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Abstrak 

Penyakit kardiovaskular (CVD) merupakan penyebab kematian terbesar di dunia, 

sehingga deteksi dini melalui analisis suara jantung (phonocardiogram/PCG) 

menjadi sangat penting. Convolutional Neural Network (CNN) telah terbukti efektif 

dalam klasifikasi PCG, namun performanya sangat bergantung pada konfigurasi 

hyperparameter yang seringkali ditentukan secara manual (trial and error). 

Penelitian ini bertujuan untuk mengoptimalkan kinerja arsitektur CNN dalam 

mendeteksi kelainan detak jantung dengan membandingkan empat metode 

Hyperparameter Optimization (HPO): Grid Search, Random Search, Bayesian 

Optimization, dan Genetic Algorithm. Menggunakan dataset PhysioNet/CinC 

Challenge 2016, penelitian ini mengevaluasi dampak optimasi terhadap F1-Score 

dan efisiensi komputasi. Hasil eksperimen menunjukkan bahwa secara nominal, 

Random Search mencatatkan performa tertinggi dengan F1-Score Macro sebesar 

0,889 pada data uji. Meskipun uji statistik One-Way ANOVA menunjukkan tidak 

ada perbedaan kinerja yang signifikan secara statistik di antara keempat metode 

(p=0,442), Genetic Algorithm terbukti sebagai metode paling unggul secara 

menyeluruh karena efisiensi komputasinya yang superior, mampu mencapai 

konvergensi optimal hanya dalam waktu 2,5 jam dibandingkan Grid Search yang 

membutuhkan 23,8 jam. Model hasil optimasi ini juga menunjukkan ketahanan 

(robustness) tinggi dalam menangani ketidakseimbangan data dengan capaian nilai 

AUC sebesar 0,97 untuk deteksi kelas unhealthy. 

Kata Kunci :  Convolutional Neural Network, Genetic Algorithm, Hyperparameter 

Optimization, Phonocardiogram 
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Abstract 

Cardiovascular disease (CVD) is the leading cause of death globally, making early 

detection through heart sound analysis (phonocardiogram/PCG)1. While 

Convolutional Neural Networks (CNN) have proven effective for PCG 

classification, their performance heavily depends on hyperparameter 

configurations that are often determined manually through trial and error. This 

study aims to optimize CNN architecture performance for detecting heartbeat 

abnormalities by comparing four Hyperparameter Optimization (HPO) methods: 

Grid Search, Random Search, Bayesian Optimization, and Genetic Algorithm. 

Utilizing the PhysioNet/CinC Challenge 2016 dataset, this research evaluates the 

impact of optimization on F1-Score and computational efficiency. Experimental 

results indicate that nominally, Random Search recorded the highest performance 

with a Macro F1-Score of 0.889 on the test set5. Although One-Way ANOVA 

statistical testing showed no statistically significant performance difference among 

the four methods (p=0.442), the Genetic Algorithm proved to be the most superior 

method overall due to its superior computational efficiency, reaching optimal 

convergence in just 2.5 hours compared to Grid Search which required 23.8 hours. 

These optimized models also demonstrated high robustness in handling data 

imbalance, achieving an AUC of 0.97 for the unhealthy class detection. 

Key Word :  Convolutional Neural Network, Genetic Algorithm, Hyperparameter 

Optimization, Phonocardiogram 
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BAB I 

PENDAHULUAN 

1.1 Latar Belakang 

Jantung adalah organ vital yang bekerja tanpa henti sepanjang hidup, 

memompa darah 60–100 kali per menit untuk menjaga distribusi oksigen dan nutrisi 

ke seluruh tubuh. Gangguan pada fungsi jantung dapat berdampak serius pada 

organ lain dan mengancam nyawa apabila tidak ditangani secara cepat dan 

tepat.Penyakit kardiovaskular (cardiovascular disease/CVD) adalah penyebab 

kematian terbesar di dunia. Menurut data terbaru dari Global Burden of Disease 

Study, CVD menyebabkan sekitar 19,05 juta kematian pada tahun 2020, 

merepresentasikan 32% dari total kematian global (Roth et al., 2020). Di Indonesia, 

prevalensi penyakit jantung menunjukkan tren yang mengkhawatirkan. Data Survei 

Kesehatan Indonesia 2023 mencatat prevalensi penyakit jantung sebesar 0,85% 

(GoodStats, 2023), sementara laporan WHO (2021) menunjukkan bahwa CVD 

berkontribusi terhadap 37% kematian di Indonesia. 

Banyak penderita tidak mendeteksi kelainan jantung pada tahap awal karena 

tidak merasakan gejala umum seperti nyeri dada, sesak napas, atau keringat dingin. 

Padahal, deteksi dini sangat penting untuk meningkatkan prognosis pasien dan 

mencegah komplikasi serius (Lloyd-Jones et al., 2022). Metode konvensional 

seperti auskultasi manual menggunakan stetoskop sangat bergantung pada keahlian 

dan pengalaman tenaga medis, sehingga rentan terhadap variabilitas diagnostik dan 

dapat menghasilkan hasil yang tidak konsisten, terutama pada fasilitas kesehatan 

dengan keterbatasan sumber daya (Nishimura et al., 2021). 

Perkembangan teknologi artificial intelligence (AI) dan deep learning 

memberikan peluang besar dalam deteksi dini kelainan jantung melalui analisis 

suara jantung (phonocardiogram/PCG). Suara jantung mengandung informasi 

diagnostik penting yang dapat dimanfaatkan untuk mendeteksi murmur, kelainan 

katup, dan gangguan irama (Deng & Bentley, 2021).Beberapa penelitian terkini 

telah menunjukkan potensi analisis audio detak jantung sebagai metode screening 

awal yang efektif dan cost-effective. Gharehbaghi et al. (2021) 
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mengimplementasikan sistem screening berbasis PCG di setting komunitas untuk 

identifikasi dini penyakit kardiovaskular, menunjukkan cost-effectiveness sebagai 

alternatif echocardiography untuk screening populasi besar.  

Convolutional Neural Network (CNN) terbukti efektif untuk menganalisis 

data audio dan sinyal biomedis dalam penelitian-penelitian terkini. Zhang et al. 

(2022) mengembangkan pendekatan berbasis scaled spectrogram dan partial 

transfer learning untuk klasifikasi suara jantung, mencapai akurasi 98,2%. 

Humayun et al. (2020) juga membuktikan bahwa kombinasi CNN dengan fitur Mel-

Frequency Cepstral Coefficients (MFCC) dapat meningkatkan performa klasifikasi 

dengan akurasi mencapai 93,5%.  

Meskipun arsitektur CNN telah banyak digunakan dalam klasifikasi suara 

jantung dan menunjukkan hasil yang menjanjikan sebagai alat screening, performa 

model sangat bergantung pada pemilihan hyperparameter yang tepat. 

Hyperparameter seperti learning rate, batch size, jumlah layer, jumlah kernel, 

dropout rate, dan optimizer memiliki pengaruh signifikan terhadap akurasi, 

kecepatan konvergensi, dan kemampuan generalisasi model (Yang & Shami, 2020). 

Dalam praktiknya, pemilihan hyperparameter selama ini sering dilakukan secara 

manual melalui pendekatan trial and error, di mana peneliti melakukan eksperimen 

berulang kali dengan mencoba berbagai kombinasi nilai hyperparameter hingga 

memperoleh hasil evaluasi yang memuaskan. Tanpa optimasi hyperparameter yang 

sistematis, model dapat mengalami underfitting atau overfitting yang mengurangi 

efektivitas sistem deteksi (Goodfellow et al., 2016). Baghel et al. (2020) 

menunjukkan bahwa optimasi batch size dan dropout rate berkontribusi signifikan 

terhadap peningkatan F1-score dalam deteksi kelainan jantung, mengindikasikan 

pentingnya konfigurasi hyperparameter yang tepat. 

Berbagai metode optimasi hyperparameter telah dikembangkan untuk 

mengatasi keterbatasan pendekatan manual. Metode konvensional seperti grid 

search dan random search memberikan pendekatan yang sistematis namun sering 

kali memerlukan computational cost yang tinggi (Probst et al., 2020). Metode yang 

lebih canggih seperti Bayesian optimization, genetic algorithm, dan particle swarm 
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optimization menawarkan efisiensi yang lebih tinggi dalam mengeksplorasi ruang 

pencarian hyperparameter (Paleyes et al., 2021). 

Meskipun berbagai metode optimasi hyperparameter telah tersedia, belum 

ada penelitian komprehensif yang secara sistematis membandingkan efektivitas dan 

efisiensi berbagai metode tersebut dalam konteks klasifikasi detak jantung 

menggunakan arsitektur CNN dengan fitur MFCC. Sebagian besar penelitian 

terdahulu fokus pada pengembangan arsitektur model atau teknik ekstraksi fitur, 

namun kurang memberikan perhatian pada aspek optimasi hyperparameter yang 

sebenarnya memiliki kontribusi signifikan terhadap performa akhir sistem (Waring 

et al., 2020). 

 

1.2 Identifikasi Masalah 

Berdasarkan latar belakang yang telah dipaparkan, dapat diidentifikasi beberapa 

masalah utama yang menjadi dasar penelitian ini, yaitu: 

• Meskipun telah ada beberapa penelitian mengenai sistem berbasis deep 

learning untuk analisis audio detak jantung sebagai metode screening awal, 

performa model CNN sangat bergantung pada pemilihan hyperparameter 

yang tepat, namun proses optimasi hyperparameter sering kali dilakukan 

secara manual atau trial-and-error yang tidak efisien. 

 

1.3 Batasan Masalah 

Untuk membatasi ruang lingkup penelitian agar lebih fokus dan terarah, maka 

ditetapkan batasan masalah sebagai berikut: 

1. Dataset yang digunakan adalah PhysioNet/CinC Challenge 2016 yang berisi 

rekaman audio detak jantung dengan klasifikasi normal dan abnormal. 

2. Metode deep learning yang digunakan terbatas pada arsitektur 

Convolutional Neural Network (CNN) 2D untuk pemrosesan sinyal audio. 
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3. Preprocessing audio meliputi resampling, normalisasi, dan ekstraksi fitur 

MFCC (Mel-Frequency Cepstral Coefficients). 

4. Hyperparameter yang dioptimasi meliputi learning rate, batch size, jumlah 

kernel per layer, kernel size, dense unit, dropout rate, dan optimizer 

5. Metode optimasi hyperparameter yang dibandingkan mencakup grid 

search, random search, Bayesian optimization, dan Genetic Algorithm 

6. Evaluasi performa model menggunakan metrik recall, F1-score, dan 

computational efficiency (waktu training dan inference). 

7. Implementasi sistem dilakukan menggunakan bahasa pemrograman Python 

dengan framework TensorFlow/Keras dan library optimasi seperti Keras 

Tuner  

 

1.4 Rumusan Masalah 

Berdasarkan latar belakang yang telah diuraikan, maka rumusan masalah dalam 

penelitian ini adalah: 

1. Bagaimana pengaruh optimasi hyperparameter terhadap performa model 

CNN dalam klasifikasi detak jantung? 

2. Metode optimasi hyperparameter manakah yang paling efektif untuk 

meningkatkan F1-Score dan recall model CNN dalam mendeteksi kelainan 

jantung? 

1.5 Tujuan Penelitian 

Berdasarkan rumusan masalah yang telah ditetapkan, maka tujuan penelitian ini 

adalah: 

1. Menganalisis pengaruh optimasi hyperparameter terhadap performa model 

CNN dalam klasifikasi detak jantung.  
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2. Mengidentifikasi metode optimasi hyperparameter yang paling efektif 

dalam meningkatkan F1-Score dan recall model CNN untuk deteksi 

kelainan jantung. 

1.6 Manfaat Penelitian 

Manfaat bagi Universitas 

• Menjadi referensi akademik bagi penelitian lanjutan yang berhubungan 

dengan klasifikasi sinyal jantung, optimasi hyperparameter, maupun 

aplikasi machine learning di bidang kesehatan. 

• Meningkatkan reputasi universitas dalam pengembangan teknologi berbasis 

AI yang relevan dengan kebutuhan dunia medis dan kesehatan Masyarakat. 

• Memberikan peluang kolaborasi riset dengan institusi kesehatan atau rumah 

sakit terkait penerapan hasil penelitian dalam sistem deteksi dini kelainan 

jantung. 

• Memperkaya portfolio penelitian universitas dalam domain deep learning 

optimization dan medical AI. 

Manfaat bagi Mahasiswa 

• Memberikan pengalaman praktis dalam merancang, mengimplementasikan, 

dan mengevaluasi sistem klasifikasi berbasis deep learning dengan 

pendekatan optimasi yang sistematis. 

• Membekali mahasiswa dengan pemahaman mendalam tentang pengaruh 

hyperparameter terhadap performa model dan teknik-teknik optimasi 

modern dalam deep learning. 

• Memberikan keterampilan analisis data dan riset terapan yang dapat 

diimplementasikan di dunia kerja, khususnya dalam bidang machine 

learning engineering. 
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1.7 Luaran 

Penelitian ini diharapkan menghasilkan beberapa luaran sebagai berikut: 

1. Model deep learning optimal berbasis arsitektur CNN dengan konfigurasi 

hyperparameter yang telah dioptimasi secara sistematis untuk klasifikasi 

detak jantung normal dan abnormal. 

2. Artikel ilmiah yang membahas metode, eksperimen, serta hasil penelitian, 

sehingga dapat dipublikasikan pada forum akademik nasional maupun 

internasional. 

3. Dokumentasi teknis berupa laporan tugas akhir yang dapat dijadikan 

referensi bagi penelitian dan pengembangan selanjutnya. 
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BAB II 

TINJAUAN PUSTAKA 

 

2.1 Penyakit Kardiovaskular 

Penyakit kardiovaskular (cardiovascular disease/CVD) merupakan 

kelompok penyakit yang melibatkan jantung dan pembuluh darah, termasuk 

penyakit jantung koroner, penyakit serebrovaskular, penyakit jantung rematik, 

dan kondisi lainnya (World Health Organization, 2021). CVD menjadi penyebab 

utama kematian secara global. Menurut data terbaru dari Global Burden of 

Disease Study 2019, CVD menyebabkan sekitar 19,05 juta kematian pada tahun 

2020, merepresentasikan 32% dari seluruh kematian di dunia (Roth et al., 2020). 

Kelainan jantung dapat bermanifestasi dalam berbagai bentuk, termasuk 

kelainan katup jantung, penyakit jantung kongenital, kardiomiopati, dan aritmia 

(Virani et al., 2020). Deteksi dini kelainan jantung sangat krusial karena dapat 

mencegah progresivitas penyakit, mengurangi risiko komplikasi, dan 

meningkatkan kualitas hidup pasien (Lloyd-Jones et al., 2022). Penelitian terkini 

menunjukkan bahwa early detection dan appropriate management dapat 

mengurangi mortalitas CVD hingga 30–40% (Mensah et al., 2023). 

 

2.2 Phonocardiogram (PCG) 

Phonocardiogram (PCG) adalah rekaman digital dari suara jantung yang 

dihasilkan oleh aktivitas mekanik jantung, termasuk pembukaan dan penutupan 

katup jantung, aliran darah turbulent, dan getaran dinding jantung (Messner et al., 

2023). PCG merepresentasikan vibrasi yang dihasilkan oleh jantung dalam bentuk 

sinyal audio yang dapat dianalisis secara kuantitatif untuk keperluan diagnostik 

dan screening. 

Suara jantung normal terdiri dari dua komponen utama: S1 dan S2. S1 (first 

heart sound) dihasilkan oleh penutupan katup atrioventrikular (mitral dan 

trikuspid) pada awal sistol ventrikel, sedangkan S2 (second heart sound) 



 

16 
 

dihasilkan oleh penutupan katup semilunar (aorta dan pulmonal) pada akhir sistol 

ventrikel (Nishimura et al., 2021). Pada kondisi patologis, dapat muncul suara 

tambahan seperti S3, S4, murmur, clicks, atau rubs yang mengindikasikan 

kelainan jantung spesifik seperti heart failure, valvular disease, atau pericardial 

disease (Otto et al., 2020). 

Murmur jantung merupakan suara tambahan yang dihasilkan oleh aliran 

darah turbulent melalui struktur jantung. Murmur dapat diklasifikasikan sebagai 

innocent (benign) atau pathological berdasarkan karakteristik akustiknya (Frank 

et al., 2022). Karakteristik penting murmur meliputi timing (systolic, diastolic, 

continuous), intensitas (grade 1–6 berdasarkan Levine scale), pitch (high, 

medium, low), quality (blowing, harsh, rumbling), lokasi auskultasi terbaik, dan 

pola radiasi ke area anatomis lainnya (Bonow et al., 2021). 

Analisis PCG memiliki beberapa keunggulan dibandingkan auskultasi 

manual, termasuk objektivitas, repeatability, kemampuan untuk analisis 

kuantitatif, dan potensi untuk screening massal (Deng & Bentley, 2021). Dengan 

perkembangan teknologi digital stethoscope dan algoritma pemrosesan sinyal 

berbasis artificial intelligence, analisis PCG otomatis menjadi semakin feasible 

untuk aplikasi klinis, terutama untuk telemedicine dan point-of-care screening. 

 

Gambar 2.1 Visualisasi Phonocardiogram 

2.3 Artificial Intelligence (AI) 

Artificial Intelligence (AI) adalah cabang ilmu komputer yang bertujuan 

menciptakan sistem yang dapat melakukan tugas-tugas yang normalnya 

memerlukan kecerdasan manusia (Russell & Norvig, 2020). AI mencakup 

berbagai kemampuan kognitif seperti learning, reasoning, problem-solving, 

perception, dan language understanding. Secara fundamental, AI berupaya untuk 

membuat mesin yang dapat berpikir dan bertindak secara rasional dalam berbagai 
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situasi. Konsep AI pertama kali diperkenalkan oleh McCarthy et al. (1956) dalam 

Dartmouth Conference, di mana mereka mendefinisikan AI sebagai "the science 

and engineering of making intelligent machines". Russell dan Norvig (2020) 

mengklasifikasikan definisi AI menjadi empat kategori: systems that think like 

humans, systems that think rationally, systems that act like humans, dan systems 

that act rationally. 

2.4 Deep Learning 

Deep learning adalah cabang dari machine learning yang menggunakan 

neural networks dengan beberapa hidden layers (deep neural networks) untuk 

mempelajari representasi data yang kompleks (LeCun et al., 2015). Keunggulan 

utama deep learning adalah kemampuannya untuk secara otomatis mengekstraksi 

fitur dari data mentah tanpa memerlukan feature engineering manual yang 

ekstensif (Goodfellow et al., 2016). Istilah “deep” merujuk pada jumlah layers 

dalam network yang memungkinkan model mempelajari fitur pada berbagai 

tingkat abstraksi, di mana layer bawah mendeteksi pola sederhana dan layer atas 

mengombinasikannya menjadi representasi yang lebih kompleks. Deep learning 

telah mencapai dampak transformasional dalam berbagai domain dengan kinerja 

yang sangat tinggi, terutama sejak kemajuan dalam large-scale models dan 

sumber daya komputasi (Sejnowski, 2020). 

Prinsip fundamental deep learning didasarkan pada pembelajaran hierarkis 

(hierarchical learning) dan representasi terdistribusi (distributed 

representations). Neural networks dalam deep learning terdiri dari interconnected 

layers dari neuron buatan yang melakukan transformasi non-linear terhadap data 

masukan. Setiap layer menerima input dari layer sebelumnya, melakukan 

penjumlahan berbobot dan aktivasi non-linear, kemudian meneruskan output ke 

layer berikutnya. Proses pelatihan menggunakan algoritma backpropagation 

untuk mengoptimalkan bobot berdasarkan loss function yang mengukur 

perbedaan antara prediksi model dan label sebenarnya. Optimisasi dilakukan 

melalui variasi gradient descent seperti Stochastic Gradient Descent (SGD), 

Adam, atau AdamW yang menyesuaikan parameter secara iteratif untuk 

meminimalkan loss (Loshchilov & Hutter, 2019). Kemajuan terbaru dalam teknik 
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optimisasi, metode regularisasi, dan inovasi arsitektur telah meningkatkan 

stabilitas pelatihan serta kinerja model secara signifikan (Zhang et al., 2021). 

