
HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN

UNTUK DETEKSI KELAINAN DETAK JANTUNG

TUGAS AKHIR

KEVIN CHENG

NIM : 312210013

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG MALANG

2025

i

LEMBAR PENGESAHAN

TUGAS AKHIR

HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN

UNTUK DETEKSI KELAINAN DETAK JANTUNG

Oleh:

KEVIN CHENG

NIM : 312210013

dari:

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS TEKNOLOGI DAN DESAIN

UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan

dan berhak mendapatkan gelar Sarjana Komputer

Dosen Pembimbing I,

Windra Swastika, S.Kom., MT., Ph.D.

NIP. 20070039

Dosen Pembimbing II,

Hendry Setiawan, ST., M.Kom

NIP. 20100006

Dekan Fakultas Teknologi dan Desain,

Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd.

NIP. 20070035

Stamp

i

PERNYATAAN KEASLIAN SKRIPSI

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Skripsi saya

dengan “HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR

CNN UNTUK DETEKSI KELAINAN DETAK JANTUNG” adalah benar benar

hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang

tidak diizinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya

sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap

pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia

menerima sanksi sesuai peraturan yang berlaku.

Malang, 9 Januari 2026

Kevin Cheng

NIM. 312210013

albert.ws
Stamp

ii

HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN

UNTUK DETEKSI KELAINAN DETAK JANTUNG

Kevin Cheng

Universitas Ma Chung

Abstrak

Penyakit kardiovaskular (CVD) merupakan penyebab kematian terbesar di dunia,

sehingga deteksi dini melalui analisis suara jantung (phonocardiogram/PCG)

menjadi sangat penting. Convolutional Neural Network (CNN) telah terbukti efektif

dalam klasifikasi PCG, namun performanya sangat bergantung pada konfigurasi

hyperparameter yang seringkali ditentukan secara manual (trial and error).

Penelitian ini bertujuan untuk mengoptimalkan kinerja arsitektur CNN dalam

mendeteksi kelainan detak jantung dengan membandingkan empat metode

Hyperparameter Optimization (HPO): Grid Search, Random Search, Bayesian

Optimization, dan Genetic Algorithm. Menggunakan dataset PhysioNet/CinC

Challenge 2016, penelitian ini mengevaluasi dampak optimasi terhadap F1-Score

dan efisiensi komputasi. Hasil eksperimen menunjukkan bahwa secara nominal,

Random Search mencatatkan performa tertinggi dengan F1-Score Macro sebesar

0,889 pada data uji. Meskipun uji statistik One-Way ANOVA menunjukkan tidak

ada perbedaan kinerja yang signifikan secara statistik di antara keempat metode

(p=0,442), Genetic Algorithm terbukti sebagai metode paling unggul secara

menyeluruh karena efisiensi komputasinya yang superior, mampu mencapai

konvergensi optimal hanya dalam waktu 2,5 jam dibandingkan Grid Search yang

membutuhkan 23,8 jam. Model hasil optimasi ini juga menunjukkan ketahanan

(robustness) tinggi dalam menangani ketidakseimbangan data dengan capaian nilai

AUC sebesar 0,97 untuk deteksi kelas unhealthy.

Kata Kunci : Convolutional Neural Network, Genetic Algorithm, Hyperparameter

Optimization, Phonocardiogram

iii

HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN

UNTUK DETEKSI KELAINAN DETAK JANTUNG

Kevin Cheng

Universitas Ma Chung

Abstract

Cardiovascular disease (CVD) is the leading cause of death globally, making early

detection through heart sound analysis (phonocardiogram/PCG)1. While

Convolutional Neural Networks (CNN) have proven effective for PCG

classification, their performance heavily depends on hyperparameter

configurations that are often determined manually through trial and error. This

study aims to optimize CNN architecture performance for detecting heartbeat

abnormalities by comparing four Hyperparameter Optimization (HPO) methods:

Grid Search, Random Search, Bayesian Optimization, and Genetic Algorithm.

Utilizing the PhysioNet/CinC Challenge 2016 dataset, this research evaluates the

impact of optimization on F1-Score and computational efficiency. Experimental

results indicate that nominally, Random Search recorded the highest performance

with a Macro F1-Score of 0.889 on the test set5. Although One-Way ANOVA

statistical testing showed no statistically significant performance difference among

the four methods (p=0.442), the Genetic Algorithm proved to be the most superior

method overall due to its superior computational efficiency, reaching optimal

convergence in just 2.5 hours compared to Grid Search which required 23.8 hours.

These optimized models also demonstrated high robustness in handling data

imbalance, achieving an AUC of 0.97 for the unhealthy class detection.

Key Word : Convolutional Neural Network, Genetic Algorithm, Hyperparameter

Optimization, Phonocardiogram

iv

KATA PENGANTAR

Puji dan syukur ke hadirat Tuhan Yang Maha Esa atas rahmat dan karunianya,

sehingga penyusunan laporan tugas akhir yang berjudul “HYPERPARAMETER

OPTIMIZATION PADA ARSITEKTUR CNN UNTUK DETEKSI KELAINAN

DETAK JANTUNG” dapat terselesaikan dengan baik.

Dalam penyusunan tugas akhir penulis telah mendapatkan banyak bantuan dari

berbagai pihak. Pada kesempatan ini penulis mengucapkan terima kasih kepada:

1. Tuhan Yang Maha Esa atas berkat dan rahmat-Nya tugas akhir dapat

diselesaikan dengan baik.

2. Kedua orangtua dan keluarga lainnya yang memberikan dukungan berupa

doa dan restu selama melaksanakan dan pengerjaan tugas akhir.

3. Bapak Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd. selaku Dekan Fakultas

Teknologi dan Desain.

4. Bapak Hendry Setiawan, ST., M.Kom selaku Kepala Program Studi Teknik

Informatika.

5. Windra Swastika, S.Kom., MT., Ph.D. selaku dosen pembimbing I selama

penyelesaian tugas akhir yang telah meluangkan waktu, memberikan

arahan, bimbingan, dan motivasi yang tak ternilai.

6. Bapak/Ibu dosen Program Studi Teknik Informatika yang telah memberikan

ilmu selama masa studi saya di Universitas Ma Chung.

7. Rekan-Rekan Mahasiswa Tekik Informatika Univeristas Ma Chung

Angkatan 2022.

Adapun dalam penyusunan laporan ini penulis menyadari kekurangan dalam

laporan tugas akhir ini dan menyambut baik kritik serta saran yang membangun.

Besar harapan penulis agar laporan ini memberikan ilmu dan manfaat bagi semua .

Malang, 9 Januari 2026

Kevin Cheng

1

DAFTAR ISI

LEMBAR PENGESAHAN .. i

PERNYATAAN KEASLIAN SKRIPSI ... i

Abstrak ... ii

Abstract .. iii

DAFTAR ISI ... 1

DAFTAR GAMBAR .. 5

DAFTAR TABEL... 7

1.1 Latar Belakang ... 9

1.2 Identifikasi Masalah .. 11

1.3 Batasan Masalah ... 11

1.4 Rumusan Masalah ... 12

1.5 Tujuan Penelitian .. 12

1.6 Manfaat Penelitian .. 13

1.7 Luaran ... 14

BAB II TINJAUAN PUSTAKA... 15

2.1 Penyakit Kardiovaskular ... 15

2.2 Phonocardiogram (PCG) ... 15

2.3 Artificial Intelligence (AI) .. 16

2.4 Deep Learning ... 17

2.5 Convolutional Neural Network (CNN) 18

2.5.1 CNN 2D .. 19

2.5.2 Komponen Arsitektur CNN ... 19

2.6 Mel-Frequency Cepstral Coefficients (MFCC) 24

2.7 Hyperparameter .. 25

2.7.1 Learning Rate ... 25

2.7.2 Batch Size ... 26

2.7.3 Network Architecture .. 26

2.7.4 Dropout Rate .. 26

2

2.7.5 Optimizer Selection ... 27

2.8 Hyperparameter Optimization (HPO) 27

2.8.1 Grid Search .. 28

2.8.2 Random Search ... 30

2.8.3 Bayesian Optimization ... 31

2.8.4 Genetic Algorithm ... 32

2.9 Confusion Matrix .. 33

2.9.1 Accuracy .. 33

2.9.2 Precision ... 34

2.9.3 Recall (Sensitivity) ... 34

2.9.4 F1-Score ... 34

2.10 Python .. 35

2.10.1 Librosa ... 35

2.10.2 TensorFlow dan Keras ... 35

2.10.3 Scikit-learn ... 35

2.10.4 NumPy ... 36

2.10.5 Pandas.. 36

2.10.6 Matplotlib dan Seaborn ... 36

2.10.7 KaggleHub ... 37

2.10.8 Keras Tuner .. 37

2.11 Penelitian Terdahulu .. 37

BAB III ANALISA DAN PERANCANGAN MODEL 40

3.1 Analisis Kebutuhan ... 41

3.2 Pengumpulan Dataset ... 41

3.3 Preprocessing Data .. 42

3.4 Training Model ... 46

3.4.1 Arsitektur CNN 2D ... 47

3.4.2 Hyperparameter Search Space ... 48

3.4.3 Metode Grid Search .. 51

3.4.4 Metode Random Search ... 53

3

3.4.5 Metode Bayesian Optimization ... 56

3.4.6 Metode Genetic Algorithm ... 59

3.5 Evaluasi Model .. 61

3.5.1 Evaluasi Per Metode .. 62

3.5.2 Analisis Komparatif Antar Metode 63

3.5.3 Statistical Significance Testing .. 64

BAB IV HASIL DAN PEMBAHASAN ... 68

4.1 Data Penelitian dan Hasil Preprocessing Data 68

4.1.1 Hasil Preprocessing Data ... 68

4.2 Hasil Kinerja Model Rubin .. 70

4.2.1 Konfigurasi Hyperparameter Rubin 70

4.2.2 Kinerja Model Rubin .. 71

4.2.3 Performa Perkelas ... 71

4.3 Hasil Hyperparameter Optimization 73

4.3.1 Grid Search .. 73

4.3.2 Random Search ... 77

4.3.3 Bayesian Optimization ... 80

4.3.4 Genetic Algorithm ... 84

4.4 Evaluasi Hyperparameter Optimization 88

4.4.1 Analisis Komparatif Antar Metode 88

4.4.2 Statistical Significance Testing... 91

4.4.3 Analisis Efisiensi Komputasi (CPU vs GPU) 94

4.5 Analisis Dampak Ketidakseimbangan Data 94

4.5.1 Evaluasi ROC Curve per Metode Optimasi 95

4.5.2 Kesimpulan Analisis Imbalance .. 98

4.6 Analisis Komparatif Model Rubin dengan Metode Genetic

Algorithm 98

4.6.1 Perbandingan Konfigurasi Hyperparameter 98

4.6.2 Analisis Perbandingan Confusion Matrix 100

4.7 Analisis Kesalahan Prediksi (Error Analysis) Genetic

Algorithm 100

4

BAB V KESIMPULAN DAN SARAN .. 102

5.1 Kesimpulan .. 102

5.2 Saran ... 103

DAFTAR PUSTAKA ... 104

5

DAFTAR GAMBAR

Gambar 2.1 Visualisasi Phonocardiogram ..16

Gambar 2.2 Visualisasi Convolutional Neural Network ..19

Gambar 2.3 Mel spectrogram dan Mel-Frequency Cepstral Coefficients 25

Gambar 2.4 Ilustrasi Grid Search. ...29

Gambar 2.5 Ilustrasi Random Search ...30

Gambar 2.6 Ilustrasi Bayesian Optimization ...32

Gambar 2.7 Confusion Matrix ...33

Gambar 3.1 Tahap Penelitian ...40

Gambar 3.2 Alur Preprocessing Data ..43

Gambar 3.3 Visualisasi Segmentasi Audio ..44

Gambar 3.4 Visualisasi Ekstraksi Segmentasi ...44

Gambar 3.5 Visualisasi Ekstraksi Fitur MFCC ..45

Gambar 3.6 Diagram Flow Training model ...46

Gambar 3.7 Visualisasi arsitektur Rubin et al. ...47

Gambar 3.8 Diagram Flow Grid Search ..52

Gambar 3.9 Diagram flow Random Search ...54

Gambar 3.10 Diagram Flow Bayessian Optimization ...57

Gambar 3.11 Representasi Chromosome dalam Genetic Algorithm60

Gambar 4.1 Visualisasi Algoritma Springer dalam deteksi Lokasi S1 dan S268

Gambar 4.2 Hasil pemotongan sinyal pada S1 ..69

Gambar 4.3 Visualisasi Ekstraksi Fitur MFCC ..69

Gambar 4.4 Confusion Matrix Rubin ...71

Gambar 4.5 Confusion Matrix Hasil Grid Search ...74

Gambar 4.6 Grafik Loss dan Accuracy Training dan Validation Grid Search……68

Gambar 4.7 Confusion Matrix Hasil Random Search ..78

Gambar 4.8 Grafik Loss dan Accuracy Training dan Validation Random Search.71

Gambar 4.9 Confusion Matrix Hasil Bayesian Optimization82

Gambar 4.10 Grafik Loss dan Accuracy Training dan Validation Bayesian

Optimization ……………………………………………………………………………...75

Gambar 4.11 Confusion Matrix Hasil Genetic Algorithm85

Gambar 4.12 Chart F1-Score Range per Generation ..85

6

Gambar 4.13 Grafik Loss dan Accuracy Training dan Validation Genetic

Algorithm………………………………………………………………………………….77

Gambar 4.14 Grafik ROC Curve Grid Search ...95

Gambar 4.15 Grafik ROC Curve Random Search ...96

Gambar 4.16 Grafik ROC Curve Bayesian Optimization97

Gambar 4.17 Grafik ROC Curve Genetic Algorithm ...97

Gambar 4.18 Gambar perbandingan Confusion Matrix …………………………….92

7

DAFTAR TABEL

Table 1.1 Rencana Penelitian...6

Tabel 3.1 Hyperparameter Search Scope………………………………………...48

Table 3.2 Parameter dan Strategi Optimization Grid Search ……………………52

Table 3.3 Parameter dan Strategi Optimization Random Search ………………..55

Tabel 3.4 Parameter dan Strategi Bayessian Optimization ……………………...58

Tabel 3.5 Parameter dan Strategi Genetic Algorithm ……………………………60

Tabel 4.1 Tabel perbandingan jumlah data ………………………………………69

Tabel 4.2 Tabel Konfigurasi Hyperparameter Rubin ……………………………70

Table 4.3 Table Rekapitulasi Kinerja Model Rubin ……………………………..71

Table 4.3 Tabel performa Kelas pada Training Set Rubin ………………………71

Table 4.4 Tabel performa Kelas pada Validation Set Rubin …………………….72

Table 4.5 Tabel performa Kelas pada Test Set Rubin ……………………………72

Table 4.6 Table Search Space Reduce Grid ……………………………………..73

Table 4.7 Table Konfigurasi Hyperparameter Terbaik Grid Search ……………74

Table 4.8 Table Rekapitulasi Kinerja Hasil Grid Search ……………………….74

Table 4.9 Tabel performa Kelas pada Training Set Grid Search ………………. 76

Table 4.10 Tabel performa Kelas pada Validation Set Grid Search …………… 76

Table 4.11 Tabel performa Kelas pada Test Set Grid Search …………………... 77

Table 4.12 Table Konfigurasi Hyperparameter Terbaik Random Search ……….77

Table 4.13 Table Rekapitulasi Kinerja Hasil Random Search …………………. 78

Table 4.14 Tabel performa Kelas pada Training Set Random Search …………...79

Table 4.15 Tabel performa Kelas pada Validation Set Random Search …………80

Table 4.16 Tabel performa Kelas pada Test Set Random Search ……………......80

Table 4.17 Table Konfigurasi Hyperparameter Terbaik Bayesian Optimization .81

Table 4.18 Table Rekapitulasi Kinerja Hasil Bayesian Optimization …………...81

Table 4.19 Tabel performa Kelas pada Training Set Bayesian Optimization ……83

Table 4.20 Tabel performa Kelas pada Validation Set Bayesian Optimization ….83

Table 4.21 Tabel performa Kelas pada Test Set Bayesian Optimization ………...84

Table 4.22 Table Konfigurasi Hyperparameter Terbaik Genetic Algorithm …….84

Table 4.23 Table Rekapitulasi Kinerja Hasil Genetic Algorithm ………………..85

Table 4.24 Tabel performa Kelas pada Training Set Genetic Algorithm ………..87

8

Table 4.26 Tabel performa Kelas pada Validation Set Genetic Algorithm ………87

Table 4.27 Tabel performa Kelas pada Test Set Genetic Algorithm ……………..88

Table 4.28 Table Perbandingan Efektivitas Metode HPO ………………………88

Table 4.29 Table Perbandingan Efisiensi Metode HPO …………………………89

Table 4.30 Table Hasil 5 kali pengulangan dengan random seed ……………….90

Table 4.31 Table Analisis Stabilitas ……………………………………………..90

Table 4.32 Table Analisis Skalabilitas …………………………………………..91

Table 4.33 Hasil Uji Normalitas ………………………………………………...92

Table 4.34 Hasil Tes ANOVA …………………………………………………...93

Table 4.35 Perbandingan estimasi waktu komputasi CPU vs GPU …………….87

Table 4.36 Table Perbandingan Konfigurasi Hyperparameter Rubin dengan

Genetic Algorithm………………………………………………………………………..92

9

BAB I

PENDAHULUAN

1.1 Latar Belakang

Jantung adalah organ vital yang bekerja tanpa henti sepanjang hidup,

memompa darah 60–100 kali per menit untuk menjaga distribusi oksigen dan nutrisi

ke seluruh tubuh. Gangguan pada fungsi jantung dapat berdampak serius pada

organ lain dan mengancam nyawa apabila tidak ditangani secara cepat dan

tepat.Penyakit kardiovaskular (cardiovascular disease/CVD) adalah penyebab

kematian terbesar di dunia. Menurut data terbaru dari Global Burden of Disease

Study, CVD menyebabkan sekitar 19,05 juta kematian pada tahun 2020,

merepresentasikan 32% dari total kematian global (Roth et al., 2020). Di Indonesia,

prevalensi penyakit jantung menunjukkan tren yang mengkhawatirkan. Data Survei

Kesehatan Indonesia 2023 mencatat prevalensi penyakit jantung sebesar 0,85%

(GoodStats, 2023), sementara laporan WHO (2021) menunjukkan bahwa CVD

berkontribusi terhadap 37% kematian di Indonesia.

Banyak penderita tidak mendeteksi kelainan jantung pada tahap awal karena

tidak merasakan gejala umum seperti nyeri dada, sesak napas, atau keringat dingin.

Padahal, deteksi dini sangat penting untuk meningkatkan prognosis pasien dan

mencegah komplikasi serius (Lloyd-Jones et al., 2022). Metode konvensional

seperti auskultasi manual menggunakan stetoskop sangat bergantung pada keahlian

dan pengalaman tenaga medis, sehingga rentan terhadap variabilitas diagnostik dan

dapat menghasilkan hasil yang tidak konsisten, terutama pada fasilitas kesehatan

dengan keterbatasan sumber daya (Nishimura et al., 2021).

Perkembangan teknologi artificial intelligence (AI) dan deep learning

memberikan peluang besar dalam deteksi dini kelainan jantung melalui analisis

suara jantung (phonocardiogram/PCG). Suara jantung mengandung informasi

diagnostik penting yang dapat dimanfaatkan untuk mendeteksi murmur, kelainan

katup, dan gangguan irama (Deng & Bentley, 2021).Beberapa penelitian terkini

telah menunjukkan potensi analisis audio detak jantung sebagai metode screening

awal yang efektif dan cost-effective. Gharehbaghi et al. (2021)

10

mengimplementasikan sistem screening berbasis PCG di setting komunitas untuk

identifikasi dini penyakit kardiovaskular, menunjukkan cost-effectiveness sebagai

alternatif echocardiography untuk screening populasi besar.

Convolutional Neural Network (CNN) terbukti efektif untuk menganalisis

data audio dan sinyal biomedis dalam penelitian-penelitian terkini. Zhang et al.

(2022) mengembangkan pendekatan berbasis scaled spectrogram dan partial

transfer learning untuk klasifikasi suara jantung, mencapai akurasi 98,2%.

Humayun et al. (2020) juga membuktikan bahwa kombinasi CNN dengan fitur Mel-

Frequency Cepstral Coefficients (MFCC) dapat meningkatkan performa klasifikasi

dengan akurasi mencapai 93,5%.

Meskipun arsitektur CNN telah banyak digunakan dalam klasifikasi suara

jantung dan menunjukkan hasil yang menjanjikan sebagai alat screening, performa

model sangat bergantung pada pemilihan hyperparameter yang tepat.

Hyperparameter seperti learning rate, batch size, jumlah layer, jumlah kernel,

dropout rate, dan optimizer memiliki pengaruh signifikan terhadap akurasi,

kecepatan konvergensi, dan kemampuan generalisasi model (Yang & Shami, 2020).

Dalam praktiknya, pemilihan hyperparameter selama ini sering dilakukan secara

manual melalui pendekatan trial and error, di mana peneliti melakukan eksperimen

berulang kali dengan mencoba berbagai kombinasi nilai hyperparameter hingga

memperoleh hasil evaluasi yang memuaskan. Tanpa optimasi hyperparameter yang

sistematis, model dapat mengalami underfitting atau overfitting yang mengurangi

efektivitas sistem deteksi (Goodfellow et al., 2016). Baghel et al. (2020)

menunjukkan bahwa optimasi batch size dan dropout rate berkontribusi signifikan

terhadap peningkatan F1-score dalam deteksi kelainan jantung, mengindikasikan

pentingnya konfigurasi hyperparameter yang tepat.

Berbagai metode optimasi hyperparameter telah dikembangkan untuk

mengatasi keterbatasan pendekatan manual. Metode konvensional seperti grid

search dan random search memberikan pendekatan yang sistematis namun sering

kali memerlukan computational cost yang tinggi (Probst et al., 2020). Metode yang

lebih canggih seperti Bayesian optimization, genetic algorithm, dan particle swarm

11

optimization menawarkan efisiensi yang lebih tinggi dalam mengeksplorasi ruang

pencarian hyperparameter (Paleyes et al., 2021).

Meskipun berbagai metode optimasi hyperparameter telah tersedia, belum

ada penelitian komprehensif yang secara sistematis membandingkan efektivitas dan

efisiensi berbagai metode tersebut dalam konteks klasifikasi detak jantung

menggunakan arsitektur CNN dengan fitur MFCC. Sebagian besar penelitian

terdahulu fokus pada pengembangan arsitektur model atau teknik ekstraksi fitur,

namun kurang memberikan perhatian pada aspek optimasi hyperparameter yang

sebenarnya memiliki kontribusi signifikan terhadap performa akhir sistem (Waring

et al., 2020).

1.2 Identifikasi Masalah

Berdasarkan latar belakang yang telah dipaparkan, dapat diidentifikasi beberapa

masalah utama yang menjadi dasar penelitian ini, yaitu:

• Meskipun telah ada beberapa penelitian mengenai sistem berbasis deep

learning untuk analisis audio detak jantung sebagai metode screening awal,

performa model CNN sangat bergantung pada pemilihan hyperparameter

yang tepat, namun proses optimasi hyperparameter sering kali dilakukan

secara manual atau trial-and-error yang tidak efisien.

