

89. history = model.fit (

90. train dataset,

91. epochs=EPOCHS,

92. validation data=val dataset

93.)

94 . print ("--- Menyimpan model ---")

95. model.save ('model klasifikasi jeruk.keras')

96. print ("Model berhasil disimpan sebagai

'model klasifikasi jeruk.keras'")

97. print ("\n--- Memulai Evaluasi Model (F1-
Score, dll.) ---")
98. val dataset for predict =

tf.data.Dataset.from tensor slices((val paths,
val labels))

99. val dataset for predict =
val dataset for predict.map (load and preprocess
image, num parallel calls=AUTOTUNE)

100. val dataset for predict =
val dataset for predict.batch (BATCH SIZE)

101. print ("--- Memprediksi Validation Set ---")

102. y_pred probs val =
model.predict (val dataset for predict)

103. y _pred val =
np.where(y pred probs val.flatten() > 0.5, 1, 0)

104. y _true val = np.array(val labels)

105. print ("\n--- HASIL EVALUASI (VALIDATION /
TEST SET) ---")

106. print (classification report(y true val,

y_pred val, target names=class names))

107. train dataset for predict =
tf.data.Dataset.from tensor slices((train paths,
train labels))

75

108. train dataset for predict =
train dataset for predict.map (load and preproces
s _image, num parallel calls=AUTOTUNE)

109. train dataset for predict =
train dataset for predict.batch(BATCH SIZE)

110. print ("--- Memprediksi Training Set ---")

111. y pred probs train =
model.gredigt(trazn_dataset_for_predict)

112. y pred train =

np.where (y pred probs train.flatten() > 0.5, 1,
0)

113. y true train = np.array(train labels)

114. print ("\n--- HASIL EVALUASI (TRAINING SET)
___")

115. print (classification report(y true train,

y pred train, target names=class names))

11e6. print ("--- Menampilkan plot Akurasi dan
Loss —-—-=")

117. acc = history.history['accuracy']

118. val acc = history.history(['val accuracy']

119. loss = history.history['loss']

120. val loss = history.history['val loss']

121. plt.figure(figsize=(8, 8))

122. plt.subplot (2, 1, 1)

123. plt.plot (acc, label='Training Accuracy')

124. plt.plot (val acc, label='Validation
Accuracy')

125. plt.legend(loc='lower right')

126. plt.ylabel ('Accuracy')

127. plt.ylim([min(plt.ylim()),1])

128. plt.title('Training and Validation
Accuracy')

129. plt.subplot (2, 1, 2)

130. plt.plot(loss, label='Training Loss')

131. plt.plot(val loss, label='Validation Loss')

132. plt.legend(loc="upper right')

133. plt.ylabel ('Cross Entropy')

134. plt.ylim([0,1.07)

135. plt.title('Training and Validation Loss')

136. plt.xlabel ('epoch')

137. plt.show ()

76

Lampiran C. Kode testing dan sending

1. import cv2

2. import numpy as np

3. import tensorflow as tf

4. from tensorflow.keras import layers, models,
Input

5. from tensorflow.keras.applications import
MobileNetV2

6. import os
7. import serial
8. import time

9. PATH WEIGHTS = 'bobot jeruk final.npz'
10. IMG SIZE = (160, 160)
11. SERTAL_PORT = '/dev/ttyTHS1'
12. BAUD RATE = 115200
13. CMD SEHAT = b'l'
14. CMD TIDAK SEHAT = b'0'’
15. FRAMES TO VALIDATE = 15
16. MIN AREA PIXEL = 5000
17. LOWER ORANGE = np.array([10, 100, 100])
18. UPPER ORANGE = np.array([30, 255, 255])
19. LOWER GREEN = np.array([35, 50, 50])
20. UPPER GREEN = np.array([85, 255, 255])
21. def build manual model () :
22. inputs = Input (shape=IMG SIZE + (3,))
23. X =
tf.keras.applications.mobilenet v2.preprocess in
put (inputs)
24, base model =

MobileNetV2 (input shape=IMG SIZE + (3,),
include top=False, weights=None)

25. base model.trainable = False

26. X = base model (x, training=False)

27. x = layers.GlobalAveragePooling2D () (x)

28. x = layers.Dropout (0.2) (x)

29. x = layers.Dense (128, activation='relu') (x)

30. outputs = layers.Dense (1,
activation='sigmoid') (x)

31. return tf.keras.Model (inputs, outputs)

32. def cek keberadaan jeruk(frame) :

71

33.

hsv = cv2.cvtColor (frame,

cv2.COLOR BGR2HSV)