2.5 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) adalah jenis deep neural network 

yang dirancang khusus untuk pemrosesan data dengan struktur menyerupai grid, 

seperti gambar dan sinyal deret waktu (time-series) (LeCun et al., 1998). CNN 

telah merevolusi bidang computer vision dan semakin banyak diaplikasikan untuk 

pemrosesan sinyal audio serta data biomedis (Krizhevsky et al., 2012). Arsitektur 

CNN terinspirasi dari organisasi visual cortex pada mamalia, di mana neuron 

merespons rangsangan hanya pada wilayah terbatas yang disebut receptive field 

(Hubel & Wiesel, 1962). CNN mengimplementasikan konsep ini melalui 

konektivitas lokal (local connectivity) dan pembagian bobot (weight sharing), 

yang membuat network efisien dalam mendeteksi pola pada berbagai lokasi dalam 

data masukan. 

Prinsip fundamental CNN didasarkan pada tiga konsep utama (Goodfellow 

et al., 2016). Pertama, konektivitas lokal (local connectivity), di mana setiap 

neuron hanya terhubung ke wilayah lokal dari masukan, sehingga jumlah 

parameter berkurang drastis dan network dapat fokus pada pola lokal. Kedua, 

pembagian parameter (parameter sharing), yaitu penggunaan kernel yang sama 

pada berbagai posisi dalam masukan, membuat CNN bersifat translation 

equivariant serta efisien dalam penggunaan parameter. Ketiga, pembelajaran fitur 

hierarkis (hierarchical feature learning), di mana CNN secara otomatis 

mempelajari representasi hierarkis melalui penumpukan beberapa layers, dengan 

layer awal mendeteksi fitur sederhana dan layer lebih dalam mempelajari fitur 

semantik tingkat tinggi (LeCun et al., 2015). 



 

19 
 

 

Gambar 2.2 Visualisasi Convolutional Neural Network 

2.5.1 CNN 2D 

CNN 2D (Two-Dimensional Convolutional Neural Network) adalah 

arsitektur deep learning yang dirancang untuk memproses data dengan struktur grid 

dua dimensi (LeCun et al., 2015). Dalam klasifikasi audio, CNN 2D beroperasi 

pada representasi visual dari sinyal suara seperti spectrogram, mel-spectrogram, 

atau MFCC, di mana sumbu horizontal merepresentasikan waktu dan sumbu 

vertikal merepresentasikan frekuensi (Hershey et al., 2017). 

Keunggulan CNN 2D dalam pemrosesan sinyal audio mencakup beberapa 

aspek. Dari sisi ekstraksi fitur time-frequency, CNN 2D mampu menangkap pola 

kompleks secara simultan pada domain waktu dan frekuensi, yang penting untuk 

membedakan karakteristik suara jantung seperti S1, S2, dan murmur (Potes et al., 

2016). Dari sisi representasi hierarchical, CNN 2D membangun fitur bertingkat dari 

low-level features seperti edges pada layer awal, hingga high-level features seperti 

pola akustik kompleks pada layer lebih dalam (Zeiler & Fergus, 2014). 

2.5.2 Komponen Arsitektur CNN 

Arsitektur CNN terdiri dari beberapa komponen fundamental yang bekerja 

bersama untuk feature extraction dan classification: 
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(2-1) 

2.5.2.1 Convolutional Layer 

Convolutional layer adalah komponen inti dari CNN yang melakukan 

operasi konvolusi antara sinyal masukan (input signal) dan kernel yang dapat 

dipelajari (learnable kernels atau kernels) untuk mengekstraksi fitur (LeCun et al., 

2015). Pada CNN 1D, operasi konvolusi dapat dinyatakan sebagai: 

𝑦[𝑖] = 𝑘∑𝑥[𝑖 + 𝑘] ⋅ 𝑤[𝑘] + 𝑏 

di mana x adalah sinyal masukan, w adalah bobot kernel (kernel weights), 

bbb adalah bias term, dan y adalah peta fitur keluaran (output feature map). 

Convolutional layer berfungsi untuk mendeteksi pola lokal (local patterns) dalam 

data masukan, seperti tepi (edges), tekstur (textures), atau dalam konteks audio, 

pola suara spesifik serta karakteristik temporal. Lapisan ini menggunakan konsep 

pembagian bobot (weight sharing), di mana kernel yang sama diaplikasikan ke 

seluruh bagian masukan, sehingga secara signifikan mengurangi jumlah 

parameter dan memungkinkan deteksi pola pada berbagai posisi dalam data. 

2.5.2.2 Activation Function 

Activation function memperkenalkan non-linearity ke dalam neural 

network, memungkinkan model untuk mempelajari hubungan yang kompleks dan 

non-linear dalam data (Nair & Hinton, 2010). Tanpa activation function, neural 

network hanya mampu mempelajari transformasi linear meskipun memiliki 

kedalaman berlapis. 

Beberapa jenis activation function yang umum digunakan dalam deep learning: 

• ReLU (Rectified Linear Unit) 

ReLU (Rectified Linear Unit) adalah activation function paling populer dalam 

deep learning modern. ReLU memberikan beberapa keunggulan: kesederhanaan 

komputasi karena hanya melibatkan operasi ambang (thresholding operation), 

mengurangi masalah vanishing gradient yang memfasilitasi pelatihan deep 

networks, serta mendorong terjadinya sparsity dengan menghasilkan aktivasi nol 
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untuk input negatif (Agarap, 2018). Namun, ReLU dapat mengalami masalah 

dying ReLU di mana neuron menjadi tidak aktif secara permanen jika menerima 

nilai negatif yang besar selama pelatihan. 

• Leaky ReLU 

Leaky ReLU adalah varian dari ReLU yang mengatasi masalah dying ReLU 

dengan memberikan kemiringan kecil (small negative slope) untuk input negatif, 

di mana α adalah konstanta kecil (biasanya 0.01). Leaky ReLU mempertahankan 

keunggulan ReLU sekaligus memungkinkan aliran gradien kecil pada nilai 

negatif, sehingga mencegah neuron menjadi benar-benar tidak aktif (Maas et al., 

2013). 

• Sigmoid 

Sigmoid adalah activation function klasik yang memetakan input ke rentang 

(0, 1). Fungsi ini sering digunakan pada output layer untuk klasifikasi biner karena 

keluarannya dapat diinterpretasikan sebagai probabilitas. Namun, sigmoid 

mengalami masalah serius vanishing gradient untuk input yang sangat besar atau 

sangat kecil, sehingga kurang cocok digunakan pada hidden layer dalam deep 

networks (Goodfellow et al., 2016). 

• Softmax 

Softmax adalah activation function yang biasanya digunakan pada output 

layer untuk klasifikasi multi-kelas, dengan mengubah skor mentah (logits) 

menjadi distribusi probabilitas. Softmax memastikan bahwa nilai keluaran 

berjumlah total 1 dan setiap nilai berada di antara 0 dan 1, sehingga dapat 

diinterpretasikan sebagai probabilitas kelas. 

Pemilihan activation function dapat berdampak signifikan pada performa 

model, dinamika pelatihan, dan kecepatan konvergensi (Dubey et al., 2022). 

Dalam praktiknya, ReLU dan variannya paling umum digunakan untuk hidden 

layer karena efisiensi komputasi dan efektivitasnya, sedangkan sigmoid 
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(2-2) 

(2-3) 

(2-4) 

digunakan untuk keluaran klasifikasi biner dan softmax untuk keluaran klasifikasi 

multi-kelas. 

2.5.2.3 Pooling Layer 

Pooling layer melakukan operasi downsampling untuk mengurangi dimensi 

spasial dari feature maps sambil tetap mempertahankan informasi penting 

(Scherer et al., 2010). Max pooling, jenis pooling yang paling umum, mengambil 

nilai maksimum dari setiap wilayah lokal: 

𝑦[𝑖] = 𝑚𝑎𝑥(𝑥[𝑖 ⋅ 𝑠: 𝑖 ⋅ 𝑠 + 𝑘]) 

di mana s adalah stride dan k adalah ukuran pooling window. 

Fungsi pooling layer adalah mengurangi dimensi dan biaya komputasi, 

memberikan sifat translation invariance yang membuat model lebih robust 

terhadap pergeseran kecil pada input, serta mencegah overfitting dengan 

mengurangi jumlah parameter. Selain itu, pooling membantu mengekstraksi fitur 

dominan yang tetap relevan meskipun berada pada posisi berbeda dalam sinyal 

input. 

2.5.2.4 Batch Normalization 

Batch Normalization adalah teknik yang menormalisasi aktivasi dari setiap 

layer untuk setiap mini-batch, sehingga secara signifikan meningkatkan dinamika 

pelatihan (Ioffe & Szegedy, 2015). Operasinya dapat dinyatakan sebagai: 

𝑥^ =
𝑥 − 𝜇𝑏𝑎𝑡𝑐ℎ

√𝜎2
𝑏𝑎𝑡𝑐ℎ+∈

 

𝑦 = 𝛾 ⋅ 𝑥^ + 𝛽  

di mana 𝜇𝑏𝑎𝑡𝑐ℎ dan 𝜎2
𝑏𝑎𝑡𝑐ℎ adalah mean dan variance dari mini-batch, 

∈adalah konstanta kecil untuk stabilitas numerik, serta 𝛾 dan 𝛽 adalah parameter 

yang dapat dipelajari. 
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Batch normalization berfungsi untuk mempercepat pelatihan dengan 

memungkinkan learning rate yang lebih tinggi, mengurangi internal covariate 

shift sehingga pelatihan lebih stabil, berperan sebagai bentuk regularization yang 

dapat mengurangi kebutuhan dropout pada beberapa kasus, serta meningkatkan 

aliran gradien di dalam network sehingga memfasilitasi pelatihan arsitektur yang 

lebih dalam. 

2.5.2.5 Dropout 

Dropout adalah teknik regularization yang secara acak menonaktifkan 

(mengatur ke nol) sebagian neuron selama pelatihan dengan probabilitas ppp 

(dropout rate) (Srivastava et al., 2014). Fungsinya adalah mencegah overfitting 

dengan memaksa network untuk tidak bergantung pada neuron tertentu, 

mendorong pembelajaran representasi yang lebih robust dan terdistribusi sehingga 

mampu melakukan generalisasi lebih baik, serta memberikan efek seperti model 

averaging karena pelatihan secara efektif menciptakan ensemble dari berbagai 

sub-network. Dropout hanya aktif selama pelatihan dan dinonaktifkan pada saat 

inferensi, di mana semua neuron digunakan, tetapi output diskalakan sesuai 

dropout rate untuk menjaga nilai ekspektasi. 

2.5.2.6 Flatten Layer 

Flatten layer mengonversi feature maps multi-dimensi dari convolutional 

dan pooling layers menjadi vektor satu dimensi (Goodfellow et al., 2016). 

Layer ini berfungsi sebagai lapisan transisi antara bagian convolutional dari 

network (yang bekerja pada data spasial/temporal) dan bagian fully connected 

(yang membutuhkan input satu dimensi). Operasi flatten hanya melakukan 

reshaping data tanpa mempelajari parameter apa pun, dengan tetap 

mempertahankan semua informasi dari feature maps dalam susunan linear yang 

sesuai untuk dense layers. 

2.5.2.7 Fully Connected Layer 

Fully connected layer (dense layer) menghubungkan setiap neuron dengan 

semua neuron pada layer sebelumnya, melakukan integrasi global terhadap fitur-
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(2-5) 

fitur yang diekstraksi oleh convolutional layers (Goodfellow et al., 2016). 

Operasinya dapat dinyatakan sebagai: 

𝑦 = 𝑊 ⋅ 𝑥 + 𝑏 

di mana W adalah matriks bobot, x adalah vektor input, dan b adalah vektor 

bias. 

Fully connected layers berfungsi untuk mengombinasikan semua fitur yang 

diekstraksi dalam membuat keputusan klasifikasi akhir, mempelajari kombinasi 

non-linear yang kompleks dari fitur-fitur tersebut, serta memetakan dari feature 

space ke output space (label kelas). Layer ini umumnya ditempatkan mendekati 

bagian keluaran network untuk melakukan penalaran tingkat tinggi dan 

pengambilan keputusan. 

 

2.6 Mel-Frequency Cepstral Coefficients (MFCC) 

Mel-Frequency Cepstral Coefficients (MFCC) adalah representasi fitur 

audio yang paling banyak digunakan dalam speech recognition dan audio 

classification (Davis & Mermelstein, 1980). MFCC mengekstraksi fitur yang 

merefleksikan karakteristik spektral sinyal audio dengan cara yang sesuai dengan 

persepsi auditory system manusia. 

Nama "mel" berasal dari mel scale, yang merupakan perceptual scale of 

pitches yang dikembangkan oleh Stevens et al. (1937). Mel scale didasarkan pada 

pengamatan bahwa telinga manusia tidak mempersepsikan frekuensi secara linear.  

Gambar 2.3 memperlihatkan representasi visual dari fitur audio 

menggunakan Mel spectrogram (atas) dan Mel-Frequency Cepstral Coefficients 

(MFCC) (bawah) 
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Gambar 2.3 Mel spectrogram dan Mel-Frequency Cepstral Coefficients (MFCC) 

2.7 Hyperparameter 

Hyperparameter adalah parameter konfigurasi yang nilainya ditentukan 

sebelum proses training dimulai dan tidak dipelajari dari data training (Goodfellow 

et al., 2016). Berbeda dengan parameter model (seperti bobot dan bias) yang 

dioptimasi selama training melalui backpropagation, hyperparameter harus 

ditetapkan secara eksplisit dan memiliki pengaruh signifikan terhadap performa 

model. Pemilihan hyperparameter yang tepat merupakan faktor krusial dalam 

pengembangan model deep learning yang efektif, karena dapat mempengaruhi 

kecepatan konvergensi, akurasi akhir, dan kemampuan generalisasi (Yang & 

Shami, 2020). 

2.7.1 Learning Rate 

Learning rate adalah salah satu hyperparameter paling kritis yang 

menentukan seberapa besar pembaruan bobot dalam setiap iterasi (Bengio, 2012). 

Learning rate yang terlalu besar dapat menyebabkan optimisasi menyimpang atau 

berosilasi, sedangkan learning rate yang terlalu kecil membuat konvergensi 

sangat lambat dan dapat terjebak di local minima. Penelitian terkini menunjukkan 

bahwa adaptive learning rate schedules, seperti cosine annealing dan learning 
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rate warmup, dapat meningkatkan stabilitas training dan performa akhir model 

(Loshchilov & Hutter, 2017). Smith et al. (2021) mendemonstrasikan bahwa 

learning rate yang optimal sering bergantung pada ukuran batch, dengan batch 

yang lebih besar membutuhkan learning rate yang lebih tinggi secara proporsional 

untuk menjaga dinamika training yang efektif. 

2.7.2 Batch Size 

Batch size mempengaruhi kecepatan pelatihan, kebutuhan memori, dan 

kemampuan model untuk menggeneralisasi data baru (Keskar et al., 2017). 

Ukuran batch yang kecil menghasilkan estimasi gradien yang bervariasi (noisy) 

namun dapat meningkatkan kemampuan generalisasi model. Sebaliknya, ukuran 

batch yang besar memberikan estimasi gradien yang lebih stabil tetapi 

memerlukan memori yang lebih besar dan cenderung menghasilkan model yang 

kurang mampu menggeneralisasi data baru dengan baik.  

2.7.3 Network Architecture 

Jumlah layer dan unit per layer menentukan kapasitas representasi model 

dalam mempelajari pola data (Hanin & Seluk, 2018). Network yang terlalu 

dangkal mungkin tidak dapat menangkap pola yang kompleks (underfitting), 

sedangkan network yang terlalu dalam dapat mengalami overfitting dan sulit untuk 

dilatih. Tan dan Le (2021) mengembangkan EfficientNetV2 yang menunjukkan 

pentingnya systematic architecture scaling, bahwa kedalaman, lebar, dan resolusi 

sebaiknya diskalakan secara bersama-sama, bukan secara terpisah. Penelitian 

modern juga menekankan pentingnya komponen arsitektural seperti skip 

connections dan attention mechanisms dalam memungkinkan training yang 

efektif pada very deep networks (Liu et al., 2022). 

2.7.4 Dropout Rate 

Dropout rate menentukan proporsi neuron yang dinonaktifkan secara acak 

selama proses pelatihan (Srivastava et al., 2014). Dropout rate yang terlalu rendah 

memberikan regularisasi yang tidak memadai sehingga model cenderung overfit, 

sedangkan dropout rate yang terlalu tinggi dapat mengurangi kapasitas model 
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secara signifikan sehingga performanya menurun. Penelitian oleh Labach et al. 

(2019) mengeksplorasi strategi adaptive dropout di mana dropout rate 

disesuaikan secara dinamis selama training berdasarkan performa validasi. Selain 

itu, teknik regularisasi alternatif seperti DropBlock dan Cutout menunjukkan hasil 

yang menjanjikan untuk domain tertentu seperti computer vision dan audio 

processing (Ghiasi et al., 2018; DeVries & Taylor, 2017). 

2.7.5 Optimizer Selection 

Pemilihan optimizer dapat memberikan dampak signifikan pada performa 

dan dinamika training model (Ruder, 2016). Stochastic Gradient Descent (SGD) 

dengan momentum adalah optimizer klasik yang tangguh tetapi memerlukan 

penyetelan yang cermat. Adam optimizer (Kingma & Ba, 2015) mengadaptasi 

learning rate untuk setiap parameter dan sering kali konvergen lebih cepat, tetapi 

kadang menghasilkan generalisasi yang lebih buruk pada beberapa tugas. 

Perkembangan terbaru termasuk AdamW yang memisahkan weight decay dari 

pembaruan gradien (Loshchilov & Hutter, 2019), dan LAMB optimizer yang 

memungkinkan pelatihan batch besar secara efektif (You et al., 2020). Liu et al. 

(2020) melakukan analisis komprehensif yang menunjukkan bahwa pilihan 

optimizer yang optimal bergantung pada kompleksitas tugas, arsitektur model, dan 

sumber daya komputasi yang tersedia. Choi et al. (2020) menunjukkan bahwa 

pendekatan hibrid yang menggabungkan keunggulan dari beberapa optimizer 

dapat mencapai performa yang lebih baik di berbagai jenis tugas. 

2.8 Hyperparameter Optimization (HPO) 

Hyperparameter optimization (HPO) adalah proses sistematis untuk 

menemukan kombinasi hyperparameter yang menghasilkan performa model 

terbaik (Feurer & Hutter, 2019). Performa model deep learning sangat bergantung 

pada konfigurasi hyperparameter yang optimal, di mana setiap hyperparameter 

berinteraksi secara kompleks dan mempengaruhi hasil akhir model (Bergstra & 

Bengio, 2012). Sebagai analogi, hyperparameter dapat diibaratkan sebagai "resep" 

dalam pembuatan kue, di mana setiap bahan (learning rate, batch size, dropout 

rate, dll.) harus dalam takaran yang tepat agar menghasilkan produk yang 

sempurna. 
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(2-6) 

Manual tuning atau trial-and-error merupakan pendekatan konvensional 

yang tidak efisien dan sering kali tidak menghasilkan konfigurasi optimal, 

terutama ketika berhadapan dengan high-dimensional hyperparameter space di 

mana banyak hyperparameter saling berinteraksi (Claesen & De Moor, 2015). 

Kompleksitas ini mendasari munculnya metode HPO yang lebih sistematis dan 

otomatis untuk mengeksplorasi hyperparameter space secara efisien. 

Dalam hyperparameter optimization, objective function yang ingin 

dioptimalkan adalah (Yang & Shami, 2020): 

𝜆 ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝐴_𝜆, 𝐷_𝑡𝑟𝑎𝑖𝑛, 𝐷_𝑣𝑎𝑙𝑖𝑑) 

      𝜆 ∈ 𝛬 

dimana: 

• λ adalah konfigurasi hyperparameter 

• Λ adalah hyperparameter search space 

• A_λ adalah algoritma dengan hyperparameter λ 

• D_train adalah training data 

• D_valid adalah validation data 

• L adalah loss atau error metric 

Tujuannya adalah menemukan λ* yang meminimalkan validation error dan 

menghindari overfiting. 