1.3 Batasan Masalah

Untuk membatasi ruang lingkup penelitian agar lebih fokus dan terarah, maka

ditetapkan batasan masalah sebagai berikut:

1. Dataset yang digunakan adalah PhysioNet/CinC Challenge 2016 yang berisi

rekaman audio detak jantung dengan klasifikasi normal dan abnormal.

2. Metode deep learning yang digunakan terbatas pada arsitektur

Convolutional Neural Network (CNN) 2D untuk pemrosesan sinyal audio.

12

3. Preprocessing audio meliputi resampling, normalisasi, dan ekstraksi fitur

MFCC (Mel-Frequency Cepstral Coefficients).

4. Hyperparameter yang dioptimasi meliputi learning rate, batch size, jumlah

kernel per layer, kernel size, dense unit, dropout rate, dan optimizer

5. Metode optimasi hyperparameter yang dibandingkan mencakup grid

search, random search, Bayesian optimization, dan Genetic Algorithm

6. Evaluasi performa model menggunakan metrik recall, F1-score, dan

computational efficiency (waktu training dan inference).

7. Implementasi sistem dilakukan menggunakan bahasa pemrograman Python

dengan framework TensorFlow/Keras dan library optimasi seperti Keras

Tuner

1.4 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, maka rumusan masalah dalam

penelitian ini adalah:

1. Bagaimana pengaruh optimasi hyperparameter terhadap performa model

CNN dalam klasifikasi detak jantung?

2. Metode optimasi hyperparameter manakah yang paling efektif untuk

meningkatkan F1-Score dan recall model CNN dalam mendeteksi kelainan

jantung?

1.5 Tujuan Penelitian

Berdasarkan rumusan masalah yang telah ditetapkan, maka tujuan penelitian ini

adalah:

1. Menganalisis pengaruh optimasi hyperparameter terhadap performa model

CNN dalam klasifikasi detak jantung.

13

2. Mengidentifikasi metode optimasi hyperparameter yang paling efektif

dalam meningkatkan F1-Score dan recall model CNN untuk deteksi

kelainan jantung.

1.6 Manfaat Penelitian

Manfaat bagi Universitas

• Menjadi referensi akademik bagi penelitian lanjutan yang berhubungan

dengan klasifikasi sinyal jantung, optimasi hyperparameter, maupun

aplikasi machine learning di bidang kesehatan.

• Meningkatkan reputasi universitas dalam pengembangan teknologi berbasis

AI yang relevan dengan kebutuhan dunia medis dan kesehatan Masyarakat.

• Memberikan peluang kolaborasi riset dengan institusi kesehatan atau rumah

sakit terkait penerapan hasil penelitian dalam sistem deteksi dini kelainan

jantung.

• Memperkaya portfolio penelitian universitas dalam domain deep learning

optimization dan medical AI.

Manfaat bagi Mahasiswa

• Memberikan pengalaman praktis dalam merancang, mengimplementasikan,

dan mengevaluasi sistem klasifikasi berbasis deep learning dengan

pendekatan optimasi yang sistematis.

• Membekali mahasiswa dengan pemahaman mendalam tentang pengaruh

hyperparameter terhadap performa model dan teknik-teknik optimasi

modern dalam deep learning.

• Memberikan keterampilan analisis data dan riset terapan yang dapat

diimplementasikan di dunia kerja, khususnya dalam bidang machine

learning engineering.

14

1.7 Luaran

Penelitian ini diharapkan menghasilkan beberapa luaran sebagai berikut:

1. Model deep learning optimal berbasis arsitektur CNN dengan konfigurasi

hyperparameter yang telah dioptimasi secara sistematis untuk klasifikasi

detak jantung normal dan abnormal.

2. Artikel ilmiah yang membahas metode, eksperimen, serta hasil penelitian,

sehingga dapat dipublikasikan pada forum akademik nasional maupun

internasional.

3. Dokumentasi teknis berupa laporan tugas akhir yang dapat dijadikan

referensi bagi penelitian dan pengembangan selanjutnya.

15

BAB II

TINJAUAN PUSTAKA

2.1 Penyakit Kardiovaskular

Penyakit kardiovaskular (cardiovascular disease/CVD) merupakan

kelompok penyakit yang melibatkan jantung dan pembuluh darah, termasuk

penyakit jantung koroner, penyakit serebrovaskular, penyakit jantung rematik,

dan kondisi lainnya (World Health Organization, 2021). CVD menjadi penyebab

utama kematian secara global. Menurut data terbaru dari Global Burden of

Disease Study 2019, CVD menyebabkan sekitar 19,05 juta kematian pada tahun

2020, merepresentasikan 32% dari seluruh kematian di dunia (Roth et al., 2020).

Kelainan jantung dapat bermanifestasi dalam berbagai bentuk, termasuk

kelainan katup jantung, penyakit jantung kongenital, kardiomiopati, dan aritmia

(Virani et al., 2020). Deteksi dini kelainan jantung sangat krusial karena dapat

mencegah progresivitas penyakit, mengurangi risiko komplikasi, dan

meningkatkan kualitas hidup pasien (Lloyd-Jones et al., 2022). Penelitian terkini

menunjukkan bahwa early detection dan appropriate management dapat

mengurangi mortalitas CVD hingga 30–40% (Mensah et al., 2023).

2.2 Phonocardiogram (PCG)

Phonocardiogram (PCG) adalah rekaman digital dari suara jantung yang

dihasilkan oleh aktivitas mekanik jantung, termasuk pembukaan dan penutupan

katup jantung, aliran darah turbulent, dan getaran dinding jantung (Messner et al.,

2023). PCG merepresentasikan vibrasi yang dihasilkan oleh jantung dalam bentuk

sinyal audio yang dapat dianalisis secara kuantitatif untuk keperluan diagnostik

dan screening.

Suara jantung normal terdiri dari dua komponen utama: S1 dan S2. S1 (first

heart sound) dihasilkan oleh penutupan katup atrioventrikular (mitral dan

trikuspid) pada awal sistol ventrikel, sedangkan S2 (second heart sound)

16

dihasilkan oleh penutupan katup semilunar (aorta dan pulmonal) pada akhir sistol

ventrikel (Nishimura et al., 2021). Pada kondisi patologis, dapat muncul suara

tambahan seperti S3, S4, murmur, clicks, atau rubs yang mengindikasikan

kelainan jantung spesifik seperti heart failure, valvular disease, atau pericardial

disease (Otto et al., 2020).

Murmur jantung merupakan suara tambahan yang dihasilkan oleh aliran

darah turbulent melalui struktur jantung. Murmur dapat diklasifikasikan sebagai

innocent (benign) atau pathological berdasarkan karakteristik akustiknya (Frank

et al., 2022). Karakteristik penting murmur meliputi timing (systolic, diastolic,

continuous), intensitas (grade 1–6 berdasarkan Levine scale), pitch (high,

medium, low), quality (blowing, harsh, rumbling), lokasi auskultasi terbaik, dan

pola radiasi ke area anatomis lainnya (Bonow et al., 2021).

Analisis PCG memiliki beberapa keunggulan dibandingkan auskultasi

manual, termasuk objektivitas, repeatability, kemampuan untuk analisis

kuantitatif, dan potensi untuk screening massal (Deng & Bentley, 2021). Dengan

perkembangan teknologi digital stethoscope dan algoritma pemrosesan sinyal

berbasis artificial intelligence, analisis PCG otomatis menjadi semakin feasible

untuk aplikasi klinis, terutama untuk telemedicine dan point-of-care screening.

Gambar 2.1 Visualisasi Phonocardiogram

2.3 Artificial Intelligence (AI)

Artificial Intelligence (AI) adalah cabang ilmu komputer yang bertujuan

menciptakan sistem yang dapat melakukan tugas-tugas yang normalnya

memerlukan kecerdasan manusia (Russell & Norvig, 2020). AI mencakup

berbagai kemampuan kognitif seperti learning, reasoning, problem-solving,

perception, dan language understanding. Secara fundamental, AI berupaya untuk

membuat mesin yang dapat berpikir dan bertindak secara rasional dalam berbagai

17

situasi. Konsep AI pertama kali diperkenalkan oleh McCarthy et al. (1956) dalam

Dartmouth Conference, di mana mereka mendefinisikan AI sebagai "the science

and engineering of making intelligent machines". Russell dan Norvig (2020)

mengklasifikasikan definisi AI menjadi empat kategori: systems that think like

humans, systems that think rationally, systems that act like humans, dan systems

that act rationally.

2.4 Deep Learning

Deep learning adalah cabang dari machine learning yang menggunakan

neural networks dengan beberapa hidden layers (deep neural networks) untuk

mempelajari representasi data yang kompleks (LeCun et al., 2015). Keunggulan

utama deep learning adalah kemampuannya untuk secara otomatis mengekstraksi

fitur dari data mentah tanpa memerlukan feature engineering manual yang

ekstensif (Goodfellow et al., 2016). Istilah “deep” merujuk pada jumlah layers

dalam network yang memungkinkan model mempelajari fitur pada berbagai

tingkat abstraksi, di mana layer bawah mendeteksi pola sederhana dan layer atas

mengombinasikannya menjadi representasi yang lebih kompleks. Deep learning

telah mencapai dampak transformasional dalam berbagai domain dengan kinerja

yang sangat tinggi, terutama sejak kemajuan dalam large-scale models dan

sumber daya komputasi (Sejnowski, 2020).

Prinsip fundamental deep learning didasarkan pada pembelajaran hierarkis

(hierarchical learning) dan representasi terdistribusi (distributed

representations). Neural networks dalam deep learning terdiri dari interconnected

layers dari neuron buatan yang melakukan transformasi non-linear terhadap data

masukan. Setiap layer menerima input dari layer sebelumnya, melakukan

penjumlahan berbobot dan aktivasi non-linear, kemudian meneruskan output ke

layer berikutnya. Proses pelatihan menggunakan algoritma backpropagation

untuk mengoptimalkan bobot berdasarkan loss function yang mengukur

perbedaan antara prediksi model dan label sebenarnya. Optimisasi dilakukan

melalui variasi gradient descent seperti Stochastic Gradient Descent (SGD),

Adam, atau AdamW yang menyesuaikan parameter secara iteratif untuk

meminimalkan loss (Loshchilov & Hutter, 2019). Kemajuan terbaru dalam teknik

18

optimisasi, metode regularisasi, dan inovasi arsitektur telah meningkatkan

stabilitas pelatihan serta kinerja model secara signifikan (Zhang et al., 2021).

2.5 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) adalah jenis deep neural network

yang dirancang khusus untuk pemrosesan data dengan struktur menyerupai grid,

seperti gambar dan sinyal deret waktu (time-series) (LeCun et al., 1998). CNN

telah merevolusi bidang computer vision dan semakin banyak diaplikasikan untuk

pemrosesan sinyal audio serta data biomedis (Krizhevsky et al., 2012). Arsitektur

CNN terinspirasi dari organisasi visual cortex pada mamalia, di mana neuron

merespons rangsangan hanya pada wilayah terbatas yang disebut receptive field

(Hubel & Wiesel, 1962). CNN mengimplementasikan konsep ini melalui

konektivitas lokal (local connectivity) dan pembagian bobot (weight sharing),

yang membuat network efisien dalam mendeteksi pola pada berbagai lokasi dalam

data masukan.

Prinsip fundamental CNN didasarkan pada tiga konsep utama (Goodfellow

et al., 2016). Pertama, konektivitas lokal (local connectivity), di mana setiap

neuron hanya terhubung ke wilayah lokal dari masukan, sehingga jumlah

parameter berkurang drastis dan network dapat fokus pada pola lokal. Kedua,

pembagian parameter (parameter sharing), yaitu penggunaan kernel yang sama

pada berbagai posisi dalam masukan, membuat CNN bersifat translation

equivariant serta efisien dalam penggunaan parameter. Ketiga, pembelajaran fitur

hierarkis (hierarchical feature learning), di mana CNN secara otomatis

mempelajari representasi hierarkis melalui penumpukan beberapa layers, dengan

layer awal mendeteksi fitur sederhana dan layer lebih dalam mempelajari fitur

semantik tingkat tinggi (LeCun et al., 2015).

19

Gambar 2.2 Visualisasi Convolutional Neural Network

2.5.1 CNN 2D

CNN 2D (Two-Dimensional Convolutional Neural Network) adalah

arsitektur deep learning yang dirancang untuk memproses data dengan struktur grid

dua dimensi (LeCun et al., 2015). Dalam klasifikasi audio, CNN 2D beroperasi

pada representasi visual dari sinyal suara seperti spectrogram, mel-spectrogram,

atau MFCC, di mana sumbu horizontal merepresentasikan waktu dan sumbu

vertikal merepresentasikan frekuensi (Hershey et al., 2017).

Keunggulan CNN 2D dalam pemrosesan sinyal audio mencakup beberapa

aspek. Dari sisi ekstraksi fitur time-frequency, CNN 2D mampu menangkap pola

kompleks secara simultan pada domain waktu dan frekuensi, yang penting untuk

membedakan karakteristik suara jantung seperti S1, S2, dan murmur (Potes et al.,

2016). Dari sisi representasi hierarchical, CNN 2D membangun fitur bertingkat dari

low-level features seperti edges pada layer awal, hingga high-level features seperti

pola akustik kompleks pada layer lebih dalam (Zeiler & Fergus, 2014).

2.5.2 Komponen Arsitektur CNN

Arsitektur CNN terdiri dari beberapa komponen fundamental yang bekerja

bersama untuk feature extraction dan classification:

20

(2-1)

2.5.2.1 Convolutional Layer

Convolutional layer adalah komponen inti dari CNN yang melakukan

operasi konvolusi antara sinyal masukan (input signal) dan kernel yang dapat

dipelajari (learnable kernels atau kernels) untuk mengekstraksi fitur (LeCun et al.,

2015). Pada CNN 1D, operasi konvolusi dapat dinyatakan sebagai:

𝑦[𝑖] = 𝑘∑𝑥[𝑖 + 𝑘] ⋅ 𝑤[𝑘] + 𝑏

di mana x adalah sinyal masukan, w adalah bobot kernel (kernel weights),

bbb adalah bias term, dan y adalah peta fitur keluaran (output feature map).

Convolutional layer berfungsi untuk mendeteksi pola lokal (local patterns) dalam

data masukan, seperti tepi (edges), tekstur (textures), atau dalam konteks audio,

pola suara spesifik serta karakteristik temporal. Lapisan ini menggunakan konsep

pembagian bobot (weight sharing), di mana kernel yang sama diaplikasikan ke

seluruh bagian masukan, sehingga secara signifikan mengurangi jumlah

parameter dan memungkinkan deteksi pola pada berbagai posisi dalam data.

2.5.2.2 Activation Function

Activation function memperkenalkan non-linearity ke dalam neural

network, memungkinkan model untuk mempelajari hubungan yang kompleks dan

non-linear dalam data (Nair & Hinton, 2010). Tanpa activation function, neural

network hanya mampu mempelajari transformasi linear meskipun memiliki

kedalaman berlapis.

Beberapa jenis activation function yang umum digunakan dalam deep learning:

• ReLU (Rectified Linear Unit)

ReLU (Rectified Linear Unit) adalah activation function paling populer dalam

deep learning modern. ReLU memberikan beberapa keunggulan: kesederhanaan

komputasi karena hanya melibatkan operasi ambang (thresholding operation),

mengurangi masalah vanishing gradient yang memfasilitasi pelatihan deep

networks, serta mendorong terjadinya sparsity dengan menghasilkan aktivasi nol

21

untuk input negatif (Agarap, 2018). Namun, ReLU dapat mengalami masalah

dying ReLU di mana neuron menjadi tidak aktif secara permanen jika menerima

nilai negatif yang besar selama pelatihan.

• Leaky ReLU

Leaky ReLU adalah varian dari ReLU yang mengatasi masalah dying ReLU

dengan memberikan kemiringan kecil (small negative slope) untuk input negatif,

di mana α adalah konstanta kecil (biasanya 0.01). Leaky ReLU mempertahankan

keunggulan ReLU sekaligus memungkinkan aliran gradien kecil pada nilai

negatif, sehingga mencegah neuron menjadi benar-benar tidak aktif (Maas et al.,

2013).

• Sigmoid

Sigmoid adalah activation function klasik yang memetakan input ke rentang

(0, 1). Fungsi ini sering digunakan pada output layer untuk klasifikasi biner karena

keluarannya dapat diinterpretasikan sebagai probabilitas. Namun, sigmoid

mengalami masalah serius vanishing gradient untuk input yang sangat besar atau

sangat kecil, sehingga kurang cocok digunakan pada hidden layer dalam deep

networks (Goodfellow et al., 2016).

• Softmax

Softmax adalah activation function yang biasanya digunakan pada output

layer untuk klasifikasi multi-kelas, dengan mengubah skor mentah (logits)

menjadi distribusi probabilitas. Softmax memastikan bahwa nilai keluaran

berjumlah total 1 dan setiap nilai berada di antara 0 dan 1, sehingga dapat

diinterpretasikan sebagai probabilitas kelas.

Pemilihan activation function dapat berdampak signifikan pada performa

model, dinamika pelatihan, dan kecepatan konvergensi (Dubey et al., 2022).

Dalam praktiknya, ReLU dan variannya paling umum digunakan untuk hidden

layer karena efisiensi komputasi dan efektivitasnya, sedangkan sigmoid

22

(2-2)

(2-3)

(2-4)

digunakan untuk keluaran klasifikasi biner dan softmax untuk keluaran klasifikasi

multi-kelas.

2.5.2.3 Pooling Layer

Pooling layer melakukan operasi downsampling untuk mengurangi dimensi

spasial dari feature maps sambil tetap mempertahankan informasi penting

(Scherer et al., 2010). Max pooling, jenis pooling yang paling umum, mengambil

nilai maksimum dari setiap wilayah lokal:

𝑦[𝑖] = 𝑚𝑎𝑥(𝑥[𝑖 ⋅ 𝑠: 𝑖 ⋅ 𝑠 + 𝑘])

di mana s adalah stride dan k adalah ukuran pooling window.

Fungsi pooling layer adalah mengurangi dimensi dan biaya komputasi,

memberikan sifat translation invariance yang membuat model lebih robust

terhadap pergeseran kecil pada input, serta mencegah overfitting dengan

mengurangi jumlah parameter. Selain itu, pooling membantu mengekstraksi fitur

dominan yang tetap relevan meskipun berada pada posisi berbeda dalam sinyal

input.

2.5.2.4 Batch Normalization

Batch Normalization adalah teknik yang menormalisasi aktivasi dari setiap

layer untuk setiap mini-batch, sehingga secara signifikan meningkatkan dinamika

pelatihan (Ioffe & Szegedy, 2015). Operasinya dapat dinyatakan sebagai:

𝑥^ =
𝑥 − 𝜇𝑏𝑎𝑡𝑐ℎ

√𝜎2
𝑏𝑎𝑡𝑐ℎ+∈

𝑦 = 𝛾 ⋅ 𝑥^ + 𝛽

di mana 𝜇𝑏𝑎𝑡𝑐ℎ dan 𝜎2
𝑏𝑎𝑡𝑐ℎ adalah mean dan variance dari mini-batch,

∈adalah konstanta kecil untuk stabilitas numerik, serta 𝛾 dan 𝛽 adalah parameter

yang dapat dipelajari.

23

Batch normalization berfungsi untuk mempercepat pelatihan dengan

memungkinkan learning rate yang lebih tinggi, mengurangi internal covariate

shift sehingga pelatihan lebih stabil, berperan sebagai bentuk regularization yang

dapat mengurangi kebutuhan dropout pada beberapa kasus, serta meningkatkan

aliran gradien di dalam network sehingga memfasilitasi pelatihan arsitektur yang

lebih dalam.

2.5.2.5 Dropout

Dropout adalah teknik regularization yang secara acak menonaktifkan

(mengatur ke nol) sebagian neuron selama pelatihan dengan probabilitas ppp

(dropout rate) (Srivastava et al., 2014). Fungsinya adalah mencegah overfitting

dengan memaksa network untuk tidak bergantung pada neuron tertentu,

mendorong pembelajaran representasi yang lebih robust dan terdistribusi sehingga

mampu melakukan generalisasi lebih baik, serta memberikan efek seperti model

averaging karena pelatihan secara efektif menciptakan ensemble dari berbagai

sub-network. Dropout hanya aktif selama pelatihan dan dinonaktifkan pada saat

inferensi, di mana semua neuron digunakan, tetapi output diskalakan sesuai

dropout rate untuk menjaga nilai ekspektasi.

2.5.2.6 Flatten Layer

Flatten layer mengonversi feature maps multi-dimensi dari convolutional

dan pooling layers menjadi vektor satu dimensi (Goodfellow et al., 2016).

Layer ini berfungsi sebagai lapisan transisi antara bagian convolutional dari

network (yang bekerja pada data spasial/temporal) dan bagian fully connected

(yang membutuhkan input satu dimensi). Operasi flatten hanya melakukan

reshaping data tanpa mempelajari parameter apa pun, dengan tetap

mempertahankan semua informasi dari feature maps dalam susunan linear yang

sesuai untuk dense layers.

2.5.2.7 Fully Connected Layer

Fully connected layer (dense layer) menghubungkan setiap neuron dengan

semua neuron pada layer sebelumnya, melakukan integrasi global terhadap fitur-

24

(2-5)

fitur yang diekstraksi oleh convolutional layers (Goodfellow et al., 2016).

Operasinya dapat dinyatakan sebagai:

𝑦 = 𝑊 ⋅ 𝑥 + 𝑏

di mana W adalah matriks bobot, x adalah vektor input, dan b adalah vektor

bias.

Fully connected layers berfungsi untuk mengombinasikan semua fitur yang

diekstraksi dalam membuat keputusan klasifikasi akhir, mempelajari kombinasi

non-linear yang kompleks dari fitur-fitur tersebut, serta memetakan dari feature

space ke output space (label kelas). Layer ini umumnya ditempatkan mendekati

bagian keluaran network untuk melakukan penalaran tingkat tinggi dan

pengambilan keputusan.

2.6 Mel-Frequency Cepstral Coefficients (MFCC)

Mel-Frequency Cepstral Coefficients (MFCC) adalah representasi fitur

audio yang paling banyak digunakan dalam speech recognition dan audio

classification (Davis & Mermelstein, 1980). MFCC mengekstraksi fitur yang

merefleksikan karakteristik spektral sinyal audio dengan cara yang sesuai dengan

persepsi auditory system manusia.

Nama "mel" berasal dari mel scale, yang merupakan perceptual scale of

pitches yang dikembangkan oleh Stevens et al. (1937). Mel scale didasarkan pada

pengamatan bahwa telinga manusia tidak mempersepsikan frekuensi secara linear.

