HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN
UNTUK DETEKSI KELAINAN DETAK JANTUNG

TUGAS AKHIR

>

UNIVERSITAS

MA CHUNG

KEVIN CHENG
NIM : 312210013

PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG MALANG
2025

LEMBAR PENGESAHAN
TUGAS AKHIR

HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN
UNTUK DETEKSI KELAINAN DETAK JANTUNG

Oleh:
KEVIN CHENG
NIM : 312210013

dari:
PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI DAN DESAIN
UNIVERSITAS MA CHUNG

Telah dinyatakan lulus dalam melaksanakan Tugas Akhir sebagai syarat kelulusan
dan berhak mendapatkan gelar Sarjana Komputer
Dosen Pembimbing I, Dosen Pembimbing I,

{ Vo !
IOV

’

Windra Swastika., S.Kom., MT., Ph.D. Hendry Setiawan, ST., M.Kom
NIP. 20070039 NIP. 20100006

NIP. 20070035

Stamp

PERNYATAAN KEASLIAN SKRIPSI

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Skripsi saya
dengan “HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR
CNN UNTUK DETEKSI KELAINAN DETAK JANTUNG” adalah benar benar
hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang
tidak diizinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya
sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap
pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, saya bersedia

menerima sanksi sesuai peraturan yang berlaku.

Malang, 9 Januari 2026

Kevin Cheng
NIM. 312210013

albert.ws
Stamp

HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN
UNTUK DETEKSI KELAINAN DETAK JANTUNG

Kevin Cheng
Universitas Ma Chung

Abstrak

Penyakit kardiovaskular (CVD) merupakan penyebab kematian terbesar di dunia,
sehingga deteksi dini melalui analisis suara jantung (phonocardiogram/PCG)
menjadi sangat penting. Convolutional Neural Network (CNN) telah terbukti efektif
dalam klasifikasi PCG, namun performanya sangat bergantung pada konfigurasi
hyperparameter yang seringkali ditentukan secara manual (#rial and error).
Penelitian ini bertujuan untuk mengoptimalkan kinerja arsitektur CNN dalam
mendeteksi kelainan detak jantung dengan membandingkan empat metode
Hyperparameter Optimization (HPO): Grid Search, Random Search, Bayesian
Optimization, dan Genetic Algorithm. Menggunakan dataset PhysioNet/CinC
Challenge 2016, penelitian ini mengevaluasi dampak optimasi terhadap F/-Score
dan efisiensi komputasi. Hasil eksperimen menunjukkan bahwa secara nominal,
Random Search mencatatkan performa tertinggi dengan F1-Score Macro sebesar
0,889 pada data uji. Meskipun uji statistik One-Way ANOVA menunjukkan tidak
ada perbedaan kinerja yang signifikan secara statistik di antara keempat metode
(p=0,442), Genetic Algorithm terbukti sebagai metode paling unggul secara
menyeluruh karena efisiensi komputasinya yang superior, mampu mencapai
konvergensi optimal hanya dalam waktu 2,5 jam dibandingkan Grid Search yang
membutuhkan 23,8 jam. Model hasil optimasi ini juga menunjukkan ketahanan
(robustness) tinggi dalam menangani ketidakseimbangan data dengan capaian nilai
AUC sebesar 0,97 untuk deteksi kelas unhealthy.

Kata Kunci : Convolutional Neural Network, Genetic Algorithm, Hyperparameter
Optimization, Phonocardiogram

HYPERPARAMETER OPTIMIZATION PADA ARSITEKTUR CNN
UNTUK DETEKSI KELAINAN DETAK JANTUNG

Kevin Cheng
Universitas Ma Chung

Abstract

Cardiovascular disease (CVD) is the leading cause of death globally, making early
detection through heart sound analysis (phonocardiogram/PCG)!. While
Convolutional Neural Networks (CNN) have proven effective for PCG
classification, their performance heavily depends on hyperparameter
configurations that are often determined manually through trial and error. This
study aims to optimize CNN architecture performance for detecting heartbeat
abnormalities by comparing four Hyperparameter Optimization (HPO) methods:
Grid Search, Random Search, Bayesian Optimization, and Genetic Algorithm.
Utilizing the PhysioNet/CinC Challenge 2016 dataset, this research evaluates the
impact of optimization on F1-Score and computational efficiency. Experimental
results indicate that nominally, Random Search recorded the highest performance
with a Macro FI1-Score of 0.889 on the test sef’. Although One-Way ANOVA
statistical testing showed no statistically significant performance difference among
the four methods (p=0.442), the Genetic Algorithm proved to be the most superior
method overall due to its superior computational efficiency, reaching optimal
convergence in just 2.5 hours compared to Grid Search which required 23.8 hours.
These optimized models also demonstrated high robustness in handling data
imbalance, achieving an AUC of 0.97 for the unhealthy class detection.

Key Word : Convolutional Neural Network, Genetic Algorithm, Hyperparameter
Optimization, Phonocardiogram

KATA PENGANTAR

Puji dan syukur ke hadirat Tuhan Yang Maha Esa atas rahmat dan karunianya,

sehingga penyusunan laporan tugas akhir yang berjudul “HYPERPARAMETER
OPTIMIZATION PADA ARSITEKTUR CNN UNTUK DETEKSI KELAINAN
DETAK JANTUNG” dapat terselesaikan dengan baik.

Dalam penyusunan tugas akhir penulis telah mendapatkan banyak bantuan dari

berbagai pihak. Pada kesempatan ini penulis mengucapkan terima kasih kepada:

1.

Tuhan Yang Maha Esa atas berkat dan rahmat-Nya tugas akhir dapat
diselesaikan dengan baik.

Kedua orangtua dan keluarga lainnya yang memberikan dukungan berupa
doa dan restu selama melaksanakan dan pengerjaan tugas akhir.

Bapak Prof. Dr.Eng. Romy Budhi, ST., MT., M.Pd. selaku Dekan Fakultas
Teknologi dan Desain.

Bapak Hendry Setiawan, ST., M.Kom selaku Kepala Program Studi Teknik
Informatika.

Windra Swastika, S.Kom., MT., Ph.D. selaku dosen pembimbing I selama
penyelesaian tugas akhir yang telah meluangkan waktu, memberikan
arahan, bimbingan, dan motivasi yang tak ternilai.

Bapak/Ibu dosen Program Studi Teknik Informatika yang telah memberikan

ilmu selama masa studi saya di Universitas Ma Chung.

. Rekan-Rekan Mahasiswa Tekik Informatika Univeristas Ma Chung

Angkatan 2022.

Adapun dalam penyusunan laporan ini penulis menyadari kekurangan dalam

laporan tugas akhir in1 dan menyambut baik kritik serta saran yang membangun.

Besar harapan penulis agar laporan ini memberikan ilmu dan manfaat bagi semua .

Malang, 9 Januari 2026

Kevin Cheng

DAFTAR ISI

LEMBAR PENGESAHAN ... i
PERNYATAAN KEASLIAN SKRIPSIooniiiiiiieeie et i
ADSEIraK ... coooniiiiiii e i
ADSEFACE ...ooniiitiiii et iii
DAFTAR IST ..ottt et e et e et e e e eaans 1
DAFTAR GAMBAR ...t 5
DAFTAR TABEL. ..ottt ettt e e e eeaes 7
1.1 Latar Belakangccooiiiiiiiiiiiiiiiiiiiicceee 9

1.2 Identifikasi Masalahc.o.coiii i 11

1.3 Batasan Masalah....................o 11

1.4 Rumusan Masalah.....................iiiii e, 12

1.5 Tujuan Penelitiancoooiiiiiiiiiiiiiin 12

1.6 Manfaat Penelitianc..ooiiiiiii 13

1.7 LUuAramcooooiiiiiiiiiiiiniiti e 14

BAB II TINJAUAN PUSTAKA.......coiiiiiiiiiiii et 15
2.1 Penyakit Kardiovaskularooooiinn 15

2.2 Phonocardiogram (PCG)ccoeeiiiiiiiiiiiiiiiiiciiniieenneennes 15

2.3 Artificial Intelligence (AI)c.ooooviiiiiiiiiiiiinn 16

2.4 Deep Learning.............cccovvuiiiniiiiiiiiiiiiinniiiniii i 17

2.5 Convolutional Neural Network (CNN)ccccooveniiiiiinann, 18

2.5.1 CININ 2D ..t e e e e e 19
2.5.2 Komponen Arsitektur CNNc.ccooiiiiiiiiiiiiiiiiiieeaee 19

2.6 Mel-Frequency Cepstral Coefficients (MFCC)................... 24

2.7 Hyperparameter............coceoeuueeniuiniiieniinrereieieeneeneeneeneenes 25

2.7.1 Learning Rate..............cooooiiiiiiiiiiiii 25
2.7.2 Batch Size........cooooiiiiiiiiiiii 26
2.7.3 Network Architecturec..cooeeiiiiiiiiiiiiiiiiiiiiieeane 26
2.7.4 Dropout Rate..........coooniiiiiiiiiiiiii e 26

2.7.5 Optimizer Selectionc.ccoeuiiiiiiiiiiiiiiiiiiiiieeeeeenee, 27
2.8 Hyperparameter Optimization (HPO).............................. 27
2.8.1 Grid Searchcoooiiiiiiiiii 28
2.8.2 Random Search..............coooiiiiiiiiii 30
2.8.3 Bayesian Optimization..................coooiiiiiiiiiiiiiiiiiiineenne, 31
2.84 Genetic Algorithm.................oooiiii 32
2.9 Confusion MatriXccooeiiiiiiiiiiiiiiiiiii e 33
2.9.1 PNV 1) T P 33
2.9.2 PreciSion.........coooviuiiiiiiiiiiiiiiin e 34
2.9.3 Recall (Sensitivity)......ccoeeiniiiiiiiiiiiiiiiiiiie e 34
294 FI1-SCOre ...coiimiiiiiiiii i 34
2,10 Python.......ccooiiiiiiiiiiiiiiiiii i 35
2.10.1 LIDrosa......ccccoiiiiiiiiiiiiiiii it ceai e 35
2.10.2 TensorFlow dan Keras.............cccoooiiiiiiiiiiiiiiiiininn, 35
2.10.3 Scikit-learn...........ccooiiiiiiiiiiiiiii 35
21044 NUmMPY oo 36
2.10.5 Pandas........coooiiiiiiiiiiii e 36
2.10.6 Matplotlib dan Seaborn...............c.coooiiiiiiiiii 36
2.10.7 KaggleHubccoiiiiiiiiiiiiiei et 37
2.10.8 Keras Tuner........coveuiiiiiiiiiiiiiiiii et 37
2.11 Penelitian Terdahulu......................o.iiii 37
BAB III ANALISA DAN PERANCANGAN MODEL...........cccccciiiiieennn.e. 40
3.1 Analisis Kebutuhancoooi 41

3.2 Pengumpulan Datasetcoooiiiiii 41
3.3 Preprocessing Dataccooeeiiiiiiiiiiiiiiiiiiiiiens 42

3.4 Training Modelcoooiiiiiiiiiiii 46
34.1 Arsitektur CNN 2D ..o, 47
3.4.2 Hyperparameter Search Space.................cooooiviiniinnn. 48
343 Metode Grid Searchcooooiiiiiiiiiiii 51
344 Metode Random Search.............c..ccoooiiiiiiiiiiiinnn 53

34.5 Metode Bayesian Optimization.................ccceeveviiiiiiniannn.e. 56

3.4.6 Metode Genetic Algorithm..................ooooiiiiiiiinn. 59
3.5 EvaluasiModel.............ccoooiiiiiiiiiiiiiiiiii 61
3.5.1 Evaluasi Per Metode..............cooeuiiiiiiiiiiiiiiiiiiiiiiieieeneee 62
3.5.2 Analisis Komparatif Antar Metode..............ccoeeiiniiiinan..n. 63
353 Statistical Significance Testing..................ccooooiiiiiiin. 64
BAB IV HASIL DAN PEMBAHASAN ...t 68
4.1 Data Penelitian dan Hasil Preprocessing Data..................... 68
4.1.1 Hasil Preprocessing Datacooooiiiiiiiiiiiiiiniinn.. 68
4.2 Hasil Kinerja Model Rubincccoeeiiiiiiiiiiiiinin.. 70
4.2.1 Konfigurasi Hyperparameter Rubin................................... 70
4.2.2 Kinerja Model Rubinc.ooiiiiiiiiiiiiiiiiiiiieeeennee 71
4.2.3 Performa Perkelas.................ccooooiiiiiiiiiini 71
4.3 Hasil Hyperparameter Optimization..............c.................. 73
4.3.1 Grid Searchcoviiiiiiiiiiiiiiii 73
4.3.2 Random Search.............ccoooiiiiiiii 77
4.3.3 Bayesian Optimization...............c..ccoooiiiiiiiiiiiiiiiiie 80
4.3.4 Genetic Algorithmcoooiii 84
4.4 Evaluasi Hyperparameter Optimization............................ 88
4.4.1 Analisis Komparatif Antar Metode...................ccooeiiinnn. 88
4.4.2 Statistical Significance Testing................cc..ccceuuveuevenvinceennen. 9
4.4.3 Analisis Efisiensi Komputasi (CPU vs GPU)........................ 94
4.5 Analisis Dampak Ketidakseimbangan Data....................... 94
4.5.1 Evaluasi ROC Curve per Metode Optimasi......................... 95
4.5.2 Kesimpulan Analisis Imbalance......................c..coooinnie. 98

4.6 Analisis Komparatif Model Rubin dengan Metode Genetic
Algorithm 98

4.6.1 Perbandingan Konfigurasi Hyperparameter 98
4.6.2 Analisis Perbandingan Confusion Matrix.......................... 100

4.7 Analisis Kesalahan Prediksi (Error Analysis) Genetic
Algorithm 100

DAFTAR GAMBAR

Gambar 2.1 Visualisasi PhonocardioQramccccceeeceeeeveeeencreeieenenaneenens 16
Gambar 2.2 Visualisasi Convolutional Neural Network...........ccocceveeviiieninnennne. 19
Gambar 2.3 Mel spectrogram dan Mel-Frequency Cepstral Coefficients 25
Gambar 2.4 Tustrasi Grid Search.ccocceeviriiniiiiinieieeieseseee et 29
Gambar 2.5 Tlustrasi Random Search................cccoucevieeirieneesenienieneseneeseenees 30
Gambar 2.6 Ilustrasi Bayesian Optimizationcceevveeviienieeniieneeeieeneeeneenens 32
Gambar 2.7 Confusion MatriXccceeveriierieniirienieneee et 33
Gambar 3.1 Tahap Penelitiancccocceeeviieiiiiiieniieieecee e 40
Gambar 3.2 Alur Preprocessing Datacccccvueeeieeeeeiereenieeiieeie e see e 43
Gambar 3.3 Visualisasi Segmentasi AUAIO «.........cocevervieriieniiienieneenieneeneeeeeees 44
Gambar 3.4 Visualisasi Ekstraksi Segmentasiccoceecvevviinieininicneencnicnieenee. 44
Gambar 3.5 Visualisasi Ekstraksi Fitur MFCC..........c.cooooiiiiiiiieei 45
Gambar 3.6 Diagram Flow Training model................ccocoviniinininiieee. 46
Gambar 3.7 Visualisasi arsitektur Rubin et al...........cccoooeiiiiniiiiii 47
Gambar 3.8 Diagram Flow Grid Searchc..coccooveniiiiniiininniiiiniccnicceeees 52
Gambar 3.9 Diagram flow Random Search............ccccooininininine, 54
Gambar 3.10 Diagram Flow Bayessian Optimizationccccceceeveevierveneennennne. 57
Gambar 3.11 Representasi Chromosome dalam Genetic Algorithm...................... 60
Gambar 4.1 Visualisasi Algoritma Springer dalam deteksi Lokasi S1 dan S268
Gambar 4.2 Hasil pemotongan sinyal pada STcccceeeviiieiiieiiiieeeeeeeeen 69
Gambar 4.3 Visualisasi Ekstraksi Fitur MFCC..........ccoccoiiniiiiiiieniiccicecnen. 69
Gambar 4.4 Confusion Matrix RUDIN...........cc..ccoveviiiiiiniieiiiecie s e eee e 71
Gambar 4.5 Confusion Matrix Hasil Grid Searchcccccoueeeevceeeeveecvnannnenne. 74
Gambar 4.6 Grafik Loss dan Accuracy Training dan Validation Grid Search...... 68
Gambar 4.7 Confusion Matrix Hasil Random Search..................cccccveeveecunennnanne. 78

Gambar 4.8 Grafik Loss dan Accuracy Training dan Validation Random Search.71

Gambar 4.9 Confusion Matrix Hasil Bayesian Optimizationccceeu.... 82

Gambar 4.10 Grafik Loss dan Accuracy Training dan Validation Bayesian
OPEMIZATION ... ies et i eee e et e eee e e e eee tee e e eee vee et e eee vee s nen aee vee aaeenn D)

Gambar 4.11 Confusion Matrix Hasil Genetic Algorithm.............cccceeeiininennenne. 85
Gambar 4.12 Chart F1-Score Range per Generation...............c.ccewceecveecenenneenne. 85

Gambar 4.13 Grafik Loss dan Accuracy Training dan Validation Genetic
ALGOFTIRM ovov oot it et e e e e e et e e e e e ee e s e e vee vee een eee e 1T

Gambar 4.14 Grafik ROC Curve Grid Searchcccccoviiiiiiiiiiiieniiieieeee 95
Gambar 4.15 Grafik ROC Curve Random Searchcccoccveeeevcinsoeincnennane. 96
Gambar 4.16 Grafik ROC Curve Bayesian Optimization...............c..ccueeeevveeennn.. 97
Gambar 4.17 Grafik ROC Curve Genetic AIGOFithin..............ccoveeeveeecreeeereeenneen. 97

Gambar 4.18 Gambar perbandingan Confusion Matrixc.ccceeeveeeeennn ... 92

DAFTAR TABEL

Table 1.1 Rencana Penelitian...........ccooeeruiiiiiiieniniinieeeiesceeseeeeeee e 6
Tabel 3.1 Hyperparameter Search Scope............ooooiiiiiiiiiiiiiiii, 48
Table 3.2 Parameter dan Strategi Optimization Grid Search 52
Table 3.3 Parameter dan Strategi Optimization Random Search 55
Tabel 3.4 Parameter dan Strategi Bayessian Optimization 58
Tabel 3.5 Parameter dan Strategi Genetic Algorithmcc.oeen... 60
Tabel 4.1 Tabel perbandingan jumlah data ..., 69
Tabel 4.2 Tabel Konfigurasi Hyperparameter Rubinooeel. 70
Table 4.3 Table Rekapitulasi Kinerja Model Rubinca. 71
Table 4.3 Tabel performa Kelas pada Training Set Rubin 71

Table 4.4 Tabel performa Kelas pada Validation Set Rubin 72

Table 4.5 Tabel performa Kelas pada Zest Set Rubinc.oia.n. 72
Table 4.6 Table Search Space Reduce Gridc.cooooiiiii i, 73
Table 4.7 Table Konfigurasi Hyperparameter Terbaik Grid Search 74

Table 4.8 Table Rekapitulasi Kinerja Hasil Grid Search 74

Table 4.9 Tabel performa Kelas pada Training Set Grid Search 76
Table 4.10 Tabel performa Kelas pada Validation Set Grid Search 76

Table 4.11 Tabel performa Kelas pada Test Set Grid Search 77
Table 4.12 Table Konfigurasi Hyperparameter Terbaik Random Search 77
Table 4.13 Table Rekapitulasi Kinerja Hasil Random Search 78
Table 4.14 Tabel performa Kelas pada Training Set Random Search 79
Table 4.15 Tabel performa Kelas pada Validation Set Random Search 80
Table 4.16 Tabel performa Kelas pada Test Set Random Search80

Table 4.17 Table Konfigurasi Hyperparameter Terbaik Bayesian Optimization .81

Table 4.18 Table Rekapitulasi Kinerja Hasil Bayesian Optimization 81
Table 4.19 Tabel performa Kelas pada Training Set Bayesian Optimization 83
Table 4.20 Tabel performa Kelas pada Validation Set Bayesian Optimization83

Table 4.21 Tabel performa Kelas pada 7est Set Bayesian Optimization 84
Table 4.22 Table Konfigurasi Hyperparameter Terbaik Genetic Algorithm 84
Table 4.23 Table Rekapitulasi Kinerja Hasil Genetic Algorithm 85
Table 4.24 Tabel performa Kelas pada Training Set Genetic Algorithm 87

Table 4.26 Tabel performa Kelas pada Validation Set Genetic Algorithm 87

Table 4.27 Tabel performa Kelas pada Test Set Genetic Algorithm 88
Table 4.28 Table Perbandingan Efektivitas Metode HPO 88
Table 4.29 Table Perbandingan Efisiensi Metode HPO 89
Table 4.30 Table Hasil 5 kali pengulangan dengan random seed 90
Table 4.31 Table Analisis Stabilitasocooiiiiiiiiiii e, 90
Table 4.32 Table Analisis Skalabilitas ... 91
Table 4.33 Hasil Uji Normalitascoeiiiiiiiiiiiiii e 92
Table 4.34 Hasil Tes ANOVA ... 93
Table 4.35 Perbandingan estimasi waktu komputasi CPU vs GPU 87

Table 4.36 Table Perbandingan Konfigurasi Hyperparameter Rubin dengan
Genetic AIGOTItRM... cc.covee e e et e et et e ee ee ee e aes aae aee vee vee vve ave veee 0 92

BAB I
PENDAHULUAN

1.1 Latar Belakang

Jantung adalah organ vital yang bekerja tanpa henti sepanjang hidup,
memompa darah 60—100 kali per menit untuk menjaga distribusi oksigen dan nutrisi
ke seluruh tubuh. Gangguan pada fungsi jantung dapat berdampak serius pada
organ lain dan mengancam nyawa apabila tidak ditangani secara cepat dan
tepat.Penyakit kardiovaskular (cardiovascular disease/CVD) adalah penyebab
kematian terbesar di dunia. Menurut data terbaru dari Global Burden of Disease
Study, CVD menyebabkan sekitar 19,05 juta kematian pada tahun 2020,
merepresentasikan 32% dari total kematian global (Roth et al., 2020). Di Indonesia,
prevalensi penyakit jantung menunjukkan tren yang mengkhawatirkan. Data Survei
Kesehatan Indonesia 2023 mencatat prevalensi penyakit jantung sebesar 0,85%
(GoodStats, 2023), sementara laporan WHO (2021) menunjukkan bahwa CVD

berkontribusi terhadap 37% kematian di Indonesia.

Banyak penderita tidak mendeteksi kelainan jantung pada tahap awal karena
tidak merasakan gejala umum seperti nyeri dada, sesak napas, atau keringat dingin.
Padahal, deteksi dini sangat penting untuk meningkatkan prognosis pasien dan
mencegah komplikasi serius (Lloyd-Jones et al., 2022). Metode konvensional
seperti auskultasi manual menggunakan stetoskop sangat bergantung pada keahlian
dan pengalaman tenaga medis, sehingga rentan terhadap variabilitas diagnostik dan
dapat menghasilkan hasil yang tidak konsisten, terutama pada fasilitas kesehatan

dengan keterbatasan sumber daya (Nishimura et al., 2021).

Perkembangan teknologi artificial intelligence (Al) dan deep learning
memberikan peluang besar dalam deteksi dini kelainan jantung melalui analisis
suara jantung (phonocardiogram/PCG). Suara jantung mengandung informasi
diagnostik penting yang dapat dimanfaatkan untuk mendeteksi murmur, kelainan
katup, dan gangguan irama (Deng & Bentley, 2021).Beberapa penelitian terkini
telah menunjukkan potensi analisis audio detak jantung sebagai metode screening

awal yang efektif dan cost-effective. Gharehbaghi et al. (2021)

mengimplementasikan sistem screening berbasis PCG di setting komunitas untuk
identifikasi dini penyakit kardiovaskular, menunjukkan cost-effectiveness sebagai

alternatif echocardiography untuk screening populasi besar.

Convolutional Neural Network (CNN) terbukti efektif untuk menganalisis
data audio dan sinyal biomedis dalam penelitian-penelitian terkini. Zhang et al.
(2022) mengembangkan pendekatan berbasis scaled spectrogram dan partial
transfer learning untuk klasifikasi suara jantung, mencapai akurasi 98,2%.
Humayun et al. (2020) juga membuktikan bahwa kombinasi CNN dengan fitur Mel-
Frequency Cepstral Coefficients (MFCC) dapat meningkatkan performa klasifikasi

dengan akurasi mencapai 93,5%.

Meskipun arsitektur CNN telah banyak digunakan dalam klasifikasi suara
jantung dan menunjukkan hasil yang menjanjikan sebagai alat screening, performa
model sangat bergantung pada pemilihan Ayperparameter yang tepat.
Hyperparameter seperti learning rate, batch size, jumlah layer, jumlah kernel,
dropout rate, dan optimizer memiliki pengaruh signifikan terhadap akurasi,
kecepatan konvergensi, dan kemampuan generalisasi model (Yang & Shami, 2020).
Dalam praktiknya, pemilihan hyperparameter selama ini sering dilakukan secara
manual melalui pendekatan trial and error, di mana peneliti melakukan eksperimen
berulang kali dengan mencoba berbagai kombinasi nilai hyperparameter hingga
memperoleh hasil evaluasi yang memuaskan. Tanpa optimasi hyperparameter yang
sistematis, model dapat mengalami underfitting atau overfitting yang mengurangi
efektivitas sistem deteksi (Goodfellow et al., 2016). Baghel et al. (2020)
menunjukkan bahwa optimasi batch size dan dropout rate berkontribusi signifikan
terhadap peningkatan F'/-score dalam deteksi kelainan jantung, mengindikasikan

pentingnya konfigurasi hyperparameter yang tepat.