2.8.1 Grid Search 

Grid search merupakan metode HPO yang paling sederhana dan 

straightforward dengan pendekatan brute-force (Bergstra & Bengio, 2012). Metode 

ini bekerja dengan mendefinisikan grid dari nilai-nilai diskrit untuk setiap 

hyperparameter, kemudian secara exhaustive mencoba setiap kombinasi yang 

mungkin dalam grid tersebut (Liashchynskyi & Liashchynskyi, 2019). 

Kelebihan grid search adalah kesederhanaannya dan guarantee bahwa 

kombinasi terbaik dalam grid yang didefinisikan akan ditemukan (Mantovani et al., 
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2015). Metode ini juga mudah untuk diparalelisasi karena setiap evaluasi 

independen satu sama lain. Namun, kekurangan utama grid search adalah 

computational cost yang sangat tinggi, terutama ketika jumlah hyperparameter dan 

range nilainya besar (Bergstra & Bengio, 2012). Kompleksitas waktu grid search 

meningkat secara eksponensial dengan jumlah hyperparameter (curse of 

dimensionality), sehingga menjadi kurang efektif untuk high-dimensional search 

spaces (Claesen & De Moor, 2015).  

Gambar 2.4 menunjukkan ilustrasi Grid Search dalam pencarian 

hyperparameter, dengan pendekatan brute-force yang mengevaluasi seluruh 

kombinasi dari nilai hyperparameter yang telah ditentukan. 

 

Gambar 2.4 Ilustrasi Grid Search. 

2.8.1.1 Reduce Grid 

Strategi reduced grid dibuat melalui pendekatan intelligent sampling yang 

mempertahankan diversity dalam ruang pencarian hyperparameter. Keras Tuner 

GridSearch secara otomatis melakukan sampling dengan prioritas pada kombinasi 

yang memiliki probabilitas tinggi menghasilkan performa optimal berdasarkan 

interaksi antar hyperparameter. Pendekatan ini mengikuti prinsip yang dijelaskan 

oleh Bergstra dan Bengio (2012) bahwa tidak semua dimensi hyperparameter 

memiliki pengaruh yang sama terhadap performa model, sehingga sampling dapat 

difokuskan pada region yang lebih promising. Reduced grid dibentuk dengan 

memastikan setiap nilai dari hyperparameter penting (seperti jumlah kernels, kernel 
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size, dan learning rate) terrepresentasi dengan baik dalam kombinasi yang 

dievaluasi. 

2.8.2 Random Search 

Random search merupakan alternatif yang lebih efisien dibandingkan grid 

search, di mana metode ini secara random mengambil sampel kombinasi 

hyperparameter dari distribusi yang telah ditentukan (Bergstra & Bengio, 2012). 

Alih-alih mencoba setiap kombinasi secara sistematis, random search 

mengeksplorasi hyperparameter space dengan sampling acak. 

Bergstra dan Bengio (2012) dalam penelitian mereka menunjukkan bahwa 

random search secara signifikan lebih efisien daripada grid search untuk 

hyperparameter optimization. Keunggulan utama random search adalah 

probabilitas yang lebih tinggi untuk menemukan kombinasi yang baik dalam budget 

komputasi yang sama, terutama ketika beberapa hyperparameter lebih penting 

daripada yang lain. Random search tidak membuang resources untuk mencoba 

kombinasi yang sistematis tetapi kurang penting, sehingga dapat mengeksplorasi 

lebih banyak nilai untuk hyperparameter yang critical (Bergstra & Bengio, 2012). 

Gambar 2.5 adalah representasi dari metode Random Search, di mana 

kombinasi nilai hyperparameter dipilih secara acak dari ruang pencarian. 

 

Gambar 2.5 Ilustrasi Random Search 
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2.8.3 Bayesian Optimization 

Bayesian optimization adalah metode HPO yang lebih sophisticated dan 

intelligent, yang membangun model probabilistik dari fungsi objektif (performa 

model) terhadap hyperparameter yang diuji (Shahriari et al., 2016). Metode ini 

menggunakan prior knowledge dari eksperimen sebelumnya untuk memandu 

pencarian hyperparameter selanjutnya, sehingga dapat menemukan konfigurasi 

optimal dengan jumlah evaluasi yang lebih sedikit (Snoek et al., 2012). 

Bayesian optimization bekerja dengan membangun surrogate model, 

biasanya Gaussian Process (GP), yang memodelkan distribusi probabilitas dari 

fungsi objektif (Mockus, 1975). Model ini kemudian digunakan untuk menghitung 

acquisition function yang menentukan hyperparameter mana yang paling 

menjanjikan untuk dievaluasi selanjutnya (Brochu et al., 2010). Proses ini 

melibatkan trade-off antara exploitation (mengeksplorasi region yang sudah 

diketahui menghasilkan performa baik) dan exploration (mencari region baru yang 

belum pernah diuji) (Shahriari et al., 2016). 

Acquisition functions yang umum digunakan meliputi Expected Improvement 

(EI), Probability of Improvement (PI), dan Upper Confidence Bound (UCB), yang 

masing-masing memiliki karakteristik exploration-exploitation yang berbeda 

(Snoek et al., 2012). Keunggulan utama Bayesian optimization adalah efisiensi 

komputasinya yang superior, karena metode ini secara intelligent memilih 

kombinasi hyperparameter yang paling menjanjikan dan menghindari evaluasi 

pada region yang unlikely menghasilkan improvement (Frazier, 2018).  

Gambar 2.6 adalah representasi dari metode Bayesian Optimization, di mana 

pemilihan hyperparameter dilakukan dengan membangun surrogate model untuk 

memodelkan fungsi objektif dan menggunakan acquisition function untuk 

menentukan kombinasi hyperparameter berikutnya. 
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Gambar 2.6 Ilustrasi Bayesian Optimization 

2.8.4 Genetic Algorithm 

Genetic algorithm (GA) adalah metode HPO(Hyperparameter Optimization) 

yang terinspirasi dari proses evolusi biologis, menggunakan mekanisme seperti 

selection, crossover, dan mutation untuk mengeksplorasi hyperparameter space 

(Holland, 1992). Metode ini memaintain populasi dari kandidat solusi (kombinasi 

hyperparameter) dan secara iteratif mengevolusi populasi tersebut menuju solusi 

yang lebih baik (Goldberg & Holland, 1988). 

Proses GA dimulai dengan inisialisasi populasi random, kemudian 

mengevaluasi fitness (performa) setiap individu dalam populasi (Lorenzo et al., 

2017). Individu dengan fitness tinggi memiliki probabilitas lebih besar untuk 

diseleksi sebagai parents untuk generasi berikutnya. Crossover operation 

menggabungkan hyperparameter dari dua parents untuk menghasilkan offspring, 

sedangkan mutation operation memperkenalkan variasi random untuk maintain 

diversity dan menghindari premature convergence (Eiben & Smith, 2015). 

Keunggulan genetic algorithm adalah kemampuannya untuk mengeksplorasi 

non-convex dan multimodal search spaces, serta tidak memerlukan gradient 

information (Lorenzo et al., 2017). GA juga naturally parallelizable karena evaluasi 

fitness dalam satu generasi dapat dilakukan secara independen. Namun, kekurangan 

GA termasuk memerlukan tuning dari GA parameters itu sendiri (population size, 
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(2-7) 

mutation rate, crossover rate) dan dapat memerlukan banyak evaluasi untuk 

converge, terutama untuk high-dimensional spaces (Eiben & Smith, 2015). 

2.9 Confusion Matrix 

Confusion Matrix adalah tabel yang menggambarkan performa model 

klasifikasi dengan membandingkan prediksi model terhadap label aktual (Sokolova 

& Lapalme, 2009). Tabel ini terdiri dari empat komponen utama: True Positives 

(TP) yaitu data positif yang diprediksi benar sebagai positif, True Negatives (TN) 

yaitu data negatif yang diprediksi benar sebagai negatif, False Positives (FP) yaitu 

data negatif yang salah diprediksi sebagai positif, dan False Negatives (FN) yaitu 

data positif yang salah diprediksi sebagai negatif (Powers, 2011). Confusion matrix 

menjadi dasar untuk menghitung berbagai metrik evaluasi lainnya. 

 

Gambar 2.7 Confusion Matrix 

2.9.1 Accuracy 

Accuracy adalah proporsi total prediksi yang benar dari keseluruhan 

prediksi (Powers, 2011). Metrik ini mengukur seberapa akurat model dapat 

mengklasifikasikan data dengan benar. Nilai accuracy dapat diperoleh dengan 

persamaan: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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(2-8) 

(2-9) 

(2-10) 

dimana TP = True Positives, TN = True Negatives, FP = False Positives, dan FN = 

False Negatives. 

2.9.2 Precision 

Precision merupakan proporsi prediksi positif yang benar dari total prediksi 

positif (Fawcett, 2006). Precision berfokus pada meminimalisir false positive dan 

mengukur ketepatan model ketika memprediksi kelas positif (Davis & Goadrich, 

2006). Nilai precision dapat diperoleh dengan persamaan: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

2.9.3 Recall (Sensitivity) 

Recall atau sensitivity mengukur kemampuan model untuk mendeteksi 

semua sampel positif (Hossin & Sulaiman, 2015). Metrik ini penting dalam konteks 

medis dimana mendeteksi semua kasus positif lebih krusial daripada menghindari 

false positives (Japkowicz & Shah, 2011). Nilai recall dapat diperoleh dengan 

persamaan: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

dimana TP = True Positives dan FN = False Negatives. 

2.9.4 F1-Score 

F1-Score adalah harmonic mean dari precision dan recall yang memberikan 

keseimbangan antara kedua metrik tersebut (Powers, 2011). F1-Score berguna 

ketika terdapat trade-off antara precision dan recall, serta penting untuk dataset 

dengan class imbalance. Nilai F1-Score dapat diperoleh dengan persamaan: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

dimana precision dan recall adalah nilai dari masing-masing metrik yang telah 

dihitung sebelumnya. 
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2.10 Python 

Python merupakan bahasa pemrograman yang banyak digunakan dalam 

pengembangan aplikasi machine learning dan deep learning karena sintaks yang 

mudah dibaca, library yang komprehensif, serta dukungan komunitas yang luas 

(Chollet, 2021). Python memiliki keunggulan fleksibilitas yang memungkinkan 

peneliti menguji berbagai algoritma dan arsitektur deep learning, yang sangat 

penting dalam domain medical signal processing karena akurasi dan performa 

menjadi prioritas utama (Géron, 2022). 

2.10.1 Librosa 

Librosa merupakan library Python yang dirancang khusus untuk analisis 

dan pemrosesan sinyal audio (McFee et al., 2015). Dalam penelitian ini, Librosa 

digunakan untuk loading dan preprocessing audio files, resampling audio signals 

ke uniform sampling rate, ekstraksi MFCC feature sebagai input untuk model deep 

learning, dan visualisasi audio signals dan spectrograms untuk exploratory 

analysis. Menurut McFee et al. (2015), Librosa menyediakan implementasi yang 

reliable dan well-tested dari berbagai audio processing algorithms. 

2.10.2 TensorFlow dan Keras 

TensorFlow dengan API Keras merupakan kerangka kerja deep learning 

yang dikembangkan oleh Google (Abadi et al., 2016; Chollet, 2021). TensorFlow 

dan Keras digunakan untuk membangun arsitektur CNN, melatih model dengan 

berbagai konfigurasi hyperparameter, membuat fungsi pemantau untuk proses 

optimasi hyperparameter, mengevaluasi kinerja model dengan metrik bawaan, 

serta menyimpan dan memuat model yang sudah dilatih untuk keperluan 

perbandingan. Menurut Chollet (2021), Keras memiliki keunggulan dalam 

mendukung pengembangan prototipe secara cepat serta memudahkan penerapan 

arsitektur yang kompleks untuk analisis sinyal biomedis. 

2.10.3 Scikit-learn 

Scikit-learn menyediakan implementasi algoritma machine learning dan 

berbagai alat evaluasi yang komprehensif (Pedregosa et al., 2011). Library ini 

digunakan untuk membagi dataset menjadi data latih, validasi, dan uji dengan 
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teknik stratifikasi, mengevaluasi model menggunakan metrik seperti akurasi, 

presisi, recall, dan F1-score, membuat confusion matrix untuk analisis kinerja yang 

lebih detail, melakukan cross-validation untuk estimasi kinerja yang lebih 

andal.Serta melakukan praproses data seperti penskalaan dan normalisasi. Menurut 

Géron (2022), Scikit-learn memiliki antarmuka yang konsisten dan mudah 

digunakan untuk berbagai tugas machine learning. 

2.10.4 NumPy 

NumPy merupakan library fundamental untuk komputasi ilmiah di Python 

yang menyediakan dukungan terhadap array dan matriks multidimensi, beserta 

fungsi matematika tingkat tinggi (Harris et al., 2020). Dalam penelitian ini, NumPy 

digunakan untuk representasi dan manipulasi audio data dalam bentuk array 

multidimensi, operasi matematika untuk normalisasi dan preprocessing, array 

reshaping untuk menyiapkan input ke model CNN, statistical calculations untuk 

data analysis, dan performance-critical operations dalam feature extraction 

pipeline. 

2.10.5 Pandas 

Pandas menyediakan struktur data dan berbagai alat untuk menganalisis 

data secara efektif (McKinney, 2010). Dalam penelitian ini, Pandas digunakan 

untuk mengelola metadata dataset (seperti lokasi file, label, dan durasi), melakukan 

analisis eksploratif untuk memahami karakteristik data, mengatur konfigurasi 

hyperparameter beserta hasilnya, membuat ringkasan statistik dari hasil 

eksperimen, serta mengorganisasi metrik evaluasi guna membandingkan berbagai 

metode secara lebih efektif. 

2.10.6 Matplotlib dan Seaborn 

Matplotlib dan Seaborn merupakan library visualisasi dalam Python yang 

sangat penting dalam analisis data dan machine learning (Hunter, 2007; Waskom, 

2021). Library visualisasi ini digunakan untuk plotting waveforms dari audio 

signals, visualizing spectrograms dan MFCC features, training history plots (loss 

dan accuracy curves), confusion matrices dengan heatmaps, convergence plots 

untuk optimization methods, dan comparative bar plots untuk method comparison. 
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Menurut Géron (2022), visualisasi yang efektif sangat penting untuk memahami 

behavior model dan mengkomunikasikan hasil penelitian. 

2.10.7 KaggleHub 

KaggleHub adalah official Python library untuk mengakses Kaggle datasets 

dan models secara programmatic (Kaggle, 2024). Library ini menyediakan 

interface sederhana untuk downloading datasets, automatic authentication 

menggunakan Kaggle API credentials, intelligent caching untuk menghindari 

redundant downloads, dan support untuk dataset versioning. Dalam penelitian ini, 

KaggleHub digunakan untuk downloading dataset secara efisien, managing dataset 

versions untuk reproducibility, dan automating dataset preparation pipeline. 

2.10.8 Keras Tuner 

Keras Tuner adalah pustaka untuk penyesuaian hyperparameter yang 

terintegrasi dengan TensorFlow/Keras, serta menyediakan antarmuka yang 

berskala dan mudah digunakan untuk mengoptimalkan konfigurasi model 

(O'Malley et al., 2019). Keras Tuner mengimplementasikan berbagai algoritma 

optimasi hyperparameter mutakhir, termasuk Random Search, Bayesian 

Optimization, dan Hyperband. Dalam penelitian ini, Keras Tuner digunakan untuk 

menerapkan dan membandingkan berbagai metode penyesuaian hyperparameter, 

mendefinisikan ruang pencarian hyperparameter, mengelola percobaan optimasi 

beserta hasilnya, serta melakukan integrasi dengan TensorBoard untuk visualisasi. 

Menurut O'Malley et al. (2019), Keras Tuner merupakan kerangka kerja yang 

fleksibel dan kuat sehingga secara signifikan menyederhanakan proses penyesuaian 

hyperparameter. 

2.11 Penelitian Terdahulu 

Penelitian yang pertama adalah penelitian yang dilakukan oleh Maknickas 

dan Maknickas pada tahun 2017 dengan judul "Recognition of Normal-Abnormal 

Phonocardiographic Signals using Deep Convolutional Neural Networks and Mel-

Frequency Spectral Coefficients". Penelitian ini menerapkan Convolutional Neural 

Network (CNN) untuk mengklasifikasikan suara jantung normal dan abnormal 

dengan akurasi tinggi mencapai 86.5% pada dataset PhysioNet/CinC Challenge 
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2016. Arsitektur yang digunakan terdiri dari empat convolutional layers dengan 

kernel sizes [32, 64, 128, 256], masing-masing diikuti oleh ReLU activation dan 

max pooling. Penelitian mereka menunjukkan bahwa CNN mampu secara otomatis 

mengekstraksi fitur relevan dari sinyal audio tanpa memerlukan feature 

engineering manual yang ekstensif.  

Penelitian terdahulu yang kedua adalah penelitian yang dilakukan oleh 

Nogueira et al. pada tahun 2019 dengan judul "Classifying Heart Sounds using 

Images of Motifs, MFCC and Temporal Features". Penelitian ini membuktikan 

bahwa kombinasi CNN dengan fitur Mel-Frequency Cepstral Coefficients (MFCC) 

dan temporal features dapat meningkatkan performa klasifikasi suara jantung. 

Mereka menggunakan pendekatan multi-modal yang menggabungkan images of 

motifs, MFCC, dan temporal features untuk klasifikasi. Sistem mereka mencapai 

akurasi 88.9%, precision 87.1%, dan recall 91.2% pada PhysioNet dataset. 

Penelitian ini mendemonstrasikan bahwa kombinasi multiple representations dapat 

capture complementary information dari PCG signals dan meningkatkan performa 

klasifikasi secara signifikan. 

Penelitian yang ketiga adalah penelitian yang dilakukan oleh Baghel et al. 

pada tahun 2020 dengan judul "Automatic Diagnosis of Multiple Cardiac Diseases 

from PCG Signals using Convolutional Neural Network". Penelitian mereka 

menunjukkan bahwa optimasi batch size dan dropout rate berkontribusi signifikan 

terhadap peningkatan F1-score dalam deteksi kelainan jantung. Mereka 

mengembangkan multi-channel CNN untuk otomatis diagnosis dari multiple 

cardiac diseases (normal, aortic stenosis, mitral regurgitation, mitral stenosis, dan 

mitral valve prolapse) dengan overall accuracy 94.3%. Hasil penelitian 

menunjukkan peningkatan performa yang signifikan dengan konfigurasi 

hyperparameter yang tepat, dimana optimasi dropout rate dari 0.3 ke 0.5 

meningkatkan F1-score sebesar 3.2%. 

Penelitian yang keempat adalah penelitian yang dilakukan oleh Bergstra dan 

Bengio pada tahun 2012 dengan judul "Random Search for Hyper-parameter 

Optimization". Penelitian seminal ini membandingkan grid search dan random 

search untuk optimasi hyperparameter dalam machine learning. Hasil penelitian 
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menunjukkan bahwa random search secara signifikan lebih efisien dibandingkan 

grid search dalam menemukan konfigurasi optimal, terutama ketika beberapa 

hyperparameter lebih berpengaruh dibandingkan yang lain. Mereka memberikan 

justifikasi teoretis bahwa jika objective function hanya bergantung pada proyeksi 

berdimensi rendah dari ruang hyperparameter, maka random search akan 

menghasilkan lebih banyak variasi nilai pada dimensi yang penting.  

Penelitian yang kelima adalah penelitian yang dilakukan oleh Snoek et al. pada 

tahun 2012 dengan judul "Practical Bayesian Optimization of Machine Learning 

Algorithms". Penelitian ini mengembangkan metode optimasi Bayesian dengan 

menggunakan Gaussian Processes untuk penyesuaian hyperparameter pada 

algoritma machine learning. Mereka membuktikan bahwa optimasi Bayesian 

mampu menemukan konfigurasi hyperparameter yang optimal dengan jumlah 

evaluasi yang jauh lebih sedikit dibandingkan metode konvensional. Eksperimen 

pada berbagai dataset, termasuk klasifikasi pada CIFAR-10, menunjukkan bahwa 

optimasi Bayesian dapat mencapai hasil setara dengan state-of-the-art hanya 

dengan sekitar sepuluh kali lebih sedikit evaluasi fungsi dibandingkan random 

search. Penelitian ini juga memperkenalkan Expected Improvement sebagai fungsi 

akuisisi yang efektif untuk memandu proses pencarian. 