Gambar 2.3 memperlihatkan representasi visual dari fitur audio

menggunakan Mel spectrogram (atas) dan Mel-Frequency Cepstral Coefficients

(MFCC) (bawah)

25

Gambar 2.3 Mel spectrogram dan Mel-Frequency Cepstral Coefficients (MFCC)

2.7 Hyperparameter

Hyperparameter adalah parameter konfigurasi yang nilainya ditentukan

sebelum proses training dimulai dan tidak dipelajari dari data training (Goodfellow

et al., 2016). Berbeda dengan parameter model (seperti bobot dan bias) yang

dioptimasi selama training melalui backpropagation, hyperparameter harus

ditetapkan secara eksplisit dan memiliki pengaruh signifikan terhadap performa

model. Pemilihan hyperparameter yang tepat merupakan faktor krusial dalam

pengembangan model deep learning yang efektif, karena dapat mempengaruhi

kecepatan konvergensi, akurasi akhir, dan kemampuan generalisasi (Yang &

Shami, 2020).

2.7.1 Learning Rate

Learning rate adalah salah satu hyperparameter paling kritis yang

menentukan seberapa besar pembaruan bobot dalam setiap iterasi (Bengio, 2012).

Learning rate yang terlalu besar dapat menyebabkan optimisasi menyimpang atau

berosilasi, sedangkan learning rate yang terlalu kecil membuat konvergensi

sangat lambat dan dapat terjebak di local minima. Penelitian terkini menunjukkan

bahwa adaptive learning rate schedules, seperti cosine annealing dan learning

26

rate warmup, dapat meningkatkan stabilitas training dan performa akhir model

(Loshchilov & Hutter, 2017). Smith et al. (2021) mendemonstrasikan bahwa

learning rate yang optimal sering bergantung pada ukuran batch, dengan batch

yang lebih besar membutuhkan learning rate yang lebih tinggi secara proporsional

untuk menjaga dinamika training yang efektif.

2.7.2 Batch Size

Batch size mempengaruhi kecepatan pelatihan, kebutuhan memori, dan

kemampuan model untuk menggeneralisasi data baru (Keskar et al., 2017).

Ukuran batch yang kecil menghasilkan estimasi gradien yang bervariasi (noisy)

namun dapat meningkatkan kemampuan generalisasi model. Sebaliknya, ukuran

batch yang besar memberikan estimasi gradien yang lebih stabil tetapi

memerlukan memori yang lebih besar dan cenderung menghasilkan model yang

kurang mampu menggeneralisasi data baru dengan baik.

2.7.3 Network Architecture

Jumlah layer dan unit per layer menentukan kapasitas representasi model

dalam mempelajari pola data (Hanin & Seluk, 2018). Network yang terlalu

dangkal mungkin tidak dapat menangkap pola yang kompleks (underfitting),

sedangkan network yang terlalu dalam dapat mengalami overfitting dan sulit untuk

dilatih. Tan dan Le (2021) mengembangkan EfficientNetV2 yang menunjukkan

pentingnya systematic architecture scaling, bahwa kedalaman, lebar, dan resolusi

sebaiknya diskalakan secara bersama-sama, bukan secara terpisah. Penelitian

modern juga menekankan pentingnya komponen arsitektural seperti skip

connections dan attention mechanisms dalam memungkinkan training yang

efektif pada very deep networks (Liu et al., 2022).

2.7.4 Dropout Rate

Dropout rate menentukan proporsi neuron yang dinonaktifkan secara acak

selama proses pelatihan (Srivastava et al., 2014). Dropout rate yang terlalu rendah

memberikan regularisasi yang tidak memadai sehingga model cenderung overfit,

sedangkan dropout rate yang terlalu tinggi dapat mengurangi kapasitas model

27

secara signifikan sehingga performanya menurun. Penelitian oleh Labach et al.

(2019) mengeksplorasi strategi adaptive dropout di mana dropout rate

disesuaikan secara dinamis selama training berdasarkan performa validasi. Selain

itu, teknik regularisasi alternatif seperti DropBlock dan Cutout menunjukkan hasil

yang menjanjikan untuk domain tertentu seperti computer vision dan audio

processing (Ghiasi et al., 2018; DeVries & Taylor, 2017).

2.7.5 Optimizer Selection

Pemilihan optimizer dapat memberikan dampak signifikan pada performa

dan dinamika training model (Ruder, 2016). Stochastic Gradient Descent (SGD)

dengan momentum adalah optimizer klasik yang tangguh tetapi memerlukan

penyetelan yang cermat. Adam optimizer (Kingma & Ba, 2015) mengadaptasi

learning rate untuk setiap parameter dan sering kali konvergen lebih cepat, tetapi

kadang menghasilkan generalisasi yang lebih buruk pada beberapa tugas.

Perkembangan terbaru termasuk AdamW yang memisahkan weight decay dari

pembaruan gradien (Loshchilov & Hutter, 2019), dan LAMB optimizer yang

memungkinkan pelatihan batch besar secara efektif (You et al., 2020). Liu et al.

(2020) melakukan analisis komprehensif yang menunjukkan bahwa pilihan

optimizer yang optimal bergantung pada kompleksitas tugas, arsitektur model, dan

sumber daya komputasi yang tersedia. Choi et al. (2020) menunjukkan bahwa

pendekatan hibrid yang menggabungkan keunggulan dari beberapa optimizer

dapat mencapai performa yang lebih baik di berbagai jenis tugas.

2.8 Hyperparameter Optimization (HPO)

Hyperparameter optimization (HPO) adalah proses sistematis untuk

menemukan kombinasi hyperparameter yang menghasilkan performa model

terbaik (Feurer & Hutter, 2019). Performa model deep learning sangat bergantung

pada konfigurasi hyperparameter yang optimal, di mana setiap hyperparameter

berinteraksi secara kompleks dan mempengaruhi hasil akhir model (Bergstra &

Bengio, 2012). Sebagai analogi, hyperparameter dapat diibaratkan sebagai "resep"

dalam pembuatan kue, di mana setiap bahan (learning rate, batch size, dropout

rate, dll.) harus dalam takaran yang tepat agar menghasilkan produk yang

sempurna.

28

(2-6)

Manual tuning atau trial-and-error merupakan pendekatan konvensional

yang tidak efisien dan sering kali tidak menghasilkan konfigurasi optimal,

terutama ketika berhadapan dengan high-dimensional hyperparameter space di

mana banyak hyperparameter saling berinteraksi (Claesen & De Moor, 2015).

Kompleksitas ini mendasari munculnya metode HPO yang lebih sistematis dan

otomatis untuk mengeksplorasi hyperparameter space secara efisien.

Dalam hyperparameter optimization, objective function yang ingin

dioptimalkan adalah (Yang & Shami, 2020):

𝜆 ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝐴_𝜆, 𝐷_𝑡𝑟𝑎𝑖𝑛, 𝐷_𝑣𝑎𝑙𝑖𝑑)

 𝜆 ∈ 𝛬

dimana:

• λ adalah konfigurasi hyperparameter

• Λ adalah hyperparameter search space

• A_λ adalah algoritma dengan hyperparameter λ

• D_train adalah training data

• D_valid adalah validation data

• L adalah loss atau error metric

Tujuannya adalah menemukan λ* yang meminimalkan validation error dan

menghindari overfiting.

2.8.1 Grid Search

Grid search merupakan metode HPO yang paling sederhana dan

straightforward dengan pendekatan brute-force (Bergstra & Bengio, 2012). Metode

ini bekerja dengan mendefinisikan grid dari nilai-nilai diskrit untuk setiap

hyperparameter, kemudian secara exhaustive mencoba setiap kombinasi yang

mungkin dalam grid tersebut (Liashchynskyi & Liashchynskyi, 2019).

Kelebihan grid search adalah kesederhanaannya dan guarantee bahwa

kombinasi terbaik dalam grid yang didefinisikan akan ditemukan (Mantovani et al.,

29

2015). Metode ini juga mudah untuk diparalelisasi karena setiap evaluasi

independen satu sama lain. Namun, kekurangan utama grid search adalah

computational cost yang sangat tinggi, terutama ketika jumlah hyperparameter dan

range nilainya besar (Bergstra & Bengio, 2012). Kompleksitas waktu grid search

meningkat secara eksponensial dengan jumlah hyperparameter (curse of

dimensionality), sehingga menjadi kurang efektif untuk high-dimensional search

spaces (Claesen & De Moor, 2015).

Gambar 2.4 menunjukkan ilustrasi Grid Search dalam pencarian

hyperparameter, dengan pendekatan brute-force yang mengevaluasi seluruh

kombinasi dari nilai hyperparameter yang telah ditentukan.

Gambar 2.4 Ilustrasi Grid Search.

2.8.1.1 Reduce Grid

Strategi reduced grid dibuat melalui pendekatan intelligent sampling yang

mempertahankan diversity dalam ruang pencarian hyperparameter. Keras Tuner

GridSearch secara otomatis melakukan sampling dengan prioritas pada kombinasi

yang memiliki probabilitas tinggi menghasilkan performa optimal berdasarkan

interaksi antar hyperparameter. Pendekatan ini mengikuti prinsip yang dijelaskan

oleh Bergstra dan Bengio (2012) bahwa tidak semua dimensi hyperparameter

memiliki pengaruh yang sama terhadap performa model, sehingga sampling dapat

difokuskan pada region yang lebih promising. Reduced grid dibentuk dengan

memastikan setiap nilai dari hyperparameter penting (seperti jumlah kernels, kernel

30

size, dan learning rate) terrepresentasi dengan baik dalam kombinasi yang

dievaluasi.

2.8.2 Random Search

Random search merupakan alternatif yang lebih efisien dibandingkan grid

search, di mana metode ini secara random mengambil sampel kombinasi

hyperparameter dari distribusi yang telah ditentukan (Bergstra & Bengio, 2012).

Alih-alih mencoba setiap kombinasi secara sistematis, random search

mengeksplorasi hyperparameter space dengan sampling acak.

Bergstra dan Bengio (2012) dalam penelitian mereka menunjukkan bahwa

random search secara signifikan lebih efisien daripada grid search untuk

hyperparameter optimization. Keunggulan utama random search adalah

probabilitas yang lebih tinggi untuk menemukan kombinasi yang baik dalam budget

komputasi yang sama, terutama ketika beberapa hyperparameter lebih penting

daripada yang lain. Random search tidak membuang resources untuk mencoba

kombinasi yang sistematis tetapi kurang penting, sehingga dapat mengeksplorasi

lebih banyak nilai untuk hyperparameter yang critical (Bergstra & Bengio, 2012).

Gambar 2.5 adalah representasi dari metode Random Search, di mana

kombinasi nilai hyperparameter dipilih secara acak dari ruang pencarian.

Gambar 2.5 Ilustrasi Random Search

31

2.8.3 Bayesian Optimization

Bayesian optimization adalah metode HPO yang lebih sophisticated dan

intelligent, yang membangun model probabilistik dari fungsi objektif (performa

model) terhadap hyperparameter yang diuji (Shahriari et al., 2016). Metode ini

menggunakan prior knowledge dari eksperimen sebelumnya untuk memandu

pencarian hyperparameter selanjutnya, sehingga dapat menemukan konfigurasi

optimal dengan jumlah evaluasi yang lebih sedikit (Snoek et al., 2012).

Bayesian optimization bekerja dengan membangun surrogate model,

biasanya Gaussian Process (GP), yang memodelkan distribusi probabilitas dari

fungsi objektif (Mockus, 1975). Model ini kemudian digunakan untuk menghitung

acquisition function yang menentukan hyperparameter mana yang paling

menjanjikan untuk dievaluasi selanjutnya (Brochu et al., 2010). Proses ini

melibatkan trade-off antara exploitation (mengeksplorasi region yang sudah

diketahui menghasilkan performa baik) dan exploration (mencari region baru yang

belum pernah diuji) (Shahriari et al., 2016).

Acquisition functions yang umum digunakan meliputi Expected Improvement

(EI), Probability of Improvement (PI), dan Upper Confidence Bound (UCB), yang

masing-masing memiliki karakteristik exploration-exploitation yang berbeda

(Snoek et al., 2012). Keunggulan utama Bayesian optimization adalah efisiensi

komputasinya yang superior, karena metode ini secara intelligent memilih

kombinasi hyperparameter yang paling menjanjikan dan menghindari evaluasi

pada region yang unlikely menghasilkan improvement (Frazier, 2018).

Gambar 2.6 adalah representasi dari metode Bayesian Optimization, di mana

pemilihan hyperparameter dilakukan dengan membangun surrogate model untuk

memodelkan fungsi objektif dan menggunakan acquisition function untuk

menentukan kombinasi hyperparameter berikutnya.

32

Gambar 2.6 Ilustrasi Bayesian Optimization

2.8.4 Genetic Algorithm

Genetic algorithm (GA) adalah metode HPO(Hyperparameter Optimization)

yang terinspirasi dari proses evolusi biologis, menggunakan mekanisme seperti

selection, crossover, dan mutation untuk mengeksplorasi hyperparameter space

(Holland, 1992). Metode ini memaintain populasi dari kandidat solusi (kombinasi

hyperparameter) dan secara iteratif mengevolusi populasi tersebut menuju solusi

yang lebih baik (Goldberg & Holland, 1988).

Proses GA dimulai dengan inisialisasi populasi random, kemudian

mengevaluasi fitness (performa) setiap individu dalam populasi (Lorenzo et al.,

2017). Individu dengan fitness tinggi memiliki probabilitas lebih besar untuk

diseleksi sebagai parents untuk generasi berikutnya. Crossover operation

menggabungkan hyperparameter dari dua parents untuk menghasilkan offspring,

sedangkan mutation operation memperkenalkan variasi random untuk maintain

diversity dan menghindari premature convergence (Eiben & Smith, 2015).

Keunggulan genetic algorithm adalah kemampuannya untuk mengeksplorasi

non-convex dan multimodal search spaces, serta tidak memerlukan gradient

information (Lorenzo et al., 2017). GA juga naturally parallelizable karena evaluasi

fitness dalam satu generasi dapat dilakukan secara independen. Namun, kekurangan

GA termasuk memerlukan tuning dari GA parameters itu sendiri (population size,

33

(2-7)

mutation rate, crossover rate) dan dapat memerlukan banyak evaluasi untuk

converge, terutama untuk high-dimensional spaces (Eiben & Smith, 2015).

2.9 Confusion Matrix

Confusion Matrix adalah tabel yang menggambarkan performa model

klasifikasi dengan membandingkan prediksi model terhadap label aktual (Sokolova

& Lapalme, 2009). Tabel ini terdiri dari empat komponen utama: True Positives

(TP) yaitu data positif yang diprediksi benar sebagai positif, True Negatives (TN)

yaitu data negatif yang diprediksi benar sebagai negatif, False Positives (FP) yaitu

data negatif yang salah diprediksi sebagai positif, dan False Negatives (FN) yaitu

data positif yang salah diprediksi sebagai negatif (Powers, 2011). Confusion matrix

menjadi dasar untuk menghitung berbagai metrik evaluasi lainnya.

Gambar 2.7 Confusion Matrix

2.9.1 Accuracy

Accuracy adalah proporsi total prediksi yang benar dari keseluruhan

prediksi (Powers, 2011). Metrik ini mengukur seberapa akurat model dapat

mengklasifikasikan data dengan benar. Nilai accuracy dapat diperoleh dengan

persamaan:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

34

(2-8)

(2-9)

(2-10)

dimana TP = True Positives, TN = True Negatives, FP = False Positives, dan FN =

False Negatives.

2.9.2 Precision

Precision merupakan proporsi prediksi positif yang benar dari total prediksi

positif (Fawcett, 2006). Precision berfokus pada meminimalisir false positive dan

mengukur ketepatan model ketika memprediksi kelas positif (Davis & Goadrich,

2006). Nilai precision dapat diperoleh dengan persamaan:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

2.9.3 Recall (Sensitivity)

Recall atau sensitivity mengukur kemampuan model untuk mendeteksi

semua sampel positif (Hossin & Sulaiman, 2015). Metrik ini penting dalam konteks

medis dimana mendeteksi semua kasus positif lebih krusial daripada menghindari

false positives (Japkowicz & Shah, 2011). Nilai recall dapat diperoleh dengan

persamaan:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

dimana TP = True Positives dan FN = False Negatives.

2.9.4 F1-Score

F1-Score adalah harmonic mean dari precision dan recall yang memberikan

keseimbangan antara kedua metrik tersebut (Powers, 2011). F1-Score berguna

ketika terdapat trade-off antara precision dan recall, serta penting untuk dataset

dengan class imbalance. Nilai F1-Score dapat diperoleh dengan persamaan:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

dimana precision dan recall adalah nilai dari masing-masing metrik yang telah

dihitung sebelumnya.

35

2.10 Python

Python merupakan bahasa pemrograman yang banyak digunakan dalam

pengembangan aplikasi machine learning dan deep learning karena sintaks yang

mudah dibaca, library yang komprehensif, serta dukungan komunitas yang luas

(Chollet, 2021). Python memiliki keunggulan fleksibilitas yang memungkinkan

peneliti menguji berbagai algoritma dan arsitektur deep learning, yang sangat

penting dalam domain medical signal processing karena akurasi dan performa

menjadi prioritas utama (Géron, 2022).

2.10.1 Librosa

Librosa merupakan library Python yang dirancang khusus untuk analisis

dan pemrosesan sinyal audio (McFee et al., 2015). Dalam penelitian ini, Librosa

digunakan untuk loading dan preprocessing audio files, resampling audio signals

ke uniform sampling rate, ekstraksi MFCC feature sebagai input untuk model deep

learning, dan visualisasi audio signals dan spectrograms untuk exploratory

analysis. Menurut McFee et al. (2015), Librosa menyediakan implementasi yang

reliable dan well-tested dari berbagai audio processing algorithms.

2.10.2 TensorFlow dan Keras

TensorFlow dengan API Keras merupakan kerangka kerja deep learning

yang dikembangkan oleh Google (Abadi et al., 2016; Chollet, 2021). TensorFlow

dan Keras digunakan untuk membangun arsitektur CNN, melatih model dengan

berbagai konfigurasi hyperparameter, membuat fungsi pemantau untuk proses

optimasi hyperparameter, mengevaluasi kinerja model dengan metrik bawaan,

serta menyimpan dan memuat model yang sudah dilatih untuk keperluan

perbandingan. Menurut Chollet (2021), Keras memiliki keunggulan dalam

mendukung pengembangan prototipe secara cepat serta memudahkan penerapan

arsitektur yang kompleks untuk analisis sinyal biomedis.

2.10.3 Scikit-learn

Scikit-learn menyediakan implementasi algoritma machine learning dan

berbagai alat evaluasi yang komprehensif (Pedregosa et al., 2011). Library ini

digunakan untuk membagi dataset menjadi data latih, validasi, dan uji dengan

36

teknik stratifikasi, mengevaluasi model menggunakan metrik seperti akurasi,

presisi, recall, dan F1-score, membuat confusion matrix untuk analisis kinerja yang

lebih detail, melakukan cross-validation untuk estimasi kinerja yang lebih

andal.Serta melakukan praproses data seperti penskalaan dan normalisasi. Menurut

Géron (2022), Scikit-learn memiliki antarmuka yang konsisten dan mudah

digunakan untuk berbagai tugas machine learning.

2.10.4 NumPy

NumPy merupakan library fundamental untuk komputasi ilmiah di Python

yang menyediakan dukungan terhadap array dan matriks multidimensi, beserta

fungsi matematika tingkat tinggi (Harris et al., 2020). Dalam penelitian ini, NumPy

digunakan untuk representasi dan manipulasi audio data dalam bentuk array

multidimensi, operasi matematika untuk normalisasi dan preprocessing, array

reshaping untuk menyiapkan input ke model CNN, statistical calculations untuk

data analysis, dan performance-critical operations dalam feature extraction

pipeline.

2.10.5 Pandas

Pandas menyediakan struktur data dan berbagai alat untuk menganalisis

data secara efektif (McKinney, 2010). Dalam penelitian ini, Pandas digunakan

untuk mengelola metadata dataset (seperti lokasi file, label, dan durasi), melakukan

analisis eksploratif untuk memahami karakteristik data, mengatur konfigurasi

hyperparameter beserta hasilnya, membuat ringkasan statistik dari hasil

eksperimen, serta mengorganisasi metrik evaluasi guna membandingkan berbagai

metode secara lebih efektif.

2.10.6 Matplotlib dan Seaborn

Matplotlib dan Seaborn merupakan library visualisasi dalam Python yang

sangat penting dalam analisis data dan machine learning (Hunter, 2007; Waskom,

2021). Library visualisasi ini digunakan untuk plotting waveforms dari audio

signals, visualizing spectrograms dan MFCC features, training history plots (loss

dan accuracy curves), confusion matrices dengan heatmaps, convergence plots

untuk optimization methods, dan comparative bar plots untuk method comparison.

37

Menurut Géron (2022), visualisasi yang efektif sangat penting untuk memahami

behavior model dan mengkomunikasikan hasil penelitian.

2.10.7 KaggleHub

KaggleHub adalah official Python library untuk mengakses Kaggle datasets

dan models secara programmatic (Kaggle, 2024). Library ini menyediakan

interface sederhana untuk downloading datasets, automatic authentication

menggunakan Kaggle API credentials, intelligent caching untuk menghindari

redundant downloads, dan support untuk dataset versioning. Dalam penelitian ini,

KaggleHub digunakan untuk downloading dataset secara efisien, managing dataset

versions untuk reproducibility, dan automating dataset preparation pipeline.

2.10.8 Keras Tuner

Keras Tuner adalah pustaka untuk penyesuaian hyperparameter yang

terintegrasi dengan TensorFlow/Keras, serta menyediakan antarmuka yang

berskala dan mudah digunakan untuk mengoptimalkan konfigurasi model

(O'Malley et al., 2019). Keras Tuner mengimplementasikan berbagai algoritma

optimasi hyperparameter mutakhir, termasuk Random Search, Bayesian

Optimization, dan Hyperband. Dalam penelitian ini, Keras Tuner digunakan untuk

menerapkan dan membandingkan berbagai metode penyesuaian hyperparameter,

mendefinisikan ruang pencarian hyperparameter, mengelola percobaan optimasi

beserta hasilnya, serta melakukan integrasi dengan TensorBoard untuk visualisasi.

Menurut O'Malley et al. (2019), Keras Tuner merupakan kerangka kerja yang

fleksibel dan kuat sehingga secara signifikan menyederhanakan proses penyesuaian

hyperparameter.

2.11 Penelitian Terdahulu

Penelitian yang pertama adalah penelitian yang dilakukan oleh Maknickas

dan Maknickas pada tahun 2017 dengan judul "Recognition of Normal-Abnormal

Phonocardiographic Signals using Deep Convolutional Neural Networks and Mel-

Frequency Spectral Coefficients". Penelitian ini menerapkan Convolutional Neural

Network (CNN) untuk mengklasifikasikan suara jantung normal dan abnormal

dengan akurasi tinggi mencapai 86.5% pada dataset PhysioNet/CinC Challenge

38

2016. Arsitektur yang digunakan terdiri dari empat convolutional layers dengan

kernel sizes [32, 64, 128, 256], masing-masing diikuti oleh ReLU activation dan

max pooling. Penelitian mereka menunjukkan bahwa CNN mampu secara otomatis

mengekstraksi fitur relevan dari sinyal audio tanpa memerlukan feature

engineering manual yang ekstensif.