34.
LOWER ORANGE, UPPER _ORANGE)
35.
UPPER_ GREEN)
36.
mask green)
37.
38.

mask orange = cv2.inRange (hsv,
mask green = cvZ.inRange (hsv, LOWER GREEN,
combined mask = cvZ.bitwise or (mask orange,

kernel = np.ones((5,5), np.uint8)
combined mask =

cv2.morphologyEx (combined mask, cvZ2.MORPH OPEN,
kernel)

39.

pixel count =

cv2.countNonZero (combined mask)

40.

return pixel count > MIN AREA PIXEL,

combined mask

41.
42 .
43,
44 .
45.
timeout=1)
46.

def main () :

1. SETUP UART

ser None

try:

ser = serial.Serial (SERIAL PORT, BAUD RATE,

print (f"Terhubung ke OpenCR di

{SERIAL PORT}")

47.
48.

49.
50.
51.

52.

53.
54.
55.

56

57.
58.

59.
60.
61.

62.
63.
64.

except Exception as e:

print (f"WARNING: Gagal konek UART: {e}")

2. SETUP MODEL

if not os.path.exists (PATH WEIGHTS) :

print (f"ERROR: File {PATH_WEIGHTS} tidak
ditemukan!")

return

try:

model = build manual model ()

with np.load (PATH WEIGHTS) as data:
. weight list = [datal[key] for key in
data.files]

model.set weights(weight list)

print ("MODEL SIAP!") B

dummy img = np.zeros((1l1, 160, 160, 3))

model.predict (dummy img)

print ("SIAP DETEKSI.")

except Exception as e:

print (f"Error Model: {e}")

return

78

65. # 3. KAMERA

66. cap = cv2.VideoCapture (0)

67. if not cap.isOpened() :

68. print ("ERROR: Kamera error.")

69. return

70. consistent frames = 0

71. last prediction = None

72. data sudah dikirim = False

73. while True:

74. ret, frame = cap.read()

75. if not ret: break

76. frame resized = cv2.resize (frame, (640,
480))

77. ada_jeruk, mask debug =

cek keberadaan jeruk (frame resized)

78. if not ada jeruk:

79. display_text = "SIAP - LETAKKAN JERUK"
80. box color = (100, 100, 100)

81. data sudah dikirim = False

82. consistent frames = 0

83. frame resized([380:480, 540:640] = [0,0,0]
84. else:

85. frame resized([380:480, 540:640] =

[255,255,255]

86. if data sudah dikirim:

87. display_text = "MENUNGGU DIAMBIL..."

88. box color = (0, 255, 255) # Kuning

89. cv2.rectangle (frame resized, (0,0), (640,

60)/ (0,0,0), _1)

90. else:

91. try:

92. rgb = cvZ2.cvtColor (frame resized,
cv2.COLOR BGR2RGB)

93. img input = cv2.resize(rgb, IMG SIZE)

94. img array =

np.expand dims (np.array(img input), axis=0)

95. prediksi = model.predict(img array)
96. score = prediksi[0][0]

79

97. if score < 0.5:

98. current label = "JERUK SEHAT"

99. color = (0, 255, 0)

100. data to send = CMD SEHAT

101. else: B

102. current label = "JERUK TIDAK SEHAT"
103. color = (0, 0, 255)

104. data to send = CMD TIDAK SEHAT

105. display text = f"{current label}"
106. box color = color

107. if current label == last prediction:
108. consistent frames += 1

1009. else:

110. consistent frames = 0

111. last prediction = current label

112. if Consistent_frames >= FRAMES TO VALIDATE:
113. print (f"MENGIRIM: {current label}")
114. if ser is not None:

UnilyES? ser.write (data to_ send)

116 print (f"Data terkirim ke UART:

{data to send}")

117. data sudah dikirim = True

118. consistent frames = 0

119. except Exception as e:

120. print (f"Error Coding: {e}l"™)

121. cv2.rectangle (frame resized, (10, 10),
(45Or 60)/ (Or Or O)r _l)

122. cvZ2.putText (frame resized, display text,

(20, 45), cv2.FONT HERSHEY SIMPLEX, 0.7,
box color, 2)

123. if consistent frames > 0 and not
data sudah dikirim:

124. bar len = int((consistent frames /
FRAMES TO VALIDATE) * 340)

125. cv2.rectangle (frame resized, (10, 55), (10
+ bar len, 60), (255, 255, 255), -1)

126. cv2.imshow ('Sistem Sortir', frame resized)

80

127. if cv2.waitKey(l) & OxFF == ord('qg'):

128. break

129. if ser is not None: ser.close ()
130. cap.release ()

131. cv2.destroyAllWindows ()

132. if name == " main ":

133. main ()

Lampiran D. Kode menerima klasfikasi dan menggerkaan robot pada OpenCR

1.

~ o U1 b

O

10.
11.