Penelitian yang keenam dan menjadi landasan arsitektur dalam penelitian ini 

adalah penelitian yang dilakukan oleh Rubin et al. pada tahun 2016 dengan judul 

"Classifying Heart Sound Recordings using Deep Convolutional Neural Networks 

and Mel-Frequency Cepstral Coefficients". Penelitian ini meraih peringkat ke-8 

dari 48 tim pada PhysioNet/CinC Challenge 2016 dengan overall score 84.8%, 

sensitivity 76.5%, dan specificity 93.1%. Arsitektur yang digunakan terdiri dari dua 

convolutional layers dengan 64 kernels dan kernel sizes (2×20) dan (2×10), diikuti 

oleh max pooling layers, serta dua fully connected layers dengan 1024 dan 512 

units. Arsitektur ini dijadikan kerangka awal dalam penelitian ini karena 

strukturnya yang sederhana namun efektif, terdokumentasi dengan baik, dan telah 

terbukti memberikan hasil yang konsisten pada dataset PhysioNet 2016. Dengan 

menggunakan arsitektur ini sebagai fondasi, penelitian ini akan fokus pada 

eksplorasi dan perbandingan berbagai metode optimasi hyperparameter untuk 

menemukan konfigurasi optimal yang dapat meningkatkan performa klasifikasi 
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BAB III 

ANALISA DAN PERANCANGAN MODEL 

 

Penelitian ini didasarkan pada metode klasifikasi sinyal biomedis dengan 

pendekatan deep learning. Objek penelitian berupa rekaman audio 

phonocardiogram (PCG) yang merepresentasikan suara jantung manusia dalam 

format file .wav. Uji coba dilakukan dengan arsitektur Convolutional Neural 

Network (CNN) 1D yang dioptimasi menggunakan empat metode hyperparameter 

tuning, yaitu Grid Search, Random Search, Bayesian Optimization, dan Genetic 

Algorithm. Proses penelitian dibagi menjadi beberapa tahapan sebagaimana 

ditunjukkan pada Gambar 3.1. 

 

Gambar 3.1 Tahap Penelitian 
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3.1 Analisis Kebutuhan 

Pada tahap ini dilakukan identifikasi terhadap kebutuhan yang diperlukan 

dalam pelaksanaan penelitian agar dapat berjalan secara sistematis dan optimal. 

Analisis kebutuhan mencakup perangkat lunak (software), perangkat keras 

(hardware), serta literatur pendukung. 

Software yang digunakan antara lain Python 3.8 atau lebih tinggi sebagai 

bahasa pemrograman utama, serta library Python seperti TensorFlow/Keras untuk 

pembangunan dan pelatihan model deep learning, Librosa untuk pemrosesan sinyal 

audio dan ekstraksi fitur, NumPy untuk pengolahan data numerik dan operasi array, 

Pandas untuk manajemen data dan analisis, Scikit-learn untuk splitting data dan 

perhitungan metrik evaluasi, Matplotlib dan Seaborn untuk visualisasi data dan 

hasil eksperimen, serta Keras Tuner untuk implementasi berbagai metode 

hyperparameter optimization. Selain itu, digunakan juga KaggleHub untuk 

mengunduh dataset secara programmatic dari platform Kaggle. 

Untuk lingkungan pengembangan, digunakan Integrated Development 

Environment (IDE) berupa Visual Studio Code yang menyediakan fitur untuk 

eksperimen interaktif dan visualisasi hasil secara real-time. TensorBoard juga 

digunakan untuk monitoring proses training dan visualisasi grafik performa model. 

Perangkat keras yang digunakan dalam penelitian ini adalah satu unit 

komputer workstation yang berlokasi di Laboratorium Aiditech. Perangkat ini 

dilengkapi dengan GPU NVIDIA GeForce RTX 3060 yang memiliki VRAM 

sebesar 12GB, prosesor dengan kecepatan 4.64 GHz, serta RAM sebesar 16GB. 

Spesifikasi hardware ini dipilih untuk mendukung proses training model deep 

learning yang memerlukan komputasi intensif, khususnya dalam proses 

hyperparameter optimization yang melibatkan ratusan trials evaluasi model. 

3.2 Pengumpulan Dataset 

Dataset dalam penelitian ini diperoleh dari platform Kaggle dengan nama 

Heart Sound Database. Dataset ini merupakan koleksi rekaman phonocardiogram 

yang berasal dari PhysioNet/Computing in Cardiology Challenge 2016, sebuah 

kompetisi ilmiah yang berfokus pada klasifikasi suara jantung normal dan 

abnormal. 
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PhysioNet Challenge 2016 merupakan kompetisi internasional yang 

bertujuan mengembangkan algoritma untuk automatic classification dari rekaman 

phonocardiogram. Dataset yang dikumpulkan dalam challenge ini telah melalui 

proses verifikasi oleh tenaga medis profesional dan quality control yang ketat, 

sehingga memiliki ground truth labels yang reliable. Dataset ini telah digunakan 

secara luas dalam penelitian-penelitian terdahulu terkait klasifikasi PCG 

menggunakan machine learning dan deep learning, menjadikannya benchmark 

standard untuk evaluasi performa model. 

Data dikumpulkan dalam format audio .wav (Waveform Audio File Format) 

yang merupakan format standar untuk penyimpanan data audio tanpa kompresi 

lossy. Proses pengambilan dilakukan menggunakan berbagai jenis digital 

stethoscopes di berbagai lokasi anatomis (mitral, tricuspid, aortic, dan pulmonic 

areas) pada subjek dengan berbagai kondisi kardiovaskular. Keberagaman dalam 

perangkat recording dan lokasi auskultasi ini memberikan variabilitas yang 

realistic, membuat model yang dilatih pada dataset ini lebih robust dan applicable 

untuk kondisi klinis yang sebenarnya. 

Dataset ini mencakup dua kategori utama, yaitu suara jantung normal 

(healthy/normal) dan suara jantung abnormal (unhealthy/abnormal). Kategori 

abnormal mencakup berbagai jenis kelainan kardiovaskular seperti heart murmurs 

yang disebabkan oleh valvular disease, arrhythmias atau irregular heart rhythms, 

dan kondisi patologis lainnya yang terdeteksi dari karakteristik suara jantung yang 

abnormal. Klasifikasi ini dilakukan berdasarkan auskultasi oleh cardiologists dan 

dikonfirmasi dengan diagnostic tests seperti echocardiography. 

3.3 Preprocessing Data 

Setelah dataset yang merupakan data mentah terkumpul, dilakukan 

serangkaian tahapan preprocessing untuk mempersiapkan data dalam format yang 

sesuai untuk pelatihan model CNN. Metodologi preprocessing yang digunakan 

dalam penelitian ini mengikuti pendekatan yang telah divalidasi oleh Rubin et al. 

(2016) yang terbukti efektif pada PhysioNet/CinC Challenge 2016. 
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Gambar 3.2 Alur Preprocessing Data 

Tahapan pertama adalah audio loading dan resampling. Rekaman audio PCG 

dari PhysioNet/CinC Challenge 2016 dataset memiliki sampling rate yang 

bervariasi. Seluruh rekaman di-resample ke sampling rate uniform 2000 Hz 

menggunakan librosa resampling function. Pemilihan sampling rate 2000 Hz 

didasarkan pada dua pertimbangan utama yaitu komponen frekuensi penting dari 

suara jantung normal dan abnormal berada di bawah 1000 Hz, sehingga 

berdasarkan Nyquist-Shannon sampling theorem, sampling rate 2000 Hz memadai 

untuk merepresentasikan seluruh informasi frekuensi yang relevan tanpa 

kehilangan informasi atau aliasing. 

Tahapan kedua adalah heart sound segmentation menggunakan algoritma 

Springer. Segmentasi otomatis dilakukan untuk mengidentifikasi lokasi 

fundamental heart sounds (S1 dan S2) serta systolic dan diastolic intervals dalam 

setiap rekaman. Algoritma Springer menggunakan Hidden Semi-Markov Model 
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(HSMM) yang telah dilatih untuk mengenali empat state dalam cardiac cycle: S1, 

systole, S2, dan diastole. Algoritma bekerja dengan mengekstraksi envelope dari 

sinyal PCG menggunakan Hilbert transform, kemudian mengaplikasikan HSMM 

untuk melakukan state decoding berdasarkan durasi dan amplitudo karakteristik 

dari setiap suara detak jantung. Output dari proses ini adalah anotasi yang menandai 

onset time dari setiap S1 dan S2 dalam rekaman, yang akan digunakan sebagai 

reference points untuk ekstraksi segmen. 

 

Gambar 3.3 Visualisasi Segmentasi Audio 

Tahapan ketiga adalah segment extraction. Setiap rekaman dibagi menjadi 

beberapa overlapping segments dengan durasi fixed 3 detik. Setiap segmen 

diekstraksi dimulai tepat pada onset S1 yang telah diidentifikasi oleh algoritma 

Springer. Dengan sampling rate 2000 Hz, setiap segmen 3 detik menghasilkan 

array dengan panjang 6,000 samples. Pemilihan durasi 3 detik didasarkan pada 

analisis bahwa durasi ini cukup panjang untuk menangkap beberapa cycle detak 

jantung pada heart rate normal berkisar 60-100 BPM, durasi 3 detik akan mencakup 

sekitar 3-5 cycle detak jantung. Segmentasi dilakukan secara overlapping dimana 

setiap S1 yang terdeteksi menjadi starting point untuk satu segmen, sehingga satu 

rekaman panjang dapat menghasilkan beberapa training sample. 

 

Gambar 3.4 Visualisasi Ekstraksi Segmentasi  

Tahapan keempat adalah MFCC feature extraction. Proses ekstraksi MFCC 

dilakukan dalam beberapa sub-tahap pertama, Short-Time Fourier Transform 

(STFT) diterapkan pada setiap segmen dengan frame size 25 ms dan hop length 10 
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ms, menghasilkan 300 time frames untuk segmen 3 detik. Window function yang 

digunakan adalah Hamming window untuk mengurangi spectral leakage. Kedua, 

power spectrum dari setiap frame dikonversi ke mel scale menggunakan 40 

triangular mel kernelbanks yang didistribusikan secara logaritmik antara 0 Hz 

hingga 1000 Hz. Ketiga, logarithm diterapkan pada mel-spectrum untuk 

merepresentasikan presepsi suara manusia yang bersifat logarithmic. Keempat, 

Discrete Cosine Transform (DCT) diaplikasikan untuk mengkompresi informasi 

dan menghasilkan 13 MFCC coefficients. Mengikuti Rubin et al., hanya 6 koefisien 

MFCC pertama (MFCC 1 sampai MFCC 6) yang digunakan, mengabaikan zeroth 

coefficient (yang merepresentasikan total energy) dan higher-order coefficients (7-

12). Pemilihan ini didasarkan pada observasi bahwa lower-order coefficients 

menangkap broad spectral envelope yang paling relevan untuk klasifikasi heart 

sounds, sementara higher-order coefficients cenderung menangkap fine spectral 

details dan noise yang kurang informatif dan dapat menyebabkan overfitting. Hasil 

akhir dari tahap ini adalah representasi 2D dengan dimensi 6×300 untuk setiap 

segmen, dimana sumbu pertama merepresentasikan 6 MFCC coefficients dan 

sumbu kedua merepresentasikan 300 time frames, membentuk "heat map" yang 

dapat diperlakukan sebagai grayscale image untuk input ke CNN. 

 

Gambar 3.5 Visualisasi Ekstraksi Fitur MFCC 

Tahapan kelima adalah standarisasi. Z-score normalization diterapkan pada 

MFCC features untuk memastikan bahwa setiap coefficient memiliki mean nol dan 

standard deviation satu. Normalisasi dilakukan secara independent untuk setiap 

MFCC coefficient dengan menghitung mean dan standard deviation pada semua 

rekaman frame dan semua segmen dalam training set, kemudian mentransformasi 

setiap nilai menggunakan formula z = (x - μ) / σ.  
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3.4 Training Model 

Penelitian ini menggunakan arsitektur CNN 2D (Two-Dimensional 

Convolutional Neural Network) dengan pendekatan optimisasi hyperparameter, 

yaitu membandingkan kinerja dari empat metode optimisasi berbeda dalam 

menemukan konfigurasi terbaik untuk klasifikasi fonokardiogram. Keempat 

metode yang digunakan adalah Grid Search, Random Search, Bayesian 

Optimization, dan Genetic Algorithm. 

Berikut adalah diagram flow dalam Training model: 

 

Gambar 3.6 Diagram Flow Training model 
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3.4.1 Arsitektur CNN 2D 

Arsitektur CNN 2D yang digunakan mengadaptasi pendekatan Rubin et al. 

yang meraih peringkat ke-8 dalam PhysioNet/Computing in Cardiology Challenge 

2016. Berikut adalah visualisasi arsitekturnya. 

 

Gambar 3.7 Visualisasi arsitektur Rubin et al. 

Arsitektur ini menerima input berupa MFCC heat map berukuran 6×300 dan 

menghasilkan klasifikasi biner untuk menentukan apakah suara jantung normal atau 

abnormal. 

Struktur jaringan terdiri dari dua convolutional layer yang masing-masing 

diikuti oleh max-pooling layer. Convolutional layer pertama menggunakan 64 

kernel dengan kernel 2×20 dan same padding, kemudian dilanjutkan dengan max-

pooling 1×20 dengan stride 5 yang menghasilkan 64 feature maps berukuran 6×60. 

Convolutional layer kedua menerapkan 64 kernel dengan kernel 2×10 dan same 

padding, diikuti max-pooling 1×4 dengan stride 2 yang mereduksi setiap feature 

map menjadi ukuran 6×30. 

Setelah tahap konvolusi, dilakukan operasi flattening yang mengubah 64 

feature maps (6×30) menjadi vektor satu dimensi berukuran 11.520. Vektor ini 

kemudian diproses melalui dua fully connected layer dengan 1.024 dan 512 hidden 

units secara berurutan, sebelum akhirnya menghasilkan output klasifikasi biner 
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3.4.2 Hyperparameter Search Space 

Tabel 3.1 Hyperparameter Search Scope 

Kategori Hyperparameter Range/Option 

Architecture 

Parameters 

Kernel Conv Layer 1 [64, 80, 96] 

Kernel Conv Layer 2 [48, 64, 80] 

Kernel Size Conv Layer 1 
[(2,20), (3,20), (2,25), 

(3,25)] 

Kernel Size Conv Layer 2 
[(2,10), (3,10), (2,12), 

(3,12)] 

Dense Unit Layer 1 [768, 1024, 1536] 

Dense Unit Layer 2 [384, 512, 768] 

Regularization 

Parameters 

Drop Out Rate Layer 1 [0.2, 0.4, 0.6, 0.8] 

Drop Out Rate Layer 2 [0.2, 0.4, 0.6, 0.8] 

Training Parameters 

Learning Rate [0.0001, 0.001, 0.01] 

Batch Size [64, 128, 256] 

Optimizer 
[Adam, Nadam, 

Adamax] 

Total Search Space 3x3x4x4x3x3x4x4x3x3x3  559.872 

Pemilihan jumlah kernel untuk setiap blok konvolusi mengikuti prinsip 

progressive feature abstraction yang telah mapan dalam computer vision oleh 

Krizhevsky dkk. (2012) dan Simonyan & Zisserman (2015), kemudian diadaptasi 

untuk pemrosesan sinyal audio oleh Piczak (2015) dalam penelitian environmental 

sound classification menggunakan CNN. Rentang untuk blok konvolusi pertama 

dipilih antara 64 hingga 96 kernel sebagai titik awal untuk ekstraksi fitur tingkat 

rendah dari MFCC heat map. Hershey dkk. (2017) dalam penelitian CNN untuk 

audio event detection menunjukkan bahwa 64-96 kernel optimal untuk lapisan awal 

dalam pemrosesan representasi spektral audio. Rentang untuk blok konvolusi kedua 

dipilih antara 48 hingga 80 kernel. Berbeda dari arsitektur vision yang umumnya 

meningkatkan jumlah kernel secara progresif, penelitian Pons dkk. (2017) tentang 

end-to-end learning for music audio menunjukkan bahwa untuk input 2D time-
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frequency representation, jumlah kernel pada lapisan kedua tidak selalu harus lebih 

besar dari lapisan pertama, karena pooling operation sudah mengurangi dimensi 

spatial dan meningkatkan receptive field. 

Pemilihan rentang untuk ukuran kernel didasarkan pada karakteristik time-

frequency dari representasi MFCC yang telah dianalisis dalam penelitian Zhang 

dkk. (2017) tentang deep learning for environmental sound classification. Dengan 

input shape (6, 300) dimana sumbu pertama merepresentasikan 6 MFCC 

coefficients dan sumbu kedua merepresentasikan 300 time frames, ukuran kernel 

harus disesuaikan dengan struktur data ini. Dimensi pertama kernel dirancang untuk 

menangkap korelasi antar MFCC coefficients yang berdekatan. Lee dkk. (2009) 

dalam penelitian Convolutional Deep Belief Networks menunjukkan bahwa kernel 

kecil pada dimensi frequency (2-3) efektif untuk menangkap local frequency 

patterns dalam spektrogram. Dimensi kedua kernel berkaitan dengan resolusi 

temporal yang disesuaikan dengan karakteristik cardiac cycle. 

Setelah flattening operation dari output convolutional block terakhir, dimensi 

flatten adalah sekitar 11,520-14,400 features tergantung konfigurasi kernel. Chollet 

(2017) merekomendasikan bahwa fully connected layer pertama setelah 

convolutional blocks sebaiknya memiliki kapasitas 5-15% dari input dimension 

untuk mencegah information bottleneck sambil memberikan dimensionality 

reduction. Rentang 768-1536 units (sekitar 5-13% dari ~11,520 input features) 

mengikuti prinsip ini, dengan Potes dkk. (2016) dalam solusi pemenang 

PhysioNet/CinC Challenge 2016 menggunakan 1024 units untuk heart sound 

classification. Dense layer kedua dengan rentang 384-768 units (sekitar 50% dari 

dense layer pertama) memberikan progressive dimensionality reduction menuju 

output layer.  

Rentang learning rate dipilih mengikuti eksplorasi skala logaritmik: 10⁻⁴, 

10⁻³, 10⁻², sebagaimana direkomendasikan oleh Bergstra & Bengio (2012) yang 

menunjukkan bahwa pengambilan sampel log-uniform lebih efektif untuk 

hyperparameter learning rate. Rentang ini mencakup dari learning rate konservatif 

(0,0001) yang menjamin konvergensi stabil namun berpotensi lambat, hingga 
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learning rate agresif (0,01) yang memberikan konvergensi lebih cepat tetapi dengan 

risiko melampaui atau ketidakstabilan. Kingma & Ba (2015) dalam makalah 

tentang optimizer Adam merekomendasikan 0,001 sebagai learning rate default 

yang baik, dan rentang yang dipilih mencakup nilai default ini sambil 

memungkinkan eksplorasi ke kedua arah. Learning rate yang terlalu kecil dapat 

menyebabkan konvergensi lambat dan kemungkinan terjebak di minima lokal, 

sedangkan learning rate yang terlalu besar dapat menyebabkan divergensi atau 

osilasi di sekitar optima. Rentang 0,0001-0,01 menyediakan ruang eksplorasi yang 

wajar untuk menemukan learning rate optimal untuk tugas spesifik. 

Rentang ukuran batch dipilih sebagai pangkat 2 (16, 32, 64, 128) untuk 

efisiensi komputasi GPU dan penyelarasan memori. Masters & Luschi (2018) 

dalam penelitian tentang pelatihan batch kecil menunjukkan bahwa batch kecil (16-

32) memberikan generalisasi yang lebih baik karena gradien yang bising bertindak 

sebagai regularisasi implisit, membantu model menghindari minima tajam yang 

generalisasinya buruk. Sebaliknya, Keskar dkk. (2017) menunjukkan bahwa batch 

besar (64-128) memungkinkan pelatihan lebih cepat karena pemanfaatan GPU yang 

lebih baik dan estimasi gradien yang lebih stabil, tetapi dapat konvergen ke minima 

tajam. Rentang 16-128 memungkinkan metode optimisasi untuk mengeksplorasi 

pertukaran antara kemampuan generalisasi (menguntungkan batch lebih kecil) dan 

efisiensi komputasi (menguntungkan batch lebih besar).  