Berbagai metode optimasi hyperparameter telah dikembangkan untuk
mengatasi keterbatasan pendekatan manual. Metode konvensional seperti grid
search dan random search memberikan pendekatan yang sistematis namun sering
kali memerlukan computational cost yang tinggi (Probst et al., 2020). Metode yang

lebih canggih seperti Bayesian optimization, genetic algorithm, dan particle swarm

10

optimization menawarkan efisiensi yang lebih tinggi dalam mengeksplorasi ruang

pencarian hyperparameter (Paleyes et al., 2021).

Meskipun berbagai metode optimasi hyperparameter telah tersedia, belum
ada penelitian komprehensif yang secara sistematis membandingkan efektivitas dan
efisiensi berbagai metode tersebut dalam konteks klasifikasi detak jantung
menggunakan arsitektur CNN dengan fitur MFCC. Sebagian besar penelitian
terdahulu fokus pada pengembangan arsitektur model atau teknik ekstraksi fitur,
namun kurang memberikan perhatian pada aspek optimasi hyperparameter yang
sebenarnya memiliki kontribusi signifikan terhadap performa akhir sistem (Waring

et al., 2020).

1.2 Identifikasi Masalah

Berdasarkan latar belakang yang telah dipaparkan, dapat diidentifikasi beberapa

masalah utama yang menjadi dasar penelitian ini, yaitu:

e Meskipun telah ada beberapa penelitian mengenai sistem berbasis deep
learning untuk analisis audio detak jantung sebagai metode screening awal,
performa model CNN sangat bergantung pada pemilihan hyperparameter
yang tepat, namun proses optimasi hyperparameter sering kali dilakukan

secara manual atau frial-and-error yang tidak efisien.

1.3 Batasan Masalah

Untuk membatasi ruang lingkup penelitian agar lebih fokus dan terarah, maka

ditetapkan batasan masalah sebagai berikut:

1. Dataset yang digunakan adalah PhysioNet/CinC Challenge 2016 yang berisi

rekaman audio detak jantung dengan klasifikasi normal dan abnormal.

2. Metode deep learning yang digunakan terbatas pada arsitektur
Convolutional Neural Network (CNN) 2D untuk pemrosesan sinyal audio.

11

3. Preprocessing audio meliputi resampling, normalisasi, dan ekstraksi fitur

MFCC (Mel-Frequency Cepstral Coefficients).

4. Hyperparameter yang dioptimasi meliputi learning rate, batch size, jumlah

kernel per layer, kernel size, dense unit, dropout rate, dan optimizer

5. Metode optimasi hyperparameter yang dibandingkan mencakup grid

search, random search, Bayesian optimization, dan Genetic Algorithm

6. Evaluasi performa model menggunakan metrik recall, Fl-score, dan

computational efficiency (waktu training dan inference).

7. Implementasi sistem dilakukan menggunakan bahasa pemrograman Python
dengan framework TensorFlow/Keras dan library optimasi seperti Keras

Tuner

14 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, maka rumusan masalah dalam

penelitian ini adalah:

1. Bagaimana pengaruh optimasi hyperparameter terhadap performa model

CNN dalam klasifikasi detak jantung?

2. Metode optimasi hyperparameter manakah yang paling efektif untuk
meningkatkan F1-Score dan recall model CNN dalam mendeteksi kelainan
jantung?

1.5 Tujuan Penelitian
Berdasarkan rumusan masalah yang telah ditetapkan, maka tujuan penelitian ini

adalah:

1. Menganalisis pengaruh optimasi hyperparameter terhadap performa model

CNN dalam klasifikasi detak jantung.

12

2. Mengidentifikasi metode optimasi hyperparameter yang paling efektif

1.6

dalam meningkatkan F/-Score dan recall model CNN untuk deteksi

kelainan jantung.

Manfaat Penelitian

Manfaat bagi Universitas

Menjadi referensi akademik bagi penelitian lanjutan yang berhubungan
dengan klasifikasi sinyal jantung, optimasi hyperparameter, maupun

aplikasi machine learning di bidang kesehatan.

Meningkatkan reputasi universitas dalam pengembangan teknologi berbasis

Al yang relevan dengan kebutuhan dunia medis dan kesehatan Masyarakat.

Memberikan peluang kolaborasi riset dengan institusi kesehatan atau rumah
sakit terkait penerapan hasil penelitian dalam sistem deteksi dini kelainan

jantung.

Memperkaya portfolio penelitian universitas dalam domain deep learning

optimization dan medical Al

Manfaat bagi Mahasiswa

Memberikan pengalaman praktis dalam merancang, mengimplementasikan,
dan mengevaluasi sistem klasifikasi berbasis deep learning dengan

pendekatan optimasi yang sistematis.

Membekali mahasiswa dengan pemahaman mendalam tentang pengaruh
hyperparameter terhadap performa model dan teknik-teknik optimasi

modern dalam deep learning.

Memberikan keterampilan analisis data dan riset terapan yang dapat
diimplementasikan di dunia kerja, khususnya dalam bidang machine

learning engineering.

13

1.7

Luaran

Penelitian ini diharapkan menghasilkan beberapa luaran sebagai berikut:

1.

Model deep learning optimal berbasis arsitektur CNN dengan konfigurasi
hyperparameter yang telah dioptimasi secara sistematis untuk klasifikasi

detak jantung normal dan abnormal.

Artikel ilmiah yang membahas metode, eksperimen, serta hasil penelitian,
sehingga dapat dipublikasikan pada forum akademik nasional maupun

internasional.

. Dokumentasi teknis berupa laporan tugas akhir yang dapat dijadikan

referensi bagi penelitian dan pengembangan selanjutnya.

14

BAB 11
TINJAUAN PUSTAKA

2.1 Penyakit Kardiovaskular

Penyakit kardiovaskular (cardiovascular disease/CVD) merupakan
kelompok penyakit yang melibatkan jantung dan pembuluh darah, termasuk
penyakit jantung koroner, penyakit serebrovaskular, penyakit jantung rematik,
dan kondisi lainnya (World Health Organization, 2021). C¥VD menjadi penyebab
utama kematian secara global. Menurut data terbaru dari Global Burden of
Disease Study 2019, CVD menyebabkan sekitar 19,05 juta kematian pada tahun
2020, merepresentasikan 32% dari seluruh kematian di dunia (Roth et al., 2020).

Kelainan jantung dapat bermanifestasi dalam berbagai bentuk, termasuk
kelainan katup jantung, penyakit jantung kongenital, kardiomiopati, dan aritmia
(Virani et al., 2020). Deteksi dini kelainan jantung sangat krusial karena dapat
mencegah progresivitas penyakit, mengurangi risiko komplikasi, dan
meningkatkan kualitas hidup pasien (Lloyd-Jones et al., 2022). Penelitian terkini
menunjukkan bahwa early detection dan appropriate management dapat

mengurangi mortalitas CVD hingga 30—40% (Mensah et al., 2023).

2.2 Phonocardiogram (PCG)

Phonocardiogram (PCG) adalah rekaman digital dari suara jantung yang
dihasilkan oleh aktivitas mekanik jantung, termasuk pembukaan dan penutupan
katup jantung, aliran darah furbulent, dan getaran dinding jantung (Messner et al.,
2023). PCG merepresentasikan vibrasi yang dihasilkan oleh jantung dalam bentuk
sinyal audio yang dapat dianalisis secara kuantitatif untuk keperluan diagnostik

dan screening.

Suara jantung normal terdiri dari dua komponen utama: S1 dan S2. S1 (first
heart sound) dihasilkan oleh penutupan katup atrioventrikular (mitral dan

trikuspid) pada awal sistol ventrikel, sedangkan S2 (second heart sound)

15

dihasilkan oleh penutupan katup semilunar (aorta dan pulmonal) pada akhir sistol
ventrikel (Nishimura et al., 2021). Pada kondisi patologis, dapat muncul suara
tambahan seperti S3, S4, murmur, clicks, atau rubs yang mengindikasikan
kelainan jantung spesifik seperti heart failure, valvular disease, atau pericardial

disease (Otto et al., 2020).

Murmur jantung merupakan suara tambahan yang dihasilkan oleh aliran
darah turbulent melalui struktur jantung. Murmur dapat diklasifikasikan sebagai
innocent (benign) atau pathological berdasarkan karakteristik akustiknya (Frank
et al., 2022). Karakteristik penting murmur meliputi timing (systolic, diastolic,
continuous), intensitas (grade 1-6 berdasarkan Levine scale), pitch (high,
medium, low), quality (blowing, harsh, rumbling), lokasi auskultasi terbaik, dan

pola radiasi ke area anatomis lainnya (Bonow et al., 2021).

Analisis PCG memiliki beberapa keunggulan dibandingkan auskultasi
manual, termasuk objektivitas, repeatability, kemampuan untuk analisis
kuantitatif, dan potensi untuk screening massal (Deng & Bentley, 2021). Dengan
perkembangan teknologi digital stethoscope dan algoritma pemrosesan sinyal
berbasis artificial intelligence, analisis PCG otomatis menjadi semakin feasible

untuk aplikasi klinis, terutama untuk telemedicine dan point-of-care screening.

A bt

Amplitudo

—04 4 T T
0 5 10

Waktu (detik)
Gambar 2.1 Visualisasi Phonocardiogram

2.3 Artificial Intelligence (AI)

Artificial Intelligence (AI) adalah cabang ilmu komputer yang bertujuan
menciptakan sistem yang dapat melakukan tugas-tugas yang normalnya
memerlukan kecerdasan manusia (Russell & Norvig, 2020). A mencakup
berbagai kemampuan kognitif seperti learning, reasoning, problem-solving,
perception, dan language understanding. Secara fundamental, A/ berupaya untuk

membuat mesin yang dapat berpikir dan bertindak secara rasional dalam berbagai

16

situasi. Konsep A7 pertama kali diperkenalkan oleh McCarthy et al. (1956) dalam
Dartmouth Conference, di mana mereka mendefinisikan A/ sebagai "the science
and engineering of making intelligent machines". Russell dan Norvig (2020)
mengklasifikasikan definisi A/ menjadi empat kategori: systems that think like
humans, systems that think rationally, systems that act like humans, dan systems

that act rationally.

24 Deep Learning

Deep learning adalah cabang dari machine learning yang menggunakan
neural networks dengan beberapa hidden layers (deep neural networks) untuk
mempelajari representasi data yang kompleks (LeCun et al., 2015). Keunggulan
utama deep learning adalah kemampuannya untuk secara otomatis mengekstraksi
fitur dari data mentah tanpa memerlukan feature engineering manual yang
ekstensif (Goodfellow et al., 2016). Istilah “deep ” merujuk pada jumlah layers
dalam network yang memungkinkan model mempelajari fitur pada berbagai
tingkat abstraksi, di mana /ayer bawah mendeteksi pola sederhana dan /ayer atas
mengombinasikannya menjadi representasi yang lebih kompleks. Deep learning
telah mencapai dampak transformasional dalam berbagai domain dengan kinerja
yang sangat tinggi, terutama sejak kemajuan dalam /large-scale models dan

sumber daya komputasi (Sejnowski, 2020).

Prinsip fundamental deep learning didasarkan pada pembelajaran hierarkis
(hierarchical ~ learning) dan representasi terdistribusi (distributed
representations). Neural networks dalam deep learning terdiri dari interconnected
layers dari neuron buatan yang melakukan transformasi non-linear terhadap data
masukan. Setiap layer menerima input dari layer sebelumnya, melakukan
penjumlahan berbobot dan aktivasi non-linear, kemudian meneruskan output ke
layer berikutnya. Proses pelatthan menggunakan algoritma backpropagation
untuk mengoptimalkan bobot berdasarkan loss function yang mengukur
perbedaan antara prediksi model dan label sebenarnya. Optimisasi dilakukan
melalui variasi gradient descent seperti Stochastic Gradient Descent (SGD),
Adam, atau AdamW yang menyesuaikan parameter secara iteratif untuk

meminimalkan /oss (Loshchilov & Hutter, 2019). Kemajuan terbaru dalam teknik

17

optimisasi, metode regularisasi, dan inovasi arsitektur telah meningkatkan

stabilitas pelatihan serta kinerja model secara signifikan (Zhang et al., 2021).

2.5 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) adalah jenis deep neural network
yang dirancang khusus untuk pemrosesan data dengan struktur menyerupai grid,
seperti gambar dan sinyal deret waktu (time-series) (LeCun et al., 1998). CNN
telah merevolusi bidang computer vision dan semakin banyak diaplikasikan untuk
pemrosesan sinyal audio serta data biomedis (Krizhevsky et al., 2012). Arsitektur
CNN terinspirasi dari organisasi visual cortex pada mamalia, di mana neuron
merespons rangsangan hanya pada wilayah terbatas yang disebut receptive field
(Hubel & Wiesel, 1962). CNN mengimplementasikan konsep ini melalui
konektivitas lokal (local connectivity) dan pembagian bobot (weight sharing),
yang membuat network efisien dalam mendeteksi pola pada berbagai lokasi dalam

data masukan.

Prinsip fundamental CNN didasarkan pada tiga konsep utama (Goodfellow
et al., 2016). Pertama, konektivitas lokal (local connectivity), di mana setiap
neuron hanya terhubung ke wilayah lokal dari masukan, sehingga jumlah
parameter berkurang drastis dan network dapat fokus pada pola lokal. Kedua,
pembagian parameter (parameter sharing), yaitu penggunaan kernel yang sama
pada berbagai posisi dalam masukan, membuat CNN bersifat translation
equivariant serta efisien dalam penggunaan parameter. Ketiga, pembelajaran fitur
hierarkis (hierarchical feature learning), di mana CNN secara otomatis
mempelajari representasi hierarkis melalui penumpukan beberapa layers, dengan
layer awal mendeteksi fitur sederhana dan /ayer lebih dalam mempelajari fitur

semantik tingkat tinggi (LeCun et al., 2015).

18

Gambar 2.2 Visualisasi Convolutional Neural Network

2.5.1 CNN2D

CNN 2D (Two-Dimensional Convolutional Neural Network) adalah
arsitektur deep learning yang dirancang untuk memproses data dengan struktur grid
dua dimensi (LeCun et al., 2015). Dalam klasifikasi audio, CNN 2D beroperasi
pada representasi visual dari sinyal suara seperti spectrogram, mel-spectrogram,
atau MFCC, di mana sumbu horizontal merepresentasikan waktu dan sumbu

vertikal merepresentasikan frekuensi (Hershey et al., 2017).

Keunggulan CNN 2D dalam pemrosesan sinyal audio mencakup beberapa
aspek. Dari sisi ekstraksi fitur time-frequency, CNN 2D mampu menangkap pola
kompleks secara simultan pada domain waktu dan frekuensi, yang penting untuk
membedakan karakteristik suara jantung seperti S1, S2, dan murmur (Potes et al.,
2016). Dari sisi representasi hierarchical, CNN 2D membangun fitur bertingkat dari
low-level features seperti edges pada layer awal, hingga high-level features seperti

pola akustik kompleks pada layer lebih dalam (Zeiler & Fergus, 2014).

2.5.2 Komponen Arsitektur CNN

Arsitektur CNN terdiri dari beberapa komponen fundamental yang bekerja

bersama untuk feature extraction dan classification:

19

25.2.1 Convolutional Layer

Convolutional layer adalah komponen inti dari CNN yang melakukan
operasi konvolusi antara sinyal masukan (input signal) dan kernel yang dapat
dipelajari (learnable kernels atau kernels) untuk mengekstraksi fitur (LeCun et al.,

2015). Pada CNN 1D, operasi konvolusi dapat dinyatakan sebagai:
yli] = kYx[i + k] -w[k] + b (2-1)

di mana x adalah sinyal masukan, w adalah bobot kernel (kernel weights),
bbb adalah bias term, dan y adalah peta fitur keluaran (output feature map).
Convolutional layer berfungsi untuk mendeteksi pola lokal (/ocal patterns) dalam
data masukan, seperti tepi (edges), tekstur (textures), atau dalam konteks audio,
pola suara spesifik serta karakteristik temporal. Lapisan ini menggunakan konsep
pembagian bobot (weight sharing), di mana kernel yang sama diaplikasikan ke
seluruh bagian masukan, sehingga secara signifikan mengurangi jumlah

parameter dan memungkinkan deteksi pola pada berbagai posisi dalam data.

2.5.2.2 Activation Function

Activation function memperkenalkan non-linearity ke dalam neural
network, memungkinkan model untuk mempelajari hubungan yang kompleks dan
non-linear dalam data (Nair & Hinton, 2010). Tanpa activation function, neural
network hanya mampu mempelajari transformasi linear meskipun memiliki

kedalaman berlapis.
Beberapa jenis activation function yang umum digunakan dalam deep learning:

e ReLU (Rectified Linear Unit)
ReLU (Rectified Linear Unit) adalah activation function paling populer dalam
deep learning modern. ReLU memberikan beberapa keunggulan: kesederhanaan
komputasi karena hanya melibatkan operasi ambang (thresholding operation),

mengurangi masalah vanishing gradient yang memfasilitasi pelatihan deep

networks, serta mendorong terjadinya sparsity dengan menghasilkan aktivasi nol

20

untuk input negatif (Agarap, 2018). Namun, ReLU dapat mengalami masalah
dying ReLU di mana neuron menjadi tidak aktif secara permanen jika menerima

nilai negatif yang besar selama pelatihan.

e Leaky ReLU

Leaky ReLU adalah varian dari ReLU yang mengatasi masalah dying ReLU
dengan memberikan kemiringan kecil (small negative slope) untuk input negatif,
di mana o adalah konstanta kecil (biasanya 0.01). Leaky ReLU mempertahankan
keunggulan ReLU sekaligus memungkinkan aliran gradien kecil pada nilai
negatif, sehingga mencegah neuron menjadi benar-benar tidak aktif (Maas et al.,

2013).

e Sigmoid

Sigmoid adalah activation function klasik yang memetakan input ke rentang
(0, 1). Fungsi ini sering digunakan pada output layer untuk klasifikasi biner karena
keluarannya dapat diinterpretasikan sebagai probabilitas. Namun, sigmoid
mengalami masalah serius vanishing gradient untuk input yang sangat besar atau
sangat kecil, sehingga kurang cocok digunakan pada hidden layer dalam deep
networks (Goodfellow et al., 2016).

e Softmax

Softmax adalah activation function yang biasanya digunakan pada output
layer untuk klasifikasi multi-kelas, dengan mengubah skor mentah (logits)
menjadi distribusi probabilitas. Softmax memastikan bahwa nilai keluaran
berjumlah total 1 dan setiap nilai berada di antara 0 dan 1, sehingga dapat

diinterpretasikan sebagai probabilitas kelas.

Pemilihan activation function dapat berdampak signifikan pada performa
model, dinamika pelatihan, dan kecepatan konvergensi (Dubey et al., 2022).
Dalam praktiknya, ReLU dan variannya paling umum digunakan untuk hidden

layer karena efisiensi komputasi dan efektivitasnya, sedangkan sigmoid

21

digunakan untuk keluaran klasifikasi biner dan softmax untuk keluaran klasifikasi

multi-kelas.

2.5.2.3 Pooling Layer

Pooling layer melakukan operasi downsampling untuk mengurangi dimensi
spasial dari feature maps sambil tetap mempertahankan informasi penting
(Scherer et al., 2010). Max pooling, jenis pooling yang paling umum, mengambil

nilai maksimum dari setiap wilayah lokal:
y[i] = max(x[i-s:i-s+ k]) (2-2)

di mana s adalah stride dan k adalah ukuran pooling window.
Fungsi pooling layer adalah mengurangi dimensi dan biaya komputasi,
memberikan sifat tramslation invariance yang membuat model lebih robust
terhadap pergeseran kecil pada input, serta mencegah overfitting dengan
mengurangi jumlah parameter. Selain itu, pooling membantu mengekstraksi fitur
dominan yang tetap relevan meskipun berada pada posisi berbeda dalam sinyal

input.
2.5.2.4 Batch Normalization
Batch Normalization adalah teknik yang menormalisasi aktivasi dari setiap

layer untuk setiap mini-batch, sehingga secara signifikan meningkatkan dinamika

pelatihan (loffe & Szegedy, 2015). Operasinya dapat dinyatakan sebagai:

A X —
x" = Upatch (2_3)
Y O-zbatch"'E
(2-4)
y=y-x"+p

di mana ppgecn dan 02,4, adalah mean dan variance dari mini-batch,
€adalah konstanta kecil untuk stabilitas numerik, serta y dan 8 adalah parameter

yang dapat dipelajari.

22

Batch normalization berfungsi untuk mempercepat pelatihan dengan
memungkinkan /earning rate yang lebih tinggi, mengurangi internal covariate
shift sehingga pelatihan lebih stabil, berperan sebagai bentuk regularization yang
dapat mengurangi kebutuhan dropout pada beberapa kasus, serta meningkatkan
aliran gradien di dalam network sehingga memfasilitasi pelatihan arsitektur yang

lebih dalam.

2.5.2.5 Dropout

Dropout adalah teknik regularization yang secara acak menonaktifkan
(mengatur ke nol) sebagian neuron selama pelatihan dengan probabilitas ppp
(dropout rate) (Srivastava et al., 2014). Fungsinya adalah mencegah overfitting
dengan memaksa network untuk tidak bergantung pada neuron tertentu,
mendorong pembelajaran representasi yang lebih robust dan terdistribusi sehingga
mampu melakukan generalisasi lebih baik, serta memberikan efek seperti model
averaging karena pelatihan secara efektif menciptakan ensemble dari berbagai
sub-network. Dropout hanya aktif selama pelatihan dan dinonaktifkan pada saat
inferensi, di mana semua neuron digunakan, tetapi output diskalakan sesuai

dropout rate untuk menjaga nilai ekspektasi.

2.5.2.6 Flatten Layer

Flatten layer mengonversi feature maps multi-dimensi dari convolutional
dan pooling layers menjadi vektor satu dimensi (Goodfellow et al., 2016).
Layer ini berfungsi sebagai lapisan transisi antara bagian convolutional dari
network (yang bekerja pada data spasial/temporal) dan bagian fully connected
(yang membutuhkan input satu dimensi). Operasi flatten hanya melakukan
reshaping data tanpa mempelajari parameter apa pun, dengan tetap
mempertahankan semua informasi dari feature maps dalam susunan linear yang

sesuai untuk dense layers.

2.5.2.7 Fully Connected Layer

Fully connected layer (dense layer) menghubungkan setiap neuron dengan

semua neuron pada /ayer sebelumnya, melakukan integrasi global terhadap fitur-

23

fitur yang diekstraksi oleh convolutional layers (Goodfellow et al., 2016).
Operasinya dapat dinyatakan sebagai:

y=W-x+b (2-5)

di mana W adalah matriks bobot, x adalah vektor input, dan b adalah vektor
bias.
Fully connected layers berfungsi untuk mengombinasikan semua fitur yang
diekstraksi dalam membuat keputusan klasifikasi akhir, mempelajari kombinasi
non-linear yang kompleks dari fitur-fitur tersebut, serta memetakan dari feature
space ke output space (label kelas). Layer ini umumnya ditempatkan mendekati
bagian keluaran network untuk melakukan penalaran tingkat tinggi dan

pengambilan keputusan.

2.6 Mel-Frequency Cepstral Coefficients (MFCC)

Mel-Frequency Cepstral Coefficients (MFCC) adalah representasi fitur
audio yang paling banyak digunakan dalam speech recognition dan audio
classification (Davis & Mermelstein, 1980). MFCC mengekstraksi fitur yang
merefleksikan karakteristik spektral sinyal audio dengan cara yang sesuai dengan
persepsi auditory system manusia.

Nama "mel" berasal dari mel scale, yang merupakan perceptual scale of
pitches yang dikembangkan oleh Stevens et al. (1937). Mel scale didasarkan pada
pengamatan bahwa telinga manusia tidak mempersepsikan frekuensi secara linear.

Gambar 2.3 memperlihatkan representasi visual dari fitur audio
menggunakan Mel spectrogram (atas) dan Mel-Frequency Cepstral Coefficients
(MFCC) (bawah)

24

Mel spectrogram

0
4096 -20
2048 ‘ { . " b
N : s AL] ™ L —40
i =8 1024 ; “‘ , :.. : :5' ‘ \‘l ’
) ! ! 5’ : 5 .
s SO T NN TP |
o NEEE BE RiiEiaE Sme fasaiiSam -5p
MFCC
200
0
—200
-400
.’—-.I“z‘--“l--l.-- .—_---ll--

0 15 3 45 6 75 9 10 12 14
Time

Gambar 2.3 Mel spectrogram dan Mel-Frequency Cepstral Coefficients (MFCC)

2.7 Hyperparameter

Hyperparameter adalah parameter konfigurasi yang nilainya ditentukan
sebelum proses training dimulai dan tidak dipelajari dari data training (Goodfellow
et al., 2016). Berbeda dengan parameter model (seperti bobot dan bias) yang
dioptimasi selama training melalui backpropagation, hyperparameter harus
ditetapkan secara eksplisit dan memiliki pengaruh signifikan terhadap performa
model. Pemilihan hyperparameter yang tepat merupakan faktor krusial dalam
pengembangan model deep learning yang efektif, karena dapat mempengaruhi
kecepatan konvergensi, akurasi akhir, dan kemampuan generalisasi (Yang &

Shami, 2020).