Penelitian terdahulu yang kedua adalah penelitian yang dilakukan oleh

Nogueira et al. pada tahun 2019 dengan judul "Classifying Heart Sounds using

Images of Motifs, MFCC and Temporal Features". Penelitian ini membuktikan

bahwa kombinasi CNN dengan fitur Mel-Frequency Cepstral Coefficients (MFCC)

dan temporal features dapat meningkatkan performa klasifikasi suara jantung.

Mereka menggunakan pendekatan multi-modal yang menggabungkan images of

motifs, MFCC, dan temporal features untuk klasifikasi. Sistem mereka mencapai

akurasi 88.9%, precision 87.1%, dan recall 91.2% pada PhysioNet dataset.

Penelitian ini mendemonstrasikan bahwa kombinasi multiple representations dapat

capture complementary information dari PCG signals dan meningkatkan performa

klasifikasi secara signifikan.

Penelitian yang ketiga adalah penelitian yang dilakukan oleh Baghel et al.

pada tahun 2020 dengan judul "Automatic Diagnosis of Multiple Cardiac Diseases

from PCG Signals using Convolutional Neural Network". Penelitian mereka

menunjukkan bahwa optimasi batch size dan dropout rate berkontribusi signifikan

terhadap peningkatan F1-score dalam deteksi kelainan jantung. Mereka

mengembangkan multi-channel CNN untuk otomatis diagnosis dari multiple

cardiac diseases (normal, aortic stenosis, mitral regurgitation, mitral stenosis, dan

mitral valve prolapse) dengan overall accuracy 94.3%. Hasil penelitian

menunjukkan peningkatan performa yang signifikan dengan konfigurasi

hyperparameter yang tepat, dimana optimasi dropout rate dari 0.3 ke 0.5

meningkatkan F1-score sebesar 3.2%.

Penelitian yang keempat adalah penelitian yang dilakukan oleh Bergstra dan

Bengio pada tahun 2012 dengan judul "Random Search for Hyper-parameter

Optimization". Penelitian seminal ini membandingkan grid search dan random

search untuk optimasi hyperparameter dalam machine learning. Hasil penelitian

39

menunjukkan bahwa random search secara signifikan lebih efisien dibandingkan

grid search dalam menemukan konfigurasi optimal, terutama ketika beberapa

hyperparameter lebih berpengaruh dibandingkan yang lain. Mereka memberikan

justifikasi teoretis bahwa jika objective function hanya bergantung pada proyeksi

berdimensi rendah dari ruang hyperparameter, maka random search akan

menghasilkan lebih banyak variasi nilai pada dimensi yang penting.

Penelitian yang kelima adalah penelitian yang dilakukan oleh Snoek et al. pada

tahun 2012 dengan judul "Practical Bayesian Optimization of Machine Learning

Algorithms". Penelitian ini mengembangkan metode optimasi Bayesian dengan

menggunakan Gaussian Processes untuk penyesuaian hyperparameter pada

algoritma machine learning. Mereka membuktikan bahwa optimasi Bayesian

mampu menemukan konfigurasi hyperparameter yang optimal dengan jumlah

evaluasi yang jauh lebih sedikit dibandingkan metode konvensional. Eksperimen

pada berbagai dataset, termasuk klasifikasi pada CIFAR-10, menunjukkan bahwa

optimasi Bayesian dapat mencapai hasil setara dengan state-of-the-art hanya

dengan sekitar sepuluh kali lebih sedikit evaluasi fungsi dibandingkan random

search. Penelitian ini juga memperkenalkan Expected Improvement sebagai fungsi

akuisisi yang efektif untuk memandu proses pencarian.

Penelitian yang keenam dan menjadi landasan arsitektur dalam penelitian ini

adalah penelitian yang dilakukan oleh Rubin et al. pada tahun 2016 dengan judul

"Classifying Heart Sound Recordings using Deep Convolutional Neural Networks

and Mel-Frequency Cepstral Coefficients". Penelitian ini meraih peringkat ke-8

dari 48 tim pada PhysioNet/CinC Challenge 2016 dengan overall score 84.8%,

sensitivity 76.5%, dan specificity 93.1%. Arsitektur yang digunakan terdiri dari dua

convolutional layers dengan 64 kernels dan kernel sizes (2×20) dan (2×10), diikuti

oleh max pooling layers, serta dua fully connected layers dengan 1024 dan 512

units. Arsitektur ini dijadikan kerangka awal dalam penelitian ini karena

strukturnya yang sederhana namun efektif, terdokumentasi dengan baik, dan telah

terbukti memberikan hasil yang konsisten pada dataset PhysioNet 2016. Dengan

menggunakan arsitektur ini sebagai fondasi, penelitian ini akan fokus pada

eksplorasi dan perbandingan berbagai metode optimasi hyperparameter untuk

menemukan konfigurasi optimal yang dapat meningkatkan performa klasifikasi

40

BAB III

ANALISA DAN PERANCANGAN MODEL

Penelitian ini didasarkan pada metode klasifikasi sinyal biomedis dengan

pendekatan deep learning. Objek penelitian berupa rekaman audio

phonocardiogram (PCG) yang merepresentasikan suara jantung manusia dalam

format file .wav. Uji coba dilakukan dengan arsitektur Convolutional Neural

Network (CNN) 1D yang dioptimasi menggunakan empat metode hyperparameter

tuning, yaitu Grid Search, Random Search, Bayesian Optimization, dan Genetic

Algorithm. Proses penelitian dibagi menjadi beberapa tahapan sebagaimana

ditunjukkan pada Gambar 3.1.

Gambar 3.1 Tahap Penelitian

41

3.1 Analisis Kebutuhan

Pada tahap ini dilakukan identifikasi terhadap kebutuhan yang diperlukan

dalam pelaksanaan penelitian agar dapat berjalan secara sistematis dan optimal.

Analisis kebutuhan mencakup perangkat lunak (software), perangkat keras

(hardware), serta literatur pendukung.

Software yang digunakan antara lain Python 3.8 atau lebih tinggi sebagai

bahasa pemrograman utama, serta library Python seperti TensorFlow/Keras untuk

pembangunan dan pelatihan model deep learning, Librosa untuk pemrosesan sinyal

audio dan ekstraksi fitur, NumPy untuk pengolahan data numerik dan operasi array,

Pandas untuk manajemen data dan analisis, Scikit-learn untuk splitting data dan

perhitungan metrik evaluasi, Matplotlib dan Seaborn untuk visualisasi data dan

hasil eksperimen, serta Keras Tuner untuk implementasi berbagai metode

hyperparameter optimization. Selain itu, digunakan juga KaggleHub untuk

mengunduh dataset secara programmatic dari platform Kaggle.

Untuk lingkungan pengembangan, digunakan Integrated Development

Environment (IDE) berupa Visual Studio Code yang menyediakan fitur untuk

eksperimen interaktif dan visualisasi hasil secara real-time. TensorBoard juga

digunakan untuk monitoring proses training dan visualisasi grafik performa model.

Perangkat keras yang digunakan dalam penelitian ini adalah satu unit

komputer workstation yang berlokasi di Laboratorium Aiditech. Perangkat ini

dilengkapi dengan GPU NVIDIA GeForce RTX 3060 yang memiliki VRAM

sebesar 12GB, prosesor dengan kecepatan 4.64 GHz, serta RAM sebesar 16GB.

Spesifikasi hardware ini dipilih untuk mendukung proses training model deep

learning yang memerlukan komputasi intensif, khususnya dalam proses

hyperparameter optimization yang melibatkan ratusan trials evaluasi model.

3.2 Pengumpulan Dataset

Dataset dalam penelitian ini diperoleh dari platform Kaggle dengan nama

Heart Sound Database. Dataset ini merupakan koleksi rekaman phonocardiogram

yang berasal dari PhysioNet/Computing in Cardiology Challenge 2016, sebuah

kompetisi ilmiah yang berfokus pada klasifikasi suara jantung normal dan

abnormal.

42

PhysioNet Challenge 2016 merupakan kompetisi internasional yang

bertujuan mengembangkan algoritma untuk automatic classification dari rekaman

phonocardiogram. Dataset yang dikumpulkan dalam challenge ini telah melalui

proses verifikasi oleh tenaga medis profesional dan quality control yang ketat,

sehingga memiliki ground truth labels yang reliable. Dataset ini telah digunakan

secara luas dalam penelitian-penelitian terdahulu terkait klasifikasi PCG

menggunakan machine learning dan deep learning, menjadikannya benchmark

standard untuk evaluasi performa model.

Data dikumpulkan dalam format audio .wav (Waveform Audio File Format)

yang merupakan format standar untuk penyimpanan data audio tanpa kompresi

lossy. Proses pengambilan dilakukan menggunakan berbagai jenis digital

stethoscopes di berbagai lokasi anatomis (mitral, tricuspid, aortic, dan pulmonic

areas) pada subjek dengan berbagai kondisi kardiovaskular. Keberagaman dalam

perangkat recording dan lokasi auskultasi ini memberikan variabilitas yang

realistic, membuat model yang dilatih pada dataset ini lebih robust dan applicable

untuk kondisi klinis yang sebenarnya.

Dataset ini mencakup dua kategori utama, yaitu suara jantung normal

(healthy/normal) dan suara jantung abnormal (unhealthy/abnormal). Kategori

abnormal mencakup berbagai jenis kelainan kardiovaskular seperti heart murmurs

yang disebabkan oleh valvular disease, arrhythmias atau irregular heart rhythms,

dan kondisi patologis lainnya yang terdeteksi dari karakteristik suara jantung yang

abnormal. Klasifikasi ini dilakukan berdasarkan auskultasi oleh cardiologists dan

dikonfirmasi dengan diagnostic tests seperti echocardiography.

3.3 Preprocessing Data

Setelah dataset yang merupakan data mentah terkumpul, dilakukan

serangkaian tahapan preprocessing untuk mempersiapkan data dalam format yang

sesuai untuk pelatihan model CNN. Metodologi preprocessing yang digunakan

dalam penelitian ini mengikuti pendekatan yang telah divalidasi oleh Rubin et al.

(2016) yang terbukti efektif pada PhysioNet/CinC Challenge 2016.

43

Gambar 3.2 Alur Preprocessing Data

Tahapan pertama adalah audio loading dan resampling. Rekaman audio PCG

dari PhysioNet/CinC Challenge 2016 dataset memiliki sampling rate yang

bervariasi. Seluruh rekaman di-resample ke sampling rate uniform 2000 Hz

menggunakan librosa resampling function. Pemilihan sampling rate 2000 Hz

didasarkan pada dua pertimbangan utama yaitu komponen frekuensi penting dari

suara jantung normal dan abnormal berada di bawah 1000 Hz, sehingga

berdasarkan Nyquist-Shannon sampling theorem, sampling rate 2000 Hz memadai

untuk merepresentasikan seluruh informasi frekuensi yang relevan tanpa

kehilangan informasi atau aliasing.

Tahapan kedua adalah heart sound segmentation menggunakan algoritma

Springer. Segmentasi otomatis dilakukan untuk mengidentifikasi lokasi

fundamental heart sounds (S1 dan S2) serta systolic dan diastolic intervals dalam

setiap rekaman. Algoritma Springer menggunakan Hidden Semi-Markov Model

44

(HSMM) yang telah dilatih untuk mengenali empat state dalam cardiac cycle: S1,

systole, S2, dan diastole. Algoritma bekerja dengan mengekstraksi envelope dari

sinyal PCG menggunakan Hilbert transform, kemudian mengaplikasikan HSMM

untuk melakukan state decoding berdasarkan durasi dan amplitudo karakteristik

dari setiap suara detak jantung. Output dari proses ini adalah anotasi yang menandai

onset time dari setiap S1 dan S2 dalam rekaman, yang akan digunakan sebagai

reference points untuk ekstraksi segmen.

Gambar 3.3 Visualisasi Segmentasi Audio

Tahapan ketiga adalah segment extraction. Setiap rekaman dibagi menjadi

beberapa overlapping segments dengan durasi fixed 3 detik. Setiap segmen

diekstraksi dimulai tepat pada onset S1 yang telah diidentifikasi oleh algoritma

Springer. Dengan sampling rate 2000 Hz, setiap segmen 3 detik menghasilkan

array dengan panjang 6,000 samples. Pemilihan durasi 3 detik didasarkan pada

analisis bahwa durasi ini cukup panjang untuk menangkap beberapa cycle detak

jantung pada heart rate normal berkisar 60-100 BPM, durasi 3 detik akan mencakup

sekitar 3-5 cycle detak jantung. Segmentasi dilakukan secara overlapping dimana

setiap S1 yang terdeteksi menjadi starting point untuk satu segmen, sehingga satu

rekaman panjang dapat menghasilkan beberapa training sample.

Gambar 3.4 Visualisasi Ekstraksi Segmentasi

Tahapan keempat adalah MFCC feature extraction. Proses ekstraksi MFCC

dilakukan dalam beberapa sub-tahap pertama, Short-Time Fourier Transform

(STFT) diterapkan pada setiap segmen dengan frame size 25 ms dan hop length 10

45

ms, menghasilkan 300 time frames untuk segmen 3 detik. Window function yang

digunakan adalah Hamming window untuk mengurangi spectral leakage. Kedua,

power spectrum dari setiap frame dikonversi ke mel scale menggunakan 40

triangular mel kernelbanks yang didistribusikan secara logaritmik antara 0 Hz

hingga 1000 Hz. Ketiga, logarithm diterapkan pada mel-spectrum untuk

merepresentasikan presepsi suara manusia yang bersifat logarithmic. Keempat,

Discrete Cosine Transform (DCT) diaplikasikan untuk mengkompresi informasi

dan menghasilkan 13 MFCC coefficients. Mengikuti Rubin et al., hanya 6 koefisien

MFCC pertama (MFCC 1 sampai MFCC 6) yang digunakan, mengabaikan zeroth

coefficient (yang merepresentasikan total energy) dan higher-order coefficients (7-

12). Pemilihan ini didasarkan pada observasi bahwa lower-order coefficients

menangkap broad spectral envelope yang paling relevan untuk klasifikasi heart

sounds, sementara higher-order coefficients cenderung menangkap fine spectral

details dan noise yang kurang informatif dan dapat menyebabkan overfitting. Hasil

akhir dari tahap ini adalah representasi 2D dengan dimensi 6×300 untuk setiap

segmen, dimana sumbu pertama merepresentasikan 6 MFCC coefficients dan

sumbu kedua merepresentasikan 300 time frames, membentuk "heat map" yang

dapat diperlakukan sebagai grayscale image untuk input ke CNN.

Gambar 3.5 Visualisasi Ekstraksi Fitur MFCC

Tahapan kelima adalah standarisasi. Z-score normalization diterapkan pada

MFCC features untuk memastikan bahwa setiap coefficient memiliki mean nol dan

standard deviation satu. Normalisasi dilakukan secara independent untuk setiap

MFCC coefficient dengan menghitung mean dan standard deviation pada semua

rekaman frame dan semua segmen dalam training set, kemudian mentransformasi

setiap nilai menggunakan formula z = (x - μ) / σ.

46

3.4 Training Model

Penelitian ini menggunakan arsitektur CNN 2D (Two-Dimensional

Convolutional Neural Network) dengan pendekatan optimisasi hyperparameter,

yaitu membandingkan kinerja dari empat metode optimisasi berbeda dalam

menemukan konfigurasi terbaik untuk klasifikasi fonokardiogram. Keempat

metode yang digunakan adalah Grid Search, Random Search, Bayesian

Optimization, dan Genetic Algorithm.

Berikut adalah diagram flow dalam Training model:

Gambar 3.6 Diagram Flow Training model

47

3.4.1 Arsitektur CNN 2D

Arsitektur CNN 2D yang digunakan mengadaptasi pendekatan Rubin et al.

yang meraih peringkat ke-8 dalam PhysioNet/Computing in Cardiology Challenge

2016. Berikut adalah visualisasi arsitekturnya.

Gambar 3.7 Visualisasi arsitektur Rubin et al.

Arsitektur ini menerima input berupa MFCC heat map berukuran 6×300 dan

menghasilkan klasifikasi biner untuk menentukan apakah suara jantung normal atau

abnormal.

Struktur jaringan terdiri dari dua convolutional layer yang masing-masing

diikuti oleh max-pooling layer. Convolutional layer pertama menggunakan 64

kernel dengan kernel 2×20 dan same padding, kemudian dilanjutkan dengan max-

pooling 1×20 dengan stride 5 yang menghasilkan 64 feature maps berukuran 6×60.

Convolutional layer kedua menerapkan 64 kernel dengan kernel 2×10 dan same

padding, diikuti max-pooling 1×4 dengan stride 2 yang mereduksi setiap feature

map menjadi ukuran 6×30.

Setelah tahap konvolusi, dilakukan operasi flattening yang mengubah 64

feature maps (6×30) menjadi vektor satu dimensi berukuran 11.520. Vektor ini

kemudian diproses melalui dua fully connected layer dengan 1.024 dan 512 hidden

units secara berurutan, sebelum akhirnya menghasilkan output klasifikasi biner

48

3.4.2 Hyperparameter Search Space

Tabel 3.1 Hyperparameter Search Scope

Kategori Hyperparameter Range/Option

Architecture

Parameters

Kernel Conv Layer 1 [64, 80, 96]

Kernel Conv Layer 2 [48, 64, 80]

Kernel Size Conv Layer 1
[(2,20), (3,20), (2,25),

(3,25)]

Kernel Size Conv Layer 2
[(2,10), (3,10), (2,12),

(3,12)]

Dense Unit Layer 1 [768, 1024, 1536]

Dense Unit Layer 2 [384, 512, 768]

Regularization

Parameters

Drop Out Rate Layer 1 [0.2, 0.4, 0.6, 0.8]

Drop Out Rate Layer 2 [0.2, 0.4, 0.6, 0.8]

Training Parameters

Learning Rate [0.0001, 0.001, 0.01]

Batch Size [64, 128, 256]

Optimizer
[Adam, Nadam,

Adamax]

Total Search Space 3x3x4x4x3x3x4x4x3x3x3 559.872

Pemilihan jumlah kernel untuk setiap blok konvolusi mengikuti prinsip

progressive feature abstraction yang telah mapan dalam computer vision oleh

Krizhevsky dkk. (2012) dan Simonyan & Zisserman (2015), kemudian diadaptasi

untuk pemrosesan sinyal audio oleh Piczak (2015) dalam penelitian environmental

sound classification menggunakan CNN. Rentang untuk blok konvolusi pertama

dipilih antara 64 hingga 96 kernel sebagai titik awal untuk ekstraksi fitur tingkat

rendah dari MFCC heat map. Hershey dkk. (2017) dalam penelitian CNN untuk

audio event detection menunjukkan bahwa 64-96 kernel optimal untuk lapisan awal

dalam pemrosesan representasi spektral audio. Rentang untuk blok konvolusi kedua

dipilih antara 48 hingga 80 kernel. Berbeda dari arsitektur vision yang umumnya

meningkatkan jumlah kernel secara progresif, penelitian Pons dkk. (2017) tentang

end-to-end learning for music audio menunjukkan bahwa untuk input 2D time-

49

frequency representation, jumlah kernel pada lapisan kedua tidak selalu harus lebih

besar dari lapisan pertama, karena pooling operation sudah mengurangi dimensi

spatial dan meningkatkan receptive field.

Pemilihan rentang untuk ukuran kernel didasarkan pada karakteristik time-

frequency dari representasi MFCC yang telah dianalisis dalam penelitian Zhang

dkk. (2017) tentang deep learning for environmental sound classification. Dengan

input shape (6, 300) dimana sumbu pertama merepresentasikan 6 MFCC

coefficients dan sumbu kedua merepresentasikan 300 time frames, ukuran kernel

harus disesuaikan dengan struktur data ini. Dimensi pertama kernel dirancang untuk

menangkap korelasi antar MFCC coefficients yang berdekatan. Lee dkk. (2009)

dalam penelitian Convolutional Deep Belief Networks menunjukkan bahwa kernel

kecil pada dimensi frequency (2-3) efektif untuk menangkap local frequency

patterns dalam spektrogram. Dimensi kedua kernel berkaitan dengan resolusi

temporal yang disesuaikan dengan karakteristik cardiac cycle.

Setelah flattening operation dari output convolutional block terakhir, dimensi

flatten adalah sekitar 11,520-14,400 features tergantung konfigurasi kernel. Chollet

(2017) merekomendasikan bahwa fully connected layer pertama setelah

convolutional blocks sebaiknya memiliki kapasitas 5-15% dari input dimension

untuk mencegah information bottleneck sambil memberikan dimensionality

reduction. Rentang 768-1536 units (sekitar 5-13% dari ~11,520 input features)

mengikuti prinsip ini, dengan Potes dkk. (2016) dalam solusi pemenang

PhysioNet/CinC Challenge 2016 menggunakan 1024 units untuk heart sound

classification. Dense layer kedua dengan rentang 384-768 units (sekitar 50% dari

dense layer pertama) memberikan progressive dimensionality reduction menuju

output layer.

Rentang learning rate dipilih mengikuti eksplorasi skala logaritmik: 10⁻⁴,

10⁻³, 10⁻², sebagaimana direkomendasikan oleh Bergstra & Bengio (2012) yang

menunjukkan bahwa pengambilan sampel log-uniform lebih efektif untuk

hyperparameter learning rate. Rentang ini mencakup dari learning rate konservatif

(0,0001) yang menjamin konvergensi stabil namun berpotensi lambat, hingga

50

learning rate agresif (0,01) yang memberikan konvergensi lebih cepat tetapi dengan

risiko melampaui atau ketidakstabilan. Kingma & Ba (2015) dalam makalah

tentang optimizer Adam merekomendasikan 0,001 sebagai learning rate default

yang baik, dan rentang yang dipilih mencakup nilai default ini sambil

memungkinkan eksplorasi ke kedua arah. Learning rate yang terlalu kecil dapat

menyebabkan konvergensi lambat dan kemungkinan terjebak di minima lokal,

sedangkan learning rate yang terlalu besar dapat menyebabkan divergensi atau

osilasi di sekitar optima. Rentang 0,0001-0,01 menyediakan ruang eksplorasi yang

wajar untuk menemukan learning rate optimal untuk tugas spesifik.

Rentang ukuran batch dipilih sebagai pangkat 2 (16, 32, 64, 128) untuk

efisiensi komputasi GPU dan penyelarasan memori. Masters & Luschi (2018)

dalam penelitian tentang pelatihan batch kecil menunjukkan bahwa batch kecil (16-

32) memberikan generalisasi yang lebih baik karena gradien yang bising bertindak

sebagai regularisasi implisit, membantu model menghindari minima tajam yang

generalisasinya buruk. Sebaliknya, Keskar dkk. (2017) menunjukkan bahwa batch

besar (64-128) memungkinkan pelatihan lebih cepat karena pemanfaatan GPU yang

lebih baik dan estimasi gradien yang lebih stabil, tetapi dapat konvergen ke minima

tajam. Rentang 16-128 memungkinkan metode optimisasi untuk mengeksplorasi

pertukaran antara kemampuan generalisasi (menguntungkan batch lebih kecil) dan

efisiensi komputasi (menguntungkan batch lebih besar).