Inklusi tiga jenis optimizer (Adam, Adamax, Nadam) memberikan cakupan 

komprehensif dari strategi optimisasi berbasis adaptif yang berbeda. Optimizer 

Adam (Kingma & Ba, 2015) menggunakan learning rate adaptif dengan 

menggabungkan keunggulan dari RMSprop dan momentum, menjadikannya 

pilihan default yang baik dan tangguh di berbagai tugas. Adamax, yang juga 

diperkenalkan oleh Kingma & Ba (2015), merupakan varian dari Adam yang 

berbasis pada norma tak hingga ($L_\infty$). Metode ini dirancang untuk 

memberikan stabilitas yang lebih tinggi pada data dengan pembaruan parameter 

yang jarang (sparse) atau noisy, serta sering kali lebih robust terhadap perubahan 

skala gradien dibandingkan Adam standar. Sementara itu, Nadam (Dozat, 2016) 

menggabungkan mekanisme Adam dengan Nesterov Accelerated Gradient (NAG). 
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Integrasi momentum Nesterov ini memungkinkan optimizer untuk 

memperhitungkan arah langkah selanjutnya sebelum menghitung gradien, yang 

secara teoritis dan praktis sering menghasilkan konvergensi yang lebih cepat dan 

kemampuan generalisasi yang lebih baik. Ruder (2016) dalam survei komprehensif 

tentang metode optimisasi menunjukkan bahwa tidak ada optimizer tunggal terbaik 

untuk semua tugas, dan kinerja bergantung pada karakteristik dari masalah spesifik. 

Oleh karena itu, cakupan dari varian metode adaptif modern ini (Adam, Adamax, 

Nadam) dipilih untuk memaksimalkan peluang menemukan konfigurasi 

konvergensi terbaik. 

Kombinasi total teoritis dari semua hyperparameter adalah 3 × 3 × 4 × 4 × 3 

×3 × 4 × 4 × 3 × 3 × 3 = 559.872 kombinasi 

3.4.3 Metode Grid Search 

Grid search merupakan metode HPO yang paling sederhana dan 

straightforward dengan pendekatan brute-force (Bergstra & Bengio, 2012). Metode 

ini bekerja dengan mendefinisikan grid dari nilai-nilai diskrit untuk setiap 

hyperparameter, kemudian secara exhaustive mencoba setiap kombinasi yang 

mungkin dalam grid tersebut (Liashchynskyi & Liashchynskyi, 2019). 

Kelebihan grid search adalah kesederhanaannya dan guarantee bahwa 

kombinasi terbaik dalam grid yang didefinisikan akan ditemukan (Mantovani et al., 

2015). Metode ini juga mudah untuk diparalelisasi karena setiap evaluasi 

independen satu sama lain. Namun, kekurangan utama grid search adalah 

computational cost yang sangat tinggi, terutama ketika jumlah hyperparameter dan 

range nilainya besar (Bergstra & Bengio, 2012). Kompleksitas waktu grid search 

meningkat secara eksponensial dengan jumlah hyperparameter (curse of 

dimensionality), sehingga menjadi kurang efektif untuk high-dimensional search 

spaces (Claesen & De Moor, 2015).  
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Berikut adalah diagram flow dari metode grid search: 

 

Gambar 3.8 Diagram Flow Grid Search 

3.4.3.1 Parameter dan Strategi Optimization 

Table 3.2 Parameter dan Strategi Optimization Grid Search 

Komponen Nilai/Strategi 

Search Strategy Reduced grid dengan selective parameters 

Grid Size Maximum 200 evaluations 

Selection 

Method 
Cartesian product  

Evaluation 

Metric 
F1-Score  

Loss Function Binary Crossentropy  

Epochs 100 (maksimum) 

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True 
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Table 3.2 Lanjutan Parameter dan Strategi Optimization Grid Search 

Komponen Nilai/Strategi 

LR Scheduler 
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR: 

1×10⁻⁵) 

Checkpointing ModelCheckpoint (validation accuracy tertinggi) 

Validation Split 20% dari training data (stratified) 

Random Seed 42 (reproducibility) 

3.4.3.2 Framework Implementasi 

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5 

dengan GridSearch module. Training environment menggunakan TensorFlow 

2.13.0 dengan Keras API. Development dilakukan di Visual Studio Code dengan 

workstation local. 

3.4.3.3 Computional Complexity 

Kompleksitas komputasi Grid Search dianalisis berdasarkan jumlah evaluasi, 

waktu training, dan kebutuhan resource. Dari 559.872 kombinasi teoritis yang 

memerlukan waktu kurang lebih 11,7 tahun, maka dilakukan pengurangan menjadi 

200 trials menggunakan metode Reduce Grid dengan waktu rata-rata 11 menit per 

trial menggunakan GPU NVIDIA RTX 3060. Total waktu komputasi adalah 36,7 

jam (±1,5 hari) untuk eksekusi sequential, yang dapat dipercepat hingga 9 jam 

dengan 4 GPUs parallel. Kebutuhan memori per trial mencapai 500 MB dengan 

peak usage, sementara GPU 12 GB VRAM yang tersedia mampu menjalankan 4–5 

trials parallel. Total storage requirement untuk seluruh proses adalah 1–2 GB. 

3.4.4 Metode Random Search 

Random search merupakan alternatif yang lebih efisien dibandingkan grid 

search, di mana metode ini secara random mengambil sampel kombinasi 

hyperparameter dari distribusi yang telah ditentukan (Bergstra & Bengio, 2012). 

Alih-alih mencoba setiap kombinasi secara sistematis, random search 

mengeksplorasi hyperparameter space dengan sampling acak. 
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Bergstra dan Bengio (2012) dalam penelitian mereka menunjukkan bahwa 

random search secara signifikan lebih efisien daripada grid search untuk 

hyperparameter optimization. Keunggulan utama random search adalah 

probabilitas yang lebih tinggi untuk menemukan kombinasi yang baik dalam budget 

komputasi yang sama, terutama ketika beberapa hyperparameter lebih penting 

daripada yang lain. Random search tidak membuang resources untuk mencoba 

kombinasi yang sistematis tetapi kurang penting, sehingga dapat mengeksplorasi 

lebih banyak nilai untuk hyperparameter yang critical (Bergstra & Bengio, 2012). 

Pada Random Search menggunakan sampling method Uniform Sampling dan 

Uniform Sampling Digunakan untuk categorical dan continuous parameters yang 

tidak memiliki skala preferensi tertentu, seperti batch size, optimizer, dense units, 

learning rate dan dropout rate. Setiap nilai dalam rentang yang ditentukan memiliki 

peluang sama untuk dipilih 

Berikut adalah Diagram Flow dari metode Random Search: 

 

Gambar 3.9 Diagram flow Random Search 
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3.4.4.1 Parameter dan Strategi Optimization 

Table 3.3 Parameter dan Strategi Optimization Random Search 

Komponen Nilai/Strategi 

Search Strategy Random sampling dari distributions 

Number of 

Iterations 
200 random evaluations 

Sampling 

Method 
Uniform untuk categorical 

Evaluation 

Metric 
F1-Score  

Loss Function Binary Crossentropy  

Epochs 100 (maksimum) 

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True 

LR Scheduler 
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR: 

1×10⁻⁵) 

Checkpointing ModelCheckpoint (validation accuracy tertinggi) 

Validation Split 20% dari training data (stratified) 

Random Seed 42 (reproducibility) 

3.4.4.2 Framework Implementasi 

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5 

dengan RandomSearch module. Training environment menggunakan TensorFlow 

2.13.0 dengan Keras API. Development dilakukan di Visual Studio Code dengan 

workstation lokal . 

3.4.4.3 Computational Complexity 

Kompleksitas komputasi Random Search menggunakan fixed iterations 

sebanyak 200 trials dengan waktu rata-rata 10 menit per trial pada GPU NVIDIA 
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RTX 3060. Total waktu komputasi adalah 16,7 jam (±0,7 hari) untuk eksekusi 

sequential. Kebutuhan resource identik dengan Grid Search, dengan peak memory 

500 MB per trial dan total storage requirement 500 MB hingga 1 GB. 

3.4.5 Metode Bayesian Optimization 

Bayesian optimization adalah metode HPO yang lebih sophisticated dan 

intelligent, yang membangun model probabilistik dari fungsi objektif (performa 

model) terhadap hyperparameter yang diuji (Shahriari et al., 2016). Metode ini 

menggunakan prior knowledge dari eksperimen sebelumnya untuk memandu 

pencarian hyperparameter selanjutnya, sehingga dapat menemukan konfigurasi 

optimal dengan jumlah evaluasi yang lebih sedikit (Snoek et al., 2012). 

Bayesian optimization bekerja dengan membangun surrogate model, 

biasanya Gaussian Process (GP), yang memodelkan distribusi probabilitas dari 

fungsi objektif (Mockus, 1975). Model ini kemudian digunakan untuk menghitung 

acquisition function yang menentukan hyperparameter mana yang paling 

menjanjikan untuk dievaluasi selanjutnya (Brochu et al., 2010). Proses ini 

melibatkan trade-off antara exploitation (mengeksplorasi region yang sudah 

diketahui menghasilkan performa baik) dan exploration (mencari region baru yang 

belum pernah diuji) (Shahriari et al., 2016). 

Acquisition functions yang umum digunakan meliputi Expected Improvement 

(EI), Probability of Improvement (PI), dan Upper Confidence Bound (UCB), yang 

masing-masing memiliki karakteristik exploration-exploitation yang berbeda 

(Snoek et al., 2012). Keunggulan utama Bayesian optimization adalah efisiensi 

komputasinya yang superior, karena metode ini secara intelligent memilih 

kombinasi hyperparameter yang paling menjanjikan dan menghindari evaluasi 

pada region yang unlikely menghasilkan improvement (Frazier, 2018). 

Pada Bayesian Optimization menggunakan Expected Improvement (EI) yang 

merupakan salah satu acquisition function yang paling populer dan efektif dalam 

Bayesian optimization (Jones et al., 1998). EI mengukur expected value dari 

improvement yang dapat diperoleh dari mengevaluasi hyperparameter tertentu 

dibandingkan dengan best observed value saat ini. Metode ini secara natural 
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menyeimbangkan exploration dan exploitation dengan mempertimbangkan baik 

mean prediction maupun uncertainty dari surrogate model. 

Expected Improvement didefinisikan sebagai ekspektasi dari improvement di 

atas nilai terbaik yang telah diamati sejauh ini, yang dinotasikan sebagai f(x⁺), di 

mana x⁺ adalah konfigurasi hyperparameter terbaik saat ini. Untuk setiap kandidat 

hyperparameter x, EI dihitung dengan formula: 

𝐸𝐼(𝑥)  =  𝐸[𝑚𝑎𝑥(0, 𝑓(𝑥)  −  𝑓(𝑥⁺))] 

Dengan asumsi Gaussian Process sebagai surrogate model, yang 

memberikan distribusi normal untuk setiap prediksi dengan mean μ(x) dan standard 

deviation σ(x), formula EI dapat dihitung secara closed-form: 

𝐸𝐼(𝑥)  =  (𝜇(𝑥)  −  𝑓(𝑥⁺)  −  𝜉)  ·  𝛷(𝑍)  +  𝜎(𝑥)  ·  𝜑(𝑍) 

Yang dimana (𝜇(𝑥)  −  𝑓(𝑥⁺)  −  𝜉)  ·  𝛷(𝑍) merepresentasikan expected 

improvement berdasarkan mean prediction. Term ini mendorong algoritma untuk 

memilih hyperparameter di region yang diprediksi memiliki performa tinggi 

berdasarkan model saat ini. 

Berikut adalah Diagram Flow dari metode Bayesian Optimization: 

 

Gambar 3.10 Diagram Flow Bayessian Optimization 
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3.4.5.1 Parameter dan Strategi Optimization 

Tabel 3.4 Parameter dan Strategi Bayessian Optimization 

Komponen Nilai / Strategi 

Search Strategy Sequential model-based optimization 

Surrogate Model Gaussian Process (kernel: Matern v=2.5) 

Acquisition 

Function 
Expected Improvement (EI) 

Initial Points 10 random initializations 

Guided Iterations 190 sequential evaluations 

Total Iterations 200 evaluations 

Evaluation Metric F1-Score  

Loss Function Binary Crossentropy  

Epochs 100 (maksimum) 

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True 

LR Scheduler 
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR: 

1×10⁻⁵) 

Checkpointing ModelCheckpoint (validation accuracy tertinggi) 

Validation Split 20% dari training data (stratified) 

3.4.5.2 Framework Implementasi 

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5 

dengan BayesianOptimization module. Training environment menggunakan 

TensorFlow 2.13.0 dengan Keras API. Development dilakukan di Visual Studio 

Code dengan workstation local. 
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3.4.5.3 Computational Complexity 

Kompleksitas komputasi pada Bayesian Optimization terdiri dari 50 trials (5 

random + 45 guided) dengan waktu rata-rata sekitar 10 menit per trial. Total waktu 

komputasi mencapai ±8,3 jam untuk eksekusi sequential, dan dapat dipercepat 

menjadi sekitar 7–8 jam dengan parallel execution, meskipun percepatan terbatas 

karena sifat algoritma yang bersifat sekuensial. Overhead komputasi dari operasi 

Gaussian Process (GP) relatif kecil, dengan waktu tambahan sekitar 10–15 detik 

per iterasi (sekitar 1,5% dari total waktu per trial). Kebutuhan memori mencakup 

50–100 MB untuk model GP dan sekitar 500 MB per trial, dengan total storage 

300–500 MB. 

3.4.6 Metode Genetic Algorithm 

Genetic algorithm (GA) adalah metode HPO yang terinspirasi dari proses 

evolusi biologis, menggunakan mekanisme seperti selection, crossover, dan 

mutation untuk mengeksplorasi hyperparameter space (Holland, 1992). Metode ini 

memaintain populasi dari kandidat solusi (kombinasi hyperparameter) dan secara 

iteratif mengevolusi populasi tersebut menuju solusi yang lebih baik (Goldberg & 

Holland, 1988).  

Proses GA dimulai dengan inisialisasi populasi random, kemudian 

mengevaluasi fitness (performa) setiap individu dalam populasi (Lorenzo et al., 

2017). Individu dengan fitness tinggi memiliki probabilitas lebih besar untuk 

diseleksi sebagai parents untuk generasi berikutnya. Crossover operation 

menggabungkan hyperparameter dari dua parents untuk menghasilkan offspring, 

sedangkan mutation operation memperkenalkan variasi random untuk maintain 

diversity dan menghindari premature convergence (Eiben & Smith, 2015).  

Keunggulan genetic algorithm adalah kemampuannya untuk mengeksplorasi 

non-convex dan multimodal search spaces, serta tidak memerlukan gradient 

information (Lorenzo et al., 2017). GA juga naturally parallelizable karena 

evaluasi fitness dalam satu generasi dapat dilakukan secara independen. Namun, 

kekurangan GA termasuk memerlukan tuning dari GA parameters itu sendiri 

(population size, mutation rate, crossover rate) dan dapat memerlukan banyak 
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evaluasi untuk converge, terutama untuk high-dimensional spaces (Eiben & Smith, 

2015). 

Dalam Genetic Algorithm, setiap konfigurasi hyperparameter (individual) 

direpresentasikan sebagai chromosome yang mengenkode seluruh nilai 

hyperparameter. Pemilihan encoding scheme sangat penting untuk memastikan 

efektivitas operasi genetika. Chromosome merupakan susunan terurut dari genes, 

di mana setiap gene merepresentasikan satu nilai hyperparameter. Pada penelitian 

ini, dengan total 14 hyperparameter, struktur chromosome dibentuk sesuai 

kombinasi nilai dari masing-masing parameter tersebut. 

 

Gambar 3.11 Representasi Chromosome dalam Genetic Algorithm 

3.4.6.1 Parameter dan Strategi Optimization 

Tabel 3.5 Parameter dan Strategi Genetic Algorithm 

Komponen Nilai / Strategi 

Population Size 20 individu per generasi 

Number of 

Generations 
10 generasi 

Total Evaluations 200 (20×10) 

Selection Method Tournament selection (ukuran turnamen: 3) 

Crossover Single-point crossover (rate: 0.8) 

Mutation Uniform mutation (rate: 0.1) 

Elitism Individu terbaik dipertahankan di setiap generasi 

Evaluation Metric F1-Score  

Loss Function Binary Crossentropy  

Epochs 100 (maksimal) 
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Tabel 3.5 Lanjutan Parameter dan Strategi Genetic Algorithm 

Komponen Nilai / Strategi 

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True 

LR Scheduler 
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR: 

1×10⁻⁵) 

Checkpointing ModelCheckpoint (validation accuracy tertinggi) 

Validation Split 20% dari data pelatihan (stratified) 

3.4.6.2 Framework Implementasi 

Framework hyperparameter optimization menggunakan custom 

implementation untuk Genetic Algorithm. Training environment menggunakan 

TensorFlow 2.13.0 dengan Keras API. Development dilakukan di Visual Studio 

Code dengan workstation lokal. Library pendukung: DEAP (Distributed 

Evolutionary Algorithms in Python) atau implementasi manual untuk genetic 

operations. 

3.4.6.3 Computational Complexity 

Kompleksitas komputasi pada Genetic Algorithm ditentukan oleh ukuran 

populasi dan jumlah generasi, yaitu 20 × 10 sehingga menghasilkan total 200 

evaluations. Setiap trial memerlukan waktu sekitar 10 menit, sehingga total waktu 

komputasi mencapai ±33,3 jam (sekitar 1,4 hari) untuk eksekusi sequential. Dengan 

parallel execution, seluruh 20 individu dalam satu generasi dapat dievaluasi secara 

bersamaan, menghasilkan waktu komputasi sekitar 8,3 jam dengan 4 GPU atau 16,7 

jam dengan 2 GPU. Kebutuhan memori relatif ringan, dengan penyimpanan 

populasi sekitar 1 KB per konfigurasi, memori per trial sebesar 500 MB, dan total 

storage sekitar 1 GB. 

3.5 Evaluasi Model 

Setelah seluruh metode hyperparameter optimization selesai melakukan 

exploration dan menemukan konfigurasi optimal masing-masing, dilakukan proses 
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evaluasi untuk mengukur performa model CNN 2D dalam mengklasifikasikan 

phonocardiogram. Evaluasi dilakukan pada dua level: pertama, evaluasi best 

configuration dari masing-masing metode HPO (Grid Search, Random Search, 

Bayesian Optimization, dan Genetic Algorithm) pada test set untuk mengukur 

generalization performance; kedua, comparison antar metode HPO berdasarkan 

computational efficiency dan optimization effectiveness. 

Evaluasi ini menggunakan sejumlah metrik yang umum digunakan dalam 

bidang klasifikasi biner, antara lain accuracy, precision, recall, F1-score dan 

confusion matrix. Accuracy menunjukkan sejauh mana model mampu 

mengklasifikasikan audio dengan benar secara keseluruhan. Precision dan recall 

memberikan gambaran mengenai ketepatan dan kelengkapan klasifikasi untuk 

setiap kelas, sedangkan F1-score digunakan untuk menyeimbangkan precision dan 

recall. Sementara itu, confusion matrix digunakan untuk menganalisis distribusi 

prediksi model terhadap label sebenarnya, sehingga memudahkan dalam 

mengidentifikasi pola kesalahan klasifikasi seperti false positives (normal 

diprediksi abnormal) dan false negatives (abnormal diprediksi normal). 

3.5.1 Evaluasi Per Metode 

Evaluasi per metode dilakukan untuk mengukur performa final dari best 

configuration yang ditemukan oleh setiap metode HPO. Setiap metode optimization 

(Grid Search, Random Search, Bayesian Optimization, dan Genetic Algorithm) 

menghasilkan satu best hyperparameter configuration berdasarkan validation 

accuracy tertinggi selama proses optimization. 

Best configuration dari setiap metode HPO dievaluasi pada test set yang telah 

disisihkan sebelumnya dan tidak pernah digunakan selama proses training maupun 

validation. Protocol evaluasi mengikuti langkah-langkah berikut: 

1. Model Retraining: Best hyperparameter configuration di-retrain 

menggunakan kombinasi training dan validation set (80% dari total data) 

untuk memaksimalkan learning dari available data. 
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2. Final Evaluation: Model yang telah di-retrain dievaluasi pada test set (20% 

dari total data) yang completely unseen selama proses optimization. 