2.7.1 Learning Rate

Learning rate adalah salah satu hyperparameter paling kritis yang
menentukan seberapa besar pembaruan bobot dalam setiap iterasi (Bengio, 2012).
Learning rate yang terlalu besar dapat menyebabkan optimisasi menyimpang atau
berosilasi, sedangkan learning rate yang terlalu kecil membuat konvergensi
sangat lambat dan dapat terjebak di local minima. Penelitian terkini menunjukkan

bahwa adaptive learning rate schedules, seperti cosine annealing dan learning

25

rate warmup, dapat meningkatkan stabilitas training dan performa akhir model
(Loshchilov & Hutter, 2017). Smith et al. (2021) mendemonstrasikan bahwa
learning rate yang optimal sering bergantung pada ukuran batch, dengan batch
yang lebih besar membutuhkan learning rate yang lebih tinggi secara proporsional

untuk menjaga dinamika training yang efektif.

2.7.2 Batch Size

Batch size mempengaruhi kecepatan pelatihan, kebutuhan memori, dan
kemampuan model untuk menggeneralisasi data baru (Keskar et al., 2017).
Ukuran batch yang kecil menghasilkan estimasi gradien yang bervariasi (noisy)
namun dapat meningkatkan kemampuan generalisasi model. Sebaliknya, ukuran
batch yang besar memberikan estimasi gradien yang lebih stabil tetapi
memerlukan memori yang lebih besar dan cenderung menghasilkan model yang

kurang mampu menggeneralisasi data baru dengan baik.

2.7.3 Network Architecture

Jumlah /ayer dan unit per /ayer menentukan kapasitas representasi model
dalam mempelajari pola data (Hanin & Seluk, 2018). Network yang terlalu
dangkal mungkin tidak dapat menangkap pola yang kompleks (underfitting),
sedangkan network yang terlalu dalam dapat mengalami overfitting dan sulit untuk
dilatih. Tan dan Le (2021) mengembangkan EfficientNetV2 yang menunjukkan
pentingnya systematic architecture scaling, bahwa kedalaman, lebar, dan resolusi
sebaiknya diskalakan secara bersama-sama, bukan secara terpisah. Penelitian
modern juga menekankan pentingnya komponen arsitektural seperti skip
connections dan attention mechanisms dalam memungkinkan training yang

efektif pada very deep networks (Liu et al., 2022).

2.7.4 Dropout Rate
Dropout rate menentukan proporsi neuron yang dinonaktifkan secara acak
selama proses pelatihan (Srivastava et al., 2014). Dropout rate yang terlalu rendah

memberikan regularisasi yang tidak memadai sehingga model cenderung overfit,

sedangkan dropout rate yang terlalu tinggi dapat mengurangi kapasitas model

26

secara signifikan sehingga performanya menurun. Penelitian oleh Labach et al.
(2019) mengeksplorasi strategi adaptive dropout di mana dropout rate
disesuaikan secara dinamis selama training berdasarkan performa validasi. Selain
itu, teknik regularisasi alternatif seperti DropBlock dan Cutout menunjukkan hasil
yang menjanjikan untuk domain tertentu seperti computer vision dan audio

processing (Ghiasi et al., 2018, DeVries & Taylor, 2017).

2.7.5 Optimizer Selection

Pemilihan optimizer dapat memberikan dampak signifikan pada performa
dan dinamika training model (Ruder, 2016). Stochastic Gradient Descent (SGD)
dengan momentum adalah optimizer klasik yang tangguh tetapi memerlukan
penyetelan yang cermat. Adam optimizer (Kingma & Ba, 2015) mengadaptasi
learning rate untuk setiap parameter dan sering kali konvergen lebih cepat, tetapi
kadang menghasilkan generalisasi yang lebih buruk pada beberapa tugas.
Perkembangan terbaru termasuk AdamW yang memisahkan weight decay dari
pembaruan gradien (Loshchilov & Hutter, 2019), dan LAMB optimizer yang
memungkinkan pelatihan batch besar secara efektif (You et al., 2020). Liu et al.
(2020) melakukan analisis komprehensif yang menunjukkan bahwa pilihan
optimizer yang optimal bergantung pada kompleksitas tugas, arsitektur model, dan
sumber daya komputasi yang tersedia. Choi et al. (2020) menunjukkan bahwa
pendekatan hibrid yang menggabungkan keunggulan dari beberapa optimizer

dapat mencapai performa yang lebih baik di berbagai jenis tugas.

2.8 Hyperparameter Optimization (HPO)

Hyperparameter optimization (HPO) adalah proses sistematis untuk
menemukan kombinasi hyperparameter yang menghasilkan performa model
terbaik (Feurer & Hutter, 2019). Performa model deep learning sangat bergantung
pada konfigurasi hyperparameter yang optimal, di mana setiap hyperparameter
berinteraksi secara kompleks dan mempengaruhi hasil akhir model (Bergstra &
Bengio, 2012). Sebagai analogi, hyperparameter dapat diibaratkan sebagai "resep"
dalam pembuatan kue, di mana setiap bahan (learning rate, batch size, dropout
rate, dll.) harus dalam takaran yang tepat agar menghasilkan produk yang

sempurna.

27

Manual tuning atau trial-and-error merupakan pendekatan konvensional
yang tidak efisien dan sering kali tidak menghasilkan konfigurasi optimal,
terutama ketika berhadapan dengan high-dimensional hyperparameter space di
mana banyak hyperparameter saling berinteraksi (Claesen & De Moor, 2015).
Kompleksitas ini mendasari munculnya metode HPO yang lebih sistematis dan

otomatis untuk mengeksplorasi hyperparameter space secara efisien.

Dalam hyperparameter optimization, objective function yang ingin

dioptimalkan adalah (Yang & Shami, 2020):
A*x = argmin L(A_A, D_train, D_valid) (2-6)
ALEA
dimana:

o)\ adalah konfigurasi hyperparameter

e A adalah hyperparameter search space

e A) adalah algoritma dengan hyperparameter A

e D train adalah training data

e D valid adalah validation data

o L adalah loss atau error metric

Tujuannya adalah menemukan A* yang meminimalkan validation error dan

menghindari overfiting.

2.8.1 Grid Search

Grid search merupakan metode HPO yang paling sederhana dan
straightforward dengan pendekatan brute-force (Bergstra & Bengio, 2012). Metode
ini bekerja dengan mendefinisikan grid dari nilai-nilai diskrit untuk setiap
hyperparameter, kemudian secara exhaustive mencoba setiap kombinasi yang

mungkin dalam grid tersebut (Liashchynskyi & Liashchynskyi, 2019).

Kelebihan grid search adalah kesederhanaannya dan guarantee bahwa

kombinasi terbaik dalam grid yang didefinisikan akan ditemukan (Mantovani et al.,

28

2015). Metode ini juga mudah untuk diparalelisasi karena setiap evaluasi
independen satu sama lain. Namun, kekurangan utama grid search adalah
computational cost yang sangat tinggi, terutama ketika jumlah hyperparameter dan
range nilainya besar (Bergstra & Bengio, 2012). Kompleksitas waktu grid search
meningkat secara eksponensial dengan jumlah hyperparameter (curse of
dimensionality), sehingga menjadi kurang efektif untuk high-dimensional search

spaces (Claesen & De Moor, 2015).

Gambar 2.4 menunjukkan ilustrasi Grid Search dalam pencarian
hyperparameter, dengan pendekatan brute-force yang mengevaluasi seluruh

kombinasi dari nilai hyperparameter yang telah ditentukan.

o~ N J‘\ J'\
e O
o

P

H :
Ef—

M

a

L

o

& =
'-I’O

0.001 0.01 0.1
Hyperparameter 1

Gambar 2.4 llustrasi Grid Search.

2.8.1.1 Reduce Grid

Strategi reduced grid dibuat melalui pendekatan intelligent sampling yang
mempertahankan diversity dalam ruang pencarian hyperparameter. Keras Tuner
GridSearch secara otomatis melakukan sampling dengan prioritas pada kombinasi
yang memiliki probabilitas tinggi menghasilkan performa optimal berdasarkan
interaksi antar hyperparameter. Pendekatan ini mengikuti prinsip yang dijelaskan
oleh Bergstra dan Bengio (2012) bahwa tidak semua dimensi hyperparameter
memiliki pengaruh yang sama terhadap performa model, sehingga sampling dapat
difokuskan pada region yang lebih promising. Reduced grid dibentuk dengan

memastikan setiap nilai dari hyperparameter penting (seperti jumlah kernels, kernel

29

size, dan learning rate) terrepresentasi dengan baik dalam kombinasi yang

dievaluasi.

2.8.2 Random Search

Random search merupakan alternatif yang lebih efisien dibandingkan grid
search, di mana metode ini secara random mengambil sampel kombinasi
hyperparameter dari distribusi yang telah ditentukan (Bergstra & Bengio, 2012).
Alih-alih mencoba setiap kombinasi secara sistematis, random search

mengeksplorasi hyperparameter space dengan sampling acak.

Bergstra dan Bengio (2012) dalam penelitian mereka menunjukkan bahwa
random search secara signifikan lebih efisien daripada grid search untuk
hyperparameter — optimization. Keunggulan utama random search adalah
probabilitas yang lebih tinggi untuk menemukan kombinasi yang baik dalam budget
komputasi yang sama, terutama ketika beberapa hyperparameter lebih penting
daripada yang lain. Random search tidak membuang resources untuk mencoba
kombinasi yang sistematis tetapi kurang penting, sehingga dapat mengeksplorasi

lebih banyak nilai untuk hyperparameter yang critical (Bergstra & Bengio, 2012).

Gambar 2.5 adalah representasi dari metode Random Search, di mana

kombinasi nilai hyperparameter dipilih secara acak dari ruang pencarian.

N
T o O O
D]
P
H
Yo\
S - U
S
a
S
& - N)
& =
< o
0.001 0.01 0.1
Hyperparame‘te_r 1

Gambar 2.5 llustrasi Random Search

30

2.8.3 Bayesian Optimization

Bayesian optimization adalah metode HPO yang lebih sophisticated dan
intelligent, yang membangun model probabilistik dari fungsi objektif (performa
model) terhadap hyperparameter yang diuji (Shahriari et al., 2016). Metode ini
menggunakan prior knowledge dari eksperimen sebelumnya untuk memandu
pencarian hyperparameter selanjutnya, sehingga dapat menemukan konfigurasi

optimal dengan jumlah evaluasi yang lebih sedikit (Snoek et al., 2012).

Bayesian optimization bekerja dengan membangun surrogate model,
biasanya Gaussian Process (GP), yang memodelkan distribusi probabilitas dari
fungsi objektif (Mockus, 1975). Model ini kemudian digunakan untuk menghitung
acquisition function yang menentukan /hyperparameter mana yang paling
menjanjikan untuk dievaluasi selanjutnya (Brochu et al., 2010). Proses ini
melibatkan trade-off antara exploitation (mengeksplorasi region yang sudah
diketahui menghasilkan performa baik) dan exploration (mencari region baru yang

belum pernah diuji) (Shahriari et al., 2016).

Acquisition functions yang umum digunakan meliputi Expected Improvement
(EY), Probability of Improvement (P1), dan Upper Confidence Bound (UCB), yang
masing-masing memiliki karakteristik exploration-exploitation yang berbeda
(Snoek et al., 2012). Keunggulan utama Bayesian optimization adalah efisiensi
komputasinya yang superior, karena metode ini secara intelligent memilih
kombinasi hyperparameter yang paling menjanjikan dan menghindari evaluasi

pada region yang unlikely menghasilkan improvement (Frazier, 2018).

Gambar 2.6 adalah representasi dari metode Bayesian Optimization, di mana
pemilihan Ayperparameter dilakukan dengan membangun surrogate model untuk
memodelkan fungsi objektif dan menggunakan acquisition function untuk

menentukan kombinasi hyperparameter berikutnya.

31

Objective i ') .
Initialization Function —_— N
Mﬂde“ng j :
Object]ve Function: - -) :

5 e.g. Log Loss Approximate the true Build o surrogate wodel
nbje,ctive Function |
ply | =) from va.(aies

Acquisition
Function

This to seleet the
next set lnt/pe.rpammete.rs

Evaluate and update the surrogate model until optimal

Select small set of
random Lﬂ/perparamet&rs

Gambar 2.6 Ilustrasi Bayesian Optimization

2.8.4 Genetic Algorithm

Genetic algorithm (GA) adalah metode HPO(Hyperparameter Optimization)
yang terinspirasi dari proses evolusi biologis, menggunakan mekanisme seperti
selection, crossover, dan mutation untuk mengeksplorasi hyperparameter space
(Holland, 1992). Metode ini memaintain populasi dari kandidat solusi (kombinasi
hyperparameter) dan secara iteratif mengevolusi populasi tersebut menuju solusi

yang lebih baik (Goldberg & Holland, 1988).

Proses GA dimulai dengan inisialisasi populasi random, kemudian
mengevaluasi fitness (performa) setiap individu dalam populasi (Lorenzo et al.,
2017). Individu dengan fitness tinggi memiliki probabilitas lebih besar untuk
diseleksi sebagai parents untuk generasi berikutnya. Crossover operation
menggabungkan hyperparameter dari dua parents untuk menghasilkan offspring,
sedangkan mutation operation memperkenalkan variasi random untuk maintain

diversity dan menghindari premature convergence (Eiben & Smith, 2015).

Keunggulan genetic algorithm adalah kemampuannya untuk mengeksplorasi
non-convex dan multimodal search spaces, serta tidak memerlukan gradient
information (Lorenzo et al., 2017). GA juga naturally parallelizable karena evaluasi
fitness dalam satu generasi dapat dilakukan secara independen. Namun, kekurangan

GA termasuk memerlukan tuning dari GA parameters itu sendiri (population size,

32

mutation rate, crossover rate) dan dapat memerlukan banyak evaluasi untuk

converge, terutama untuk high-dimensional spaces (Eiben & Smith, 2015).

2.9 Confusion Matrix

Confusion Matrix adalah tabel yang menggambarkan performa model
klasifikasi dengan membandingkan prediksi model terhadap label aktual (Sokolova
& Lapalme, 2009). Tabel ini terdiri dari empat komponen utama: True Positives
(TP) yaitu data positif yang diprediksi benar sebagai positif, True Negatives (TN)
yaitu data negatif yang diprediksi benar sebagai negatif, False Positives (FP) yaitu
data negatif yang salah diprediksi sebagai positif, dan False Negatives (FN) yaitu
data positif yang salah diprediksi sebagai negatif (Powers, 2011). Confusion matrix

menjadi dasar untuk menghitung berbagai metrik evaluasi lainnya.

Actual Values

1 (Postive) 0 (Negative)
)
a2
3 @ TP 5
f-B 8 (True Positive) (False Positive)
> : : Type | Error
= N SR
@ ~
- o :
-E '2 E
A H
T 5 FN ; TN
- @ (False Negative) : (True Negative)
a 2z :
~ Type Il Error :
o

Gambar 2.7 Confusion Matrix

2.9.1 Accuracy

Accuracy adalah proporsi total prediksi yang benar dari keseluruhan
prediksi (Powers, 2011). Metrik ini mengukur seberapa akurat model dapat
mengklasifikasikan data dengan benar. Nilai accuracy dapat diperoleh dengan

persamaan:

TP + TN 2-7)

ACCUracy = Tb TN + FP + FN

33

dimana TP = True Positives, TN = True Negatives, FP = False Positives, dan FN =
False Negatives.

2.9.2 Precision

Precision merupakan proporsi prediksi positif yang benar dari total prediksi
positif (Fawcett, 2006). Precision berfokus pada meminimalisir false positive dan
mengukur ketepatan model ketika memprediksi kelas positif (Davis & Goadrich,

2006). Nilai precision dapat diperoleh dengan persamaan:

TP
precision = m5——70 (2-8)

2.9.3 Recall (Sensitivity)

Recall atau sensitivity mengukur kemampuan model untuk mendeteksi
semua sampel positif (Hossin & Sulaiman, 2015). Metrik ini penting dalam konteks
medis dimana mendeteksi semua kasus positif lebih krusial daripada menghindari
false positives (Japkowicz & Shah, 2011). Nilai recall dapat diperoleh dengan

persamaan:

TP
recall = 75— N

dimana TP = True Positives dan FN = False Negatives.

2.9.4 F1-Score

F1-Score adalah harmonic mean dari precision dan recall yang memberikan
keseimbangan antara kedua metrik tersebut (Powers, 2011). FI-Score berguna
ketika terdapat trade-off antara precision dan recall, serta penting untuk dataset

dengan class imbalance. Nilai F'I-Score dapat diperoleh dengan persamaan:

recision X recall -
F1—Score=2><p (2-10)

precision + recall

dimana precision dan recall adalah nilai dari masing-masing metrik yang telah

dihitung sebelumnya.

34

2.10 Python

Python merupakan bahasa pemrograman yang banyak digunakan dalam
pengembangan aplikasi machine learning dan deep learning karena sintaks yang
mudah dibaca, library yang komprehensif, serta dukungan komunitas yang luas
(Chollet, 2021). Python memiliki keunggulan fleksibilitas yang memungkinkan
peneliti menguji berbagai algoritma dan arsitektur deep learning, yang sangat
penting dalam domain medical signal processing karena akurasi dan performa

menjadi prioritas utama (Géron, 2022).

2.10.1Librosa

Librosa merupakan library Python yang dirancang khusus untuk analisis
dan pemrosesan sinyal audio (McFee et al., 2015). Dalam penelitian ini, Librosa
digunakan untuk /oading dan preprocessing audio files, resampling audio signals
ke uniform sampling rate, ekstraksi MFCC feature sebagai input untuk model deep
learning, dan visualisasi audio signals dan spectrograms untuk exploratory
analysis. Menurut McFee et al. (2015), Librosa menyediakan implementasi yang

reliable dan well-tested dari berbagai audio processing algorithms.

2.10.2 TensorFlow dan Keras

TensorFlow dengan APl Keras merupakan kerangka kerja deep learning
yang dikembangkan oleh Google (Abadi et al., 2016; Chollet, 2021). TensorFlow
dan Keras digunakan untuk membangun arsitektur CNN, melatih model dengan
berbagai konfigurasi hyperparameter, membuat fungsi pemantau untuk proses
optimasi hyperparameter, mengevaluasi kinerja model dengan metrik bawaan,
serta menyimpan dan memuat model yang sudah dilatth untuk keperluan
perbandingan. Menurut Chollet (2021), Keras memiliki keunggulan dalam
mendukung pengembangan prototipe secara cepat serta memudahkan penerapan

arsitektur yang kompleks untuk analisis sinyal biomedis.

2.10.3 Scikit-learn

Scikit-learn menyediakan implementasi algoritma machine learning dan
berbagai alat evaluasi yang komprehensif (Pedregosa et al., 2011). Library ini

digunakan untuk membagi dataset menjadi data latih, validasi, dan uji dengan

35

teknik stratifikasi, mengevaluasi model menggunakan metrik seperti akurasi,
presisi, recall, dan F'1-score, membuat confusion matrix untuk analisis kinerja yang
lebih detail, melakukan cross-validation untuk estimasi kinerja yang lebih
andal.Serta melakukan praproses data seperti penskalaan dan normalisasi. Menurut
Géron (2022), Scikit-learn memiliki antarmuka yang konsisten dan mudah

digunakan untuk berbagai tugas machine learning.

2.10.4 NumPy

NumPy merupakan /ibrary fundamental untuk komputasi ilmiah di Python
yang menyediakan dukungan terhadap array dan matriks multidimensi, beserta
fungsi matematika tingkat tinggi (Harris et al., 2020). Dalam penelitian ini, NumPy
digunakan untuk representasi dan manipulasi audio data dalam bentuk array
multidimensi, operasi matematika untuk normalisasi dan preprocessing, array
reshaping untuk menyiapkan input ke model CNN, statistical calculations untuk
data analysis, dan performance-critical operations dalam feature extraction

pipeline.
2.10.5 Pandas

Pandas menyediakan struktur data dan berbagai alat untuk menganalisis
data secara efektif (McKinney, 2010). Dalam penelitian ini, Pandas digunakan
untuk mengelola metadata dataset (seperti lokasi file, label, dan durasi), melakukan
analisis eksploratif untuk memahami karakteristik data, mengatur konfigurasi
hyperparameter beserta hasilnya, membuat ringkasan statistik dari hasil
eksperimen, serta mengorganisasi metrik evaluasi guna membandingkan berbagai

metode secara lebih efektif.

2.10.6 Matplotlib dan Seaborn

Matplotlib dan Seaborn merupakan library visualisasi dalam Python yang
sangat penting dalam analisis data dan machine learning (Hunter, 2007; Waskom,
2021). Library visualisasi ini digunakan untuk plotting waveforms dari audio
signals, visualizing spectrograms dan MFCC features, training history plots (loss
dan accuracy curves), confusion matrices dengan heatmaps, convergence plots

untuk optimization methods, dan comparative bar plots untuk method comparison.

36

Menurut Géron (2022), visualisasi yang efektif sangat penting untuk memahami

behavior model dan mengkomunikasikan hasil penelitian.

2.10.7 KaggleHub

KaggleHub adalah official Python library untuk mengakses Kaggle datasets
dan models secara programmatic (Kaggle, 2024). Library ini menyediakan
interface sederhana untuk downloading datasets, automatic authentication
menggunakan Kaggle APl credentials, intelligent caching untuk menghindari
redundant downloads, dan support untuk dataset versioning. Dalam penelitian ini,
KaggleHub digunakan untuk downloading dataset secara efisien, managing dataset

versions untuk reproducibility, dan automating dataset preparation pipeline.

2.10.8 Keras Tuner

Keras Tuner adalah pustaka untuk penyesuaian hyperparameter yang
terintegrasi dengan TensorFlow/Keras, serta menyediakan antarmuka yang
berskala dan mudah digunakan untuk mengoptimalkan konfigurasi model
(O'Malley et al., 2019). Keras Tuner mengimplementasikan berbagai algoritma
optimasi hyperparameter mutakhir, termasuk Random Search, Bayesian
Optimization, dan Hyperband. Dalam penelitian ini, Keras Tuner digunakan untuk
menerapkan dan membandingkan berbagai metode penyesuaian hyperparameter,
mendefinisikan ruang pencarian hyperparameter, mengelola percobaan optimasi
beserta hasilnya, serta melakukan integrasi dengan TensorBoard untuk visualisasi.
Menurut O'Malley et al. (2019), Keras Tuner merupakan kerangka kerja yang
fleksibel dan kuat sehingga secara signifikan menyederhanakan proses penyesuaian

hyperparameter.

2.11 Penelitian Terdahulu

Penelitian yang pertama adalah penelitian yang dilakukan oleh Maknickas
dan Maknickas pada tahun 2017 dengan judul "Recognition of Normal-Abnormal
Phonocardiographic Signals using Deep Convolutional Neural Networks and Mel-
Frequency Spectral Coefficients". Penelitian ini menerapkan Convolutional Neural
Network (CNN) untuk mengklasifikasikan suara jantung normal dan abnormal

dengan akurasi tinggi mencapai 86.5% pada dataset PhysioNet/CinC Challenge

37

2016. Arsitektur yang digunakan terdiri dari empat convolutional layers dengan
kernel sizes [32, 64, 128, 256], masing-masing diikuti oleh ReLU activation dan
max pooling. Penelitian mereka menunjukkan bahwa CNN mampu secara otomatis
mengekstraksi fitur relevan dari sinyal audio tanpa memerlukan feature

engineering manual yang ekstensif.

Penelitian terdahulu yang kedua adalah penelitian yang dilakukan oleh
Nogueira et al. pada tahun 2019 dengan judul "Classifying Heart Sounds using
Images of Motifs, MFCC and Temporal Features"”. Penelitian ini membuktikan
bahwa kombinasi CNN dengan fitur Mel-Frequency Cepstral Coefficients (MFCC)
dan temporal features dapat meningkatkan performa klasifikasi suara jantung.
Mereka menggunakan pendekatan multi-modal yang menggabungkan images of
motifs, MFCC, dan femporal features untuk klasifikasi. Sistem mereka mencapai
akurasi 88.9%, precision 87.1%, dan recall 91.2% pada PhysioNet dataset.
Penelitian ini mendemonstrasikan bahwa kombinasi multiple representations dapat
capture complementary information dari PCG signals dan meningkatkan performa

klasifikasi secara signifikan.