12.
13.
14.
15.
16.
17.

18.
19.
20.

21.

22.

#include <open manipulator libs.h>

. #define JETSON SERIAL Seriall

. OpenManipulator open manipulator;

. double control time = 0.010;
. double previous time = 0.0;
. unsigned long step timer = 0;
. int step = 0;
. bool robot sedang kerja = false;
. bool tujuan sehat = true;
double G BUKA = 0.010;

double G TUTUP = 0.005;

void setup () {
Serial.begin (115200);
JETSON_SERIAL.begin(115200);

open manipulator.setOpenManipulatorCustomJo
intId (11, 12, 13, 14, 15);

open manipulator.initOpenManipulator (true);

open manipulator.enableAllActuator();

while (JETSON SERIAL.available() > 0) {
char sampah = JETSON SERIAL.read();
}

}

void loop () {

81

23.
24.

double present time = millis()/1000.0;
if (present time - previous time >=

control time) {

25.

26.
27.

28.

29.
30.

31.
32.

33.
34.
35.
36.

37.
38.
39

40.
41.
42.
43.
44,
45.
46.

47 .
48.
49.
50.

51.
52

open manipulator.processOpenManipulator (pre

sent time);

previous time = present time;

}
if (robot sedang kerja == false) {

if (JETSON SERIAL.available() > 0) {
char data = JETSON SERIAL.read();

()"

(0)™) s

if (data == '1") {

Serial.println ("DITERIMA: JERUK SEHAT
tujuan_sehat = true;

robot sedang kerja = true;

step = 0;

step timer = millis();

}

else if (data == '0') {
Serial.println ("DITERIMA: JERUK SAKIT
tujuan sehat = false;

robot sedang kerja = true;

step = 0;

step timer = millis();

}

}

}

if (robot sedang kerja == true) ({

if (millis() > step timer) {

std: :vector<double> target;
target.clear();

if (step == 0) {
target.push back(-0.057);

target.push back(-0.202); target.push back(-
0.397); target.push back(1.150);

53.

54.

r"’

55.
56.

open manipulator.makeJointTrajectory (target

3.0);

open manipulator.makeToolTrajectory ("grippe
G_BUKA) ;

step++; step timer = millis() + 4000;

}

82

57. else if (step == 1) {

58. target.push back(1.000); target.push back(-
0.202); target.push back(-0.397);
target.push back(1.150);

59. open manipulator.makeJointTrajectory (target
r 3.0)7

60. step++; step timer = millis() + 4000;

ol. }

62. else if (step == 2) {

63. target.push back(1.000);

target.push back(0.718); target.push back(-
0.822); target.push back(1.163);

64. open manipulator.makeJointTrajectory (target
r 3.0) 7

65. step++; step timer = millis() + 4000;

66. }

67. else if (step == 3) {

68. open manipulator.makeToolTrajectory ("grippe
r", G TUTUP);

69. step++; step timer = millis() + 2000;

70. }

71. else 1if (step == 4) {

72. Serial.println("5. Angkat Lurus (Pinggang
Tahan)...");

73. target.push back(1.000); target.push back (-

0.202); target.push back(-0.397);
target.push back(1.150);

4. open manipulator.makedointTrajectory (target
, 4.0);

75. step++; step timer = millis() + 5000;

76. }

77 . else if (step == 5) {

78. Serial.println("6. Ke Center...");

79. target.push back(-0.057);

target.push back(-0.202); target.push back(-
0.397); target.push back(1.150);

80. open manipulator.makeJointTrajectory (target
, 3.0);

81. step++; step timer = millis() + 4000;

82. }

83. else if (step == 6) {

84 . if (tujuan sehat == false) {

83

85. target.push back(0.437);
target.push back(0.718); target.push back(-
0.822); target.push back(1.163);

86. } else {

87. target.push back(-0.471);
target.push back(0.753); target.push back(-
1.002); target.push back(1.534);

88. }

89. open manipulator.makeJointTrajectory (target
o 4.0);

90. step++; step timer = millis() + 5000;

91. }

92. else 1if (step == 7) {

93. open manipulator.makeToolTrajectory ("grippe
r", G_BUKA);

94 . step++; step timer = millis() + 2000;

95. }

96. else if (step == 8) {

97. target.push back(-0.057);

target.push back(-0.202); target.push back (-
0.397); target.push back(1.150);

98. open manipulator.makeJointTrajectory (target
’ 40)/
99. open manipulator.makeToolTrajectory ("grippe

r", G_BUKA);

100. step++; step timer = millis() + 5000;
101. }

102. else 1if (step == 9) {

103. robot sedang kerja = false;

104. step = 0;

105. step timer = millis();

106. }

107. }

108. }

109. }

84