3. Metrics Calculation : Dihitung performance metrics dan confusion matrix. 

3.5.2 Analisis Komparatif Antar Metode 

Analisis komparatif dilakukan untuk membandingkan empat metode HPO 

berdasarkan multiple criteria yang mencakup effectiveness, efficiency, stability, dan 

scalability. 

3.5.2.1 Efektivitas Optimization 

Efektivitas diukur berdasarkan kualitas best solution yang ditemukan oleh 

setiap metode: 

• Best F1-Score Achieved: Validation F1-Score tertinggi yang dicapai selama 

proses optimization 

• Test Set Performance : Generalization performance pada test set 

3.5.2.2 Efisiensi Komputasi 

Efisiensi diukur berdasarkan computational resources yang dibutuhkan untuk 

mencapai performa tertentu yaitu: 

• Time to Convergence : Wall-clock time hingga mencapai 95% dari best 

accuracy 

• Number of Trials : Jumlah evaluasi yang diperlukan hingga mencapai 

convergence 

• Computational Cost : Total GPU hours untuk complete optimization 

• Time per Trial : Rata-rata waktu per hyperparameter evaluation 

3.5.2.3 Stabilitas Performance 

Stabilitas mengukur konsistensi performance across multiple runs dengan 

configurations yang berbeda. Pengujian dilakukan dengan melatih ulang 
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(retraining) konfigurasi terbaik dari masing-masing metode optimasi sebanyak 5 

kali pengulangan (runs) menggunakan inisialisasi random seed yang berbeda (42, 

123, 456, 789, 1024): 

• Variance Across Runs: Standard deviation dari test F1-Score pada 5 

repeated runs  

• Coefficient of Variation (CV): CV = (σ / μ) × 100%  

• Range: Perbedaan antara best dan worst performance  

3.5.2.4 Skalabilitas 

Skalabilitas dianalisis dengan mengevaluasi efektivitas hyperparameter 

terbaik masing-masing HPO pada dataset sizes yang berbeda 25%, 50%, 100%. 

3.5.3 Statistical Significance Testing 

Untuk memastikan bahwa perbedaan kinerja antar metode Hyperparameter 

Optimization (HPO) benar-benar signifikan secara statistik dan bukan disebabkan 

oleh variasi acak (random variation), dilakukan pengujian signifikansi (hypothesis 

testing) terhadap hasil akurasi dari masing-masing metode. 

Langkah ini penting untuk menentukan apakah perbedaan performa antar 

metode HPO benar-benar berarti (statistically significant) atau hanya muncul akibat 

faktor acak dalam proses pelatihan model. 

Setiap metode HPO dijalankan sebanyak lima kali dengan kondisi yang 

dikontrol secara hati-hati untuk memastikan hasil yang dapat dibandingkan 

(comparability). Random seeds yang berbeda digunakan pada setiap pengulangan 

dengan nilai 42, 123, 456, 789, dan 1024 untuk menjamin reproducibility sekaligus 

mengeksplorasi variasi yang disebabkan oleh random initialization. Semua metode 

menggunakan ruang pencarian (search space) dan rentang hyperparameter yang 

identik untuk memastikan bahwa perbedaan kinerja benar-benar berasal dari 

efektivitas metode optimasi itu sendiri, bukan karena perbedaan dalam ruang 

eksplorasi (exploration space). 
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Proses training, validation, dan testing dijaga agar tetap identik di semua 

metode menggunakan stratified sampling dengan random state yang sama, 

sehingga setiap metode dievaluasi pada data yang persis sama. Protokol evaluasi 

dan perhitungan metrik juga dijaga konsisten untuk memastikan perbandingan yang 

adil (fair comparison). 

3.5.3.1 Uji Normalitas 

Langkah awal dalam pengujian signifikansi adalah melakukan uji normalitas 

terhadap data hasil F1-Score dari setiap metode HPO. Uji ini bertujuan untuk 

mengetahui apakah data berdistribusi normal atau tidak, karena hasil ini akan 

menentukan jenis uji hipotesis yang digunakan selanjutnya. 

Uji normalitas dilakukan menggunakan Shapiro–Wilk dengan hipotesis 

(Royston, 1982; Laerd Statistics, 2024): 

 H0 : Data berdistribusi normal 

 H1 : Data berdistribusi tidak normal 

Apabila data berdistribusi normal, analisis dilanjutkan dengan uji One-Way 

ANOVA. Sebaliknya, jika data tidak berdistribusi normal, digunakan uji statistik 

Kruskal Wallis Test. 

3.5.3.2 One-Way ANOVA 

One-Way ANOVA merupakan uji statistik parametrik yang digunakan untuk 

membandingkan rata-rata dari tiga atau lebih kelompok independen (Field, 2013).  

Berikut adalah hipotesis untuk uji ANOVA : 

• H0 : Tidak terdapat perbedaan signifikan antara hasil akurasi keempat 

metode HPO. 

• H1 : Terdapat perbedaan signifikan antara hasil akurasi keempat metode 

HPO. 
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Apabila uji ANOVA menolak hipotesis nol , hal ini hanya menunjukkan 

bahwa ada perbedaan di antara metode, namun tidak secara spesifik menunjukkan 

metode mana yang berbeda satu sama lain. maka akan dilanjutkan uji post-hoc 

untuk mengetahui pasangan metode mana yang berbeda secara signifikan (Laerd 

Statistics, 2024). 

3.5.3.3 Kruskal-Wallis Test 

Kruskal-Wallis test merupakan uji statistik non-parametrik yang digunakan 

sebagai alternatif dari One-Way ANOVA ketika asumsi normalitas tidak terpenuhi 

(Kruskal & Wallis, 1952). 

Berikut adalah hipotesis untuk Kruskal-Wallis test: 

• H0: Tidak terdapat perbedaan signifikan antara hasil akurasi keempat 

metode HPO. 

• H1: Terdapat perbedaan signifikan antara hasil akurasi keempat metode 

HPO. 

Apabila Kruskal Wallis test menolak hipotesis nol, hal ini hanya 

menunjukkan bahwa ada perbedaan di antara metode, namun tidak secara spesifik 

menunjukkan metode mana yang berbeda satu sama lain. Untuk mengidentifikasi 

secara spesifik pasangan metode yang berbeda secara signifikan, dilakukan uji post-

hoc  

3.5.3.4 Post-hoc Test 

Apabila hasil uji One-Way ANOVA / Kruskal-Wallis menunjukkan penolakan 

terhadap hipotesis nol (H0), yang berarti terdapat perbedaan yang signifikan secara 

statistik antara setidaknya dua kelompok metode, maka analisis akan dilanjutkan 

dengan uji lanjut atau Post-hoc Test. Pengujian ini bertujuan untuk mengidentifikasi 

secara spesifik pasangan metode mana yang memiliki perbedaan performa yang 

nyata. 

Uji ini akan mengelompokkan metode-metode optimasi ke dalam subset yang 

homogen untuk melihat metode mana yang memiliki kinerja setara dan metode 
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mana yang berbeda secara signifikan. Hipotesis yang diuji dalam perbandingan 

berpasangan ini adalah: 

• H0: 𝜇𝑖 = 𝜇𝑗 (Tidak terdapat perbedaan rata-rata kinerja yang signifikan 

antara metode i dan metode j). 

• H1: 𝜇𝑖 ≠ 𝜇𝑗 (Terdapat perbedaan rata-rata kinerja yang signifikan antara 

metode i dan metode j) 
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BAB IV  

HASIL DAN PEMBAHASAN 

4.1 Data Penelitian dan Hasil Preprocessing Data 

Data yang digunakan dalam penelitian ini bersumber dari PhysioNet/CinC 

Challenge 2016 yang diakses melalui repositori Kaggle. Dataset ini terdiri dari 

rekaman audio phonocardiogram (PCG) yang diklasifikasikan ke dalam dua kelas 

utama Normal dan Abnormal. Sebelum digunakan untuk pelatihan model CNN, 

data mentah telah melalui serangkaian tahapan Preprocessing untuk memastikan 

kualitas dan keseragaman input. 

4.1.1 Hasil Preprocessing Data 

Langkah pertama yang dilakukan adalah penyeragaman frekuensi sampling 

(resampling) seluruh data audio menjadi 2000 Hz. Berdasarkan hasil observasi 

spektral, komponen frekuensi utama dari suara jantung normal dan abnormal 

terkonsentrasi di bawah 1000 Hz. Oleh karena itu, sampling rate 2000 Hz terbukti 

memadai untuk mempertahankan integritas informasi sinyal tanpa mengalami 

aliasing, sesuai dengan Teorema Nyquist-Shannon. 

Selanjutnya, algoritma Springer diterapkan untuk mendeteksi lokasi S1 (suara 

jantung pertama) dan S2 (suara jantung kedua). Algoritma ini menggunakan Hidden 

Semi-Markov Model (HSMM) untuk memetakan probabilitas state siklus jantung. 

 

Gambar 4.1 Visualisasi Algoritma Springer dalam deteksi Lokasi S1 dan S2 

Visualisasi hasil segmentasi dapat dilihat pada Gambar 4.1. Garis vertikal 

merah menandakan onset S1 dan garis hijau menandakan S2. Hasil ini 

menunjukkan bahwa algoritma berhasil mengidentifikasi batas-batas siklus jantung 

secara otomatis meskipun terdapat variasi amplitudo pada sinyal asli. 
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Gambar 4.2 Hasil pemotongan sinyal pada S1 

Berdasarkan titik deteksi S1 tersebut, sinyal dipotong menjadi segmen-

segmen overlapping dengan durasi tetap 3 detik (6.000 samples). Pemilihan durasi 

ini terbukti efektif mencakup rata-rata 3 hingga 5 siklus detak jantung (cardiac 

cycles) pada rentang detak jantung normal (60–100 BPM), sehingga memberikan 

konteks temporal yang cukup bagi model CNN untuk membedakan pola normal 

dan abnormal. 

Berikut adalah perbandingan jumlah data sebelum dan sesudah dilakukan 

proses segmentasi: 

Tabel 4.1 Tabel perbandingan jumlah data 

Kategori Data Jumlah File Asli Jumlah Segmentasi Hasil 

Normal 2.725 53.652 

Abnormal 816 14.585 

 

Setelah segmentasi, setiap potongan sinyal 3 detik dikonversi dari domain 

waktu ke domain frekuensi menggunakan ekstraksi fitur Mel-Frequency Cepstral 

Coefficients (MFCC). Hasil ekstraksi ini menghasilkan matriks fitur berdimensi 6 

× 300. Dimensi ini membentuk representasi visual berupa heatmap yang berfungsi 

sebagai citra input bagi arsitektur CNN 2D. 

 

Gambar 4.3 Visualisasi Ekstraksi Fitur MFCC 
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Gambar 4.3 memperlihatkan visualisasi fitur MFCC setelah melalui proses 

standarisasi (Z-score normalization). Pada visualisasi ini, sumbu Y 

merepresentasikan 6 koefisien MFCC yang menangkap spectral envelope, 

sedangkan sumbu X merepresentasikan perubahan fitur tersebut sepanjang 300 time 

frames. 

4.2 Hasil Kinerja Model Rubin 

Sebagai langkah awal eksperimen dan titik acuan (baseline) untuk mengukur 

efektivitas metode optimasi hyperparameter, dilakukan pelatihan model 

menggunakan arsitektur CNN 2D yang mengadaptasi konfigurasi dari penelitian 

Rubin et al. (2016). Konfigurasi ini menggunakan nilai hyperparameter yang 

ditetapkan secara manual atau default tanpa melalui proses pencarian otomatis. 

4.2.1 Konfigurasi Hyperparameter Rubin 

Model dilatih menggunakan konfigurasi hyperparameter statis yang 

dirancang untuk mereplikasi struktur dasar arsitektur terdahulu. Rincian 

konfigurasi yang digunakan adalah sebagai berikut: 

Tabel 4.2 Tabel Konfigurasi Hyperparameter Rubin 

Hyperparameter Range/Option 

Kernel Conv Layer 1 [64] 

Kernel Conv Layer 2 [64] 

Kernel Size Conv Layer 1 [(2,20)] 

Kernel Size Conv Layer 2 [(2,10)] 

Dense Unit Layer 1 [1024] 

Dense Unit Layer 2 [512] 

Drop Out Rate Layer 1 [0.85565561] 

Drop Out Rate Layer 2 [0.85565561] 

Learning Rate [0.000158] 

Batch Size [256] 

Optimizer [Adam] 
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4.2.2 Kinerja Model Rubin 

Table 4.3 Table Rekapitulasi Kinerja Model Rubin 

Metrik Evaluasi Train Validation  Test 

Accuracy 0,974 0,933 0,912 

F1-Score (Macro) 0,962 0,892 0,860 

F1-Score (Weighted) 0,974 0,932 0,909 

 

Gambar 4.4 Confusion Matrix Rubin 

4.2.3 Performa Perkelas 

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan 

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train, 

Validation dan Test set. 

Table 4.3 Tabel performa Kelas pada Training Set Rubin 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,982 0,984 0,983 36.983 

Unhealthy 0,944 0,937 0,941 10.340 

Rata-rata 

(Macro) 

0,963 0,961 0,962 47.323 

Rata-rata 

(Weighted) 

0,974 0,974 0,974 47.323 
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Table 4.4 Tabel performa Kelas pada Validation Set Rubin 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,954 0,962 0,958 8.260 

Unhealthy 0,840 0,812 0,826 2.001 

Rata-rata 

(Macro) 

0,897 0,887 0,892 10.261 

Rata-rata 

(Weighted) 

0,932 0,933 0,932 10.261 

 

Table 4.5 Tabel performa Kelas pada Test Set Rubin 

Kelas Precision Recall  F1-Score Jumlah Sample 

Healthy 0,928 0,962 0,945 8.409 

Unhealthy 0,837 0,723 0,776 2.244 

Rata-rata 

(Macro) 

0,882 0,842 0,860 10.653 

Rata-rata 

(Weighted) 

0,909 0,912 0,909 10.653 

 

Berdasarkan perbandingan ketiga tabel di atas, dapat disimpulkan bahwa 

model masih menunjukkan permasalahan performa yang signifikan akibat 

ketidakseimbangan data. Overfitting terjadi lebih parah pada kelas minoritas 

(Unhealthy), yang terlihat dari penurunan F1-Score yang jauh lebih drastis 

dibandingkan kelas mayoritas. Hal ini juga mencerminkan adanya bias terhadap 

kelas Healthy akibat dominasi jumlah data, sehingga model lebih cenderung 

memprediksi kondisi normal, yang ditunjukkan oleh tingginya recall pada kelas 

Healthy namun rendah pada kelas Unhealthy. Temuan ini menegaskan bahwa 

konfigurasi baseline belum optimal untuk menangani imbalance data dan 

meningkatkan generalisasi model, sehingga diperlukan optimasi hyperparameter 

lebih lanjut untuk meningkatkan kemampuan model dalam mendeteksi kondisi 

abnormal. 
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4.3 Hasil Hyperparameter Optimization 

Hyperparameter Optimization dilakukan menggunakan empat metode 

berbeda untuk mencari konfigurasi terbaik yang dapat meningkatkan performa 

deteksi, khususnya pada kelas Unhealthy. Berikut adalah paparan hasil dari masing-

masing metode. 

4.3.1 Grid Search 

Metode Grid Search dijalankan menggunakan strategi Reduced Grid 

sebanyak 192 iterasi untuk mengatasi kendala komputasi dengan durasi 24 jam. 

Proses ini mengevaluasi kombinasi parameter secara sistematis pada titik-titik yang 

telah ditentukan. Untuk hyperparameter search space yang digunakan dalam 

reduce grid adalah sebagai berikut: 

Table 4.6 Table Search Space Reduce Grid 

Kategori Hyperparameter Range/Option 

Architecture 

Parameters 

Kernel Conv Layer 1 [64] 

Kernel Conv Layer 2 [64] 

Kernel Size Conv Layer 1 [(2,20] 

Kernel Size Conv Layer 2 [(2,10)] 

Dense Unit Layer 1 [1024, 1536] 

Dense Unit Layer 2 [512, 768] 

Regularization 

Parameters 

Drop Out Rate Layer 1 [0.2, 0.4] 

Drop Out Rate Layer 2 [0.2, 0.4] 

Training Parameters 

Learning Rate [0.0001, 0.001, 0.01] 

Batch Size [128, 256] 

Optimizer [Adam, Nadam] 

Total Search Space 1x1x1x1x2x2x2x2x3x2x2  192 

 

Berdasarkan hasil eksperimen, konfigurasi terbaik ditemukan pada Iterasi 76 

Rincian konfigurasi parameter terbaik disajikan pada Tabel 4.7 
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Table 4.7 Table Konfigurasi Hyperparameter Terbaik Grid Search 

Hyperparameter Range/Option 

Kernel Conv Layer 1 [64] 

Kernel Conv Layer 2 [64] 

Kernel Size Conv Layer 1 [(2,20)] 

Kernel Size Conv Layer 2 [(2,10)] 

Dense Unit Layer 1 [1024] 

Dense Unit Layer 2 [768] 

Drop Out Rate Layer 1 [0.4] 

Drop Out Rate Layer 2 [0.2] 

Learning Rate [0.0001] 

Batch Size [256] 

Optimizer [Nadam] 

4.3.1.1 Hasil Kinerja Grid Search 

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training, 

Validation, dan Testing: 

Table 4.8 Table Rekapitulasi Kinerja Hasil Grid Search  

Metrik Evaluasi Train Validation  Test 

Accuracy 0,999 0,939 0,924 

F1-Score (Macro) 0,999 0,902 0,880 

F1-Score (Weighted) 0,999 0,938 0,922 

 

Gambar 4.5 Confusion Matrix Hasil Grid Search 
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Berdasarkan hasil eksperimen optimasi hyperparameter menggunakan 

metode Grid Search, ditemukan konfigurasi terbaik pada konfigurasi 182 yang 

menghasilkan performa klasifikasi yang tinggi, meskipun terdapat indikasi 

overfitting antara data latih dan data uji. 

Pada Tabel 4.8 Rekapitulasi Kinerja, model mencatatkan akurasi pelatihan 

(Train Accuracy) yang sempurna sebesar 0,999. Namun, terjadi penurunan 

performa pada tahap validasi menjadi 0,938 dan pada tahap pengujian (Test) 

menjadi 0,924. Kesenjangan (gap) antara akurasi training dan test ini 

mengindikasikan bahwa model cenderung menghafal pola data latih dengan sangat 

baik namun sedikit mengalami penurunan kemampuan generalisasi saat dihadapkan 

pada data baru. 

Dari sisi keseimbangan performa antar kelas, model menghasilkan nilai F1-

Score Macro pada Test set sebesar 0,880. Nilai ini menunjukkan bahwa model 

memiliki kemampuan yang cukup baik dalam menangani kedua kelas, meskipun 

tidak setinggi nilai akurasi globalnya. 

 

Gambar 4.6 Grafik Loss dan Accuracy Training dan Validation Grid Search 

Hasil pelatihan konfigurasi terbaik dari Grid Search menunjukkan performa 

yang sangat solid dengan konvergensi cepat. Model mampu mencapai Validation 

Accuracy yang stabil di angka 93–94%, sementara Training Accuracy terus 

meningkat hingga mendekati 100%. Meskipun demikian, terdapat indikasi 

overfitting ringan mulai epoch ke-10 di mana Validation Loss mengalami stagnasi 

sementara loss data latih terus turun. Secara keseluruhan, model ini terbukti robust, 
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namun penghentian pelatihan di sekitar epoch ke-15 sangat disarankan untuk 

menjaga efisiensi dan generalisasi terbaik. 

4.3.1.2 Performa per kelas 

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan 

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train, 

Validation dan Test set. 