Penelitian yang ketiga adalah penelitian yang dilakukan oleh Baghel et al.
pada tahun 2020 dengan judul "Automatic Diagnosis of Multiple Cardiac Diseases
from PCG Signals using Convolutional Neural Network". Penelitian mereka
menunjukkan bahwa optimasi batch size dan dropout rate berkontribusi signifikan
terhadap peningkatan Fl-score dalam deteksi kelainan jantung. Mereka
mengembangkan multi-channel CNN untuk otomatis diagnosis dari multiple
cardiac diseases (normal, aortic stenosis, mitral regurgitation, mitral stenosis, dan
mitral valve prolapse) dengan overall accuracy 94.3%. Hasil penelitian
menunjukkan peningkatan performa yang signifikan dengan konfigurasi
hyperparameter yang tepat, dimana optimasi dropout rate dari 0.3 ke 0.5

meningkatkan F'/-score sebesar 3.2%.

Penelitian yang keempat adalah penelitian yang dilakukan oleh Bergstra dan
Bengio pada tahun 2012 dengan judul "Random Search for Hyper-parameter
Optimization". Penelitian seminal ini membandingkan grid search dan random

search untuk optimasi hyperparameter dalam machine learning. Hasil penelitian

38

menunjukkan bahwa random search secara signifikan lebih efisien dibandingkan
grid search dalam menemukan konfigurasi optimal, terutama ketika beberapa
hyperparameter lebih berpengaruh dibandingkan yang lain. Mereka memberikan
justifikasi teoretis bahwa jika objective function hanya bergantung pada proyeksi
berdimensi rendah dari ruang hyperparameter, maka random search akan

menghasilkan lebih banyak variasi nilai pada dimensi yang penting.

Penelitian yang kelima adalah penelitian yang dilakukan oleh Snoek et al. pada
tahun 2012 dengan judul "Practical Bayesian Optimization of Machine Learning
Algorithms"”. Penelitian ini mengembangkan metode optimasi Bayesian dengan
menggunakan Gaussian Processes untuk penyesuaian hyperparameter pada
algoritma machine learning. Mereka membuktikan bahwa optimasi Bayesian
mampu menemukan konfigurasi hyperparameter yang optimal dengan jumlah
evaluasi yang jauh lebih sedikit dibandingkan metode konvensional. Eksperimen
pada berbagai dataset, termasuk klasifikasi pada CIFAR-10, menunjukkan bahwa
optimasi Bayesian dapat mencapai hasil setara dengan state-of-the-art hanya
dengan sekitar sepuluh kali lebih sedikit evaluasi fungsi dibandingkan random
search. Penelitian ini juga memperkenalkan Expected Improvement sebagai fungsi
akuisisi yang efektif untuk memandu proses pencarian.

Penelitian yang keenam dan menjadi landasan arsitektur dalam penelitian ini
adalah penelitian yang dilakukan oleh Rubin et al. pada tahun 2016 dengan judul
"Classifying Heart Sound Recordings using Deep Convolutional Neural Networks
and Mel-Frequency Cepstral Coefficients". Penelitian ini meraih peringkat ke-8
dari 48 tim pada PhysioNet/CinC Challenge 2016 dengan overall score 84.8%,
sensitivity 76.5%, dan specificity 93.1%. Arsitektur yang digunakan terdiri dari dua
convolutional layers dengan 64 kernels dan kernel sizes (2x20) dan (2x10), diikuti
oleh max pooling layers, serta dua fully connected layers dengan 1024 dan 512
units. Arsitektur ini dijadikan kerangka awal dalam penelitian ini karena
strukturnya yang sederhana namun efektif, terdokumentasi dengan baik, dan telah
terbukti memberikan hasil yang konsisten pada dataset PhysioNet 2016. Dengan
menggunakan arsitektur ini sebagai fondasi, penelitian ini akan fokus pada
eksplorasi dan perbandingan berbagai metode optimasi hyperparameter untuk

menemukan konfigurasi optimal yang dapat meningkatkan performa klasifikasi

39

BAB III
ANALISA DAN PERANCANGAN MODEL

Penelitian ini didasarkan pada metode klasifikasi sinyal biomedis dengan
pendekatan deep learning. Objek penelitian berupa rekaman audio
phonocardiogram (PCG) yang merepresentasikan suara jantung manusia dalam
format file .wav. Uji coba dilakukan dengan arsitektur Convolutional Neural
Network (CNN) 1D yang dioptimasi menggunakan empat metode hyperparameter
tuning, yaitu Grid Search, Random Search, Bayesian Optimization, dan Genetic
Algorithm. Proses penelitian dibagi menjadi beberapa tahapan sebagaimana

ditunjukkan pada Gambar 3.1.

Analisis Kebutuhan

N

Pengumpulan Dataset

2

Preprosesing

2

Training Model

y

Evaluasi Model

Gambar 3.1 Tahap Penelitian

40

3.1 Analisis Kebutuhan

Pada tahap ini dilakukan identifikasi terhadap kebutuhan yang diperlukan
dalam pelaksanaan penelitian agar dapat berjalan secara sistematis dan optimal.
Analisis kebutuhan mencakup perangkat lunak (software), perangkat keras
(hardware), serta literatur pendukung.

Software yang digunakan antara lain Python 3.8 atau lebih tinggi sebagai
bahasa pemrograman utama, serta /ibrary Python seperti TensorFlow/Keras untuk
pembangunan dan pelatihan model deep learning, Librosa untuk pemrosesan sinyal
audio dan ekstraksi fitur, NumPy untuk pengolahan data numerik dan operasi array,
Pandas untuk manajemen data dan analisis, Scikit-learn untuk splitting data dan
perhitungan metrik evaluasi, Matplotlib dan Seaborn untuk visualisasi data dan
hasil eksperimen, serta Keras Tumer untuk implementasi berbagai metode
hyperparameter optimization. Selain itu, digunakan juga KaggleHub untuk
mengunduh dataset secara programmatic dari platform Kaggle.

Untuk lingkungan pengembangan, digunakan [Integrated Development
Environment (IDE) berupa Visual Studio Code yang menyediakan fitur untuk
eksperimen interaktif dan visualisasi hasil secara real-time. TensorBoard juga

digunakan untuk monitoring proses training dan visualisasi grafik performa model.

Perangkat keras yang digunakan dalam penelitian ini adalah satu unit
komputer workstation yang berlokasi di Laboratorium Aiditech. Perangkat ini
dilengkapi dengan GPU NVIDIA GeForce RTX 3060 yang memiliki VRAM
sebesar 12GB, prosesor dengan kecepatan 4.64 GHz, serta RAM sebesar 16GB.
Spesifikasi hardware ini dipilih untuk mendukung proses training model deep
learning yang memerlukan komputasi intensif, khususnya dalam proses

hyperparameter optimization yang melibatkan ratusan trials evaluasi model.

3.2 Pengumpulan Dataset

Dataset dalam penelitian ini diperoleh dari platform Kaggle dengan nama
Heart Sound Database. Dataset ini merupakan koleksi rekaman phonocardiogram
yang berasal dari PhysioNet/Computing in Cardiology Challenge 2016, sebuah
kompetisi ilmiah yang berfokus pada klasifikasi suara jantung normal dan

abnormal.

41

PhysioNet Challenge 2016 merupakan kompetisi internasional yang
bertujuan mengembangkan algoritma untuk automatic classification dari rekaman
phonocardiogram. Dataset yang dikumpulkan dalam challenge ini telah melalui
proses verifikasi oleh tenaga medis profesional dan quality control yang ketat,
sehingga memiliki ground truth labels yang reliable. Dataset ini telah digunakan
secara luas dalam penelitian-penelitian terdahulu terkait klasifikasi PCG
menggunakan machine learning dan deep learning, menjadikannya benchmark

standard untuk evaluasi performa model.

Data dikumpulkan dalam format audio .wav (Waveform Audio File Format)
yang merupakan format standar untuk penyimpanan data audio tanpa kompresi
lossy. Proses pengambilan dilakukan menggunakan berbagai jenis digital
stethoscopes di berbagai lokasi anatomis (mitral, tricuspid, aortic, dan pulmonic
areas) pada subjek dengan berbagai kondisi kardiovaskular. Keberagaman dalam
perangkat recording dan lokasi auskultasi ini memberikan variabilitas yang
realistic, membuat model yang dilatih pada dataset ini lebih robust dan applicable

untuk kondisi klinis yang sebenarnya.

Dataset ini mencakup dua kategori utama, yaitu suara jantung normal
(healthy/normal) dan suara jantung abnormal (unhealthy/abnormal). Kategori
abnormal mencakup berbagai jenis kelainan kardiovaskular seperti heart murmurs
yang disebabkan oleh valvular disease, arrhythmias atau irregular heart rhythms,
dan kondisi patologis lainnya yang terdeteksi dari karakteristik suara jantung yang
abnormal. Klasifikasi ini dilakukan berdasarkan auskultasi oleh cardiologists dan

dikonfirmasi dengan diagnostic tests seperti echocardiography.

3.3 Preprocessing Data

Setelah dataset yang merupakan data mentah terkumpul, dilakukan
serangkaian tahapan preprocessing untuk mempersiapkan data dalam format yang
sesuai untuk pelatihan model CNN. Metodologi preprocessing yang digunakan
dalam penelitian ini mengikuti pendekatan yang telah divalidasi oleh Rubin et al.

(2016) yang terbukti efektif pada PhysioNet/CinC Challenge 2016.

42

Raw Audio Input

2

Resampling menjadi 2000Hz

2

Segmentasi Audio Untuk
mendeteksi S1dan S2

2

Melakukan ekstraksi audio 3
detik setiap deteksi S1

!

MFCC Feature Extraction
(Mengambil 6 MFCC
coefficients)

J

Standarisasi Z-Score

Gambar 3.2 Alur Preprocessing Data

Tahapan pertama adalah audio loading dan resampling. Rekaman audio PCG
dari PhysioNet/CinC Challenge 2016 dataset memiliki sampling rate yang
bervariasi. Seluruh rekaman di-resample ke sampling rate uniform 2000 Hz
menggunakan librosa resampling function. Pemilihan sampling rate 2000 Hz
didasarkan pada dua pertimbangan utama yaitu komponen frekuensi penting dari
suara jantung normal dan abnormal berada di bawah 1000 Hz, sehingga
berdasarkan Nyquist-Shannon sampling theorem, sampling rate 2000 Hz memadai
untuk merepresentasikan seluruh informasi frekuensi yang relevan tanpa

kehilangan informasi atau aliasing.

Tahapan kedua adalah heart sound segmentation menggunakan algoritma
Springer. Segmentasi otomatis dilakukan untuk mengidentifikasi lokasi
fundamental heart sounds (S1 dan S2) serta systolic dan diastolic intervals dalam

setiap rekaman. Algoritma Springer menggunakan Hidden Semi-Markov Model

43

(HSMM) yang telah dilatih untuk mengenali empat state dalam cardiac cycle: S1,
systole, S2, dan diastole. Algoritma bekerja dengan mengekstraksi envelope dari
sinyal PCG menggunakan Hilbert transform, kemudian mengaplikasikan HSMM
untuk melakukan state decoding berdasarkan durasi dan amplitudo karakteristik
dari setiap suara detak jantung. Output dari proses ini adalah anotasi yang menandai
onset time dari setiap S1 dan S2 dalam rekaman, yang akan digunakan sebagai

reference points untuk ekstraksi segmen.

o o
o

5'1 S|2 s1 S, 5|]. 5‘2 Sll S, S s2 Sll 5|2
e S S S e e
0 2 4 6

Amplitude

Gambar 3.3 Visualisasi Segmentasi Audio

Tahapan ketiga adalah segment extraction. Setiap rekaman dibagi menjadi
beberapa overlapping segments dengan durasi fixed 3 detik. Setiap segmen
diekstraksi dimulai tepat pada onset S1 yang telah diidentifikasi oleh algoritma
Springer. Dengan sampling rate 2000 Hz, setiap segmen 3 detik menghasilkan
array dengan panjang 6,000 samples. Pemilihan durasi 3 detik didasarkan pada
analisis bahwa durasi ini cukup panjang untuk menangkap beberapa cycle detak
jantung pada heart rate normal berkisar 60-100 BPM, durasi 3 detik akan mencakup
sekitar 3-5 cycle detak jantung. Segmentasi dilakukan secara overlapping dimana
setiap S1 yang terdeteksi menjadi starting point untuk satu segmen, sehingga satu

rekaman panjang dapat menghasilkan beberapa training sample.

Segment 1 (3 seconds from first S1)

o
n

[
| | i, | | —— 51 start
l,w.w;‘m_-..ul 'J"L«w_ar‘lﬂ-wl-\ *’WN-—I"\M*M., w' EMIMM’L\" | d‘wu-.'mlj 4 e
[
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (seconds)

Amplitude
o
o

Gambar 3.4 Visualisasi Ekstraksi Segmentasi

Tahapan keempat adalah MFCC feature extraction. Proses ekstraksi MFCC
dilakukan dalam beberapa sub-tahap pertama, Short-Time Fourier Transform

(STFT) diterapkan pada setiap segmen dengan frame size 25 ms dan hop length 10

44

ms, menghasilkan 300 time frames untuk segmen 3 detik. Window function yang
digunakan adalah Hamming window untuk mengurangi spectral leakage. Kedua,
power spectrum dari setiap frame dikonversi ke mel scale menggunakan 40
triangular mel kernelbanks yang didistribusikan secara logaritmik antara 0 Hz
hingga 1000 Hz. Ketiga, logarithm diterapkan pada mel-spectrum untuk
merepresentasikan presepsi suara manusia yang bersifat logarithmic. Keempat,
Discrete Cosine Transform (DCT) diaplikasikan untuk mengkompresi informasi
dan menghasilkan 13 MFCC coefficients. Mengikuti Rubin et al., hanya 6 koefisien
MFCC pertama (MFCC 1 sampai MFCC 6) yang digunakan, mengabaikan zeroth
coefficient (yang merepresentasikan total energy) dan higher-order coefficients (7-
12). Pemilihan ini didasarkan pada observasi bahwa lower-order coefficients
menangkap broad spectral envelope yang paling relevan untuk klasifikasi heart
sounds, sementara higher-order coefficients cenderung menangkap fine spectral
details dan noise yang kurang informatif dan dapat menyebabkan overfitting. Hasil
akhir dari tahap ini adalah representasi 2D dengan dimensi 6x300 untuk setiap
segmen, dimana sumbu pertama merepresentasikan 6 MFCC coefficients dan
sumbu kedua merepresentasikan 300 time frames, membentuk "heat map" yang

dapat diperlakukan sebagai grayscale image untuk input ke CNN.

MFCC Features (Segment 1)

| |
[l
MFCC Val

0 50 100 150 200 250
Time Frames

MFCC Coefficients

Gambar 3.5 Visualisasi Ekstraksi Fitur MFCC

Tahapan kelima adalah standarisasi. Z-score normalization diterapkan pada
MFCC features untuk memastikan bahwa setiap coefficient memiliki mean nol dan
standard deviation satu. Normalisasi dilakukan secara independent untuk setiap
MFCC coefficient dengan menghitung mean dan standard deviation pada semua
rekaman frame dan semua segmen dalam training set, kemudian mentransformasi

setiap nilai menggunakan formulaz = (x - p)/ c.

45

3.4 Training Model

Penelitian ini menggunakan arsitektur CNN 2D (Two-Dimensional
Convolutional Neural Network) dengan pendekatan optimisasi hyperparameter,
yaitu membandingkan kinerja dari empat metode optimisasi berbeda dalam
menemukan konfigurasi terbaik untuk klasifikasi fonokardiogram. Keempat
metode yang digunakan adalah Grid Search, Random Search, Bayesian

Optimization, dan Genetic Algorithm.

Berikut adalah diagram flow dalam Training model:

Analisis Kebutuhan

L

Preprocessing

v

Pembagian Dataset
(Training, Validation, Test)

|

Hyperparameter Tuning
(Grid Search, Random
Search Bayesian
Optimization, Genetic
Algorithm)

\

Training Model ﬁ

Tidak

Evaluasi performa
masing-masing

—

model berdasarkan
F1-Score dan Recall

v
Ya

Training ulang model
menggunakan
hyperparameter terbaik
pada masing masing
metode

\

Evaluasi Model

Gambar 3.6 Diagram Flow Training model

46

3.4.1 Arsitektur CNN 2D

Arsitektur CNN 2D yang digunakan mengadaptasi pendekatan Rubin et al.
yang meraih peringkat ke-8 dalam PhysioNet/Computing in Cardiology Challenge
2016. Berikut adalah visualisasi arsitekturnya.

Inputs
1@6x300

e
‘,".. Feature maps Feature maps Feature maps Feature maps Hidden units Hidden units Outputs
h-‘.';" 64@6x300 64@6x60 64@6x60 84@6x30 1024 512

Convolution Max-Pool Convolution Max-Pool Flatten Fully connected Fully connected

2x20 kernel 1x20 kernel 2x10 kernel 1x4 kernel

Gambar 3.7 Visualisasi arsitektur Rubin et al.

Arsitektur ini menerima input berupa MFCC heat map berukuran 6x300 dan
menghasilkan klasifikasi biner untuk menentukan apakah suara jantung normal atau

abnormal.

Struktur jaringan terdiri dari dua convolutional layer yang masing-masing
diikuti oleh max-pooling layer. Convolutional layer pertama menggunakan 64
kernel dengan kernel 2x20 dan same padding, kemudian dilanjutkan dengan max-
pooling 1x20 dengan stride 5 yang menghasilkan 64 feature maps berukuran 6x60.
Convolutional layer kedua menerapkan 64 kernel dengan kernel 2x10 dan same
padding, diikuti max-pooling 1x4 dengan stride 2 yang mereduksi setiap feature

map menjadi ukuran 6x30.

Setelah tahap konvolusi, dilakukan operasi flattening yang mengubah 64
feature maps (6x30) menjadi vektor satu dimensi berukuran 11.520. Vektor ini
kemudian diproses melalui dua fully connected layer dengan 1.024 dan 512 hidden

units secara berurutan, sebelum akhirnya menghasilkan output klasifikasi biner

47

3.4.2 Hyperparameter Search Space

Tabel 3.1 Hyperparameter Search Scope

Kategori Hyperparameter Range/Option
Kernel Conv Layer 1 [64, 80, 96]
Kernel Conv Layer 2 [48, 64, 80]

[(2,20), (3,20), (2,25),
Kernel Size Conv Layer 1) (

Architecture (3,25)]
Parameters [(2,10), (3,10), (2,12),
Kernel Size Conv Layer 2
(3,12)]
Dense Unit Layer 1 [768, 1024, 1536]
Dense Unit Layer 2 [384, 512, 768]
Regularization Drop Out Rate Layer 1 [0.2,0.4, 0.6, 0.8]
Parameters Drop Out Rate Layer 2 [0.2,0.4, 0.6, 0.8]
Learning Rate [0.0001, 0.001, 0.01]
Batch Size [64, 128, 256]
Training Parameters
[Adam, Nadam,
Optimizer
Adamax]
Total Search Space 3x3x4x4x3x3x4x4x3x3x3 559.872

Pemilihan jumlah kernel untuk setiap blok konvolusi mengikuti prinsip
progressive feature abstraction yang telah mapan dalam computer vision oleh
Krizhevsky dkk. (2012) dan Simonyan & Zisserman (2015), kemudian diadaptasi
untuk pemrosesan sinyal audio oleh Piczak (2015) dalam penelitian environmental
sound classification menggunakan CNN. Rentang untuk blok konvolusi pertama
dipilih antara 64 hingga 96 kernel sebagai titik awal untuk ekstraksi fitur tingkat
rendah dari MFCC heat map. Hershey dkk. (2017) dalam penelitian CNN untuk
audio event detection menunjukkan bahwa 64-96 kernel optimal untuk lapisan awal
dalam pemrosesan representasi spektral audio. Rentang untuk blok konvolusi kedua
dipilih antara 48 hingga 80 kernel. Berbeda dari arsitektur vision yang umumnya
meningkatkan jumlah kernel secara progresif, penelitian Pons dkk. (2017) tentang

end-to-end learning for music audio menunjukkan bahwa untuk input 2D time-

48

frequency representation, jumlah kernel pada lapisan kedua tidak selalu harus lebih
besar dari lapisan pertama, karena pooling operation sudah mengurangi dimensi

spatial dan meningkatkan receptive field.

Pemilihan rentang untuk ukuran kernel didasarkan pada karakteristik time-
frequency dari representasi MFCC yang telah dianalisis dalam penelitian Zhang
dkk. (2017) tentang deep learning for environmental sound classification. Dengan
input shape (6, 300) dimana sumbu pertama merepresentasikan 6 MFCC
coefficients dan sumbu kedua merepresentasikan 300 time frames, vkuran kernel
harus disesuaikan dengan struktur data ini. Dimensi pertama kernel dirancang untuk
menangkap korelasi antar MFCC coefficients yang berdekatan. Lee dkk. (2009)
dalam penelitian Convolutional Deep Belief Networks menunjukkan bahwa kernel
kecil pada dimensi frequency (2-3) efektif untuk menangkap local frequency
patterns dalam spektrogram. Dimensi kedua kernel berkaitan dengan resolusi

temporal yang disesuaikan dengan karakteristik cardiac cycle.

Setelah flattening operation dari output convolutional block terakhir, dimensi
flatten adalah sekitar 11,520-14,400 features tergantung konfigurasi kernel. Chollet
(2017) merekomendasikan bahwa fully connected layer pertama setelah
convolutional blocks sebaiknya memiliki kapasitas 5-15% dari input dimension
untuk mencegah information bottleneck sambil memberikan dimensionality
reduction. Rentang 768-1536 units (sekitar 5-13% dari ~11,520 input features)
mengikuti prinsip ini, dengan Potes dkk. (2016) dalam solusi pemenang
PhysioNet/CinC Challenge 2016 menggunakan 1024 units untuk heart sound
classification. Dense layer kedua dengan rentang 384-768 units (sekitar 50% dari
dense layer pertama) memberikan progressive dimensionality reduction menuju

output layer.

Rentang learning rate dipilih mengikuti eksplorasi skala logaritmik: 107,
1073, 1072, sebagaimana direkomendasikan oleh Bergstra & Bengio (2012) yang
menunjukkan bahwa pengambilan sampel log-uniform lebih efektif untuk
hyperparameter learning rate. Rentang ini mencakup dari learning rate konservatif

(0,0001) yang menjamin konvergensi stabil namun berpotensi lambat, hingga

49

learning rate agresif (0,01) yang memberikan konvergensi lebih cepat tetapi dengan
risiko melampaui atau ketidakstabilan. Kingma & Ba (2015) dalam makalah
tentang optimizer Adam merekomendasikan 0,001 sebagai learning rate default
yang baik, dan rentang yang dipilih mencakup nilai default ini sambil
memungkinkan eksplorasi ke kedua arah. Learning rate yang terlalu kecil dapat
menyebabkan konvergensi lambat dan kemungkinan terjebak di minima lokal,
sedangkan learning rate yang terlalu besar dapat menyebabkan divergensi atau
osilasi di sekitar optima. Rentang 0,0001-0,01 menyediakan ruang eksplorasi yang

wajar untuk menemukan /earning rate optimal untuk tugas spesifik.

Rentang ukuran batch dipilih sebagai pangkat 2 (16, 32, 64, 128) untuk
efisiensi komputasi GPU dan penyelarasan memori. Masters & Luschi (2018)
dalam penelitian tentang pelatihan batch kecil menunjukkan bahwa batch kecil (16-
32) memberikan generalisasi yang lebih baik karena gradien yang bising bertindak
sebagai regularisasi implisit, membantu model menghindari minima tajam yang
generalisasinya buruk. Sebaliknya, Keskar dkk. (2017) menunjukkan bahwa batch
besar (64-128) memungkinkan pelatihan lebih cepat karena pemanfaatan GPU yang
lebih baik dan estimasi gradien yang lebih stabil, tetapi dapat konvergen ke minima
tajam. Rentang 16-128 memungkinkan metode optimisasi untuk mengeksplorasi
pertukaran antara kemampuan generalisasi (menguntungkan batch lebih kecil) dan

efisiensi komputasi (menguntungkan batch lebih besar).

Inklusi tiga jenis optimizer (Adam, Adamax, Nadam) memberikan cakupan
komprehensif dari strategi optimisasi berbasis adaptif yang berbeda. Optimizer
Adam (Kingma & Ba, 2015) menggunakan /learning rate adaptif dengan
menggabungkan keunggulan dari RMSprop dan momentum, menjadikannya
pilihan default yang baik dan tangguh di berbagai tugas. Adamax, yang juga
diperkenalkan oleh Kingma & Ba (2015), merupakan varian dari Adam yang
berbasis pada norma tak hingga ($L \infty$). Metode ini dirancang untuk
memberikan stabilitas yang lebih tinggi pada data dengan pembaruan parameter
yang jarang (sparse) atau noisy, serta sering kali lebih robust terhadap perubahan
skala gradien dibandingkan Adam standar. Sementara itu, Nadam (Dozat, 2016)

menggabungkan mekanisme Adam dengan Nesterov Accelerated Gradient (NAG).

50

Integrasi momentum Nesterov ini memungkinkan optimizer untuk
memperhitungkan arah langkah selanjutnya sebelum menghitung gradien, yang
secara teoritis dan praktis sering menghasilkan konvergensi yang lebih cepat dan
kemampuan generalisasi yang lebih baik. Ruder (2016) dalam survei komprehensif
tentang metode optimisasi menunjukkan bahwa tidak ada optimizer tunggal terbaik
untuk semua tugas, dan kinerja bergantung pada karakteristik dari masalah spesifik.
Oleh karena itu, cakupan dari varian metode adaptif modern ini (Adam, Adamax,
Nadam) dipilih untuk memaksimalkan peluang menemukan konfigurasi

konvergensi terbaik.