Inklusi tiga jenis optimizer (Adam, Adamax, Nadam) memberikan cakupan

komprehensif dari strategi optimisasi berbasis adaptif yang berbeda. Optimizer

Adam (Kingma & Ba, 2015) menggunakan learning rate adaptif dengan

menggabungkan keunggulan dari RMSprop dan momentum, menjadikannya

pilihan default yang baik dan tangguh di berbagai tugas. Adamax, yang juga

diperkenalkan oleh Kingma & Ba (2015), merupakan varian dari Adam yang

berbasis pada norma tak hingga (L_∞). Metode ini dirancang untuk

memberikan stabilitas yang lebih tinggi pada data dengan pembaruan parameter

yang jarang (sparse) atau noisy, serta sering kali lebih robust terhadap perubahan

skala gradien dibandingkan Adam standar. Sementara itu, Nadam (Dozat, 2016)

menggabungkan mekanisme Adam dengan Nesterov Accelerated Gradient (NAG).

51

Integrasi momentum Nesterov ini memungkinkan optimizer untuk

memperhitungkan arah langkah selanjutnya sebelum menghitung gradien, yang

secara teoritis dan praktis sering menghasilkan konvergensi yang lebih cepat dan

kemampuan generalisasi yang lebih baik. Ruder (2016) dalam survei komprehensif

tentang metode optimisasi menunjukkan bahwa tidak ada optimizer tunggal terbaik

untuk semua tugas, dan kinerja bergantung pada karakteristik dari masalah spesifik.

Oleh karena itu, cakupan dari varian metode adaptif modern ini (Adam, Adamax,

Nadam) dipilih untuk memaksimalkan peluang menemukan konfigurasi

konvergensi terbaik.

Kombinasi total teoritis dari semua hyperparameter adalah 3 × 3 × 4 × 4 × 3

×3 × 4 × 4 × 3 × 3 × 3 = 559.872 kombinasi

3.4.3 Metode Grid Search

Grid search merupakan metode HPO yang paling sederhana dan

straightforward dengan pendekatan brute-force (Bergstra & Bengio, 2012). Metode

ini bekerja dengan mendefinisikan grid dari nilai-nilai diskrit untuk setiap

hyperparameter, kemudian secara exhaustive mencoba setiap kombinasi yang

mungkin dalam grid tersebut (Liashchynskyi & Liashchynskyi, 2019).

Kelebihan grid search adalah kesederhanaannya dan guarantee bahwa

kombinasi terbaik dalam grid yang didefinisikan akan ditemukan (Mantovani et al.,

2015). Metode ini juga mudah untuk diparalelisasi karena setiap evaluasi

independen satu sama lain. Namun, kekurangan utama grid search adalah

computational cost yang sangat tinggi, terutama ketika jumlah hyperparameter dan

range nilainya besar (Bergstra & Bengio, 2012). Kompleksitas waktu grid search

meningkat secara eksponensial dengan jumlah hyperparameter (curse of

dimensionality), sehingga menjadi kurang efektif untuk high-dimensional search

spaces (Claesen & De Moor, 2015).

52

Berikut adalah diagram flow dari metode grid search:

Gambar 3.8 Diagram Flow Grid Search

3.4.3.1 Parameter dan Strategi Optimization

Table 3.2 Parameter dan Strategi Optimization Grid Search

Komponen Nilai/Strategi

Search Strategy Reduced grid dengan selective parameters

Grid Size Maximum 200 evaluations

Selection

Method
Cartesian product

Evaluation

Metric
F1-Score

Loss Function Binary Crossentropy

Epochs 100 (maksimum)

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True

53

Table 3.2 Lanjutan Parameter dan Strategi Optimization Grid Search

Komponen Nilai/Strategi

LR Scheduler
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR:

1×10⁻⁵)

Checkpointing ModelCheckpoint (validation accuracy tertinggi)

Validation Split 20% dari training data (stratified)

Random Seed 42 (reproducibility)

3.4.3.2 Framework Implementasi

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5

dengan GridSearch module. Training environment menggunakan TensorFlow

2.13.0 dengan Keras API. Development dilakukan di Visual Studio Code dengan

workstation local.

3.4.3.3 Computional Complexity

Kompleksitas komputasi Grid Search dianalisis berdasarkan jumlah evaluasi,

waktu training, dan kebutuhan resource. Dari 559.872 kombinasi teoritis yang

memerlukan waktu kurang lebih 11,7 tahun, maka dilakukan pengurangan menjadi

200 trials menggunakan metode Reduce Grid dengan waktu rata-rata 11 menit per

trial menggunakan GPU NVIDIA RTX 3060. Total waktu komputasi adalah 36,7

jam (±1,5 hari) untuk eksekusi sequential, yang dapat dipercepat hingga 9 jam

dengan 4 GPUs parallel. Kebutuhan memori per trial mencapai 500 MB dengan

peak usage, sementara GPU 12 GB VRAM yang tersedia mampu menjalankan 4–5

trials parallel. Total storage requirement untuk seluruh proses adalah 1–2 GB.

3.4.4 Metode Random Search

Random search merupakan alternatif yang lebih efisien dibandingkan grid

search, di mana metode ini secara random mengambil sampel kombinasi

hyperparameter dari distribusi yang telah ditentukan (Bergstra & Bengio, 2012).

Alih-alih mencoba setiap kombinasi secara sistematis, random search

mengeksplorasi hyperparameter space dengan sampling acak.

54

Bergstra dan Bengio (2012) dalam penelitian mereka menunjukkan bahwa

random search secara signifikan lebih efisien daripada grid search untuk

hyperparameter optimization. Keunggulan utama random search adalah

probabilitas yang lebih tinggi untuk menemukan kombinasi yang baik dalam budget

komputasi yang sama, terutama ketika beberapa hyperparameter lebih penting

daripada yang lain. Random search tidak membuang resources untuk mencoba

kombinasi yang sistematis tetapi kurang penting, sehingga dapat mengeksplorasi

lebih banyak nilai untuk hyperparameter yang critical (Bergstra & Bengio, 2012).

Pada Random Search menggunakan sampling method Uniform Sampling dan

Uniform Sampling Digunakan untuk categorical dan continuous parameters yang

tidak memiliki skala preferensi tertentu, seperti batch size, optimizer, dense units,

learning rate dan dropout rate. Setiap nilai dalam rentang yang ditentukan memiliki

peluang sama untuk dipilih

Berikut adalah Diagram Flow dari metode Random Search:

Gambar 3.9 Diagram flow Random Search

55

3.4.4.1 Parameter dan Strategi Optimization

Table 3.3 Parameter dan Strategi Optimization Random Search

Komponen Nilai/Strategi

Search Strategy Random sampling dari distributions

Number of

Iterations
200 random evaluations

Sampling

Method
Uniform untuk categorical

Evaluation

Metric
F1-Score

Loss Function Binary Crossentropy

Epochs 100 (maksimum)

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True

LR Scheduler
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR:

1×10⁻⁵)

Checkpointing ModelCheckpoint (validation accuracy tertinggi)

Validation Split 20% dari training data (stratified)

Random Seed 42 (reproducibility)

3.4.4.2 Framework Implementasi

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5

dengan RandomSearch module. Training environment menggunakan TensorFlow

2.13.0 dengan Keras API. Development dilakukan di Visual Studio Code dengan

workstation lokal .

3.4.4.3 Computational Complexity

Kompleksitas komputasi Random Search menggunakan fixed iterations

sebanyak 200 trials dengan waktu rata-rata 10 menit per trial pada GPU NVIDIA

56

RTX 3060. Total waktu komputasi adalah 16,7 jam (±0,7 hari) untuk eksekusi

sequential. Kebutuhan resource identik dengan Grid Search, dengan peak memory

500 MB per trial dan total storage requirement 500 MB hingga 1 GB.

3.4.5 Metode Bayesian Optimization

Bayesian optimization adalah metode HPO yang lebih sophisticated dan

intelligent, yang membangun model probabilistik dari fungsi objektif (performa

model) terhadap hyperparameter yang diuji (Shahriari et al., 2016). Metode ini

menggunakan prior knowledge dari eksperimen sebelumnya untuk memandu

pencarian hyperparameter selanjutnya, sehingga dapat menemukan konfigurasi

optimal dengan jumlah evaluasi yang lebih sedikit (Snoek et al., 2012).

Bayesian optimization bekerja dengan membangun surrogate model,

biasanya Gaussian Process (GP), yang memodelkan distribusi probabilitas dari

fungsi objektif (Mockus, 1975). Model ini kemudian digunakan untuk menghitung

acquisition function yang menentukan hyperparameter mana yang paling

menjanjikan untuk dievaluasi selanjutnya (Brochu et al., 2010). Proses ini

melibatkan trade-off antara exploitation (mengeksplorasi region yang sudah

diketahui menghasilkan performa baik) dan exploration (mencari region baru yang

belum pernah diuji) (Shahriari et al., 2016).

Acquisition functions yang umum digunakan meliputi Expected Improvement

(EI), Probability of Improvement (PI), dan Upper Confidence Bound (UCB), yang

masing-masing memiliki karakteristik exploration-exploitation yang berbeda

(Snoek et al., 2012). Keunggulan utama Bayesian optimization adalah efisiensi

komputasinya yang superior, karena metode ini secara intelligent memilih

kombinasi hyperparameter yang paling menjanjikan dan menghindari evaluasi

pada region yang unlikely menghasilkan improvement (Frazier, 2018).

Pada Bayesian Optimization menggunakan Expected Improvement (EI) yang

merupakan salah satu acquisition function yang paling populer dan efektif dalam

Bayesian optimization (Jones et al., 1998). EI mengukur expected value dari

improvement yang dapat diperoleh dari mengevaluasi hyperparameter tertentu

dibandingkan dengan best observed value saat ini. Metode ini secara natural

57

menyeimbangkan exploration dan exploitation dengan mempertimbangkan baik

mean prediction maupun uncertainty dari surrogate model.

Expected Improvement didefinisikan sebagai ekspektasi dari improvement di

atas nilai terbaik yang telah diamati sejauh ini, yang dinotasikan sebagai f(x⁺), di

mana x⁺ adalah konfigurasi hyperparameter terbaik saat ini. Untuk setiap kandidat

hyperparameter x, EI dihitung dengan formula:

𝐸𝐼(𝑥) = 𝐸[𝑚𝑎𝑥(0, 𝑓(𝑥) − 𝑓(𝑥⁺))]

Dengan asumsi Gaussian Process sebagai surrogate model, yang

memberikan distribusi normal untuk setiap prediksi dengan mean μ(x) dan standard

deviation σ(x), formula EI dapat dihitung secara closed-form:

𝐸𝐼(𝑥) = (𝜇(𝑥) − 𝑓(𝑥⁺) − 𝜉) · 𝛷(𝑍) + 𝜎(𝑥) · 𝜑(𝑍)

Yang dimana (𝜇(𝑥) − 𝑓(𝑥⁺) − 𝜉) · 𝛷(𝑍) merepresentasikan expected

improvement berdasarkan mean prediction. Term ini mendorong algoritma untuk

memilih hyperparameter di region yang diprediksi memiliki performa tinggi

berdasarkan model saat ini.

Berikut adalah Diagram Flow dari metode Bayesian Optimization:

Gambar 3.10 Diagram Flow Bayessian Optimization

58

3.4.5.1 Parameter dan Strategi Optimization

Tabel 3.4 Parameter dan Strategi Bayessian Optimization

Komponen Nilai / Strategi

Search Strategy Sequential model-based optimization

Surrogate Model Gaussian Process (kernel: Matern v=2.5)

Acquisition

Function
Expected Improvement (EI)

Initial Points 10 random initializations

Guided Iterations 190 sequential evaluations

Total Iterations 200 evaluations

Evaluation Metric F1-Score

Loss Function Binary Crossentropy

Epochs 100 (maksimum)

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True

LR Scheduler
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR:

1×10⁻⁵)

Checkpointing ModelCheckpoint (validation accuracy tertinggi)

Validation Split 20% dari training data (stratified)

3.4.5.2 Framework Implementasi

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5

dengan BayesianOptimization module. Training environment menggunakan

TensorFlow 2.13.0 dengan Keras API. Development dilakukan di Visual Studio

Code dengan workstation local.

59

3.4.5.3 Computational Complexity

Kompleksitas komputasi pada Bayesian Optimization terdiri dari 50 trials (5

random + 45 guided) dengan waktu rata-rata sekitar 10 menit per trial. Total waktu

komputasi mencapai ±8,3 jam untuk eksekusi sequential, dan dapat dipercepat

menjadi sekitar 7–8 jam dengan parallel execution, meskipun percepatan terbatas

karena sifat algoritma yang bersifat sekuensial. Overhead komputasi dari operasi

Gaussian Process (GP) relatif kecil, dengan waktu tambahan sekitar 10–15 detik

per iterasi (sekitar 1,5% dari total waktu per trial). Kebutuhan memori mencakup

50–100 MB untuk model GP dan sekitar 500 MB per trial, dengan total storage

300–500 MB.

3.4.6 Metode Genetic Algorithm

Genetic algorithm (GA) adalah metode HPO yang terinspirasi dari proses

evolusi biologis, menggunakan mekanisme seperti selection, crossover, dan

mutation untuk mengeksplorasi hyperparameter space (Holland, 1992). Metode ini

memaintain populasi dari kandidat solusi (kombinasi hyperparameter) dan secara

iteratif mengevolusi populasi tersebut menuju solusi yang lebih baik (Goldberg &

Holland, 1988).

Proses GA dimulai dengan inisialisasi populasi random, kemudian

mengevaluasi fitness (performa) setiap individu dalam populasi (Lorenzo et al.,

2017). Individu dengan fitness tinggi memiliki probabilitas lebih besar untuk

diseleksi sebagai parents untuk generasi berikutnya. Crossover operation

menggabungkan hyperparameter dari dua parents untuk menghasilkan offspring,

sedangkan mutation operation memperkenalkan variasi random untuk maintain

diversity dan menghindari premature convergence (Eiben & Smith, 2015).

Keunggulan genetic algorithm adalah kemampuannya untuk mengeksplorasi

non-convex dan multimodal search spaces, serta tidak memerlukan gradient

information (Lorenzo et al., 2017). GA juga naturally parallelizable karena

evaluasi fitness dalam satu generasi dapat dilakukan secara independen. Namun,

kekurangan GA termasuk memerlukan tuning dari GA parameters itu sendiri

(population size, mutation rate, crossover rate) dan dapat memerlukan banyak

60

evaluasi untuk converge, terutama untuk high-dimensional spaces (Eiben & Smith,

2015).

Dalam Genetic Algorithm, setiap konfigurasi hyperparameter (individual)

direpresentasikan sebagai chromosome yang mengenkode seluruh nilai

hyperparameter. Pemilihan encoding scheme sangat penting untuk memastikan

efektivitas operasi genetika. Chromosome merupakan susunan terurut dari genes,

di mana setiap gene merepresentasikan satu nilai hyperparameter. Pada penelitian

ini, dengan total 14 hyperparameter, struktur chromosome dibentuk sesuai

kombinasi nilai dari masing-masing parameter tersebut.

Gambar 3.11 Representasi Chromosome dalam Genetic Algorithm

3.4.6.1 Parameter dan Strategi Optimization

Tabel 3.5 Parameter dan Strategi Genetic Algorithm

Komponen Nilai / Strategi

Population Size 20 individu per generasi

Number of

Generations
10 generasi

Total Evaluations 200 (20×10)

Selection Method Tournament selection (ukuran turnamen: 3)

Crossover Single-point crossover (rate: 0.8)

Mutation Uniform mutation (rate: 0.1)

Elitism Individu terbaik dipertahankan di setiap generasi

Evaluation Metric F1-Score

Loss Function Binary Crossentropy

Epochs 100 (maksimal)

61

Tabel 3.5 Lanjutan Parameter dan Strategi Genetic Algorithm

Komponen Nilai / Strategi

Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True

LR Scheduler
ReduceLROnPlateau (Factor: 0.2, Patience: 7, Min LR:

1×10⁻⁵)

Checkpointing ModelCheckpoint (validation accuracy tertinggi)

Validation Split 20% dari data pelatihan (stratified)

3.4.6.2 Framework Implementasi

Framework hyperparameter optimization menggunakan custom

implementation untuk Genetic Algorithm. Training environment menggunakan

TensorFlow 2.13.0 dengan Keras API. Development dilakukan di Visual Studio

Code dengan workstation lokal. Library pendukung: DEAP (Distributed

Evolutionary Algorithms in Python) atau implementasi manual untuk genetic

operations.

3.4.6.3 Computational Complexity

Kompleksitas komputasi pada Genetic Algorithm ditentukan oleh ukuran

populasi dan jumlah generasi, yaitu 20 × 10 sehingga menghasilkan total 200

evaluations. Setiap trial memerlukan waktu sekitar 10 menit, sehingga total waktu

komputasi mencapai ±33,3 jam (sekitar 1,4 hari) untuk eksekusi sequential. Dengan

parallel execution, seluruh 20 individu dalam satu generasi dapat dievaluasi secara

bersamaan, menghasilkan waktu komputasi sekitar 8,3 jam dengan 4 GPU atau 16,7

jam dengan 2 GPU. Kebutuhan memori relatif ringan, dengan penyimpanan

populasi sekitar 1 KB per konfigurasi, memori per trial sebesar 500 MB, dan total

storage sekitar 1 GB.

3.5 Evaluasi Model

Setelah seluruh metode hyperparameter optimization selesai melakukan

exploration dan menemukan konfigurasi optimal masing-masing, dilakukan proses

62

evaluasi untuk mengukur performa model CNN 2D dalam mengklasifikasikan

phonocardiogram. Evaluasi dilakukan pada dua level: pertama, evaluasi best

configuration dari masing-masing metode HPO (Grid Search, Random Search,

Bayesian Optimization, dan Genetic Algorithm) pada test set untuk mengukur

generalization performance; kedua, comparison antar metode HPO berdasarkan

computational efficiency dan optimization effectiveness.

Evaluasi ini menggunakan sejumlah metrik yang umum digunakan dalam

bidang klasifikasi biner, antara lain accuracy, precision, recall, F1-score dan

confusion matrix. Accuracy menunjukkan sejauh mana model mampu

mengklasifikasikan audio dengan benar secara keseluruhan. Precision dan recall

memberikan gambaran mengenai ketepatan dan kelengkapan klasifikasi untuk

setiap kelas, sedangkan F1-score digunakan untuk menyeimbangkan precision dan

recall. Sementara itu, confusion matrix digunakan untuk menganalisis distribusi

prediksi model terhadap label sebenarnya, sehingga memudahkan dalam

mengidentifikasi pola kesalahan klasifikasi seperti false positives (normal

diprediksi abnormal) dan false negatives (abnormal diprediksi normal).

3.5.1 Evaluasi Per Metode

Evaluasi per metode dilakukan untuk mengukur performa final dari best

configuration yang ditemukan oleh setiap metode HPO. Setiap metode optimization

(Grid Search, Random Search, Bayesian Optimization, dan Genetic Algorithm)

menghasilkan satu best hyperparameter configuration berdasarkan validation

accuracy tertinggi selama proses optimization.

Best configuration dari setiap metode HPO dievaluasi pada test set yang telah

disisihkan sebelumnya dan tidak pernah digunakan selama proses training maupun

validation. Protocol evaluasi mengikuti langkah-langkah berikut:

1. Model Retraining: Best hyperparameter configuration di-retrain

menggunakan kombinasi training dan validation set (80% dari total data)

untuk memaksimalkan learning dari available data.

63

2. Final Evaluation: Model yang telah di-retrain dievaluasi pada test set (20%

dari total data) yang completely unseen selama proses optimization.

3. Metrics Calculation : Dihitung performance metrics dan confusion matrix.

3.5.2 Analisis Komparatif Antar Metode

Analisis komparatif dilakukan untuk membandingkan empat metode HPO

berdasarkan multiple criteria yang mencakup effectiveness, efficiency, stability, dan

scalability.

3.5.2.1 Efektivitas Optimization

Efektivitas diukur berdasarkan kualitas best solution yang ditemukan oleh

setiap metode:

• Best F1-Score Achieved: Validation F1-Score tertinggi yang dicapai selama

proses optimization

• Test Set Performance : Generalization performance pada test set

3.5.2.2 Efisiensi Komputasi

Efisiensi diukur berdasarkan computational resources yang dibutuhkan untuk

mencapai performa tertentu yaitu:

• Time to Convergence : Wall-clock time hingga mencapai 95% dari best

accuracy

• Number of Trials : Jumlah evaluasi yang diperlukan hingga mencapai

convergence

• Computational Cost : Total GPU hours untuk complete optimization

• Time per Trial : Rata-rata waktu per hyperparameter evaluation

3.5.2.3 Stabilitas Performance

Stabilitas mengukur konsistensi performance across multiple runs dengan

configurations yang berbeda. Pengujian dilakukan dengan melatih ulang

64

(retraining) konfigurasi terbaik dari masing-masing metode optimasi sebanyak 5

kali pengulangan (runs) menggunakan inisialisasi random seed yang berbeda (42,

123, 456, 789, 1024):

• Variance Across Runs: Standard deviation dari test F1-Score pada 5

repeated runs

• Coefficient of Variation (CV): CV = (σ / μ) × 100%

• Range: Perbedaan antara best dan worst performance

3.5.2.4 Skalabilitas

Skalabilitas dianalisis dengan mengevaluasi efektivitas hyperparameter

terbaik masing-masing HPO pada dataset sizes yang berbeda 25%, 50%, 100%.

3.5.3 Statistical Significance Testing

Untuk memastikan bahwa perbedaan kinerja antar metode Hyperparameter

Optimization (HPO) benar-benar signifikan secara statistik dan bukan disebabkan

oleh variasi acak (random variation), dilakukan pengujian signifikansi (hypothesis

testing) terhadap hasil akurasi dari masing-masing metode.

Langkah ini penting untuk menentukan apakah perbedaan performa antar

metode HPO benar-benar berarti (statistically significant) atau hanya muncul akibat

faktor acak dalam proses pelatihan model.

Setiap metode HPO dijalankan sebanyak lima kali dengan kondisi yang

dikontrol secara hati-hati untuk memastikan hasil yang dapat dibandingkan

(comparability). Random seeds yang berbeda digunakan pada setiap pengulangan

dengan nilai 42, 123, 456, 789, dan 1024 untuk menjamin reproducibility sekaligus

mengeksplorasi variasi yang disebabkan oleh random initialization. Semua metode

menggunakan ruang pencarian (search space) dan rentang hyperparameter yang

identik untuk memastikan bahwa perbedaan kinerja benar-benar berasal dari

efektivitas metode optimasi itu sendiri, bukan karena perbedaan dalam ruang

eksplorasi (exploration space).

65

Proses training, validation, dan testing dijaga agar tetap identik di semua

metode menggunakan stratified sampling dengan random state yang sama,

sehingga setiap metode dievaluasi pada data yang persis sama. Protokol evaluasi

dan perhitungan metrik juga dijaga konsisten untuk memastikan perbandingan yang

adil (fair comparison).

3.5.3.1 Uji Normalitas

Langkah awal dalam pengujian signifikansi adalah melakukan uji normalitas

terhadap data hasil F1-Score dari setiap metode HPO. Uji ini bertujuan untuk

mengetahui apakah data berdistribusi normal atau tidak, karena hasil ini akan

menentukan jenis uji hipotesis yang digunakan selanjutnya.