Table 4.9 Tabel performa Kelas pada Training Set Grid Search 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,999 0,999 0,999 36.983 

Unhealthy 0,999 0,999 0,999 10.340 

Rata-rata 

(Macro) 

0,999 0,999 0,999 47.323 

Rata-rata 

(Weighted) 

0,999 0,999 0,999 47.323 

 

Table 4.10 Tabel performa Kelas pada Validation Set Grid Search 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,958 0,967 0,963 8.260 

Unhealthy 0,860 0,824 0,842 2.001 

Rata-rata 

(Macro) 

0,909 0,896 0,902 10.261 

Rata-rata 

(Weighted) 

0,939 0,939 0,939 10.261 
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Table 4.11 Tabel performa Kelas pada Test Set Grid Search 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,935 0,972 0,953 8.409 

Unhealthy 0,877 0,748 0,807 2.244 

Rata-rata 

(Macro) 

0,906 0,860 0,880 10.653 

Rata-rata 

(Weighted) 

0,923 0,925 0,922 10.653 

 

4.3.2 Random Search 

Metode Random Search melakukan eksplorasi ruang parameter secara acak 

sebanyak 200 iterasi. Proses optimasi ini menghabiskan total durasi waktu 

komputasi selama 14 jam. Model terbaik ditemukan cukup awal, yaitu pada iterasi 

ke-178, dengan konfigurasi parameter sebagai berikut: 

Table 4.12 Table Konfigurasi Hyperparameter Terbaik Random Search 

Hyperparameter Range/Option 

Kernel Conv Layer 1 [80] 

Kernel Conv Layer 2 [80] 

Kernel Size Conv Layer 1 [(2,25)] 

Kernel Size Conv Layer 2 [(3,10)] 

Dense Unit Layer 1 [1024] 

Dense Unit Layer 2 [384] 

Drop Out Rate Layer 1 [0.2] 

Drop Out Rate Layer 2 [0.2] 

Learning Rate [0.0001] 

Batch Size [128] 

Optimizer [Nadam] 
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4.3.2.1 Hasil Kinerja Random Search 

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training, 

Validation, dan Testing: 

Table 4.13 Table Rekapitulasi Kinerja Hasil Random Search  

Metrik Evaluasi Train Validation  Test 

Accuracy 0,998 0,937 0,929 

F1-Score (Macro) 0,998 0,899 0,889 

F1-Score (Weighted) 0,998 0,937 0,928 

 

Gambar 4.7 Confusion Matrix Hasil Random Search 

Berdasarkan hasil eksperimen optimasi hyperparameter menggunakan 

metode Random Search, ditemukan konfigurasi terbaik pada konfigurasi 57 yang 

menghasilkan performa klasifikasi yang tinggi, meskipun terdapat indikasi 

overfitting antara data latih dan data uji. 

Merujuk pada Tabel 4.13 Rekapitulasi Kinerja Hasil Random Search, model 

menunjukkan kemampuan pembelajaran yang sangat kuat dengan Akurasi 

Pelatihan (Train Accuracy) mencapai 0,998. Kinerja ini sedikit menurun pada tahap 

validasi menjadi 0,937 dan pada tahap pengujian (Test) menjadi 0,929. Penurunan 

performa dari training ke test sebesar kurang lebih 7,6% ini mengindikasikan 

adanya gejala overfitting, di mana model sangat presisi dalam mengenali data latih 

namun mengalami sedikit penurunan performa saat memproses data baru yang 



 

79 
 

belum pernah dilihat sebelumnya.Dalam hal keseimbangan deteksi antar kelas, 

metode ini menghasilkan F1-Score Macro pada Test set sebesar 0,889.  

 

Gambar 4.8 Grafik Loss dan Accuracy Training dan Validation Random Search 

Hasil pelatihan konfigurasi terbaik dari Random Search menunjukkan 

efektivitas pembelajaran yang tinggi, di mana Validation Accuracy berhasil 

bertahan di kisaran stabil 93–94% dengan Training Accuracy yang nyaris 

sempurna. Namun, grafik loss memperlihatkan gejala overfitting yang muncul lebih 

awal; Validation Loss mulai stagnan di sekitar angka 0.32 setelah epoch ke-7, 

sementara Training Loss terus menurun drastis.  

4.3.2.2 Performa per kelas 

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan 

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train, 

Validation dan Test set. 

Table 4.14 Tabel performa Kelas pada Training Set Random Search 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,998 0,998 0,998 36.983 

Unhealthy 0,997 0,997 0,997 10.340 

Rata-rata 

(Macro) 

0,998 0,998 0,998 47.323 

Rata-rata 

(Weighted) 

0,998 0,998 0,998 47.323 
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Table 4.15 Tabel performa Kelas pada Validation Set Random Search 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,957 0,966 0,961 8.260 

Unhealthy 0,853 0,822 0,837 2.001 

Rata-rata 

(Macro) 

0,905 0,894 0,899 10.261 

Rata-rata 

(Weighted) 

0,937 0,938 0,937 10.261 

 

Table 4.16 Tabel performa Kelas pada Test Set Random Search 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,941 0,972 0,956 8.409 

Unhealthy 0,879 0,774 0,823 2.244 

Rata-rata 

(Macro) 

0,910 0,873 0,889 10.653 

Rata-rata 

(Weighted) 

0,928 0,930 0,928 10.653 

 

4.3.3 Bayesian Optimization 

Metode Bayesian Optimization pendekatan probabilistik untuk memandu 

pencarian parameter secara cerdas berdasarkan evaluasi sebelumnya sebanyak 200 

iterasi. Proses optimasi ini menghabiskan durasi 17 jam, karena kompleksitas 

proses pemodelan surrogate. Namun, investasi waktu ini terbayar dengan 

ditemukannya model terbaik pada tahap akhir proses, yaitu iterasi ke-148. 

Konfigurasi terbaiknya adalah: 
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Table 4.17 Table Konfigurasi Hyperparameter Terbaik Bayesian Optimization 

Hyperparameter Range/Option 

Kernel Conv Layer 1 [64] 

Kernel Conv Layer 2 [48] 

Kernel  Size Conv Layer 1 [(3,20)] 

Kernel Size Conv Layer 2 [(2,10)] 

Dense Unit Layer 1 [1536] 

Dense Unit Layer 2 [768] 

Drop Out Rate Layer 1 [0.2] 

Drop Out Rate Layer 2 [0.4] 

Learning Rate [0.0001] 

Batch Size [128] 

Optimizer [Adam] 

 

4.3.3.1 Hasil Kinerja Bayesian Optimization  

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training, 

Validation, dan Testing: 

Table 4.18 Table Rekapitulasi Kinerja Hasil Bayesian Optimization 

Metrik Evaluasi Train Validation  Test 

Accuracy 0,998 0,939 0,929 

F1-Score (Macro) 0,998 0,903 0,888 

F1-Score (Weighted) 0,998 0,939 0,927 
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Gambar 4.9 Confusion Matrix Hasil Bayesian Optimization 

Hasil eksperimen optimasi hyperparameter menggunakan metode Bayesian 

Optimization menunjukkan kinerja model yang sangat solid dan seimbang, dengan 

karakteristik yang sedikit lebih unggul dalam hal akurasi pelatihan dibandingkan 

metode lainnya. 

Merujuk pada Tabel 4.18 Rekapitulasi Kinerja Hasil Bayesian Optimization, 

model mencatatkan Akurasi Pelatihan (Train Accuracy) yang sangat tinggi, 

mencapai 0,998. Performa ini sedikit menurun pada tahap validasi menjadi 0,939 

dan pada tahap pengujian (Test) menjadi 0,929. Pola penurunan dari training ke test 

ini konsisten dengan metode optimasi lainnya, mengindikasikan adanya gap 

generalisasi yang wajar dalam model Deep Learning yang dilatih pada dataset 

dengan karakteristik kompleks seperti suara jantung. Dalam hal kemampuan 

mendeteksi kedua kelas secara seimbang, metode ini menghasilkan F1-Score 

Macro pada Test set sebesar 0,888 

 

Gambar 4.10 Grafik Loss dan Accuracy Training dan Validation Bayesian 

Optimization 



 

83 
 

Hasil pelatihan konfigurasi terbaik dari Bayesian Optimization menunjukkan 

efisiensi konvergensi yang sangat cepat. Model berhasil mempertahankan 

Validation Accuracy yang stabil di kisaran 93–94%, sementara Training Accuracy 

meningkat konsisten hingga mendekati 100%. Namun, grafik loss memperlihatkan 

bahwa titik optimal generalisasi tercapai lebih awal; Validation Loss mulai stagnan 

(plateau) di kisaran 0.30 setelah epoch ke-7, sedangkan Training Loss terus 

menurun. Meskipun model terbukti robust, penerapan Early Stopping di sekitar 

epoch ke-8 hingga ke-10 sangat direkomendasikan untuk mencegah overfitting 

yang tidak perlu serta menghemat sumber daya komputasi. 

4.3.3.2 Performa per kelas 

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan 

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train, 

Validation dan Test set. 

Table 4.19 Tabel performa Kelas pada Training Set Bayesian Optimization 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 1,000 0,999 0,999 36.983 

Unhealthy 0,995 0,999 0,997 10.340 

Rata-rata 

(Macro) 

0,998 0,999 0,998 47.323 

Rata-rata 

(Weighted) 

0,999 0,999 0,998 47.323 

Table 4.20 Tabel performa Kelas pada Validation Set Bayesian Optimization 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,961 0,964 0,963 8.260 

Unhealthy 0,850 0,838 0,844 2.001 

Rata-rata 

(Macro) 

0,905 0,901 0,903 10.261 

Rata-rata 

(Weighted) 

0,939 0,940 0,939 10.261 
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Table 4.21 Tabel performa Kelas pada Test Set Bayesian Optimization 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,941 0,971 0,956 8.409 

Unhealthy 0,875 0,774 0,821 2.244 

Rata-rata 

(Macro) 

0,908 0,872 0,888 10.653 

Rata-rata 

(Weighted) 

0,927 0,929 0,927 10.653 

 

4.3.4 Genetic Algorithm 

Metode Genetic Algorithm (GA) menerapkan prinsip evolusi biologis melalui 

seleksi, crossover pada populasi parameter selama 10 generasi. Proses evolusi 

menghabiskan waktu total selama 14 jam dan konfigurasi terbaik ditemukan pada 

iterasi ke 30. Berikut adalah hyperparameter terbaik yang dihasilkan: 

Table 4.22 Table Konfigurasi Hyperparameter Terbaik Genetic Algorithm 

Hyperparameter Range/Option 

Kernel Conv Layer 1 [64] 

Kernel Conv Layer 2 [48] 

Kernel Size Conv Layer 1 [(3,25)] 

Kernel Size Conv Layer 2 [(3,12)] 

Dense Unit Layer 1 [1204] 

Dense Unit Layer 2 [384] 

Drop Out Rate Layer 1 [0.4] 

Drop Out Rate Layer 2 [0.8] 

Learning Rate [0.0001] 

Batch Size [64] 

Optimizer [Nadam] 
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4.3.4.1 Hasil Kinerja Genetic Algorithm 

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training, 

Validation, dan Testing: 

Table 4.23 Table Rekapitulasi Kinerja Hasil Genetic Algorithm 

Metrik Evaluasi Train Validation  Test 

Accuracy 0,996 0,934 0,928 

F1-Score (Macro) 0,994 0,893 0,886 

F1-Score (Weighted) 0,996 0,933 0,926 

 

Gambar 4.11 Confusion Matrix Hasil Genetic Algorithm 

 

Gambar 4.12 Chart F1-Score Range per Generation 
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Hasil eksperimen optimasi hyperparameter menggunakan metode Genetic 

Algorithm menunjukkan kinerja yang sangat kompetitif, dengan karakteristik yang 

unik yaitu efisiensi komputasi yang tinggi (waktu konvergensi tercepat) namun 

tetap mampu mempertahankan akurasi yang setara dengan metode lainnya. 

Merujuk pada Tabel 4.23 Rekapitulasi Kinerja Hasil Genetic Algorithm, 

model menunjukkan kemampuan pembelajaran yang sangat baik dengan Akurasi 

Pelatihan (Train Accuracy) mencapai 0,996. Serupa dengan metode lainnya, terjadi 

penurunan pada tahap validasi menjadi 0,934 dan pada tahap pengujian (Test) 

menjadi 0,928. Selisih antara akurasi training dan test ini menunjukkan pola 

overfitting yang umum terjadi pada Deep Learning, namun model masih mampu 

mempertahankan kemampuan generalisasi yang baik dengan akurasi di atas 91%. 

Dalam hal kemampuan menangani ketidakseimbangan kelas, metode ini 

menghasilkan F1-Score Macro pada Test set sebesar 0,886. Hal ini mengindikasikan 

bahwa meskipun proses pencariannya berbasis evolusi dan stokastik, Genetic 

Algorithm mampu menemukan konfigurasi yang memberikan performa klasifikasi 

yang stabil. 

 

Gambar 4.13 Grafik Loss dan Accuracy Training dan Validation Genetic 

Algorithm 

Hasil pelatihan konfigurasi terbaik dari Genetic Algorithm menunjukkan 

pola pembelajaran yang sangat efisien. Model mampu mencapai stabilitas 

Validation Accuracy di kisaran 93–94%, sementara Training Accuracy terus 

menanjak hingga hampir menyentuh 99%. Namun, grafik loss mengindikasikan 
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bahwa kemampuan generalisasi model mencapai puncaknya cukup dini; Validation 

Loss mulai mendatar di kisaran 0.28–0.30 setelah epoch ke-7, sedangkan Training 

Loss masih terus menurun. Meskipun model ini sangat robust, penerapan Early 

Stopping di sekitar epoch ke-8 hingga ke-10 sangat disarankan untuk menjaga 

efisiensi dan mencegah model terlalu "menghafal" data latih. 

4.3.4.2 Performa per kelas 

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan 

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train, 

Validation dan Test set. 

Table 4.24 Tabel performa Kelas pada Training Set Genetic Algorithm 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,997 0,998 0,998 36.983 

Unhealthy 0,994 0,991 0,992 10.340 

Rata-rata 

(Macro) 

0,995 0,995 0,994 47.323 

Rata-rata 

(Weighted) 

0,997 0,997 0,996 47.323 

 

Table 4.26 Tabel performa Kelas pada Validation Set Genetic Algorithm 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,954 0,964 0,959 8.260 

Unhealthy 0,846 0,810 0,827 2.001 

Rata-rata 

(Macro) 

0,900 0,887 0,893 10.261 

Rata-rata 

(Weighted) 

0,933 0,934 0,933 10.261 
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Table 4.27 Tabel performa Kelas pada Test Set Genetic Algorithm 

Kelas Precision Recall F1-Score Jumlah Sample 

Healthy 0,941 0,970 0,955 8.409 

Unhealthy 0,874 0,770 0,819 2.244 

Rata-rata 

(Macro) 

0,907 0,870 0,886 10.653 

Rata-rata 

(Weighted) 

0,926 0,928 0,926 10.653 

 

4.4 Evaluasi Hyperparameter Optimization 

4.4.1 Analisis Komparatif Antar Metode 

Setelah dilakukan eksperimen pada keempat metode optimasi (Grid Search, 

Random Search, Bayesian Optimization, Genetic Algorithm), tahap selanjutnya 

adalah melakukan penilaian silang untuk mengidentifikasi metode yang paling 

unggul. Evaluasi dilakukan secara komprehensif berdasarkan empat dimensi 

utama: Efektivitas, Efisiensi, Stabilitas, dan Skalabilitas. 

4.4.1.1 Efektivitas Optimization 

Efektivitas diukur berdasarkan kemampuan metode dalam menemukan 

konfigurasi hyperparameter yang menghasilkan F1-Score tertinggi. 

Table 4.28 Table Perbandingan Efektivitas Metode HPO 

Model Test F1-Score Macro Peningkatan performa  

Grid Search 0,880 0,02 

Random Search 0,889 0,029 

Bayesian Optimization 0,888 0,028 

Genetic Algorithm 0,886 0,026 

 

Berdasarkan hasil uji efektivitas metode Random Search terbukti menjadi 

metode yang paling unggul dalam eksperimen ini. Metode ini mencatatkan Test F1-
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Score Macro tertinggi sebesar 0,889, yang memberikan peningkatan performa 

terbesar yaitu 0,026 (2,9%) dari model Rubin 

4.4.1.2 Efisiensi Komputasi 

Efisiensi dievaluasi berdasarkan sumber daya waktu yang dibutuhkan untuk 

mencapai konvergensi. 

Table 4.29 Table Perbandingan Efisiensi Metode HPO 

Model 
Time to 

convergence 

Number of 

Trials 

Computational 

Cost 
Time per Trial 

Grid Search 3,2 Jam 59 23,8 Jam 7,5 Menit 

Random 

Search 

13 Jam 160 14,2 Jam 4,2 Menit 

Bayesian 

Optimization 

15,3 Jam 191 17,4 Jam 5,1 Menit 

Genetic 

Algorithm 

2,5 Jam 29 14,1 Jam 4,2 Menit 

 

Analisis efisiensi komputasi menunjukkan bahwa Genetic Algorithm 

merupakan metode yang paling unggul dalam hal kecepatan konvergensi, mampu 

mencapai target performa hanya dalam waktu 2,5 jam. Dari sisi efisiensi eksekusi 

per iterasi, Random Search dan Genetic Algorithm terbukti paling ringan dengan 

rata-rata waktu 4,2 menit per trial, menjadikannya opsi hemat sumber daya dengan 

total biaya komputasi sekitar 14 jam. Sebaliknya, Grid Search menjadi metode 

dengan biaya komputasi tertinggi (23,8 jam) dan waktu eksekusi per trial terlama 

(7,5 menit), sementara Bayesian Optimization membutuhkan waktu konvergensi 

terlama (13,5 jam) karena proses eksplorasinya yang ekstensif sebelum 

mengeksploitasi solusi optimal. 

4.4.1.3 Stabilitas Performance 

Evaluasi stabilitas bertujuan untuk memastikan bahwa performa tinggi yang 

dicapai oleh model terbaik bukanlah kebetulan semata, melainkan hasil dari 

konfigurasi hyperparameter. Pengujian dilakukan dengan melatih ulang 
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(retraining) konfigurasi terbaik dari masing-masing metode optimasi sebanyak 5 

kali pengulangan (runs) menggunakan inisialisasi random seed yang berbeda (42, 

123, 456, 789, 1024).Metode yang stabil ditandai dengan rendahnya nilai Standard 

Deviation dan Coefficient of Variation (CV) pada deretan solusi terbaiknya. Berikut 

adalah hasil 5 kali pengulangan dengan random seed dan juga hasil analisis nya. 

Table 4.30 Table Hasil 5 kali pengulangan dengan random seed 

Model 42 123 456 789 1024 

Grid Search 0,883 0,880 0,866 0,878 0,868 

Random 

Search 
0,874 0,873 0,874 0,864 0,869 

Bayesian 

Optimization 
0,869 0,853 0,876 0,855 0,878 

Genetic 

Algorithm 
0,878 0,862 0,882 0,873 0,865 

 

Table 4.31 Table Analisis Stabilitas  

Model 
Mean F1-

Score 

Standar 

Deviasi 

Coefficient of 

Variation 
Range 

Grid Search 0,875 0,007 0,89% 0,017 

Random 

Search 

0,871 0,004 0,49% 0,01 

Bayesian 

Optimization 

0,866 0,011 1,32% 0,025 

Genetic 

Algorithm 

0,872 0,008 0,96% 0,02 

 

Analisis stabilitas menunjukkan bahwa Genetic Algorithm merupakan 

metode yang paling konsisten dan robust dalam penelitian ini, ditandai dengan 

pencapaian nilai Standar Deviasi (0,008) dan Coefficient of Variation (0,96%) 
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terendah, serta rentang performa yang sangat sempit (0,02). Di sisi lain, Grid Search 

menunjukkan keseimbangan performa yang sangat baik dengan mencatatkan rata-

rata kinerja (Mean F1-Score) tertinggi sebesar 0,875 sambil mempertahankan 

stabilitas yang tinggi (CV 0,89%). Sebaliknya, Bayesian Optimization 

teridentifikasi sebagai metode yang paling tidak stabil dengan variasi kinerja 

terbesar (CV 1,32%), mengindikasikan sensitivitas tinggi terhadap pemilihan ruang 

parameter. 