Kombinasi total teoritis dari semua hyperparameter adalah 3 x 3 x4 x 4 x 3

x3 x4 x4 x3x3x3=559872 kombinasi

3.4.3 Metode Grid Search

Grid search merupakan metode HPO yang paling sederhana dan
straightforward dengan pendekatan brute-force (Bergstra & Bengio, 2012). Metode
ini bekerja dengan mendefinisikan grid dari nilai-nilai diskrit untuk setiap
hyperparameter, kemudian secara exhaustive mencoba setiap kombinasi yang

mungkin dalam grid tersebut (Liashchynskyi & Liashchynskyi, 2019).

Kelebihan grid search adalah kesederhanaannya dan guarantee bahwa
kombinasi terbaik dalam grid yang didefinisikan akan ditemukan (Mantovani et al.,
2015). Metode ini juga mudah untuk diparalelisasi karena setiap evaluasi
independen satu sama lain. Namun, kekurangan utama grid search adalah

computational cost yang sangat tinggi, terutama ketika jumlah hyperparameter dan
range nilainya besar (Bergstra & Bengio, 2012). Kompleksitas waktu grid search

meningkat secara eksponensial dengan jumlah hyperparameter (curse of
dimensionality), sehingga menjadi kurang efektif untuk high-dimensional search

spaces (Claesen & De Moor, 2015).

51

Berikut adalah diagram flow dari metode grid search:

Start
¥
Input processed model parameters,

min-max values, scaling method
and number of steps

Grd search space construction ‘
Train the model with specified
parameters and n-fold CFl!.\S—\-‘:l[]ElIiUIlJ

P
™

//'lnedall \ No

parameters
combinations?

Optimized parameters for the model

¥,
Optimized parameters for the model |

Gambar 3.8 Diagram Flow Grid Search

3.4.3.1 Parameter dan Strategi Optimization

Table 3.2 Parameter dan Strategi Optimization Grid Search

Komponen Nilai/Strategi

Search Strategy Reduced grid dengan selective parameters

Grid Size Maximum 200 evaluations
Selection

Cartesian product
Method
Evaluation

F1-Score
Metric
Loss Function Binary Crossentropy
Epochs 100 (maksimum)

Early Stopping ~ Monitoring: val_loss, Patience. 15, Restore best: True

52

Table 3.2 Lanjutan Parameter dan Strategi Optimization Grid Search

Komponen Nilai/Strategi

Reducel ROnPlateau (Factor: 0.2, Patience: 7, Min LR:
1x107)

LR Scheduler

Checkpointing ~ ModelCheckpoint (validation accuracy tertinggi)

Validation Split 20% dari training data (stratified)

Random Seed 42 (reproducibility)

3.4.3.2 Framework Implementasi

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5
dengan GridSearch module. Training environment menggunakan TensorFlow
2.13.0 dengan Keras API. Development dilakukan di Visual Studio Code dengan

workstation local.

3433 Computional Complexity

Kompleksitas komputasi Grid Search dianalisis berdasarkan jumlah evaluasi,
waktu training, dan kebutuhan resource. Dari 559.872 kombinasi teoritis yang
memerlukan waktu kurang lebih 11,7 tahun, maka dilakukan pengurangan menjadi
200 trials menggunakan metode Reduce Grid dengan waktu rata-rata 11 menit per
trial menggunakan GPU NVIDIA RTX 3060. Total waktu komputasi adalah 36,7
jam (1,5 hari) untuk eksekusi sequential, yang dapat dipercepat hingga 9 jam
dengan 4 GPUs parallel. Kebutuhan memori per trial mencapai 500 MB dengan
peak usage, sementara GPU 12 GB VRAM yang tersedia mampu menjalankan 4-5

trials parallel. Total storage requirement untuk seluruh proses adalah 1-2 GB.

3.4.4 Metode Random Search

Random search merupakan alternatif yang lebih efisien dibandingkan grid
search, di mana metode ini secara random mengambil sampel kombinasi
hyperparameter dari distribusi yang telah ditentukan (Bergstra & Bengio, 2012).
Alih-alih mencoba setiap kombinasi secara sistematis, random search

mengeksplorasi hyperparameter space dengan sampling acak.

53

Bergstra dan Bengio (2012) dalam penelitian mereka menunjukkan bahwa
random search secara signifikan lebih efisien daripada grid search untuk
hyperparameter optimization. Keunggulan utama random search adalah
probabilitas yang lebih tinggi untuk menemukan kombinasi yang baik dalam budget
komputasi yang sama, terutama ketika beberapa hyperparameter lebih penting
daripada yang lain. Random search tidak membuang resources untuk mencoba
kombinasi yang sistematis tetapi kurang penting, sehingga dapat mengeksplorasi

lebih banyak nilai untuk hyperparameter yang critical (Bergstra & Bengio, 2012).

Pada Random Search menggunakan sampling method Uniform Sampling dan
Uniform Sampling Digunakan untuk categorical dan continuous parameters yang
tidak memiliki skala preferensi tertentu, seperti batch size, optimizer, dense units,
learning rate dan dropout rate. Setiap nilai dalam rentang yang ditentukan memiliki

peluang sama untuk dipilih

Berikut adalah Diagram Flow dari metode Random Search:

I Start

¥

Input processed model parameters,
min-max values, scaling method
and number of steps

Grid search space construction ‘

.

Tramn the model with specified
parameters and n-fold cruss‘.—\etﬂutin‘-nl

/'lricdall\'\ No

parameters >
combinations? -~

Optimized parameters for the model

b

Optimized parameters for the model

Gambar 3.9 Diagram flow Random Search

|

54

3.4.4.1 Parameter dan Strategi Optimization

Table 3.3 Parameter dan Strategi Optimization Random Search

Komponen Nilai/Strategi

Search Strategy Random sampling dari distributions

Number of

200 random evaluations
Iterations
Sampling

Uniform untuk categorical
Method
Evaluation

Fl-Score
Metric
Loss Function Binary Crossentropy
Epochs 100 (maksimum)

Early Stopping ~ Monitoring: val_loss, Patience: 15, Restore best: True

ReducelROnPlateau (Factor: 0.2, Patience: 7, Min LR:
1x107)

LR Scheduler

Checkpointing ~ ModelCheckpoint (validation accuracy tertinggi)

Validation Split =~ 20% dari training data (stratified)

Random Seed 42 (reproducibility)

3.44.2 Framework Implementasi

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5
dengan RandomSearch module. Training environment menggunakan TensorFlow
2.13.0 dengan Keras API. Development dilakukan di Visual Studio Code dengan

workstation lokal .

3.443 Computational Complexity

Kompleksitas komputasi Random Search menggunakan fixed iterations

sebanyak 200 trials dengan waktu rata-rata 10 menit per trial pada GPU NVIDIA

55

RTX 3060. Total waktu komputasi adalah 16,7 jam (0,7 hari) untuk eksekusi
sequential. Kebutuhan resource identik dengan Grid Search, dengan peak memory

500 MB per trial dan total storage requirement 500 MB hingga 1 GB.

3.4.5 Metode Bayesian Optimization

Bayesian optimization adalah metode HPO yang lebih sophisticated dan
intelligent, yang membangun model probabilistik dari fungsi objektif (performa
model) terhadap hyperparameter yang diuji (Shahriari et al., 2016). Metode ini
menggunakan prior knowledge dari eksperimen sebelumnya untuk memandu
pencarian hyperparameter selanjutnya, sehingga dapat menemukan konfigurasi

optimal dengan jumlah evaluasi yang lebih sedikit (Snoek et al., 2012).

Bayesian optimization bekerja dengan membangun surrogate model,
biasanya Gaussian Process (GP), yang memodelkan distribusi probabilitas dari
fungsi objektif (Mockus, 1975). Model ini kemudian digunakan untuk menghitung
acquisition function yang menentukan hyperparameter mana yang paling
menjanjikan untuk dievaluasi selanjutnya (Brochu et al., 2010). Proses ini
melibatkan frade-off antara exploitation (mengeksplorasi region yang sudah
diketahui menghasilkan performa baik) dan exploration (mencari region baru yang

belum pernah diuji) (Shahriari et al., 2016).

Acquisition functions yang umum digunakan meliputi Expected Improvement
(EY), Probability of Improvement (P1), dan Upper Confidence Bound (UCB), yang
masing-masing memiliki karakteristik exploration-exploitation yang berbeda
(Snoek et al., 2012). Keunggulan utama Bayesian optimization adalah efisiensi
komputasinya yang superior, karena metode ini secara intelligent memilih
kombinasi hyperparameter yang paling menjanjikan dan menghindari evaluasi

pada region yang unlikely menghasilkan improvement (Frazier, 2018).

Pada Bayesian Optimization menggunakan Expected Improvement (EI) yang
merupakan salah satu acquisition function yang paling populer dan efektif dalam
Bayesian optimization (Jones et al., 1998). EI mengukur expected value dari
improvement yang dapat diperoleh dari mengevaluasi hyperparameter tertentu

dibandingkan dengan best observed value saat ini. Metode ini secara natural

56

menyeimbangkan exploration dan exploitation dengan mempertimbangkan baik

mean prediction maupun uncertainty dari surrogate model.

Expected Improvement didefinisikan sebagai ekspektasi dari improvement di
atas nilai terbaik yang telah diamati sejauh ini, yang dinotasikan sebagai f(x*), di
mana x* adalah konfigurasi hyperparameter terbaik saat ini. Untuk setiap kandidat

hyperparameter x, EI dihitung dengan formula:

El(x) = E[max(0,f(x) — f(x")]

Dengan asumsi Gaussian Process sebagai surrogate model, yang
memberikan distribusi normal untuk setiap prediksi dengan mean p(x) dan standard

deviation o(x), formula EI dapat dihitung secara closed-form:

El(x) = (u(x) = f(x") = &) - 2(2) + o(x) - 9(2)

Yang dimana (u(x) — f(x*) — &) - &(Z) merepresentasikan expected
improvement berdasarkan mean prediction. Term ini mendorong algoritma untuk
memilih hyperparameter di region yang diprediksi memiliki performa tinggi

berdasarkan model saat ini.

Berikut adalah Diagram Flow dari metode Bayesian Optimization:

Y

Generate (nitial data

Y
Evaluate data on simulator
\ J

Y
s ™

Create surrogate mode! Eﬁmmize acquisition funct DIJ

Stopping criterion
reached?

Gambar 3.10 Diagram Flow Bayessian Optimization

57

3.4.5.1 Parameter dan Strategi Optimization

Tabel 3.4 Parameter dan Strategi Bayessian Optimization

Komponen Nilai / Strategi

Search Strategy Sequential model-based optimization

Surrogate Model — Gaussian Process (kernel: Matern v=2.5)

Acquisition

Expected Improvement (EI)
Function
Initial Points 10 random initializations

Guided Iterations 190 sequential evaluations

Total Iterations 200 evaluations

Evaluation Metric FI1-Score

Loss Function Binary Crossentropy
Epochs 100 (maksimum)
Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True

ReducelROnPlateau (Factor: 0.2, Patience: 7, Min LR:
1%x107)

LR Scheduler

Checkpointing ModelCheckpoint (validation accuracy tertinggi)

Validation Split 20% dari training data (stratified)

3.45.2 Framework Implementasi

Framework hyperparameter optimization menggunakan Keras Tuner 1.3.5
dengan BayesianOptimization module. Training environment menggunakan
TensorFlow 2.13.0 dengan Keras API. Development dilakukan di Visual Studio

Code dengan workstation local.

58

3.4.53 Computational Complexity

Kompleksitas komputasi pada Bayesian Optimization terdiri dari 50 trials (5
random + 45 guided) dengan waktu rata-rata sekitar 10 menit per #rial. Total waktu
komputasi mencapai £8,3 jam untuk eksekusi sequential, dan dapat dipercepat
menjadi sekitar 7-8 jam dengan parallel execution, meskipun percepatan terbatas
karena sifat algoritma yang bersifat sekuensial. Overhead komputasi dari operasi
Gaussian Process (GP) relatif kecil, dengan waktu tambahan sekitar 10—15 detik
per iterasi (sekitar 1,5% dari total waktu per #rial). Kebutuhan memori mencakup
50-100 MB untuk model GP dan sekitar 500 MB per trial, dengan total storage
300-500 MB.

3.4.6 Metode Genetic Algorithm

Genetic algorithm (GA) adalah metode HPO yang terinspirasi dari proses
evolusi biologis, menggunakan mekanisme seperti selection, crossover, dan
mutation untuk mengeksplorasi hyperparameter space (Holland, 1992). Metode ini
memaintain populasi dari kandidat solusi (kombinasi hyperparameter) dan secara
iteratif mengevolusi populasi tersebut menuju solusi yang lebih baik (Goldberg &
Holland, 1988).

Proses GA dimulai dengan inisialisasi populasi random, kemudian
mengevaluasi fitness (performa) setiap individu dalam populasi (Lorenzo et al.,
2017). Individu dengan fitness tinggi memiliki probabilitas lebih besar untuk
diseleksi sebagai parents untuk generasi berikutnya. Crossover operation
menggabungkan hyperparameter dari dua parents untuk menghasilkan offspring,
sedangkan mutation operation memperkenalkan variasi random untuk maintain
diversity dan menghindari premature convergence (Eiben & Smith, 2015).

Keunggulan genetic algorithm adalah kemampuannya untuk mengeksplorasi
non-convex dan multimodal search spaces, serta tidak memerlukan gradient
information (Lorenzo et al., 2017). GA juga naturally parallelizable karena
evaluasi fitness dalam satu generasi dapat dilakukan secara independen. Namun,
kekurangan GA termasuk memerlukan tuning dari GA parameters itu sendiri

(population size, mutation rate, crossover rate) dan dapat memerlukan banyak

59

evaluasi untuk converge, terutama untuk high-dimensional spaces (Eiben & Smith,
2015).

Dalam Genetic Algorithm, setiap konfigurasi hyperparameter (individual)
direpresentasikan sebagai chromosome yang mengenkode seluruh nilai
hyperparameter. Pemilihan encoding scheme sangat penting untuk memastikan
efektivitas operasi genetika. Chromosome merupakan susunan terurut dari genes,
di mana setiap gene merepresentasikan satu nilai hyperparameter. Pada penelitian
ini, dengan total 14 hyperparameter, struktur chromosome dibentuk sesuai

kombinasi nilai dari masing-masing parameter tersebut.

Filtar Conv Filter Conv Kernel Size Kernel Size Dense Unit Dense Unit Drop Out Rate Drop Out Rate . . T
- - - - - - - =| Leaming Rate |=| BatchSize |=| oOptimizer
Block 1 Block 2 Block 1 Block 2 Layer 1 Layer 2 Layer 1 Layer 2

Gambar 3.11 Representasi Chromosome dalam Genetic Algorithm

3.4.6.1 Parameter dan Strategi Optimization

Tabel 3.5 Parameter dan Strategi Genetic Algorithm

Komponen Nilai / Strategi
Population Size 20 individu per generasi
Number of i
Generations 10 generasi
Total Evaluations 200 (20x10)
Selection Method Tournament selection (ukuran turnamen: 3)
Crossover Single-point crossover (rate: 0.8)
Mutation Uniform mutation (rate: 0.1)
Elitism Individu terbaik dipertahankan di setiap generasi
Evaluation Metric Fl-Score
Loss Function Binary Crossentropy
Epochs 100 (maksimal)

60

Tabel 3.5 Lanjutan Parameter dan Strategi Genetic Algorithm

Komponen Nilai / Strategi
Early Stopping Monitoring: val_loss, Patience: 15, Restore best: True
ReducelROnPlateau (Factor: 0.2, Patience: 7, Min LR:
LR Scheduler
1%x107)
Checkpointing ModelCheckpoint (validation accuracy tertinggi)
Validation Split 20% dari data pelatihan (stratified)

3.4.6.2 Framework Implementasi

Framework — hyperparameter optimization — menggunakan custom
implementation untuk Genetic Algorithm. Training environment menggunakan
TensorFlow 2.13.0 dengan Keras API. Development dilakukan di Visual Studio
Code dengan workstation lokal. Library pendukung: DEAP (Distributed
Evolutionary Algorithms in Python) atau implementasi manual untuk genetic

operations.

3.4.6.3 Computational Complexity

Kompleksitas komputasi pada Genetic Algorithm ditentukan oleh ukuran
populasi dan jumlah generasi, yaitu 20 % 10 sehingga menghasilkan total 200
evaluations. Setiap trial memerlukan waktu sekitar 10 menit, sehingga total waktu
komputasi mencapai £33,3 jam (sekitar 1,4 hari) untuk eksekusi sequential. Dengan
parallel execution, seluruh 20 individu dalam satu generasi dapat dievaluasi secara
bersamaan, menghasilkan waktu komputasi sekitar 8,3 jam dengan 4 GPU atau 16,7
jam dengan 2 GPU. Kebutuhan memori relatif ringan, dengan penyimpanan
populasi sekitar 1 KB per konfigurasi, memori per trial sebesar 500 MB, dan total

storage sekitar 1 GB.

3.5 Evaluasi Model

Setelah seluruh metode hyperparameter optimization selesai melakukan

exploration dan menemukan konfigurasi optimal masing-masing, dilakukan proses

61

evaluasi untuk mengukur performa model CNN 2D dalam mengklasifikasikan
phonocardiogram. Evaluasi dilakukan pada dua level: pertama, evaluasi best
configuration dari masing-masing metode HPO (Grid Search, Random Search,
Bayesian Optimization, dan Genetic Algorithm) pada fest set untuk mengukur
generalization performance; kedua, comparison antar metode HPO berdasarkan

computational efficiency dan optimization effectiveness.

Evaluasi ini menggunakan sejumlah metrik yang umum digunakan dalam
bidang klasifikasi biner, antara lain accuracy, precision, recall, FIl-score dan
confusion matrix. Accuracy menunjukkan sejauh mana model mampu
mengklasifikasikan audio dengan benar secara keseluruhan. Precision dan recall
memberikan gambaran mengenai ketepatan dan kelengkapan klasifikasi untuk
setiap kelas, sedangkan F'/-score digunakan untuk menyeimbangkan precision dan
recall. Sementara itu, confusion matrix digunakan untuk menganalisis distribusi
prediksi model terhadap label sebenarnya, sehingga memudahkan dalam
mengidentifikasi pola kesalahan Kklasifikasi seperti false positives (normal

diprediksi abnormal) dan false negatives (abnormal diprediksi normal).

3.5.1 Evaluasi Per Metode

Evaluasi per metode dilakukan untuk mengukur performa final dari best
configuration yang ditemukan oleh setiap metode HPO. Setiap metode optimization
(Grid Search, Random Search, Bayesian Optimization, dan Genetic Algorithm)
menghasilkan satu best hyperparameter configuration berdasarkan validation

accuracy tertinggi selama proses optimization.

Best configuration dari setiap metode HPO dievaluasi pada test sef yang telah
disisihkan sebelumnya dan tidak pernah digunakan selama proses training maupun

validation. Protocol evaluasi mengikuti langkah-langkah berikut:

1. Model Retraining: Best hyperparameter configuration di-retrain
menggunakan kombinasi training dan validation set (80% dari total data)

untuk memaksimalkan learning dari available data.

62

2. Final Evaluation: Model yang telah di-retrain dievaluasi pada test set (20%

dari total data) yang completely unseen selama proses optimization.

3. Metrics Calculation : Dihitung performance metrics dan confusion matrix.

3.5.2 Analisis Komparatif Antar Metode

Analisis komparatif dilakukan untuk membandingkan empat metode HPO
berdasarkan multiple criteria yang mencakup effectiveness, efficiency, stability, dan

scalability.
3.5.21 Efektivitas Optimization

Efektivitas diukur berdasarkan kualitas best solution yang ditemukan oleh

setiap metode:

o Best FI-Score Achieved: Validation F'1-Score tertinggi yang dicapai selama
proses optimization

o Test Set Performance : Generalization performance pada test set
3.5.2.2 Efisiensi Komputasi

Efisiensi diukur berdasarkan computational resources yang dibutuhkan untuk

mencapai performa tertentu yaitu:

e Time to Convergence : Wall-clock time hingga mencapai 95% dari best
accuracy

e Number of Trials : Jumlah evaluasi yang diperlukan hingga mencapai
convergence

o Computational Cost : Total GPU hours untuk complete optimization

e Time per Trial : Rata-rata waktu per hyperparameter evaluation
3.5.2.3 Stabilitas Performance

Stabilitas mengukur konsistensi performance across multiple runs dengan

configurations yang berbeda. Pengujian dilakukan dengan melatih ulang

63

(retraining) konfigurasi terbaik dari masing-masing metode optimasi sebanyak 5
kali pengulangan (runs) menggunakan inisialisasi random seed yang berbeda (42,

123, 456, 789, 1024):

e Variance Across Runs: Standard deviation dari test F/-Score pada 5
repeated runs
o Coefficient of Variation (CV): CV =(c/p) x 100%

e Range: Perbedaan antara best dan worst performance

3.5.2.4 Skalabilitas

Skalabilitas dianalisis dengan mengevaluasi efektivitas hyperparameter

terbaik masing-masing HPO pada dataset sizes yang berbeda 25%, 50%, 100%.

3.5.3 Statistical Significance Testing

Untuk memastikan bahwa perbedaan kinerja antar metode Hyperparameter
Optimization (HPO) benar-benar signifikan secara statistik dan bukan disebabkan
oleh variasi acak (random variation), dilakukan pengujian signifikansi (hypothesis

testing) terhadap hasil akurasi dari masing-masing metode.

Langkah ini penting untuk menentukan apakah perbedaan performa antar
metode HPO benar-benar berarti (statistically significant) atau hanya muncul akibat

faktor acak dalam proses pelatihan model.

Setiap metode HPO dijalankan sebanyak lima kali dengan kondisi yang
dikontrol secara hati-hati untuk memastikan hasil yang dapat dibandingkan
(comparability). Random seeds yang berbeda digunakan pada setiap pengulangan
dengan nilai 42, 123, 456, 789, dan 1024 untuk menjamin reproducibility sekaligus
mengeksplorasi variasi yang disebabkan oleh random initialization. Semua metode
menggunakan ruang pencarian (search space) dan rentang hyperparameter yang
identik untuk memastikan bahwa perbedaan kinerja benar-benar berasal dari
efektivitas metode optimasi itu sendiri, bukan karena perbedaan dalam ruang

eksplorasi (exploration space).

64

Proses training, validation, dan testing dijaga agar tetap identik di semua
metode menggunakan stratified sampling dengan random state yang sama,
sehingga setiap metode dievaluasi pada data yang persis sama. Protokol evaluasi
dan perhitungan metrik juga dijaga konsisten untuk memastikan perbandingan yang

adil (fair comparison).

3.5.3.1 Uji Normalitas

Langkah awal dalam pengujian signifikansi adalah melakukan uji normalitas
terhadap data hasil F/-Score dari setiap metode HPO. Uji ini bertujuan untuk
mengetahui apakah data berdistribusi normal atau tidak, karena hasil ini akan

menentukan jenis uji hipotesis yang digunakan selanjutnya.

Uji normalitas dilakukan menggunakan Shapiro—Wilk dengan hipotesis

(Royston, 1982; Laerd Statistics, 2024):

HO : Data berdistribusi normal

H1 : Data berdistribusi tidak normal

Apabila data berdistribusi normal, analisis dilanjutkan dengan uji One-Way
ANOVA. Sebaliknya, jika data tidak berdistribusi normal, digunakan uji statistik
Kruskal Wallis Test.

3.5.3.2 One-Way ANOVA

One-Way ANOVA merupakan uji statistik parametrik yang digunakan untuk
membandingkan rata-rata dari tiga atau lebih kelompok independen (Field, 2013).

Berikut adalah hipotesis untuk uji ANOVA :

e HO : Tidak terdapat perbedaan signifikan antara hasil akurasi keempat
metode HPO.
e H1 : Terdapat perbedaan signifikan antara hasil akurasi keempat metode

HPO.

65

Apabila uji ANOVA menolak hipotesis nol , hal ini hanya menunjukkan
bahwa ada perbedaan di antara metode, namun tidak secara spesifik menunjukkan
metode mana yang berbeda satu sama lain. maka akan dilanjutkan uji post-hoc
untuk mengetahui pasangan metode mana yang berbeda secara signifikan (Laerd

Statistics, 2024).

3.5.3.3 Kruskal-Wallis Test

Kruskal-Wallis test merupakan uji statistik non-parametrik yang digunakan
sebagai alternatif dari One-Way ANOVA ketika asumsi normalitas tidak terpenuhi
(Kruskal & Wallis, 1952).

Berikut adalah hipotesis untuk Kruskal-Wallis test:

e HO: Tidak terdapat perbedaan signifikan antara hasil akurasi keempat
metode HPO.
e HI: Terdapat perbedaan signifikan antara hasil akurasi keempat metode

HPO.