Uji normalitas dilakukan menggunakan Shapiro–Wilk dengan hipotesis

(Royston, 1982; Laerd Statistics, 2024):

 H0 : Data berdistribusi normal

 H1 : Data berdistribusi tidak normal

Apabila data berdistribusi normal, analisis dilanjutkan dengan uji One-Way

ANOVA. Sebaliknya, jika data tidak berdistribusi normal, digunakan uji statistik

Kruskal Wallis Test.

3.5.3.2 One-Way ANOVA

One-Way ANOVA merupakan uji statistik parametrik yang digunakan untuk

membandingkan rata-rata dari tiga atau lebih kelompok independen (Field, 2013).

Berikut adalah hipotesis untuk uji ANOVA :

• H0 : Tidak terdapat perbedaan signifikan antara hasil akurasi keempat

metode HPO.

• H1 : Terdapat perbedaan signifikan antara hasil akurasi keempat metode

HPO.

66

Apabila uji ANOVA menolak hipotesis nol , hal ini hanya menunjukkan

bahwa ada perbedaan di antara metode, namun tidak secara spesifik menunjukkan

metode mana yang berbeda satu sama lain. maka akan dilanjutkan uji post-hoc

untuk mengetahui pasangan metode mana yang berbeda secara signifikan (Laerd

Statistics, 2024).

3.5.3.3 Kruskal-Wallis Test

Kruskal-Wallis test merupakan uji statistik non-parametrik yang digunakan

sebagai alternatif dari One-Way ANOVA ketika asumsi normalitas tidak terpenuhi

(Kruskal & Wallis, 1952).

Berikut adalah hipotesis untuk Kruskal-Wallis test:

• H0: Tidak terdapat perbedaan signifikan antara hasil akurasi keempat

metode HPO.

• H1: Terdapat perbedaan signifikan antara hasil akurasi keempat metode

HPO.

Apabila Kruskal Wallis test menolak hipotesis nol, hal ini hanya

menunjukkan bahwa ada perbedaan di antara metode, namun tidak secara spesifik

menunjukkan metode mana yang berbeda satu sama lain. Untuk mengidentifikasi

secara spesifik pasangan metode yang berbeda secara signifikan, dilakukan uji post-

hoc

3.5.3.4 Post-hoc Test

Apabila hasil uji One-Way ANOVA / Kruskal-Wallis menunjukkan penolakan

terhadap hipotesis nol (H0), yang berarti terdapat perbedaan yang signifikan secara

statistik antara setidaknya dua kelompok metode, maka analisis akan dilanjutkan

dengan uji lanjut atau Post-hoc Test. Pengujian ini bertujuan untuk mengidentifikasi

secara spesifik pasangan metode mana yang memiliki perbedaan performa yang

nyata.

Uji ini akan mengelompokkan metode-metode optimasi ke dalam subset yang

homogen untuk melihat metode mana yang memiliki kinerja setara dan metode

67

mana yang berbeda secara signifikan. Hipotesis yang diuji dalam perbandingan

berpasangan ini adalah:

• H0: 𝜇𝑖 = 𝜇𝑗 (Tidak terdapat perbedaan rata-rata kinerja yang signifikan

antara metode i dan metode j).

• H1: 𝜇𝑖 ≠ 𝜇𝑗 (Terdapat perbedaan rata-rata kinerja yang signifikan antara

metode i dan metode j)

68

BAB IV

HASIL DAN PEMBAHASAN

4.1 Data Penelitian dan Hasil Preprocessing Data

Data yang digunakan dalam penelitian ini bersumber dari PhysioNet/CinC

Challenge 2016 yang diakses melalui repositori Kaggle. Dataset ini terdiri dari

rekaman audio phonocardiogram (PCG) yang diklasifikasikan ke dalam dua kelas

utama Normal dan Abnormal. Sebelum digunakan untuk pelatihan model CNN,

data mentah telah melalui serangkaian tahapan Preprocessing untuk memastikan

kualitas dan keseragaman input.

4.1.1 Hasil Preprocessing Data

Langkah pertama yang dilakukan adalah penyeragaman frekuensi sampling

(resampling) seluruh data audio menjadi 2000 Hz. Berdasarkan hasil observasi

spektral, komponen frekuensi utama dari suara jantung normal dan abnormal

terkonsentrasi di bawah 1000 Hz. Oleh karena itu, sampling rate 2000 Hz terbukti

memadai untuk mempertahankan integritas informasi sinyal tanpa mengalami

aliasing, sesuai dengan Teorema Nyquist-Shannon.

Selanjutnya, algoritma Springer diterapkan untuk mendeteksi lokasi S1 (suara

jantung pertama) dan S2 (suara jantung kedua). Algoritma ini menggunakan Hidden

Semi-Markov Model (HSMM) untuk memetakan probabilitas state siklus jantung.

Gambar 4.1 Visualisasi Algoritma Springer dalam deteksi Lokasi S1 dan S2

Visualisasi hasil segmentasi dapat dilihat pada Gambar 4.1. Garis vertikal

merah menandakan onset S1 dan garis hijau menandakan S2. Hasil ini

menunjukkan bahwa algoritma berhasil mengidentifikasi batas-batas siklus jantung

secara otomatis meskipun terdapat variasi amplitudo pada sinyal asli.

69

Gambar 4.2 Hasil pemotongan sinyal pada S1

Berdasarkan titik deteksi S1 tersebut, sinyal dipotong menjadi segmen-

segmen overlapping dengan durasi tetap 3 detik (6.000 samples). Pemilihan durasi

ini terbukti efektif mencakup rata-rata 3 hingga 5 siklus detak jantung (cardiac

cycles) pada rentang detak jantung normal (60–100 BPM), sehingga memberikan

konteks temporal yang cukup bagi model CNN untuk membedakan pola normal

dan abnormal.

Berikut adalah perbandingan jumlah data sebelum dan sesudah dilakukan

proses segmentasi:

Tabel 4.1 Tabel perbandingan jumlah data

Kategori Data Jumlah File Asli Jumlah Segmentasi Hasil

Normal 2.725 53.652

Abnormal 816 14.585

Setelah segmentasi, setiap potongan sinyal 3 detik dikonversi dari domain

waktu ke domain frekuensi menggunakan ekstraksi fitur Mel-Frequency Cepstral

Coefficients (MFCC). Hasil ekstraksi ini menghasilkan matriks fitur berdimensi 6

× 300. Dimensi ini membentuk representasi visual berupa heatmap yang berfungsi

sebagai citra input bagi arsitektur CNN 2D.

Gambar 4.3 Visualisasi Ekstraksi Fitur MFCC

70

Gambar 4.3 memperlihatkan visualisasi fitur MFCC setelah melalui proses

standarisasi (Z-score normalization). Pada visualisasi ini, sumbu Y

merepresentasikan 6 koefisien MFCC yang menangkap spectral envelope,

sedangkan sumbu X merepresentasikan perubahan fitur tersebut sepanjang 300 time

frames.

4.2 Hasil Kinerja Model Rubin

Sebagai langkah awal eksperimen dan titik acuan (baseline) untuk mengukur

efektivitas metode optimasi hyperparameter, dilakukan pelatihan model

menggunakan arsitektur CNN 2D yang mengadaptasi konfigurasi dari penelitian

Rubin et al. (2016). Konfigurasi ini menggunakan nilai hyperparameter yang

ditetapkan secara manual atau default tanpa melalui proses pencarian otomatis.

4.2.1 Konfigurasi Hyperparameter Rubin

Model dilatih menggunakan konfigurasi hyperparameter statis yang

dirancang untuk mereplikasi struktur dasar arsitektur terdahulu. Rincian

konfigurasi yang digunakan adalah sebagai berikut:

Tabel 4.2 Tabel Konfigurasi Hyperparameter Rubin

Hyperparameter Range/Option

Kernel Conv Layer 1 [64]

Kernel Conv Layer 2 [64]

Kernel Size Conv Layer 1 [(2,20)]

Kernel Size Conv Layer 2 [(2,10)]

Dense Unit Layer 1 [1024]

Dense Unit Layer 2 [512]

Drop Out Rate Layer 1 [0.85565561]

Drop Out Rate Layer 2 [0.85565561]

Learning Rate [0.000158]

Batch Size [256]

Optimizer [Adam]

71

4.2.2 Kinerja Model Rubin

Table 4.3 Table Rekapitulasi Kinerja Model Rubin

Metrik Evaluasi Train Validation Test

Accuracy 0,974 0,933 0,912

F1-Score (Macro) 0,962 0,892 0,860

F1-Score (Weighted) 0,974 0,932 0,909

Gambar 4.4 Confusion Matrix Rubin

4.2.3 Performa Perkelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.3 Tabel performa Kelas pada Training Set Rubin

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,982 0,984 0,983 36.983

Unhealthy 0,944 0,937 0,941 10.340

Rata-rata

(Macro)

0,963 0,961 0,962 47.323

Rata-rata

(Weighted)

0,974 0,974 0,974 47.323

72

Table 4.4 Tabel performa Kelas pada Validation Set Rubin

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,954 0,962 0,958 8.260

Unhealthy 0,840 0,812 0,826 2.001

Rata-rata

(Macro)

0,897 0,887 0,892 10.261

Rata-rata

(Weighted)

0,932 0,933 0,932 10.261

Table 4.5 Tabel performa Kelas pada Test Set Rubin

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,928 0,962 0,945 8.409

Unhealthy 0,837 0,723 0,776 2.244

Rata-rata

(Macro)

0,882 0,842 0,860 10.653

Rata-rata

(Weighted)

0,909 0,912 0,909 10.653

Berdasarkan perbandingan ketiga tabel di atas, dapat disimpulkan bahwa

model masih menunjukkan permasalahan performa yang signifikan akibat

ketidakseimbangan data. Overfitting terjadi lebih parah pada kelas minoritas

(Unhealthy), yang terlihat dari penurunan F1-Score yang jauh lebih drastis

dibandingkan kelas mayoritas. Hal ini juga mencerminkan adanya bias terhadap

kelas Healthy akibat dominasi jumlah data, sehingga model lebih cenderung

memprediksi kondisi normal, yang ditunjukkan oleh tingginya recall pada kelas

Healthy namun rendah pada kelas Unhealthy. Temuan ini menegaskan bahwa

konfigurasi baseline belum optimal untuk menangani imbalance data dan

meningkatkan generalisasi model, sehingga diperlukan optimasi hyperparameter

lebih lanjut untuk meningkatkan kemampuan model dalam mendeteksi kondisi

abnormal.

73

4.3 Hasil Hyperparameter Optimization

Hyperparameter Optimization dilakukan menggunakan empat metode

berbeda untuk mencari konfigurasi terbaik yang dapat meningkatkan performa

deteksi, khususnya pada kelas Unhealthy. Berikut adalah paparan hasil dari masing-

masing metode.

4.3.1 Grid Search

Metode Grid Search dijalankan menggunakan strategi Reduced Grid

sebanyak 192 iterasi untuk mengatasi kendala komputasi dengan durasi 24 jam.

Proses ini mengevaluasi kombinasi parameter secara sistematis pada titik-titik yang

telah ditentukan. Untuk hyperparameter search space yang digunakan dalam

reduce grid adalah sebagai berikut:

Table 4.6 Table Search Space Reduce Grid

Kategori Hyperparameter Range/Option

Architecture

Parameters

Kernel Conv Layer 1 [64]

Kernel Conv Layer 2 [64]

Kernel Size Conv Layer 1 [(2,20]

Kernel Size Conv Layer 2 [(2,10)]

Dense Unit Layer 1 [1024, 1536]

Dense Unit Layer 2 [512, 768]

Regularization

Parameters

Drop Out Rate Layer 1 [0.2, 0.4]

Drop Out Rate Layer 2 [0.2, 0.4]

Training Parameters

Learning Rate [0.0001, 0.001, 0.01]

Batch Size [128, 256]

Optimizer [Adam, Nadam]

Total Search Space 1x1x1x1x2x2x2x2x3x2x2 192

Berdasarkan hasil eksperimen, konfigurasi terbaik ditemukan pada Iterasi 76

Rincian konfigurasi parameter terbaik disajikan pada Tabel 4.7

74

Table 4.7 Table Konfigurasi Hyperparameter Terbaik Grid Search

Hyperparameter Range/Option

Kernel Conv Layer 1 [64]

Kernel Conv Layer 2 [64]

Kernel Size Conv Layer 1 [(2,20)]

Kernel Size Conv Layer 2 [(2,10)]

Dense Unit Layer 1 [1024]

Dense Unit Layer 2 [768]

Drop Out Rate Layer 1 [0.4]

Drop Out Rate Layer 2 [0.2]

Learning Rate [0.0001]

Batch Size [256]

Optimizer [Nadam]

4.3.1.1 Hasil Kinerja Grid Search

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.8 Table Rekapitulasi Kinerja Hasil Grid Search

Metrik Evaluasi Train Validation Test

Accuracy 0,999 0,939 0,924

F1-Score (Macro) 0,999 0,902 0,880

F1-Score (Weighted) 0,999 0,938 0,922

Gambar 4.5 Confusion Matrix Hasil Grid Search

75

Berdasarkan hasil eksperimen optimasi hyperparameter menggunakan

metode Grid Search, ditemukan konfigurasi terbaik pada konfigurasi 182 yang

menghasilkan performa klasifikasi yang tinggi, meskipun terdapat indikasi

overfitting antara data latih dan data uji.

Pada Tabel 4.8 Rekapitulasi Kinerja, model mencatatkan akurasi pelatihan

(Train Accuracy) yang sempurna sebesar 0,999. Namun, terjadi penurunan

performa pada tahap validasi menjadi 0,938 dan pada tahap pengujian (Test)

menjadi 0,924. Kesenjangan (gap) antara akurasi training dan test ini

mengindikasikan bahwa model cenderung menghafal pola data latih dengan sangat

baik namun sedikit mengalami penurunan kemampuan generalisasi saat dihadapkan

pada data baru.

Dari sisi keseimbangan performa antar kelas, model menghasilkan nilai F1-

Score Macro pada Test set sebesar 0,880. Nilai ini menunjukkan bahwa model

memiliki kemampuan yang cukup baik dalam menangani kedua kelas, meskipun

tidak setinggi nilai akurasi globalnya.

Gambar 4.6 Grafik Loss dan Accuracy Training dan Validation Grid Search

Hasil pelatihan konfigurasi terbaik dari Grid Search menunjukkan performa

yang sangat solid dengan konvergensi cepat. Model mampu mencapai Validation

Accuracy yang stabil di angka 93–94%, sementara Training Accuracy terus

meningkat hingga mendekati 100%. Meskipun demikian, terdapat indikasi

overfitting ringan mulai epoch ke-10 di mana Validation Loss mengalami stagnasi

sementara loss data latih terus turun. Secara keseluruhan, model ini terbukti robust,

76

namun penghentian pelatihan di sekitar epoch ke-15 sangat disarankan untuk

menjaga efisiensi dan generalisasi terbaik.

4.3.1.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.9 Tabel performa Kelas pada Training Set Grid Search

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,999 0,999 0,999 36.983

Unhealthy 0,999 0,999 0,999 10.340

Rata-rata

(Macro)

0,999 0,999 0,999 47.323

Rata-rata

(Weighted)

0,999 0,999 0,999 47.323

Table 4.10 Tabel performa Kelas pada Validation Set Grid Search

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,958 0,967 0,963 8.260

Unhealthy 0,860 0,824 0,842 2.001

Rata-rata

(Macro)

0,909 0,896 0,902 10.261

Rata-rata

(Weighted)

0,939 0,939 0,939 10.261

77

Table 4.11 Tabel performa Kelas pada Test Set Grid Search

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,935 0,972 0,953 8.409

Unhealthy 0,877 0,748 0,807 2.244

Rata-rata

(Macro)

0,906 0,860 0,880 10.653

Rata-rata

(Weighted)

0,923 0,925 0,922 10.653

4.3.2 Random Search

Metode Random Search melakukan eksplorasi ruang parameter secara acak

sebanyak 200 iterasi. Proses optimasi ini menghabiskan total durasi waktu

komputasi selama 14 jam. Model terbaik ditemukan cukup awal, yaitu pada iterasi

ke-178, dengan konfigurasi parameter sebagai berikut:

Table 4.12 Table Konfigurasi Hyperparameter Terbaik Random Search

Hyperparameter Range/Option

Kernel Conv Layer 1 [80]

Kernel Conv Layer 2 [80]

Kernel Size Conv Layer 1 [(2,25)]

Kernel Size Conv Layer 2 [(3,10)]

Dense Unit Layer 1 [1024]

Dense Unit Layer 2 [384]

Drop Out Rate Layer 1 [0.2]

Drop Out Rate Layer 2 [0.2]

Learning Rate [0.0001]

Batch Size [128]

Optimizer [Nadam]

78

4.3.2.1 Hasil Kinerja Random Search

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.13 Table Rekapitulasi Kinerja Hasil Random Search

Metrik Evaluasi Train Validation Test

Accuracy 0,998 0,937 0,929

F1-Score (Macro) 0,998 0,899 0,889

F1-Score (Weighted) 0,998 0,937 0,928

Gambar 4.7 Confusion Matrix Hasil Random Search

Berdasarkan hasil eksperimen optimasi hyperparameter menggunakan

metode Random Search, ditemukan konfigurasi terbaik pada konfigurasi 57 yang

menghasilkan performa klasifikasi yang tinggi, meskipun terdapat indikasi

overfitting antara data latih dan data uji.

Merujuk pada Tabel 4.13 Rekapitulasi Kinerja Hasil Random Search, model

menunjukkan kemampuan pembelajaran yang sangat kuat dengan Akurasi

Pelatihan (Train Accuracy) mencapai 0,998. Kinerja ini sedikit menurun pada tahap

validasi menjadi 0,937 dan pada tahap pengujian (Test) menjadi 0,929. Penurunan

performa dari training ke test sebesar kurang lebih 7,6% ini mengindikasikan

adanya gejala overfitting, di mana model sangat presisi dalam mengenali data latih

namun mengalami sedikit penurunan performa saat memproses data baru yang

79

belum pernah dilihat sebelumnya.Dalam hal keseimbangan deteksi antar kelas,

metode ini menghasilkan F1-Score Macro pada Test set sebesar 0,889.

Gambar 4.8 Grafik Loss dan Accuracy Training dan Validation Random Search

Hasil pelatihan konfigurasi terbaik dari Random Search menunjukkan

efektivitas pembelajaran yang tinggi, di mana Validation Accuracy berhasil

bertahan di kisaran stabil 93–94% dengan Training Accuracy yang nyaris

sempurna. Namun, grafik loss memperlihatkan gejala overfitting yang muncul lebih

awal; Validation Loss mulai stagnan di sekitar angka 0.32 setelah epoch ke-7,

sementara Training Loss terus menurun drastis.

4.3.2.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.14 Tabel performa Kelas pada Training Set Random Search

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,998 0,998 0,998 36.983

Unhealthy 0,997 0,997 0,997 10.340

Rata-rata

(Macro)

0,998 0,998 0,998 47.323

Rata-rata

(Weighted)

0,998 0,998 0,998 47.323

80

Table 4.15 Tabel performa Kelas pada Validation Set Random Search

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,957 0,966 0,961 8.260

Unhealthy 0,853 0,822 0,837 2.001

Rata-rata

(Macro)

0,905 0,894 0,899 10.261

Rata-rata

(Weighted)

0,937 0,938 0,937 10.261

Table 4.16 Tabel performa Kelas pada Test Set Random Search

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,941 0,972 0,956 8.409

Unhealthy 0,879 0,774 0,823 2.244

Rata-rata

(Macro)

0,910 0,873 0,889 10.653

Rata-rata

(Weighted)

0,928 0,930 0,928 10.653

4.3.3 Bayesian Optimization

Metode Bayesian Optimization pendekatan probabilistik untuk memandu

pencarian parameter secara cerdas berdasarkan evaluasi sebelumnya sebanyak 200

iterasi. Proses optimasi ini menghabiskan durasi 17 jam, karena kompleksitas

proses pemodelan surrogate. Namun, investasi waktu ini terbayar dengan

ditemukannya model terbaik pada tahap akhir proses, yaitu iterasi ke-148.

Konfigurasi terbaiknya adalah:

81

Table 4.17 Table Konfigurasi Hyperparameter Terbaik Bayesian Optimization

Hyperparameter Range/Option

Kernel Conv Layer 1 [64]

Kernel Conv Layer 2 [48]

Kernel Size Conv Layer 1 [(3,20)]

Kernel Size Conv Layer 2 [(2,10)]

Dense Unit Layer 1 [1536]

Dense Unit Layer 2 [768]

Drop Out Rate Layer 1 [0.2]

Drop Out Rate Layer 2 [0.4]

Learning Rate [0.0001]

Batch Size [128]

Optimizer [Adam]

4.3.3.1 Hasil Kinerja Bayesian Optimization

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.18 Table Rekapitulasi Kinerja Hasil Bayesian Optimization

Metrik Evaluasi Train Validation Test

Accuracy 0,998 0,939 0,929

F1-Score (Macro) 0,998 0,903 0,888

F1-Score (Weighted) 0,998 0,939 0,927

82

Gambar 4.9 Confusion Matrix Hasil Bayesian Optimization

Hasil eksperimen optimasi hyperparameter menggunakan metode Bayesian

Optimization menunjukkan kinerja model yang sangat solid dan seimbang, dengan

karakteristik yang sedikit lebih unggul dalam hal akurasi pelatihan dibandingkan

metode lainnya.

Merujuk pada Tabel 4.18 Rekapitulasi Kinerja Hasil Bayesian Optimization,

model mencatatkan Akurasi Pelatihan (Train Accuracy) yang sangat tinggi,

mencapai 0,998. Performa ini sedikit menurun pada tahap validasi menjadi 0,939

dan pada tahap pengujian (Test) menjadi 0,929. Pola penurunan dari training ke test

ini konsisten dengan metode optimasi lainnya, mengindikasikan adanya gap

generalisasi yang wajar dalam model Deep Learning yang dilatih pada dataset

dengan karakteristik kompleks seperti suara jantung. Dalam hal kemampuan

mendeteksi kedua kelas secara seimbang, metode ini menghasilkan F1-Score

Macro pada Test set sebesar 0,888

Gambar 4.10 Grafik Loss dan Accuracy Training dan Validation Bayesian

Optimization

83

Hasil pelatihan konfigurasi terbaik dari Bayesian Optimization menunjukkan

efisiensi konvergensi yang sangat cepat. Model berhasil mempertahankan

Validation Accuracy yang stabil di kisaran 93–94%, sementara Training Accuracy

meningkat konsisten hingga mendekati 100%. Namun, grafik loss memperlihatkan

bahwa titik optimal generalisasi tercapai lebih awal; Validation Loss mulai stagnan

(plateau) di kisaran 0.30 setelah epoch ke-7, sedangkan Training Loss terus

menurun. Meskipun model terbukti robust, penerapan Early Stopping di sekitar

epoch ke-8 hingga ke-10 sangat direkomendasikan untuk mencegah overfitting

yang tidak perlu serta menghemat sumber daya komputasi.