4.4.1.4 Skalabilitas 

Analisis skalabilitas dilakukan untuk mengevaluasi ketahanan metode 

optimasi terhadap variasi ukuran dataset dan kompleksitas komputasi pada pada 

dataset sizes yang berbeda 25%, 50%, 100%. Dalam analisanya akan dilakukan 

analisan efektivitas performance pada F1-Score Macro. Berikut adalah hasil 

analisanya: 

Table 4.32 Table Analisis Skalabilitas  

Model 25 % 50 % 100 % 

Grid Search 0,840 0,851 0,880 

Random Search 0,843 0,859 0,889 

Bayesian 

Optimization 

0,839 0,863 0,888 

Genetic Algorithm 0,852 0,864 0,886 

Analisis skalabilitas menunjukkan tren positif di mana kinerja seluruh metode 

optimasi meningkat seiring dengan bertambahnya volume data latih dari 25% 

hingga 100%, mengonfirmasi bahwa ketersediaan data yang lebih besar 

memperkuat kemampuan generalisasi model 

4.4.2 Statistical Significance Testing 

Untuk memvalidasi bahwa perbedaan kinerja antar metode Hyperparameter 

Optimization (HPO) adalah nyata secara statistik dan bukan sekadar kebetulan 

akibat variasi acak (random variation), dilakukan analisis statistik inferensial 
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terhadap data F1-Score dari 5 kali pengulangan eksperimen (repeated runs) dengan 

random seed 42, 123, 456, 789, dan 1024 untuk menjamin reproducibility sekaligus 

mengeksplorasi variasi yang disebabkan oleh random initialization. 

4.4.2.1 Uji Normalitas 

Langkah pertama adalah memastikan asumsi distribusi data menggunakan uji 

Normalitas. Pengujian dilakukan menggunakan metode Shapiro-Wilk, yang 

dikenal sensitif dan akurat untuk ukuran sampel kecil (n < 50). Uji ini menentukan 

apakah data hasil akurasi dari masing-masing metode berdistribusi normal. Apabila 

data berdistribusi normal, analisis dilanjutkan dengan uji One-Way ANOVA. 

Sebaliknya, jika data tidak berdistribusi normal, digunakan uji statistik Kruskal 

Wallis Test. 

Table 4.33 Hasil Uji Normalitas 

Method 
Kolmogrov-Smirnov Shapiro-Wilk 

Statistic df Sig Statistic df Sig 

Score 

Grid Search 0,254 5 0,200 0,884 5 0,327 

Random 

Search 
0,295 5 0,180 0,825 5 0,127 

Bayesian 

Optimization 
0,232 5 0,200 0,866 5 0,252 

Genetic 

Algorithm 
0,196 5 0,200 0,944 5 0,694 

Sesuai dengan kriteria pengambilan keputusan: 

• Jika Sig. > 0.05, maka H0 diterima (Data berdistribusi normal). 

• Jika Sig. < 0.05, maka H0 ditolak (Data tidak berdistribusi normal). 

Karena seluruh nilai signifikansi yang diperoleh lebih besar dari 0.05, maka 

terima H0. Dengan terpenuhinya asumsi normalitas ini, analisis perbedaan kinerja 

antar metode dapat dilanjutkan menggunakan uji statistik parametrik, yaitu One-

Way ANOVA. 
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4.4.2.2 One-Way ANOVA 

Setelah asumsi normalitas terpenuhi, dilakukan uji One-Way ANOVA untuk 

mengetahui apakah terdapat perbedaan rata-rata performa (F1-Score) yang 

signifikan antara keempat metode optimasi yang diuji (Grid Search, Random 

Search, Bayesian Optimization, Genetic Algorithm). Uji ini bertujuan untuk 

membuktikan hipotesis bahwa pemilihan metode optimasi memberikan dampak 

nyata terhadap kinerja model, bukan sekadar kebetulan. 

Table 4.34 Hasil Tes ANOVA 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig 

Between 

Groups 
0,000 3 0,000 0,945 0,443 

Within 

Groups 
0,002 16 0,000   

Total 0,002 16    

 

Sesuai dengan kriteria pengambilan keputusan hipotesis: 

• Jika Sig. > 0.05, maka H0 diterima (Tidak ada perbedaan signifikan). 

• Jika Sig. < 0.05, maka H0 ditolak (Terdapat perbedaan signifikan). 

Karena nilai signifikansi yang diperoleh adalah 0.442 > 0.05, maka terima 

H0. Hal ini membuktikan bahwa secara statistik tidak terdapat perbedaan rata-rata 

F1-Score yang signifikan antara keempat metode optimasi hyperparameter yang 

diuji. Temuan ini mengindikasikan bahwa baik metode konvensional (Grid Search, 

Random Search) maupun metode heuristik lanjut (Bayesian Optimization, Genetic 

Algorithm) mampu menghasilkan konfigurasi hyperparameter dengan tingkat 

efektivitas yang setara (komparabel) dalam kasus klasifikasi ini. Oleh karena itu, 

penentuan metode terbaik tidak lagi didasarkan semata-mata pada perbedaan skor 

akurasi yang tipis, melainkan dapat difokuskan pada aspek efisiensi komputasi 

(waktu dan sumber daya). 
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4.4.3 Analisis Efisiensi Komputasi (CPU vs GPU) 

Mengingat kompleksitas arsitektur dan besarnya ruang pencarian 

hyperparameter, efisiensi waktu komputasi menjadi faktor krusial dalam 

keberhasilan eksperimen. Untuk mengukur dampak akselerasi perangkat keras, 

dilakukan analisis perbandingan antara estimasi waktu pelatihan menggunakan 

CPU dan waktu aktual menggunakan GPU. 

Estimasi waktu CPU dihitung berdasarkan rata-rata durasi pelatihan satu 

model (trial) yang kemudian diproyeksikan ke total iterasi eksperimen (192 iterasi 

untuk Grid Search dan 200 iterasi untuk metode lainnya). 

Table 4.35 Perbandingan estimasi waktu komputasi CPU vs GPU 

Metode 

Optimasi 

Durasi Training 

1 Iterasi CPU 

Proyeksi Durasi 

Total CPU 

Total Waktu 

Training GPU 

Grid Search 28,56 Menit 95,2 Jam 23,8 Jam 

Random 

Search 

22,89 Menit 73,2 Jam 14,2 Jam 

Bayesian 

Optimization 

16,94 Menit 56,5 Jam 17,4 Jam 

Genetic 

Algorithm 

17,95 Menit 59,8 Jam 14,1 Jam 

 

Hasil proyeksi menunjukkan inefisiensi signifikan pada penggunaan CPU, 

dengan durasi pelatihan terlama mencapai 95,2 jam pada Grid Search. Penerapan 

GPU terbukti memangkas waktu secara drastis, di mana peningkatan efisiensi 

tertinggi terjadi pada Random Search dengan percepatan 5,15 kali lipat (menjadi 

14,2 jam), diikuti oleh Grid Search dengan percepatan 4 kali lipat. Data ini 

menegaskan bahwa akselerasi perangkat keras mutlak diperlukan untuk 

menyelesaikan eksperimen dalam durasi yang wajar. 

4.5 Analisis Dampak Ketidakseimbangan Data 

Mengingat dataset yang digunakan dalam penelitian ini memiliki distribusi 

kelas yang tidak seimbang (imbalanced), penggunaan metrik akurasi global 



 

95 
 

(akurasi keseluruhan) berpotensi memberikan gambaran kinerja yang bias. Model 

cenderung memprediksi kelas mayoritas dengan sangat baik, namun sering kali 

gagal mengenali kelas minoritas yang justru menjadi fokus utama deteksi. 

Oleh karena itu, evaluasi mendalam dilakukan menggunakan kurva Receiver 

Operating Characteristic (ROC) dan Area Under Curve (AUC). Analisis ini 

bertujuan untuk mengukur seberapa baik setiap metode optimasi dalam 

memisahkan kelas Healthy dan Unhealthy secara adil, tanpa memihak pada kelas 

yang memiliki jumlah data lebih banyak. 

Dalam penelitian ini, ROC dan AUC yang digunakan merupakan hasil dari 

model terbaik yang diperoleh dari setiap metode optimasi hiperparameter. 

4.5.1 Evaluasi ROC Curve per Metode Optimasi 

4.5.1.1 Evaluasi ROC Curve Grid Search 

Berikut adalah grafik ROC Curve Grid Search: 

 

Gambar 4.14 Grafik ROC Curve Grid Search 

Berdasarkan gambar 4.14 model yang dioptimasi menggunakan Grid Search 

menunjukkan performa yang sangat stabil dan seimbang (robust). Secara 

keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang 

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai 

AUC ini (0.97 vs 0.97) membuktikan bahwa Grid Search berhasil mengatasi 

masalah imbalance. Algoritma ini mampu menemukan konfigurasi hiperparameter 
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yang membuat model mengenali kelas penyakit (Unhealthy) sama baiknya dengan 

kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas. 

4.5.1.2 Evaluasi ROC Curve Random Seacrh 

Berikut adalah grafik ROC Curve Random Search: 

 

Gambar 4.15 Grafik ROC Curve Random Search 

Berdasarkan gambar 4.15 model yang dioptimasi menggunakan Random 

Search menunjukkan performa yang sangat stabil dan seimbang (robust). Secara 

keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang 

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai 

AUC ini (0.97 vs 0.97) membuktikan bahwa Random Search berhasil mengatasi 

masalah imbalance. Algoritma ini mampu menemukan konfigurasi hiperparameter 

yang membuat model mengenali kelas penyakit (Unhealthy) sama baiknya dengan 

kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas. 

4.5.1.3 Evaluasi ROC Bayesian Optimization 

Berikut adalah grafik ROC Curve Bayesian Optimization: 
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Gambar 4.16 Grafik ROC Curve Bayesian Optimization 

Berdasarkan gambar 4.16 model yang dioptimasi menggunakan Bayesian 

Optimization menunjukkan performa yang sangat stabil dan seimbang (robust). 

Secara keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang 

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Algoritma ini 

mampu menemukan konfigurasi hiperparameter yang membuat model mengenali 

kelas penyakit (Unhealthy) sama baiknya dengan kelas sehat (Healthy), tanpa 

adanya bias terhadap salah satu kelas. 

4.5.1.4 Evaluasi ROC Genetic Algorithm 

Berikut adalah grafik ROC Curve Genetic Algorithm: 

 

Gambar 4.17 Grafik ROC Curve Genetic Algorithm 
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Berdasarkan gambar 4.17 model yang dioptimasi menggunakan Bayesian 

Optimization menunjukkan performa yang sangat stabil dan seimbang (robust). 

Secara keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang 

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai 

AUC ini (0.97 vs 0.97) membuktikan bahwa Bayesian Optimization berhasil 

mengatasi masalah imbalance. Algoritma ini mampu menemukan konfigurasi 

hiperparameter yang membuat model mengenali kelas penyakit (Unhealthy) sama 

baiknya dengan kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas. 

4.5.2 Kesimpulan Analisis Imbalance 

Dari hasil evaluasi ROC keempat metode dapat disimpulkan bahwa model 

yang dihasilkan memiliki tingkat ketahanan (robustness) yang tinggi. Meskipun 

dilatih menggunakan dataset yang tidak seimbang, model mampu mempertahankan 

generalisasi yang baik. Kemampuan model untuk mendeteksi kelas Unhealthy 

dengan AUC 0.97 membuktikan bahwa sistem ini sangat layak untuk 

diimplementasikan sebagai alat bantu diagnosis, karena risiko kesalahan dalam 

mendeteksi (False Negative) telah diminimalisir secara signifikan. 

4.6 Analisis Komparatif Model Rubin dengan Metode Genetic Algorithm 

4.6.1 Perbandingan Konfigurasi Hyperparameter 

Berikut adalah table perbandingan Konfigurasi Hyperparameter Model 

Rubin dengan Konfigurasi Terbaik Genetic Algorithm: 

Table 4.36 Table Perbandingan Konfigurasi Hyperparameter Rubin dengan 

Genetic Algorithm 

Hyperparameter Rubin Genetic Algorithm 

Kernel Conv Layer 1 [64] [64] 

Kernel Conv Layer 2 [64] [48] 

Kernel Size Conv Layer 1 [(2,20)] [(3,25)] 

Kernel Size Conv Layer 2 [(2,10)] [(3,12)] 

Dense Unit Layer 1 [1024] [1204] 

Dense Unit Layer 2 [512] [384] 

Drop Out Rate Layer 1 [0.85565561] [0.4] 
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Hyperparameter Rubin Genetic Algorithm 

Drop Out Rate Layer 2 [0.85565561] [0.8] 

Learning Rate [0.000158] [0.0001] 

Batch Size [256] [64] 

Optimizer [Adam] [Nadam] 

 

Analisis perbandingan hyperparameter pada table 4.35 menunjukkan 

perbedaan strategi yang signifikan antara model referensi (Rubin) dan hasil 

optimasi Genetic Algorithm (GA). Pada arsitektur CNN, meskipun blok pertama 

sama-sama menggunakan 64 kernel, GA mengurangi kernel blok kedua menjadi 48 

dibandingkan Rubin yang tetap menggunakan 64. Namun, GA memperbesar ukuran 

kernel menjadi (3,25) dan (3,12) dibandingkan Rubin yang hanya (2,20) dan (2,10), 

yang mengindikasikan bahwa model GA lebih memprioritaskan cakupan fitur 

temporal yang luas daripada sekadar jumlah kernel. Perbedaan berlanjut ke lapisan 

fully connected, di mana GA meningkatkan kapasitas layer pertama menjadi 1204 

unit namun merampingkan layer kedua menjadi 384 unit, berbeda dengan Rubin 

yang menggunakan 1024 dan 512 unit. Selain itu, GA menyeimbangkan 

regularisasi dengan menurunkan Dropout Rate lapisan pertama secara drastis 

menjadi 0.4 dari angka agresif 0.85 milik Rubin, sehingga aliran informasi menjadi 

lebih optimal. Terakhir, efisiensi pelatihan ditingkatkan oleh GA melalui 

penggantian optimizer dari Adam ke Nadam, penurunan Batch Size signifikan dari 

256 ke 64, serta penyesuaian Learning Rate menjadi 0.0001, yang secara kolektif 

bertujuan untuk menghindari local minima dan meningkatkan presisi konvergensi. 
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4.6.2 Analisis Perbandingan Confusion Matrix 

 

Gambar 4.18 Gambar perbandingan Confusion Matrix 

Evaluasi komparatif pada Test Set menunjukkan keunggulan konsisten model 

hasil optimasi Genetic Algorithm (GA) dibandingkan model referensi Rubin di 

seluruh kuadran Confusion Matrix. Pada deteksi kelas healthy, model GA terbukti 

lebih presisi dengan meningkatkan True Negative menjadi 8.159 dan menekan 

angka "alarm palsu" (False Positive) menjadi 250 kasus. Peningkatan yang lebih 

krusial secara medis terlihat pada deteksi kelas unhealthy, di mana model GA 

berhasil menaikkan angka True Positive menjadi 1.728 sekaligus mereduksi False 

Negative menjadi 516 kasus, yang mengindikasikan sensitivitas yang lebih baik 

dalam mencegah terlewatnya diagnosis pasien sakit. Secara keseluruhan, total 

prediksi benar meningkat menjadi 9.887, membuktikan bahwa strategi pencarian 

hyperparameter menggunakan Genetic Algorithm efektif menghasilkan konfigurasi 

model yang lebih robust dan akurat dibandingkan konfigurasi statis pada penelitian 

referensi. 

4.7 Analisis Kesalahan Prediksi (Error Analysis) Genetic Algorithm 

Sebagai tahap evaluasi mendalam, dilakukan analisis kesalahan prediksi 

(error analysis) terhadap model terbaik hasil optimasi Genetic Algorithm. Analisis 

ini mengambil sampel acak yang terdiri dari 3 contoh klasifikasi benar (True 

Positive) dan tiga contoh klasifikasi salah (False Positive) untuk membandingkan 

karakteristik visual sinyalnya secara langsung. 
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Gambar 4.19 Gambar Perbandingan Segmentasi Audio True Positive dan False 

Positive 

Berdasarkan pengamatan visual, terungkap perbedaan karakteristik sinyal 

yang signifikan antara kedua kelompok tersebut. Pada data True Positive, sinyal 

tampak stabil dengan osilasi yang konsisten di sekitar garis dasar atau titik nol. 

Sebaliknya, pada kasus False Positive (data sehat yang terprediksi sakit), terlihat 

adanya anomali teknis yang mencolok berupa pergeseran garis dasar (baseline shift) 

yang ekstrem, di mana terjadi lonjakan amplitudo mendadak (step-change) yang 

diikuti oleh perubahan rata-rata sinyal secara permanen. Model CNN diduga 

menginterpretasikan lonjakan energi mendadak dan ketidakaturan struktur 

gelombang ini sebagai fitur patologis (seperti murmur), sehingga memicu 

kesalahan klasifikasi. 
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BAB V 

KESIMPULAN DAN SARAN 

5.1 Kesimpulan 

Berdasarkan hasil Analisa komparatif antar metode dan analisis statistik yang 

dilakukan terhadap empat metode Hyperparameter Optimization (HPO), dapat 

disimpulkan bahwa setiap metode memiliki karakteristik keunggulan yang berbeda, 

namun efisiensi menjadi faktor pembeda utama. Secara nominal pada pengujian 

tunggal, metode Random Search mampu mencatatkan F1-Score tertinggi sebesar 

0,889. Secara statistik melalui uji statistik One-Way ANOVA menunjukkan nilai 

signifikansi sebesar 0,442 (> 0,05). Hal ini membuktikan bahwa tidak terdapat 

perbedaan rata-rata kinerja yang signifikan antara Grid Search, Random Search, 

Bayesian Optimization, dan Genetic Algorithm. Artinya, keempat metode tersebut 

memiliki kemampuan yang setara dalam menemukan konfigurasi hyperparameter 

yang efektif. 

Mengingat tidak adanya perbedaan signifikan dari sisi statistik, penentuan 

metode terbaik didasarkan pada aspek efisiensi komputasi. Genetic Algorithm 

terbukti menjadi metode yang paling unggul secara menyeluruh karena mampu 

mencapai konvergensi optimal hanya dalam waktu 2,5 jam yang dimana ini jauh 

lebih cepat dibandingkan Grid Search yang memakan waktu hingga 23,8 jam 

sambil tetap mempertahankan performa F1-Score yang setara dengan metode 

lainnya. Selain itu, seluruh metode menunjukkan tren skalabilitas yang positif, di 

mana performa model meningkat seiring dengan penambahan volume data latih. 

Oleh karena itu, dengan mempertimbangkan keseimbangan antara efisiensi waktu 

yang superior dan akurasi yang kompetitif secara statistik, Genetic Algorithm 

ditetapkan sebagai metode terbaik dalam penelitian ini. 

Selain hasil evaluasi berbasis F1-Score, analisis tambahan menggunakan 

ROC Curve dan AUC turut memperkuat kesimpulan penelitian ini. Dari hasil 

evaluasi ROC terhadap model terbaik dari keempat metode, dapat disimpulkan 

bahwa model yang dihasilkan memiliki tingkat ketahanan (robustness) yang tinggi, 

bahkan ketika dilatih pada dataset yang tidak seimbang. 
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5.2 Saran 

Dari hasil uji efisiensi komputasi dan analisis statistik, disarankan dalam 

melakukan hyperparameter optimization menggunakan Genetic Algorithm. Hal ini 

dikarenakan metode tersebut terbukti memiliki kecepatan konvergensi yang paling 

superior, mampu menyelesaikan proses optimasi hanya dalam waktu 2,5 jam, jauh 

lebih efisien dibandingkan metode Grid Search maupun Bayesian Optimization 

yang membutuhkan waktu berjam-jam. Meskipun memiliki waktu eksekusi yang 

sangat singkat, hasil uji statistik menunjukkan bahwa performa akurasi yang 

dihasilkan oleh Genetic Algorithm tidak berbeda secara signifikan dengan metode 

lainnya, sehingga menjadikannya solusi yang paling praktis dan hemat sumber daya 

tanpa mengorbankan kualitas model secara drastis. Namun demikian, hasil analisis 

grafik training dan validation loss serta accuracy menunjukkan adanya indikasi 

overfitting, di mana performa model pada data pelatihan meningkat secara 

signifikan tetapi tidak diikuti oleh peningkatan yang sepadan pada data validasi. 

Oleh karena itu, meskipun Genetic Algorithm direkomendasikan sebagai metode 

optimasi terbaik dari sisi efisiensi, penggunaannya tetap perlu disertai kehati-hatian, 

misalnya dengan penerapan teknik regularisasi, early stopping, atau validasi silang, 

guna memastikan kemampuan generalisasi model tetap terjaga. 
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