Apabila Kruskal Wallis test menolak hipotesis nol, hal ini hanya
menunjukkan bahwa ada perbedaan di antara metode, namun tidak secara spesifik
menunjukkan metode mana yang berbeda satu sama lain. Untuk mengidentifikasi
secara spesifik pasangan metode yang berbeda secara signifikan, dilakukan uji post-

hoc

3.5.3.4 Post-hoc Test

Apabila hasil uji One-Way ANOVA | Kruskal-Wallis menunjukkan penolakan
terhadap hipotesis nol (HO0), yang berarti terdapat perbedaan yang signifikan secara
statistik antara setidaknya dua kelompok metode, maka analisis akan dilanjutkan
dengan uji lanjut atau Post-hoc Test. Pengujian ini bertujuan untuk mengidentifikasi
secara spesifik pasangan metode mana yang memiliki perbedaan performa yang

nyata.

Uji ini akan mengelompokkan metode-metode optimasi ke dalam subset yang

homogen untuk melihat metode mana yang memiliki kinerja setara dan metode

66

mana yang berbeda secara signifikan. Hipotesis yang diuji dalam perbandingan

berpasangan ini adalah:

e HO: u; = pj (Tidak terdapat perbedaan rata-rata kinerja yang signifikan

antara metode i dan metode j).

e HI: p; # u; (Terdapat perbedaan rata-rata kinerja yang signifikan antara

metode 1 dan metode j)

67

BAB IV
HASIL DAN PEMBAHASAN

4.1 Data Penelitian dan Hasil Preprocessing Data

Data yang digunakan dalam penelitian ini bersumber dari PhysioNet/CinC
Challenge 2016 yang diakses melalui repositori Kaggle. Dataset ini terdiri dari
rekaman audio phonocardiogram (PCG) yang diklasifikasikan ke dalam dua kelas
utama Normal dan Abnormal. Sebelum digunakan untuk pelatihan model CNN,
data mentah telah melalui serangkaian tahapan Preprocessing untuk memastikan

kualitas dan keseragaman input.

4.1.1 Hasil Preprocessing Data

Langkah pertama yang dilakukan adalah penyeragaman frekuensi sampling
(resampling) seluruh data audio menjadi 2000 Hz. Berdasarkan hasil observasi
spektral, komponen frekuensi utama dari suara jantung normal dan abnormal
terkonsentrasi di bawah 1000 Hz. Oleh karena itu, sampling rate 2000 Hz terbukti
memadai untuk mempertahankan integritas informasi sinyal tanpa mengalami

aliasing, sesuai dengan Teorema Nyquist-Shannon.

Selanjutnya, algoritma Springer diterapkan untuk mendeteksi lokasi S1 (suara
jantung pertama) dan S2 (suara jantung kedua). Algoritma ini menggunakan Hidden

Semi-Markov Model (HSMM) untuk memetakan probabilitas state siklus jantung.

s1 Sll S2 S,

o O PR (U S S A S S SO e &

0 4

Amplitude
o o
o wun

Gambar 4.1 Visualisasi Algoritma Springer dalam deteksi Lokasi S1 dan S2

Visualisasi hasil segmentasi dapat dilihat pada Gambar 4.1. Garis vertikal
merah menandakan onset S1 dan garis hijau menandakan S2. Hasil ini
menunjukkan bahwa algoritma berhasil mengidentifikasi batas-batas siklus jantung

secara otomatis meskipun terdapat variasi amplitudo pada sinyal asli.

68

Segment 1 (3 seconds from first S1)

n

I 'L 1 | —— Slstart
i *—-‘,‘lﬂﬂ--v-n-m-ull\ J"»’V-“'M-‘l"\-‘-'v%-"'-'\b -’M‘WW-M ,WMM-«M PN TP

Amplitude
o o
o
I

0.0 0.5 1.0 15 2.0 2.5 3.0
Time (seconds)

Gambar 4.2 Hasil pemotongan sinyal pada S1

Berdasarkan titik deteksi S1 tersebut, sinyal dipotong menjadi segmen-
segmen overlapping dengan durasi tetap 3 detik (6.000 samples). Pemilihan durasi
ini terbukti efektif mencakup rata-rata 3 hingga 5 siklus detak jantung (cardiac
cycles) pada rentang detak jantung normal (60—100 BPM), sehingga memberikan

konteks temporal yang cukup bagi model CNN untuk membedakan pola normal

dan abnormal.

Berikut adalah perbandingan jumlah data sebelum dan sesudah dilakukan

proses segmentasi:

Tabel 4.1 Tabel perbandingan jumlah data

Kategori Data Jumlah File Asli Jumlah Segmentasi Hasil
Normal 2.725 53.652
Abnormal 816 14.585

Setelah segmentasi, setiap potongan sinyal 3 detik dikonversi dari domain
waktu ke domain frekuensi menggunakan ekstraksi fitur Mel-Frequency Cepstral
Coefficients (MFCC). Hasil ekstraksi ini menghasilkan matriks fitur berdimensi 6
% 300. Dimensi ini membentuk representasi visual berupa heatmap yang berfungsi

sebagai citra input bagi arsitektur CNN 2D.

MFCC Features (Segment 1)

=
o
o

o
MFCC Value

0 50 100 150 200 250
Time Frames

MFCC Coefficients

Gambar 4.3 Visualisasi Ekstraksi Fitur MFCC

Gambar 4.3 memperlihatkan visualisasi fitur MFCC setelah melalui proses
standarisasi (Z-score normalization). Pada visualisasi ini, sumbu Y
merepresentasikan 6 koefisien MFCC yang menangkap spectral envelope,
sedangkan sumbu X merepresentasikan perubahan fitur tersebut sepanjang 300 time

frames.

4.2 Hasil Kinerja Model Rubin

Sebagai langkah awal eksperimen dan titik acuan (baseline) untuk mengukur
efektivitas metode optimasi hyperparameter, dilakukan pelatihan model
menggunakan arsitektur CNN 2D yang mengadaptasi konfigurasi dari penelitian
Rubin et al. (2016). Konfigurasi ini menggunakan nilai hyperparameter yang

ditetapkan secara manual atau default tanpa melalui proses pencarian otomatis.

4.2.1 Konfigurasi Hyperparameter Rubin

Model dilatth menggunakan konfigurasi hyperparameter statis yang
dirancang untuk mereplikasi struktur dasar arsitektur terdahulu. Rincian

konfigurasi yang digunakan adalah sebagai berikut:

Tabel 4.2 Tabel Konfigurasi Hyperparameter Rubin

Hyperparameter Range/Option
Kernel Conv Layer 1 [64]
Kernel Conv Layer 2 [64]
Kernel Size Conv Layer 1 [(2,20)]
Kernel Size Conv Layer 2 [(2,10)]
Dense Unit Layer 1 [1024]
Dense Unit Layer 2 [512]
Drop Out Rate Layer 1 [0.85565561]
Drop Out Rate Layer 2 [0.85565561]
Learning Rate [0.000158]
Batch Size [256]
Optimizer [Adam]

70

4.2.2 Kinerja Model Rubin

Table 4.3 Table Rekapitulasi Kinerja Model Rubin

Metrik Evaluasi Train Validation Test

Accuracy 0,974 0,933 0,912
F1-Score (Macro) 0,962 0,892 0,860
F1-Score (Weighted) 0,974 0,932 0,909

Matrix Test Set - Confusion Matrix

Validation Set - Con a
F1 F1 Macro: 0.8606

fusion
Macro: 0.8924
2000

7000
308 6000

6000

- 5000 5000

True Label
True Label

2 =
4000 3 2
kS 4000 &

- 3000

376 1625 621 1623

£ ks
o o
2 2
= =
5 5

- 2000 - 2000

- 1000 - 1000

Healthy Unhealthy Healthy Unhealthy
Predicted Label Predicted Label

Gambar 4.4 Confusion Matrix Rubin

4.2.3 Performa Perkelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan
analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.3 Tabel performa Kelas pada Training Set Rubin

Kelas Precision Recall F1-Score Jumlah Sample
Healthy 0,982 0,984 0,983 36.983
Unhealthy 0,944 0,937 0,941 10.340
Rata-rata 0,963 0,961 0,962 47.323
(Macro)

Rata-rata 0,974 0,974 0,974 47323
(Weighted)

71

Table 4.4 Tabel performa Kelas pada Validation Set Rubin

Kelas Precision Recall Fl-Score Jumlah Sample
Healthy 0,954 0,962 0,958 8.260
Unhealthy 0,840 0,812 0,826 2.001
Rata-rata 0,897 0,887 0,892 10.261

(Macro)

Rata-rata 0,932 0,933 0,932 10.261
(Weighted)

Table 4.5 Tabel performa Kelas pada 7est Set Rubin

Kelas Precision Recall F1-Score Jumlah Sample
Healthy 0,928 0,962 0,945 8.409
Unhealthy 0,837 0,723 0,776 2.244
Rata-rata 0,882 0,842 0,860 10.653

(Macro)

Rata-rata 0,909 0,912 0,909 10.653
(Weighted)

Berdasarkan perbandingan ketiga tabel di atas, dapat disimpulkan bahwa
model masih menunjukkan permasalahan performa yang signifikan akibat
ketidakseimbangan data. Overfitting terjadi lebih parah pada kelas minoritas
(Unhealthy), yang terlihat dari penurunan F/-Score yang jauh lebih drastis
dibandingkan kelas mayoritas. Hal ini juga mencerminkan adanya bias terhadap
kelas Healthy akibat dominasi jumlah data, sehingga model lebih cenderung
memprediksi kondisi normal, yang ditunjukkan oleh tingginya recall pada kelas
Healthy namun rendah pada kelas Unhealthy. Temuan ini menegaskan bahwa
konfigurasi baseline belum optimal untuk menangani imbalance data dan
meningkatkan generalisasi model, sehingga diperlukan optimasi hyperparameter
lebih lanjut untuk meningkatkan kemampuan model dalam mendeteksi kondisi

abnormal.

72

4.3 Hasil Hyperparameter Optimization

Hyperparameter Optimization dilakukan menggunakan empat metode
berbeda untuk mencari konfigurasi terbaik yang dapat meningkatkan performa
deteksi, khususnya pada kelas Unhealthy. Berikut adalah paparan hasil dari masing-

masing metode.

4.3.1 Grid Search

Metode Grid Search dijalankan menggunakan strategi Reduced Grid
sebanyak 192 iterasi untuk mengatasi kendala komputasi dengan durasi 24 jam.
Proses ini mengevaluasi kombinasi parameter secara sistematis pada titik-titik yang

telah ditentukan. Untuk hyperparameter search space yang digunakan dalam

reduce grid adalah sebagai berikut:

Table 4.6 Table Search Space Reduce Grid

Kategori Hyperparameter Range/Option
Kernel Conv Layer 1 [64]
Kernel Conv Layer 2 [64]
Architecture Kernel Size Conv Layer 1 [(2,20]
Parameters Kernel Size Conv Layer 2 [(2,10)]
Dense Unit Layer 1 [1024, 1536]
Dense Unit Layer 2 [512, 768]
Regularization Drop Out Rate Layer 1 [0.2,0.4]
Parameters Drop Out Rate Layer 2 [0.2,0.4]
Learning Rate [0.0001, 0.001, 0.01]
Training Parameters Batch Size [128, 256]
Optimizer [Adam, Nadam]
Total Search Space IxIx1x1x2x2x2x2x3x2x2 192

Berdasarkan hasil eksperimen, konfigurasi terbaik ditemukan pada Iterasi 76

Rincian konfigurasi parameter terbaik disajikan pada Tabel 4.7

73

Table 4.7 Table Konfigurasi Hyperparameter Terbaik Grid Search

Hyperparameter Range/Option
Kernel Conv Layer 1 [64]
Kernel Conv Layer 2 [64]
Kernel Size Conv Layer 1 [(2,20)]
Kernel Size Conv Layer 2 [(2,10)]
Dense Unit Layer 1 [1024]
Dense Unit Layer 2 [768]
Drop Out Rate Layer 1 [0.4]
Drop Out Rate Layer 2 [0.2]
Learning Rate [0.0001]
Batch Size [256]
Optimizer [Nadam]

4.3.1.1 Hasil Kinerja Grid Search

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.8 Table Rekapitulasi Kinerja Hasil Grid Search

Metrik Evaluasi Train Validation Test

Accuracy 0,999 0,939 0,924
F1-Score (Macro) 0,999 0,902 0,880
F1-Score (Weighted) 0,999 0,938 0,922

Confusion Matrix - Validation Set Confusion Matrix - Test Set

rrrrr

uuuuu

True Label

00000
nnnnn

-2000

00000

Unhealthy " .
Predicted Label Healthy Unhealthy
Pradicted Label

Gambar 4.5 Confusion Matrix Hasil Grid Search

74

Berdasarkan hasil eksperimen optimasi hyperparameter menggunakan
metode Grid Search, ditemukan konfigurasi terbaik pada konfigurasi 182 yang
menghasilkan performa klasifikasi yang tinggi, meskipun terdapat indikasi

overfitting antara data latih dan data uji.

Pada Tabel 4.8 Rekapitulasi Kinerja, model mencatatkan akurasi pelatihan
(Train Accuracy) yang sempurna sebesar 0,999. Namun, terjadi penurunan
performa pada tahap validasi menjadi 0,938 dan pada tahap pengujian (7es?)
menjadi 0,924. Kesenjangan (gap) antara akurasi training dan test ini
mengindikasikan bahwa model cenderung menghafal pola data latih dengan sangat
baik namun sedikit mengalami penurunan kemampuan generalisasi saat dihadapkan

pada data baru.

Dari sisi keseimbangan performa antar kelas, model menghasilkan nilai F1-
Score Macro pada Test set sebesar 0,880. Nilai ini menunjukkan bahwa model
memiliki kemampuan yang cukup baik dalam menangani kedua kelas, meskipun

tidak setinggi nilai akurasi globalnya.

Training and Validation Loss Training and Validation Accuracy

—— Training Loss

= Validation Loss

Accuracy

0.92

0.5

—— Training Accuracy
—— Validation Accuracy

0.0 ¢ T T T T T T T T T T
0 5 10 15 20 25 [’} 5 10 15 20 25
Epoch Epoch

Gambar 4.6 Grafik Loss dan Accuracy Training dan Validation Grid Search

Hasil pelatihan konfigurasi terbaik dari Grid Search menunjukkan performa
yang sangat solid dengan konvergensi cepat. Model mampu mencapai Validation
Accuracy yang stabil di angka 93-94%, sementara Training Accuracy terus
meningkat hingga mendekati 100%. Meskipun demikian, terdapat indikasi
overfitting ringan mulai epoch ke-10 di mana Validation Loss mengalami stagnasi

sementara /oss data latih terus turun. Secara keseluruhan, model ini terbukti robust,

75

namun penghentian pelatihan di sekitar epoch ke-15 sangat disarankan untuk

menjaga efisiensi dan generalisasi terbaik.

4.3.1.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan

analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.9 Tabel performa Kelas pada Training Set Grid Search

Kelas Precision Recall F1-Score Jumlah Sample
Healthy 0,999 0,999 0,999 36.983
Unhealthy 0,999 0,999 0,999 10.340
Rata-rata 0,999 0,999 0,999 47.323

(Macro)

Rata-rata 0,999 0,999 0,999 47.323
(Weighted)

Table 4.10 Tabel performa Kelas pada Validation Set Grid Search

Kelas Precision Recall Fl-Score Jumlah Sample
Healthy 0,958 0,967 0,963 8.260
Unhealthy 0,860 0,824 0,842 2.001
Rata-rata 0,909 0,896 0,902 10.261

(Macro)

Rata-rata 0,939 0,939 0,939 10.261
(Weighted)

76

Table 4.11 Tabel performa Kelas pada Zest Set Grid Search

Kelas Precision FI-Score Jumlah Sample
Healthy 0,935 0,953 8.409
Unhealthy 0,877 0,807 2.244
Rata-rata 0,906 0,880 10.653

(Macro)

Rata-rata 0,923 0,922 10.653
(Weighted)

4.3.2 Random Search

Metode Random Search melakukan eksplorasi ruang parameter secara acak

sebanyak 200 iterasi. Proses optimasi ini menghabiskan total durasi waktu

komputasi selama 14 jam. Model terbaik ditemukan cukup awal, yaitu pada iterasi

ke-178, dengan konfigurasi parameter sebagai berikut:

Table 4.12 Table Konfigurasi Hyperparameter Terbaik Random Search

Hyperparameter Range/Option
Kernel Conv Layer 1 [80]
Kernel Conv Layer 2 [80]
Kernel Size Conv Layer 1 [(2,25)]
Kernel Size Conv Layer 2 [(3,10)]
Dense Unit Layer 1 [1024]
Dense Unit Layer 2 [384]
Drop Out Rate Layer 1 [0.2]
Drop Out Rate Layer 2 [0.2]
Learning Rate [0.0001]
Batch Size [128]
Optimizer [Nadam]

4.3.2.1 Hasil Kinerja Random Search
Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.13 Table Rekapitulasi Kinerja Hasil Random Search

Metrik Evaluasi Train Validation Test

Accuracy 0,998 0,937 0,929
F1-Score (Macro) 0,998 0,899 0,889
F1-Score (Weighted) 0,998 0,937 0,928

Confusion Matrix - Test Set Confusion Matrix - Validation Set

| 8000

7000 7000

Healthy

283 5000

5000 5000

ue Lah

Label

4000 ¥ - 4000

- 3000 - 3000

356 1645

- 2000 - 2000

Unhealthy
Unhealthy

uuuuu -1000

Healthy Unhealthy Healthy Unhealthy
predicted Label Predicted Label

Gambar 4.7 Confusion Matrix Hasil Random Search

Berdasarkan hasil eksperimen optimasi Ayperparameter menggunakan
metode Random Search, ditemukan konfigurasi terbaik pada konfigurasi 57 yang
menghasilkan performa klasifikasi yang tinggi, meskipun terdapat indikasi

overfitting antara data latih dan data uji.

Merujuk pada Tabel 4.13 Rekapitulasi Kinerja Hasil Random Search, model
menunjukkan kemampuan pembelajaran yang sangat kuat dengan Akurasi
Pelatihan (7Train Accuracy) mencapai 0,998. Kinerja ini sedikit menurun pada tahap
validasi menjadi 0,937 dan pada tahap pengujian (7est) menjadi 0,929. Penurunan
performa dari fraining ke test sebesar kurang lebih 7,6% ini mengindikasikan
adanya gejala overfitting, di mana model sangat presisi dalam mengenali data latih

namun mengalami sedikit penurunan performa saat memproses data baru yang

78

belum pernah dilihat sebelumnya.Dalam hal keseimbangan deteksi antar kelas,

metode ini menghasilkan F1-Score Macro pada 7est set sebesar 0,889.

Training and Validation Loss Training and Validation Accuracy

1.6 —— Training Loss 1.00
= Validation Loss

0.96

Accuracy
o
io
=

—— Training Accuracy
—— Validation Accuracy

o 5 10 15 20] 5 10 15 20

Gambar 4.8 Grafik Loss dan Accuracy Training dan Validation Random Search

Hasil pelatihan konfigurasi terbaik dari Random Search menunjukkan
efektivitas pembelajaran yang tinggi, di mana Validation Accuracy berhasil
bertahan di kisaran stabil 93-94% dengan Training Accuracy yang nyaris
sempurna. Namun, grafik /oss memperlihatkan gejala overfitting yang muncul lebih
awal; Validation Loss mulai stagnan di sekitar angka 0.32 setelah epoch ke-7,

sementara Training Loss terus menurun drastis.

4.3.2.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan
analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.14 Tabel performa Kelas pada Training Set Random Search

Kelas Precision Recall F1-Score Jumlah Sample
Healthy 0,998 0,998 0,998 36.983
Unhealthy 0,997 0,997 0,997 10.340
Rata-rata 0,998 0,998 0,998 47.323

(Macro)

Rata-rata 0,998 0,998 0,998 47.323
(Weighted)

79

Table 4.15 Tabel performa Kelas pada Validation Set Random Search

Kelas Precision Recall Fl-Score Jumlah Sample
Healthy 0,957 0,966 0,961 8.260
Unhealthy 0,853 0,822 0,837 2.001
Rata-rata 0,905 0,894 0,899 10.261

(Macro)

Rata-rata 0,937 0,938 0,937 10.261
(Weighted)

Table 4.16 Tabel performa Kelas pada Test Set Random Search

Kelas Precision Recall F1-Score Jumlah Sample
Healthy 0,941 0,972 0,956 8.409
Unhealthy 0,879 0,774 0,823 2.244
Rata-rata 0,910 0,873 0,889 10.653

(Macro)

Rata-rata 0,928 0,930 0,928 10.653
(Weighted)

4.3.3 Bayesian Optimization

Metode Bayesian Optimization pendekatan probabilistik untuk memandu
pencarian parameter secara cerdas berdasarkan evaluasi sebelumnya sebanyak 200
iterasi. Proses optimasi ini menghabiskan durasi 17 jam, karena kompleksitas
proses pemodelan surrogate. Namun, investasi waktu ini terbayar dengan
ditemukannya model terbaik pada tahap akhir proses, yaitu iterasi ke-148.

Konfigurasi terbaiknya adalah:

80

Table 4.17 Table Konfigurasi Hyperparameter Terbaik Bayesian Optimization

Hyperparameter Range/Option
Kernel Conv Layer 1 [64]
Kernel Conv Layer 2 [48]
Kernel Size Conv Layer 1 [(3,20)]
Kernel Size Conv Layer 2 [(2,10)]
Dense Unit Layer 1 [1536]
Dense Unit Layer 2 [768]
Drop Out Rate Layer 1 [0.2]
Drop Out Rate Layer 2 [0.4]
Learning Rate [0.0001]
Batch Size [128]
Optimizer [Adam]

4.3.3.1 Hasil Kinerja Bayesian Optimization

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.18 Table Rekapitulasi Kinerja Hasil Bayesian Optimization

Metrik Evaluasi Train Validation Test

Accuracy 0,998 0,939 0,929
F1-Score (Macro) 0,998 0,903 0,888
F1-Score (Weighted) 0,998 0,939 0,927

81

N N i fon Matrix - i ion Set
Confusion Matrix - Test Set
aoou
7000
- 7000

Healthy

236 - 6000
a0

5000
5000

- 4000
- 4000

True Label
True Label

3000 - 3000

so8 1736 324 1677

=
g-
£
5

Unhealthy

2000 - 2000

- 1000 - 1000

Healthy Unhealthy Healthy Unneaithy
Predicted Label Pradicted Labal

Gambar 4.9 Confusion Matrix Hasil Bayesian Optimization

Hasil eksperimen optimasi hyperparameter menggunakan metode Bayesian
Optimization menunjukkan kinerja model yang sangat solid dan seimbang, dengan
karakteristik yang sedikit lebih unggul dalam hal akurasi pelatihan dibandingkan

metode lainnya.

Merujuk pada Tabel 4.18 Rekapitulasi Kinerja Hasil Bayesian Optimization,
model mencatatkan Akurasi Pelatihan (Train Accuracy) yang sangat tinggi,
mencapai 0,998. Performa ini sedikit menurun pada tahap validasi menjadi 0,939
dan pada tahap pengujian (Test) menjadi 0,929. Pola penurunan dari training ke test
ini konsisten dengan metode optimasi lainnya, mengindikasikan adanya gap
generalisasi yang wajar dalam model Deep Learning yang dilatih pada dataset
dengan karakteristik kompleks seperti suara jantung. Dalam hal kemampuan
mendeteksi kedua kelas secara seimbang, metode ini menghasilkan F1-Score

Macro pada Test set sebesar 0,888

Training and Validation Loss Training and Validation Accuracy

—— Training Loss
2.00 —— Validation Loss

0.96

Accuracy
o
o
2

o
@

0.90

= Training Accuracy
—— Validation Accuracy

25 5.0 7.5 100 125 150 17.5 25 5.0 7.5 100 125 150 175
Epoch Epoch

Gambar 4.10 Grafik Loss dan Accuracy Training dan Validation Bayesian

Optimization

82

Hasil pelatihan konfigurasi terbaik dari Bayesian Optimization menunjukkan
efisiensi konvergensi yang sangat cepat. Model berhasil mempertahankan
Validation Accuracy yang stabil di kisaran 93-94%, sementara Training Accuracy
meningkat konsisten hingga mendekati 100%. Namun, grafik /oss memperlihatkan
bahwa titik optimal generalisasi tercapai lebih awal; Validation Loss mulai stagnan
(plateau) di kisaran 0.30 setelah epoch ke-7, sedangkan Training Loss terus
menurun. Meskipun model terbukti robust, penerapan Early Stopping di sekitar
epoch ke-8 hingga ke-10 sangat direkomendasikan untuk mencegah overfitting

yang tidak perlu serta menghemat sumber daya komputasi.

4.3.3.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan
analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,
Validation dan Test set.