4.3.3.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.19 Tabel performa Kelas pada Training Set Bayesian Optimization

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 1,000 0,999 0,999 36.983

Unhealthy 0,995 0,999 0,997 10.340

Rata-rata

(Macro)

0,998 0,999 0,998 47.323

Rata-rata

(Weighted)

0,999 0,999 0,998 47.323

Table 4.20 Tabel performa Kelas pada Validation Set Bayesian Optimization

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,961 0,964 0,963 8.260

Unhealthy 0,850 0,838 0,844 2.001

Rata-rata

(Macro)

0,905 0,901 0,903 10.261

Rata-rata

(Weighted)

0,939 0,940 0,939 10.261

84

Table 4.21 Tabel performa Kelas pada Test Set Bayesian Optimization

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,941 0,971 0,956 8.409

Unhealthy 0,875 0,774 0,821 2.244

Rata-rata

(Macro)

0,908 0,872 0,888 10.653

Rata-rata

(Weighted)

0,927 0,929 0,927 10.653

4.3.4 Genetic Algorithm

Metode Genetic Algorithm (GA) menerapkan prinsip evolusi biologis melalui

seleksi, crossover pada populasi parameter selama 10 generasi. Proses evolusi

menghabiskan waktu total selama 14 jam dan konfigurasi terbaik ditemukan pada

iterasi ke 30. Berikut adalah hyperparameter terbaik yang dihasilkan:

Table 4.22 Table Konfigurasi Hyperparameter Terbaik Genetic Algorithm

Hyperparameter Range/Option

Kernel Conv Layer 1 [64]

Kernel Conv Layer 2 [48]

Kernel Size Conv Layer 1 [(3,25)]

Kernel Size Conv Layer 2 [(3,12)]

Dense Unit Layer 1 [1204]

Dense Unit Layer 2 [384]

Drop Out Rate Layer 1 [0.4]

Drop Out Rate Layer 2 [0.8]

Learning Rate [0.0001]

Batch Size [64]

Optimizer [Nadam]

85

4.3.4.1 Hasil Kinerja Genetic Algorithm

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.23 Table Rekapitulasi Kinerja Hasil Genetic Algorithm

Metrik Evaluasi Train Validation Test

Accuracy 0,996 0,934 0,928

F1-Score (Macro) 0,994 0,893 0,886

F1-Score (Weighted) 0,996 0,933 0,926

Gambar 4.11 Confusion Matrix Hasil Genetic Algorithm

Gambar 4.12 Chart F1-Score Range per Generation

86

Hasil eksperimen optimasi hyperparameter menggunakan metode Genetic

Algorithm menunjukkan kinerja yang sangat kompetitif, dengan karakteristik yang

unik yaitu efisiensi komputasi yang tinggi (waktu konvergensi tercepat) namun

tetap mampu mempertahankan akurasi yang setara dengan metode lainnya.

Merujuk pada Tabel 4.23 Rekapitulasi Kinerja Hasil Genetic Algorithm,

model menunjukkan kemampuan pembelajaran yang sangat baik dengan Akurasi

Pelatihan (Train Accuracy) mencapai 0,996. Serupa dengan metode lainnya, terjadi

penurunan pada tahap validasi menjadi 0,934 dan pada tahap pengujian (Test)

menjadi 0,928. Selisih antara akurasi training dan test ini menunjukkan pola

overfitting yang umum terjadi pada Deep Learning, namun model masih mampu

mempertahankan kemampuan generalisasi yang baik dengan akurasi di atas 91%.

Dalam hal kemampuan menangani ketidakseimbangan kelas, metode ini

menghasilkan F1-Score Macro pada Test set sebesar 0,886. Hal ini mengindikasikan

bahwa meskipun proses pencariannya berbasis evolusi dan stokastik, Genetic

Algorithm mampu menemukan konfigurasi yang memberikan performa klasifikasi

yang stabil.

Gambar 4.13 Grafik Loss dan Accuracy Training dan Validation Genetic

Algorithm

Hasil pelatihan konfigurasi terbaik dari Genetic Algorithm menunjukkan

pola pembelajaran yang sangat efisien. Model mampu mencapai stabilitas

Validation Accuracy di kisaran 93–94%, sementara Training Accuracy terus

menanjak hingga hampir menyentuh 99%. Namun, grafik loss mengindikasikan

87

bahwa kemampuan generalisasi model mencapai puncaknya cukup dini; Validation

Loss mulai mendatar di kisaran 0.28–0.30 setelah epoch ke-7, sedangkan Training

Loss masih terus menurun. Meskipun model ini sangat robust, penerapan Early

Stopping di sekitar epoch ke-8 hingga ke-10 sangat disarankan untuk menjaga

efisiensi dan mencegah model terlalu "menghafal" data latih.

4.3.4.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.24 Tabel performa Kelas pada Training Set Genetic Algorithm

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,997 0,998 0,998 36.983

Unhealthy 0,994 0,991 0,992 10.340

Rata-rata

(Macro)

0,995 0,995 0,994 47.323

Rata-rata

(Weighted)

0,997 0,997 0,996 47.323

Table 4.26 Tabel performa Kelas pada Validation Set Genetic Algorithm

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,954 0,964 0,959 8.260

Unhealthy 0,846 0,810 0,827 2.001

Rata-rata

(Macro)

0,900 0,887 0,893 10.261

Rata-rata

(Weighted)

0,933 0,934 0,933 10.261

88

Table 4.27 Tabel performa Kelas pada Test Set Genetic Algorithm

Kelas Precision Recall F1-Score Jumlah Sample

Healthy 0,941 0,970 0,955 8.409

Unhealthy 0,874 0,770 0,819 2.244

Rata-rata

(Macro)

0,907 0,870 0,886 10.653

Rata-rata

(Weighted)

0,926 0,928 0,926 10.653

4.4 Evaluasi Hyperparameter Optimization

4.4.1 Analisis Komparatif Antar Metode

Setelah dilakukan eksperimen pada keempat metode optimasi (Grid Search,

Random Search, Bayesian Optimization, Genetic Algorithm), tahap selanjutnya

adalah melakukan penilaian silang untuk mengidentifikasi metode yang paling

unggul. Evaluasi dilakukan secara komprehensif berdasarkan empat dimensi

utama: Efektivitas, Efisiensi, Stabilitas, dan Skalabilitas.

4.4.1.1 Efektivitas Optimization

Efektivitas diukur berdasarkan kemampuan metode dalam menemukan

konfigurasi hyperparameter yang menghasilkan F1-Score tertinggi.

Table 4.28 Table Perbandingan Efektivitas Metode HPO

Model Test F1-Score Macro Peningkatan performa

Grid Search 0,880 0,02

Random Search 0,889 0,029

Bayesian Optimization 0,888 0,028

Genetic Algorithm 0,886 0,026

Berdasarkan hasil uji efektivitas metode Random Search terbukti menjadi

metode yang paling unggul dalam eksperimen ini. Metode ini mencatatkan Test F1-

89

Score Macro tertinggi sebesar 0,889, yang memberikan peningkatan performa

terbesar yaitu 0,026 (2,9%) dari model Rubin

4.4.1.2 Efisiensi Komputasi

Efisiensi dievaluasi berdasarkan sumber daya waktu yang dibutuhkan untuk

mencapai konvergensi.

Table 4.29 Table Perbandingan Efisiensi Metode HPO

Model
Time to

convergence

Number of

Trials

Computational

Cost
Time per Trial

Grid Search 3,2 Jam 59 23,8 Jam 7,5 Menit

Random

Search

13 Jam 160 14,2 Jam 4,2 Menit

Bayesian

Optimization

15,3 Jam 191 17,4 Jam 5,1 Menit

Genetic

Algorithm

2,5 Jam 29 14,1 Jam 4,2 Menit

Analisis efisiensi komputasi menunjukkan bahwa Genetic Algorithm

merupakan metode yang paling unggul dalam hal kecepatan konvergensi, mampu

mencapai target performa hanya dalam waktu 2,5 jam. Dari sisi efisiensi eksekusi

per iterasi, Random Search dan Genetic Algorithm terbukti paling ringan dengan

rata-rata waktu 4,2 menit per trial, menjadikannya opsi hemat sumber daya dengan

total biaya komputasi sekitar 14 jam. Sebaliknya, Grid Search menjadi metode

dengan biaya komputasi tertinggi (23,8 jam) dan waktu eksekusi per trial terlama

(7,5 menit), sementara Bayesian Optimization membutuhkan waktu konvergensi

terlama (13,5 jam) karena proses eksplorasinya yang ekstensif sebelum

mengeksploitasi solusi optimal.

4.4.1.3 Stabilitas Performance

Evaluasi stabilitas bertujuan untuk memastikan bahwa performa tinggi yang

dicapai oleh model terbaik bukanlah kebetulan semata, melainkan hasil dari

konfigurasi hyperparameter. Pengujian dilakukan dengan melatih ulang

90

(retraining) konfigurasi terbaik dari masing-masing metode optimasi sebanyak 5

kali pengulangan (runs) menggunakan inisialisasi random seed yang berbeda (42,

123, 456, 789, 1024).Metode yang stabil ditandai dengan rendahnya nilai Standard

Deviation dan Coefficient of Variation (CV) pada deretan solusi terbaiknya. Berikut

adalah hasil 5 kali pengulangan dengan random seed dan juga hasil analisis nya.

Table 4.30 Table Hasil 5 kali pengulangan dengan random seed

Model 42 123 456 789 1024

Grid Search 0,883 0,880 0,866 0,878 0,868

Random

Search
0,874 0,873 0,874 0,864 0,869

Bayesian

Optimization
0,869 0,853 0,876 0,855 0,878

Genetic

Algorithm
0,878 0,862 0,882 0,873 0,865

Table 4.31 Table Analisis Stabilitas

Model
Mean F1-

Score

Standar

Deviasi

Coefficient of

Variation
Range

Grid Search 0,875 0,007 0,89% 0,017

Random

Search

0,871 0,004 0,49% 0,01

Bayesian

Optimization

0,866 0,011 1,32% 0,025

Genetic

Algorithm

0,872 0,008 0,96% 0,02

Analisis stabilitas menunjukkan bahwa Genetic Algorithm merupakan

metode yang paling konsisten dan robust dalam penelitian ini, ditandai dengan

pencapaian nilai Standar Deviasi (0,008) dan Coefficient of Variation (0,96%)

91

terendah, serta rentang performa yang sangat sempit (0,02). Di sisi lain, Grid Search

menunjukkan keseimbangan performa yang sangat baik dengan mencatatkan rata-

rata kinerja (Mean F1-Score) tertinggi sebesar 0,875 sambil mempertahankan

stabilitas yang tinggi (CV 0,89%). Sebaliknya, Bayesian Optimization

teridentifikasi sebagai metode yang paling tidak stabil dengan variasi kinerja

terbesar (CV 1,32%), mengindikasikan sensitivitas tinggi terhadap pemilihan ruang

parameter.

4.4.1.4 Skalabilitas

Analisis skalabilitas dilakukan untuk mengevaluasi ketahanan metode

optimasi terhadap variasi ukuran dataset dan kompleksitas komputasi pada pada

dataset sizes yang berbeda 25%, 50%, 100%. Dalam analisanya akan dilakukan

analisan efektivitas performance pada F1-Score Macro. Berikut adalah hasil

analisanya:

Table 4.32 Table Analisis Skalabilitas

Model 25 % 50 % 100 %

Grid Search 0,840 0,851 0,880

Random Search 0,843 0,859 0,889

Bayesian

Optimization

0,839 0,863 0,888

Genetic Algorithm 0,852 0,864 0,886

Analisis skalabilitas menunjukkan tren positif di mana kinerja seluruh metode

optimasi meningkat seiring dengan bertambahnya volume data latih dari 25%

hingga 100%, mengonfirmasi bahwa ketersediaan data yang lebih besar

memperkuat kemampuan generalisasi model

4.4.2 Statistical Significance Testing

Untuk memvalidasi bahwa perbedaan kinerja antar metode Hyperparameter

Optimization (HPO) adalah nyata secara statistik dan bukan sekadar kebetulan

akibat variasi acak (random variation), dilakukan analisis statistik inferensial

92

terhadap data F1-Score dari 5 kali pengulangan eksperimen (repeated runs) dengan

random seed 42, 123, 456, 789, dan 1024 untuk menjamin reproducibility sekaligus

mengeksplorasi variasi yang disebabkan oleh random initialization.

4.4.2.1 Uji Normalitas

Langkah pertama adalah memastikan asumsi distribusi data menggunakan uji

Normalitas. Pengujian dilakukan menggunakan metode Shapiro-Wilk, yang

dikenal sensitif dan akurat untuk ukuran sampel kecil (n < 50). Uji ini menentukan

apakah data hasil akurasi dari masing-masing metode berdistribusi normal. Apabila

data berdistribusi normal, analisis dilanjutkan dengan uji One-Way ANOVA.

Sebaliknya, jika data tidak berdistribusi normal, digunakan uji statistik Kruskal

Wallis Test.

Table 4.33 Hasil Uji Normalitas

Method
Kolmogrov-Smirnov Shapiro-Wilk

Statistic df Sig Statistic df Sig

Score

Grid Search 0,254 5 0,200 0,884 5 0,327

Random

Search
0,295 5 0,180 0,825 5 0,127

Bayesian

Optimization
0,232 5 0,200 0,866 5 0,252

Genetic

Algorithm
0,196 5 0,200 0,944 5 0,694

Sesuai dengan kriteria pengambilan keputusan:

• Jika Sig. > 0.05, maka H0 diterima (Data berdistribusi normal).

• Jika Sig. < 0.05, maka H0 ditolak (Data tidak berdistribusi normal).

Karena seluruh nilai signifikansi yang diperoleh lebih besar dari 0.05, maka

terima H0. Dengan terpenuhinya asumsi normalitas ini, analisis perbedaan kinerja

antar metode dapat dilanjutkan menggunakan uji statistik parametrik, yaitu One-

Way ANOVA.

93

4.4.2.2 One-Way ANOVA

Setelah asumsi normalitas terpenuhi, dilakukan uji One-Way ANOVA untuk

mengetahui apakah terdapat perbedaan rata-rata performa (F1-Score) yang

signifikan antara keempat metode optimasi yang diuji (Grid Search, Random

Search, Bayesian Optimization, Genetic Algorithm). Uji ini bertujuan untuk

membuktikan hipotesis bahwa pemilihan metode optimasi memberikan dampak

nyata terhadap kinerja model, bukan sekadar kebetulan.

Table 4.34 Hasil Tes ANOVA

Sum of

Squares
df

Mean

Square
F Sig

Between

Groups
0,000 3 0,000 0,945 0,443

Within

Groups
0,002 16 0,000

Total 0,002 16

Sesuai dengan kriteria pengambilan keputusan hipotesis:

• Jika Sig. > 0.05, maka H0 diterima (Tidak ada perbedaan signifikan).

• Jika Sig. < 0.05, maka H0 ditolak (Terdapat perbedaan signifikan).

Karena nilai signifikansi yang diperoleh adalah 0.442 > 0.05, maka terima

H0. Hal ini membuktikan bahwa secara statistik tidak terdapat perbedaan rata-rata

F1-Score yang signifikan antara keempat metode optimasi hyperparameter yang

diuji. Temuan ini mengindikasikan bahwa baik metode konvensional (Grid Search,

Random Search) maupun metode heuristik lanjut (Bayesian Optimization, Genetic

Algorithm) mampu menghasilkan konfigurasi hyperparameter dengan tingkat

efektivitas yang setara (komparabel) dalam kasus klasifikasi ini. Oleh karena itu,

penentuan metode terbaik tidak lagi didasarkan semata-mata pada perbedaan skor

akurasi yang tipis, melainkan dapat difokuskan pada aspek efisiensi komputasi

(waktu dan sumber daya).

94

4.4.3 Analisis Efisiensi Komputasi (CPU vs GPU)

Mengingat kompleksitas arsitektur dan besarnya ruang pencarian

hyperparameter, efisiensi waktu komputasi menjadi faktor krusial dalam

keberhasilan eksperimen. Untuk mengukur dampak akselerasi perangkat keras,

dilakukan analisis perbandingan antara estimasi waktu pelatihan menggunakan

CPU dan waktu aktual menggunakan GPU.

Estimasi waktu CPU dihitung berdasarkan rata-rata durasi pelatihan satu

model (trial) yang kemudian diproyeksikan ke total iterasi eksperimen (192 iterasi

untuk Grid Search dan 200 iterasi untuk metode lainnya).

Table 4.35 Perbandingan estimasi waktu komputasi CPU vs GPU

Metode

Optimasi

Durasi Training

1 Iterasi CPU

Proyeksi Durasi

Total CPU

Total Waktu

Training GPU

Grid Search 28,56 Menit 95,2 Jam 23,8 Jam

Random

Search

22,89 Menit 73,2 Jam 14,2 Jam

Bayesian

Optimization

16,94 Menit 56,5 Jam 17,4 Jam

Genetic

Algorithm

17,95 Menit 59,8 Jam 14,1 Jam

Hasil proyeksi menunjukkan inefisiensi signifikan pada penggunaan CPU,

dengan durasi pelatihan terlama mencapai 95,2 jam pada Grid Search. Penerapan

GPU terbukti memangkas waktu secara drastis, di mana peningkatan efisiensi

tertinggi terjadi pada Random Search dengan percepatan 5,15 kali lipat (menjadi

14,2 jam), diikuti oleh Grid Search dengan percepatan 4 kali lipat. Data ini

menegaskan bahwa akselerasi perangkat keras mutlak diperlukan untuk

menyelesaikan eksperimen dalam durasi yang wajar.

4.5 Analisis Dampak Ketidakseimbangan Data

Mengingat dataset yang digunakan dalam penelitian ini memiliki distribusi

kelas yang tidak seimbang (imbalanced), penggunaan metrik akurasi global

95

(akurasi keseluruhan) berpotensi memberikan gambaran kinerja yang bias. Model

cenderung memprediksi kelas mayoritas dengan sangat baik, namun sering kali

gagal mengenali kelas minoritas yang justru menjadi fokus utama deteksi.

Oleh karena itu, evaluasi mendalam dilakukan menggunakan kurva Receiver

Operating Characteristic (ROC) dan Area Under Curve (AUC). Analisis ini

bertujuan untuk mengukur seberapa baik setiap metode optimasi dalam

memisahkan kelas Healthy dan Unhealthy secara adil, tanpa memihak pada kelas

yang memiliki jumlah data lebih banyak.

Dalam penelitian ini, ROC dan AUC yang digunakan merupakan hasil dari

model terbaik yang diperoleh dari setiap metode optimasi hiperparameter.

4.5.1 Evaluasi ROC Curve per Metode Optimasi

4.5.1.1 Evaluasi ROC Curve Grid Search

Berikut adalah grafik ROC Curve Grid Search:

Gambar 4.14 Grafik ROC Curve Grid Search

Berdasarkan gambar 4.14 model yang dioptimasi menggunakan Grid Search

menunjukkan performa yang sangat stabil dan seimbang (robust). Secara

keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai

AUC ini (0.97 vs 0.97) membuktikan bahwa Grid Search berhasil mengatasi

masalah imbalance. Algoritma ini mampu menemukan konfigurasi hiperparameter

96

yang membuat model mengenali kelas penyakit (Unhealthy) sama baiknya dengan

kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas.

4.5.1.2 Evaluasi ROC Curve Random Seacrh

Berikut adalah grafik ROC Curve Random Search:

Gambar 4.15 Grafik ROC Curve Random Search

Berdasarkan gambar 4.15 model yang dioptimasi menggunakan Random

Search menunjukkan performa yang sangat stabil dan seimbang (robust). Secara

keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai

AUC ini (0.97 vs 0.97) membuktikan bahwa Random Search berhasil mengatasi

masalah imbalance. Algoritma ini mampu menemukan konfigurasi hiperparameter

yang membuat model mengenali kelas penyakit (Unhealthy) sama baiknya dengan

kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas.

4.5.1.3 Evaluasi ROC Bayesian Optimization

Berikut adalah grafik ROC Curve Bayesian Optimization:

97

Gambar 4.16 Grafik ROC Curve Bayesian Optimization

Berdasarkan gambar 4.16 model yang dioptimasi menggunakan Bayesian

Optimization menunjukkan performa yang sangat stabil dan seimbang (robust).

Secara keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Algoritma ini

mampu menemukan konfigurasi hiperparameter yang membuat model mengenali

kelas penyakit (Unhealthy) sama baiknya dengan kelas sehat (Healthy), tanpa

adanya bias terhadap salah satu kelas.

4.5.1.4 Evaluasi ROC Genetic Algorithm

Berikut adalah grafik ROC Curve Genetic Algorithm:

Gambar 4.17 Grafik ROC Curve Genetic Algorithm

98

Berdasarkan gambar 4.17 model yang dioptimasi menggunakan Bayesian

Optimization menunjukkan performa yang sangat stabil dan seimbang (robust).

Secara keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang

mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai

AUC ini (0.97 vs 0.97) membuktikan bahwa Bayesian Optimization berhasil

mengatasi masalah imbalance. Algoritma ini mampu menemukan konfigurasi

hiperparameter yang membuat model mengenali kelas penyakit (Unhealthy) sama

baiknya dengan kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas.

4.5.2 Kesimpulan Analisis Imbalance

Dari hasil evaluasi ROC keempat metode dapat disimpulkan bahwa model

yang dihasilkan memiliki tingkat ketahanan (robustness) yang tinggi. Meskipun

dilatih menggunakan dataset yang tidak seimbang, model mampu mempertahankan

generalisasi yang baik. Kemampuan model untuk mendeteksi kelas Unhealthy

dengan AUC 0.97 membuktikan bahwa sistem ini sangat layak untuk

diimplementasikan sebagai alat bantu diagnosis, karena risiko kesalahan dalam

mendeteksi (False Negative) telah diminimalisir secara signifikan.

4.6 Analisis Komparatif Model Rubin dengan Metode Genetic Algorithm

4.6.1 Perbandingan Konfigurasi Hyperparameter

Berikut adalah table perbandingan Konfigurasi Hyperparameter Model

Rubin dengan Konfigurasi Terbaik Genetic Algorithm:

Table 4.36 Table Perbandingan Konfigurasi Hyperparameter Rubin dengan

Genetic Algorithm

Hyperparameter Rubin Genetic Algorithm

Kernel Conv Layer 1 [64] [64]

Kernel Conv Layer 2 [64] [48]

Kernel Size Conv Layer 1 [(2,20)] [(3,25)]

Kernel Size Conv Layer 2 [(2,10)] [(3,12)]

Dense Unit Layer 1 [1024] [1204]

Dense Unit Layer 2 [512] [384]

Drop Out Rate Layer 1 [0.85565561] [0.4]

99

Hyperparameter Rubin Genetic Algorithm

Drop Out Rate Layer 2 [0.85565561] [0.8]

Learning Rate [0.000158] [0.0001]

Batch Size [256] [64]

Optimizer [Adam] [Nadam]

Analisis perbandingan hyperparameter pada table 4.35 menunjukkan

perbedaan strategi yang signifikan antara model referensi (Rubin) dan hasil

optimasi Genetic Algorithm (GA). Pada arsitektur CNN, meskipun blok pertama

sama-sama menggunakan 64 kernel, GA mengurangi kernel blok kedua menjadi 48

dibandingkan Rubin yang tetap menggunakan 64. Namun, GA memperbesar ukuran

kernel menjadi (3,25) dan (3,12) dibandingkan Rubin yang hanya (2,20) dan (2,10),

yang mengindikasikan bahwa model GA lebih memprioritaskan cakupan fitur

temporal yang luas daripada sekadar jumlah kernel. Perbedaan berlanjut ke lapisan

fully connected, di mana GA meningkatkan kapasitas layer pertama menjadi 1204

unit namun merampingkan layer kedua menjadi 384 unit, berbeda dengan Rubin

yang menggunakan 1024 dan 512 unit. Selain itu, GA menyeimbangkan

regularisasi dengan menurunkan Dropout Rate lapisan pertama secara drastis

menjadi 0.4 dari angka agresif 0.85 milik Rubin, sehingga aliran informasi menjadi

lebih optimal. Terakhir, efisiensi pelatihan ditingkatkan oleh GA melalui

penggantian optimizer dari Adam ke Nadam, penurunan Batch Size signifikan dari

256 ke 64, serta penyesuaian Learning Rate menjadi 0.0001, yang secara kolektif

bertujuan untuk menghindari local minima dan meningkatkan presisi konvergensi.

100

4.6.2 Analisis Perbandingan Confusion Matrix

Gambar 4.18 Gambar perbandingan Confusion Matrix

Evaluasi komparatif pada Test Set menunjukkan keunggulan konsisten model

hasil optimasi Genetic Algorithm (GA) dibandingkan model referensi Rubin di

seluruh kuadran Confusion Matrix. Pada deteksi kelas healthy, model GA terbukti

lebih presisi dengan meningkatkan True Negative menjadi 8.159 dan menekan

angka "alarm palsu" (False Positive) menjadi 250 kasus. Peningkatan yang lebih

krusial secara medis terlihat pada deteksi kelas unhealthy, di mana model GA

berhasil menaikkan angka True Positive menjadi 1.728 sekaligus mereduksi False

Negative menjadi 516 kasus, yang mengindikasikan sensitivitas yang lebih baik

dalam mencegah terlewatnya diagnosis pasien sakit. Secara keseluruhan, total

prediksi benar meningkat menjadi 9.887, membuktikan bahwa strategi pencarian

hyperparameter menggunakan Genetic Algorithm efektif menghasilkan konfigurasi

model yang lebih robust dan akurat dibandingkan konfigurasi statis pada penelitian

referensi.

4.7 Analisis Kesalahan Prediksi (Error Analysis) Genetic Algorithm

Sebagai tahap evaluasi mendalam, dilakukan analisis kesalahan prediksi

(error analysis) terhadap model terbaik hasil optimasi Genetic Algorithm. Analisis

ini mengambil sampel acak yang terdiri dari 3 contoh klasifikasi benar (True

Positive) dan tiga contoh klasifikasi salah (False Positive) untuk membandingkan

karakteristik visual sinyalnya secara langsung.

101

Gambar 4.19 Gambar Perbandingan Segmentasi Audio True Positive dan False

Positive

Berdasarkan pengamatan visual, terungkap perbedaan karakteristik sinyal

yang signifikan antara kedua kelompok tersebut. Pada data True Positive, sinyal

tampak stabil dengan osilasi yang konsisten di sekitar garis dasar atau titik nol.

Sebaliknya, pada kasus False Positive (data sehat yang terprediksi sakit), terlihat

adanya anomali teknis yang mencolok berupa pergeseran garis dasar (baseline shift)

yang ekstrem, di mana terjadi lonjakan amplitudo mendadak (step-change) yang

diikuti oleh perubahan rata-rata sinyal secara permanen. Model CNN diduga

menginterpretasikan lonjakan energi mendadak dan ketidakaturan struktur

gelombang ini sebagai fitur patologis (seperti murmur), sehingga memicu

kesalahan klasifikasi.

102

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil Analisa komparatif antar metode dan analisis statistik yang

dilakukan terhadap empat metode Hyperparameter Optimization (HPO), dapat

disimpulkan bahwa setiap metode memiliki karakteristik keunggulan yang berbeda,

namun efisiensi menjadi faktor pembeda utama. Secara nominal pada pengujian

tunggal, metode Random Search mampu mencatatkan F1-Score tertinggi sebesar

0,889. Secara statistik melalui uji statistik One-Way ANOVA menunjukkan nilai

signifikansi sebesar 0,442 (> 0,05). Hal ini membuktikan bahwa tidak terdapat

perbedaan rata-rata kinerja yang signifikan antara Grid Search, Random Search,

Bayesian Optimization, dan Genetic Algorithm. Artinya, keempat metode tersebut

memiliki kemampuan yang setara dalam menemukan konfigurasi hyperparameter

yang efektif.

Mengingat tidak adanya perbedaan signifikan dari sisi statistik, penentuan

metode terbaik didasarkan pada aspek efisiensi komputasi. Genetic Algorithm

terbukti menjadi metode yang paling unggul secara menyeluruh karena mampu

mencapai konvergensi optimal hanya dalam waktu 2,5 jam yang dimana ini jauh

lebih cepat dibandingkan Grid Search yang memakan waktu hingga 23,8 jam

sambil tetap mempertahankan performa F1-Score yang setara dengan metode

lainnya. Selain itu, seluruh metode menunjukkan tren skalabilitas yang positif, di

mana performa model meningkat seiring dengan penambahan volume data latih.

Oleh karena itu, dengan mempertimbangkan keseimbangan antara efisiensi waktu

yang superior dan akurasi yang kompetitif secara statistik, Genetic Algorithm

ditetapkan sebagai metode terbaik dalam penelitian ini.

Selain hasil evaluasi berbasis F1-Score, analisis tambahan menggunakan

ROC Curve dan AUC turut memperkuat kesimpulan penelitian ini. Dari hasil

evaluasi ROC terhadap model terbaik dari keempat metode, dapat disimpulkan

bahwa model yang dihasilkan memiliki tingkat ketahanan (robustness) yang tinggi,

bahkan ketika dilatih pada dataset yang tidak seimbang.

103

5.2 Saran

Dari hasil uji efisiensi komputasi dan analisis statistik, disarankan dalam

melakukan hyperparameter optimization menggunakan Genetic Algorithm. Hal ini

dikarenakan metode tersebut terbukti memiliki kecepatan konvergensi yang paling

superior, mampu menyelesaikan proses optimasi hanya dalam waktu 2,5 jam, jauh

lebih efisien dibandingkan metode Grid Search maupun Bayesian Optimization

yang membutuhkan waktu berjam-jam. Meskipun memiliki waktu eksekusi yang

sangat singkat, hasil uji statistik menunjukkan bahwa performa akurasi yang

dihasilkan oleh Genetic Algorithm tidak berbeda secara signifikan dengan metode

lainnya, sehingga menjadikannya solusi yang paling praktis dan hemat sumber daya

tanpa mengorbankan kualitas model secara drastis. Namun demikian, hasil analisis

grafik training dan validation loss serta accuracy menunjukkan adanya indikasi

overfitting, di mana performa model pada data pelatihan meningkat secara

signifikan tetapi tidak diikuti oleh peningkatan yang sepadan pada data validasi.

Oleh karena itu, meskipun Genetic Algorithm direkomendasikan sebagai metode

optimasi terbaik dari sisi efisiensi, penggunaannya tetap perlu disertai kehati-hatian,

misalnya dengan penerapan teknik regularisasi, early stopping, atau validasi silang,

guna memastikan kemampuan generalisasi model tetap terjaga.

104

DAFTAR PUSTAKA

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X.

(2016). TensorFlow: A system for large-scale machine learning. In 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16) (pp. 265-283). USENIX Association.

Agarap, A. F. (2018). Deep learning using rectified linear units (ReLU). arXiv

preprint arXiv:1803.08375. https://doi.org/10.48550/arXiv.1803.08375

Baghel, N., Dutta, M. K., & Burget, R. (2020). Automatic diagnosis of multiple

cardiac diseases from PCG signals using convolutional neural network.

Computer Methods and Programs in Biomedicine, 197, 105750.

https://doi.org/10.1016/j.cmpb.2020.105750

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep

architectures. In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural

Networks: Tricks of the Trade (pp. 437-478). Springer.

https://doi.org/10.1007/978-3-642-35289-8_26

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(1), 281-305.

Bonow, R. O., O'Gara, P. T., Adams, D. H., Badhwar, V., Bavaria, J. E., Elmariah,

S., ... & Woo, Y. J. (2021). 2020 Focused update of the 2017 ACC expert

consensus decision pathway on the management of mitral regurgitation.

Journal of the American College of Cardiology, 77(23), 2925-2946.

https://doi.org/10.1016/j.jacc.2021.02.005

Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian

optimization of expensive cost functions, with application to active user

modeling and hierarchical reinforcement learning. arXiv preprint

arXiv:1012.2599. https://doi.org/10.48550/arXiv.1012.2599

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., & Dahl, G. E. (2020).

On empirical comparisons of optimizers for deep learning. arXiv preprint

arXiv:1910.05446. https://doi.org/10.48550/arXiv.1910.05446

Chollet, F. (2021). Deep Learning with Python (2nd ed.). Manning Publications.

Claesen, M., & De Moor, B. (2015). Hyperparameter search in machine learning.

arXiv preprint arXiv:1502.02127. https://doi.org/10.48550/arXiv.1502.02127

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and

ROC curves. In Proceedings of the 23rd International Conference on Machine

Learning (pp. 233-240). ACM. https://doi.org/10.1145/1143844.1143874

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366.

https://doi.org/10.1109/TASSP.1980.1163420

105

Deng, Y., & Bentley, P. J. (2021). Algorithmic approaches for automated heart

sound analysis. Physiological Measurement, 42(1), 01TR01.

https://doi.org/10.1088/1361-6579/abc6bb

DeVries, T., & Taylor, G. W. (2017). Improved regularization of convolutional

neural networks with cutout. arXiv preprint arXiv:1708.04552.

https://doi.org/10.48550/arXiv.1708.04552

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep

learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92-

108. https://doi.org/10.1016/j.neucom.2022.06.111

Eiben, A. E., & Smith, J. E. (2015). Introduction to Evolutionary Computing (2nd

ed.). Springer. https://doi.org/10.1007/978-3-662-44874-8

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,

27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010

Frank, M. J., Gelfand, E. V., & Levine, R. A. (2022). The innocent murmur: A

clinical update. American Journal of Medicine, 135(8), 913-919.

https://doi.org/10.1016/j.amjmed.2022.04.015

Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint

arXiv:1807.02811. https://doi.org/10.48550/arXiv.1807.02811

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation:

Representing model uncertainty in deep learning. In International Conference

on Machine Learning (pp. 1050-1059).

Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow (3rd ed.). O'Reilly Media.

Gharehbaghi, A., Babic, A., Ask, P., & Sörnmo, L. (2021). A decision support

system for distinguishing between innocent and pathological murmurs.

Biomedical Signal Processing and Control, 65, 102363.

https://doi.org/10.1016/j.bspc.2020.102363

Ghiasi, G., Lin, T. Y., & Le, Q. V. (2018). DropBlock: A regularization method for

convolutional networks. In Advances in Neural Information Processing

Systems 31 (pp. 10727-10737).

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.

Machine Learning, 3(2), 95-99. https://doi.org/10.1023/A:1022602019183

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

GoodStats. (2023). Prevalensi penyakit jantung di Indonesia tahun 2023. Retrieved

from https://goodstats.id

Hanin, B., & Seluk, D. (2018). How to start training: The effect of initialization and

architecture. In Advances in Neural Information Processing Systems 31 (pp.

571-581).

106

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with

NumPy. Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-

2649-2

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. MIT Press.

Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data

classification evaluations. International Journal of Data Mining & Knowledge

Management Process, 5(2), 1-11. https://doi.org/10.5121/ijdkp.2015.5201

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and

functional architecture in the cat's visual cortex. The Journal of Physiology,

160(1), 106-154. https://doi.org/10.1113/jphysiol.1962.sp006837

Humayun, A. I., Ghaffarzadegan, S., Feng, Z., & Hasan, T. (2020). Learning front-

end kernel-bank parameters using convolutional neural networks for

abnormal heart sound detection. In 2020 42nd Annual International

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

(pp. 1408-1411). IEEE. https://doi.org/10.1109/EMBC44109.2020.9176240

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science

& Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of the 32nd

International Conference on Machine Learning (pp. 448-456). PMLR.

Japkowicz, N., & Shah, M. (2011). Evaluating Learning Algorithms: A

Classification Perspective. Cambridge University Press.

https://doi.org/10.1017/CBO9780511921803

Kaggle. (2024). KaggleHub Documentation. Retrieved from

https://github.com/Kaggle/kagglehub

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017).

On large-batch training for deep learning: Generalization gap and sharp

minima. In 5th International Conference on Learning Representations

(ICLR). https://openreview.net/forum?id=H1oyRlYgg

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd

International Conference on Learning Representations (ICLR).

https://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with

deep convolutional neural networks. In Advances in Neural Information

Processing Systems 25 (pp. 1097-1105). Curran Associates, Inc.

Labach, A., Salehinejad, H., & Valaee, S. (2019). Survey of dropout methods for

deep neural networks. arXiv preprint arXiv:1904.13310.

https://doi.org/10.48550/arXiv.1904.13310

107

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444. https://doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-

2324. https://doi.org/10.1109/5.726791

Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid search, random search, genetic

algorithm: A big comparison for NAS. arXiv preprint arXiv:1912.06059.

https://doi.org/10.48550/arXiv.1912.06059

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2020). On the

variance of the adaptive learning rate and beyond. In 8th International

Conference on Learning Representations (ICLR).

https://openreview.net/forum?id=rkgz2aEKDr

Liu, Z., Mao, H., Wu, C. Y., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A

ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (pp. 11976-11986).

https://doi.org/10.1109/CVPR52688.2022.01167

Lloyd-Jones, D. M., Allen, N. B., Anderson, C. A., Black, T., Brewer, L. C., Foraker,

R. E., ... & Wilkins, J. T. (2022). Life's Essential 8: Updating and enhancing

the American Heart Association's construct of cardiovascular health - A

presidential advisory from the American Heart Association. Circulation,

146(5), e18-e43. https://doi.org/10.1161/CIR.0000000000001078

Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., & Pastor, J. R. (2017).

Particle swarm optimization for hyper-parameter selection in deep neural

networks. In Proceedings of the Genetic and Evolutionary Computation

Conference (pp. 481-488). https://doi.org/10.1145/3071178.3071208

Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm

restarts. In 5th International Conference on Learning Representations (ICLR).

https://openreview.net/forum?id=Skq89Scxx

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. In 7th

International Conference on Learning Representations (ICLR).

https://openreview.net/forum?id=Bkg6RiCqY7

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. In Proceedings of the 30th International

Conference on Machine Learning (Vol. 30, No. 1, p. 3).

Maknickas, V., & Maknickas, A. (2017). Recognition of normal-abnormal

phonocardiographic signals using deep convolutional neural networks and

mel-frequency spectral coefficients. Physiological Measurement, 38(8),

1671-1684. https://doi.org/10.1088/1361-6579/aa7841

Mantovani, R. G., Rossi, A. L., Vanschoren, J., Bischl, B., & De Carvalho, A. C.

(2015). Effectiveness of random search in SVM hyper-parameter tuning. In

2015 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8).

IEEE. https://doi.org/10.1109/IJCNN.2015.7280664

108

Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural

networks. arXiv preprint arXiv:1804.07612.

https://doi.org/10.48550/arXiv.1804.07612

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1956). A proposal

for the Dartmouth summer research project on artificial intelligence. AI

Magazine, 27(4), 12-14.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto,

O. (2015). librosa: Audio and music signal analysis in Python. In Proceedings

of the 14th Python in Science Conference (Vol. 8, pp. 18-25).

https://doi.org/10.25080/Majora-7b98e3ed-003

McKinney, W. (2010). Data structures for statistical computing in Python. In

Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51-56).

https://doi.org/10.25080/Majora-92bf1922-00a

Mensah, G. A., Fuster, V., Murray, C. J. L., & Roth, G. A. (2023). Global burden of

cardiovascular diseases and risks, 1990-2022. Journal of the American

College of Cardiology, 82(25), 2350-2473.

https://doi.org/10.1016/j.jacc.2023.11.007

Messner, T., Dillier, R., & Badertscher, P. (2023). Phonocardiography in the era of

artificial intelligence: Current applications and future perspectives. European

Heart Journal - Digital Health, 4(2), 91-101.

https://doi.org/10.1093/ehjdh/ztac078

Mockus, J. (1975). On Bayesian methods for seeking the extremum. In

Optimization Techniques IFIP Technical Conference (pp. 400-404). Springer.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted

Boltzmann machines. In Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (pp. 807-814).

Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., Erwin, J. P., Gentile,

F., ... & Toly, C. (2021). 2020 ACC/AHA guideline for the management of

patients with valvular heart disease. Journal of the American College of

Cardiology, 77(4), e25-e197. https://doi.org/10.1016/j.jacc.2020.11.018

Nogueira, D. M., Ferreira, C. A., Gomes, E. F., & Jorge, A. M. (2019). Classifying

heart sounds using images of motifs, MFCC and temporal features. Journal

of Medical Systems, 43(6), 168. https://doi.org/10.1007/s10916-019-1286-5

O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al. (2019).

KerasTuner. Retrieved from https://github.com/keras-team/keras-tuner

Otto, C. M., Nishimura, R. A., Bonow, R. O., Carabello, B. A., Erwin III, J. P.,

Gentile, F., ... & O'Gara, P. T. (2020). 2020 ACC/AHA guideline for the

management of patients with valvular heart disease: Executive summary.

Circulation, 143(5), e35-e71.

https://doi.org/10.1161/CIR.0000000000000932

109

Paleyes, A., Pullin, M., Mahsereci, M., McCollum, C., Lawrence, N. D., &

González, J. (2021). Emulation of physical processes with Emukit. In Second

Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019).

arXiv preprint arXiv:1910.13321.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ...

& Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12, 2825-2830.

Potes, C., Parvaneh, S., Rahman, A., & Conroy, B. (2016). Ensemble of feature-

based and deep learning-based classifiers for detection of abnormal heart

sounds. In 2016 Computing in Cardiology Conference (CinC) (pp. 621-624).

IEEE. https://doi.org/10.22489/CinC.2016.182-399

Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC,

informedness, markedness and correlation. Journal of Machine Learning

Technologies, 2(1), 37-63.

Probst, P., Boulesteix, A. L., & Bischl, B. (2020). Tunability: Importance of

hyperparameters of machine learning algorithms. Journal of Machine

Learning Research, 20(53), 1-32.

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour,

L. M., ... & GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases

Writing Group. (2020). Global burden of cardiovascular diseases and risk

factors, 1990–2019: Update from the GBD 2019 study. Journal of the

American College of Cardiology, 76(25), 2982-3021.

https://doi.org/10.1016/j.jacc.2020.11.010

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747. https://doi.org/10.48550/arXiv.1609.04747

Russell, S. J., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th

ed.). Pearson.

Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in

convolutional architectures for object recognition. In Artificial Neural

Networks–ICANN 2010 (pp. 92-101). Springer. https://doi.org/10.1007/978-

3-642-15825-4_10

Sejnowski, T. J. (2020). The unreasonable effectiveness of deep learning in artificial

intelligence. Proceedings of the National Academy of Sciences, 117(48),

30033-30038. https://doi.org/10.1073/pnas.1907373117

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2016). Taking

the human out of the loop: A review of Bayesian optimization. Proceedings

of the IEEE, 104(1), 148-175. https://doi.org/10.1109/JPROC.2015.2494218

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. In International Conference on Learning

Representations.

110

Smith, S. L., Dherin, B., Barrett, D. G., & De, S. (2021). On the origin of implicit

regularization in stochastic gradient descent. In 9th International Conference

on Learning Representations (ICLR).

https://openreview.net/forum?id=rq_Qr0c1Hyo

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization

of machine learning algorithms. In Advances in Neural Information

Processing Systems 25 (pp. 2951-2959). Curran Associates, Inc.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance

measures for classification tasks. Information Processing & Management,

45(4), 427-437. https://doi.org/10.1016/j.ipm.2009.03.002

Springer, D. B., Tarassenko, L., & Clifford, G. D. (2016). Logistic regression-

HSMM-based heart sound segmentation. IEEE Transactions on Biomedical

Engineering, 63(4), 822-832.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 15(1), 1929-1958.

Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement

of the psychological magnitude pitch. The Journal of the Acoustical Society

of America, 8(3), 185-190. https://doi.org/10.1121/1.1915893

Tan, M., & Le, Q. (2021). EfficientNetV2: Smaller models and faster training. In

International Conference on Machine Learning (pp. 10096-10106). PMLR.

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W.,

Carson, A. P., ... & American Heart Association Council on Epidemiology and

Prevention Statistics Committee and Stroke Statistics Subcommittee. (2020).

Heart disease and stroke statistics—2020 update: A report from the American

Heart Association. Circulation, 141(9), e139-e596.

https://doi.org/10.1161/CIR.0000000000000757

Waring, J., Lindvall, C., & Umeton, R. (2020). Automated machine learning:

Review of the state-of-the-art and opportunities for healthcare. Artificial

Intelligence in Medicine, 104, 101822.

https://doi.org/10.1016/j.artmed.2020.101822

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open

Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

World Health Organization. (2021). Cardiovascular diseases (CVDs) fact sheet.

Retrieved from https://www.who.int/news-room/fact-

sheets/detail/cardiovascular-diseases-(cvds

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning

algorithms: Theory and practice. Neurocomputing, 415, 295-316.

https://doi.org/10.1016/j.neucom.2020.07.061

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J.

(2020). Large batch optimization for deep learning: Training BERT in 76

111

minutes. In 8th International Conference on Learning Representations

(ICLR). https://openreview.net/forum?id=Syx4wnEtvH

Zhang, W., Han, J., & Deng, S. (2022). Heart sound classification based on scaled

spectrogram and partial transfer learning. IEEE Sensors Journal, 22(16),

16285-16294. https://doi.org/10.1109/JSEN.2022.3163753

Royston, J. P. (1982). Some Techniques for Assessing Multivariate Normality Based

on the Shapiro–Wilk W. Journal of the Royal Statistical Society: Series C

(Applied Statistics), 32(2), 121–133.

Laerd Statistics. (2024). Repeated Measures ANOVA and Tests of Normality using

SPSS. Retrieved from https://statistics.laerd.com

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional

networks

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R. C.,

... & Wilson, K. (2017). CNN architectures for large-scale audio

classification. In IEEE International Conference on Acoustics, Speech and

Signal Processing (pp. 131-135).

Pons, J., Lidy, T., & Serra, X. (2017). Experimenting with musically motivated

convolutional neural networks. In IEEE International Workshop on Content-

Based Multimedia Indexing (pp. 1-6).

		2026-01-12T22:25:43+0700
	JAKARTA
	e-meterai_signatures
	[ZGN499EYEO0HJ27Y0009Y9] Ref-838444241385402