Table 4.19 Tabel performa Kelas pada Training Set Bayesian Optimization

Kelas Precision Recall Fl-Score Jumlah Sample
Healthy 1,000 0,999 0,999 36.983
Unhealthy 0,995 0,999 0,997 10.340
Rata-rata 0,998 0,999 0,998 47.323

(Macro)

Rata-rata 0,999 0,999 0,998 47.323
(Weighted)

Table 4.20 Tabel performa Kelas pada Validation Set Bayesian Optimization

Kelas Precision Recall F1-Score Jumlah Sample
Healthy 0,961 0,964 0,963 8.260
Unhealthy 0,850 0,838 0,844 2.001
Rata-rata 0,905 0,901 0,903 10.261

(Macro)

Rata-rata 0,939 0,940 0,939 10.261
(Weighted)

83

Table 4.21 Tabel performa Kelas pada Test Set Bayesian Optimization

Kelas Precision Recall Fl-Score Jumlah Sample
Healthy 0,941 0,971 0,956 8.409
Unhealthy 0,875 0,774 0,821 2.244
Rata-rata 0,908 0,872 0,888 10.653
(Macro)

Rata-rata 0,927 0,929 0,927 10.653
(Weighted)

4.3.4 Genetic Algorithm

Metode Genetic Algorithm (GA) menerapkan prinsip evolusi biologis melalui

seleksi, crossover pada populasi parameter selama 10 generasi. Proses evolusi

menghabiskan waktu total selama 14 jam dan konfigurasi terbaik ditemukan pada

iterasi ke 30. Berikut adalah hyperparameter terbaik yang dihasilkan:

Table 4.22 Table Konfigurasi Hyperparameter Terbaik Genetic Algorithm

Hyperparameter Range/Option
Kernel Conv Layer 1 [64]
Kernel Conv Layer 2 [48]
Kernel Size Conv Layer 1 [(3,25)]
Kernel Size Conv Layer 2 [(3,12)]
Dense Unit Layer 1 [1204]
Dense Unit Layer 2 [384]
Drop Out Rate Layer 1 [0.4]
Drop Out Rate Layer 2 [0.8]
Learning Rate [0.0001]
Batch Size [64]
Optimizer [Nadam]

84

4.3.4.1 Hasil Kinerja Genetic Algorithm

Analisa dilakukan secara komprehensif pada tiga himpunan data: Training,

Validation, dan Testing:

Table 4.23 Table Rekapitulasi Kinerja Hasil Genetic Algorithm

Metrik Evaluasi Train Validation Test

Accuracy 0,996 0,934 0,928
F1-Score (Macro) 0,994 0,893 0,886
F1-Score (Weighted) 0,996 0,933 0,926

True Label

£

Test F1 Macro Score

09

08

0.7

0.5

Confusion Matrix - Test Set

516 1728

Healthy Unhealthy
Predicted Label

s0an

7000

6000

5000

- 4000

- 3000

2000

- 1000

Confusion Matrix - Validation Set

7000

295 - 6000
000
£
3
E - anon
- 3000
z
g- 281 1620
2 2000
5
- 1000
Hsa‘th Unhealit ¥

Predicted Label

Gambar 4.11 Confusion Matrix Hasil Genetic Algorithm

Evolusi F1 Score per Generasi (1 Gen = 20 Model)

—e- Average F1 Score
—k— Best F1 Score
F1 Range (Min-Max)

5 8 7 8 9 10
Generasi

Gambar 4.12 Chart F1-Score Range per Generation

85

Hasil eksperimen optimasi Ayperparameter menggunakan metode Genetic
Algorithm menunjukkan kinerja yang sangat kompetitif, dengan karakteristik yang
unik yaitu efisiensi komputasi yang tinggi (waktu konvergensi tercepat) namun

tetap mampu mempertahankan akurasi yang setara dengan metode lainnya.

Merujuk pada Tabel 4.23 Rekapitulasi Kinerja Hasil Genetic Algorithm,
model menunjukkan kemampuan pembelajaran yang sangat baik dengan Akurasi
Pelatihan (7rain Accuracy) mencapai 0,996. Serupa dengan metode lainnya, terjadi
penurunan pada tahap validasi menjadi 0,934 dan pada tahap pengujian (7es?)
menjadi 0,928. Selisih antara akurasi fraining dan test ini menunjukkan pola
overfitting yang umum terjadi pada Deep Learning, namun model masih mampu

mempertahankan kemampuan generalisasi yang baik dengan akurasi di atas 91%.

Dalam hal kemampuan menangani ketidakseimbangan kelas, metode ini
menghasilkan F1-Score Macro pada 7est set sebesar 0,886. Hal ini mengindikasikan
bahwa meskipun proses pencariannya berbasis evolusi dan stokastik, Genetic
Algorithm mampu menemukan konfigurasi yang memberikan performa klasifikasi

yang stabil.

Training and Validation Loss Training and Validation Accuracy

= Training Loss

= Validation Loss

4 e 4
@ w w0
1Y = =

Accuracy

4
7]
~

0.90

—— Training Accuracy
—— Validation Accuracy

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Gambar 4.13 Grafik Loss dan Accuracy Training dan Validation Genetic

Algorithm

Hasil pelatihan konfigurasi terbaik dari Genetic Algorithm menunjukkan
pola pembelajaran yang sangat efisien. Model mampu mencapai stabilitas
Validation Accuracy di kisaran 93-94%, sementara Training Accuracy terus

menanjak hingga hampir menyentuh 99%. Namun, grafik loss mengindikasikan

86

bahwa kemampuan generalisasi model mencapai puncaknya cukup dini; Validation
Loss mulai mendatar di kisaran 0.28—0.30 setelah epoch ke-7, sedangkan Training
Loss masih terus menurun. Meskipun model ini sangat robust, penerapan Early
Stopping di sekitar epoch ke-8 hingga ke-10 sangat disarankan untuk menjaga

efisiensi dan mencegah model terlalu "menghafal" data latih.

4.3.4.2 Performa per kelas

Untuk memahami kemampuan deteksi model secara lebih spesifik, dilakukan
analisis performa terpisah untuk kelas Healthy dan Unhealthy pada Train,

Validation dan Test set.

Table 4.24 Tabel performa Kelas pada Training Set Genetic Algorithm

Kelas Precision Recall Fl-Score Jumlah Sample
Healthy 0,997 0,998 0,998 36.983
Unhealthy 0,994 0,991 0,992 10.340
Rata-rata 0,995 0,995 0,994 47.323

(Macro)

Rata-rata 0,997 0,997 0,996 47.323
(Weighted)

Table 4.26 Tabel performa Kelas pada Validation Set Genetic Algorithm

Kelas Precision Recall FI-Score Jumlah Sample
Healthy 0,954 0,964 0,959 8.260
Unhealthy 0,846 0,810 0,827 2.001
Rata-rata 0,900 0,887 0,893 10.261

(Macro)

Rata-rata 0,933 0,934 0,933 10.261
(Weighted)

87

Table 4.27 Tabel performa Kelas pada Test Set Genetic Algorithm

Kelas Precision Recall Fl-Score Jumlah Sample
Healthy 0,941 0,970 0,955 8.409
Unhealthy 0,874 0,770 0,819 2.244
Rata-rata 0,907 0,870 0,886 10.653

(Macro)

Rata-rata 0,926 0,928 0,926 10.653
(Weighted)

4.4 Evaluasi Hyperparameter Optimization

4.4.1 Analisis Komparatif Antar Metode

Setelah dilakukan eksperimen pada keempat metode optimasi (Grid Search,
Random Search, Bayesian Optimization, Genetic Algorithm), tahap selanjutnya
adalah melakukan penilaian silang untuk mengidentifikasi metode yang paling
unggul. Evaluasi dilakukan secara komprehensif berdasarkan empat dimensi

utama: Efektivitas, Efisiensi, Stabilitas, dan Skalabilitas.

4.4.1.1 Efektivitas Optimization

Efektivitas diukur berdasarkan kemampuan metode dalam menemukan

konfigurasi hyperparameter yang menghasilkan F'/-Score tertinggi.

Table 4.28 Table Perbandingan Efektivitas Metode HPO

Model Test F'1-Score Macro Peningkatan performa
Grid Search 0,880 0,02

Random Search 0,889 0,029

Bayesian Optimization 0,888 0,028

Genetic Algorithm 0,886 0,026

Berdasarkan hasil uji efektivitas metode Random Search terbukti menjadi

metode yang paling unggul dalam eksperimen ini. Metode ini mencatatkan Test F1-

88

Score Macro tertinggi sebesar 0,889, yang memberikan peningkatan performa

terbesar yaitu 0,026 (2,9%) dari model Rubin

4.4.1.2 Efisiensi Komputasi

Efisiensi dievaluasi berdasarkan sumber daya waktu yang dibutuhkan untuk

mencapai konvergensi.

Table 4.29 Table Perbandingan Efisiensi Metode HPO

Model Time to Number of Computational Time per Trial
convergence Trials Cost

Grid Search 3,2 Jam 59 23,8 Jam 7,5 Menit

Random 13 Jam 160 14,2 Jam 4,2 Menit

Search

Bayesian 15,3 Jam 191 17,4 Jam 5,1 Menit

Optimization

Genetic 2,5 Jam 29 14,1 Jam 4,2 Menit

Algorithm

Analisis efisiensi komputasi menunjukkan bahwa Genetic Algorithm
merupakan metode yang paling unggul dalam hal kecepatan konvergensi, mampu
mencapai target performa hanya dalam waktu 2,5 jam. Dari sisi efisiensi eksekusi
per iterasi, Random Search dan Genetic Algorithm terbukti paling ringan dengan
rata-rata waktu 4,2 menit per frial, menjadikannya opsi hemat sumber daya dengan
total biaya komputasi sekitar 14 jam. Sebaliknya, Grid Search menjadi metode
dengan biaya komputasi tertinggi (23,8 jam) dan waktu eksekusi per trial terlama
(7,5 menit), sementara Bayesian Optimization membutuhkan waktu konvergensi
terlama (13,5 jam) karena proses eksplorasinya yang ekstensif sebelum

mengeksploitasi solusi optimal.

4.4.1.3 Stabilitas Performance

Evaluasi stabilitas bertujuan untuk memastikan bahwa performa tinggi yang
dicapai oleh model terbaik bukanlah kebetulan semata, melainkan hasil dari

konfigurasi hyperparameter. Pengujian dilakukan dengan melatih ulang

89

(retraining) konfigurasi terbaik dari masing-masing metode optimasi sebanyak 5
kali pengulangan (runs) menggunakan inisialisasi random seed yang berbeda (42,
123, 456, 789, 1024).Metode yang stabil ditandai dengan rendahnya nilai Standard
Deviation dan Coefficient of Variation (CV) pada deretan solusi terbaiknya. Berikut

adalah hasil 5 kali pengulangan dengan random seed dan juga hasil analisis nya.

Table 4.30 Table Hasil 5 kali pengulangan dengan random seed

Model 42 123 456 789 1024
Grid Search 0,883 0,880 0,866 0,878 0,868
Random

0,874 0,873 0,874 0,864 0,869
Search
Bayesian

0,869 0,853 0,876 0,855 0,878
Optimization
Genetic

0,878 0,862 0,882 0,873 0,865
Algorithm

Table 4.31 Table Analisis Stabilitas

Model Mean F1- Standar Coefficient of Range
Score Deviasi Variation

Grid Search 0,875 0,007 0,89% 0,017

Random 0,871 0,004 0,49% 0,01

Search

Bayesian 0,866 0,011 1,32% 0,025

Optimization

Genetic 0,872 0,008 0,96% 0,02

Algorithm

Analisis stabilitas menunjukkan bahwa Genetic Algorithm merupakan
metode yang paling konsisten dan robust dalam penelitian ini, ditandai dengan

pencapaian nilai Standar Deviasi (0,008) dan Coefficient of Variation (0,96%)

90

terendah, serta rentang performa yang sangat sempit (0,02). Di sisi lain, Grid Search
menunjukkan keseimbangan performa yang sangat baik dengan mencatatkan rata-
rata kinerja (Mean FI-Score) tertinggi sebesar 0,875 sambil mempertahankan
stabilitas yang tinggi (CV 0,89%). Sebaliknya, Bayesian Optimization
teridentifikasi sebagai metode yang paling tidak stabil dengan variasi kinerja
terbesar (CV 1,32%), mengindikasikan sensitivitas tinggi terhadap pemilihan ruang

parameter.

4.4.1.4 Skalabilitas

Analisis skalabilitas dilakukan untuk mengevaluasi ketahanan metode
optimasi terhadap variasi ukuran dataset dan kompleksitas komputasi pada pada
dataset sizes yang berbeda 25%, 50%, 100%. Dalam analisanya akan dilakukan

analisan efektivitas performance pada FI-Score Macro. Berikut adalah hasil

analisanya:
Table 4.32 Table Analisis Skalabilitas

Model 25 % 50 % 100 %
Grid Search 0,840 0,851 0,880

Random Search 0,843 0,859 0,889

Bayesian 0,839 0,863 0,888

Optimization

Genetic Algorithm 0,852 0,864 0,886

Analisis skalabilitas menunjukkan tren positif di mana kinerja seluruh metode
optimasi meningkat seiring dengan bertambahnya volume data latih dari 25%
hingga 100%, mengonfirmasi bahwa ketersediaan data yang lebih besar

memperkuat kemampuan generalisasi model

4.4.2 Statistical Significance Testing

Untuk memvalidasi bahwa perbedaan kinerja antar metode Hyperparameter
Optimization (HPO) adalah nyata secara statistik dan bukan sekadar kebetulan

akibat variasi acak (random variation), dilakukan analisis statistik inferensial

91

terhadap data F1-Score dari 5 kali pengulangan eksperimen (repeated runs) dengan
random seed 42, 123, 456, 789, dan 1024 untuk menjamin reproducibility sekaligus

mengeksplorasi variasi yang disebabkan oleh random initialization.

4.4.2.1 Uji Normalitas

Langkah pertama adalah memastikan asumsi distribusi data menggunakan uji
Normalitas. Pengujian dilakukan menggunakan metode Shapiro-Wilk, yang
dikenal sensitif dan akurat untuk ukuran sampel kecil (n < 50). Uji ini menentukan
apakah data hasil akurasi dari masing-masing metode berdistribusi normal. Apabila
data berdistribusi normal, analisis dilanjutkan dengan uji One-Way ANOVA.
Sebaliknya, jika data tidak berdistribusi normal, digunakan uji statistik Kruskal
Wallis Test.

Table 4.33 Hasil Uji Normalitas

Kolmogrov-Smirnov Shapiro-Wilk
Method

Statistic df Sig ~ Statistic df Sig

Grid Search 0,254 5 0,200 0,884 5 0,327

Random
0,295 5 0,180 0,825 5 0,127
Search
Score Bayesian
0,232 5 0,200 0,866 5 0,252
Optimization
Genetic
0,196 5 0,200 0,944 5 0,694
Algorithm

Sesuai dengan kriteria pengambilan keputusan:

e Jika Sig. > 0.05, maka HO diterima (Data berdistribusi normal).
o Jika Sig. <0.05, maka HO ditolak (Data tidak berdistribusi normal).

Karena seluruh nilai signifikansi yang diperoleh lebih besar dari 0.05, maka
terima HO. Dengan terpenuhinya asumsi normalitas ini, analisis perbedaan kinerja
antar metode dapat dilanjutkan menggunakan uji statistik parametrik, yaitu One-

Way ANOVA.

92

4.4.2.2 One-Way ANOVA

Setelah asumsi normalitas terpenuhi, dilakukan uji One-Way ANOVA untuk
mengetahui apakah terdapat perbedaan rata-rata performa (F/-Score) yang
signifikan antara keempat metode optimasi yang diuji (Grid Search, Random
Search, Bayesian Optimization, Genetic Algorithm). Uji ini bertujuan untuk
membuktikan hipotesis bahwa pemilihan metode optimasi memberikan dampak

nyata terhadap kinerja model, bukan sekadar kebetulan.

Table 4.34 Hasil Tes ANOVA

Sum of Mean
df F Sig
Squares Square
Between
0,000 3 0,000 0,945 0,443
Groups
Within
0,002 16 0,000
Groups
Total 0,002 16

Sesuai dengan kriteria pengambilan keputusan hipotesis:
e Jika Sig. > 0.05, maka HO diterima (Tidak ada perbedaan signifikan).
o Jika Sig. <0.05, maka HO ditolak (Terdapat perbedaan signifikan).

Karena nilai signifikansi yang diperoleh adalah 0.442 > 0.05, maka terima
HO. Hal ini membuktikan bahwa secara statistik tidak terdapat perbedaan rata-rata
F1-Score yang signifikan antara keempat metode optimasi hyperparameter yang
diyji. Temuan ini mengindikasikan bahwa baik metode konvensional (Grid Search,
Random Search) maupun metode heuristik lanjut (Bayesian Optimization, Genetic
Algorithm) mampu menghasilkan konfigurasi hyperparameter dengan tingkat
efektivitas yang setara (komparabel) dalam kasus klasifikasi ini. Oleh karena itu,
penentuan metode terbaik tidak lagi didasarkan semata-mata pada perbedaan skor
akurasi yang tipis, melainkan dapat difokuskan pada aspek efisiensi komputasi

(waktu dan sumber daya).

93

4.4.3 Analisis Efisiensi Komputasi (CPU vs GPU)

Mengingat kompleksitas arsitektur dan besarnya ruang pencarian
hyperparameter, efisiensi waktu komputasi menjadi faktor krusial dalam
keberhasilan eksperimen. Untuk mengukur dampak akselerasi perangkat keras,
dilakukan analisis perbandingan antara estimasi waktu pelatihan menggunakan

CPU dan waktu aktual menggunakan GPU.

Estimasi waktu CPU dihitung berdasarkan rata-rata durasi pelatihan satu
model (trial) yang kemudian diproyeksikan ke total iterasi eksperimen (192 iterasi

untuk Grid Search dan 200 iterasi untuk metode lainnya).

Table 4.35 Perbandingan estimasi waktu komputasi CPU vs GPU

Metode Durasi Training Proyeksi Durasi ~ Total Waktu
Optimasi 1 Iterasi CPU Total CPU Training GPU
Grid Search 28,56 Menit 95,2 Jam 23,8 Jam
Random 22,89 Menit 73,2 Jam 14,2 Jam
Search

Bayesian 16,94 Menit 56,5 Jam 17,4 Jam
Optimization

Genetic 17,95 Menit 59,8 Jam 14,1 Jam
Algorithm

Hasil proyeksi menunjukkan inefisiensi signifikan pada penggunaan CPU,
dengan durasi pelatihan terlama mencapai 95,2 jam pada Grid Search. Penerapan
GPU terbukti memangkas waktu secara drastis, di mana peningkatan efisiensi
tertinggi terjadi pada Random Search dengan percepatan 5,15 kali lipat (menjadi
14,2 jam), diikuti oleh Grid Search dengan percepatan 4 kali lipat. Data ini
menegaskan bahwa akselerasi perangkat keras mutlak diperlukan untuk

menyelesaikan eksperimen dalam durasi yang wajar.

4.5 Analisis Dampak Ketidakseimbangan Data

Mengingat dataset yang digunakan dalam penelitian ini memiliki distribusi

kelas yang tidak seimbang (imbalanced), penggunaan metrik akurasi global

94

(akurasi keseluruhan) berpotensi memberikan gambaran kinerja yang bias. Model
cenderung memprediksi kelas mayoritas dengan sangat baik, namun sering kali

gagal mengenali kelas minoritas yang justru menjadi fokus utama deteksi.

Oleh karena itu, evaluasi mendalam dilakukan menggunakan kurva Receiver
Operating Characteristic (ROC) dan Area Under Curve (AUC). Analisis ini
bertujuan untuk mengukur seberapa baik setiap metode optimasi dalam
memisahkan kelas Healthy dan Unhealthy secara adil, tanpa memihak pada kelas

yang memiliki jumlah data lebih banyak.

Dalam penelitian ini, ROC dan AUC yang digunakan merupakan hasil dari

model terbaik yang diperoleh dari setiap metode optimasi hiperparameter.

4.5.1 Evaluasi ROC Curve per Metode Optimasi

4.5.1.1 Evaluasi ROC Curve Grid Search
Berikut adalah grafik ROC Curve Grid Search:

-
084 [e
i

06 e

True Positive Rate (TPR)
N\

= = Micro-average ROC (AUC = 0.98)
/’ ROC Healthy (AUC = 0.97)
R ROC Unhealthy (AUC = 0.97)

¥ u v v
0.0 0.2 0.4 0.6 [oX:] 10
False Positive Rate (FPR)

Gambar 4.14 Grafik ROC Curve Grid Search

Berdasarkan gambar 4.14 model yang dioptimasi menggunakan Grid Search
menunjukkan performa yang sangat stabil dan seimbang (robust). Secara
keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang
mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai
AUC ini (0.97 vs 0.97) membuktikan bahwa Grid Search berhasil mengatasi

masalah imbalance. Algoritma ini mampu menemukan konfigurasi hiperparameter

95

yang membuat model mengenali kelas penyakit (Unhealthy) sama baiknya dengan

kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas.

4.5.1.2 Evaluasi ROC Curve Random Seacrh
Berikut adalah gratik ROC Curve Random Search:

1.0 A NN — >
e -

/
4
0874
.

(TPR}

|
Q.6
|

True Positive Rate
\

e
.

-
0.2 -

-

P » = Micro-average ROC (AUC = 0.98)
ROC Healthy (AUC = 0.97)

| 7 ROC Unhealthy (AUC = 0.97)

0o

0.4 06 08 1.0
False Positive Rate (FPR)

Gambar 4.15 Grafik ROC Curve Random Search

Berdasarkan gambar 4.15 model yang dioptimasi menggunakan Random
Search menunjukkan performa yang sangat stabil dan seimbang (robust). Secara
keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang
mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai
AUC ini (0.97 vs 0.97) membuktikan bahwa Random Search berhasil mengatasi
masalah imbalance. Algoritma ini mampu menemukan konfigurasi hiperparameter
yang membuat model mengenali kelas penyakit (Unhealthy) sama baiknya dengan

kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas.

4.5.1.3 Evaluasi ROC Bayesian Optimization
Berikut adalah grafik ROC Curve Bayesian Optimization:

96

10 P — e
1"".’ t,,
+
;,,' ”/
i P
P .
4 -
084) P
o "
1 -
" ,’
b -
£k -~
b
E i
Y06 e
2 pad
¢ P
=] .
8 o
o ,/
-
% 04 "
& -
.
-
-
-
-
/l’
’d
0.2 .
-
-
L
e = = Micro-average ROC (AUC = 0.98)
el ROC Healthy (AUC = 0.97)
”a ROC Unhealthy (AUC = 0.97)
0.0
0.0 0.2 0.4 0.6 08 1.0

False Positive Rate (FPR)

Gambar 4.16 Grafik ROC Curve Bayesian Optimization

Berdasarkan gambar 4.16 model yang dioptimasi menggunakan Bayesian
Optimization menunjukkan performa yang sangat stabil dan seimbang (robust).
Secara keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang
mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Algoritma ini
mampu menemukan konfigurasi hiperparameter yang membuat model mengenali

kelas penyakit (Unhealthy) sama baiknya dengan kelas sehat (Healthy), tanpa

adanya bias terhadap salah satu kelas.

4.5.14 Evaluasi ROC Genetic Algorithm
Berikut adalah grafik ROC Curve Genetic Algorithm:

104 P
pesds P
2 >
g e
L
& ”
- P
«
.
"
084 -7
N -
’
. -
;
z I e
£ -
E -
8064 e
-
2 e
-
g -
= -
i}
8 -~
> P
Los >
= e
’
-
e
P
.
-
.
-
0.2 -
-
’/
e = = Micro-average ROC (AUC = 0.98)
/’ ROC Healthy (AUC = 0.97)
o ROC Unhealthy (AUC = 0.97)
0.0
0.0 02 04 06 0.8 10

False Positive Rate (FPR)

Gambar 4.17 Grafik ROC Curve Genetic Algorithm

97

Berdasarkan gambar 4.17 model yang dioptimasi menggunakan Bayesian
Optimization menunjukkan performa yang sangat stabil dan seimbang (robust).
Secara keseluruhan, model mencapai nilai Micro-average AUC sebesar 0.98, yang
mengindikasikan kemampuan klasifikasi yang nyaris sempurna. Kesetaraan nilai
AUC ini (0.97 vs 0.97) membuktikan bahwa Bayesian Optimization berhasil
mengatasi masalah imbalance. Algoritma ini mampu menemukan konfigurasi
hiperparameter yang membuat model mengenali kelas penyakit (Unhealthy) sama

baiknya dengan kelas sehat (Healthy), tanpa adanya bias terhadap salah satu kelas.

4.5.2 Kesimpulan Analisis Imbalance

Dari hasil evaluasi ROC keempat metode dapat disimpulkan bahwa model
yang dihasilkan memiliki tingkat ketahanan (robustness) yang tinggi. Meskipun
dilatih menggunakan dataset yang tidak seimbang, model mampu mempertahankan
generalisasi yang baik. Kemampuan model untuk mendeteksi kelas Unhealthy
dengan AUC 0.97 membuktikan bahwa sistem ini sangat layak untuk
diimplementasikan sebagai alat bantu diagnosis, karena risiko kesalahan dalam

mendeteksi (False Negative) telah diminimalisir secara signifikan.

4.6 Analisis Komparatif Model Rubin dengan Metode Genetic Algorithm

4.6.1 Perbandingan Konfigurasi Hyperparameter
Berikut adalah table perbandingan Konfigurasi Hyperparameter Model
Rubin dengan Konfigurasi Terbaik Genetic Algorithm:

Table 4.36 Table Perbandingan Konfigurasi Hyperparameter Rubin dengan

Genetic Algorithm

Hyperparameter Rubin Genetic Algorithm
Kernel Conv Layer 1 [64] [64]
Kernel Conv Layer 2 [64] [48]
Kernel Size Conv Layer 1 [(2,20)] [(3,25)]
Kernel Size Conv Layer 2 [(2,10)] [(3,12)]
Dense Unit Layer 1 [1024] [1204]
Dense Unit Layer 2 [512] [384]
Drop Out Rate Layer 1 [0.85565561] [0.4]

98

Hyperparameter Rubin Genetic Algorithm

Drop Out Rate Layer 2 [0.85565561] [0.8]
Learning Rate [0.000158] [0.0001]
Batch Size [256] [64]
Optimizer [Adam] [Nadam]

Analisis perbandingan hyperparameter pada table 4.35 menunjukkan
perbedaan strategi yang signifikan antara model referensi (Rubin) dan hasil
optimasi Genetic Algorithm (GA). Pada arsitektur CNN, meskipun blok pertama
sama-sama menggunakan 64 kernel, GA mengurangi kernel blok kedua menjadi 48
dibandingkan Rubin yang tetap menggunakan 64. Namun, GA memperbesar ukuran
kernel menjadi (3,25) dan (3,12) dibandingkan Rubin yang hanya (2,20) dan (2,10),
yang mengindikasikan bahwa model GA lebih memprioritaskan cakupan fitur
temporal yang luas daripada sekadar jumlah kernel. Perbedaan berlanjut ke lapisan
fully connected, di mana GA meningkatkan kapasitas /ayer pertama menjadi 1204
unit namun merampingkan layer kedua menjadi 384 unit, berbeda dengan Rubin
yang menggunakan 1024 dan 512 unit. Selain itu, GA menyeimbangkan
regularisasi dengan menurunkan Dropout Rate lapisan pertama secara drastis
menjadi 0.4 dari angka agresif 0.85 milik Rubin, sehingga aliran informasi menjadi
lebih optimal. Terakhir, efisiensi pelatihan ditingkatkan oleh GA melalui
penggantian optimizer dari Adam ke Nadam, penurunan Batch Size signifikan dari
256 ke 64, serta penyesuaian Learning Rate menjadi 0.0001, yang secara kolektif

bertujuan untuk menghindari local minima dan meningkatkan presisi konvergensi.

99

4.6.2 Analisis Perbandingan Confusion Matrix

Confusion Matrix - Test Set Test Set - Confusion Matrix

True Label

Healtny Wiheaithy caitny
Predicted Label Predicted Label

Genetic Algorithm Rubin

Gambar 4.18 Gambar perbandingan Confusion Matrix

Evaluasi komparatif pada Test Set menunjukkan keunggulan konsisten model
hasil optimasi Genetic Algorithm (GA) dibandingkan model referensi Rubin di
seluruh kuadran Confusion Matrix. Pada deteksi kelas healthy, model GA terbukti
lebih presisi dengan meningkatkan 7rue Negative menjadi 8.159 dan menekan
angka "alarm palsu" (False Positive) menjadi 250 kasus. Peningkatan yang lebih
krusial secara medis terlihat pada deteksi kelas unhealthy, di mana model GA
berhasil menaikkan angka True Positive menjadi 1.728 sekaligus mereduksi False
Negative menjadi 516 kasus, yang mengindikasikan sensitivitas yang lebih baik
dalam mencegah terlewatnya diagnosis pasien sakit. Secara keseluruhan, total
prediksi benar meningkat menjadi 9.887, membuktikan bahwa strategi pencarian
hyperparameter menggunakan Genetic Algorithm efektif menghasilkan konfigurasi
model yang lebih robust dan akurat dibandingkan konfigurasi statis pada penelitian

referensi.

4.7 Analisis Kesalahan Prediksi (Error Analysis) Genetic Algorithm
Sebagai tahap evaluasi mendalam, dilakukan analisis kesalahan prediksi
(error analysis) terhadap model terbaik hasil optimasi Genetic Algorithm. Analisis
ini mengambil sampel acak yang terdiri dari 3 contoh klasifikasi benar (7rue
Positive) dan tiga contoh klasifikasi salah (False Positive) untuk membandingkan

karakteristik visual sinyalnya secara langsung.

100

Analisis Sinyal PCG: Benar vs Salah Tebak

BENAR BENAR BENAR
Aktual: Healthy Aktual: Healthy Aletual: Healthy

PREDIKS| BENAR
{amplitudo)

|
W

=
=

28C 500 7R 1000 1250 1500 176D [350 500 W0 1000 1250 1800 1750 230 800 730 1000 1280 1500 1730

SALAH (False Pesitive) SALAH (False Positive} SALAH (False Positive)
#slii Healthy | Tebak: Unhealthy Asli: Healthy | Tebak: Unhealthy Aslii Healthy | Tebak: Unhealthy

PREDIKSI SALAH
(Amplitudo)

a 50 s00 750 1000 1250 1500 19D o 250 sow 50 1000 12%0 1500 14%0 [20 sw0 750 1000 1250 1500 1730

Gambar 4.19 Gambar Perbandingan Segmentasi Audio True Positive dan False

Positive

Berdasarkan pengamatan visual, terungkap perbedaan karakteristik sinyal
yang signifikan antara kedua kelompok tersebut. Pada data 7rue Positive, sinyal
tampak stabil dengan osilasi yang konsisten di sekitar garis dasar atau titik nol.
Sebaliknya, pada kasus False Positive (data sehat yang terprediksi sakit), terlihat
adanya anomali teknis yang mencolok berupa pergeseran garis dasar (baseline shift)
yang ekstrem, di mana terjadi lonjakan amplitudo mendadak (step-change) yang
diikuti oleh perubahan rata-rata sinyal secara permanen. Model CNN diduga
menginterpretasikan lonjakan energi mendadak dan ketidakaturan struktur
gelombang ini sebagai fitur patologis (seperti murmur), sehingga memicu

kesalahan klasifikasi.

101

BAB YV
KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil Analisa komparatif antar metode dan analisis statistik yang
dilakukan terhadap empat metode Hyperparameter Optimization (HPO), dapat
disimpulkan bahwa setiap metode memiliki karakteristik keunggulan yang berbeda,
namun efisiensi menjadi faktor pembeda utama. Secara nominal pada pengujian
tunggal, metode Random Search mampu mencatatkan F'/-Score tertinggi sebesar
0,889. Secara statistik melalui uji statistik One-Way ANOVA menunjukkan nilai
signifikansi sebesar 0,442 (> 0,05). Hal ini membuktikan bahwa tidak terdapat
perbedaan rata-rata kinerja yang signifikan antara Grid Search, Random Search,
Bayesian Optimization, dan Genetic Algorithm. Artinya, keempat metode tersebut
memiliki kemampuan yang setara dalam menemukan konfigurasi hyperparameter

yang efektif.

Mengingat tidak adanya perbedaan signifikan dari sisi statistik, penentuan
metode terbaik didasarkan pada aspek efisiensi komputasi. Genetic Algorithm
terbukti menjadi metode yang paling unggul secara menyeluruh karena mampu
mencapai konvergensi optimal hanya dalam waktu 2,5 jam yang dimana ini jauh
lebih cepat dibandingkan Grid Search yang memakan waktu hingga 23,8 jam
sambil tetap mempertahankan performa F/-Score yang setara dengan metode
lainnya. Selain itu, seluruh metode menunjukkan tren skalabilitas yang positif, di
mana performa model meningkat seiring dengan penambahan volume data latih.
Oleh karena itu, dengan mempertimbangkan keseimbangan antara efisiensi waktu
yang superior dan akurasi yang kompetitif secara statistik, Genetic Algorithm

ditetapkan sebagai metode terbaik dalam penelitian ini.

Selain hasil evaluasi berbasis F/-Score, analisis tambahan menggunakan
ROC Curve dan AUC turut memperkuat kesimpulan penelitian ini. Dari hasil
evaluasi ROC terhadap model terbaik dari keempat metode, dapat disimpulkan
bahwa model yang dihasilkan memiliki tingkat ketahanan (robustness) yang tinggi,

bahkan ketika dilatih pada dataset yang tidak seimbang.

102

5.2 Saran

Dari hasil uji efisiensi komputasi dan analisis statistik, disarankan dalam
melakukan hyperparameter optimization menggunakan Genetic Algorithm. Hal ini
dikarenakan metode tersebut terbukti memiliki kecepatan konvergensi yang paling
superior, mampu menyelesaikan proses optimasi hanya dalam waktu 2,5 jam, jauh
lebih efisien dibandingkan metode Grid Search maupun Bayesian Optimization
yang membutuhkan waktu berjam-jam. Meskipun memiliki waktu eksekusi yang
sangat singkat, hasil uji statistik menunjukkan bahwa performa akurasi yang
dihasilkan oleh Genetic Algorithm tidak berbeda secara signifikan dengan metode
lainnya, sehingga menjadikannya solusi yang paling praktis dan hemat sumber daya
tanpa mengorbankan kualitas model secara drastis. Namun demikian, hasil analisis
grafik training dan validation loss serta accuracy menunjukkan adanya indikasi
overfitting, di mana performa model pada data pelatihan meningkat secara
signifikan tetapi tidak diikuti oleh peningkatan yang sepadan pada data validasi.
Oleh karena itu, meskipun Genetic Algorithm direkomendasikan sebagai metode
optimasi terbaik dari sisi efisiensi, penggunaannya tetap perlu disertai kehati-hatian,
misalnya dengan penerapan teknik regularisasi, early stopping, atau validasi silang,

guna memastikan kemampuan generalisasi model tetap terjaga.

103

DAFTAR PUSTAKA

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X.
(2016). TensorFlow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16) (pp. 265-283). USENIX Association.

Agarap, A. F. (2018). Deep learning using rectified linear units (ReLU). arXiv
preprint arXiv:1803.08375. https://doi.org/10.48550/arXiv.1803.08375

Baghel, N., Dutta, M. K., & Burget, R. (2020). Automatic diagnosis of multiple
cardiac diseases from PCG signals using convolutional neural network.
Computer Methods and Programs in Biomedicine, 197, 105750.
https://doi.org/10.1016/j.cmpb.2020.105750

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep
architectures. In G. Montavon, G. B. Orr, & K.-R. Miiller (Eds.), Neural
Networks: Tricks of the Trade (pp. 437-478). Springer.
https://doi.org/10.1007/978-3-642-35289-8 26

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(1), 281-305.

Bonow, R. O., O'Gara, P. T., Adams, D. H., Badhwar, V., Bavaria, J. E., Elmariah,
S., ... & Woo, Y. J. (2021). 2020 Focused update of the 2017 ACC expert
consensus decision pathway on the management of mitral regurgitation.
Journal of the American College of Cardiology, 77(23), 2925-2946.
https://doi.org/10.1016/j.jacc.2021.02.005

Brochu, E., Cora, V. M., & De Freitas, N. (2010). A tutorial on Bayesian
optimization of expensive cost functions, with application to active user

modeling and hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599. https://doi.org/10.48550/arXiv.1012.2599

Choti, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., & Dahl, G. E. (2020).
On empirical comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446. https://doi.org/10.48550/arXiv.1910.05446

Chollet, F. (2021). Deep Learning with Python (2nd ed.). Manning Publications.

Claesen, M., & De Moor, B. (2015). Hyperparameter search in machine learning.
arXiv preprint arXiv:1502.02127. https://doi.org/10.48550/arXiv.1502.02127

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and
ROC curves. In Proceedings of the 23rd International Conference on Machine
Learning (pp. 233-240). ACM. https://doi.org/10.1145/1143844.1143874

Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366.
https://doi.org/10.1109/TASSP.1980.1163420

104

Deng, Y., & Bentley, P. J. (2021). Algorithmic approaches for automated heart
sound analysis. Physiological =~ Measurement, 42(1), O01TROI.
https://doi.org/10.1088/1361-6579/abc6bb

DeVries, T., & Taylor, G. W. (2017). Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552.
https://doi.org/10.48550/arXiv.1708.04552

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep
learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92-
108. https://doi.org/10.1016/j.neucom.2022.06.111

Eiben, A. E., & Smith, J. E. (2015). Introduction to Evolutionary Computing (2nd
ed.). Springer. https://doi.org/10.1007/978-3-662-44874-8

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,
27(8), 861-874. https://doi.org/10.1016/j.patrec.2005.10.010

Frank, M. J., Gelfand, E. V., & Levine, R. A. (2022). The innocent murmur: A
clinical update. American Journal of Medicine, 135(8), 913-919.
https://doi.org/10.1016/j.amjmed.2022.04.015

Frazier, P. 1. (2018). A tutorial on Bayesian optimization. arXiv preprint
arXiv:1807.02811. https://doi.org/10.48550/arXiv.1807.02811

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning. In International Conference
on Machine Learning (pp. 1050-1059).

Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow (3rd ed.). O'Reilly Media.

Gharehbaghi, A., Babic, A., Ask, P., & S6rnmo, L. (2021). A decision support
system for distinguishing between innocent and pathological murmurs.
Biomedical Signal Processing and Control, 65, 102363.
https://doi.org/10.1016/j.bspec.2020.102363

Ghiasi, G., Lin, T. Y., & Le, Q. V. (2018). DropBlock: A regularization method for
convolutional networks. In Advances in Neural Information Processing
Systems 31 (pp. 10727-10737).

Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.
Machine Learning, 3(2), 95-99. https://doi.org/10.1023/A:1022602019183

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

GoodStats. (2023). Prevalensi penyakit jantung di Indonesia tahun 2023. Retrieved
from https://goodstats.id

Hanin, B., & Seluk, D. (2018). How to start training: The effect of initialization and
architecture. In Advances in Neural Information Processing Systems 31 (pp.
571-581).

105

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., ... & Oliphant, T. E. (2020). Array programming with
NumPy. Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-
2649-2

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. MIT Press.

Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data
classification evaluations. International Journal of Data Mining & Knowledge
Management Process, 5(2), 1-11. https://doi.org/10.5121/ijdkp.2015.5201

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex. The Journal of Physiology,
160(1), 106-154. https://doi.org/10.1113/jphysiol.1962.sp006837

Humayun, A. 1., Ghaffarzadegan, S., Feng, Z., & Hasan, T. (2020). Learning front-
end kernel-bank parameters using convolutional neural networks for
abnormal heart sound detection. In 2020 42nd Annual International
Conference of the [EEE Engineering in Medicine & Biology Society (EMBC)
(pp. 1408-1411). IEEE. https://doi.org/10.1109/EMBC44109.2020.9176240

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science
& Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on Machine Learning (pp. 448-456). PMLR.

Japkowicz, N., & Shah, M. (2011). Evaluating Learning Algorithms: A
Classification Perspective. Cambridge University Press.
https://doi.org/10.1017/CBO9780511921803

Kaggle. (2024). KaggleHub Documentation. Retrieved from
https://github.com/Kaggle/kagglehub

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017).
On large-batch training for deep learning: Generalization gap and sharp
minima. In 5th International Conference on Learning Representations
(ICLR). https://openreview.net/forum?id=H1oyR1Y gg

Kingma, D. P, & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd
International ~ Conference on Learning Representations (ICLR).
https://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25 (pp. 1097-1105). Curran Associates, Inc.

Labach, A., Salehinejad, H., & Valaee, S. (2019). Survey of dropout methods for
deep neural networks. arXiv preprint arXiv:1904.13310.
https://doi.org/10.48550/arXiv.1904.13310

106

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-
444, https://doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., & Haftner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278-
2324. https://doi.org/10.1109/5.726791

Liashchynskyi, P., & Liashchynskyi, P. (2019). Grid search, random search, genetic
algorithm: A big comparison for NAS. arXiv preprint arXiv:1912.06059.
https://doi.org/10.48550/arXiv.1912.06059

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2020). On the
variance of the adaptive learning rate and beyond. In 8th International
Conference on Learning Representations (ICLR).
https://openreview.net/forum?id=rkgz2aEK Dr

Liu, Z., Mao, H., Wu, C. Y., Feichtenhofer, C., Darrell, T., & Xie, S. (2022). A
ConvNet for the 2020s. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 11976-11986).
https://doi.org/10.1109/CVPR52688.2022.01167

Lloyd-Jones, D. M., Allen, N. B., Anderson, C. A., Black, T., Brewer, L. C., Foraker,
R. E., ... & Wilkins, J. T. (2022). Life's Essential 8: Updating and enhancing
the American Heart Association's construct of cardiovascular health - A
presidential advisory from the American Heart Association. Circulation,
146(5), el8-e43. https://doi.org/10.1161/CIR.0000000000001078

Lorenzo, P. R., Nalepa, J., Kawulok, M., Ramos, L. S., & Pastor, J. R. (2017).
Particle swarm optimization for hyper-parameter selection in deep neural

networks. In Proceedings of the Genetic and Evolutionary Computation
Conference (pp. 481-488). https://doi.org/10.1145/3071178.3071208

Loshchilov, 1., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm
restarts. In 5th International Conference on Learning Representations (ICLR).
https://openreview.net/forum?id=Skq89Scxx

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. In 7th
International ~ Conference on Learning Representations (ICLR).
https://openreview.net/forum?1d=Bkg6RiCqY7

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. In Proceedings of the 30th International
Conference on Machine Learning (Vol. 30, No. 1, p. 3).

Maknickas, V., & Maknickas, A. (2017). Recognition of normal-abnormal
phonocardiographic signals using deep convolutional neural networks and

mel-frequency spectral coefficients. Physiological Measurement, 38(8),
1671-1684. https://doi.org/10.1088/1361-6579/aa7841

Mantovani, R. G., Rossi, A. L., Vanschoren, J., Bischl, B., & De Carvalho, A. C.
(2015). Eftectiveness of random search in SVM hyper-parameter tuning. In
2015 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8).
IEEE. https://doi.org/10.1109/IJCNN.2015.7280664

107

Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural
networks. arXiv preprint arXiv:1804.07612.
https://doi.org/10.48550/arXiv.1804.07612

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1956). A proposal
for the Dartmouth summer research project on artificial intelligence. Al
Magazine, 27(4), 12-14.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto,
0. (2015). librosa: Audio and music signal analysis in Python. In Proceedings
of the 14th Python in Science Conference (Vol. 8, pp. 18-25).
https://doi.org/10.25080/Majora-7b98e3ed-003

McKinney, W. (2010). Data structures for statistical computing in Python. In
Proceedings of the 9th Python in Science Conference (Vol. 445, pp. 51-56).
https://doi.org/10.25080/Majora-92bf1922-00a

Mensah, G. A., Fuster, V., Murray, C. J. L., & Roth, G. A. (2023). Global burden of
cardiovascular diseases and risks, 1990-2022. Journal of the American
College of Cardiology, 82(25), 2350-2473.
https://doi.org/10.1016/j.jacc.2023.11.007

Messner, T., Dillier, R., & Badertscher, P. (2023). Phonocardiography in the era of
artificial intelligence: Current applications and future perspectives. European
Heart Journal - Digital Health, 4(2), 91-101.
https://doi.org/10.1093/ehjdh/ztac078

Mockus, J. (1975). On Bayesian methods for seeking the extremum. In
Optimization Techniques IFIP Technical Conference (pp. 400-404). Springer.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
Boltzmann machines. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10) (pp. 807-814).

Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., Erwin, J. P., Gentile,
F., ... & Toly, C. (2021). 2020 ACC/AHA guideline for the management of
patients with valvular heart disease. Journal of the American College of
Cardiology, 77(4), €25-e197. https://doi.org/10.1016/j.jacc.2020.11.018

Nogueira, D. M., Ferreira, C. A., Gomes, E. F., & Jorge, A. M. (2019). Classifying
heart sounds using images of motifs, MFCC and temporal features. Journal
of Medical Systems, 43(6), 168. https://doi.org/10.1007/s10916-019-1286-5

O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., etal. (2019).
KerasTuner. Retrieved from https://github.com/keras-team/keras-tuner

Otto, C. M., Nishimura, R. A., Bonow, R. O., Carabello, B. A., Erwin III, J. P.,
Gentile, F., ... & O'Gara, P. T. (2020). 2020 ACC/AHA guideline for the
management of patients with valvular heart disease: Executive summary.
Circulation, 143(5), e35-e71.
https://doi.org/10.1161/CIR.0000000000000932

108

Paleyes, A., Pullin, M., Mahsereci, M., McCollum, C., Lawrence, N. D., &
Gonzalez, J. (2021). Emulation of physical processes with Emukit. In Second
Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019).
arXiv preprint arXiv:1910.13321.

Pedregosa, F., Varoql}aux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ...
& Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825-2830.

Potes, C., Parvaneh, S., Rahman, A., & Conroy, B. (2016). Ensemble of feature-
based and deep learning-based classifiers for detection of abnormal heart
sounds. In 2016 Computing in Cardiology Conference (CinC) (pp. 621-624).
IEEE. https://doi.org/10.22489/CinC.2016.182-399

Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC,
informedness, markedness and correlation. Journal of Machine Learning
Technologies, 2(1), 37-63.

Probst, P., Boulesteix, A. L., & Bischl, B. (2020). Tunability: Importance of
hyperparameters of machine learning algorithms. Journal of Machine
Learning Research, 20(53), 1-32.

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour,
L. M., ... & GBD-NHLBI-JACC Global Burden of Cardiovascular Discases
Writing Group. (2020). Global burden of cardiovascular diseases and risk
factors, 1990-2019: Update from the GBD 2019 study. Journal of the
American College of Cardiology, 76(25), 2982-3021.
https://doi.org/10.1016/j.jacc.2020.11.010

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747. https://doi.org/10.48550/arXiv.1609.04747

Russell, S. J., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th
ed.). Pearson.

Scherer, D., Miiller, A., & Behnke, S. (2010). Evaluation of pooling operations in
convolutional architectures for object recognition. In Artificial Neural
Networks—ICANN 2010 (pp. 92-101). Springer. https://doi.org/10.1007/978-
3-642-15825-4 10

Sejnowski, T. J. (2020). The unreasonable effectiveness of deep learning in artificial
intelligence. Proceedings of the National Academy of Sciences, 117(48),
30033-30038. https://doi.org/10.1073/pnas.1907373117

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2016). Taking
the human out of the loop: A review of Bayesian optimization. Proceedings
of the IEEE, 104(1), 148-175. https://doi.org/10.1109/JPROC.2015.2494218

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning
Representations.

109

Smith, S. L., Dherin, B., Barrett, D. G., & De, S. (2021). On the origin of implicit
regularization in stochastic gradient descent. In 9th International Conference
on Learning Representations (ICLR).
https://openreview.net/forum?id=rq QrOclHyo

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization
of machine learning algorithms. In Advances in Neural Information
Processing Systems 25 (pp. 2951-2959). Curran Associates, Inc.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance
measures for classification tasks. Information Processing & Management,
45(4), 427-437. https://doi.org/10.1016/j.ipm.2009.03.002

Springer, D. B., Tarassenko, L., & Clifford, G. D. (2016). Logistic regression-
HSMM-based heart sound segmentation. IEEE Transactions on Biomedical
Engineering, 63(4), 822-832.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1), 1929-1958.

Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement
of the psychological magnitude pitch. The Journal of the Acoustical Society
of America, 8(3), 185-190. https://doi.org/10.1121/1.1915893

Tan, M., & Le, Q. (2021). EfficientNetV2: Smaller models and faster training. In
International Conference on Machine Learning (pp. 10096-10106). PMLR.

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W.,
Carson, A. P., ... & American Heart Association Council on Epidemiology and
Prevention Statistics Committee and Stroke Statistics Subcommittee. (2020).
Heart disease and stroke statistics—2020 update: A report from the American
Heart Association. Circulation, 141(9), e139-e596.
https://doi.org/10.1161/CIR.0000000000000757

Waring, J., Lindvall, C., & Umeton, R. (2020). Automated machine learning:
Review of the state-of-the-art and opportunities for healthcare. Artificial
Intelligence in Medicine, 104, 101822.
https://doi.org/10.1016/j.artmed.2020.101822

Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open
Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

World Health Organization. (2021). Cardiovascular diseases (CVDs) fact sheet.
Retrieved from https://www.who.int/news-room/fact-
sheets/detail/cardiovascular-diseases-(cvds

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning
algorithms: Theory and practice. Neurocomputing, 415, 295-316.
https://doi.org/10.1016/j.neucom.2020.07.061

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J.
(2020). Large batch optimization for deep learning: Training BERT in 76

110

minutes. In 8th International Conference on Learning Representations
(ICLR). https://openreview.net/forum?id=Syx4wnEtvH

Zhang, W., Han, J., & Deng, S. (2022). Heart sound classification based on scaled
spectrogram and partial transfer learning. IEEE Sensors Journal, 22(16),
16285-16294. https://doi.org/10.1109/JSEN.2022.3163753

Royston, J. P. (1982). Some Techniques for Assessing Multivariate Normality Based
on the Shapiro—Wilk W. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 32(2), 121-133.

Laerd Statistics. (2024). Repeated Measures ANOVA and Tests of Normality using
SPSS. Retrieved from https://statistics.laerd.com

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional
networks

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R. C.,

& Wilson, K. (2017). CNN architectures for large-scale audio

classification. In /EEE International Conference on Acoustics, Speech and
Signal Processing (pp. 131-135).

Pons, J., Lidy, T., & Serra, X. (2017). Experimenting with musically motivated
convolutional neural networks. In /[EEE International Workshop on Content-
Based Multimedia Indexing (pp. 1-6).

111

		2026-01-12T22:25:43+0700
	JAKARTA
	e-meterai_signatures
	[ZGN499EYEO0HJ27Y0009Y9] Ref-838444241385402

